WO1999060728A1 - Systeme de radiocommunications sans interferences - Google Patents

Systeme de radiocommunications sans interferences Download PDF

Info

Publication number
WO1999060728A1
WO1999060728A1 PCT/JP1999/002618 JP9902618W WO9960728A1 WO 1999060728 A1 WO1999060728 A1 WO 1999060728A1 JP 9902618 W JP9902618 W JP 9902618W WO 9960728 A1 WO9960728 A1 WO 9960728A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
wireless communication
mobile station
communication system
base station
Prior art date
Application number
PCT/JP1999/002618
Other languages
English (en)
French (fr)
Inventor
Etsuhiro Nakano
Yoshihiro Ishikawa
Masafumi Hata
Minami Ishii
Seizo Onoe
Original Assignee
Ntt Mobile Communications Network Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Mobile Communications Network Inc. filed Critical Ntt Mobile Communications Network Inc.
Priority to JP1999545648A priority Critical patent/JP3872526B6/ja
Priority to EP99919654A priority patent/EP1005181B1/en
Priority to DE69934864T priority patent/DE69934864T2/de
Priority to US09/364,938 priority patent/US6741837B1/en
Publication of WO1999060728A1 publication Critical patent/WO1999060728A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/354Adjacent channel leakage power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0238Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is an unwanted signal, e.g. interference or idle signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the first wireless communication system 110 and the second wireless communication system 120 are located in the same area and use adjacent frequencies.
  • the mobile station 114 belonging to the first wireless communication system 110 is very close to the base station 122 of the second wireless communication system and the base station 1 of the second wireless communication system 120. It is transmitting to the base station 112 of the first wireless communication system 110 located farther than 222.
  • the mobile station 114 cannot change the affiliation from the first wireless communication system 110 to the second wireless communication system 120 during communication.
  • an unused frequency band called a guard band is arranged between frequency bands used in two wireless communication systems, and even in the case shown in FIG. Avoid interference.
  • guard band has the disadvantage of lowering the frequency utilization efficiency.
  • CDMA Code Division Multiple Access
  • the required guard band becomes wider, and the reduction in frequency use efficiency becomes more remarkable.
  • eliminating guard bands has the problem of reducing subscriber capacity due to interference. Disclosure of the invention
  • An object of the present invention is to avoid interference between wireless communication systems without providing a guard band by stopping transmission of a mobile station that causes interference between wireless communication systems.
  • two or more radio communication systems each including one or more base stations and one or two or more mobile stations exist in the same area
  • the system uses different frequencies
  • the mobile station belongs to one wireless communication system during communication
  • the base station can A mobile station intentionally transmits an interference wave at a frequency different from the used frequency, for example, an adjacent frequency
  • the mobile station monitors the downlink reception quality, and the monitored reception quality falls below an allowable value. If you want to stop sending.
  • the transmission of the interference wave from the base station can be performed using the leaked power, or can be performed by including an interference wave transmitter.
  • the base station may include a receiver for measuring the reception level at the adjacent frequency, and may transmit the interference wave at the adjacent frequency only when the uplink reception level is equal to or higher than the allowable level. .
  • the base station performs transmission on the adjacent frequency only when necessary, so that the interference of the downlink to the wireless communication system having the adjacent frequency is reduced and the interference level at the own frequency is measured. As a result, the start / stop of the transmission of the interference wave is determined, so that there is no need to provide a separate receiver at the base station.
  • two or more wireless communication systems each including one or more base stations and one or two or more mobile stations exist in the same area, and each wireless communication system is different.
  • the mobile station Measure the reception level at the frequency adjacent to the frequency used by the user, and check that the reception level If so, stop sending.
  • the mobile station is equipped with a receiver for measuring the reception level at the adjacent frequency, and can stop the transmission when the reception level becomes higher than the allowable level.
  • the mobile station switches the reception frequency during standby and during communication while there is no need to perform reception, measures the reception level at the adjacent frequency, and stops transmission if the reception level is higher than the allowable level You can also.
  • FIG. 1 is a diagram showing leakage power to a frequency band other than a used frequency band in a conventional example.
  • FIG. 2 is a diagram for explaining an example in which leakage power gives large interference power to adjacent frequencies in a conventional example.
  • FIG. 4 is a diagram showing an overall configuration of a wireless communication system according to the present invention.
  • FIG. 5 is a diagram showing frequencies used by each base station in FIG.
  • FIG. 7 is a block diagram showing a configuration of a mobile station according to the present invention.
  • FIG. 8 is a diagram showing an example of the interference in question.
  • Figure 10 shows the relationship between the size and power consumption of a mobile station and the leakage power at adjacent frequencies.
  • FIG. 11 is a diagram showing received power and interference power at a mobile station.
  • FIG. 12 is a block diagram showing a configuration of a base station according to the present invention capable of transmitting noise generation.
  • FIG. 15 is a diagram illustrating uplink interference in a base station.
  • FIG. 16 is a diagram showing leakage power from a base station to a mobile station reception frequency band.
  • FIG. 17 is a block diagram showing a configuration of a mobile station according to the present invention capable of measuring a reception level of an adjacent frequency.
  • FIG. 18 is a block diagram showing another configuration of the mobile station according to the present invention capable of measuring the reception level of the adjacent frequency.
  • FIG. 4 shows an overall configuration of a wireless communication system according to the present invention.
  • a base station 4 12 and a mobile station 4 14 belong to a first radio communication system 4 10
  • a base station 4 2 2 belongs to a second wireless communication system 4 20.
  • the service areas 418 and 428 of the first wireless communication system 410 and the second wireless communication system 420 overlap each other.
  • FIG. 5 shows the transmission and reception frequencies assigned to base station 4 12 and base station 4 22. As shown in FIG. 5, adjacent transmission frequencies and reception frequencies are assigned to the base stations 4 12 and 4 22.
  • FIG. 6 shows an embodiment of the base station according to the present invention.
  • This base station has a function of relaying communication between the mobile station and the communication network, and is connected to the mobile station via radio.
  • the antenna 610 receives a radio wave transmitted by the mobile station and transmits a radio wave to the mobile station.
  • the duplexer 620 is a directional coupler for sharing one antenna 610 for transmission and reception, and includes a transmission filter and a reception filter at radio frequencies as shown in FIG. Have.
  • 630 and 640 are a transmitter and a receiver, respectively.
  • the baseband processing unit 650 processes a signal from a communication network 660 such as a public line and a radio signal received from a mobile station. Transmitter 630, modulator 631, mixer 6332, intermediate frequency (IF) oscillator 6333, bandpass' filter
  • the signal sent from the communication network is converted into a baseband signal to be transmitted to the mobile station in a conventional baseband processing unit 65.
  • a conventional baseband processing unit 65 See “Further Results on Field Experiments of Coherent Wideband DS-CDMA Mobile Radio", T. Dohi et al., IEICE Trans. Commun., Vol. E81-B, No. 6 June 1998)
  • control as necessary Signal addition and error correction code processing are performed in the baseband processing unit 650.
  • the baseband signal is digitally modulated by the modulator 631, and then the IF oscillator 63
  • the signal converts the signal to an intermediate frequency signal.
  • the signal outside the transmission band is attenuated by the BPF 634 and converted to a radio frequency signal by the RF generator ⁇ 636.
  • the signal is amplified by the transmission amplifier 637 and transmitted by the duplexer 620 and the antenna 610.
  • FIG. 7 shows an embodiment of the mobile station according to the present invention.
  • the antenna 710 receives a radio wave transmitted by the mobile station and transmits a radio wave to the mobile station.
  • the duplexer 720 is a directional coupler for sharing one antenna 710 for transmission and reception.
  • 730 and 740 are a transmitter and a receiver, respectively.
  • the baseband processing unit 750 is a conventional device that processes a signal from the terminal device 760 and a radio signal from the base station received by the receiver 710.
  • the transmitter 730 is a modulator 733, a mixer 732, an intermediate frequency (IF) oscillator 733, a band-pass filter (BPF) 733, a mixer 735, a radio frequency ( It consists of an oscillator for RF) 736 and a transmission amplifier 737.
  • the mobile station has almost the same configuration as the base station shown in FIG. 6, except that a terminal device 760 is connected instead of the communication network.
  • the first embodiment addresses the problem of interference of the adjacent frequency leakage power of the mobile station 414 in FIG. 4 on the reception frequency of the base station 422.
  • CDMA Code Division Multiple Access
  • FIGS. 8 and 9 An example of interference will be described with reference to FIGS. 8 and 9.
  • base station 412 and mobile station 414 are communicating.
  • the base station 422 performs communication using a frequency adjacent to the frequency used in this communication.
  • FIG. 9 shows an example of leakage power to an adjacent frequency at the time of transmission by the mobile station 414.
  • the power generated at the reception frequency of the base station 422 is reduced by 40 dB with respect to the transmission power of the mobile station 414 at the transmission frequency.
  • This leakage power value is a value mainly determined by the distortion characteristics of the transmission amplifier 737, the transmission filter characteristics in the duplexer 720, and the characteristics of the BPF 734 in FIG.
  • the size and power consumption of the mobile station and the leakage power at adjacent frequencies are in inverse proportion. For this reason, in order to reduce the size and power consumption of mobile stations, it is necessary to allow leakage power at adjacent frequencies to some extent.
  • the spreading gain is 20 dB and the interference power at the base station 412 is 105 dBm.
  • the interference power is -90 dBm. This value is 15 dB larger than the interference power (-105 dBm) of the base station 412, and the mobile station connected to the base station 422 needs to increase the transmission power accordingly. .
  • the mobile stations connected to the base station 422 the mobile stations communicating at a transmission power close to the maximum transmission power are affected by the interference from the mobile station 414. Cutting will occur.
  • the mobile station 414 is interfering with the base station 422.
  • an interference wave is transmitted from the base station 422 to the reception frequency of the mobile station 414.
  • the transmission power from the base station 412 to the mobile station 414 is 30 dBm
  • the spreading gain is 20 dB
  • the interference power at the mobile station 414 is 105 dBm.
  • Maximum transmission from base station 412 to mobile station 4 14 Assume that communication is cut off when the received power is 35 dBm and the received SIR at the mobile station 4 14 is 3 dB or less.
  • an interference wave is transmitted from the base station 422 to the reception frequency of the mobile station 414.
  • the interference power at the mobile station 4 14 increases by 90 dBm, and the received SIR is 15 dB or less. Becomes Even if the transmission power from the base station 4 12 is increased to the maximum transmission power, the received SIR becomes 0 dB or less, and the communication is disconnected. Therefore, the interference from the mobile station 414 to the base station 422 stops, and the reception quality at the base station 422 is guaranteed.
  • the leakage power to adjacent frequencies is inversely proportional to the size of the device. Since the requirements for the size of the device are not as strict as those of the mobile station, the base station generally allows a certain size of the device and suppresses the leakage power to the adjacent frequency. However, in the first embodiment, since it is necessary to transmit an interference wave to an adjacent frequency, the distortion characteristic of the transmission amplifier 637 in the base station shown in FIG. By changing the transmission filter characteristics and the characteristics of the BPF 634, it is possible to transmit the required interference power at adjacent frequencies.
  • the base station at the reception frequency (adjacent frequency) of the adjacent mobile station, the base station constantly transmits the leakage power proportional to the transmission power of its own frequency.
  • FIG. 12 shows a configuration that can easily transmit power of any desired magnitude in order to cause interference with the reception frequency of an adjacent mobile station.
  • a transmitter 800 is added to the configuration of the base station shown in FIG. This makes it possible to transmit radio waves of an appropriate size that will interfere with the adjacent mobile station reception frequency band without depending on the transmission power of its own frequency. Wear.
  • FIG. 12 the same parts as those in FIG. 6 are denoted by the same reference numerals.
  • the transmitter 800 has a noise generator 810, a mixer 8122, and a bandpass filter 814.
  • the noise generated by the noise generator 810 is converted into an intermediate frequency by the signal from the IF oscillator 633 'in the mixer 812.
  • the IF oscillator 633 3 ′ calculates the difference between its own operating frequency and the reception frequency of the adjacent mobile station (in the case of FIG. 5, the difference in the transmission frequency between the base station 422 and the base station 412). A frequency shifted only by the above can oscillate.
  • the pass band of BP 814 is a band shifted by this difference from the pass band of BP 634.
  • the output of the BPF 814 is converted into a signal of the reception frequency of the adjacent mobile station by the mixer 635 and the RF oscillator 636, and the transmission amplifier 637, the duplexer 6200, and the antenna Transmit via 6 10.
  • the transmission filters in the transmission amplifier 637 and the duplexer 620 have the characteristic of being able to transmit to adjacent frequencies.
  • an interference wave at an adjacent mobile station reception frequency of an appropriate size for giving interference to the mobile station and stopping transmission is provided. Can be easily transmitted.
  • FIG. 13 shows a base station obtained by adding a receiver 920 for measuring the level of a received signal at an adjacent frequency to the base station shown in FIG.
  • the same parts as those in FIG. 12 are denoted by the same reference numerals.
  • the band pass filter (BPF) 922 of the level measuring receiver 920 receives the received signal converted to the intermediate frequency by the RF oscillator 646 and the mixer 645. Extract the signal of the adjacent frequency.
  • the signal is used as an IF oscillator 6 4 3 'And a mixer 9 2 4 to convert to baseband signal.
  • the IF oscillator 6 4 3 ′ can also transmit a frequency shifted by an adjacent frequency.
  • the output of the mixer 9224 is demodulated by the demodulator 926 to measure the level, and the level is compared with the level determined in advance by the level determination section 928. As a result of the comparison, when the level of the received signal at the received adjacent frequency is high, the transmitter 800 is operated. As described above, the transmitter 800 transmits an interference wave of an appropriate level to an adjacent frequency band.
  • the leakage power to an adjacent frequency when transmitting from a mobile station is 40 dB lower than the transmission power, it is 40 dB lower than the reception level of the adjacent frequency.
  • Interference power will be added to the signal at the receiving frequency. Therefore, when the allowable value of the interference power from the adjacent frequency in the base station is set to 100 dBm, the reception level of the adjacent frequency is ⁇ 60 dBm in the level measuring receiver 920 described above.
  • mosquitoes? is determined that exceeded, the base station performs transmission of the interference wave with respect to adjacent frequencies from the transmitter 8 0 0. Due to the interference of the transmitted interference wave, communication at the adjacent frequency of the mobile station is terminated, and the interference power from the adjacent frequency is reduced.
  • a receiver for measuring the level of the adjacent frequency in the base station and the reception level in the adjacent frequency band is provided.
  • the fourth embodiment shown in FIG. The configuration is such that the level of interference can be estimated without providing a receiver for use.
  • the base station according to the fourth embodiment is configured as shown in FIG. In FIG. 14, the same parts as those in FIG. 12 are denoted by the same reference numerals. In Fig. 14, the demodulator
  • the interference level is measured.
  • the level of the measured interference level is determined by the level determination unit 928 'as described below.
  • the transmitter 800 is operated to start transmitting an interference wave at the adjacent frequency. This stops transmission of the mobile station causing the interference. This is described in detail using FIG. I will explain it.
  • base station 422 is communicating with mobile stations 424, 426 and 428.
  • transmission power is controlled so that the reception level at the base station does not become excessive.
  • the total reception level at the base station 422 is controlled so as to be suppressed to the thermal noise level + 10 dB. Therefore, if the measurement result of the interference level exceeds the thermal noise level + 10 dB, it is expected that interference from another wireless communication system will occur.
  • the interference level at the base station 422 is the thermal noise level +10 dB. Will exceed. Therefore, by using this +10 dB as the criterion for the above-described level determination, it is possible to estimate the leakage power from the mobile station using the adjacent frequency band.
  • the base station 422 can transmit an interference wave at an adjacent frequency. Due to this interference, the transmission of the mobile station 414 at the adjacent frequency is terminated, and as a result, the interference power from the adjacent frequency decreases.
  • transmission of a mobile station performing communication using an adjacent frequency is stopped due to generation of an interference wave from a base station.
  • the mobile station detects that the mobile station is giving interference to the base station communicating with the adjacent frequency, and stops transmission.
  • the mobile station 414 gives a large interference to the base station 422.
  • the leakage power at the reception frequency from the base station 422 to the mobile station 414 is as shown in Fig. 16
  • the total transmission power from the base station 422 is 40 dBm
  • the propagation loss is 80 dB.
  • the permissible interference level is 110 dBm, The mobile station 4 1 4 needs to stop transmitting.
  • the above-mentioned allowable interference level MS-LEV of the adjacent frequency measured at the mobile station can be determined as follows.
  • MS— LEV BS_POW— BS—ATT + BS— LEV + MS_ATT— MS-POW,
  • MS—LEV Admissible interference level of adjacent frequency measured by mobile station
  • BS_POW Total transmission power of base station
  • BS_ATT Attenuation of adjacent frequency leakage power with respect to base station transmission power (> 0)
  • BS—LEV Allowable interference level from adjacent frequency at base station
  • MS_ATT Attenuation of adjacent frequency leakage power with respect to mobile station transmission power (> 0)
  • MS— POW Mobile station transmission power
  • the base station determines the adjacent frequency reception level based on the adjacent frequency reception level measured at the mobile station. , The transmission stop can be determined.
  • FIG. 17 shows an example in which the mobile station measures the reception level of the adjacent frequency according to the above principle. In FIG. 17, the same parts as those in FIG. 7 are denoted by the same reference numerals.
  • the received signal converted into the intermediate frequency by the RF oscillator 746 and the mixer 745 is input to the adjacent frequency receiver 930.
  • a signal of the adjacent frequency is extracted by the band-pass filter 933 IF oscillator 743 'and the mixer 934.
  • This signal is supplied to a demodulator 936, the level of the signal is measured, and the level judgment section 938 makes the above-described level judgment.
  • the judgment output is supplied to the baseband processing unit 750, and based on the judgment result, To determine whether to stop the transmission from the mobile station.
  • the mobile station estimates the interference with the base station communicating in the adjacent frequency band and stops its own transmission.
  • a receiver for receiving signals of adjacent frequencies is required.
  • the mobile station when the mobile station does not need to perform reception during standby or during communication, it is necessary to receive signals of adjacent frequencies.
  • the mobile station Upon receiving the signal, the mobile station itself estimates the interference to the base station.
  • FIG. 18 the same parts as those in FIG. 7 are denoted by the same reference numerals.
  • the pass frequency of the non-pass' filter 744 ' is given by the command from the base-span processing unit 750'.
  • the present invention has been described by taking an example of interference avoidance between two wireless communication systems.
  • the present invention can be applied to a case where three or more wireless communication systems are mixed.
  • the present invention can also be applied to avoid interference between a micro cell and a macro cell.
  • one or more wireless communication systems In the case of coexistence in the same area, in order to suppress uplink interference from a mobile station of another system, transmission of a mobile station causing the interference can be stopped.
  • the present invention it is possible to prevent interference from a mobile station of another system without providing a guard band, and to increase the frequency use efficiency without deteriorating communication quality.

Description

明 細 書
干渉回避無線通信システム 技術分野
本発明は、 使用する周波数が異なる複数の無線通信システムが同一地域に混在 した場合における無線通信システム間干渉回避方法に関する。 背景技術
複数の無線通信システムを同一地域で混在させる場合、 お互いの電波干渉を避 けるため、 それぞれに割り当てる周波数を分ける必要がある。 一方、 無線通信を 行うための送信機は、 使用周波数以外への送信波の漏洩を完全に止めることはで きず、 使用周波数以外への漏洩電力を生ずる。 これを第 1図に示す。 第 1図より 分かるように、 この漏洩電力は全体の送信電力に比べると非常に小さいが、 基地 局および移動局の配置によっては隣接周波数に対して非常に大きな干渉を与える 可能性がある。 これを第 2図を用いて説明する。
第 2図において、 第 1無線通信システム 1 1 0と第 2無線通信システム 1 2 0 は同一地域に存在し、 隣接した周波数を使用している。 第 1無線通信システム 1 1 0に帰属する移動局 1 1 4は、 第 2無線通信システムの基地局 1 2 2に非常に 近くにあり、 かつ、 第 2無線通信システム 1 2 0の基地局 1 2 2よりも遠い位置 にある第 1無線通信システム 1 1 0の基地局 1 1 2に対して送信を行っている。 移動局 1 1 4は、 帰属先を第 1無線通信システム 1 1 0から第 2無線通信システ ム 1 2 0へ、 通信中に変更することができない。
この場合、 隣接周波数からの漏洩電力であっても、 第 2無線通信システム 1 2 0の基地局 1 2 2に対して非常に大きな干渉となる。 この干渉により、 第 2無線 通信システム 1 2 0の移動局 1 2 4からの送信データは、 第 2無線通信システム 1 2 0の基地局 1 2 2において受信できなくなってしまう。
そこで、 従来の無線通信システムでは、 第 3図に示すように、 2つの無線通信 システムで使用する周波数帯域の間にガードバンドと呼ばれる未使用周波数帯域 を配置し、 第 2図のような場合でも干渉が起こらないようにしている。
しかしな力 ら、 周波数資源は限られたものであり、 ガードバンドを設けること は周波数利用効率の低下を招くという欠点があった。 特に、 C D MA(Code Division Multiple Access)等、 使用周波数が広帯域である無線通信システムでは、 必 要なガードバンドカ広くなり、 周波数利用効率の低下はより顕著になる。 逆にガ —ドバン ドをなくすと、 干渉により、 加入者容量が低下する問題がある。 発明の開示
本発明は、 無線通信システム間の干渉を与える原因となる移動局の送信を停止 させることにより、 ガードバンドを設けることなく、 無糸泉通信システム間の干渉 回避を行うことを目的とする。
上記目的を達成するために、 本発明では、 1つまたは 2つ以上の基地局と 1つ または 2つ以上の移動局とからなる無線通信システムが同一地域に 2つ以上存在 し、 各無線通信システムは異なる周波数を使用し、 移動局は通信中に 1つの無線 通信システムに属し、 移動局力帰属する無線通信システムを通信中に変更するこ とができない無線通信システムにおいて、 基地局は、 自己の使用周波数とは異な る周波数、 例えば隣接する周波数において干渉波を意図的に送信し、 移動局は、 下り回線の受信品質を監視し、 その監視されている受信品質が許容値より低下す る場合に送信を停止する。
このような構成により、 従来のように各無線通信システムが使用する周波数帯 域の間にガ一ドバンドを設けることなく、 システム間の干渉を回避できるので、 周波数を有効に使用することができる。 一般的に、 無線通信システムにおける移動局は、 通信品質が劣化した場合に通 信を終了する機能を持っているので、 特別な制御を追加する必要はなく、 基地局 に干渉波の送信機能を追加するのみで、 周波数の有効利用が可能となる。
基地局からの干渉波の送信は、 漏洩電力を用いて行うことや、 干渉波送信機を 具備して行うことができる。
基地局は、 隣接周波数における受信レベルを測定するための受信機を具備し、 その上り受信レベルが、 許容レベル以上となった場合にのみ、 隣接周波数におい て干渉波を送信するようにしてもよい。
この構成においては、 基地局は必要な場合のみ隣接周波数における送信を行う ため、 隣接する無線通信システムへの下り回線の干渉が小さくなる。
さらにまた、 干渉源となる周波数帯を直接監視するので、 干渉の影響量の推定 精度が向上し、 不必要に通信を終了したり、 大きな干渉を与えてしまう可能性が 小さくなる。
さらにまた、 基地局は、 受信周波数帯における上り干渉レベルを測定し、 その 上り干渉レベルが許容レベル以上となった場合にのみ、 隣接周波数において干渉 波を送信することもできる。
この構成においては、 基地局は必要な場合のみ隣接周波数における送信を行う ので、 周波数が隣接する無線通信システムへの下り回線の干渉が小さくなるとと もに、 自己の使用周波数における干渉レベルを測定することにより干渉波の送信 の開始停止を判定するので、 基地局に受信機を別個に設ける必要がない。
本発明の他の形態では、 1つまたは 2つ以上の基地局と 1つまたは 2つ以上の 移動局とからなる無線通信システムが同一地域に 2つ以上存在し、 各無線通信シ ステムは異なる周波数を使用し、 移動局は通信中に 1つの無線通信システムに属 し、 移動局が帰属する無線通信システムを通信中に変更することができない無線 通信システムにおいて、 移動局は受信した信号のうち、 自己の使用周波数に隣接 する周波数における受信レベルを測定し、 その受信レベルが、 許容レベル以上の 場合は送信を停止する。
この構成では、 基地局から干渉波を送信しないので、 下りの干渉が増大するこ とはない。 .
しかも、 隣接周波数のレベルを直接測定するので、 干渉の影響量の推定精度が 向上し、 不必要に通信を終了するおそれが小さい。
移動局は隣接周波数における受信レベルを測定するための受信機を具備し、 そ の受信レベルが許容レベル以上となつた場合は送信を停止することもできる。 移動局は、 待機中および通信中において、 受信を行う必要がない間に受信周波 数を切り替えて、 隣接周波数における受信レベルを測定し、 その受信レベルが許 容レベル以上の場合は送信を停止することもできる。
この構成では、 隣接周波数の受信レベルを測定するための受信機が不要になる ので、 移動局の小型化が可能となる。 図面の簡単な説明
第 1図は、 従来例において、 使用周波数帯域以外への漏洩電力を示す図である。 第 2図は、 従来例において、 漏洩電力が隣接周波数に対して大干渉電力を与え る例を説明する図である。
第 3図は、 従来例において、 2つの無線通信システム間のガードバンドを説明 する図である。
第 4図は、 本発明による無線通信システムの全体構成を示す図である。
第 5図は、 第 4図の各基地局の使用周波数を示す図である。
第 6図は、 本発明における基地局の構成を示すプロック図である。
第 7図は、 本発明における移動局の構成を示すブロック図である。
第 8図は、 問題とする干渉の例を示す図である。
第 9図は、 基地局における受信周波数帯域への漏洩電力を示す図である。
第 1 0図は、 移動局の大きさおよび消費電力と隣接周波数での漏洩電力との関 係を示す図である。
第 1 1図は、 移動局における受信電力および干渉電力を示す図である。
第 1 2図は、 雑音発生を送信できる本発明による基地局の構成を示すブロック 図である。
第 1 3図は、 隣接周波数の受信レベルを測定することのできる本発明による基 地局の構成を示すプロック図である。
第 1 4図は、 隣接周波数の受信レベルを推定することのできる本発明による基 地局の構成を示すプロック図である。
第 1 5図は、 基地局における上り干渉を説明する図である。
第 1 6図は、 基地局から移動局受信周波数帯域への漏洩電力を示す図である。 第 1 7図は、 隣接周波数の受信レベルを測定することのできる本発明による移 動局の構成を示すプロック図である。
第 1 8図は、 隣接周波数の受信レベルを測定することのできる本発明による移 動局の他の構成を示すプロック図である。 発明の実施するための最良の実施形態
以下、 図面を参照して本発明の実施の形態について説明する。
(無線通信システムの構成)
まず、 第 4図〜第 7図を用いて本発明による無線通信システムについて説明す
Ό o
第 4図は、 本発明による無線通信システムの全体構成を示す。 第 4図において、 基地局 4 1 2と移動局 4 1 4は第 1無線通信システム 4 1 0に属し、 基地局 4 2 2は第 2無糸泉通信システム 4 2 0に属している。 第 1無線通信システム 4 1 0お よび第 2無線通信システム 4 2 0の各サービスエリア 4 1 8および 4 2 8はォ一 バーラップしている。 移動局 4 1 4の通信中には、 帰属している第 1無泉通信シ ステム 4 1 0から他の無線通信システム 4 2 0には移ることができない。 第 5図は、 基地局 4 1 2および基地局 4 2 2に割り当てられている送信および 受信周波数を示す。 基地局 4 1 2と基地局 4 2 2には、 第 5図に示すように、 互 いに隣接する送信周波数および受信周波数を割り当てている。
第 6図は、 本発明における基地局の一実施例を示す。 この基地局は移動局と通 信網との間の通信を中継する機能を持ち、 無線を介して移動局と接続している。 アンテナ 6 1 0は、 移動局が送信した電波の受信、 および移動局への電波の送信 を行う。 送受共用器 6 2 0は、 1つのアンテナ 6 1 0を送信用、 受信用に共用す るための方向性結合器であり、 第 5図で示すような無線周波数における送信フィ ルタおよび受信フィルタを持つ。 6 3 0および 6 4 0はそれぞれ送信機および受 信機である。 ベースバンド処理部 6 5 0は、 公衆回線等の通信網 6 6 0からの信 号および移動局から受信した無線信号を処理する。 送信機 6 3 0は、 変調器 6 3 1、 混合器 6 3 2、 中間周波数 ( I F ) 用発振器 6 3 3、 バンドバス ' フィルタ
( B P F ) 6 3 4、 混合器 6 3 5、 無線周波数 (R F ) 用発振器 6 3 6、 および 送信アンプ 6 3 7で構成されている。 受信機 6 4 0は、 復調器 6 4 1、 混合器 6 4 2、 中間周波数 ( I F ) 用発振器 6 4 3、 バンドバス ' フィルタ (B P F ) 6 4 4、 混合器 6 4 5、 無線周波数 (R F ) 用発振器 6 4 6、 および受信アンプ 6 4 7で構成されている。
第 6図の基地局において、 通信網からの信号を移動局に送信するまでの処理を まず説明する。 通信網から送られてきた信号は、 慣例のベースバンド処理部 6 5 0において移動局に送信するベースバンド信号に変換される。 ("Further Results on Field Experiments of Coherent Wideband DS-CDMA Mobile Radio", T.Dohi et al., IEICE Trans. Commun., Vol. E81-B, No. 6 June 1998参照) また、 必要に応じて制御 信号の追加や誤り訂正符号処理がベースバンド処理部 6 5 0で行われる。 ベース バンド信号は、 変調器 6 3 1でディジタル変調を施された後、 I F用発振器 6 3
3により、 中間周波数の信号に変換される。 次に、 B P F 6 3 4により送信帯域 外の信号を減衰させ、 R F用発 β 6 3 6により無線周波数の信号に変換される。 その後、 送信アンプ 6 3 7により増幅され、 送受共用器 6 2 0およびアンテナ 6 1 0を通じて送信力行われる。
続いて、 移動局からの信号を通信網に送るまでの処理を説明する。 アンテナ 6 1 0で受信した電波は送受共用器 6 2 0に'送られ、 受信周波数だけが選択される。 受信アンプ 6 4 7で受信信号を増幅した後、 R F用発振器 6 4 6により中間周波 数に変換し、 B P F 6 4 4で所望の周波数以外を減衰させる。 次に、 I F用発振 器 6 4 3によりベースバンド信号に変換し、 復調器 6 4 1でディジタル復調を行 う。 ベースバンド処理部 6 5 0では、 誤り訂正復号処理、 制御信号の取り出し等 を行った後、 通信網に送る信号に変換し、 通信網 6 6 0へと送る。
第 7図は本発明における移動局の一実施例を示す。 アンテナ 7 1 0は、 移動局 が送信した電波の受信、 および移動局への電波の送信を行う。 送受共用器 7 2 0 は、 1つのアンテナ 7 1 0を送信用、 受信用に共用するための方向性結合器であ る。 7 3 0および 7 4 0はそれぞれ送信機および受信機である。 ベースバンド処 理部 7 5 0は、 端末装置 7 6 0からの信号および受信機 7 1 0で受信した基地局 からの無線信号を処理する慣例の装置である。 送信機 7 3 0は、 変調器 7 3 1、 混合器 7 3 2、 中間周波数 (I F ) 用発振器 7 3 3、 バンドバス · フィルタ (B P F ) 7 3 4、 混合器 7 3 5、 無線周波数 (R F ) 用発振器 7 3 6、 および送信 アンプ 7 3 7で構成されている。 受信機 7 4 0は、 復調器 7 4 1、 混合器 7 4 2、 中間周波数 ( I F ) 用発振器 7 4 3、 バンドパス ' フィルタ (B P F ) 7 4 4、 混合器 7 4 5、 無線周波数 (R F ) 用発振器 7 4 6、 および受信アンプ 7 4 7で 構成されている。 これからも明らかなように、 移動局は、 通信網の代わりに端末 装置 7 6 0を接続している以外は、 第 6図に示した基地局とほぼ同一の構成であ る。
端末装置 7 6 0の例としてハンドセッ トがある。 ハンドセッ トにはスピーカー、 マイク、 音声符復号処理部が含まれ、 ベースバンド処理部 7 5 0からのディジタ ル信号を音声に変換し、 スピーカーから音を出力する機能、 マイクから入力した 音声をディジタル信号に変換し、 ベースバンド処理部 750に送る機能を持つ。 この移動局の動作は、 第 6図の基地局装置と同様であるので、 移動局の信号処 理の説明は省略する。
(実施形態 1 )
実施形態 1は、 第 4図における移動局 4 14の隣接周波数漏洩電力が、 基地局 422の受信周波数に与える干渉の問題に対処する。 ここでは、 通信方式として CDMAを適用した場合を例にとる。 第 8図および第 9図を用いて、 干渉の例を 示す。
第 8図において、 第 2図と同様に、 基地局 412と移動局 4 14とが通信して いる。 この通信で使用している周波数に隣接する周波数を用いて、 基地局 422 は通信を行う。
第 9図は、 移動局 4 14による送信の際の隣接周波数への漏洩電力の例を示す。 この第 9図に示した例では、 移動局 4 14の送信周波数での送信電力に対して 4 0 dB減衰した電力力 基地局 422の受信周波数において発生している。
この漏洩電力値は、 第 7図における送信アンプ 737の歪み特性、 送受共用器 720内の送信フィルタ特性、 BPF 734の特性によって主に決まる値である。 しかしながら、 第 10図に示すように、 移動局の大きさおよび消費電力と隣接周 波数における漏洩電力とは反比例の関係にある。 このため、 移動局の大きさや消 費電力を小さくするためには、 隣接周波数における漏洩電力をある程度は許容す る必要がある。
さて、 第 8図の例において、 拡散利得 =20 dB、 基地局 4 12における干渉 電力を一 105 d Bmと仮定する。 基地局 412における移動局 414からの受 信電力は、 送信電力 (30 dBm) から伝搬損失 (145 dB) を引いて、 求め ることができる。 これを求めると一 1 1 5 dBmであるので、 基地局 412にお ける受信 S I R (Signal to Interference power Ratio :信号対干渉電力比) は、 — 1 1 5 d Bm- (- 105 d Bm- 20 d B) = 10 dBとなる。 一方、 移動局 4 14による送信の際の隣接周波数への漏洩電力は 3 O dBm— 40 dB =— 1 0 dBmである。 これを基に、 伝搬損失 80 d B (移動局 4 14は基地局 4 12よ りも基地局 422の方に近いので、 基地局 422における伝搬損失は小さい) を 考慮すると、 基地局 422での干渉電力は— 90 d Bmとなる。 この値は、 基地 局 4 12の干渉電力 (— 105 dBm) に比べて 1 5 d Bも大きい値であり、 基 地局 422に接続する移動局はその分だけ送信電力を増加する必要が生ずる。 基 地局 422に接続している移動局の中で、 最大送信電力に近い送信電力で通信を 行っている移動局は移動局 4 14からの干渉の影響により、 通信品質の劣化や通 信の切断を生ずることになる。
この干渉を防ぐために、 この実施形態においては、 移動局 4 14からの送信を 停止させる。 この無線通信システムでは、 受信品質が劣化した状態が継続した場 合に無線回線を切断する機能を持っている。 例えば、 第 7図に示した移動局の構 成においては、 ベースバンド処理部 750で受信品質を、 例えば受信信号の誤り 検出における誤りを率常時測定して、 誤り率がある値以上となったときに受信品 質がある値以下となったと判断して通信を停止する (例えば回線を切断する) 。 あるいはまた、 第 7図の復調器 74 1において受信 S I Rの測定を行い、 受信 S I Rが予め定めた値以下となったときに通信を停止することもできる。 受信品質 を監視して通信を停止すること自体は従来の無線通信システムが通常有している 機能であり、 本発明では、 この機能を利用して、 移動局 4 14の送信を停止させ る。 以下に、 第 1 1図を用いて実施形態 1の動作を説明する。
第 1 1図では、 第 8図と同様に、 移動局 414が基地局 422に対して干渉を 与えている。 ここで、 基地局 422から移動局 414の受信周波数に対して干渉 波を送信する。 移動局 4 14に対する基地局 4 12からの送信電力を、 30 dB mとし、 拡散利得 =20 dB、 移動局 414における干渉電力を一 105 dBm とする。 移動局 4 14における受信 S I Rは、 一 1 1 5 dBm- (― 105 d B m-20 dB) = 10 dBとなる。 基地局 412力 ら、 移動局 4 14への最大送 信電力が 3 5 d B m、 移動局 4 1 4における受信 S I Rが 3 d B以下で通信を切 断すると仮定する。 このとき、 基地局 4 2 2から移動局 4 1 4の受信周波数に対 して干渉波を送信する。
基地局 4 2 2から、 例えば、 一 1 0 d B mの干渉波を送信した場合、 移動局 4 1 4での干渉電力は一 9 0 d B m増加し、 受信 S I Rは一 5 d B以下となる。 基 地局 4 1 2からの送信電力を増加して最大送信電力としても、 受信 S I Rは 0 d B以下となり、 通信は切断される。 よって、 移動局 4 1 4から基地局 4 2 2への 干渉は停止し、 基地局 4 2 2での受信品質は保証される。
基地局から干渉波を送信するための構成の一例を以下に示す。 前述のように、 隣接周波数への漏洩電力は装置の大きさに反比例する。 基地局は移動局に比べて 装置の大きさに対する要求条件が厳しくないので、 一般に、 装置の大きさをある 程度許容して、 隣接周波数への漏洩電力を小さく抑えている。 しかしながら、 実 施形態 1においては、 隣接周波数に対して干渉波を送信する必要があるから、 第 6図に示した基地局における送信アンプ 6 3 7の歪み特性、 送受共用器 6 2 0内 の送信フィルタ特性、 B P F 6 3 4の特性を変えて隣接周波数において所要の干 渉電力を送信できるようにする。
このように、 実施形態 1においては、 隣接の移動局における受信周波数 (隣接 周波数) において、 基地局から自己の使用周波数の送信電力に比例した漏洩電力 を常時送信する。
(実施形態 2 )
実施形態 1においては、 隣接の移動局受信周波数において、 基地局から上述し たような大きさの漏洩電力を常時送信する。 しかし、 隣接の移動局受信周波数に 対する干渉を与えるために任意所望の大きさの電力を送信することの容易な構成 を第 1 2図に示す。 第 1 2図において、 第 6図に示した基地局の構成に送信機 8 0 0を追加する。 これにより、 自己の使用周波数の送信電力に依存せずに、 隣接 の移動局受信周波数帯域に干渉を与える適切な大きさの電波を送信することがで きる。 第 1 2図において、 第 6図と同様の個所には同一の参照番号を付す。
第 1 2図において、 送信機 8 0 0は、 雑音発生器 8 1 0、 混合器 8 1 2、 およ びバンドパス ' フィルタ 8 1 4を有する。 雑音発生器 8 1 0で発生した雑音は、 混合器 8 1 2で I F用発振器 6 3 3 ' からの信号により中間周波数に変換される。 すなわち、 I F用発振器 6 3 3 ' は、 自己の使用周波数と隣接移動局における受 信周波数との差分 (第 5図の場合、 基地局 4 2 2と基地局 4 1 2との送信周波数 の差分) だけずれた周波数も発振することができる。 そこで、 B P F 8 1 4の通 過帯域は、 B P F 6 3 4の通過帯域からこの差分だけずらした帯域とする。 B P F 8 1 4の出力を、 混合器 6 3 5および R F用発振器 6 3 6により、 隣接移動局 の受信周波数の信号に変換して、 送信アンプ 6 3 7、 送受共用器 6 2 0、 および アンテナ 6 1 0を介して送信する。 送信アンプ 6 3 7および送受共用器 6 2 0中 の送信フィルタは、 実施形態 1で述べたように、 隣接周波数に対して送信できる 特性を有する。
このように、 基地局に第 2の送信機 8 0 0を設けることにより、 移動局に対し て、 干渉を与えて送信を停止させるのに適切な大きさの隣接移動局受信周波数に おける干渉波の送信が容易に可能となる。
(実施形態 3 )
実施形態 1および 2では、 隣接移動局の受信周波数においてにある大きさの干 渉波を基地局から常時送信している。 これに対し、 第 1 3図に示す実施形態 3に おいては、 必要なときに隣接移動局の受信周波数において干渉波を送信する。 第 1 3図は、 第 1 2図に示した基地局に、 隣接周波数における受信信号のレべ ル測定用受信機 9 2 0を付加した基地局である。 第 1 3図において、 第 1 2図と 同様の個所には同一参照番号を付す。
第 1 3図において、 レベル測 受信機 9 2 0のバンドパスフィルタ (B P F ) 9 2 2は、 R F用発振器 6 4 6および混合器 6 4 5で中間周波数に変換された受 信信号を受けて、 隣接周波数の信号を取り出す。 その信号を I F用発振器 6 4 3 ' および混合器 9 2 4でベースバンドの信号に変換する。 I F用発振器 6 4 3 ' は隣接周波数分だけずれた周波数も発信できる。 混合器 9 2 4の出力を復調器 9 2 6で復調してレベルを測定し、 そのレベルをレベル判定部 9 2 8で予め定めた レベルと比較する。 比較した結果、 受信した隣接周波数における受信信号のレべ ルが高いときには、 送信機 8 0 0を作動させる。 送信機 8 0 0からは、 前に説明 したように、 隣接周波数帯に対して適切なレベルの干渉波が送信される。
第 1 3図において、 例えば、 移動局から送信が行われる際に隣接周波数への漏 洩電力が送信電力に比べて 4 0 d B小さいとすると、 隣接周波数の受信レベルか ら 4 0 d B小さい干渉電力が受信周波数での信号に加わることになる。 従って、 基地局における隣接周波数からの干渉電力の許容値を一 1 0 0 d B mとした場合、 上記のレベル測定用受信機 9 2 0において、 隣接周波数の受信レベルが— 6 0 d B mを超えたことカ?判定されたときに、 この基地局は、 送信機 8 0 0から隣接周 波数に対する干渉波の送信を行う。 この送信した干渉波の干渉により、 移動局の 隣接周波数での通信が終了し、 従って、 隣接周波数からの干渉電力は小さくなる。
(実施形態 4 )
実施形態 3においては、 基地局において隣接周波数のレベルを、 隣接周波数帯 における受信レベルを測定する受信機を設けるのに対して、 第 1 4図に示す実施 形態 4においては、 このようなレベル測定用受信機を設けることなく、 干渉のレ ベルを推定できる構成とする。
実施形態 4の基地局は、 第 1 4図に示すよう構成される。 第 1 4図において、 第 1 2図と同様の個所には同一の参照番号付与する。 第 1 4図において、 復調器
6 4 1においては、 干渉レベルを測定する。 測定された干渉レベルは、 レベル判 定部 9 2 8 ' で以下に説明するようにレベルの判定を行う。 レベル判定の結果、 隣接周波数を用いて通信している移動局からの干渉があると判明したときは、 送 信機 8 0 0を作動させて隣接周波数における干渉波の送信を開始する。 これによ り、 干渉を起こしている移動局の送信を停止させる。 これを第 1 5図を用いて詳 しく説明する。
さて、 第 1 5図において、 基地局 422は移動局 424, 426および 428 と通信を行っている。 CDMA無線通信システムでは干渉を小さくするために、 基地局での受信レベルが過剰にならないように送信電力制御を行っている。 例え ば、 基地局 422における合計の受信レベルは、 熱雑音レベル + 10 dBまでに 抑えるように制御しているものとする。 従って、 干渉レベルの測定結果が熱雑音 レベル + 10 d Bを超えた場合は他の無線通信システムからの干渉と予想される。 例えば、 第 1 5図において、 他の無線通信システムに属する移動局 4 14力 ら基 地局 422に対して大きな干渉を与える場合、 基地局 422での干渉レベルは熱 雑音レベル + 1 0 dBを上回ることになる。 従って、 この + 1 0 dBを上述のレ ベル判定の基準とすることで、 隣接周波数帯を用いている移動局からの漏洩電力 を推定できる。
基地局 422は、 このように干渉レベルを測定することで、 隣接周波数におい て干渉波を送信することができる。 この干渉により、 隣接周波数での移動局 4 1 4の送信を終了させ、 その結果、 隣接周波数からの干渉電力は小さくなる。
(実施形態 5 )
実施形態 1〜4においては、 基地局からの干渉波発生により、 隣接周波数を用 いて通信を行っている移動局の送信を停止させている。 これに対し、 実施形態 5 においては、 隣接周波数で通信を行っている基地局に対して移動局が干渉を与え ていることをこの移動局により検知して、 送信を停止する。
第 8図および第 1 1図に示している状態においては、 移動局 4 14は基地局 4 22に対して大きな干渉を与える。 基地局 422から移動局 4 14への受信周波 数における漏洩電力を第 16図に示すように仮定し、 基地局 422からの全送信 電力を 40 dBmと仮定し、 さらに伝搬損失 80 dBを考慮すると、 移動局 4 1 4における隣接周波数の受信レベルは、 一 l O O dBm (=40 dBm-60 d B-80 dB) となる。 例えば、 許容干渉レベルが一 1 10 dBmのときには、 移動局 4 1 4は送信を停止する必要がある。
移動局において測定する隣接周波数の上述の許容干渉レベル MS— LEVは、 以下 のように決定することができる。
(数 1 )
MS— LEV = BS_POW― BS—ATT + BS— LEV + MS_ATT— MS一 POW で、、
MS— LEV:移動局で測定する隣接周波数の許容干渉レベル
BS_POW:基地局のト一タル送信電力
BS_ATT:基地局送信電力に対する隣接周波数漏洩電力の減衰量 (> 0 ) BS— LEV:基地局での隣接周波数からの許容干渉レベル
MS_ATT:移動局送信電力に対する隣接周波数漏洩電力の減衰量 (〉0 ) MS— POW:移動局の送信電力 このように、 MS_LEVを決定すれば、 移動局で測定した隣接周波数受信レベル により基地局での干渉レベルを推定して、 送信停止の判定を行うことができる。 以上の原理に従って、 移動局において隣接周波数の受信レベルを測定する例を 第 1 7図に示す。 第 1 7図において、 第 7図と同様の個所には同一の参照番号を 付する。
第 1 7図において、 R F用発振器 7 4 6および混合器 7 4 5で中間周波数に変 換された受信信号は、 隣接周波数受信機 9 3 0に入力される。 この隣接周波数受 信機 9 3 0において、 バンドパス · フィルタ 9 3 2 I F用発振器 7 4 3 ' 、 お よび混合器 9 3 4で隣接周波数の信号を取り出す。 この信号を復調器 9 3 6に供 給して、 その信号のレベルを測定し、 レベル判定部 9 3 8で上述のレベル判定を 行う。 その判定出力をべ一スバンド処理部 7 5 0に供給して、 この判定結果によつ て、 移動機からの送信を停止するか否かを決定する。
この構成によれば、 隣接周波数を用いる移動局からの漏洩電力によって基地局 に与えられる干渉を低減することができる。
(実施形態 6 )
第 1 8図に示す実施形態 6は、 実施形態 5と同様に、 隣接する周波数帯で通信 している基地局に対する干渉を移動局において推定して、 自己の送信を停止する。 実施形態 5では、 隣接周波数の信号を受信する受信機が必要であつたが、 実施形 態 6においては、 移動局は待機中もしくは通信中に受信を行う必要がない場合に、 隣接する周波数の信号を受信して、 基地局に対する干渉をその移動局自体で推定 する。 第 1 8図において、 第 7図と同様の個所には同一の参照番号を付する。 第 1 8図の移動局において、 待機中もしくは通信中に受信を行う必要がない場 合に、 ベ一スパンド処理部 7 5 0 ' からの命令により、 ノ ンドパス ' フィルタ 7 4 4 ' の通過周波数帯およびおよび I F用発振器 7 4 3〃 の発信周波数を変更す ることにより、 受信周波数を自己の使用周波数から隣接周波数に変更する。 復調 器 7 4 1においては、 受信した隣接周波数の信号の受信レベルを測定する。 その 測定結果をベースバンド処理部 7 5 0 ' に供給してこの測定結果によって移動局 6 3からの送信を停止するか否かを判断する。
実施形態 1〜 6においては、 2つの無線通信システム間の干渉回避の場合を例 にとつて本発明を説明したが、 3つ以上の無線通信システムが混在した場合にも 本発明を適用できる。 あるいはまた、 1つの無線通信システム内にそれぞれが異 なる周波数を使用するマイクロセル層とマクロセル層と力 ?存在し、 マイクロセル とマクロセルとの間でのハンドオーバ (通信中の無線チャネル切替) ができない 場合の、 マイクロセルとマクロセルとの間の干渉回避にも本発明を適用できる。 産業上の利用可能性
以上説明したように、 本発明によれば、 1つまたは複数の無線通信システムが 同一地域に混在した場合に、 他システムの移動局からの上り干渉を抑制するため に、 その干渉の原因となる移動局の送信を停止することができる。
従って、 本発明によれば、 ガードバンドを設けることなく他システムの移動局 からの干渉を防ぐことができ、 よって、 通信品質を劣化させることなく周波数の 利用効率を高めることができる。

Claims

請 求 の 範 囲
1 . 1つまたは 2つ以上の基地局と 1つまたは 2つ以上の移動局とからなる無 線通信システムが同一地域に 2つ以上存在し、 各無線通信システムは異なる周波 数を使用し、 移動局は通信中に 1つの無線通信システムに属し、 移動局が帰属す る無線通信システムを通信中に変更することができない無線通信システムにおい て、
前記基地局は、 自己の使用周波数とは異なる周波数において干渉波を意図的に 送信する手段を有し、
前記移動局は、 下り回線の受信品質を監視する手段と、 その監視されている受 信品質が許容値より低下する場合に送信を停止する手段を有する
ことを特徴とする無線通信システム。 '
2 . 請求項 1に記載の無線通信システムにおいて、 前記自己の使用周波数と異 なる周波数は前記自己の使用周波数に隣接する周波数であることを特徴とする無 線通信システム。
3 . 請求項 2記載の無線通信システムにおいて、 前記基地局からの干渉波の送 信は、 漏洩電力を用いて行うことを特徴とする無線通信システム。
4 . 請求項 2記載の無線通信システムにおいて、 前記基地局は前記基地局から の干渉波の送信を行う干渉波送信機を具備したことを特徴とする無線通信システ ム。
5 . 請求項 2または 4記載の無線通信システムにおいて、
前記基地局は、 隣接周波数における上り受信レベルを測定する受信機と、 前記上り受信レベルが許容レベル以上となった場合にのみ、 隣接周波数におい て干渉波を送信する手段と
を具備したことを特徴とする無線通信システム。
6 . 請求項 2または 4記載の無線通信システムにおいて、
前記基地局は、 自己の使用周波数帯における上り干渉レベルを測定する手段と、 前記干渉レベルが許容レベル以上となった場合にのみ、 隣接周波数において干 渉波を送信する手段と
を具備したことを特徴とする無線通信システム。
7 . 1つまたは 2つ以上の基地局と 1つまたは 2つ以上の移動局とからなる無 線通信システムが同一地域に 2つ以上存在し、 各無線通信システムは異なる周波 数を使用し、 移動局は通信中に 1つの無線通信システムに属し、 移動局が帰属す る無線通信システムを通信中に変更することができず、 かつ、 前記移動局は下り 回線の受信品質を監視し、 その受信品質が許容値より低下する場合に送信を停止 する無線通信システムにおける基地局において、
自己の使用周波数とは異なる周波数において干渉波を意図的に送信することを 特徴とする基地局。
8 . 請求項 7に記載の基地局において、 前記自己の使用周波数と異なる周波数 は前記自己の使用周波数に隣接する周波数であることを特徴とする基地局。
9 . 1つまたは 2つ以上の基地局と 1つまたは 2つ以上の移動局とからなる無 線通信システムが同一地域に 2つ以上存在し、 各無線通信システムは異なる周波 数を使用し、 移動局は通信中に 1つの無線通信システムに属し、 移動局が帰属す る無線通信システムを通信中に変更することができない無線通信システムにおい て、
前記移動局は、 受信した信号のうち、 自己の使用周波数に隣接する周波数にお ける受信レベルを測定する手段と、
受信レベルが許容レベル以上の場合は送信を停止する手段と、
を具備したことを特徴とする無線通信システム。
1 0 . 1つまたは 2つ以上の基地局と 1つまたは 2つ以上の移動局とからなる 無線通信システムが同一地域に 2つ以上存在し、 各無線通信システムは異なる周 波数を使用し、 移動局は通信中に 1つの無線通信システムに属し、 移動局が帰属 する無線通信システムを通信中に変更することができない無線通信システムにお ける移動局において、
受信した信号のうち、 自己の使用周波数に隣接する周波数における受信レベル を測定する手段と、
受信レベルが許容レベル以上の場合は送信を停止する手段と、
を具備したことを特徴とする移動局。
1 1 . 請求項 1 0記載の移動局において、 待機中および通信中において、 受信 を行う必要がない間に受信周波数を切り替えて、 隣接周波数における受信レベル を測定する手段と、 .
受信レベルが許容レベル以上の場合は送信を停止する手段と
をさらに具備したことを特徴とする移動局。
1 2 . 1つまたは 2つ以上の基地局と 1つまたは 2つ以上の移動局とからなる 無線通信システムが同一地域に 2つ以上存在し、 各無線通信システムは異なる周 波数を使用し、 移動局は通信中に 1つの無線通信システムに属し、 移動局が帰属 する無線通信システムを通信中に変更することができない無線通信システム間で の干渉を回避する方法において、
前記基地局は、 自己の使用周波数とは異なる周波数において干渉波を意図的に 送信し、
前記移動局は、 下り回線の受信品質を監視し、 および、 その受信品質が許容値 を下回る場合に送信を停止する
ことを特徴とする干渉回避方法。
1 3 . 請求項 1 2に記載の方法において、 前記自己の使用周波数と異なる周波 数は前記自己の使用周波数に隣接する周波数であることを特徴とする干渉回避方 法。
1 4 . 1つまたは 2つ以上の基地局と 1.つまたは 2つ以上の移動局とからなる 無線通信システムが同一地域に 2つ以上存在し、 各無線通信システムは異なる周 波数を使用し、 移動局は通信中に 1つの無線通信システムに属し、 移動局が帰属 する無糸泉通信システムを通信中に変更することができない無線通信システム間で の干渉を回避する方法において、
前記移動局は、 受信した信号のうち自己の使用周波数に隣接する周波数におけ る受信レベルを測定し、 およびその受信レべルが許容レベル以上の場合は送信を 停止することを特徴とする干渉回避方法。
PCT/JP1999/002618 1998-05-20 1999-05-19 Systeme de radiocommunications sans interferences WO1999060728A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1999545648A JP3872526B6 (ja) 1998-05-20 1999-05-19 干渉回避無線通信システム
EP99919654A EP1005181B1 (en) 1998-05-20 1999-05-19 Interference-free radio communication system
DE69934864T DE69934864T2 (de) 1998-05-20 1999-05-19 Interferenzloses radiokommunikationssystem
US09/364,938 US6741837B1 (en) 1998-05-20 1999-07-30 Interference avoidance radio communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13902698 1998-05-20
JP10/139026 1998-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/364,938 Continuation US6741837B1 (en) 1998-05-20 1999-07-30 Interference avoidance radio communications system

Publications (1)

Publication Number Publication Date
WO1999060728A1 true WO1999060728A1 (fr) 1999-11-25

Family

ID=15235742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002618 WO1999060728A1 (fr) 1998-05-20 1999-05-19 Systeme de radiocommunications sans interferences

Country Status (5)

Country Link
US (1) US6741837B1 (ja)
EP (2) EP1710932B1 (ja)
CN (1) CN1139204C (ja)
DE (1) DE69934864T2 (ja)
WO (1) WO1999060728A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516695A (ja) * 1999-12-08 2003-05-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動局の送信電力制御
US7149205B2 (en) 2001-05-25 2006-12-12 Ntt Docomo, Inc. Interference detection method and interference avoidance system for wireless communication links
JP2007243498A (ja) * 2006-03-08 2007-09-20 Tokyo Univ Of Agriculture & Technology 通信システムおよび通信方法
WO2013001650A1 (ja) * 2011-06-30 2013-01-03 富士通株式会社 無線通信システム、移動局、基地局および無線通信方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570645B2 (en) 2000-01-18 2009-08-04 Viasat, Inc. Frame format and frame assembling/disassembling method for the frame format
US7215650B1 (en) 1999-08-16 2007-05-08 Viasat, Inc. Adaptive data rate control for narrowcast networks
FR2799082B1 (fr) * 1999-09-28 2001-11-02 Thomson Multimedia Sa Procede d'association d'un appareil dans un reseau de communication
JP2001358606A (ja) * 2000-06-14 2001-12-26 Matsushita Electric Ind Co Ltd 時分割多重方式無線装置
US7230908B2 (en) * 2000-07-24 2007-06-12 Viasat, Inc. Dynamic link assignment in a communication system
EP1182817B1 (en) * 2000-08-24 2007-12-26 Sony Deutschland GmbH Communication device for receiving and transmitting OFDM signals in a wireless communication system
FI20011762A (fi) * 2001-09-05 2003-03-06 Nokia Corp Tiedonsiirtomenetelmä, järjestely ja tukiasema
US7151795B1 (en) * 2001-12-31 2006-12-19 Arraycomm Llc Method and apparatus for increasing spectral efficiency using mitigated power near band-edge
US7302278B2 (en) * 2003-07-03 2007-11-27 Rotani, Inc. Method and apparatus for high throughput multiple radio sectorized wireless cell
EP1645156B1 (en) * 2003-07-03 2010-10-27 Nortel Networks Limited Uplink interference reduction in wireless communications systems
US7321749B2 (en) * 2003-10-09 2008-01-22 Qualcomm Incorporated Cell selection techniques for frequency division multiple access systems
US7620029B2 (en) 2003-10-09 2009-11-17 Qualcomm Incorporated Parallel cell ID acquisition in frequency division multiple access systems
CN100397939C (zh) * 2004-04-14 2008-06-25 微星科技股份有限公司 无线基站与其频道搜寻方法
US7512392B2 (en) * 2004-08-12 2009-03-31 Skyworks Solutions, Inc. System for adaptively filtering a received signal in a wireless receiver
US7489282B2 (en) * 2005-01-21 2009-02-10 Rotani, Inc. Method and apparatus for an antenna module
US7676197B2 (en) * 2005-06-30 2010-03-09 Intel Corporation Signal spectrum steering method, apparatus, and system
EP2475106A1 (en) 2006-02-28 2012-07-11 Rotani Inc. Methods and apparatus for overlapping mimo antenna physical sectors
ATE453251T1 (de) * 2006-08-10 2010-01-15 Alcatel Lucent Verfahren und vorrichtung zur steuerung der sendeleistung der aufwärtsstrecke basierend auf interferenz zwischen nachbarzellen
WO2008035661A1 (fr) * 2006-09-20 2008-03-27 Nec Corporation Procédé d'allocation de porteuses pour système cellulaire, système cellulaire, station de base, et station mobile
US8219092B2 (en) * 2006-10-02 2012-07-10 Freescale Semiconductor, Inc. User equipment frequency allocation methods and apparatus
CN101227225A (zh) * 2007-01-17 2008-07-23 华为技术有限公司 干扰站点检测方法、邻居站点检测方法及站点检测装置
US8675743B2 (en) 2007-08-03 2014-03-18 Apple Inc. Feedback scheduling to reduce feedback rates in MIMO systems
WO2009141686A1 (en) * 2008-05-22 2009-11-26 Nokia Corporation Method and apparatus for providing cooperative spectrum usage among multiple radio networks
WO2009157829A1 (en) * 2008-06-25 2009-12-30 Telefonaktiebolaget Lm Ericsson (Publ) Interferer reduction
CN102378191B (zh) * 2010-08-13 2016-08-03 中兴通讯股份有限公司 对相邻信道进行辅助发射的方法、系统和无线通信装置
JP5659138B2 (ja) * 2011-12-21 2015-01-28 オリンパス株式会社 映像送信装置、映像送信方法およびプログラム
CN102437961B (zh) * 2011-12-28 2015-04-08 华为数字技术(成都)有限公司 集群系统及其管理和控制方法
CN107415604A (zh) * 2017-08-30 2017-12-01 联创汽车电子有限公司 Tpms系统及其通信方法
FR3070548B1 (fr) * 2017-08-30 2019-09-13 Zodiac Data Systems Procede et dispositif d'estimation du depointage d'une antenne et procede et dispositif de poursuite du pointage d'une antenne mettant en oeuvre de tels procede et dispositif, fondes sur une analyse harmonique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389636A (ja) * 1989-08-31 1991-04-15 Nec Corp 妨害波検出制御方式
JPH09224283A (ja) * 1996-02-19 1997-08-26 Mitsubishi Electric Corp 移動通信装置のチャネル割当て方法
JPH09233536A (ja) * 1995-12-29 1997-09-05 At & T Corp チャネル化されたセルラシステム内の隣接チャネル干渉を管理するためのシステムおよび方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69226012T2 (de) * 1991-11-25 1998-12-17 Motorola Inc Verringerte Interferenzstörungen durch versetzte Frequenzaufteilung in zellularen Kommunikationssystemen
EP0637139B1 (en) * 1993-01-19 2003-04-09 Ntt Mobile Communications Network Inc. Method for removing interference wave, receiver and communication system which use the method
US5437054A (en) * 1993-02-05 1995-07-25 The Research Foundation Of State University Of New York Method and apparatus of assigning and sharing channels in a cellular communication system
ZA955600B (en) * 1994-07-13 1996-04-02 Qualcomm Inc System and method for simulating interference received by subscriber units in a spread spectrum communication network
US5884181A (en) * 1996-01-19 1999-03-16 Bell Communications Research, Inc. Interference reduction in shared-frequency wireless communication systems
US5926762A (en) * 1996-05-17 1999-07-20 Internet Mobility Corporation Cellular telephone interference prediction and frequency reuse planning
US6081728A (en) * 1997-02-28 2000-06-27 Andrew Corporation Strip-type radiating cable for a radio communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389636A (ja) * 1989-08-31 1991-04-15 Nec Corp 妨害波検出制御方式
JPH09233536A (ja) * 1995-12-29 1997-09-05 At & T Corp チャネル化されたセルラシステム内の隣接チャネル干渉を管理するためのシステムおよび方法
JPH09224283A (ja) * 1996-02-19 1997-08-26 Mitsubishi Electric Corp 移動通信装置のチャネル割当て方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1005181A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003516695A (ja) * 1999-12-08 2003-05-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動局の送信電力制御
US7149205B2 (en) 2001-05-25 2006-12-12 Ntt Docomo, Inc. Interference detection method and interference avoidance system for wireless communication links
JP2007243498A (ja) * 2006-03-08 2007-09-20 Tokyo Univ Of Agriculture & Technology 通信システムおよび通信方法
WO2013001650A1 (ja) * 2011-06-30 2013-01-03 富士通株式会社 無線通信システム、移動局、基地局および無線通信方法
JP5605509B2 (ja) * 2011-06-30 2014-10-15 富士通株式会社 無線通信システム、移動局、基地局および無線通信方法

Also Published As

Publication number Publication date
DE69934864D1 (de) 2007-03-08
CN1256035A (zh) 2000-06-07
CN1139204C (zh) 2004-02-18
EP1710932B1 (en) 2011-10-26
DE69934864T2 (de) 2007-10-18
EP1005181B1 (en) 2007-01-17
EP1005181A1 (en) 2000-05-31
JP3872526B2 (ja) 2007-01-24
US6741837B1 (en) 2004-05-25
EP1005181A4 (en) 2004-04-07
EP1710932A1 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
WO1999060728A1 (fr) Systeme de radiocommunications sans interferences
US7280811B2 (en) Multimode wireless terminal and wireless transmitter-receiver unit
KR100243425B1 (ko) 씨디엠에이 무선가입자망 시스템의 순방향 트래픽 채널 전력제어 방법 및 장치
CN102474742B (zh) 毫微微蜂窝访问点中的干扰抑制
JP4250137B2 (ja) 通信装置におけるアップリンク圧縮モードでのモニタリングを軽減する装置および方法
US20080214221A1 (en) Radio Base Station System
US6603825B1 (en) Automatic gain control for a receiver and method therefor
JP2978920B1 (ja) Cdma基地局における送信電力制御方法及びそのシステム
EP0872140B1 (en) A method for selecting the way to perform a handover, and a cellular radio system
KR100469687B1 (ko) 셀룰러 네트워크의 단말기에서 신호의 파워 레벨 측정을 개시하는 방법 및 단말기
JP3576930B2 (ja) Cdma方式を用いた移動体通信システム
WO2014161335A1 (zh) 内部通信的切换方法、装置、终端和计算机存储介质
US7228147B2 (en) Method for controlling transmission power
KR100384957B1 (ko) 상위 채널 과부하 검출 회로 및 기지국 장치
JP3742372B2 (ja) 逆方向リンクの干渉を抑制する建物内の無線通信システム及びその方法
JP3872526B6 (ja) 干渉回避無線通信システム
JP3781543B2 (ja) 無線端末機、無線基地局装置及びそれを用いた無線システム
JPH07298334A (ja) 移動通信ハンドオーバ方法および移動局装置と基地局装置
JPH11355829A (ja) 移動通信システム、基地局装置、移動端末およびハンドオーバ制御方法
KR20050059206A (ko) 이동국 신호에 의해 제 2 기지국에서 발생하는 간섭에 대한평가를 기반으로 수행되는 이동국과 제 1 기지국 간의통신 적응
KR100693556B1 (ko) 이동 통신 단말기의 엘엔에이 제어 방법
JPH0147057B2 (ja)
KR20090109768A (ko) 펨토셀 기지국의 무선 송수신회로 및 그 펨토셀 기지국

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800015.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 09364938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999919654

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999919654

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999919654

Country of ref document: EP