WO1999064555A1 - Granular, powder, and tablet detergent compositions containing gasified particulate matter - Google Patents

Granular, powder, and tablet detergent compositions containing gasified particulate matter Download PDF

Info

Publication number
WO1999064555A1
WO1999064555A1 PCT/IB1999/000994 IB9900994W WO9964555A1 WO 1999064555 A1 WO1999064555 A1 WO 1999064555A1 IB 9900994 W IB9900994 W IB 9900994W WO 9964555 A1 WO9964555 A1 WO 9964555A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
detergent
mixtures
compositions
gasified
Prior art date
Application number
PCT/IB1999/000994
Other languages
French (fr)
Inventor
Diane Parry
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU39497/99A priority Critical patent/AU3949799A/en
Publication of WO1999064555A1 publication Critical patent/WO1999064555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions

Definitions

  • This invention relates to granular, powder or tablet laundry detergent products that include gasified particles, and that preferably also include other materials such as bleaching agents and/or conventional detergent composition adjuvants.
  • Granular, powder and tablet detergent products have many advantages, but they have some inherent problems as well. For example, formulators of these products have struggled with ways to improve detergent solubility over a wide variety of temperatures.
  • One impediment to quick and complete solubility is that solid detergent products are often not dispersed in the wash water.
  • consumers When using granular, powder and tablet detergent products consumers typically measure the amount of detergent desired and pour it into a water based wash solution. Often the detergent composition does not disperses immediately, but instead remains in the same general location where it was added to the wash water. Poor dispersion of the solid detergent material generally results in slow dissolution. Therefore, one method of improving solubility is to insure that the solid detergent particles are quickly and uniformly dispersed in the aqueous based wash water solution. While advances in detergent solubility and dispersion have been made, there exists a continuing need to improve the dissolution characteristics of solid detergent compositions.
  • speckles are sometimes used to create such distinctiveness.
  • speckles in detergent products should be larger than 200 microns to be easily visible to the consumer. While some solid detergent particles are compatible with and receptive to dyes, others may not be. Hence, care must be exercised when dying solid particles for inclusion in detergent compositions. Thus, there is a continuing need for particles that are receptive to and compatible with various commercially available dyes.
  • the present invention provides granular, powder and tablet detergent compositions, which compositions are sometimes collectively referred to as "solid" compositions, comprising: A) from about 10% to about 50% by weight of a surfactant; and B) from about 0.05% to about 5%, preferably from about 0.1% to about 3%, and most preferably from about 0.2% to about 2%, by weight of the composition of gasified particles that are solid at about 25°C ("room temperature"), preferably, solid up to about 40°C, and highly water soluble.
  • compositions further comprise from about 1% to 50% by weight of additional detergent adjuvants selected from the group consisting of builders, enzymes, bleaching agents, bleach activators, suds suppressors, soil release agents, brighteners, perfumes, hydrotropes, dyes, pigments, polymeric dispersing agents, pH controlling agents, chelants, processing aids, crystallization aids, and mixtures thereof.
  • additional detergent adjuvants selected from the group consisting of builders, enzymes, bleaching agents, bleach activators, suds suppressors, soil release agents, brighteners, perfumes, hydrotropes, dyes, pigments, polymeric dispersing agents, pH controlling agents, chelants, processing aids, crystallization aids, and mixtures thereof.
  • Granular, powder and tablet detergent products made according to this invention have the surprising benefit of superior product dispersion that increases the rate of product dissolution in the wash water. Additionally, the gasified particles can be used to add desirable product aesthetics in the form of colored speckles.
  • the gasified particles can provide both audible and olfactory signals to the consumer that the product is working.
  • the gasified particles of this invention give off a "popping" and/or a "hissing" sound as they dissolve. These sounds let the consumer know that the product is dissolving and, thus, beginning to work.
  • the pressurized gas comprises a perfume
  • the perfume is emitted as the particles dissolve, giving the consumer an olfactory signal that the product is beginning to work.
  • the granular, powder and tablet detergent compositions of this invention comprise a surfactant and gasified particles.
  • the components of these compositions, including, the gasified particles and optional materials of the detergent compositions herein, as well as composition form, preparation and use, are described in greater detail below.
  • the cleaning compositions of the invention can be used in a variety of applications including but not limited to fabric laundering, fabric or surface bleaching, automatic or hand dishwashing, hard surface cleaning and other applications. (All concentrations and ratios are on a weight basis unless otherwise specified.)
  • compositions of this invention comprise from about 0.05% to about 5%, preferably from about 0.1% to about 3%, and most preferably from about 0.2% to about 2%, by weight of the composition of gasified particles that are solid at about 25°C, and highly water soluble.
  • the gasified particles comprise a core material that encapsulates a pressurized gas, optionally, the particles can be dyed, coated and perfumes can be added. It is understood that all of the materials used in the gasified particles should be compatible with a fabric laundering process because the particles will eventually dissolve, releasing the ingredients into the wash water. For example, certain dyes may preferentially deposit on fabrics rather than be rinsed out in the wash water. Dyes of this type would be less preferred than dyes that readily dissolve in the wash water and are rinsed away.
  • gasified particles is intended to exclude particles that evolve gas as a result of a chemical reaction, for example, the reaction of sodium bicarbonate with water resulting in the evolution of carbon dioxide.
  • the particles of this invention comprise a pressurized gas that escapes as the core material dissolves or is shattered.
  • the pressurized gas trapped within the gasified particles of this invention is preferably selected from the group consisting of carbon dioxide, nitrogen, oxygen, helium, hydrogen, air, argon, neon, chlorine and mixtures thereof.
  • the core material of these gasified particles is preferably a glassy solid and most preferably comprises materials selected from the group consisting of sucrose, lactose, glucose, fructose, galactose, maltose, polyethylene glycol, polyvinyl alcohol, fatty acids, and mixtures thereof. It is understood that certain fatty acids will not be solid at room temperature. Therefore, if used to make gasified particles of this invention, fatty acids should have a high melting point or should be mixed with other materials to raise the melting point.
  • the most preferred core materials for the gasified particles of this invention are sucrose and polyethylene glycol that has a molecular weight between about 2,000 and 20,000.
  • the gasified particles can additionally comprise a dye or pigment, preferably selected from the group consisting of ultramarine blue, indigo carmine, FD&C blue 1, D&C yellow 5, D&C yellow 6, D&C red 21, D&C red 27, D&C orange 5, bromo acid dyes, sodium fluorescein, liquitint bright blue, liquitint bright yellow, duasyn blue and mixtures thereof.
  • a dye or pigment preferably selected from the group consisting of ultramarine blue, indigo carmine, FD&C blue 1, D&C yellow 5, D&C yellow 6, D&C red 21, D&C red 27, D&C orange 5, bromo acid dyes, sodium fluorescein, liquitint bright blue, liquitint bright yellow, duasyn blue and mixtures thereof.
  • any additional coatings on the gasified particles must be water soluble or dispersable, and the coating preferably comprises materials selected from the group consisting of sucrose, lactose, glucose, fructose, galactose, maltose, polyethylene glycol, polyvinyl alcohol, fatty acids, and mixtures thereof.
  • the gasified particles should range in particle size between about 0.1 and about 1,500 microns, preferably between about 1 and about 1,000 microns, and most preferably between about 10 and about 400 microns. Moreover, the gasified particles preferably range in density between about 0.6 and 1.4 g/cc, more preferably between about 0.8 and 1.3 g/cc, and most preferably between about 1.0 and 1.3 g/cc.
  • the gasified particles of this invention can be manufactured by a variety of processes.
  • processes for making gasified particles suitable for use herein are known to the art of candy making.
  • the General Foods patents Nos. 3,985,909, 3,985,910, 4,001,457, and 4,289,794, all of which are assigned to the General Foods Corporation and are collectively referred to herein as "the General Foods patents"
  • processes for making gasified candy are taught.
  • the entire disclosure of each of the four General Foods Patents are hereby incorporated herein by reference.
  • the processes taught in these gasified candy patents involve only edible, and typically flavored particulate material. But the gasified particles of this invention are not so limited.
  • the processes taught in the General Foods patents are generally applicable to the production gasified particles of this invention.
  • the core material In general, to produce the gasified particles of this invention the core material must be selected and then melted, that is, heated until it is in a molten state. Preferably, a minor amount of a liquid, for example, water or corn syrup, can be added to the molten material to achieve the desired consistency.
  • a pressure vessel having polished inner walls is preferably used to melt the core material. Alternatively, the core material can be heated in any appropriate vessel and then transferred to a pressure vessel.
  • the pressure vessel in any event, must be configured to provide agitation, preferably in the form of a mixing blade attached to a shaft.
  • the gas is added and mixed into the molten core material.
  • the gas can be added through one or more vents in the pressure vessel, or, more preferably, through ports in the mixer shaft.
  • the pressure in the vessel is set to the pressure desired in the solidified gasified particles.
  • the gas pressure within the gasified particles is from about 50 psig to about 1,000 psig, more preferably from about 300 psig to about 1,000 psig, and most preferably from about 600 psig to about 1,000 psig.
  • the solid gasified particles comprise between about 0.5 and 15 milliliters of pressurized gas per gram of core material.
  • Perfumes can be added to the gasified particles by mixing a perfume ingredient with at least one of the molten core material and the pressurized gas.
  • the perfume is highly volatile so that it can be introduced in the pressurized gas.
  • the pressurized gas escapes rapidly carrying the entrapped perfume with it. This results in a quick and pronounced "bloom" of perfume being emitted from the wash water shortly after the detergent composition is added. Consumers of detergent products have founds this immediate olfactory signal pleasing and reassuring.
  • the molten mixture After the pressurized gas has been sufficiently mixed into the molten core material the molten mixture must be cooled until it solidifies.
  • the cooling step can occur in the same pressure vessel that was used to form the mixture, or the molten mixture can be transferred to a different vessel. But if a separate cooling vessel is used to cool the molten mixture, the pressure in both vessels should be substantially the same to avoid premature migration of the gas from the molten core material.
  • the criticality of the pressure in the cooling vessel will necessarily depend on the speed of cooling. If the molten mixture cools rapidly, the pressure in the cooling vessel will be less important. If a separate cooling vessel is used it should preferably have polished walls to facilitate complete removal of the solidified product.
  • the mixture When the mixture has solidified it can be removed from the cooling vessel by any appropriate means.
  • One such method is to break the solid material into small pieces that can be easily removed from the cooling vessel. Regardless of how the solid material is removed from the cooling vessel the solid material should be broken-up into particles of the desired size.
  • the particles can be formed by any appropriate means, for example, milling. After particles of the appropriate size are formed, they can be coated as discussed above, or they can be added directly to the non-aqueous detergent compositions of this invention.
  • the core material can be melted and mixed with the pressurized gas in an extruder, or a mixture of molten core material and pressurized gas can be fed into an extruder.
  • the molten material can be cooled before, during and/or after extrusion.
  • the core material of the gasified particles begins to dissolve. While not wanting to be bound by any one theory, it is believed that as the core material dissolves, the material enclosing the pressurized gas begins to thin and at some point becomes too thin to entrap the pressurized gas. At this point the pressurized gas escapes by breaking through the walls of the particle, resulting in a small explosion. A "popping" sound is created as the particle walls are shattered. Additionally, some particles tend to "fizz” as gas escapes through small holes in the particle walls before, or while the particle walls explode. As the particles explode and the pressurized gas is released, the shattered pieces of the particles and the escaping gas both serve to break-up the surrounding solid detergent product. This results in faster dissolution of the detergent in the wash water.
  • the size of the entrapped bubbles of gas will affect the sound given off by the gasified particles of this invention as they dissolve in the wash water.
  • the entrapped bubbles of gas will typically range in size from about 5 to about 300 microns. It has been observed that the core material often effects the size of the entrapped bubbles. For example, if all other process conditions are held constant, the bubbles trapped in polyethylene glycol are generally smaller than those trapped in a sucrose matrix. Fizzing typically result from entrapped bubbles whose size is in the range of from about 5 to about 100 microns, while popping generally occurs when the bubbles are greater than about 100 microns. Both the fizzing and popping of the gasified particles of this invention provide audible, and often visual signals to the consumer.
  • compositions of the invention can contain all manner of organic, water-soluble detergent compounds, inasmuch as the gasified particles are compatible with all such materials.
  • at least one suitable adjunct detergent ingredient is preferably included in the detergent composition.
  • the adjunct detergent ingredient is preferably selected from the group consisting of builders, enzymes, bleaching agents, bleach activators, suds suppressors, soil release agents, brighteners, perfumes, hydrotropes, dyes, pigments, polymeric dispersing agents, pH controlling agents, chelants, processing aids, crystallization aids, and mixtures thereof.
  • the following list of detergent ingredients and mixtures thereof which can be used in the compositions herein is representative of the detergent ingredients, but is not intended to be limiting.
  • the detergent compositions herein comprise at least about 1%, preferably from about 1% to about 55%, and most preferably from about 10 to 40%, by weight, of a detersive surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, zwitterionic surfactants and mixtures thereof.
  • a detersive surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, zwitterionic surfactants and mixtures thereof.
  • Nonlimiting examples of surfactants useful herein include the conventional C ] i-C ] g alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C J Q-C20 alkyl sulfates ("AS"), the C 10 -C 18 secondary (2,3) alkyl sulfates of the formula CH 3 (CH 2 ) x (CHOS03 " M + ) CH 3 and CH 3 (CH2)y(CHOS0 3 " M + ) CH 2 CH 3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the Cj -Cj g alkyl alkoxy sulfates ("AE X S”; especially EO 1-7 ethoxy sulfates), C j o-Cj g alkyl alkoxy carboxylates (
  • the conventional nonionic and amphoteric surfactants such as the C j 2-C ] g alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and Cg-C ⁇ alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C ⁇ -C j g betaines and sulfobetaines ("sultaines”), CjQ-Ci g amine oxides, and the like, can also be included in the overall compositions.
  • the CjQ-Cj N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C ⁇ -Cj g N-methylglucamides.
  • sugar- derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C J Q-C ⁇ N-(3- methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C ⁇ -Cj glucamides can be used for low sudsing.
  • C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain Ci ⁇ -Ci g soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
  • LAS alkyl benzene sulfonates
  • sugar based surfactants are less preferred, although they may be included in the compositions herein, in that they may interfere or otherwise act as a poison with respect to the builder material.
  • Detersive Builder - Detergent builders can optionally be included in the compositions herein to assist further in controlling mineral hardness in the washing solutions.
  • Inorganic as well as organic builders can be used.
  • crystalline as well as amorphous builder materials can be used.
  • Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils.
  • the builder can be selected from the group consisting of aluminosilicates, crystalline layered silicates, MAP zeolites, citrates, amorphous silicates, polycarboxylates, sodium carbonates and mixtures thereof.
  • Another particularly suitable option is to include amorphous material coupled with the crystalline microstructures in the builder material. In this way, the builder material includes a "blend" of crystalline microstructures and amorphous material or microstructures to give improved builder performance.
  • Other suitable builders are described hereinafter.
  • the level of builder can vary widely depending upon the end use of the composition and its desired physical form.
  • the compositions will typically comprise at least about 1% builder.
  • Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder.
  • Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder.
  • Lower or higher levels of builder are not meant to be excluded.
  • Inorganic or phosphorous-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • polyphosphates exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates
  • phosphonates phosphonates
  • phytic acid e.g., silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • non-phosphate builders are required in some locales.
  • compositions herein function surprisingly well even in the presence of the so-called "weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.
  • Phosphate builders should be less than about 10% of the instant builder.
  • silicate builders are the alkali metal silicates, particularly those having a Si ⁇ 2:Na2 ⁇ ratio in the range 1.6: 1 to 3.2: 1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
  • Hoechst commonly abbreviated herein as "SKS-6”
  • the Na SKS-6 silicate builder does not contain aluminum.
  • NaSKS-6 has the delta-Na2Si ⁇ 5 morphology form of layered silicate.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x ⁇ 2 x + ⁇ yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS- 1 1, as the alpha, beta and gamma forms.
  • delta-Na2Si ⁇ 5 (NaSKS-6 form) is most preferred for use herein.
  • Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
  • carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • aluminosilicate builders are useful builders in the present invention.
  • Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations.
  • Aluminosilicate builders include those having the empirical formula: M z [(A10 2 ) z (Si0 2 ) y ]-xH 2 0 wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X.
  • the crystalline aluminosilicate ion exchange material has the formula: Na 12 [(Al ⁇ 2)i2(Si ⁇ 2)i2]- H 2 0 wherein x is from about 20 to about 30, especially about 27.
  • This material is known as Zeolite A.
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • poly- carboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • polycarboxylate builders include a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether polycarboxy- lates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxypolycarboxylates copoly- mers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6- trisulphonic acid, and carboxymethyloxysuccinic acid
  • various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxy- disuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders that can be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations. Also suitable in the detergent compositions of the present invention are the 3,3-dicar- boxy-4-oxa- 1 ,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986.
  • Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is do- decenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsucci- nate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Fatty acids e.g., C ⁇ -Cj g monocarboxylic acids
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane- 1 -hydroxy- 1 , 1 -diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021 ; 3,400,148 and 3,422,137) can also be used.
  • Enzymes - Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration.
  • the additional enzymes to be incorporated include cellulases, proteases, amylases, Upases, and peroxidases, as well as mixtures thereof.
  • Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH- activity and/or stability optima, thermostability, stability versus active detergents, builders as well as their potential to cause malodors during use. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases.
  • Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • AU Anson units
  • the cellulase suitable for the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5.
  • Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212- producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander), suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
  • cellulase especially suitable for use herein are disclosed in WO 92-13057 (Procter & Gamble).
  • the cellulases used in the instant detergent compositions are purchased commercially from NOVO Industries A/S under the product names CAREZYME® and CELLUZYME®.
  • proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms .
  • Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo.
  • Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the trade names ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands).
  • proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985).
  • Amylases include, for example, ⁇ -amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also Upases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano,” hereinafter referred to as "Amano-P.” Other commercial Upases include Amano-CES, Upases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
  • lipolyticum NRRLB 3673 commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum Upases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and Upases ex Pseudomonas gladioli.
  • the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo- peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
  • Enzyme Stabilizers The enzymes employed herein are stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. (Calcium ions are generally somewhat more effective than magnesium ions and are preferred herein if only one type of cation is being used.) Additional stability can be provided by the presence of various other art-disclosed stabilizers, especially borate species: see Severson, U.S. 4,537,706. Typical detergents, especially liquids, will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 5 to about 15, and most preferably from about 8 to about 12, millimoles of calcium ion per liter of finished composition.
  • the level of calcium or magnesium ions should be selected so that there is always some minimum level available for the enzyme, after allowing for complexation with builders, fatty acids, etc., in the composition.
  • Any water- soluble calcium or magnesium salt can be used as the source of calcium or magnesium ions, including, but not limited to, calcium chloride, calcium sulfate, calcium malate, calcium maleate, calcium hydroxide, calcium formate, and calcium acetate, and the corresponding magnesium salts.
  • a small amount of calcium ion generally from about 0.05 to about 0.4 millimoles per liter, is often also present in the composition due to calcium in the enzyme slurry and formula water.
  • the formulation may include a sufficient quantity of a water-soluble calcium ion source to provide such amounts in the laundry liquor. In the alternative, natural water hardness may suffice.
  • compositions herein will typically comprise from about 0.05% to about 2% by weight of a water-soluble source of calcium or magnesium ions, or both.
  • the amount can vary, of course, with the amount and type of enzyme employed in the composition.
  • compositions herein may also optionally, but preferably, contain various additional stabilizers, especially borate-type stabilizers.
  • additional stabilizers especially borate-type stabilizers.
  • such stabilizers will be used at levels in the compositions from about 0.25% to about 10%, preferably from about 0.5% to about 5%, more preferably from about 0.75% to about 3%, by weight of boric acid or other borate compound capable of forming boric acid in the composition (calculated on the basis of boric acid).
  • Boric acid is preferred, although other compounds such as boric oxide, borax and other alkali metal borates (e.g., sodium ortho-, meta- and pyroborate, and sodium pentaborate) are suitable.
  • Substituted boric acids e.g., phenylboronic acid, butane boronic acid, and p-bromo phenylboronic acid
  • compositions herein may also include ammonium salts and other chlorine scavengers such those disclosed by Pancheri et al, U.S. Patent No. 4,810,413 (issued March 7, 1989), the disclosure of which is incorporated herein by reference.
  • the detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent- plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6- oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate” bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
  • a preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers.
  • the percarbonate can be coated with silicate, borate or water-soluble surfactants.
  • Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
  • bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • amido-derived bleach activators are those of the formulae: R ] N(R 5 )C(0)R 2 C(0)L or R 1 C(0)N(R 5 )R2c(0)L wherein R* is an alkyl group containing from about 6 to about 12 carbon atoms, R 2 is an alkylene containing from 1 to about 6 carbon atoms, R ⁇ is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group.
  • a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
  • a preferred leaving group is phenyl sulfonate.
  • bleach activators of the above formulae include (6-octanamido- caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamido- caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
  • Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
  • a highly preferred activator of the benzoxazin-type is:
  • Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
  • lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium per
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photo activated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
  • the bleaching compounds can be catalyzed by means of a manganese compound.
  • a manganese compound Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,1 14,606; and European Pat. App. Pub. Nos.
  • Preferred examples of these catalysts include Mn IV 2( u "O)30A7- trimethyl- 1 ,4,7-triazacyclononane)2(PFg)2, Mn' ⁇ 2( u "O) 1 ( u_ OAc)2( 1 ,4,7-trimethyl- 1 ,4,7- triazacyclononane)2-(Cl ⁇ 4)2, Mn ⁇ 4(u-0)6( 1 ,4,7-triazacyclononane)4(Cl ⁇ 4)4, Mn ⁇ Mnl * 4- (u-O) j (u-OAc)2_( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2(Cl ⁇ 4) 3 , Mn IV ( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)- (OCH 3 ) 3 (PFg), and
  • metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,1 14,611.
  • the use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; 5,227,084.
  • compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor.
  • Polymeric Soil Release Agent Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions and processes of this invention.
  • Polymeric soil release agents are characterized by having both hydrophilic segments, to hy- drophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • the polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or
  • the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100.
  • Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as M0 3 S(CH2) n OCH2CH2 ⁇ -, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
  • Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of Cj-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
  • Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., Cj-Cg vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones.
  • poly(vinyl ester) e.g., Cj-Cg vinyl esters
  • poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
  • Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany).
  • One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
  • the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
  • Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
  • this polymer include the commercially available material ZELCON 5126 (from DuPont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
  • These soil release agents are described fully in U.S. Patent 4,968,451, issued November 6, 1990 to J. J. Scheibel and E. P. Gosselink.
  • Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sul- foarolyl, end-capped terephthalate esters.
  • soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
  • Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy- 1 ,2-propylene units.
  • the repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end- caps.
  • a particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy- 1 ,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)- ethanesulfonate.
  • Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
  • a crystalline-reducing stabilizer preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
  • the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include ethylenediaminetetrace- tates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetrapro- prionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldi- glycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2- dihydroxy-3,5-disulfobenzene.
  • EDDS ethylenediamine disuccinate
  • [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
  • these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
  • compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties.
  • Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylates amines.
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylene- pentamine.
  • Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986.
  • Another group of preferred clay soil removal-antiredeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984.
  • Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 11 1,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 1 12,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S.
  • Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein.
  • Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art.
  • CMC carboxy methyl cellulose
  • Polymeric Dispersing Agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used.
  • polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition.
  • Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 6,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
  • Soluble polymers of this type are known materials. Use of these especially preferred polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued march 7, 1967. Still other detergent compositions with suitable dispersing agents are disclosed by Murphy, U. S. Patent 4,379,080 (issued April 5, 1983).
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30: 1 to about 1 : 1, more preferably from about 10: 1 to 2: 1.
  • Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts.
  • Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate.
  • Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers.
  • Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent.
  • Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders.
  • Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
  • Brightener Any optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from about 0.05% to about 1.2%, by weight, into the detergent compositions herein.
  • Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982).
  • optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHOR WHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artie White CC and Artie White CWD, available from Hilton-Davis, located in Italy; the 2-(4-stryl-phenyl)-2H-napthol[l,2-d]triazoles; 4,4'-bis- (l,2,3-triazol-2-yl)-stil- benes; 4,4'-bis(stryl)bisphenyls; and the aminocoumarins.
  • these brighteners include 4-methyl-7-diethyl- amino coumarin; l,2-bis(-venzimidazol-2-yl)ethylene; 1,3-diphenyl-phrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-stryl-napth-[l,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [l,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Anionic brighteners are preferred herein.
  • compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process.
  • dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N- vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01% to about 10% by weight of the composition, preferably from about 0.01% to about 5%, and more preferably from about 0.05% to about 2%.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the N-O group can be represented by the following general structures:
  • Rj, R2, R 3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water- soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10: 1 to 1 : 1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1 ,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
  • poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
  • the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis. Vol 113.
  • the PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1, more preferably from 0.8: 1 to 0.3: 1, most preferably from 0.6:1 to 0.4: 1. These copolymers can be either linear or branched.
  • compositions also may employ a polyvinylpyrrolidone (“PVP”) having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000.
  • PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A- 256,696, incorporated herein by reference.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1, and more preferably from about 3: 1 to about 10:1.
  • the detergent compositions herein may also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01% to 1% by weight of such optical brighteners.
  • hydrophilic optical brighteners useful in the present invention are those having the structural formula: wherein Ri is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, mo hilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
  • R1 is anilino
  • R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2- yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the trade name Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • Rj is anilino
  • R2 is N-2-hydroxyethyl-N-2-methylamino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N- methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
  • This particular brightener species is commercially marketed under the trade name Tinopal 5BM-GX by Ciba- Geigy Corporation.
  • R ⁇ is anilino
  • R2 is mo ⁇ hilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-mo ⁇ hilino-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the trade name Tinopal AMS-GX by Ciba Geigy Co ⁇ oration.
  • the specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described.
  • the combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics.
  • the extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient".
  • the exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
  • Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be inco ⁇ orated into the compositions of the present invention. Suds suppression can be of particular importance in the so-called "high concentration cleaning process" and in front-loading European-style washing machines.
  • suds suppressors A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979).
  • One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • the detergent compositions herein may also contain non-surfactant suds suppressors.
  • non-surfactant suds suppressors include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C j -C4 Q ketones (e.g., stearone), etc.
  • suds inhibitors include N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters.
  • the hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form.
  • the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40°C and about 50°C, and a minimum boiling point not less than about 1 10°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100°C.
  • the hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al.
  • the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
  • the term "paraffin,” as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
  • Non-surfactant suds suppressors comprises silicone suds suppressors.
  • This category includes the use of polyorganosiloxane oils, such as polydimethyl- siloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed or fused onto the silica.
  • Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
  • silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526.
  • Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
  • An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
  • polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about 1,500 cs. at 25°C;
  • the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene-polypropylene glycol copolymers or mixtures thereof (preferred), or polypropylene glycol.
  • the primary silicone suds suppressor is branched/crosslinked and preferably not linear.
  • typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol.
  • a primary antifoam agent which is a mixture of (a) a polyorganosi
  • the silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1,000, preferably between about 100 and 800.
  • the polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %.
  • the preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1 ,000, more preferably between about 100 and 800, most preferably between 200 and 400, and a copolymer of polyethylene glycol/polypropylene glycol, preferably PPG 200/PEG 300.
  • Preferred is a weight ratio of between about 1 :1 and 1 : 10, most preferably between 1 :3 and 1 :6, of polyethylene glycolxopolymer of polyethylene-polypropylene glycol.
  • the preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101.
  • suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872.
  • the secondary alcohols include the C6-C 16 alkyl alcohols having a Cj-Cjg chain.
  • a preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12.
  • Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem.
  • Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1 :5 to 5: 1.
  • suds should not form to the extent that they overflow the washing machine.
  • Suds suppressors when utilized, are preferably present in a "suds suppressing amount.
  • Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
  • compositions herein will generally comprise from 0% to about 5% of suds suppressor.
  • monocarboxylic fatty acids, and salts therein will be present typically in amounts up to about 5%, by weight, of the detergent composition.
  • from about 0.5% to about 3% of fatty monocarboxylate suds suppressor is utilized.
  • Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing.
  • from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%.
  • these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized.
  • Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition.
  • Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used.
  • the alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
  • Fabric Softeners Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from about 0.5% to about 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning.
  • Clay softeners can be used in combination with amine and cationic softeners as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1, 1983 and U.S. Patent 4,291,071, Harris et al, issued September 22, 1981.
  • compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solid fillers for bar compositions, etc.
  • suds boosters such as the CiQ-Ci g alkanolamides can be inco ⁇ orated into the compositions, typically at 1%-10% levels.
  • the C ] ⁇ -Ci4 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
  • Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
  • soluble magnesium salts such as MgCl2, MgS ⁇ 4, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional suds and to enhance grease removal performance.
  • detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
  • the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
  • the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
  • a porous hydrophobic silica (trademark SIPERNAT DIO, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C j 3 _i5 ethoxylated alcohol (EO 7) nonionic surfactant.
  • the enzyme/surfactant solution is 2.5 X the weight of silica.
  • the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
  • silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
  • the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
  • the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and 10.5. Laundry products are typically at pH 9-1 1. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
  • processing aids such as sugars, for example those sugars disclosed in U.S. Patent 4,908,159, Davies et al, issued March 13, 1990, and starches can be used in the compositions herein.
  • suitable processing aids include those described in U.S. Patent 4,013,578, Child et al, issued March 22, 1977.
  • the particulate material used for making the granulay, powder and tablet detergents of this invention can be made by any particulation or granulation process.
  • An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower.
  • Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige® CB and/or Lodige® KM mixers).
  • Other suitable processes include fluid bed processes, compaction processes (e.g.
  • the individual particles can also be in any other form, such as for example, particle, granule, sphere or grain.
  • the particulate materials may be mixed together by any conventional means, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s).
  • a liquid spray-on to the mix of particulate materials e.g. non-ionic surfactants
  • Other liquid ingredients may also be sprayed on to the mix of particulate materials either separately or premixed.
  • perfume and slurries of optical brighteners may be sprayed.
  • a finely divided flow aid dustting agent such as zeolites, carbonates, silicas
  • the detergent tablets of this invention can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry.
  • Any liquid ingredients for example the surfactant or suds suppresser, can be inco ⁇ orated in a conventional manner into the solid particulate ingredients.
  • the principal ingredients are used in a particulate form.
  • the detergent tablets provided can be made in any size or shape and can, if desired, be surface treated.
  • a surfactant and a builder which normally provides a substantial part of the cleaning power of the tablet.
  • the detergent tablets provided may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®, Manesty®, or Bonals®).
  • the tablets are coated with an electrically conductive coating in order to provide an electrically conductive surface for the detergent tablet.
  • the tablets are coated with a coating that is both electrically conductive and substantially insoluble in water so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate.
  • the coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition.
  • the coating is preferably brittle so that the tablet breaks up when subjected to stronger mechanical shock. Furthermore it is advantageous if the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This avoids the deposition of undissolved particles or lumps of coating material on the laundry load. This may be important when the coating material is completely insoluble (for example less than 1 g/1) in water.
  • Gasified Particles for use in the solid detergent compositions hereinafter described are prepared from nitrogen gas and polyethylene glycol with a molecular weight of about 4,000, i.e., PEG-4000.
  • PEG-4000 is melted in a pressurizable vessel while agitation is supplied in the form of a mixing paddle attached to a shaft. Nitrogen gas is added to the pressure vessle from ports in the top of the vessel and through ports in the shaft that holds the mixing paddle.
  • the vessel is pressurized to about 600 psig with the nitrogen gas.
  • the molten PEG-4000 and nitrogen mixture is transferred to a cooling vessel. The mixture is cooled until it solidifies, and then the solidified material is removed from the cooling vessel by breaking it into small pieces. The small pieces are then milled to form particles having a size ranging from about 0.1 to about 1000 microns.
  • Example I The process of Example I is repeated, wherein the PEG-4000 is replace with sucrose and the nitrogen gas is replaced with carbon dioxide.
  • the base granule is prepared by a conventional spray drying process in which the starting ingredients are formed into a slurry and passed though a spray drying tower having a countercurrent stream of hot air (200-300°C) resulting in the formation of porous granules.
  • the admixed agglomerates are formed from two feed streams of various starting detergent ingredients which are continuously fed, at a rate of 1400 kg/hr, into a Lodige CB-30 mixer/densifier, one of which comprises a surfactant paste containing surfactant and water and the other stream containing starting dry detergent material containing aluminosilicate and sodium carbonate.
  • the rotational speed of the shaft in the Lodige CB-30 mixer/densifier is about 1400 ⁇ m and the mean residence time is about 5-10 seconds.
  • the contents from the Lodige CB-30 mixer/densifier are continuously fed into a Lodige KM-600 mixer/densifier for further agglomeration during which the mean residence time is about 6 minutes.
  • the resulting detergent agglomerates are then fed to a fluid bed dryer and to a fluid bed cooler before being admixed with the spray dried granules.
  • the remaining adjunct detergent ingredients are sprayed on or dry added to the blend of agglomerates and granules.
  • the gasified particles of this invention are most preferably admixed with the detergent agglomerates, although they could be agglomerated along with the other detergent ingredients.
  • Polyvinylpyrrilidone 0.5 0.5 - Polyvinylpyridine N-oxide 0.5 0.5 - Polyvinylpyrrolidone-polyvinylimidazole e 0.5 0.5 - Distearylamine & Cumene sulfonic acid 2.0 2.0 - Soil Release Polymer 2 0.5 0.5 - Lipolase Lipase (100.000 LU/I) 4 0.5 0.5 - Termamyl amylase (60 KNU/g) 4 0.3 0.3 - CAREZYME® cellulase (1000 CEVU/g) ) 44 0.3 0.3 - Protease (40mg/g)5 0.5 0.5 0.5 NOBS 3 5.0 5.0 -
  • Termamyl amylase 60 KNU/g 3 0.3 0.3 0.3
  • Alcalase protease 3 (3.0 AU/g) 0.5 0.5 1.0
  • Lipolase lipase 3 (100.000 LU/1) 0.5 0.5 0.5 0.5
  • Termamyl amylase 3 ( 60K U/g) 0.5 0.5 0.5 0.5

Abstract

A detergent composition which is in the form of a granule, powder or tablet, and which contains from about 1 % to about 55 %, by weight, of a detersive surfactant. The detergent additionally contains from about 0.05 % to about 5 %, by weight of the composition of gasified particles that are: solid at about 25 °C; and highly water soluble. The structure of the gasified particles is preferably a core material that encapsulates a pressurized gas.

Description

GRANULAR, POWDER, AND TABLET DETERGENT COMPOSITIONS CONTAINING GASIFIED PARTICULATE MATTER
FIELD OF THE INVENTION
This invention relates to granular, powder or tablet laundry detergent products that include gasified particles, and that preferably also include other materials such as bleaching agents and/or conventional detergent composition adjuvants.
BACKGROUND OF THE INVENTION
Granular, powder and tablet detergent products have many advantages, but they have some inherent problems as well. For example, formulators of these products have struggled with ways to improve detergent solubility over a wide variety of temperatures. One impediment to quick and complete solubility is that solid detergent products are often not dispersed in the wash water. When using granular, powder and tablet detergent products consumers typically measure the amount of detergent desired and pour it into a water based wash solution. Often the detergent composition does not disperses immediately, but instead remains in the same general location where it was added to the wash water. Poor dispersion of the solid detergent material generally results in slow dissolution. Therefore, one method of improving solubility is to insure that the solid detergent particles are quickly and uniformly dispersed in the aqueous based wash water solution. While advances in detergent solubility and dispersion have been made, there exists a continuing need to improve the dissolution characteristics of solid detergent compositions.
Another problem facing the commercial marketing of laundry detergent products is differentiating one given product from other commercially available products of the same general type. Colored speckles are sometimes used to create such distinctiveness. Generally, speckles in detergent products should be larger than 200 microns to be easily visible to the consumer. While some solid detergent particles are compatible with and receptive to dyes, others may not be. Hence, care must be exercised when dying solid particles for inclusion in detergent compositions. Thus, there is a continuing need for particles that are receptive to and compatible with various commercially available dyes.
Moreover, it is well known that consumers associate certain product "signals" with product performance. These signals can be audible, olfactory, tactile, or visual. For example, the amount of foam or suds produced by a detergent when it is added to the wash water is often associated with the product's cleaning performance; even if there is no direct correlation between the amount of foam or suds produced and how well the fabrics articles are cleaned. Thus, the "signals" delivered to the consumer are an important consideration when formulating any detergent composition.
One important signal that consumers receive when the laundering process is complete is the smell of the fabrics that have been laundered. A fresh, clean smell indicates to the consumer that the clothes are clean. Therefore, it is often desirable to add perfumes to granular, powder or tablet laundry detergent products in an effort to scent the fabrics that are laundered therewith. Unfortunately, when the amount of perfume required to scent a wash load of fabrics is in the concentrated granular, powder or tablet laundry detergent, the detergent can have a very strong smell. Encapsulation of the perfume has been used in the past to combat this problem, but this requires the manufacture and addition of a separate particle.
Thus, the problems of product dispersion to increase the rate of solubility, product differentiation, product signaling, and adding sufficient perfume are persistent problems for formulators of solid detergent products. Accordingly, it is an object of the present invention to formulate granular, powder and tablet detergent compositions having improved dispersion and solubility properties.
It is a further object of this invention to improve the dispersion properties of granular, powder and tablet detergents with a gasified particle that improves the product aesthetics, that will provide a favorable signal to the consumer, and that can also be used to introduce perfumes.
It is a further object of the present invention to provide gasified particles that impart desirable aesthetics to concentrated solid detergent products but do not interfere with the laundering operations that use such products.
Surprisingly it has been found that there is a small class of materials that have the requisite properties to serve as gasified particles and that can be used to achieve the forgoing objectives with respect to the solid detergent products of this invention.
BACKGROUND ART
The following references are directed to builders for cleaning compositions: Atkinson et al, U.S. Patent 4,900,466 (Lever); Houghton, WO 93/22411 (Lever); Allan et al, EP 518 576 A2; (Lever); Zolotoochin, U.S. Patent No. 5,219,541 (Tenneco Minerals Company); Garner- Gray et al, U.S. Patent No. 4,966,606 (Lever); Davies et al, U.S. Patent No. 4,908,159 (Lever); Carter et al, U.S. Patent No. 4,711,740 (Lever); Greene, U.S. Patent No. 4,473,485 (Lever); Davies et al, U.S. Patent No. 4,407,722 (Lever); Jones et al, U.S. Patent No. 4,352,678 (Lever); Clarke et al, U.S. Patent No. 4,348,293 (Lever); Clarke et al, U.S. Patent No. 4,196,093 (Lever); Benjamin et al, U.S. Patent No. 4,171,291 (Procter & Gamble); Kowalchuk, U. S. Patent No. 4,162,994 (Lever); Davies et al, U.S. Patent No. 4,076,653 (Lever); Davies et al, U.S. Patent No. 4,051,054 (Lever); Collier, U.S. Patent No. 4,049,586 (Procter & Gamble); Benson et al, U.S. Patent No. 4,040,988 (Procter & Gamble); Cherney, U.S. Patent No. 4,035,257 (Procter & Gamble); Curtis, U.S. Patent No. 4,022,702 (Lever); Child et al, U.S. Patent 4,013,578 (Lever); Lamberti, U.S. Patent No. 3,997,692 (Lever); Cherney, U.S. Patent 3,992,314 (Procter & Gamble); Child, U.S. Patent No. 3,979,314 (Lever); Davies et al, U.S. Patent No. 3,957,695 (Lever); Lamberti, U.S. Patent No. 3,954,649 (Lever); Sagel et al U.S. Patent 3,932,316 (Procter & Gamble); Lobunez et al, U.S. Patent 3,981,686 (Intermountain Research and Development Corp.); and Mallow et al, U.S. Patent 4,828,620 (Southwest Research Institute).
SUMMARY OF THE INVENTION
The present invention provides granular, powder and tablet detergent compositions, which compositions are sometimes collectively referred to as "solid" compositions, comprising: A) from about 10% to about 50% by weight of a surfactant; and B) from about 0.05% to about 5%, preferably from about 0.1% to about 3%, and most preferably from about 0.2% to about 2%, by weight of the composition of gasified particles that are solid at about 25°C ("room temperature"), preferably, solid up to about 40°C, and highly water soluble.
Preferably these compositions further comprise from about 1% to 50% by weight of additional detergent adjuvants selected from the group consisting of builders, enzymes, bleaching agents, bleach activators, suds suppressors, soil release agents, brighteners, perfumes, hydrotropes, dyes, pigments, polymeric dispersing agents, pH controlling agents, chelants, processing aids, crystallization aids, and mixtures thereof.
Granular, powder and tablet detergent products made according to this invention have the surprising benefit of superior product dispersion that increases the rate of product dissolution in the wash water. Additionally, the gasified particles can be used to add desirable product aesthetics in the form of colored speckles.
Yet another advantage of the present invention is that the gasified particles can provide both audible and olfactory signals to the consumer that the product is working. Specifically, as is discussed in greater detail below, the gasified particles of this invention give off a "popping" and/or a "hissing" sound as they dissolve. These sounds let the consumer know that the product is dissolving and, thus, beginning to work. And when the pressurized gas comprises a perfume, the perfume is emitted as the particles dissolve, giving the consumer an olfactory signal that the product is beginning to work.
DETAILED DESCRIPTION OF THE INVENTION
The granular, powder and tablet detergent compositions of this invention comprise a surfactant and gasified particles. The components of these compositions, including, the gasified particles and optional materials of the detergent compositions herein, as well as composition form, preparation and use, are described in greater detail below. The cleaning compositions of the invention can be used in a variety of applications including but not limited to fabric laundering, fabric or surface bleaching, automatic or hand dishwashing, hard surface cleaning and other applications. (All concentrations and ratios are on a weight basis unless otherwise specified.)
GASIFIED PARTICLES
The compositions of this invention comprise from about 0.05% to about 5%, preferably from about 0.1% to about 3%, and most preferably from about 0.2% to about 2%, by weight of the composition of gasified particles that are solid at about 25°C, and highly water soluble. The gasified particles comprise a core material that encapsulates a pressurized gas, optionally, the particles can be dyed, coated and perfumes can be added. It is understood that all of the materials used in the gasified particles should be compatible with a fabric laundering process because the particles will eventually dissolve, releasing the ingredients into the wash water. For example, certain dyes may preferentially deposit on fabrics rather than be rinsed out in the wash water. Dyes of this type would be less preferred than dyes that readily dissolve in the wash water and are rinsed away.
As used herein, the term "gasified particles" is intended to exclude particles that evolve gas as a result of a chemical reaction, for example, the reaction of sodium bicarbonate with water resulting in the evolution of carbon dioxide. The particles of this invention comprise a pressurized gas that escapes as the core material dissolves or is shattered.
The pressurized gas trapped within the gasified particles of this invention is preferably selected from the group consisting of carbon dioxide, nitrogen, oxygen, helium, hydrogen, air, argon, neon, chlorine and mixtures thereof. The core material of these gasified particles is preferably a glassy solid and most preferably comprises materials selected from the group consisting of sucrose, lactose, glucose, fructose, galactose, maltose, polyethylene glycol, polyvinyl alcohol, fatty acids, and mixtures thereof. It is understood that certain fatty acids will not be solid at room temperature. Therefore, if used to make gasified particles of this invention, fatty acids should have a high melting point or should be mixed with other materials to raise the melting point. The most preferred core materials for the gasified particles of this invention are sucrose and polyethylene glycol that has a molecular weight between about 2,000 and 20,000.
The gasified particles can additionally comprise a dye or pigment, preferably selected from the group consisting of ultramarine blue, indigo carmine, FD&C blue 1, D&C yellow 5, D&C yellow 6, D&C red 21, D&C red 27, D&C orange 5, bromo acid dyes, sodium fluorescein, liquitint bright blue, liquitint bright yellow, duasyn blue and mixtures thereof.
It may be desirable to coat the gasified particles of this invention to, for example, modify the release time of the gas or to protect the particles from the non-aqueous liquid detergent composition. Any additional coatings on the gasified particles must be water soluble or dispersable, and the coating preferably comprises materials selected from the group consisting of sucrose, lactose, glucose, fructose, galactose, maltose, polyethylene glycol, polyvinyl alcohol, fatty acids, and mixtures thereof.
The gasified particles should range in particle size between about 0.1 and about 1,500 microns, preferably between about 1 and about 1,000 microns, and most preferably between about 10 and about 400 microns. Moreover, the gasified particles preferably range in density between about 0.6 and 1.4 g/cc, more preferably between about 0.8 and 1.3 g/cc, and most preferably between about 1.0 and 1.3 g/cc.
The gasified particles of this invention can be manufactured by a variety of processes. In fact, processes for making gasified particles suitable for use herein are known to the art of candy making. Specifically, in various U.S. Patents, Nos. 3,985,909, 3,985,910, 4,001,457, and 4,289,794, all of which are assigned to the General Foods Corporation and are collectively referred to herein as "the General Foods patents", processes for making gasified candy are taught. The entire disclosure of each of the four General Foods Patents are hereby incorporated herein by reference. Necessarily, the processes taught in these gasified candy patents involve only edible, and typically flavored particulate material. But the gasified particles of this invention are not so limited. Moreover, certain dyes disclosed in the General Foods patents may be unsuitable for laundry applications. Having expressed these limitations, the processes taught in the General Foods patents are generally applicable to the production gasified particles of this invention. In general, to produce the gasified particles of this invention the core material must be selected and then melted, that is, heated until it is in a molten state. Preferably, a minor amount of a liquid, for example, water or corn syrup, can be added to the molten material to achieve the desired consistency. A pressure vessel having polished inner walls is preferably used to melt the core material. Alternatively, the core material can be heated in any appropriate vessel and then transferred to a pressure vessel. The pressure vessel, in any event, must be configured to provide agitation, preferably in the form of a mixing blade attached to a shaft. Once in the pressure vessel, the gas is added and mixed into the molten core material. The gas can be added through one or more vents in the pressure vessel, or, more preferably, through ports in the mixer shaft. The pressure in the vessel is set to the pressure desired in the solidified gasified particles. Preferably, the gas pressure within the gasified particles is from about 50 psig to about 1,000 psig, more preferably from about 300 psig to about 1,000 psig, and most preferably from about 600 psig to about 1,000 psig. At the preferred pressure ranges the solid gasified particles comprise between about 0.5 and 15 milliliters of pressurized gas per gram of core material.
Perfumes can be added to the gasified particles by mixing a perfume ingredient with at least one of the molten core material and the pressurized gas. Preferably, the perfume is highly volatile so that it can be introduced in the pressurized gas. When the gasified particles begin to dissolve, the pressurized gas escapes rapidly carrying the entrapped perfume with it. This results in a quick and pronounced "bloom" of perfume being emitted from the wash water shortly after the detergent composition is added. Consumers of detergent products have founds this immediate olfactory signal pleasing and reassuring.
Although virtually any perfume that is a liquid or gas at room temperature will work in the gasified particles of this invention, a listing of perfume ingredients of interest can be found in U.S. Patent No. 4,515,705, which issued on May 7, 1985, to Moeddel, and is assigned to The
Procter and Gamble Company. The entire disclosure of the Moeddel patent is hereby incorporated herein by reference. It is understood that any perfume used must by compatible with the core material and the pressurized gas. For example, a perfume that dissolves the core material would generally be inappropriate for use in the present invention.
After the pressurized gas has been sufficiently mixed into the molten core material the molten mixture must be cooled until it solidifies. The cooling step can occur in the same pressure vessel that was used to form the mixture, or the molten mixture can be transferred to a different vessel. But if a separate cooling vessel is used to cool the molten mixture, the pressure in both vessels should be substantially the same to avoid premature migration of the gas from the molten core material. The criticality of the pressure in the cooling vessel will necessarily depend on the speed of cooling. If the molten mixture cools rapidly, the pressure in the cooling vessel will be less important. If a separate cooling vessel is used it should preferably have polished walls to facilitate complete removal of the solidified product.
When the mixture has solidified it can be removed from the cooling vessel by any appropriate means. One such method is to break the solid material into small pieces that can be easily removed from the cooling vessel. Regardless of how the solid material is removed from the cooling vessel the solid material should be broken-up into particles of the desired size. The particles can be formed by any appropriate means, for example, milling. After particles of the appropriate size are formed, they can be coated as discussed above, or they can be added directly to the non-aqueous detergent compositions of this invention.
In an alternate method, the core material can be melted and mixed with the pressurized gas in an extruder, or a mixture of molten core material and pressurized gas can be fed into an extruder. The molten material can be cooled before, during and/or after extrusion. Those skilled in the art of particle formulation will be able to select an extruder and process conditions without undue experimentation.
When the gasified particle containing solid detergents of this invention are added to an aqueous wash water solution, the core material of the gasified particles begins to dissolve. While not wanting to be bound by any one theory, it is believed that as the core material dissolves, the material enclosing the pressurized gas begins to thin and at some point becomes too thin to entrap the pressurized gas. At this point the pressurized gas escapes by breaking through the walls of the particle, resulting in a small explosion. A "popping" sound is created as the particle walls are shattered. Additionally, some particles tend to "fizz" as gas escapes through small holes in the particle walls before, or while the particle walls explode. As the particles explode and the pressurized gas is released, the shattered pieces of the particles and the escaping gas both serve to break-up the surrounding solid detergent product. This results in faster dissolution of the detergent in the wash water.
Moreover, the size of the entrapped bubbles of gas will affect the sound given off by the gasified particles of this invention as they dissolve in the wash water. When using the materials and processes of this invention, the entrapped bubbles of gas will typically range in size from about 5 to about 300 microns. It has been observed that the core material often effects the size of the entrapped bubbles. For example, if all other process conditions are held constant, the bubbles trapped in polyethylene glycol are generally smaller than those trapped in a sucrose matrix. Fizzing typically result from entrapped bubbles whose size is in the range of from about 5 to about 100 microns, while popping generally occurs when the bubbles are greater than about 100 microns. Both the fizzing and popping of the gasified particles of this invention provide audible, and often visual signals to the consumer.
DETERGENT COMPOSITIONS
The compositions of the invention can contain all manner of organic, water-soluble detergent compounds, inasmuch as the gasified particles are compatible with all such materials. In addition to a detersive surfactant, at least one suitable adjunct detergent ingredient is preferably included in the detergent composition. The adjunct detergent ingredient is preferably selected from the group consisting of builders, enzymes, bleaching agents, bleach activators, suds suppressors, soil release agents, brighteners, perfumes, hydrotropes, dyes, pigments, polymeric dispersing agents, pH controlling agents, chelants, processing aids, crystallization aids, and mixtures thereof. The following list of detergent ingredients and mixtures thereof which can be used in the compositions herein is representative of the detergent ingredients, but is not intended to be limiting.
Detersive Surfactant
Preferably, the detergent compositions herein comprise at least about 1%, preferably from about 1% to about 55%, and most preferably from about 10 to 40%, by weight, of a detersive surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, zwitterionic surfactants and mixtures thereof. Nonlimiting examples of surfactants useful herein include the conventional C] i-C]g alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C J Q-C20 alkyl sulfates ("AS"), the C10-C18 secondary (2,3) alkyl sulfates of the formula CH3(CH2)x(CHOS03"M+) CH3 and CH3 (CH2)y(CHOS03 "M+) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the Cj -Cj g alkyl alkoxy sulfates ("AEXS"; especially EO 1-7 ethoxy sulfates), Cjo-Cj g alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C J O- 18 g'ycerol ethers, the Cjo-Cig alkyl polyglycosides and their corresponding sulfated polyglycosides, and Cj2-Ci8 alpha-sulfonated fatty acid esters. If desired, the conventional nonionic and amphoteric surfactants such as the Cj2-C] g alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and Cg-C^ alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C^-Cj g betaines and sulfobetaines ("sultaines"), CjQ-Ci g amine oxides, and the like, can also be included in the overall compositions. The CjQ-Cj N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C^-Cj g N-methylglucamides. See WO 9,206,154. Other sugar- derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C J Q-C } N-(3- methoxypropyl) glucamide. The N-propyl through N-hexyl C^-Cj glucamides can be used for low sudsing. C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain Ciø-Ci g soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
It should be understood, however, that certain surfactants are less preferred than others. For example, the C] j-Cjg alkyl benzene sulfonates ("LAS") and the sugar based surfactants are less preferred, although they may be included in the compositions herein, in that they may interfere or otherwise act as a poison with respect to the builder material.
Adjunct Ingredients
Detersive Builder - Detergent builders can optionally be included in the compositions herein to assist further in controlling mineral hardness in the washing solutions. Inorganic as well as organic builders can be used. Also, crystalline as well as amorphous builder materials can be used. Builders are typically used in fabric laundering compositions to assist in the removal of particulate soils. For example, the builder can be selected from the group consisting of aluminosilicates, crystalline layered silicates, MAP zeolites, citrates, amorphous silicates, polycarboxylates, sodium carbonates and mixtures thereof. Another particularly suitable option is to include amorphous material coupled with the crystalline microstructures in the builder material. In this way, the builder material includes a "blend" of crystalline microstructures and amorphous material or microstructures to give improved builder performance. Other suitable builders are described hereinafter.
The level of builder can vary widely depending upon the end use of the composition and its desired physical form. When present, the compositions will typically comprise at least about 1% builder. Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder. Granular formulations typically comprise from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.
Inorganic or phosphorous-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders. Phosphate builders should be less than about 10% of the instant builder.
Examples of silicate builders are the alkali metal silicates, particularly those having a Siθ2:Na2θ ratio in the range 1.6: 1 to 3.2: 1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2Siθ5 morphology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3 ,417,649 and DE-A-3, 742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixθ2x+ι yH2θ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS- 1 1, as the alpha, beta and gamma forms. As noted above, the delta-Na2Siθ5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
As mentioned previously, aluminosilicate builders are useful builders in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula: Mz[(A102)z (Si02)y]-xH20 wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula: Na12[(Alθ2)i2(Siθ2)i2]- H20 wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x = 0 - 10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "poly- carboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxy- lates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
Other useful detergency builders include the ether hydroxypolycarboxylates, copoly- mers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6- trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxy- disuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders that can be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations. Also suitable in the detergent compositions of the present invention are the 3,3-dicar- boxy-4-oxa- 1 ,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is do- decenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsucci- nate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.
Fatty acids, e.g., C^-Cj g monocarboxylic acids, can also be incorporated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
In situations where phosphorus-based builders can be used, and especially in the formulation of bars used for hand-laundering operations, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used. Phosphonate builders such as ethane- 1 -hydroxy- 1 , 1 -diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021 ; 3,400,148 and 3,422,137) can also be used.
Enzymes - Enzymes can be included in the formulations herein for a wide variety of fabric laundering purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration. The additional enzymes to be incorporated include cellulases, proteases, amylases, Upases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH- activity and/or stability optima, thermostability, stability versus active detergents, builders as well as their potential to cause malodors during use. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases.
Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.01 mg to about 3 mg, of active enzyme per gram of the composition. Stated otherwise, the compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1% by weight of a commercial enzyme preparation. Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
The cellulase suitable for the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212- producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander), suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832. In addition, cellulase especially suitable for use herein are disclosed in WO 92-13057 (Procter & Gamble). Most preferably, the cellulases used in the instant detergent compositions are purchased commercially from NOVO Industries A/S under the product names CAREZYME® and CELLUZYME®.
Suitable examples of proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniforms . Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo. Proteolytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the trade names ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands). Other proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985).
Amylases include, for example, α-amylases described in British Patent Specification No. 1,296,839 (Novo), RAPIDASE, International Bio-Synthetics, Inc. and TERMAMYL, Novo Industries.
Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also Upases in Japanese Patent Application 53,20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P." Other commercial Upases include Amano-CES, Upases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum Upases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and Upases ex Pseudomonas gladioli. The LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO 341,947) is a preferred lipase for use herein.
Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo- peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
A wide range of enzyme materials and means for their incorporation into synthetic detergent compositions are also disclosed in U.S. Patent 3,553,139, issued January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. Patent 4,101,457, Place et al, issued July 18, 1978, and in U.S. Patent 4,507,219, Hughes, issued March 26, 1985, both. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. Patent 4,261,868, Hora et al, issued April 14, 1981. Enzymes for use in detergents can be stabilized by various techniques. Typical granular or powdered detergents can be stabilized effectively by using enzyme granulates. Enzyme stabilization techniques are disclosed and exemplified in U.S. Patent 3,600,319, issued August 17, 1971 to Gedge, et al, and European Patent Application Publication No. 0 199 405, Application No. 86200586.5, published October 29, 1986, Venegas. Enzyme stabilization systems are also described, for example, in U.S. Patent 3,519,570.
Enzyme Stabilizers - The enzymes employed herein are stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. (Calcium ions are generally somewhat more effective than magnesium ions and are preferred herein if only one type of cation is being used.) Additional stability can be provided by the presence of various other art-disclosed stabilizers, especially borate species: see Severson, U.S. 4,537,706. Typical detergents, especially liquids, will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 5 to about 15, and most preferably from about 8 to about 12, millimoles of calcium ion per liter of finished composition. This can vary somewhat, depending on the amount of enzyme present and its response to the calcium or magnesium ions. The level of calcium or magnesium ions should be selected so that there is always some minimum level available for the enzyme, after allowing for complexation with builders, fatty acids, etc., in the composition. Any water- soluble calcium or magnesium salt can be used as the source of calcium or magnesium ions, including, but not limited to, calcium chloride, calcium sulfate, calcium malate, calcium maleate, calcium hydroxide, calcium formate, and calcium acetate, and the corresponding magnesium salts. A small amount of calcium ion, generally from about 0.05 to about 0.4 millimoles per liter, is often also present in the composition due to calcium in the enzyme slurry and formula water. In solid detergent compositions the formulation may include a sufficient quantity of a water-soluble calcium ion source to provide such amounts in the laundry liquor. In the alternative, natural water hardness may suffice.
It is to be understood that the foregoing levels of calcium and/or magnesium ions are sufficient to provide enzyme stability. More calcium and/or magnesium ions can be added to the compositions to provide an additional measure of grease removal performance. Accordingly, as a general proposition the compositions herein will typically comprise from about 0.05% to about 2% by weight of a water-soluble source of calcium or magnesium ions, or both. The amount can vary, of course, with the amount and type of enzyme employed in the composition.
The compositions herein may also optionally, but preferably, contain various additional stabilizers, especially borate-type stabilizers. Typically, such stabilizers will be used at levels in the compositions from about 0.25% to about 10%, preferably from about 0.5% to about 5%, more preferably from about 0.75% to about 3%, by weight of boric acid or other borate compound capable of forming boric acid in the composition (calculated on the basis of boric acid). Boric acid is preferred, although other compounds such as boric oxide, borax and other alkali metal borates (e.g., sodium ortho-, meta- and pyroborate, and sodium pentaborate) are suitable. Substituted boric acids (e.g., phenylboronic acid, butane boronic acid, and p-bromo phenylboronic acid) can also be used in place of boric acid.
The compositions herein may also include ammonium salts and other chlorine scavengers such those disclosed by Pancheri et al, U.S. Patent No. 4,810,413 (issued March 7, 1989), the disclosure of which is incorporated herein by reference. Bleaching Compounds - Bleaching Agents and Bleach Activators - The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent- plus-bleach activator.
The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as other bleaching agents. Perborate bleaches, e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983. Highly preferred bleaching agents also include 6-nonylamino-6- oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
A preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers. Optionally, the percarbonate can be coated with silicate, borate or water-soluble surfactants. Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka.
Mixtures of bleaching agents can also be used. Peroxygen bleaching agents, the perborates, the percarbonates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein.
Highly preferred amido-derived bleach activators are those of the formulae: R]N(R5)C(0)R2C(0)L or R1C(0)N(R5)R2c(0)L wherein R* is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to about 6 carbon atoms, R^ is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group. A leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion. A preferred leaving group is phenyl sulfonate.
Preferred examples of bleach activators of the above formulae include (6-octanamido- caproyl)oxybenzenesulfonate, (6-nonanamidocaproyl)oxybenzenesulfonate, (6-decanamido- caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551, incorporated herein by reference.
Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference. A highly preferred activator of the benzoxazin-type is:
Figure imgf000019_0001
Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:
Figure imgf000019_0002
wherein R*> is H or an alkyl, aryl, alkoxyaryl, or alkaryl group containing from 1 to about 12 carbon atoms. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5-trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valerolactam, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incorporated herein by reference, which discloses acyl caprolactams, including benzoyl caprolactam, adsorbed into sodium perborate.
Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photo activated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
If desired, the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,1 14,606; and European Pat. App. Pub. Nos. 549,271 Al, 549.272A1, 544,440A2, and 544,490A1 ; Preferred examples of these catalysts include MnIV2(u"O)30A7- trimethyl- 1 ,4,7-triazacyclononane)2(PFg)2, Mn'^2(u"O) 1 (u_OAc)2( 1 ,4,7-trimethyl- 1 ,4,7- triazacyclononane)2-(Clθ4)2, Mn^4(u-0)6( 1 ,4,7-triazacyclononane)4(Clθ4)4, Mn^Mnl * 4- (u-O) j (u-OAc)2_( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2(Clθ4)3, MnIV( 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane)- (OCH3)3(PFg), and mixtures thereof. Other metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,1 14,611. The use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; 5,227,084.
As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per ten million of the active bleach catalyst species in the aqueous washing liquor, and will preferably provide from about 0.1 ppm to about 700 ppm, more preferably from about 1 ppm to about 500 ppm, of the catalyst species in the laundry liquor. Polymeric Soil Release Agent - Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions and processes of this invention. Polymeric soil release agents are characterized by having both hydrophilic segments, to hy- drophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
The polymeric soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or (b) one or more hydrophobe components comprising (i) C3 oxyalkylene terephthalate segments, wherein, if said hydrophobe components also comprise oxyethylene terephthalate, the ratio of oxyethylene terephthalate :C3 oxyalkylene terephthalate units is about 2:1 or lower, (ii) C4-C6 alkylene or oxy C4-C6 alkylene segments, or mixtures therein, (iii) poly (vinyl ester) segments, preferably polyvinyl acetate), having a degree of polymerization of at least 2, or (iv) C j -C4 alkyl ether or C4 hydroxyalkyl ether substituents, or mixtures therein, wherein said substituents are present in the form of C j -C4 alkyl ether or C4 hydroxyalkyl ether cellulose derivatives, or mixtures therein, and such cellulose derivatives are amphiphilic, whereby they have a sufficient level of C1-C4 alkyl ether and/or C4 hydroxyalkyl ether units to deposit upon conventional polyester synthetic fiber surfaces and retain a sufficient level of hydroxyls, once adhered to such conventional synthetic fiber surface, to increase fiber surface hydrophilicity, or a combination of (a) and (b). Typically, the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100. Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as M03S(CH2)nOCH2CH2θ-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of Cj-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., Cj-Cg vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al. Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany).
One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. The molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Examples of this polymer include the commercially available material ZELCON 5126 (from DuPont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone. These soil release agents are described fully in U.S. Patent 4,968,451, issued November 6, 1990 to J. J. Scheibel and E. P. Gosselink. Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sul- foarolyl, end-capped terephthalate esters.
If utilized, soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy- 1 ,2-propylene units. The repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end- caps. A particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy- 1 ,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)- ethanesulfonate. Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
Chelating Agents - The detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents. Such chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
Amino carboxylates useful as optional chelating agents include ethylenediaminetetrace- tates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetrapro- prionates, triethylenetetraaminehexacetates, diethylenetriaminepentaacetates, and ethanoldi- glycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein. Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2- dihydroxy-3,5-disulfobenzene.
A preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
If utilized, these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
Clay Soil Removal/Anti-redeposition Agents - The compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties. Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylates amines.
The most preferred soil release and anti-redeposition agent is ethoxylated tetraethylene- pentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986. Another group of preferred clay soil removal-antiredeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984. Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 11 1,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 1 12,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S. Patent 4,548,744, Connor, issued October 22, 1985. Other clay soil removal and/or anti redeposition agents known in the art can also be utilized in the compositions herein. Another type of preferred antiredeposition agent includes the carboxy methyl cellulose (CMC) materials. These materials are well known in the art. Polymeric Dispersing Agents - Polymeric dispersing agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti-redeposition.
Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 6,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of these especially preferred polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued march 7, 1967. Still other detergent compositions with suitable dispersing agents are disclosed by Murphy, U. S. Patent 4,379,080 (issued April 5, 1983).
Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from about 30: 1 to about 1 : 1, more preferably from about 10: 1 to 2: 1. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
Another polymeric material which can be included is polyethylene glycol (PEG). PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent. Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
Brightener - Any optical brighteners or other brightening or whitening agents known in the art can be incorporated at levels typically from about 0.05% to about 1.2%, by weight, into the detergent compositions herein. Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982).
Specific examples of optical brighteners which are useful in the present compositions are those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHOR WHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artie White CC and Artie White CWD, available from Hilton-Davis, located in Italy; the 2-(4-stryl-phenyl)-2H-napthol[l,2-d]triazoles; 4,4'-bis- (l,2,3-triazol-2-yl)-stil- benes; 4,4'-bis(stryl)bisphenyls; and the aminocoumarins. Specific examples of these brighteners include 4-methyl-7-diethyl- amino coumarin; l,2-bis(-venzimidazol-2-yl)ethylene; 1,3-diphenyl-phrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-stryl-napth-[l,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [l,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Anionic brighteners are preferred herein.
Dye Transfer Inhibiting Agents - The compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process. Generally, such dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N- vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01% to about 10% by weight of the composition, preferably from about 0.01% to about 5%, and more preferably from about 0.05% to about 2%.
More specifically, the polyamine N-oxide polymers preferred for use herein contain units having the following structural formula: R-Ax-P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units; A is one of the following structures: -NC(O)-, - C(0)0-, -S-, -O-, -N=; x is 0 or 1 ; and R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
The N-O group can be represented by the following general structures:
Figure imgf000027_0001
wherein Rj, R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups. The amine oxide unit of the polyamine N-oxides has a pKa <10, preferably pKa <7, more preferred pKa <6.
Any polymer backbone can be used as long as the amine oxide polymer formed is water- soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide. The amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10: 1 to 1 : 1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation. The polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1 ,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
The most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (referred to as a class as "PVPVI") are also preferred for use herein. Preferably the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis. Vol 113. "Modem Methods of Polymer Characterization", the disclosures of which are incorporated herein by reference.) The PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1, more preferably from 0.8: 1 to 0.3: 1, most preferably from 0.6:1 to 0.4: 1. These copolymers can be either linear or branched.
The present invention compositions also may employ a polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000. PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A- 256,696, incorporated herein by reference. Compositions containing PVP can also contain polyethylene glycol ("PEG") having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000. Preferably, the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1, and more preferably from about 3: 1 to about 10:1.
The detergent compositions herein may also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01% to 1% by weight of such optical brighteners.
The hydrophilic optical brighteners useful in the present invention are those having the structural formula:
Figure imgf000029_0001
wherein Ri is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, mo hilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2- yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the trade name Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, Rj is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N- methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the trade name Tinopal 5BM-GX by Ciba- Geigy Corporation.
When in the above formula, R\ is anilino, R2 is moφhilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-moφhilino-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the trade name Tinopal AMS-GX by Ciba Geigy Coφoration.
The specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described. The combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics. The extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient". The exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
Of course, it will be appreciated that other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.
Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be incoφorated into the compositions of the present invention. Suds suppression can be of particular importance in the so-called "high concentration cleaning process" and in front-loading European-style washing machines.
A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979). One category of suds suppressor of particular interest encompasses monocarboxylic fatty acid and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
The detergent compositions herein may also contain non-surfactant suds suppressors. These include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C j -C4Q ketones (e.g., stearone), etc. Other suds inhibitors include N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters. The hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form. The liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40°C and about 50°C, and a minimum boiling point not less than about 1 10°C (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100°C. The hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al. The hydrocarbons, thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms. The term "paraffin," as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
Another preferred category of non-surfactant suds suppressors comprises silicone suds suppressors. This category includes the use of polyorganosiloxane oils, such as polydimethyl- siloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed or fused onto the silica. Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
Other silicone suds suppressors are disclosed in U.S. Patent 3,455,839 which relates to compositions and processes for defoaming aqueous solutions by incoφorating therein small amounts of polydimethylsiloxane fluids.
Mixtures of silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526. Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
(i) polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about 1,500 cs. at 25°C;
(ii) from about 5 to about 50 parts per 100 parts by weight of (i) of siloxane resin composed of (CH3)3SiOι/2 units of Siθ2 units in a ratio of from (CH3) SiOj/2 units and to Siθ2 units of from about 0.6: 1 to about 1.2:1; and
(iii) from about 1 to about 20 parts per 100 parts by weight of (i) of a solid silica gel.
In the preferred silicone suds suppressor used herein, the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene-polypropylene glycol copolymers or mixtures thereof (preferred), or polypropylene glycol. The primary silicone suds suppressor is branched/crosslinked and preferably not linear. To illustrate this point further, typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol. Similar amounts can be used in granular compositions, gels, etc. See also U.S. Patents 4,978,471, Starch, issued December 18, 1990, and 4,983,316, Starch, issued January 8, 1991, 5,288,431, Huber et al., issued February 22, 1994, and U.S. Patents 4,639,489 and 4,749,740, Aizawa et al at column 1, line 46 through column 4, line 35.
The silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1,000, preferably between about 100 and 800. The polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %.
The preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1 ,000, more preferably between about 100 and 800, most preferably between 200 and 400, and a copolymer of polyethylene glycol/polypropylene glycol, preferably PPG 200/PEG 300. Preferred is a weight ratio of between about 1 :1 and 1 : 10, most preferably between 1 :3 and 1 :6, of polyethylene glycolxopolymer of polyethylene-polypropylene glycol.
The preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101.
Other suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872. The secondary alcohols include the C6-C16 alkyl alcohols having a Cj-Cjg chain. A preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12. Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem. Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1 :5 to 5: 1. For any detergent compositions to be used in automatic laundry washing machines, suds should not form to the extent that they overflow the washing machine. Suds suppressors, when utilized, are preferably present in a "suds suppressing amount. By "suds suppressing amount" is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
The compositions herein will generally comprise from 0% to about 5% of suds suppressor. When utilized as suds suppressors, monocarboxylic fatty acids, and salts therein, will be present typically in amounts up to about 5%, by weight, of the detergent composition. Preferably, from about 0.5% to about 3% of fatty monocarboxylate suds suppressor is utilized. Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing. Preferably from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%. As used herein, these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized. Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition. Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used. The alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
Fabric Softeners - Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from about 0.5% to about 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning. Clay softeners can be used in combination with amine and cationic softeners as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1, 1983 and U.S. Patent 4,291,071, Harris et al, issued September 22, 1981.
Other Ingredients - A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solid fillers for bar compositions, etc. If high sudsing is desired, suds boosters such as the CiQ-Ci g alkanolamides can be incoφorated into the compositions, typically at 1%-10% levels. The C]ø-Ci4 monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous. If desired, soluble magnesium salts such as MgCl2, MgSθ4, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional suds and to enhance grease removal performance.
Various detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating. Preferably, the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate. In use, the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
To illustrate this technique in more detail, a porous hydrophobic silica (trademark SIPERNAT DIO, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of Cj 3_i5 ethoxylated alcohol (EO 7) nonionic surfactant. Typically, the enzyme/surfactant solution is 2.5 X the weight of silica. The resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used). The resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
The detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and 10.5. Laundry products are typically at pH 9-1 1. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
Various amounts of processing aids such as sugars, for example those sugars disclosed in U.S. Patent 4,908,159, Davies et al, issued March 13, 1990, and starches can be used in the compositions herein. Other suitable processing aids include those described in U.S. Patent 4,013,578, Child et al, issued March 22, 1977.
Various amounts of crystallization aids such as those described in U.S. Patent 3,957,695, Davies et al, issued May 18, 1976, can be used in the composition herein, as well.
Detergent Processing
The particulate material used for making the granulay, powder and tablet detergents of this invention can be made by any particulation or granulation process. An example of such a process is spray drying (in a co-current or counter current spray drying tower) which typically gives low bulk densities 600g/l or lower. Particulate materials of higher density can be prepared by granulation and densification in a high shear batch mixer/granulator or by a continuous granulation and densification process (e.g. using Lodige® CB and/or Lodige® KM mixers). Other suitable processes include fluid bed processes, compaction processes (e.g. roll compaction), extrusion, as well as any particulate material made by any chemical process like flocculation, crystallization sentering, etc. The individual particles can also be in any other form, such as for example, particle, granule, sphere or grain.
The particulate materials may be mixed together by any conventional means, for example, a concrete mixer, Nauta mixer, ribbon mixer or any other. Alternatively the mixing process may be carried out continuously by metering each component by weight on to a moving belt, and blending them in one or more drum(s) or mixer(s). A liquid spray-on to the mix of particulate materials (e.g. non-ionic surfactants) may be carried out. Other liquid ingredients may also be sprayed on to the mix of particulate materials either separately or premixed. For example perfume and slurries of optical brighteners may be sprayed. A finely divided flow aid (dusting agent such as zeolites, carbonates, silicas) can be added to the particulate materials after spraying the non-ionic, preferably towards the end of the process, to make the mix less sticky.
The detergent tablets of this invention can be prepared simply by mixing the solid ingredients together and compressing the mixture in a conventional tablet press as used, for example, in the pharmaceutical industry. Any liquid ingredients, for example the surfactant or suds suppresser, can be incoφorated in a conventional manner into the solid particulate ingredients. Preferably, the principal ingredients are used in a particulate form.
The detergent tablets provided can be made in any size or shape and can, if desired, be surface treated. In the core of the tablet is included a surfactant and a builder which normally provides a substantial part of the cleaning power of the tablet.
The detergent tablets provided may be manufactured by using any compacting process, such as tabletting, briquetting, or extrusion, preferably tabletting. Suitable equipment includes a standard single stroke or a rotary press (such as Courtoy®, Korch®, Manesty®, or Bonals®). In one embodiment, the tablets are coated with an electrically conductive coating in order to provide an electrically conductive surface for the detergent tablet. The tablets are coated with a coating that is both electrically conductive and substantially insoluble in water so that the tablet does not absorb moisture, or absorbs moisture at only a very slow rate. The coating is also strong so that moderate mechanical shocks to which the tablets are subjected during handling, packing and shipping result in no more than very low levels of breakage or attrition. Further, the coating is preferably brittle so that the tablet breaks up when subjected to stronger mechanical shock. Furthermore it is advantageous if the coating material is dissolved under alkaline conditions, or is readily emulsified by surfactants. This avoids the deposition of undissolved particles or lumps of coating material on the laundry load. This may be important when the coating material is completely insoluble (for example less than 1 g/1) in water.
EXAMPLES
In order to make the present invention more readily understood, reference is made to the following examples, which are intended to be illustrative only and not intended to be limiting in scope.
EXAMPLE I Preparation of Gasified Particles of PEG and N2
Gasified Particles for use in the solid detergent compositions hereinafter described are prepared from nitrogen gas and polyethylene glycol with a molecular weight of about 4,000, i.e., PEG-4000. To prepare these particles, the PEG-4000 is melted in a pressurizable vessel while agitation is supplied in the form of a mixing paddle attached to a shaft. Nitrogen gas is added to the pressure vessle from ports in the top of the vessel and through ports in the shaft that holds the mixing paddle. The vessel is pressurized to about 600 psig with the nitrogen gas. When the PEG-4000 is sufficiently melted and mixed with pressurized gas, the molten PEG-4000 and nitrogen mixture is transferred to a cooling vessel. The mixture is cooled until it solidifies, and then the solidified material is removed from the cooling vessel by breaking it into small pieces. The small pieces are then milled to form particles having a size ranging from about 0.1 to about 1000 microns.
EXAMPLE II Preparation of Gasified Particles of Sucrose and CO2
The process of Example I is repeated, wherein the PEG-4000 is replace with sucrose and the nitrogen gas is replaced with carbon dioxide.
EXAMPLES III-V
Several detergent compositions made in accordance with the invention and specifically for top-loading washing machines are exemplified below. The base granule is prepared by a conventional spray drying process in which the starting ingredients are formed into a slurry and passed though a spray drying tower having a countercurrent stream of hot air (200-300°C) resulting in the formation of porous granules. The admixed agglomerates are formed from two feed streams of various starting detergent ingredients which are continuously fed, at a rate of 1400 kg/hr, into a Lodige CB-30 mixer/densifier, one of which comprises a surfactant paste containing surfactant and water and the other stream containing starting dry detergent material containing aluminosilicate and sodium carbonate. The rotational speed of the shaft in the Lodige CB-30 mixer/densifier is about 1400 φm and the mean residence time is about 5-10 seconds. The contents from the Lodige CB-30 mixer/densifier are continuously fed into a Lodige KM-600 mixer/densifier for further agglomeration during which the mean residence time is about 6 minutes. The resulting detergent agglomerates are then fed to a fluid bed dryer and to a fluid bed cooler before being admixed with the spray dried granules. The remaining adjunct detergent ingredients are sprayed on or dry added to the blend of agglomerates and granules. The gasified particles of this invention are most preferably admixed with the detergent agglomerates, although they could be agglomerated along with the other detergent ingredients.
(% Weight)
III IV V
Base Granule
Aluminosilicate 18.0 18.0 18.0
Sodium sulfate 10.0 10.0 19.0
Sodium polyacrylate polymer 3.0 3.0 2.0
PolyethyleneGlycol (MW=4000) 2.0 2.0 1.0
Cj2-13 linear alkylbenzene sulfonate, Na 6.0 6.0 7.0
Cj4_i6 secondary alkyl sulfate, Na 3.0 3.0 3.0
C 14- 15 alkyl ethoxylated sulfate, Na 3.0 3.0 9.0
Sodium silicate 1.0 1.0 2.0
Brightener 246 0.3 0.3 0.3
Sodium carbonate 7.0 7.0 25.7
DTPA 1 0.5 0.5 -
Admixed Agglomerates
C ] 4_ j 5 alkyl sulfate, Na 5.0 5.0 -
Cl2-13 line r alkylbenzene sulfonate, Na 2.0 2.0 -
NaKCa(C03)2 - 7.0 -
Sodium Carbonate 4.0 4.0 -
PolyethyleneGlycol (MW=4000) 1.0 1.0 -
Admix
Gasified Particles 0.05 0.1 0.2 c12-15 al ethoxylate (EO = 7) 2.0 2.0 0.5 Perfume 0.3 0.3 1.0
Polyvinylpyrrilidone 0.5 0.5 - Polyvinylpyridine N-oxide 0.5 0.5 - Polyvinylpyrrolidone-polyvinylimidazole e 0.5 0.5 - Distearylamine & Cumene sulfonic acid 2.0 2.0 - Soil Release Polymer 2 0.5 0.5 - Lipolase Lipase (100.000 LU/I)4 0.5 0.5 - Termamyl amylase (60 KNU/g)4 0.3 0.3 - CAREZYME® cellulase (1000 CEVU/g) )44 0.3 0.3 - Protease (40mg/g)5 0.5 0.5 0.5 NOBS 3 5.0 5.0 -
Sodium Percarbonate 12.0 12.0 - Polydimethylsiloxane 0.3 0.3 - Miscellaneous (water, etc.) balance balance balance Total 100 100 100
* Diethylene Triamine Pentaacetic Acid ^Made according to U.S. Patent 5,415,807, issued May 16, 1995 to Gosselink et al
3 Nonanoyloxybenzenesulfonate
4 Purchased from Novo Nordisk A S -> Purchased from Genencor
" Purchased from Ciba-Geigy
EXAMPLES VI-XI The following detergent compositions accordance with the invention are especially suitable for front loading washing machines. The compositions are made in the manner of Examples III-V.
(% Weight
VI VII VII]
Base Granules
Aluminosilicate 24.0 24.0 8.0
Sodium sulfate 6.0 6.0 6.0
Acrylic Acid/Maleic Acid Co-polymer 4.0 4.0 4.0
C j 2- 13 linear alkylbt ≥nzene sulfonate, Na 8.0 8.0 8.0 Sodium silicate 3.0 3.0 3.0
Carboxymethylcellulose 1.0 1.0 1.0
Brightener 47 0.3 0.3 0.3
Silicone antifoam 1.0 1.0 1.0
DTPMPA ! 0.5 0.5 0.5
Admixed
Gasified Particles 5.0 3.0 2.0 c12-15 al ethoxylate (EO=7) 2.0 2.0 2.0 c12-15 al ethoxylate (EO=3) 2.0 2.0 2.0
Perfume 0.3 0.3 0.3
Sodium carbonate 13.0 13.0 13.0
Sodium perborate 18.0 18.0 18.0
Sodium perborate 4.0 4.0 4.0
TAED 2 3.0 3.0 3.0
Savinase protease (4.0 KNPU/g)3 1.0 1.0 1.0
Lipolase lipase (100.000 LU/1)3 0.5 0.5 0.5
Termamyl amylase (60 KNU/g)3 0.3 0.3 0.3
Sodium sulfate 3.0 3.0 5.0
Miscellaneous (water, etc.) balance balance 1 valance
Total 100.0 100.0 100.0
* Diethylene Triamine Pentamethylenephosphonic Acid
2 Tetra Acetyl Ethylene Diamine
3 Purchased from Novo Nordisk A/S
(% Weieht)
IX X XI
Base Granule
Aluminosilicate 14.0 14.0 14.0
Sodium Sulfate 2.0 2.0 -
Cl2-13 linear alkylbenzene sulfonate, Na 3.0 3.0 -
DTPMPA ! 0.5 0.5 -
Carboxymethylcellulose 0.5 0.5 -
Acrylic Acid/Maleic Acid Co-polymer 4.0 4.0 -
Admixed Agglomerates C-14-15 alkyl sulfate, Na - - 1 1.0
Cj2.] 3 linear alkylbenzene sulfonate, Na 5.0 5.0 -
Tallow alkyl sulfate 2.0 2.0 -
Sodium silicate 4.0 4.0 -
Aluminosilicate 11.0 12.0 6.0
Na2Ca (C03)3 1.0 - 7.0
Carboxymethylcellulose - - 0.5
Acrylic Acid/Maleic Acid Co-polymer - - 2.0
Sodium Carbonate 8.0 8.0 7.0
Admixed
Gasified Particles 1.0 0.5 1.5
Perfume 0.3 0.3 0.5 c12-15 al ethoxylate (EO=7) 4.0 4.0 4.0 c12-15 al ethoxylate (EO=3) 2.0 2.0 2.0
Acrylic Acid/Maleic Acid Co-polymer - - 3.0
Crystalline layered silicate 2 - - 12.0
Sodium citrate 5.0 5.0 8.0
Sodium bicarbonate 5.0 5.0 5.0
Sodium carbonate 6.0 6.0 15.0
Polyvinylpyrrilidone (PVP) 0.5 0.5 0.5
Alcalase protease3 (3.0 AU/g) 0.5 0.5 1.0
Lipolase lipase3 (100.000 LU/1) 0.5 0.5 0.5
Termamyl amylase3 ( 60K U/g) 0.5 0.5 0.5
CAREZYME® cellulase3 (lOOOCEVU/g) 0.5 0.5 0.5
Sodium sulfate 4.0 4.0 0.0
Miscellaneous (water, etc.) balance balance balance
Total 100.0 100.0 100.0
1 Diethylene Triamine Pentamethylenephosphonic Acid
2 SKS 6 commercially available from Hoechst
3 Purchased from Novo Nordisk A/S Having thus described the invention in detail, it will be clear to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is described in the specification.

Claims

What is claimed is:
1. A detergent composition which is in solid form, which composition comprises:
A) from about 1% to about 55%, and most preferably from about 10 to 40%, by weight, of a detersive surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, zwitterionic surfactants and mixtures thereof; and
B) from about 0.05% to about 5%, preferably from about 0.1% to about 3%, and most preferably from about 0.2% to about 2%, by weight of the composition of gasified particles that are: i) solid at about 25┬░C; and ii) highly water soluble.
2. A composition according to Claim 1, wherein the gasified particles comprise a core material that encapsulates a pressurized gas.
3. A composition according to Claim 2, wherein the pressurized gas is selected from the group consisting of carbon dioxide, nitrogen, oxygen, helium, hydrogen, air, argon, neon, chlorine and mixtures thereof.
4. A composition according to Claim 2, wherein the core material is selected from the group consisting of sucrose, lactose, glucose, fructose, galactose, maltose, polyethylene glycol, polyvinyl alcohol, fatty acids, and mixtures thereof.
5. A composition according to Claim 2, wherein the pressurized gas is present in the gasified particles at a pressure of from about 50 psig to about 1,000 psig, preferably from about 300 psig to about 1,000 psig, most preferably from about 600 psig to about 1,000 psig.
6. A composition according to Claim 2, wherein the gasified particles additionally comprise a dye or pigment, preferably selected from the group consisting of ultramarine blue, indigo carmine, FD&C blue 1, D&C yellow 5, D&C yellow 6, D&C red 21, D&C red 27, D&C orange 5, bromo acid dyes, sodium fluorescein, liquitint bright blue, liquitint bright yellow, duasyn blue and mixtures thereof.
7. A composition according to Claim 2, wherein the gasified particles additionally comprise a water soluble or dispersable coating that preferably comprises materials selected from the group consisting of sucrose, lactose, glucose, fructose, galactose, maltose, polyethylene glycol, polyvinyl alcohol, fatty acids, and mixtures thereof.
8. A composition according to Claim 1, wherein the composition further comprises from about 1% to 50% by weight of detergent adjuvants which are selected from the group consisting of builders, enzymes, bleaching agents, bleach activators, suds suppressors, soil release agents, brighteners, perfumes, hydrotropes, dyes, pigments, polymeric dispersing agents, pH controlling agents, chelants, processing aids, crystallization aids, and mixtures thereof.
9. A composition according to Claim 1, wherein the gasified particles range in particle size between about 0.1 and about 1,500 microns, preferably between about 1 and about 1,000 microns, and most preferably between about 10 and about 400 microns.
10. A composition according to Claim 1, wherein the gasified particles range in density between about 0.6 and 1.4 g/cc, more preferably between about 0.8 and 1.3 g/cc, and most preferably between about 1.0 and 1.3 g/cc.
11. A composition according to Claim 2, wherein the core material comprises polyethylene glycol having a molecular weight between about 2,000 and 20,000.
12. A composition according to Claim 2, wherein the gasified particles comprise between about 0.5 and 15 milliliters of pressurized gas per gram of core material.
13. A composition according to Claim 2, wherein the pressurized gas comprises a perfume.
14. A method for laundering soiled fabrics comprising the steps of contacting said soiled fabrics with an aqueous solution containing an effective amount of a detergent composition according to Claim 1.
15. A detergent composition according to Claim 1, which is in the form of a laundry bar.
16. A detergent composition according to Claim 1, which is in the form of granules or agglomerates.
17. A detergent composition according to Claim 1 , which is in the form of a tablet.
PCT/IB1999/000994 1998-06-05 1999-06-01 Granular, powder, and tablet detergent compositions containing gasified particulate matter WO1999064555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU39497/99A AU3949799A (en) 1998-06-05 1999-06-01 Granular, powder, and tablet detergent compositions containing gasified particulate matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8817798P 1998-06-05 1998-06-05
US60/088,177 1998-06-05

Publications (1)

Publication Number Publication Date
WO1999064555A1 true WO1999064555A1 (en) 1999-12-16

Family

ID=22209813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1999/000994 WO1999064555A1 (en) 1998-06-05 1999-06-01 Granular, powder, and tablet detergent compositions containing gasified particulate matter

Country Status (2)

Country Link
AU (1) AU3949799A (en)
WO (1) WO1999064555A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100339A1 (en) * 2001-01-05 2002-07-18 Henkel Kgaa Serving detergent, detergent or cleaning agent portion
US7887832B2 (en) 2002-06-19 2011-02-15 Cts Chemical Industries, Ltd. Popping oral pharmaceutical compositions
US20130267452A1 (en) * 2010-05-28 2013-10-10 Milliken & Company Colored Speckles For Use In Granular Detergents
WO2018026622A1 (en) * 2016-08-03 2018-02-08 Henkel IP & Holding GmbH Fragranced pastille for laundry application
WO2018222560A1 (en) * 2017-05-31 2018-12-06 Henkel IP & Holding GmbH Fragranced pastille for laundry application
US10221377B2 (en) * 2011-03-31 2019-03-05 Ab Enzymes Oy Protease enzyme and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316691A (en) * 1966-05-31 1967-05-02 Union Carbide Corp Fluid encapsulation product
GB1298263A (en) * 1970-04-16 1972-11-29 Mennen Co Microcapsules for use in pressurized systems
DE3224970A1 (en) * 1982-07-03 1984-01-05 Fa. J.S. Staedtler, 8500 Nürnberg A method for cleaning writing, drawing or painting equipment and composition for carrying out the method
DE3412420A1 (en) * 1984-04-03 1985-10-03 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Cleaning composition, in particular for domestic dishwashing machines
US4574052A (en) * 1984-05-31 1986-03-04 Richardson-Vicks Inc. Crackling aerosol foam
WO1986002830A1 (en) * 1984-11-16 1986-05-22 Union Carbide Corporation Effervescent dentifrice
WO1999024547A1 (en) * 1997-11-10 1999-05-20 The Procter & Gamble Company Detergent compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316691A (en) * 1966-05-31 1967-05-02 Union Carbide Corp Fluid encapsulation product
GB1298263A (en) * 1970-04-16 1972-11-29 Mennen Co Microcapsules for use in pressurized systems
DE3224970A1 (en) * 1982-07-03 1984-01-05 Fa. J.S. Staedtler, 8500 Nürnberg A method for cleaning writing, drawing or painting equipment and composition for carrying out the method
DE3412420A1 (en) * 1984-04-03 1985-10-03 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Cleaning composition, in particular for domestic dishwashing machines
US4574052A (en) * 1984-05-31 1986-03-04 Richardson-Vicks Inc. Crackling aerosol foam
WO1986002830A1 (en) * 1984-11-16 1986-05-22 Union Carbide Corporation Effervescent dentifrice
WO1999024547A1 (en) * 1997-11-10 1999-05-20 The Procter & Gamble Company Detergent compositions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100339A1 (en) * 2001-01-05 2002-07-18 Henkel Kgaa Serving detergent, detergent or cleaning agent portion
US7887832B2 (en) 2002-06-19 2011-02-15 Cts Chemical Industries, Ltd. Popping oral pharmaceutical compositions
US20130267452A1 (en) * 2010-05-28 2013-10-10 Milliken & Company Colored Speckles For Use In Granular Detergents
US8921301B2 (en) * 2010-05-28 2014-12-30 Milliken & Company Colored speckles for use in granular detergents
US11649417B2 (en) 2010-05-28 2023-05-16 Milliken & Company Colored speckles for use in granular detergents
US10221377B2 (en) * 2011-03-31 2019-03-05 Ab Enzymes Oy Protease enzyme and uses thereof
WO2018026622A1 (en) * 2016-08-03 2018-02-08 Henkel IP & Holding GmbH Fragranced pastille for laundry application
WO2018222560A1 (en) * 2017-05-31 2018-12-06 Henkel IP & Holding GmbH Fragranced pastille for laundry application
US10683475B2 (en) 2017-05-31 2020-06-16 Henkel IP & Holding GmbH Fragranced pastille for laundry application

Also Published As

Publication number Publication date
AU3949799A (en) 1999-12-30

Similar Documents

Publication Publication Date Title
CA2247947C (en) Secondary alkyl sulfate particles with improved solubility by compaction/coating process
US5932532A (en) Bleach compositions comprising protease enzyme
US5531915A (en) Detergent compositions containing ethylenediamine-N,N&#39;-diglutaric acid or 2-hydroxypropylenediamine-N,N&#39;-disuccinic acid
USH1513H (en) Oleoyl sarcosinate with polyhydroxy fatty acid amides in cleaning products
US6610645B2 (en) Selected crystalline calcium carbonate builder for use in detergent compositions
US5919747A (en) Preparation of secondary alkyl sulfate particles with improved solubility
EP0778879A1 (en) Chelant enhanced photobleaching
CA2177677C (en) Stabilization of oxidation-sensitive ingredients in percarbonate detergent compositions
US5955418A (en) Secondary alkyl sulfate surfactant with improved solubility by kneading/extruding process
EP0763086B1 (en) Detergent compositions with oleoyl sarcosinate and polymeric dispersing agent
WO1999064555A1 (en) Granular, powder, and tablet detergent compositions containing gasified particulate matter
US6159927A (en) Compositions comprising hydrophilic silica particulates
US5773400A (en) Nil-phosphate granular detergent compositions which contain percarbonate and sulfate particles
WO1996002601A1 (en) Solid bleach activator compositions
WO1995025159A1 (en) Bleach improvement with manganese ethylenediamine-n,n&#39;-disuccinate
CA2187305C (en) Bleach compositions comprising protease enzyme
CA2191314C (en) Detergent composition containing oleoyl sarcosinate and anionic surfactants in optimum ratios
EP0657528B1 (en) Percarbonate detergent compositions
EP0693110B1 (en) Magnesium-containing detergent compositions in stable liquid, gel or other forms with secondary (2,3) alkyl sulfate surfactants
CA2160108A1 (en) Detergent compositions
WO1995033811A1 (en) Oleoyl sarcosinate with alkanolamides in cleaning products
CA2248263C (en) Secondary alkyl sulfate surfactant with improved solubility by kneading/extruding process
EP0763090B1 (en) High active detergent composition containing oleoyl sarcosinates for improved solubility
EP0972000A1 (en) A selected crystalline calcium carbonate builder for use in detergent compositions
WO1998040458A1 (en) A selected crystalline calcium carbonate builder for use in detergent compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase