WO1999064108A1 - Heart rate variability as an indicator of exercise capacity - Google Patents

Heart rate variability as an indicator of exercise capacity Download PDF

Info

Publication number
WO1999064108A1
WO1999064108A1 PCT/US1999/012588 US9912588W WO9964108A1 WO 1999064108 A1 WO1999064108 A1 WO 1999064108A1 US 9912588 W US9912588 W US 9912588W WO 9964108 A1 WO9964108 A1 WO 9964108A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
mode
time
intervals
therapy
Prior art date
Application number
PCT/US1999/012588
Other languages
French (fr)
Inventor
Gerrard M. Carlson
V. A. Kadhiresan
Julio C. Spinelli
Original Assignee
Cardiac Pacemakers, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardiac Pacemakers, Inc. filed Critical Cardiac Pacemakers, Inc.
Priority to CA002300078A priority Critical patent/CA2300078A1/en
Priority to EP99928404A priority patent/EP1001829B1/en
Priority to DE69936703T priority patent/DE69936703T2/en
Priority to JP2000553171A priority patent/JP4383664B2/en
Publication of WO1999064108A1 publication Critical patent/WO1999064108A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/36592Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by the heart rate variability

Definitions

  • This invention relates generally to a method and apparatus for assessing patient well-being, and more particularly to a method and apparatus for indirectly determining a patient ' s peak oxygen uptake ( 02 MAX ) by measuring his/her heart rate variability (HRV) .
  • HRV i.e., the beat-to-beat variance in sinus cycle length over a period of time
  • HRV the beat-to-beat variance in sinus cycle length over a period of time
  • an estimation of a patient's maximum oxygen uptake can be derived by the following method:
  • a patient's ECG waveform is sensed and recorded over a 24-hour period.
  • the whole 24-hour recording is not possible. Instead, the R-R interval is calculated in real time (on the fly) .
  • the recording is then analyzed and a determination is made as to the average length of normal RR intervals in 288 five- minute intervals. When the standard deviation of the 288 averages is computed, it yields an index exhibiting a high correlation with the patient's peak oxygen consumption.
  • the length of RR intervals in the recorded ECG waveform during a plurality of time segments of a predetermined length are measured and the absolute value of the time difference between successive RR intervals is determined.
  • the information arrived at can be utilized in assessing the efficacy of a given mode of drug therapy or electrical cardiac stimulation on a patient's exercise capacity.
  • improvements in a patient's peak oxygen uptake resulting from a predetermined therapy regimen can be determined. This is achieved without the need for conducting a breath- by-breath analysis of ventilatory flow and subjecting the patient to a treadmill test or the like.
  • Figure 1 is a graphical representation of a patient data collection schedule for ECG waveforms and V02 max measurements ;
  • Figure 2 is a plot of V02 max and the computed SDANN index plotted on the same time axis and showing the correlation of each as the pacing protocol is changed;
  • Figure 3 is a pseudo three-dimensional histogram plot of RR interval vs. the absolute value of the difference in RR interval between successive heart beats;
  • Figure 4 is a two-dimensional histogram plot taken prior to pacer implant where frequency of occurrence of predetermined HRV values are represented by a gray scale;
  • Figure 5 is a plot like that of Figure 4 but representing HRV data taken following four weeks of pacing therapy
  • Figure 6 is a plot showing the correlation between histogram of footprint size and V02 max for the data collection schedule of Figure 1;
  • Figure 7 is a flow chart of the algorithm for determining an optimum pacing mode based upon the relationship of HRV to peak oxygen uptake.
  • FIG. 1 there is graphically illustrated the data collection approach used in establishing the relationship between heart rate variability and V02 max .
  • Twenty- four hour surface ECG data was collected on seven CHF patients at four time points during a period of twelve weeks. Specifically, the data was collected just prior to the implant of a cardiac pacemaker, then again at the end of four weeks of pacing, at the end of four weeks of no pacing (eight weeks) , and at the end of four weeks of pacing (twelve weeks) .
  • the pacing mode was randomized between best univentricular pacing and biventricular pacing, during the two four-week periods during which pacing took place.
  • ECG data was sampled at 500 Hz and recorded on a modified 16-bit solid state digital holter recorder. At each of the four time points, the patients also performed symptom- limited maximal exercise tests. V02 max , V02 max at the anaerobic threshold, maximum power attained and total exercise duration were some of the exercise parameters collected.
  • the surface ECG data was filtered to remove any premature ventricular contractions and other ectopic beats, to obtain normal RR intervals .
  • Various HRV parameters were calculated from the measured and filtered RR intervals.
  • the well-known SDANN index which is the standard deviation of five-minute intervals averaged over 288 five-minute intervals in a 24 -hour period, was computed for the four 24 -hour sampling periods illustrated in Figure 1.
  • the SDANN indices for these four sampling periods are plotted as curve 2 in Figure 2 and also plotted on the same graph as curve 4 are the values of V02 raax measured at the same time.
  • the change in SDANN index correlated well with the change in V02 max .
  • the HRV data collected in accordance with the protocol of Figure 1 was also plotted as a two-dimensional histogram where the RR intervals and absolute value of the difference between successive RR intervals are quantized into a plurality of bins and then plotted against one another as shown in Figure 3.
  • the frequency value to be plotted on the Z axis can be limited to a number of levels compatible with the amount of memory available.
  • the histogram is plotted with a gray scale utilized to identify the frequency parameter.
  • the RR interval number is plotted against the absolute value of the difference between successive RR intervals and rather than having the distance along a Z axis as a measure of the frequency value, a gray scale color is used instead.
  • the plots of Figures 4 and 5 can be considered as contour maps of the pseudo three-dimensional histogram with different shades of gray representing various heights of the Z axis found in the pseudo three-dimensional plot.
  • the area subtended by the plot, i.e., its footprint to be an indicator of V02 max with changes in footprint area due to pacing also tracking changes in V02 max . Comparing Figures 4 and 5, it is readily apparent that pacing the patient suffering CHF had the effect of increasing that patient's maximum exercise capacity. Footprint area is determined by counting the number of nonzero pixels in the two-dimensional plot.
  • Figure 7 is a software flow diagram for optimizing the pacing mode of an implantable programmable cardiac pacer based upon observed improvements in a patient's exercise ' capacity and which does not require cardiopulmonary exercise monitoring equipment in carrying out the method.
  • This flow diagram is in sufficient detail such that a programmer of ordinary skill can write software code for allowing a microprocessor to carry out the indicated functions.
  • Such microprocessor program may be implemented in the implantable pacemaker device itself or, alternatively, may comprise equipment external to the patient .
  • the implantable pacemaker is of the type that allows its mode to be reprogrammed via a transcutaneous telemetry link. Most present-day pacemakers incorporate this capability.
  • the first step in carrying out the process is to initialize a pacing mode table, a therapy time table and an evaluation period table as represented by block 20 in Figure 7.
  • a first mode may be VDD with a first AV interval and a second mode may be VDD with a second, different AV interval.
  • a mode change may also be based upon the pacing site (or sites in the case of a biventricular pacemaker) . In fact, any change in the pacing regimen may be assigned as a mode in the pacing mode table .
  • the therapy time T k determines the time that a mode change takes place and will typically be measured in terms of days, weeks or months.
  • the evaluation period ⁇ T k establishes the length of time over which heart rate variability data is collected and will typically be measured in terms of hours .
  • each RR interval (RR is extracted from the ECG waveform (block 28) and repetitive calculations are made to measure heart rate variability as the absolute value of the difference between two successive RR intervals IRR- L -RR ⁇ I .
  • This is represented by block 30 in Figure 7.
  • a test is then made at decision block 34 to determine whether the evaluation period ⁇ T k has expired. If not, control loops back via path 36 to the input of block 28 so that steps 28, 30 and 32 are repeated iteratively until the time interval ⁇ T k has expired.
  • the histogram is effectively plotted (block 36) .
  • either the 2D histogram footprint area or some other feature of the 2D histogram is calculated as a measure of HRV k , i.e., the heart rate variability measure for the particular mode involved. While the 2D histogram footprint area has been determined to be a measure of V02 max , other features of the 2D histogram may also be indicative of V02 max . For example, the slope of the diagonal that is tangent to the base of the 2D plot is believed to be an indicator of HRV as well.
  • the next step in the algorithm is to compare the current HRV measure with that earlier derived relating to the immediately previous mode to determine whether HRV k is greater than HRV k _ ⁇ . If it is, then the current mode is shown to have provided improved V02 raax and the previous mode is discarded as an option. However, had the current heart rate variability index been less than the index derived for the previous mode, then the current mode would be disregarded.
  • a test is made to determine whether all of the possible modes in the pacing mode table have been considered and, if not, the mode index is incremented (block 44) and control loops back over path 46 to the input of block 22 whereby the routine is repeated until all modes have been exercised.
  • the patient's exercise capacity can be inferred from the SDANN index or, alternatively, from the area of the footprint of a two- dimensional histogram where heart rate variability is plotted against RR interval over a predetermined time interval.
  • the drug therapy mode would be changed and the effect on HRV, as measured by SDANN or a feature of the 2D histogram used to assess the efficacy of each mode .

Abstract

Based upon patient studies, a high degree of correlation was found between HRV, and VO2max, i.e., the patient's exercise capacity. A pacing therapy optimization protocol for treating patients with CHF has been devised. An HRV index is derived during a first pacing mode, then the mode is changed, and the steps repeated for all modes. The pacemaker mode with the highest HRV index is then programmed. Alternatively the method can apply to changes in drug therapy instead, or in combination with pacing therapy.

Description

HEART RATE VARIABILITY AS AN INDICATOR OF EXERCISE CAPACITY BACKGROUND OF THE INVENTION
I. Field of the Invention: This invention relates generally to a method and apparatus for assessing patient well-being, and more particularly to a method and apparatus for indirectly determining a patient ' s peak oxygen uptake ( 02MAX) by measuring his/her heart rate variability (HRV) .
II. Discussion of the Prior Art : It is known in the art that HRV, i.e., the beat-to-beat variance in sinus cycle length over a period of time, is a predictor of mortability and morbidity. Patients exhibiting low HRV show a significantly increased risk of sudden cardiac death. See "Heart Rate Variability" by Zsolt Ori, et al . , Cardiology Clinics. Vol. 10, No. 3, August 1992, pp. 499- 537 and "Depressed Heart Rate Variability As An Independent Predictor of Death in Chronic Congestive Heart Failure Secondary to Ischemic or Idiopathic Dilated Cardiomyopathy" by Piotr Ponikowski, et al . , The American Journal of Cardiology. Vol. 79, June 15, 1997, pp. 1645-1650. See also "Correlations Among Time and Frequency Domain Measures of Heart Period Variability Two Weeks After Acute Myocardial Infarction" by J. Thomas Bigger et al . , The American Journal of Cardiology, Vol. 69, April 1, 1992. In addition, the Spinelli et al . U.S. Patent 5,466,245 provides a very detailed method for automatically determining AV delay based on evaluating a frequency domain measure of heart rate variability (HRV) .
In the Heemels et al . U.S. Patent 5,603,331, assigned to applicant's assignee, a method and apparatus is described for efficiently processing, logging and disseminating essential features relating to HRV accumulated from a continuous, long-term monitoring of cardiac activity. As pointed out in that patent, the method is sufficiently conserves data memory, program memory and power consumption that it may be incorporated' within an implantable pacemaker or defibrillator to log a 24 -hour period of cardiac activity accumulated for subsequent telemetry to an external monitor. The patent further describes a method of processing and displaying HRV data in a manner that is readily understandable by clinicians which provides an improved graphical contrast between normal and abnormal HRV patterns .
Further studies which we have recently conducted on several patients has revealed a high correlation between HRV and a patient's exercise capacity as measured by V02 x. Based upon this realization, a method has been established for indirectly assessing a patient ' s maximum oxygen uptake by computing the standard deviation of five minute mean RR intervals, i.e., the SDANN Index. In an alternative approach, a two-dimensional histogram array is plotted with RR intervals along one axis and the absolute value of the time difference between successive RR intervals plotted along the second axis . By measuring the area on the plot occupied by the two-dimensional histogram, V02mx can be estimated. SUMMARY OF THE INVENTION
In accordance with a first aspect of the invention, an estimation of a patient's maximum oxygen uptake can be derived by the following method:
First, a patient's ECG waveform is sensed and recorded over a 24-hour period. In a pacemaker implementation, the whole 24-hour recording is not possible. Instead, the R-R interval is calculated in real time (on the fly) . The recording is then analyzed and a determination is made as to the average length of normal RR intervals in 288 five- minute intervals. When the standard deviation of the 288 averages is computed, it yields an index exhibiting a high correlation with the patient's peak oxygen consumption.
In an alternative method, rather than computing the SDANN Index, the length of RR intervals in the recorded ECG waveform during a plurality of time segments of a predetermined length are measured and the absolute value of the time difference between successive RR intervals is determined. By plotting this data as a two-dimensional histogram and then measuring the area on the plot occupied by the two-dimensional histogram, the patient ' s peak oxygen uptake can be inferred. That is to say, studies have shown that there is a high correlation between the area or "footprint" of the histogram and the patient's peak oxygen uptake .
Irrespective of which of the above methods is employed, the information arrived at can be utilized in assessing the efficacy of a given mode of drug therapy or electrical cardiac stimulation on a patient's exercise capacity. By comparing the HRV Index computed in accordance with the first method or the footprint area determined in accordance with the alternative method, improvements in a patient's peak oxygen uptake resulting from a predetermined therapy regimen can be determined. This is achieved without the need for conducting a breath- by-breath analysis of ventilatory flow and subjecting the patient to a treadmill test or the like. DESCRIPTION OF THE DRAWINGS
Figure 1 is a graphical representation of a patient data collection schedule for ECG waveforms and V02max measurements ;
Figure 2 is a plot of V02max and the computed SDANN index plotted on the same time axis and showing the correlation of each as the pacing protocol is changed;
Figure 3 is a pseudo three-dimensional histogram plot of RR interval vs. the absolute value of the difference in RR interval between successive heart beats; Figure 4 is a two-dimensional histogram plot taken prior to pacer implant where frequency of occurrence of predetermined HRV values are represented by a gray scale;
Figure 5 is a plot like that of Figure 4 but representing HRV data taken following four weeks of pacing therapy; Figure 6 is a plot showing the correlation between histogram of footprint size and V02max for the data collection schedule of Figure 1; and
Figure 7 is a flow chart of the algorithm for determining an optimum pacing mode based upon the relationship of HRV to peak oxygen uptake.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to Figure 1, there is graphically illustrated the data collection approach used in establishing the relationship between heart rate variability and V02max . Twenty- four hour surface ECG data was collected on seven CHF patients at four time points during a period of twelve weeks. Specifically, the data was collected just prior to the implant of a cardiac pacemaker, then again at the end of four weeks of pacing, at the end of four weeks of no pacing (eight weeks) , and at the end of four weeks of pacing (twelve weeks) . The pacing mode was randomized between best univentricular pacing and biventricular pacing, during the two four-week periods during which pacing took place. ECG data was sampled at 500 Hz and recorded on a modified 16-bit solid state digital holter recorder. At each of the four time points, the patients also performed symptom- limited maximal exercise tests. V02max, V02max at the anaerobic threshold, maximum power attained and total exercise duration were some of the exercise parameters collected.
The surface ECG data was filtered to remove any premature ventricular contractions and other ectopic beats, to obtain normal RR intervals . Various HRV parameters were calculated from the measured and filtered RR intervals. The well-known SDANN index, which is the standard deviation of five-minute intervals averaged over 288 five-minute intervals in a 24 -hour period, was computed for the four 24 -hour sampling periods illustrated in Figure 1. The SDANN indices for these four sampling periods are plotted as curve 2 in Figure 2 and also plotted on the same graph as curve 4 are the values of V02raax measured at the same time. The change in SDANN index correlated well with the change in V02max. Also apparent is the fact that the pacing therapy proved effective in improving these patient's exercise capacity. The HRV data collected in accordance with the protocol of Figure 1 was also plotted as a two-dimensional histogram where the RR intervals and absolute value of the difference between successive RR intervals are quantized into a plurality of bins and then plotted against one another as shown in Figure 3. Through logarithmic compression, as described fully in U.S. Patent 5,603,331, and which is hereby incorporated by reference, the frequency value to be plotted on the Z axis can be limited to a number of levels compatible with the amount of memory available. In the graphs of Figures 4 and 5, the histogram is plotted with a gray scale utilized to identify the frequency parameter. As in the case of Figure 3, the RR interval number is plotted against the absolute value of the difference between successive RR intervals and rather than having the distance along a Z axis as a measure of the frequency value, a gray scale color is used instead. Thus, the plots of Figures 4 and 5 can be considered as contour maps of the pseudo three-dimensional histogram with different shades of gray representing various heights of the Z axis found in the pseudo three-dimensional plot. We have found the area subtended by the plot, i.e., its footprint, to be an indicator of V02max with changes in footprint area due to pacing also tracking changes in V02max. Comparing Figures 4 and 5, it is readily apparent that pacing the patient suffering CHF had the effect of increasing that patient's maximum exercise capacity. Footprint area is determined by counting the number of nonzero pixels in the two-dimensional plot.
Figure 7 is a software flow diagram for optimizing the pacing mode of an implantable programmable cardiac pacer based upon observed improvements in a patient's exercise' capacity and which does not require cardiopulmonary exercise monitoring equipment in carrying out the method. This flow diagram is in sufficient detail such that a programmer of ordinary skill can write software code for allowing a microprocessor to carry out the indicated functions. Such microprocessor program may be implemented in the implantable pacemaker device itself or, alternatively, may comprise equipment external to the patient .
It is contemplated that the implantable pacemaker is of the type that allows its mode to be reprogrammed via a transcutaneous telemetry link. Most present-day pacemakers incorporate this capability. The first step in carrying out the process is to initialize a pacing mode table, a therapy time table and an evaluation period table as represented by block 20 in Figure 7. The implanted pacemaker is capable of operating in a plurality of modes Mk, k=0, 1, ... N. For example, a first mode may be VDD with a first AV interval and a second mode may be VDD with a second, different AV interval. A mode change may also be based upon the pacing site (or sites in the case of a biventricular pacemaker) . In fact, any change in the pacing regimen may be assigned as a mode in the pacing mode table .
The therapy time Tk determines the time that a mode change takes place and will typically be measured in terms of days, weeks or months. The evaluation period ΔTk establishes the length of time over which heart rate variability data is collected and will typically be measured in terms of hours . Once the initialization steps reflected in block 20 have been programmed, the pacemaker will be set to the first mode M0 (block 22) and the patient will continue to be paced in accordance with that first mode until the therapy time Tk has elapsed (block 24) . At this time, the evaluation period timer ΔTk is initialized to a starting point. With the evaluation period timer running, each RR interval (RR is extracted from the ECG waveform (block 28) and repetitive calculations are made to measure heart rate variability as the absolute value of the difference between two successive RR intervals IRR-L-RR^I . This is represented by block 30 in Figure 7. Each time a new HRV value is computed, it is stored in an appropriate bin of a histogram memory (block 32) . A test is then made at decision block 34 to determine whether the evaluation period ΔTk has expired. If not, control loops back via path 36 to the input of block 28 so that steps 28, 30 and 32 are repeated iteratively until the time interval ΔTk has expired.
At that point, the histogram is effectively plotted (block 36) . Next, either the 2D histogram footprint area or some other feature of the 2D histogram is calculated as a measure of HRVk, i.e., the heart rate variability measure for the particular mode involved. While the 2D histogram footprint area has been determined to be a measure of V02max, other features of the 2D histogram may also be indicative of V02max. For example, the slope of the diagonal that is tangent to the base of the 2D plot is believed to be an indicator of HRV as well.
Irrespective of the approach used in deriving HRVk, as represented by block 40, the next step in the algorithm is to compare the current HRV measure with that earlier derived relating to the immediately previous mode to determine whether HRVk is greater than HRV k_τ . If it is, then the current mode is shown to have provided improved V02raax and the previous mode is discarded as an option. However, had the current heart rate variability index been less than the index derived for the previous mode, then the current mode would be disregarded.
As indicated by decision block 42, a test is made to determine whether all of the possible modes in the pacing mode table have been considered and, if not, the mode index is incremented (block 44) and control loops back over path 46 to the input of block 22 whereby the routine is repeated until all modes have been exercised. By way of conclusion, then, we have determined, based upon patients' studies, that change in V02max correlates directly with change in heart rate variability and that information concerning the patient's exercise capacity can be derived from ECG signals. Moreover, the patient's exercise capacity can be inferred from the SDANN index or, alternatively, from the area of the footprint of a two- dimensional histogram where heart rate variability is plotted against RR interval over a predetermined time interval.
This invention has been described herein in considerable detail in order to comply with the patent statutes and to provide those skilled in the art with the information needed to apply the novel principles and to construct and use such specialized components as are required. However, it is to be understood that the invention can be carried out by specifically different equipment and devices, and that various modifications, both as to the equipment and operating procedures, can be accomplished without departing from the scope of the invention itself. For example, while the present invention has been described and illustrated in connection with patient therapy being carried out by electrical stimulation from an implantable pacemaker, it is also contemplated that the different therapy modes can be based on the administration of various drugs where such drugs have an influence on cardiac performance. Thus, the mode table can include a series of different drugs or the same drug but with differing dosages. Periodically, and in accordance with the entries in the therapy time table and the evaluation period table, the drug therapy mode would be changed and the effect on HRV, as measured by SDANN or a feature of the 2D histogram used to assess the efficacy of each mode . What is claimed is:

Claims

1. A method of indirectly assessing a patient's maximum oxygen update ^02,^) comprising the steps of:
(a) sensing and recording RR intervals from ECG waveform of a patient over a 24 -hour period;
(b) determining from the recording the average length of R-to-R intervals in 288 five-minute intervals; and
(c) computing the standard deviation of the 288 averages determined in step (b) to create an index correlating with V02MM for the patient.
2. A method of assessing the efficacy of a given mode of cardiac therapy on a patient ' s exercise capacity, comprising the steps of : (a) applying cardiac therapy to the patient's heart in accordance with said given mode;
(b) recording ECG waveforms from the patient over a predetermined time period;
(c) measuring the average length of R-to-R intervals in said waveforms during a plurality of predetermined segments of the predetermined time period;
(d) computing the standard deviation of the plurality of said segment averages to create a HRV index;
(e) repeating steps (b) - (d) at a time subsequent to said first time; and
(f) comparing the HRV index computed in step (d) associated with ECG waveforms recorded at said first time with the HRV index computed in step (d) associated with the ECG waveforms recorded at said subsequent time to determine whether the given mode of therapy improves or degrades the patient's exercise capacity.
3. The method of Claim 2 and further including the step of :
(g) changing the mode of cardiac therapy so as to cause an increase in the HRV index computed in step (d) associated with the ECG waveforms recorded at said subsequent time over the HRV index computed in step (d) associated with the ECG waveforms recorded at said first time .
4. The method as in any one of Claims 1-3 wherein the mode of cardiac therapy comprises a mode of electrical cardiac stimulation.
5. The method as in any one of Claims 1-3 wherein the mode of cardiac therapy comprises a mode of drug applications .
6. A method for indirectly assessing a patient's maximum oxygen uptake (V02max) , comprising the steps of:
(a) sensing and recording RR intervals obtained from ECG waveforms from the patient over a predetermined period;
(b) determining from the recording, the average length of RR intervals in said waveforms during a plurality of time segments of predetermined length in said predetermined period;
(c) calculating the absolute value of the time difference between successive RR intervals determined in step (b) ;
(d) plotting as a two-dimensional histogram array the RR intervals as a function of said absolute value of the time difference; and
(e) measuring a feature of the two-dimensional histogram.
7. The method of Claim 6 wherein the feature measured comprises an area on the plot occupied by the two- dimensional histogram.
8. A method of optimizing a mode of therapy applied to a patient, comprising the steps of:
(a) measuring and recording ECG waveforms over a predetermined time interval at a first point in time;
(b) computing from said ECG waveforms the absolute value of the difference in the length of successive RR intervals;
(c) plotting a two-dimensional histogram of the values computed in step (b) vs. RR intervals; (d) measuring the area subtended by the plot of step (c) as an indicator of a patient's exercise capacity;
(e) subsequently changing the mode of therapy applied to the patient; (f) repeating steps (a) through (d) at a later time;
(g) comparing the area measured in step (d) at the first point in time to the area measured in step (d) at the later time to assess which area is the greater; and (h) adjusting the mode of therapy to increase the patient's exercise capacity.
9. The method of Claim 8 wherein the mode of therapy applied to the patient comprises electrical cardiac stimulation.
10. The method of Claim 8 wherein the mode of therapy applied to the patient comprises drug application.
AMENDED CLAIMS
[received by the International Bureau on 22 November 1999 (22.11.99); original claim 1 amended;remaining claims unchanged (1 page)]
1. A method of indirectly assessing a patient's maximum oxygen uptake (V02MAX) comprising the steps of?
(a) sensing and recording RR intervals from ECG waveform of a patient over a 24-hour period;
(b) determining from the recording the average length of R-to-R intervals in 288 five-minute intervals; and
(c) computing the standard deviation of the 288 averages determined in step (b) to create an index correlating with V02HAX for the patient.
2. A method of assessing the efficacy of a given mode of cardiac therapy on a patient's exercise capacity, comprising the steps of : (a) applying cardiac therapy to the patient's heart in accordance with said given mode;
(b) recording ECG waveforms from the patient over a predetermined time period;
(c) measuring the average length of R-to-R intervals in said waveforms during a plurality of predetermined segments of the predetermined time period;
(d) computing the standard deviation of the plurality of said segment averages to create a HRV index;
(e) repeating steps (b) - (d) at a time subsequent to said first time; and
(f) comparing the HRV index computed in step (d) associated with ECG waveforms recorded at said first time with the HRV index computed in step (d) associated with the ECG waveforms recorded at said subsequent time to determine whether the given mode of therapy improves or degrades the patient's exercise capacity.
3. The method of Claim 2 and f rther including the step of :
(g) changing the mode of cardiac therapy so as to cause an increase in the HRV index computed in step (d) associated with the ECG waveforms recorded at said subsequent time over the HRV index computed in step (d)
STATEMENT UNDER ARTICLE 19
In response to the International Search Report mailed 03 November 1999, the applicant is requesting that the attached new claiin page 9 be substituted for page 9 in the instant PCT application as originally filed. The new page is submitted in accordance with Rule 46. It is also requested that the following statement under Article 19(1) be entered addressing the International Search Report:
The replacement page 9 is intended to replace the originally submitted page 9. Claim 1 as originally filed contained a typographical error, i.e., Claim 1 at line 2, the word "update" has been changed to — uptake — .
PCT/US1999/012588 1998-06-08 1999-06-04 Heart rate variability as an indicator of exercise capacity WO1999064108A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002300078A CA2300078A1 (en) 1998-06-08 1999-06-04 Heart rate variability as an indicator of exercise capacity
EP99928404A EP1001829B1 (en) 1998-06-08 1999-06-04 Heart rate variability as an indicator of exercise capacity
DE69936703T DE69936703T2 (en) 1998-06-08 1999-06-04 CARDIAC VARIABILITY AS AN INKICATOR FOR PHYSICAL WEARABILITY
JP2000553171A JP4383664B2 (en) 1998-06-08 1999-06-04 Heart rate variability as an indicator of exercise load capacity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/093,118 US6026320A (en) 1998-06-08 1998-06-08 Heart rate variability as an indicator of exercise capacity
US09/093,118 1998-06-08

Publications (1)

Publication Number Publication Date
WO1999064108A1 true WO1999064108A1 (en) 1999-12-16

Family

ID=22237274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/012588 WO1999064108A1 (en) 1998-06-08 1999-06-04 Heart rate variability as an indicator of exercise capacity

Country Status (7)

Country Link
US (1) US6026320A (en)
EP (1) EP1001829B1 (en)
JP (1) JP4383664B2 (en)
AT (1) ATE368420T1 (en)
CA (1) CA2300078A1 (en)
DE (1) DE69936703T2 (en)
WO (1) WO1999064108A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028424A1 (en) * 1999-10-18 2001-04-26 Cardiac Pacemakers, Inc. Heart rate variability as an indicator of exercise capacity
JP2004523250A (en) * 2000-01-19 2004-08-05 レブ − エルダイアグノスティクス オブ ハート ディジーズ リミテッド Method and system for measuring heart rate variability

Families Citing this family (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
DE19821761A1 (en) * 1998-05-14 1999-11-18 Braun Melsungen Ag Method and device for the compressed optical representation of medical data
US6714811B1 (en) * 1999-03-05 2004-03-30 Medtronic, Inc. Method and apparatus for monitoring heart rate
US6508771B1 (en) * 1999-03-05 2003-01-21 Medtronic, Inc. Method and apparatus for monitoring heart rate
US6179865B1 (en) * 1999-04-01 2001-01-30 Cardiac Pacemakers, Inc. Cross chamber interval correlation
US7212860B2 (en) * 1999-05-21 2007-05-01 Cardiac Pacemakers, Inc. Apparatus and method for pacing mode switching during atrial tachyarrhythmias
US6285907B1 (en) 1999-05-21 2001-09-04 Cardiac Pacemakers, Inc. System providing ventricular pacing and biventricular coordination
US8064997B2 (en) * 1999-05-21 2011-11-22 Cardiac Pacemakers, Inc. Method and apparatus for treating irregular ventricular contractions such as during atrial arrhythmia
US7142918B2 (en) * 2000-12-26 2006-11-28 Cardiac Pacemakers, Inc. Apparatus and method for pacing mode switching during atrial tachyarrhythmias
US6430438B1 (en) 1999-05-21 2002-08-06 Cardiac Pacemakers, Inc. Cardiac rhythm management system with atrial shock timing optimization
US6351669B1 (en) 1999-05-21 2002-02-26 Cardiac Pacemakers, Inc. Cardiac rhythm management system promoting atrial pacing
US7062325B1 (en) * 1999-05-21 2006-06-13 Cardiac Pacemakers Inc Method and apparatus for treating irregular ventricular contractions such as during atrial arrhythmia
US6501988B2 (en) 2000-12-26 2002-12-31 Cardiac Pacemakers Inc. Apparatus and method for ventricular rate regularization with biventricular sensing
US7181278B2 (en) * 1999-05-21 2007-02-20 Cardiac Pacemakers, Inc. Apparatus and method for ventricular rate regularization
US6678547B2 (en) * 2001-03-08 2004-01-13 Cardiac Pacemakers, Inc. Cardiac rhythm management system using time-domain heart rate variability indicia
US7062314B2 (en) * 1999-10-01 2006-06-13 Cardiac Pacemakers, Inc. Cardiac rhythm management device with triggered diagnostic mode
LT4756B (en) 2000-01-11 2001-01-25 Kauno Medicinos Universiteto Psichofiziologijos Ir Reabilitacijos Institutas METHOD OF EXCLUSION OF SYNTHETIC AND ECTOPIC HEART RIT
US6453192B1 (en) * 2000-03-13 2002-09-17 Cardiac Pacemakers, Inc. Detection of ventricular ectopic beats using ventricular electrogram
US6501987B1 (en) * 2000-05-26 2002-12-31 Cardiac Pacemakers, Inc. Rate smoothing control
US7039461B1 (en) * 2000-05-13 2006-05-02 Cardiac Pacemakers, Inc. Cardiac pacing system for prevention of ventricular fibrillation and ventricular tachycardia episode
US8512220B2 (en) * 2000-05-26 2013-08-20 Cardiac Pacemakers, Inc. Rate smoothing control
US6424865B1 (en) 2000-07-13 2002-07-23 Cardiac Pacemakers, Inc. Ventricular conduction delay trending system and method
US6512951B1 (en) 2000-09-14 2003-01-28 Cardiac Pacemakers, Inc. Delivery of atrial defibrillation shock based on estimated QT interval
US6718197B1 (en) 2000-11-02 2004-04-06 Cardiac Pacemakers, Inc. LV ectopic density trending
US7069070B2 (en) * 2003-05-12 2006-06-27 Cardiac Pacemakers, Inc. Statistical method for assessing autonomic balance
US7428436B2 (en) * 2000-11-02 2008-09-23 Cardiac Pacemakers, Inc. Method for exclusion of ectopic events from heart rate variability metrics
US6957100B2 (en) * 2000-12-26 2005-10-18 Cardiac Pacemakers, Inc. Method and system for display of cardiac event intervals in a resynchronization pacemaker
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
DE10105765A1 (en) * 2001-02-08 2002-09-05 Karlheinz Schmidt Method for visual representation of the spatial distribution of the values of a physical quantity within a fixed space which allows a viewer of the representation to intuitively recognize areas of high and low measurement value
US6748272B2 (en) 2001-03-08 2004-06-08 Cardiac Pacemakers, Inc. Atrial interval based heart rate variability diagnostic for cardiac rhythm management system
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US7346394B2 (en) * 2001-04-27 2008-03-18 Cardiac Pacemakers, Inc. Cardiac stimulation at high ventricular wall stress areas
US6980851B2 (en) * 2001-11-15 2005-12-27 Cardiac Pacemakers, Inc. Method and apparatus for determining changes in heart failure status
US7727181B2 (en) * 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
AU2003279237A1 (en) 2002-10-09 2004-05-04 Therasense, Inc. Fluid delivery device, system and method
US7993108B2 (en) * 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7844332B2 (en) 2002-10-18 2010-11-30 Cardiac Pacemakers, Inc. Atrioventricular delay adjustment enhancing ventricular tachyarrhythmia detection
US7101339B2 (en) * 2002-12-13 2006-09-05 Cardiac Pacemakers, Inc. Respiration signal measurement apparatus, systems, and methods
US20050080348A1 (en) * 2003-09-18 2005-04-14 Stahmann Jeffrey E. Medical event logbook system and method
US7272442B2 (en) 2002-12-30 2007-09-18 Cardiac Pacemakers, Inc. Automatically configurable minute ventilation sensor
US8050764B2 (en) 2003-10-29 2011-11-01 Cardiac Pacemakers, Inc. Cross-checking of transthoracic impedance and acceleration signals
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7865233B2 (en) * 2003-04-11 2011-01-04 Cardiac Pacemakers, Inc. Subcutaneous cardiac signal discrimination employing non-electrophysiologic signal
US7499750B2 (en) * 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Noise canceling cardiac electrodes
US7236819B2 (en) 2003-04-11 2007-06-26 Cardiac Pacemakers, Inc. Separation of a subcutaneous cardiac signal from a plurality of composite signals
US7218966B2 (en) * 2003-04-11 2007-05-15 Cardiac Pacemakers, Inc. Multi-parameter arrhythmia discrimination
US7555335B2 (en) * 2003-04-11 2009-06-30 Cardiac Pacemakers, Inc. Biopotential signal source separation using source impedances
US7302294B2 (en) 2003-04-11 2007-11-27 Cardiac Pacemakers, Inc. Subcutaneous cardiac sensing and stimulation system employing blood sensor
US7679407B2 (en) * 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7477932B2 (en) * 2003-05-28 2009-01-13 Cardiac Pacemakers, Inc. Cardiac waveform template creation, maintenance and use
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US7200440B2 (en) 2003-07-02 2007-04-03 Cardiac Pacemakers, Inc. Cardiac cycle synchronized sampling of impedance signal
US7662101B2 (en) * 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Therapy control based on cardiopulmonary status
US7720541B2 (en) * 2003-08-18 2010-05-18 Cardiac Pacemakers, Inc. Adaptive therapy for disordered breathing
US7610094B2 (en) * 2003-09-18 2009-10-27 Cardiac Pacemakers, Inc. Synergistic use of medical devices for detecting medical disorders
US8192376B2 (en) 2003-08-18 2012-06-05 Cardiac Pacemakers, Inc. Sleep state classification
US7757690B2 (en) 2003-09-18 2010-07-20 Cardiac Pacemakers, Inc. System and method for moderating a therapy delivered during sleep using physiologic data acquired during non-sleep
US7887493B2 (en) * 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US7680537B2 (en) * 2003-08-18 2010-03-16 Cardiac Pacemakers, Inc. Therapy triggered by prediction of disordered breathing
US7396333B2 (en) * 2003-08-18 2008-07-08 Cardiac Pacemakers, Inc. Prediction of disordered breathing
US7668591B2 (en) 2003-09-18 2010-02-23 Cardiac Pacemakers, Inc. Automatic activation of medical processes
US7510531B2 (en) 2003-09-18 2009-03-31 Cardiac Pacemakers, Inc. System and method for discrimination of central and obstructive disordered breathing events
US7575553B2 (en) * 2003-09-18 2009-08-18 Cardiac Pacemakers, Inc. Methods and systems for assessing pulmonary disease
US7469697B2 (en) * 2003-09-18 2008-12-30 Cardiac Pacemakers, Inc. Feedback system and method for sleep disordered breathing therapy
US7468040B2 (en) * 2003-09-18 2008-12-23 Cardiac Pacemakers, Inc. Methods and systems for implantably monitoring external breathing therapy
EP2008581B1 (en) * 2003-08-18 2011-08-17 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US7591265B2 (en) 2003-09-18 2009-09-22 Cardiac Pacemakers, Inc. Coordinated use of respiratory and cardiac therapies for sleep disordered breathing
US7678061B2 (en) * 2003-09-18 2010-03-16 Cardiac Pacemakers, Inc. System and method for characterizing patient respiration
US7572225B2 (en) * 2003-09-18 2009-08-11 Cardiac Pacemakers, Inc. Sleep logbook
US7967756B2 (en) * 2003-09-18 2011-06-28 Cardiac Pacemakers, Inc. Respiratory therapy control based on cardiac cycle
US8606356B2 (en) * 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US20050142070A1 (en) * 2003-09-18 2005-06-30 Hartley Jesse W. Methods and systems for assessing pulmonary disease with drug therapy control
US8251061B2 (en) * 2003-09-18 2012-08-28 Cardiac Pacemakers, Inc. Methods and systems for control of gas therapy
US7392084B2 (en) 2003-09-23 2008-06-24 Cardiac Pacemakers, Inc. Demand-based cardiac function therapy
US7572226B2 (en) * 2003-10-28 2009-08-11 Cardiac Pacemakers, Inc. System and method for monitoring autonomic balance and physical activity
US7319900B2 (en) * 2003-12-11 2008-01-15 Cardiac Pacemakers, Inc. Cardiac response classification using multiple classification windows
US20060247693A1 (en) 2005-04-28 2006-11-02 Yanting Dong Non-captured intrinsic discrimination in cardiac pacing response classification
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
US7774064B2 (en) 2003-12-12 2010-08-10 Cardiac Pacemakers, Inc. Cardiac response classification using retriggerable classification windows
US7783349B2 (en) * 2006-04-10 2010-08-24 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US9020595B2 (en) * 2003-12-24 2015-04-28 Cardiac Pacemakers, Inc. Baroreflex activation therapy with conditional shut off
US20050215884A1 (en) * 2004-02-27 2005-09-29 Greicius Michael D Evaluation of Alzheimer's disease using an independent component analysis of an individual's resting-state functional MRI
CN1968727B (en) * 2004-03-18 2010-12-22 里普朗尼克股份有限公司 Methods and devices for relieving stress
US7260431B2 (en) * 2004-05-20 2007-08-21 Cardiac Pacemakers, Inc. Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
US7706866B2 (en) * 2004-06-24 2010-04-27 Cardiac Pacemakers, Inc. Automatic orientation determination for ECG measurements using multiple electrodes
US7805185B2 (en) * 2005-05-09 2010-09-28 Cardiac Pacemakers, In. Posture monitoring using cardiac activation sequences
US7917196B2 (en) * 2005-05-09 2011-03-29 Cardiac Pacemakers, Inc. Arrhythmia discrimination using electrocardiograms sensed from multiple implanted electrodes
US7890159B2 (en) * 2004-09-30 2011-02-15 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring and tracking
US7797036B2 (en) * 2004-11-30 2010-09-14 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring for ischemia detection
US7509170B2 (en) * 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7418293B2 (en) * 2004-11-09 2008-08-26 Cardiac Pacemakers, Inc. Multiple pulse defibrillation for subcutaneous implantable cardiac devices
US8818504B2 (en) 2004-12-16 2014-08-26 Cardiac Pacemakers Inc Leadless cardiac stimulation device employing distributed logic
US7996072B2 (en) * 2004-12-21 2011-08-09 Cardiac Pacemakers, Inc. Positionally adaptable implantable cardiac device
JP2006185060A (en) * 2004-12-27 2006-07-13 Fujitsu Ltd Method for inputting password
US7672725B2 (en) 2005-01-18 2010-03-02 Cardiac Pacemakers, Inc. Method and apparatus for using heart rate variability as a safety check in electrical therapies
US7672724B2 (en) * 2005-01-18 2010-03-02 Cardiac Pacemakers, Inc. Method and apparatus for optimizing electrical stimulation parameters using heart rate variability
US7580745B2 (en) 2005-01-18 2009-08-25 Cardiac Pacemakers, Inc. Method and apparatus for using heart rate variability to control maximum tracking rate in pacing therapy
US20060166629A1 (en) * 2005-01-24 2006-07-27 Therasense, Inc. Method and apparatus for providing EMC Class-B compliant RF transmitter for data monitoring an detection systems
US7680534B2 (en) * 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US8002711B2 (en) * 2005-03-18 2011-08-23 Respironics, Inc. Methods and devices for relieving stress
WO2006102412A2 (en) 2005-03-21 2006-09-28 Abbott Diabetes Care, Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US7392086B2 (en) * 2005-04-26 2008-06-24 Cardiac Pacemakers, Inc. Implantable cardiac device and method for reduced phrenic nerve stimulation
US7499751B2 (en) * 2005-04-28 2009-03-03 Cardiac Pacemakers, Inc. Cardiac signal template generation using waveform clustering
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US20070055115A1 (en) * 2005-09-08 2007-03-08 Jonathan Kwok Characterization of sleep disorders using composite patient data
US7927284B2 (en) * 2005-09-16 2011-04-19 Cardiac Pacemakers, Inc. Quantifying hemodynamic response to drug therapy using implantable sensor
US8992436B2 (en) * 2005-09-16 2015-03-31 Cardiac Pacemakers, Inc. Respiration monitoring using respiration rate variability
US7775983B2 (en) * 2005-09-16 2010-08-17 Cardiac Pacemakers, Inc. Rapid shallow breathing detection for use in congestive heart failure status determination
US7731663B2 (en) 2005-09-16 2010-06-08 Cardiac Pacemakers, Inc. System and method for generating a trend parameter based on respiration rate distribution
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US20070118180A1 (en) 2005-11-18 2007-05-24 Quan Ni Cardiac resynchronization therapy for improved hemodynamics based on disordered breathing detection
US7766840B2 (en) 2005-12-01 2010-08-03 Cardiac Pacemakers, Inc. Method and system for heart failure status evaluation based on a disordered breathing index
US7662105B2 (en) 2005-12-14 2010-02-16 Cardiac Pacemakers, Inc. Systems and methods for determining respiration metrics
US8204585B2 (en) 2005-12-20 2012-06-19 Cardiac Pacemakers, Inc. Bio-impedance sensor and sensing method
US9155896B2 (en) * 2005-12-22 2015-10-13 Cardiac Pacemakers, Inc. Method and apparatus for improving cardiac efficiency based on myocardial oxygen consumption
US20070149870A1 (en) * 2005-12-28 2007-06-28 Futrex, Inc. Systems and methods for determining an organism's pathology
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US7819816B2 (en) * 2006-03-29 2010-10-26 Cardiac Pacemakers, Inc. Periodic disordered breathing detection
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US8527048B2 (en) * 2006-06-29 2013-09-03 Cardiac Pacemakers, Inc. Local and non-local sensing for cardiac pacing
US7599741B2 (en) * 2006-06-29 2009-10-06 Cardiac Pacemakers, Inc. Systems and methods for improving heart rate kinetics in heart failure patients
US20080004665A1 (en) * 2006-06-29 2008-01-03 Mccabe Aaron R Determination of cardiac pacing parameters based on non-localized sensing
US8209013B2 (en) * 2006-09-14 2012-06-26 Cardiac Pacemakers, Inc. Therapeutic electrical stimulation that avoids undesirable activation
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US20080119710A1 (en) * 2006-10-31 2008-05-22 Abbott Diabetes Care, Inc. Medical devices and methods of using the same
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20080228093A1 (en) * 2007-03-13 2008-09-18 Yanting Dong Systems and methods for enhancing cardiac signal features used in morphology discrimination
US8052611B2 (en) 2007-03-14 2011-11-08 Cardiac Pacemakers, Inc. Method and apparatus for management of heart failure hospitalization
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8271080B2 (en) 2007-05-23 2012-09-18 Cardiac Pacemakers, Inc. Decongestive therapy titration for heart failure patients using implantable sensor
US20080306564A1 (en) * 2007-06-11 2008-12-11 Cardiac Pacemakers, Inc Method and apparatus for short-term heart rate variability monitoring and diagnostics
US8265736B2 (en) 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
JP5438687B2 (en) 2007-12-13 2014-03-12 カーディアック ペースメイカーズ, インコーポレイテッド A system that provides unipolar detection vectors
WO2009094335A1 (en) * 2008-01-22 2009-07-30 Cardiac Pacemakers, Inc. Respiration as a trigger for therapy optimization
EP2254661B1 (en) 2008-02-14 2015-10-07 Cardiac Pacemakers, Inc. Apparatus for phrenic stimulation detection
US8147415B2 (en) 2008-05-07 2012-04-03 Cardiac Pacemakers, Inc. System and method for detection of pulmonary embolism
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
WO2010127050A1 (en) 2009-04-28 2010-11-04 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US20110009760A1 (en) * 2009-07-10 2011-01-13 Yi Zhang Hospital Readmission Alert for Heart Failure Patients
EP4276652A3 (en) 2009-07-23 2024-01-31 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc Analyte monitoring system and methods for managing power and noise
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US20110106201A1 (en) * 2009-10-30 2011-05-05 Sourav Bhunia Implantable heart failure monitor
FI20105796A0 (en) * 2010-07-12 2010-07-12 Polar Electro Oy Analysis of a physiological condition for a cardio exercise
US8798732B2 (en) 2010-08-05 2014-08-05 Lev-El Diagnostics of Heart Diseases Ltd. Apparatus, system and method of determining a heart rate variability value
EP2441821A1 (en) 2010-10-14 2012-04-18 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Laundry detergent particles
WO2013018992A2 (en) * 2011-08-04 2013-02-07 한국과학기술원 Method of maintaining aerobic exercise for promoting fat burning
AU2012335830B2 (en) 2011-11-07 2017-05-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8929981B2 (en) 2011-12-12 2015-01-06 Cardiac Pacemakers, Inc. Methods and systems for identifying and using heart rate variability and heart rate variation
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
WO2015020979A1 (en) 2013-08-05 2015-02-12 Cardiac Pacemakers, Inc. System and method for detecting worsening of heart failure based on rapid shallow breathing index
US10736516B2 (en) 2013-11-21 2020-08-11 Medtronic, Inc. Method and apparatus for accurately determining heart rate variability and sympathetic reserve
CN106102830B (en) 2014-01-10 2019-07-16 心脏起搏器股份公司 For improving the method and system of the communication between medical device
WO2015106015A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
KR101587989B1 (en) * 2014-05-15 2016-01-22 스마트사운드주식회사 Method of evaluating a value for heart regularity by bioacoustic and electronic stethoscope
WO2016033197A2 (en) 2014-08-28 2016-03-03 Cardiac Pacemakers, Inc. Medical device with triggered blanking period
JP6510660B2 (en) 2015-02-06 2019-05-08 カーディアック ペースメイカーズ, インコーポレイテッド System and method for treating cardiac arrhythmias
ES2713231T3 (en) 2015-02-06 2019-05-20 Cardiac Pacemakers Inc Systems for the safe supply of electrical stimulation therapy
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
US11285326B2 (en) 2015-03-04 2022-03-29 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
WO2016149262A1 (en) 2015-03-18 2016-09-22 Cardiac Pacemakers, Inc. Communications in a medical device system with link quality assessment
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
US10357159B2 (en) 2015-08-20 2019-07-23 Cardiac Pacemakers, Inc Systems and methods for communication between medical devices
EP3337558A1 (en) 2015-08-20 2018-06-27 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
CN108136189B (en) 2015-08-28 2021-10-15 心脏起搏器股份公司 System for behavioral response signal detection and therapy delivery
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
EP3359251B1 (en) 2015-10-08 2019-08-07 Cardiac Pacemakers, Inc. Adjusting pacing rates in an implantable medical device
EP3389775B1 (en) 2015-12-17 2019-09-25 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
WO2017136548A1 (en) 2016-02-04 2017-08-10 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
WO2017173275A1 (en) 2016-03-31 2017-10-05 Cardiac Pacemakers, Inc. Implantable medical device with rechargeable battery
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
WO2018009569A1 (en) 2016-07-06 2018-01-11 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
WO2018017226A1 (en) 2016-07-20 2018-01-25 Cardiac Pacemakers, Inc. System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
WO2018035343A1 (en) 2016-08-19 2018-02-22 Cardiac Pacemakers, Inc. Trans septal implantable medical device
CN109640809B (en) 2016-08-24 2021-08-17 心脏起搏器股份公司 Integrated multi-device cardiac resynchronization therapy using P-wave to pacing timing
EP3503970B1 (en) 2016-08-24 2023-01-04 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
US10905889B2 (en) 2016-09-21 2021-02-02 Cardiac Pacemakers, Inc. Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10765871B2 (en) 2016-10-27 2020-09-08 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
EP3532159B1 (en) 2016-10-27 2021-12-22 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
WO2018081237A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
CN109890456B (en) 2016-10-31 2023-06-13 心脏起搏器股份公司 System for activity level pacing
JP6843235B2 (en) 2016-10-31 2021-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
US10632313B2 (en) 2016-11-09 2020-04-28 Cardiac Pacemakers, Inc. Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
CN109996585B (en) 2016-11-21 2023-06-13 心脏起搏器股份公司 Implantable medical device with magnetically permeable housing and induction coil disposed around the housing
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
EP3573708B1 (en) 2017-01-26 2021-03-10 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
JP7000438B2 (en) 2017-01-26 2022-01-19 カーディアック ペースメイカーズ, インコーポレイテッド Human device communication with redundant message transmission
CN110234392B (en) 2017-01-26 2023-08-11 心脏起搏器股份公司 Leadless device with overmolded component
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
AU2018248361B2 (en) 2017-04-03 2020-08-27 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US11065459B2 (en) 2017-08-18 2021-07-20 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
CN111417433A (en) 2017-12-01 2020-07-14 心脏起搏器股份公司 Method and system for detecting atrial contraction timing reference during ventricular filling from a ventricular implanted leadless cardiac pacemaker
WO2019108482A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
WO2019108830A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
CN111886046A (en) 2018-03-23 2020-11-03 美敦力公司 AV-synchronized VFA cardiac therapy
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
US11058880B2 (en) 2018-03-23 2021-07-13 Medtronic, Inc. VFA cardiac therapy for tachycardia
CN112770807A (en) 2018-09-26 2021-05-07 美敦力公司 Capture in atrial-to-ventricular cardiac therapy
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603331A (en) * 1996-02-12 1997-02-18 Cardiac Pacemakers, Inc. Data logging system for implantable cardiac device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566461A (en) * 1983-02-15 1986-01-28 Michael Lubell Health fitness monitor
US4622980A (en) * 1984-11-01 1986-11-18 Horst E. Kunig Method and apparatus for determining of stress condition of a subject
US5291400A (en) * 1992-04-09 1994-03-01 Spacelabs Medical, Inc. System for heart rate variability analysis
JPH084584B2 (en) * 1992-09-29 1996-01-24 コンビ株式会社 Physical fitness measuring method and physical fitness measuring device evaluation method
US5411031A (en) * 1993-11-24 1995-05-02 Incontrol, Inc. Implantable cardiac patient monitor
EP0771170A4 (en) * 1994-07-13 2000-05-17 Gw Scient Inc Detection of abnormal and induction of normal heart rate variability
US5749900A (en) * 1995-12-11 1998-05-12 Sulzer Intermedics Inc. Implantable medical device responsive to heart rate variability analysis
CN1185985C (en) * 1996-03-22 2005-01-26 精工爱普生株式会社 Motion intensity measuring apparatus and momentum measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603331A (en) * 1996-02-12 1997-02-18 Cardiac Pacemakers, Inc. Data logging system for implantable cardiac device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028424A1 (en) * 1999-10-18 2001-04-26 Cardiac Pacemakers, Inc. Heart rate variability as an indicator of exercise capacity
JP2004523250A (en) * 2000-01-19 2004-08-05 レブ − エルダイアグノスティクス オブ ハート ディジーズ リミテッド Method and system for measuring heart rate variability
JP4668505B2 (en) * 2000-01-19 2011-04-13 レブ − エルダイアグノスティクス オブ ハート ディジーズ リミテッド Method and system for measuring heart rate variability

Also Published As

Publication number Publication date
EP1001829A1 (en) 2000-05-24
JP2002517294A (en) 2002-06-18
DE69936703D1 (en) 2007-09-13
EP1001829B1 (en) 2007-08-01
CA2300078A1 (en) 1999-12-16
US6026320A (en) 2000-02-15
DE69936703T2 (en) 2008-04-30
EP1001829A4 (en) 2001-03-07
JP4383664B2 (en) 2009-12-16
ATE368420T1 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US6301499B1 (en) Heart rate variability as an indicator of exercise capacity
US6026320A (en) Heart rate variability as an indicator of exercise capacity
US6539249B1 (en) Method and apparatus for assessing patient well-being
US6021351A (en) Method and apparatus for assessing patient well-being
US6748272B2 (en) Atrial interval based heart rate variability diagnostic for cardiac rhythm management system
US6668188B2 (en) Determination of long-term condition of cardiac patients
US6459934B1 (en) Estimate of efficiency using acceleration-heart rate ratio
USRE42836E1 (en) Method for assessing cardiac functional status
US8165667B2 (en) Methods and systems for optimizing exercise compliance diagnostic parameters
US8509897B2 (en) Morphology-based diagnostic monitoring of electrograms by implantable cardiac device
US7020521B1 (en) Methods and apparatus for detecting and/or monitoring heart failure
US20070244402A1 (en) System and method of monitoring physiological signals
EP1604705A1 (en) Collection and analysis of information concerning heart failure
US7043294B1 (en) Methods and devices for determining heart rate recovery
EP1585443B1 (en) T-wave alternans train spotter
US7031766B1 (en) Methods and devices for determining exercise diagnostic parameters
US10166393B2 (en) Active implantable medical device for heart failure treatment by stimulation of the vagus nerve
US7894901B1 (en) Apparatus and method for assessing cardiac therapy
Stroobandt A practical guide to the interpretation of DDD pacing electrocardiograms
Pfeiffer et al. The ventricular evoked response and adrenergic stimulation: First results of a multicenter clinical study

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999928404

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 553171

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2300078

Country of ref document: CA

Ref country code: CA

Ref document number: 2300078

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999928404

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999928404

Country of ref document: EP