WO1999064862A1 - Detection of ligands with signal amplification - Google Patents

Detection of ligands with signal amplification Download PDF

Info

Publication number
WO1999064862A1
WO1999064862A1 PCT/US1999/010413 US9910413W WO9964862A1 WO 1999064862 A1 WO1999064862 A1 WO 1999064862A1 US 9910413 W US9910413 W US 9910413W WO 9964862 A1 WO9964862 A1 WO 9964862A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
ligand
enzyme
antibody
binding
Prior art date
Application number
PCT/US1999/010413
Other languages
French (fr)
Inventor
Christopher J. Woolverton
Gary D. Niehaus
Kathleen J. Doane
Oleg Lavrentovich
Steven P. Schmidt
Steven A. Signs
Original Assignee
Kent State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kent State University filed Critical Kent State University
Priority to AU39844/99A priority Critical patent/AU753758B2/en
Priority to JP2000553806A priority patent/JP4377058B2/en
Priority to BR9910982-4A priority patent/BR9910982A/en
Priority to AT99922970T priority patent/ATE287539T1/en
Priority to IL13991199A priority patent/IL139911A0/en
Priority to DE69923313T priority patent/DE69923313D1/en
Priority to CA002334712A priority patent/CA2334712A1/en
Priority to EP99922970A priority patent/EP1086374B1/en
Publication of WO1999064862A1 publication Critical patent/WO1999064862A1/en
Priority to IL139911A priority patent/IL139911A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • G01N33/545Synthetic resin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes

Definitions

  • the present invention generally relates to the detection of a ligand by a receptor.
  • the present invention relates to highly specific receptors and the incorporation of these receptors into an amplification mechanism for the rapid and automatic detection of the ligand, particularly pathogens and/or their toxins.
  • the detection of a ligand by a receptor is important in the diagnosis and treatment of individuals exposed to disease-causing agents. Early detection of pathogenic agents can be a great benefit in either disease prophylaxis or therapy before symptoms appear or worsen.
  • receptor molecules such as antibodies, can be isolated that will bind to these ligands with high specificity.
  • Immunoassays such as enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (El A), and radioimmunoassay (RIA), are well known for the detection of antigens.
  • the basic principle in many of these assays is that an enzyme-, chromogen-, fluorogen-, or radionucleotide-conjugated antibody permits antigen detection upon antibody binding.
  • an enzyme-, chromogen-, fluorogen-, or radionucleotide-conjugated antibody permits antigen detection upon antibody binding.
  • significant numbers of antibodies must be bound to a correspondingly large number of antigen epitopes.
  • the present invention provides a system for the detection and amplification of ligands, such as pathogenic agents, comprising at least one receptor and an amplification mechanism coupled to that receptor, wherein an amplified signal is produced as a result of the receptor binding the ligand.
  • ligands such as pathogenic agents
  • FIG. 1A is a schematic representation of the lamellar structure of a lyotropic liquid crystal formed by alternating layers of water and biphilic molecules.
  • FIG. IB is a schematic representation of the amplification mechanism with a receptor inserted into the lyotropic liquid crystal.
  • FIG. 1C is a schematic representation of the amplification mechanism with the specific ligand bound to its receptor causing deformation of the liquid crystal and alteration of the transmission of polarized light.
  • FIG. 2A is a schematic representation of a caged enzyme amplification mechanism in which one or more receptors blocks the channel leading to the enzyme in the absence of a ligand.
  • FIG. 2B is schematic representation of a caged enzyme amplification mechanism in which a ligand binds to the receptor causing distortion of the linker region and the unblocking of the channel leading to the enzyme.
  • FIG. 2C is a schematic representation of a caged enzyme antibody amplification mechanism in which, once activated by ligand binding to receptor, the channel leading to the enzyme remains open and multiple substrates can interact with the enzyme.
  • FIG 3 A is a schematic representation of an enzyme inactivated by a molecularly-engineered receptor.
  • FIG. 3B is a schematic representation of the binding of a ligand to the molecularly-engineered receptor causing dissociation of the receptor from the enzyme, exposing the active site of the enzyme to the substrate.
  • FIG. 3C is a schematic representation of substrate conversion by the enzyme, after picogram levels of ligand bind to the receptor.
  • FIG. 4A is a photograph showing the birefringence of polarized light through a liquid crystal-receptor array in response to binding of a specific ligand to the receptor.
  • FIG. 4B is a photograph showing the absence of birefringence of polarized light through a liquid crystal-receptor array in a reaction mixture containing liquid crystal, receptor and PBS.
  • FIG. 4C is a photograph showing the absence of birefringence of polarized light through a liquid crystal-receptor array in a reaction mixture containing liquid crystal, receptor and an irrelevant ligand.
  • FIG. 5 is a graph showing the quantative analysis of the birefringence of polarized light through an liquid crystal-receptor array of the ligand detection system for selective receptor-ligand binding, as compared to non-selective receptor-ligand binding and background receptor-ligand binding.
  • FIG. 6A is a graph showing enzymatic activity of elution fractions containing an alpha-2-macroglobulin-trypsin complex.
  • FIG. 6B is a graph showing the protein concentration (ug/ml) of elution fractions containing an alpha-2-macroglobulin-trypsin complex.
  • FIG. 6C is a graph showing the effect of the concentration of caged trypsin on detectable enzymatic activity over time (min.).
  • FIG. 6D is a graph showing the effect of the concentration of caged thrombin on detectable enzymatic activity over time (min.).
  • FIG. 6E is a graph showing the stability of caged trypsin over time (days).
  • FIG. 7A is a graph showing luciferase activity (Relative Light Units) over time (sec).
  • FIG. 7B is a graph showing luciferase activity (Relative Light Units) as a function of luciferase concentration (pg/ul).
  • ligand-specific receptors are interfaced with an amplification mechanism such that a receptor-ligand interaction changes the conformation of the receptor and produces a signal.
  • Amplification preferably occurs through a colorimetric, fluorometric or birefringent shift that can be photometrically detected.
  • the detected signal may then be electronically amplified to automate the system.
  • Any receptor such as antibodies or biologic/biologically engineered receptors for ligands, can be incorporated into the device as long as binding of the ligand to the receptor causes a detectable distortion of the receptor.
  • any type of monospecific antibody polyclonal, monoclonal, or phage displayed
  • phage-displayed antibodies can be expeditiously modified for identification of new ligands and are used as receptor examples in this patent application, any physically-distortable receptor-ligand interaction is appropriate for the detection component.
  • Polyclonal antibodies Antibody-based antigen detection has been exploited for several decades. Injection of a purified ligand (antigen) into a host animal stimulates the immune system to produce an array of antibodies against various reactive sites on the antigen. Since several lymphocytes are responding to different antigenic epitopes, a multi-specific antibody cocktail (polyclonal) is created and can be purified for antigen detection.
  • Monoclonal antibodies Antibody-producing spleen cells (B lymphocytes) are fused with immortalized myeloma cells to create hybridomas which provide nearly infinite quantities of antibody with a single, defined specificity. Interstrain and even interspecies hybrids of these 'monoclonal' antibodies can be generated through genetic engineering techniques. These highly specific antibodies have significant therapeutic potential, as evidenced by the U.S. Food and Drug Administration's approval of the use of mouse-human chimeric antibodies for treatment of selected diseases.
  • Phage-displayed mono-specific antibodies Phage-displayed techniques will be used to isolate single chain chimeric antibodies to various pathogenic agents.
  • the genomic DNA of the B lymphocyte contains the code to produce an antibody to virtually all possible ligands (antigens).
  • PDA phage displayed antibody system
  • DNA encoding a single chain chimera of the native antibody's hypervariable ligand-binding region is synthesized by joining DNA encoding an antibody heavy chain and DNA encoding an antibody light chain and inserting therebetween DNA encoding a linker region.
  • the desired amino acid sequence of the linker region depends on the characteristics required for any given amplification mechanism.
  • the linker region may have to be able to interact and/or bond to a protein or other substance.
  • the polypeptide sequence may have to have, for example, a particular conformation, specifically placed functional groups to induce ionic or hydrogen bonds, or a hydrophobicity that is compatible with the amplification mechanism.
  • the linker region plays a critical role in interfacing the amplification mechanism to the receptor.
  • the DNA, preferably human or mouse, encoding the single chain chimeric antibody is cloned into a bacteriophage (phage) vector using well-known techniques (Marks et al., J. Mol. Bio. Vol. 222:581 (1991); Griffiths et al., EMBO J. 12:725 (1993); and Winters et al., Ann. Rev. Immunol. 12:433 (1994)), incorporated herein by reference.
  • the single chain chimeric antibodies then become displayed on the surface of a filamentous phage with the hypervariable antigen-binding site extended outward.
  • phage that are reactive against non-targeted ligands are subtracted from the phage library using known techniques (Marks et al, J. Mol. Bio. Vol. 222:581 (1991); Griffiths et al, EMBO J. 12:725 (1993); and Winters et al., Ann. Rev. Immunol. 12:433 (1994)), incorporated herein by reference.
  • the remaining phage are reacted with their specific ligand and phage reactive with that specific ligand eluted.
  • Each of these phage are then isolated and expressed in a bacterial host, such as Escherichia coli (E.
  • Any mechanism that permits detection of ligand-receptor complex formation functions as an amplifier and can be incorporated into the device.
  • Three amplification mechanisms are proposed.
  • a liquid crystal will amplify the distortion caused when a ligand binds to a receptor.
  • an enzyme will be placed in a biologic cage and a receptor will be attached to the biologic cage to prevent enzyme-substrate interaction. Ligand attachment to the receptor will open a substrate channel, resulting in enzyme- substrate interaction, and thus permitting detectable levels of reaction product.
  • the linker region of a receptor such as a phage-displayed antibody, will be engineered to bind and inhibit the active site of an enzyme. Dissociation of the receptor-enzyme complex occurs upon formation of an receptor-ligand complex, such as an antigen- antibody complex, and results in activation of the enzyme and generation of product.
  • Liquid Crystal A liquid crystal is a state of matter in which molecules exhibit some orientational order but little positional order. This intermediate ordering places liquid crystals between solids (which possess both positional and orientational order) and isotropic fluids (which exhibit no long-range order). Solid crystal or isotropic fluid can be caused to transition into a liquid crystal by changing temperature (creating a thermotropic liquid crystal) or by using an appropriate diluting solvent to change the concentration of solid crystal (creating a lyotropic liquid crystal). Lyotropic liquid crystals will be used for our amplification system.
  • most lyotropic liquid crystals are formed using water 2 as a solvent for biphilic molecules 3, for example, molecules which possess polar (hydrophilic) aliphatic parts 4 and apolar (hydrophobic) aliphatic parts 5.
  • biphilic molecules such as the cationic surfactant cetylpiridinium chloride [C 21 H 3S C1N]
  • a bilayer 6 forms as the hydrophobic regions coalesce to minimize interaction with water 2 while enhancing the polar component's interaction with water.
  • concentration and geometry of the specific molecule define the supramolecular crystalline order of the liquid crystal.
  • the molecules can aggregate into lamellae as well as disk-like or rod-like micelles that form a nematic or cholesteric phase.
  • the C 21 H 38 C1N forms a lamella of alternating layers of water and biphilic molecules. An orientational order is created by the alternating layers of water and biphilic molecules and thus the liquid crystal is opaque (exhibits optical anisotropy) to polarized light 7 provided by a light source located perpendicular to the plane of the liquid crystal.
  • one envisioned application of the present invention is in a multiwell system.
  • Each well of the system would contain PDAs to a specific ligand, such as a pathogenic microbe, interfaced with an amplification mechanism of the present invention.
  • the microbial agent interacts with the antibody, the resulting antibody distortion triggers the amplification mechanism.
  • the amplified signal is then transduced into a perceptible signal. Accordingly, it is envisioned that such a system could be placed in a physician's office, and be used in routine diagnostic procedures.
  • a system could be placed on or near soldiers in battle, and the invention used to alert the soldiers to the presence of a toxic agent.
  • a multiwell system although it can be used with other embodiments, such as the luciferase or the caged enzyme described hereinbelow, is preferably used in conjunction with the liquid crystal embodiment described herein.
  • a lyotropic liquid crystalline material is used as an amplification mechanism.
  • the device consists of a light source 10, an initial polarizer 12, with the direction of polarization in the plane of the figure, a pathogen detection system 14a, comprising monspecific antibodies 14b embedded in biphilic, lyotropic liquid crystalline material 14c, a secondary polarizer 16, with the direction of polarization perpendicular to the plane of the figure, and a photodetector 18.
  • the initial polarizer 12 organizes a light stream 22 that is linearly polarized in the plane of the figure.
  • the optical axis 20 of the inactivated device is perpendicular to the pathogen detection system 14a, and thus no birefringence of the transluminating linearly polarized light stream 22 occurs. Since the polarization direction of the secondary polarizer 16 is perpendicular to the transluminating linearly polarized light 22, the secondary polarizer prevents light from reaching the photodetector 18.
  • This activation process is illustrated in Fig. IC.
  • the receptor (antibody) 14b is embedded in the biphilic, lyotropic liquid crystal 14c.
  • the spacial distortion caused by the formation of the antigen-antibody complex is transmitted to the contiguous liquid crystal 14c.
  • the elastic characteristics of the liquid crystal permit the distortion to be transmitted over a region much larger than the size of the receptor-ligand complex. This allows the use of the standard optical phenomenon of birefringence to detect distortions caused by the receptor-ligand complex.
  • the altered liquid crystalline order tilts the optical axis 20 and induces birefringence.
  • the incident polarized light 22 gives rise to two refracted light waves: the ordinary wave and the extraordinary wave with the mutually orthogonal polarizations
  • an enzyme 30 is entrapped within a cage 32 to prevent premature interaction of enzyme 30 and a substrate 34.
  • Substrate 34 can potentially gain access to enzyme 30 through one or more channels 36 transecting cage 32.
  • Channel 36 is blocked as indicated by arrow 37, by one or more receptors having dual binding capacities (diabodies) 38 in the absence of a pathogenic agent.
  • diabody 38 which has two distinct antigen-binding regions 40 and 41, directed toward channel 36 and a ligand 48, respectively.
  • Ligand-binding region 40 consists of a heavy chain immunoglobulin 42a and a light chain immunoglobulin 43a.
  • Ligand-binding region 41 consists of a heavy chain immunoglobulin 43b and a light chain immunoglobulin 42b.
  • binding region 40 to one or more diabodies 38 to an epitope on cage 32 blocks channel 36 and prevents substrate- enzyme interactions.
  • substrate 34 is not processed under non-stimulated conditions.
  • the linker regions 44 and 46 of diabody 38 are distorted so that channel 36 becomes unblocked and substrate 34 can pass through channel 36, indicted by arrow 49, and interact with enzyme 30.
  • channel 36 remains open and multiple substrates 34 can enter and be acted on to produce products 34a and 34b which may be colored products that are chromophoric or flourescent. Either one or both products 34a and 34b are then detected or amplified, and may be transduced into a perceptible signal.
  • alpha-2-macroglobulin is particularly well suited for acting as an enzyme cage because several enzymes, including trypsin and thrombin, will partially degrade alpha-2-macroglobulin, enter the protein, and become entrapped merely by mixing the alpha-2-macroglobulin and enzyme.
  • Enzyme 30 can be any that can be entrapped in a molecular cage and that produces a detectable change of its substrate.
  • One of ordinary skill in the art would realize that a myriad of enzyme-substrate pairs are detectable and therefore suitable.
  • Thrombin and trypsin for example, are two preferred enzymes.
  • a preferred substrate has a recognition site and a chromogen such that detectable colorimetric change occurs upon enzyme-substrate binding.
  • Linker regions 44 and 46 are engineered to allow substrate 34 to enter channel 36 upon binding of ligand 48 to antigen binding region 41.
  • Linker regions 44 and 46 are preferably of moderate length. The skilled artisan would appreciate that if the length of linker regions 44 and 46 are too short or too long, then these regions may not distort adequately to unblock channel 36. The preferred range of linker region length depends primarily on the nature of cage 32 and channel 36.
  • Linker regions 44 and 46 are also preferably bonded together by ionic, hydrogen, or other bonds. Otherwise, linker regions 44 and 46 would be susceptible to separation and consequently inadequate distortion upon binding of a pathogenic agent.
  • FIG. 3A An another embodiment of the present invention, represented schematically in Figs 3A-3C, also uses an enzyme-substrate amplification mechanism.
  • a single chain chimeric antibody 50 is engineered such that linker region 52 specifically binds an enzyme 54 to inhibit the binding of a substrate 56 to enzyme 54, as indicated by arrow 58.
  • linker region 52 has a portion of its polypeptide sequence that is complementary to the active site of enzyme 54. Techniques for the determination of suitable complementary polypeptides are well known.
  • a conformational change in linker region 52 results in the dissociation of antibody 50 from enzyme 54.
  • Liberated enzyme 54 is now able to act on substrate 56.
  • Each liberated enzyme can react with multiple substrates to provide an amplified signal.
  • a particularly preferred embodiment is depicted in Fig. 3C showing how an enzyme, such as luciferase, can be used to alter its substrate, in this example, the oxidation and dissociation of luciferin.
  • This reaction produces a fluorescent species 57a that is detectable below picogram levels of reaction product, and a non-fluorescent species 57b. Fluorescent species 57a is then detected or amplified and may be transduced into a perceptible signal.
  • Enzyme 54 can be any enzyme that produces a detectable conversion of its substrate.
  • a ligand detection system using a liquid crystal amplification mechanism was developed.
  • CFUs colony-forming units
  • the lyotropic liquid crystalline solution was prepared in a lamellar phase, using hexanol as a co-surfactant to help control the phase state of the mixture.
  • the mixture was then diluted with a saline solution (1% NaCl in water) until 85% of the weight was saline.
  • the resulting liquid crystal was lamellar but close to the micellar phase (Nastishin, Langmuir. Vol. 12, pp. 5011 - 5015, 1996), incorporated herein by reference. In this phase, the lyotropic liquid crystal is biphilic, and thus is capable of interacting with several different types of receptors.
  • the tested detection system was created by inserting a receptor (antibody) into the hexanol/CpCl/saline lyotropic liquid crystal.
  • a receptor antibody
  • 5 ⁇ l of the antibody (500 ng) solution, specifically reactive against E. coli (LPS) was added to 5 ⁇ l of the lyotropic liquid crystalline solution and mixed.
  • An experimental sample (5 ⁇ l) was then added to an aliquot (lO ⁇ l) of the liquid crystal-antibody mixture and mixed.
  • the experimental samples were added to the antibody-liquid crystal mixture as follows: Sample A-5 ⁇ l of E.
  • IOD ( ⁇ - log ⁇ foreground) (background)
  • Standard 2mg/100 ⁇ l solution of human alpha-2-macroglobulin ( ⁇ 2 M, 5 Calbiochem Co., product number 441251), trypsin (Sigma Chemical Co., T-8003) and thrombin (Sigma Chemical Co., T-4648) were made by dissolving the protease or antiprotease in 0.1 M HEPES buffer (pH 7.6). Equal volumes (lOO ⁇ l) of 2 M and one of the enzymes were mixed, permitted to interact for ten minutes at room temperature and then cooled to 4°C.
  • the 200 ⁇ l sample was added to a gel filtration column (1 cm x 24 cm; 18.8 ml bed volume; 0.44ml/min flow rate; located in a 4°C cold room) packed with Sephadex G-100 to separate the caged enzyme from uncomplexed enzymes.
  • Column eluent was collected in 1.0 ml fractions. Changes in light absorbance at 280 nm was measured to determine the protein concentration in each fraction and enzymatic activity was determined to identify those fractions containing the caged enzymes.
  • the results of those measurements shown in Figs. 6A and 6B, demonstrate that fractions 15- 17 contained relatively pure samples of caged enzyme. Those fractions were used for the subsequent evaluations.
  • luciferase-based amplification mechanism The exceptional sensitivity of a luciferase-based amplification mechanism was demonstrated using a Berthold Lumat Luminometer. Varying amounts of luciferase (4 mg/ml of 0.15% NaCl, 1 OmM HEPES, ImM EDTA, 2 mM MgCl 2 , 2 mM dithiothreitol; Sigma Chemical Co.) were added to the luminometer reaction chamber.
  • luciferin Promega, E1483
  • 0.5 mM adenosine triphosphate Sigma Chemical Co., A-7699
  • 5 mM MgSO 4 5 mM MgSO 4
  • 1.0 mM dithiothreitol Sigma Chemical Co.
  • Fig. 7B shows that detectable luciferase activity can be measured with an enzyme concentration of only 0.0017 pg/ ⁇ l, and linear increases in activity are observed with progressive elevations in enzyme concentration.

Abstract

A system for the detection of ligands comprising at least one receptor and an amplification mechanism coupled to the receptor wherein an amplified signal is produced as a result of receptor binding a ligand. Examples of suitable amplification mechanisms include antibody-embedded liquid crystalline materials; use of alpha-2-macroglobulin to encage an enzyme, whereby the enzyme is separated from its substrate by a receptor; and a receptor engineered to inhibit the active site of an enzyme only in the absence of a ligand. Also provided are methods for the automatic detection of ligands.

Description

DETECTION OF LIGANDS WITH SIGNAL AMPLIFICATION
TECHNICAL FIELD OF THE INVENTION
The present invention generally relates to the detection of a ligand by a receptor.
More specifically, the present invention relates to highly specific receptors and the incorporation of these receptors into an amplification mechanism for the rapid and automatic detection of the ligand, particularly pathogens and/or their toxins.
BACKGROUND OF THE INVENTION
The detection of a ligand by a receptor (for example, detection of a pathogenic agent such as a microbe or toxin by an antibody; or detection of an antibody in blood by another antibody; or binding of a chemical toxin, such as nerve gas, to its receptor) is important in the diagnosis and treatment of individuals exposed to disease-causing agents. Early detection of pathogenic agents can be a great benefit in either disease prophylaxis or therapy before symptoms appear or worsen.
Every species, strain or toxin of a microbe contains unique surface ligands. Using molecular engineering and/or immunological techniques, receptor molecules, such as antibodies, can be isolated that will bind to these ligands with high specificity.
Methods have also been developed where receptors, such as antibodies, are linked to a signaling mechanism that is activated upon binding. Heretofore, however, no system has been developed that can quickly and automatically detect and amplify a receptor signal coming from the binding of a single or a low number of ligands. Such a system is imperative for rapid and accurate early detection of ligands.
Most available diagnostic tests are antibody based, and can be used to detect either a disease-causing agent or a biologic product produced by the patient in response to the agent. There are currently three prevailing methods of antibody production for recognition of ligands (antigens): polyclonal antibody production in whole animals with recognition for multiple epitopes, monoclonal antibody production in transformed cell lines with recognition for a single epitope (after screening), and molecularly engineered phage displayed antibody production in bacteria with recognition of a single epitope (after screening). Each of these receptor systems is capable of binding and identifying a ligand, but the sensitivity of each is limited by the particular immunoassay detection system to which it is interfaced.
Immunoassays, such as enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (El A), and radioimmunoassay (RIA), are well known for the detection of antigens. The basic principle in many of these assays is that an enzyme-, chromogen-, fluorogen-, or radionucleotide-conjugated antibody permits antigen detection upon antibody binding. In order for this interaction to be detected as a color, fluorescence or radioactivity change, significant numbers of antibodies must be bound to a correspondingly large number of antigen epitopes. Thus, there is a need for a system that rapidly, reliably, and automatically detects ligands, especially when present in very small quantities and consequently provides a measurable signal.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a system that will detect a ligand with high sensitivity and high specificity.
It is another object of the present invention to provide a system that will amplify a signal produced by the binding of a ligand to a receptor.
It is another object of the present invention to provide a caged enzyme amplification mechanism.
It is yet a further object of the present invention to provide a system that will activate an enzyme inactivated by a bound receptor.
It is still a further object of the present invention to provide a system that will distort a liquid crystal array upon the binding of a ligand to a receptor. It is still yet a further object of the present invention to provide a detection device that will continuously monitor the environment or the body and signal its possessor when a ligand is present.
In general, the present invention provides a system for the detection and amplification of ligands, such as pathogenic agents, comprising at least one receptor and an amplification mechanism coupled to that receptor, wherein an amplified signal is produced as a result of the receptor binding the ligand.
BRIEF DESCRIPTION OF THE DRA WINGS
FIG. 1A is a schematic representation of the lamellar structure of a lyotropic liquid crystal formed by alternating layers of water and biphilic molecules.
FIG. IB is a schematic representation of the amplification mechanism with a receptor inserted into the lyotropic liquid crystal.
FIG. 1C is a schematic representation of the amplification mechanism with the specific ligand bound to its receptor causing deformation of the liquid crystal and alteration of the transmission of polarized light. FIG. 2A is a schematic representation of a caged enzyme amplification mechanism in which one or more receptors blocks the channel leading to the enzyme in the absence of a ligand.
FIG. 2B is schematic representation of a caged enzyme amplification mechanism in which a ligand binds to the receptor causing distortion of the linker region and the unblocking of the channel leading to the enzyme.
FIG. 2C is a schematic representation of a caged enzyme antibody amplification mechanism in which, once activated by ligand binding to receptor, the channel leading to the enzyme remains open and multiple substrates can interact with the enzyme.
FIG 3 A is a schematic representation of an enzyme inactivated by a molecularly- engineered receptor.
FIG. 3B is a schematic representation of the binding of a ligand to the molecularly-engineered receptor causing dissociation of the receptor from the enzyme, exposing the active site of the enzyme to the substrate.
FIG. 3C is a schematic representation of substrate conversion by the enzyme, after picogram levels of ligand bind to the receptor. FIG. 4A is a photograph showing the birefringence of polarized light through a liquid crystal-receptor array in response to binding of a specific ligand to the receptor.
FIG. 4B is a photograph showing the absence of birefringence of polarized light through a liquid crystal-receptor array in a reaction mixture containing liquid crystal, receptor and PBS.
FIG. 4C is a photograph showing the absence of birefringence of polarized light through a liquid crystal-receptor array in a reaction mixture containing liquid crystal, receptor and an irrelevant ligand.
FIG. 5 is a graph showing the quantative analysis of the birefringence of polarized light through an liquid crystal-receptor array of the ligand detection system for selective receptor-ligand binding, as compared to non-selective receptor-ligand binding and background receptor-ligand binding.
FIG. 6A is a graph showing enzymatic activity of elution fractions containing an alpha-2-macroglobulin-trypsin complex.
FIG. 6B is a graph showing the protein concentration (ug/ml) of elution fractions containing an alpha-2-macroglobulin-trypsin complex. FIG. 6C is a graph showing the effect of the concentration of caged trypsin on detectable enzymatic activity over time (min.).
FIG. 6D is a graph showing the effect of the concentration of caged thrombin on detectable enzymatic activity over time (min.).
FIG. 6E is a graph showing the stability of caged trypsin over time (days).
FIG. 7A is a graph showing luciferase activity (Relative Light Units) over time (sec).
FIG. 7B is a graph showing luciferase activity (Relative Light Units) as a function of luciferase concentration (pg/ul).
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In the present invention, ligand-specific receptors are interfaced with an amplification mechanism such that a receptor-ligand interaction changes the conformation of the receptor and produces a signal. Amplification preferably occurs through a colorimetric, fluorometric or birefringent shift that can be photometrically detected. The detected signal may then be electronically amplified to automate the system. Ligand Detection Component
Any receptor, such as antibodies or biologic/biologically engineered receptors for ligands, can be incorporated into the device as long as binding of the ligand to the receptor causes a detectable distortion of the receptor. For example, any type of monospecific antibody (polyclonal, monoclonal, or phage displayed) can effectively function as a receptor, and thus each of those antibody types will be described in the following paragraphs. Although phage-displayed antibodies can be expeditiously modified for identification of new ligands and are used as receptor examples in this patent application, any physically-distortable receptor-ligand interaction is appropriate for the detection component.
Polyclonal antibodies: Antibody-based antigen detection has been exploited for several decades. Injection of a purified ligand (antigen) into a host animal stimulates the immune system to produce an array of antibodies against various reactive sites on the antigen. Since several lymphocytes are responding to different antigenic epitopes, a multi-specific antibody cocktail (polyclonal) is created and can be purified for antigen detection.
Monoclonal antibodies: Antibody-producing spleen cells (B lymphocytes) are fused with immortalized myeloma cells to create hybridomas which provide nearly infinite quantities of antibody with a single, defined specificity. Interstrain and even interspecies hybrids of these 'monoclonal' antibodies can be generated through genetic engineering techniques. These highly specific antibodies have significant therapeutic potential, as evidenced by the U.S. Food and Drug Administration's approval of the use of mouse-human chimeric antibodies for treatment of selected diseases.
Phage-displayed mono-specific antibodies: Phage-displayed techniques will be used to isolate single chain chimeric antibodies to various pathogenic agents. The genomic DNA of the B lymphocyte contains the code to produce an antibody to virtually all possible ligands (antigens). In a phage displayed antibody system (PDA), DNA encoding a single chain chimera of the native antibody's hypervariable ligand-binding region is synthesized by joining DNA encoding an antibody heavy chain and DNA encoding an antibody light chain and inserting therebetween DNA encoding a linker region. The desired amino acid sequence of the linker region depends on the characteristics required for any given amplification mechanism. The linker region may have to be able to interact and/or bond to a protein or other substance. Therefore, the polypeptide sequence may have to have, for example, a particular conformation, specifically placed functional groups to induce ionic or hydrogen bonds, or a hydrophobicity that is compatible with the amplification mechanism. Regardless of the type of amplification mechanism, however, the linker region plays a critical role in interfacing the amplification mechanism to the receptor.
The DNA, preferably human or mouse, encoding the single chain chimeric antibody is cloned into a bacteriophage (phage) vector using well-known techniques (Marks et al., J. Mol. Bio. Vol. 222:581 (1991); Griffiths et al., EMBO J. 12:725 (1993); and Winters et al., Ann. Rev. Immunol. 12:433 (1994)), incorporated herein by reference. The single chain chimeric antibodies then become displayed on the surface of a filamentous phage with the hypervariable antigen-binding site extended outward.
After the addition of ligands, phage that are reactive against non-targeted ligands are subtracted from the phage library using known techniques (Marks et al, J. Mol. Bio. Vol. 222:581 (1991); Griffiths et al, EMBO J. 12:725 (1993); and Winters et al., Ann. Rev. Immunol. 12:433 (1994)), incorporated herein by reference. The remaining phage are reacted with their specific ligand and phage reactive with that specific ligand eluted. Each of these phage are then isolated and expressed in a bacterial host, such as Escherichia coli (E. coli) to produce a large quantity of phage containing the desired surface-displayed antibody. Each of the aforementioned methods relating to synthesizing and cloning DNA, subtracting phages, isolating and expressing phages and recovering viral DNA are well known and fully described by Marks et al., J. Mol. Biol. (1991); Griffiths et al., EMBO J. 12:725 (1993); and Winters et al, Ann. Rev. Immunol. 12:433 (1994), all of which are incorporated herein by reference.
Amplification Component
Any mechanism that permits detection of ligand-receptor complex formation functions as an amplifier and can be incorporated into the device. Three amplification mechanisms are proposed. First, a liquid crystal will amplify the distortion caused when a ligand binds to a receptor. Second, an enzyme will be placed in a biologic cage and a receptor will be attached to the biologic cage to prevent enzyme-substrate interaction. Ligand attachment to the receptor will open a substrate channel, resulting in enzyme- substrate interaction, and thus permitting detectable levels of reaction product. Third, the linker region of a receptor, such as a phage-displayed antibody, will be engineered to bind and inhibit the active site of an enzyme. Dissociation of the receptor-enzyme complex occurs upon formation of an receptor-ligand complex, such as an antigen- antibody complex, and results in activation of the enzyme and generation of product.
Liquid Crystal: A liquid crystal is a state of matter in which molecules exhibit some orientational order but little positional order. This intermediate ordering places liquid crystals between solids (which possess both positional and orientational order) and isotropic fluids (which exhibit no long-range order). Solid crystal or isotropic fluid can be caused to transition into a liquid crystal by changing temperature (creating a thermotropic liquid crystal) or by using an appropriate diluting solvent to change the concentration of solid crystal (creating a lyotropic liquid crystal). Lyotropic liquid crystals will be used for our amplification system.
As seen in Fig. 1A, most lyotropic liquid crystals, designated generally by the numeral 1, are formed using water 2 as a solvent for biphilic molecules 3, for example, molecules which possess polar (hydrophilic) aliphatic parts 4 and apolar (hydrophobic) aliphatic parts 5. When water 2 is added to a biphilic molecule 3, such as the cationic surfactant cetylpiridinium chloride [C21H3SC1N], a bilayer 6 forms as the hydrophobic regions coalesce to minimize interaction with water 2 while enhancing the polar component's interaction with water. The concentration and geometry of the specific molecule define the supramolecular crystalline order of the liquid crystal. The molecules can aggregate into lamellae as well as disk-like or rod-like micelles that form a nematic or cholesteric phase. The C21H38C1N forms a lamella of alternating layers of water and biphilic molecules. An orientational order is created by the alternating layers of water and biphilic molecules and thus the liquid crystal is opaque (exhibits optical anisotropy) to polarized light 7 provided by a light source located perpendicular to the plane of the liquid crystal.
Most biologic receptors possess both hydrophilic and hydrophobic regions and thus readily incorporate into biphilic lyotropic liquid crystals. Additionally, the inactivated receptors do not destroy the optical anisotropy of the liquid crystal and therefore, the receptor-enriched liquid crystal remains opaque to polarized light (Fig. IB). However, optical anisotropy is disrupted when receptor conformation shifts as during the formation of the receptor-ligand complex (Fig. IC). The elasticity of the liquid crystal enhances the local distortions in the vicinity of the receptor-ligand complex, and expands it to an optically detectable, supramicron scale. Biologic materials can be detected on the surface of thermotropic liquid crystals (V.K. Gupta et al, Science 279:277-2080, 1998). However, lyotropic liquid crystals readily incorporate ligand-specific receptors, and are thus clearly superior for detection of biologic molecules. Configurations of Ligand Detection System
By way of example, one envisioned application of the present invention is in a multiwell system. Each well of the system would contain PDAs to a specific ligand, such as a pathogenic microbe, interfaced with an amplification mechanism of the present invention. When the microbial agent interacts with the antibody, the resulting antibody distortion triggers the amplification mechanism. Preferably, the amplified signal is then transduced into a perceptible signal. Accordingly, it is envisioned that such a system could be placed in a physician's office, and be used in routine diagnostic procedures.
Alternatively, such a system could be placed on or near soldiers in battle, and the invention used to alert the soldiers to the presence of a toxic agent. It is further envisioned that a multiwell system, although it can be used with other embodiments, such as the luciferase or the caged enzyme described hereinbelow, is preferably used in conjunction with the liquid crystal embodiment described herein.
Thus, in one embodiment of the present invention, shown schematically in Figs. IB and IC, a lyotropic liquid crystalline material is used as an amplification mechanism. As shown in Fig. IB, the device consists of a light source 10, an initial polarizer 12, with the direction of polarization in the plane of the figure, a pathogen detection system 14a, comprising monspecific antibodies 14b embedded in biphilic, lyotropic liquid crystalline material 14c, a secondary polarizer 16, with the direction of polarization perpendicular to the plane of the figure, and a photodetector 18. In operation, the initial polarizer 12 organizes a light stream 22 that is linearly polarized in the plane of the figure. The optical axis 20 of the inactivated device is perpendicular to the pathogen detection system 14a, and thus no birefringence of the transluminating linearly polarized light stream 22 occurs. Since the polarization direction of the secondary polarizer 16 is perpendicular to the transluminating linearly polarized light 22, the secondary polarizer prevents light from reaching the photodetector 18.
Binding of a ligand 24, such as a microbe, to the receptor 14b, such as an antibody, distorts the liquid crystal 14c, induces birefringence and thus causes the generation of detectable light. This activation process is illustrated in Fig. IC. The receptor (antibody) 14b is embedded in the biphilic, lyotropic liquid crystal 14c. The spacial distortion caused by the formation of the antigen-antibody complex is transmitted to the contiguous liquid crystal 14c. The elastic characteristics of the liquid crystal permit the distortion to be transmitted over a region much larger than the size of the receptor-ligand complex. This allows the use of the standard optical phenomenon of birefringence to detect distortions caused by the receptor-ligand complex. The altered liquid crystalline order tilts the optical axis 20 and induces birefringence. In other words, the incident polarized light 22 gives rise to two refracted light waves: the ordinary wave and the extraordinary wave with the mutually orthogonal polarizations
(see, Max Born and E. Wolf., Principals of Optics, Sixth edition, Pergaman Press,
Oxford, 1980), incorporated herein by reference. Thus, there is a portion of light 26 in which the optic vibrates in the direction of the secondary polarizer 16. The secondary polarizer (analyzer) 16 allows this portion of the light to pass to the photodetector 18. The detected change or amplification in light intensity can be transduced electronically into a perceptible signal.
In another embodiment of the present invention, shown schematically in Figs
2A-2C, enzyme-substrate interactions are exploited for amplification. With reference to Fig. 2A, an enzyme 30 is entrapped within a cage 32 to prevent premature interaction of enzyme 30 and a substrate 34. Substrate 34 can potentially gain access to enzyme 30 through one or more channels 36 transecting cage 32. Channel 36, however, is blocked as indicated by arrow 37, by one or more receptors having dual binding capacities (diabodies) 38 in the absence of a pathogenic agent.
To produce a diabody, two antibodies are coupled, preferably according to the methods of Holliger et al. (Proc. Natl. Acad. Sci USA 90:6444, 1993), incorporated herein by reference, to form diabody 38 which has two distinct antigen-binding regions 40 and 41, directed toward channel 36 and a ligand 48, respectively. Ligand-binding region 40 consists of a heavy chain immunoglobulin 42a and a light chain immunoglobulin 43a. Ligand-binding region 41 consists of a heavy chain immunoglobulin 43b and a light chain immunoglobulin 42b. Without intending to be bound by any particular theory, it is believed that the binding of binding region 40 to one or more diabodies 38 to an epitope on cage 32 blocks channel 36 and prevents substrate- enzyme interactions. Thus substrate 34 is not processed under non-stimulated conditions. With reference to Fig. 2B, when binding region 41 attaches to ligand 48, the linker regions 44 and 46 of diabody 38 are distorted so that channel 36 becomes unblocked and substrate 34 can pass through channel 36, indicted by arrow 49, and interact with enzyme 30. Once activated by ligand 48, channel 36 remains open and multiple substrates 34 can enter and be acted on to produce products 34a and 34b which may be colored products that are chromophoric or flourescent. Either one or both products 34a and 34b are then detected or amplified, and may be transduced into a perceptible signal.
Although one skilled in the art would realize that various globular structures, preferably proteins, could be used as cage 32, alpha-2-macroglobulin is particularly well suited for acting as an enzyme cage because several enzymes, including trypsin and thrombin, will partially degrade alpha-2-macroglobulin, enter the protein, and become entrapped merely by mixing the alpha-2-macroglobulin and enzyme.
Enzyme 30 can be any that can be entrapped in a molecular cage and that produces a detectable change of its substrate. One of ordinary skill in the art would realize that a myriad of enzyme-substrate pairs are detectable and therefore suitable. Thrombin and trypsin, for example, are two preferred enzymes. A preferred substrate has a recognition site and a chromogen such that detectable colorimetric change occurs upon enzyme-substrate binding. Linker regions 44 and 46 are engineered to allow substrate 34 to enter channel 36 upon binding of ligand 48 to antigen binding region 41. Linker regions 44 and 46 are preferably of moderate length. The skilled artisan would appreciate that if the length of linker regions 44 and 46 are too short or too long, then these regions may not distort adequately to unblock channel 36. The preferred range of linker region length depends primarily on the nature of cage 32 and channel 36.
Linker regions 44 and 46 are also preferably bonded together by ionic, hydrogen, or other bonds. Otherwise, linker regions 44 and 46 would be susceptible to separation and consequently inadequate distortion upon binding of a pathogenic agent.
An another embodiment of the present invention, represented schematically in Figs 3A-3C, also uses an enzyme-substrate amplification mechanism. As shown in Fig. 3A, a single chain chimeric antibody 50 is engineered such that linker region 52 specifically binds an enzyme 54 to inhibit the binding of a substrate 56 to enzyme 54, as indicated by arrow 58. In this embodiment, linker region 52 has a portion of its polypeptide sequence that is complementary to the active site of enzyme 54. Techniques for the determination of suitable complementary polypeptides are well known.
As shown in Fig. 3B, when a binding region 60 of antibody 50 binds a ligand 62, a conformational change in linker region 52 results in the dissociation of antibody 50 from enzyme 54. Liberated enzyme 54 is now able to act on substrate 56. Each liberated enzyme can react with multiple substrates to provide an amplified signal. By way of example only, a particularly preferred embodiment is depicted in Fig. 3C showing how an enzyme, such as luciferase, can be used to alter its substrate, in this example, the oxidation and dissociation of luciferin. This reaction produces a fluorescent species 57a that is detectable below picogram levels of reaction product, and a non-fluorescent species 57b. Fluorescent species 57a is then detected or amplified and may be transduced into a perceptible signal. Enzyme 54 can be any enzyme that produces a detectable conversion of its substrate.
EXPERIMENTAL
Liquid Crystal Amplification Mechanism
A ligand detection system using a liquid crystal amplification mechanism was developed. A murine antibody to E. coli lipopolysaccharide (LPS), a surface antigen found on Gram-negative bacteria, was obtained from a commercial source (Biodesign
International, cat. # C61212M, clone #26-5, lot #5D1197) and diluted (1:10) with sterile phosphate-buffered saline (PBS) pH 7.2 to yield a 100 ng /μl sample.
A late log phase culture of E. coli was grown in Brain Heart Infusion (BHI) broth and washed free of growth medium with 0.9% sterile saline. Bacterial numbers
(determined by optical density at 600 nm and colony-forming units (CFUs)) were quantitated by extrapolation from growth curve data. Bacteria were then adjusted to 4.6 x 10' CFU per 5 μl by dilution with sterile saline.
The lyotropic liquid crystalline solution was prepared in a lamellar phase, using hexanol as a co-surfactant to help control the phase state of the mixture. Cetylpiridiniumchloride (CpCl) was combined with hexanol in the proportion hexanol/CpCl = 0.651 (w/w). The mixture was then diluted with a saline solution (1% NaCl in water) until 85% of the weight was saline. The resulting liquid crystal was lamellar but close to the micellar phase (Nastishin, Langmuir. Vol. 12, pp. 5011 - 5015, 1996), incorporated herein by reference. In this phase, the lyotropic liquid crystal is biphilic, and thus is capable of interacting with several different types of receptors.
The tested detection system was created by inserting a receptor (antibody) into the hexanol/CpCl/saline lyotropic liquid crystal. Thus, for each assay, 5 μl of the antibody (500 ng) solution, specifically reactive against E. coli (LPS), was added to 5 μl of the lyotropic liquid crystalline solution and mixed. An experimental sample (5μl) was then added to an aliquot (lOμl) of the liquid crystal-antibody mixture and mixed. The experimental samples were added to the antibody-liquid crystal mixture as follows: Sample A-5μl of E. coli (4.6 x 10' CFU), a specific bacteria that the system is designed to detect; Sample B- 5 μl of PBS, or Sample C-5μl (2 x 106 CFU) S aureus, an irrelevant bacteria that the system should not detect. The samples were centrifuged (3,500 x g; 5 sec.) to eliminate bubbles, and 10 μl of the reaction mixture was placed on an ethanol- cleaned microscope slide, covered with an ethanol-cleaned glass cover slip, and the mixture was evaluated for birefringence using polarized light. The experimental conditions and results are summarized in Table 1. Birefringence occurred only when the antibody was bound to its specific antigen, with visually discernable changes in birefringence detected for bacteria concentrations as low as 46-460 CFU per 5 μl.
TABLE 1
Figure imgf000022_0001
In other experiments, LPS antibody, E. Coli (2.7 x 107 CFU) and liquid crystalline material were reacted in a manner similar to the previous experiment, and representative photomicrographs (11 OX magnification; Figs. 4 A, 4B and 4C) were evaluated with a Bio-Quant Image Analysis System. The image analysis was performed to quantatively compare propagating light transmission when E. coli, PBS or S. aureus was evaluated by the receptor-ligand binding system. The photographic images were digitized and integrated optical density (IOD) automatically calculated according to the following formula:
IOD = (Σ - log ^foreground) (background)
The resulting data, presented in Fig. 5, show that a profound increase in transmission of propagating light occurs when liquid crystals amplify the binding of antibody to E. coli (LPS).
Caged Enzyme Amplification Mechanism
The sensitivity of an alpha-2-macroglobulin amplification mechanism was demonstrated. Standard 2mg/100μl solution of human alpha-2-macroglobulin (α2M, 5 Calbiochem Co., product number 441251), trypsin (Sigma Chemical Co., T-8003) and thrombin (Sigma Chemical Co., T-4648) were made by dissolving the protease or antiprotease in 0.1 M HEPES buffer (pH 7.6). Equal volumes (lOOμl) of 2M and one of the enzymes were mixed, permitted to interact for ten minutes at room temperature and then cooled to 4°C. The 200μl sample was added to a gel filtration column (1 cm x 24 cm; 18.8 ml bed volume; 0.44ml/min flow rate; located in a 4°C cold room) packed with Sephadex G-100 to separate the caged enzyme from uncomplexed enzymes. Column eluent was collected in 1.0 ml fractions. Changes in light absorbance at 280 nm was measured to determine the protein concentration in each fraction and enzymatic activity was determined to identify those fractions containing the caged enzymes. The results of those measurements, shown in Figs. 6A and 6B, demonstrate that fractions 15- 17 contained relatively pure samples of caged enzyme. Those fractions were used for the subsequent evaluations.
Small synthetic substrates, N-benzoyl-L-arg-p-nitroanalide and N-p-tosyl-gly- pro-arg-p-nitroanalide, were used to define the enzymatic activities of caged trypsin (Fig. 6C) and caged thrombin (Fig, 6D), respectively. While both systems exhibited dose-response characteristics, the caged thrombin exhibited greater sensitivity. The enzymatic activity did not degrade with time. The enzymatic activity of the caged trypsin was unchanged following six days of storage at 4°C (Fig. 6E). Similarly, caged thrombin activity was also stable when measured 24 hours following preparation.
Luciferase Amplification Mechanism
The exceptional sensitivity of a luciferase-based amplification mechanism was demonstrated using a Berthold Lumat Luminometer. Varying amounts of luciferase (4 mg/ml of 0.15% NaCl, 1 OmM HEPES, ImM EDTA, 2 mM MgCl2, 2 mM dithiothreitol; Sigma Chemical Co.) were added to the luminometer reaction chamber. The enzymatic reaction was initiated by rapid injection of 0.5 mM luciferin (Promega, E1483), 0.5 mM adenosine triphosphate (Sigma Chemical Co., A-7699), 5 mM MgSO4, 1.0 mM dithiothreitol (Sigma Chemical Co.) in 50 mM HEPES buffer (pH 7.8) into the reaction chamber. Fig. 7B shows that detectable luciferase activity can be measured with an enzyme concentration of only 0.0017 pg/μl, and linear increases in activity are observed with progressive elevations in enzyme concentration.
It is to be understood that any variations evident fall within the scope of the claimed invention, and thus the selection of specific antibodies, caged enzymes, receptor-inactivated enzymes or liquid crystals can be determined without departing form the spirit of the invention herein disclosed and described. It should also be understood that the present invention, while particularly suited for pathogen detection, is intended to include the detection of any ligand. Moreover, the scope of the invention shall include all modifications and variations that may fall within the scope of the attached claims.

Claims

We Claim:
1. A system for the detection of ligands comprising: at least one receptor; and an amplification mechanism coupled to the receptor, said amplification mechanism generating an amplified signal when the receptor binds to the ligand.
2. The system of claim 1, wherein the receptor is an antibody selected from the group consisting of monclonal, polyclonal and molecularly engineered antibodies.
3. The system of claim 1, wherein the ligand is a pathogenic agent.
4. The system of claim 1, wherein the amplification mechanism includes a liquid crystalline material having the receptor incorporated therein.
5. The system of claim 4, wherein the amplified signal is generated by a change in optical characteristics of the liquid crystalline material.
6. The system of claim 1, wherein the amplification mechanism comprises: an enzyme 30 within a biologic/molecular cage 32; and wherein the receptor 38 is bound to the biologic/molecular cage 32 and wherein the amplified signal results from the enzyme acting upon a plurality of substrate molecules once the receptor binds to the ligand.
7. The system of claim 6, wherein the biologic/molecular cage is a globular protein.
8. The system of claim 6, wherein the biologic/molecular cage is alpha-2- macroglobulin.
. The system of claim 6, wherein the receptor is an antibody selected from the group consisting of monclonal, polyclonal and molecularly engineered antibodies.
10. The system of claim 6, wherein receptor binds to a specific ligand.
11. The system of claim 6, wherein the receptor is a diabody having a ligand-binding region and a cage-binding region connected by a linker region.
12. The system of claim 6, wherein the receptor blocks the channel before ligand binding, and wherein the cage has a channel through which the substrate molecules pass after ligand binding.
13. The system of claim 6, wherein the receptor is a diabody, and wherein the ligand is a pathogenic agent.
14. The system of claim 1, wherein the amplification mechanism includes an enzyme having an active site for a substrate, and wherein the receptor inhibits substrate- enzyme interaction prior to ligand binding, and wherein the enzyme is liberated upon ligand binding, and wherein the amplified signal results from the substrate- enzyme interaction.
15. The system of claim 14, wherein the receptor is an antibody and the ligand is pathogenic agent.
16. The system of claim 14, wherein the amplified signal is fluorometric change.
17. The system of claim 14, wherein the enzyme is luciferase.
18. The system of claim 14, wherein the antibody is selected form the group consisting of monclonal, polyclonal and molecularly engineered antibodies.
19. The system of claim 14, wherein the receptor has a linker region that binds to the active site of the enzyme prior to ligand binding.
20. A device for the detection and monitoring of the presence of ligands comprising: multiple wells, each well having a predetermined receptor thereon; and an amplification mechanism coupled to the predetermined receptor that is activated upon binding of a specific ligand to its predetermined receptor.
21. The device of claim 20, wherein the receptor is an antibody.
22. The device of claim 21, wherein the antibody is selected form the group consisting of monclonal, polyclonal and molecularly engineered antibodies.
23. The device of claim 22, wherein the amplification mechanism generates an amplified signal upon binding.
24. The device of claim 23, wherein said amplified signal is traduced into a perceptible signal.
PCT/US1999/010413 1998-06-10 1999-05-12 Detection of ligands with signal amplification WO1999064862A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU39844/99A AU753758B2 (en) 1998-06-10 1999-05-12 Detection of ligands with signal amplification
JP2000553806A JP4377058B2 (en) 1998-06-10 1999-05-12 Ligand detection and amplification
BR9910982-4A BR9910982A (en) 1998-06-10 1999-05-12 Method and device for detecting binders
AT99922970T ATE287539T1 (en) 1998-06-10 1999-05-12 DETECTION OF LIGANDS WITH SIGNAL AMPLIFICATION
IL13991199A IL139911A0 (en) 1998-06-10 1999-05-12 Detection of ligands with signal amplification
DE69923313T DE69923313D1 (en) 1998-06-10 1999-05-12 DETECTION OF LIGANDS WITH SIGNAL GAIN
CA002334712A CA2334712A1 (en) 1998-06-10 1999-05-12 Detection of ligands with signal amplification
EP99922970A EP1086374B1 (en) 1998-06-10 1999-05-12 Detection of ligands with signal amplification
IL139911A IL139911A (en) 1998-06-10 2000-11-26 Device for detection of ligands using signal amplification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/095,196 US6171802B1 (en) 1998-06-10 1998-06-10 Detection and amplification of ligands
US09/095,196 1998-06-10

Publications (1)

Publication Number Publication Date
WO1999064862A1 true WO1999064862A1 (en) 1999-12-16

Family

ID=22250600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/010413 WO1999064862A1 (en) 1998-06-10 1999-05-12 Detection of ligands with signal amplification

Country Status (10)

Country Link
US (5) US6171802B1 (en)
EP (1) EP1086374B1 (en)
JP (1) JP4377058B2 (en)
AT (1) ATE287539T1 (en)
AU (1) AU753758B2 (en)
BR (1) BR9910982A (en)
CA (1) CA2334712A1 (en)
DE (1) DE69923313D1 (en)
IL (2) IL139911A0 (en)
WO (1) WO1999064862A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061325A2 (en) * 2000-02-16 2001-08-23 Wisconsin Alumni Research Foundation Biochemical blocking layer for liquid crystal assay
WO2002093243A1 (en) * 2001-05-11 2002-11-21 Kent State University Bulk alignment of lyotropic chromonic liquid crystals
US6673398B2 (en) 2001-05-14 2004-01-06 Kent State University Alignment of lyotropic chromonic liquid crystals at surfaces as monolayers and multilayered stacks
US6797463B2 (en) 2000-02-16 2004-09-28 Wisconsin Alumni Research Foundation Method and apparatus for detection of microscopic pathogens
US6824837B2 (en) 2001-09-04 2004-11-30 Wisconsin Alumni Research Foundation Liquid crystal switching mechanism
US6849321B2 (en) 2002-11-08 2005-02-01 Wisconsin Alumni Research Foundation Surfaces with gradients in surface topography
US7125592B2 (en) 2002-04-10 2006-10-24 Wisconsin Alumni Research Foundation Detecting interactions at biomimetic interfaces with liquid crystals
US7135143B2 (en) 2001-03-14 2006-11-14 Wisconsin Alumni Research Foundation Detecting compounds with liquid crystals
US7303694B2 (en) 2003-07-17 2007-12-04 Wisconsin Alumni Research Foundation Liquid crystals with reduced toxicity and applications thereof
US7807348B2 (en) 2002-03-20 2010-10-05 Wisconsin Alumni Research Foundation Optical imaging of nanostructured substrates

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020052002A1 (en) * 1998-06-10 2002-05-02 Niehaus Gary D. Detection and amplification of ligands
US6171802B1 (en) * 1998-06-10 2001-01-09 Kent State University Detection and amplification of ligands
US6537631B1 (en) * 1999-04-30 2003-03-25 Kimberly-Clark Worldwide, Inc. Roll of wet wipes
US7666661B2 (en) 2001-08-27 2010-02-23 Platypus Technologies, Llc Substrates, devices, and methods for quantitative liquid crystal assays
US20030099993A1 (en) * 2001-10-04 2003-05-29 Wisconsin Alumni Research Foundation Detection of DNA hybridization on surfaces
JP2006501860A (en) 2002-05-22 2006-01-19 プラティパス テクノロジーズ エルエルシー Substrates, devices and methods for assaying cells
US8268614B2 (en) * 2002-05-22 2012-09-18 Platypus Technologies, Llc Method for assaying cell movement
US20030232340A1 (en) * 2002-06-13 2003-12-18 David Anderson Nanoporous particle with a retained target
US7060225B2 (en) * 2003-03-20 2006-06-13 Northeastern Ohio Universities College Of Medicine Self-contained assay device for rapid detection of biohazardous agents
US20050064395A1 (en) 2003-07-25 2005-03-24 Platypus Technologies, Llc Liquid crystal based analyte detection
US20050069928A1 (en) * 2003-08-04 2005-03-31 Blue Heron Biotechnology, Inc. Methods for synthesis of defined polynucleotides
US7795007B2 (en) 2003-09-23 2010-09-14 Wisconsin Alumni Research Foundation Detection of post-translationally modified peptides with liquid crystals
DE602004011244T2 (en) * 2003-09-23 2009-02-12 Wisconsin Alumni Research Foundation, Madison USE OF LIQUID CRYSTALS FOR THE DETECTION OF AFFINITY MICROCONTACT PRINTED BIOMOLECULES
US7531366B2 (en) * 2004-07-23 2009-05-12 Platypus Technologies, Llc Bead based assays using a liquid crystal reporter
US7294370B2 (en) * 2004-08-17 2007-11-13 Kent State University Aligned lyotropic chromonic liquid crystal films
US7662572B2 (en) * 2005-08-25 2010-02-16 Platypus Technologies, Llc. Compositions and liquid crystals
US20070099306A1 (en) * 2005-09-28 2007-05-03 Kent State University Liquid crystal sensor system
US7407815B2 (en) * 2005-09-28 2008-08-05 Kent State University Liquid crystal cassette
US8586389B2 (en) * 2005-09-28 2013-11-19 Kent State University Ligand concentrating, liquid crystal biosensor system
US7910382B2 (en) * 2005-10-31 2011-03-22 Wisconsin Alumni Research Foundation Device and methods for liquid crystal-based bioagent detection
EP2057277B1 (en) 2006-08-07 2018-06-13 Platypus Technologies, LLC Substrates, devices, and methods for cellular assays
US7842499B2 (en) * 2006-08-07 2010-11-30 Platypus Technologies, Llc Substrates, devices, and methods for cellular assays
US20100209968A1 (en) * 2007-05-04 2010-08-19 Akermin, Inc. Immobilized enzymes and uses thereof
US9968935B2 (en) * 2007-08-20 2018-05-15 Platypus Technologies, Llc Devices for cell assays
US8472683B2 (en) * 2008-05-09 2013-06-25 General Electric Company Motion correction in tomographic images
US7947492B2 (en) * 2008-08-20 2011-05-24 Northeastern Ohio Universities College Of Medicine Device improving the detection of a ligand
WO2010031047A2 (en) 2008-09-15 2010-03-18 Platypus Technologies, Llc Detection of vapor phase compounds by changes in physical properties of a liquid crystal
CN102414554B (en) * 2009-04-22 2014-11-26 威斯康星校友研究基金会 Analyte detection using liquid crystals
US8404318B2 (en) * 2009-06-16 2013-03-26 Kent State University Methods and apparatus to produce aligned film of lyotropic chromonic liquid crystals
US11500247B2 (en) 2015-11-18 2022-11-15 Platypus Technologies, Llc Liquid crystal sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3617710A1 (en) * 1985-05-28 1986-12-04 Olympus Optical Co., Ltd., Tokio/Tokyo Method for carrying out immunological determinations

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817837A (en) * 1971-05-14 1974-06-18 Syva Corp Enzyme amplification assay
US4203802A (en) * 1971-05-14 1980-05-20 Syva Company Inhibitable enzyme amplification assay
US4067774A (en) * 1971-05-14 1978-01-10 Syva Company Compounds for enzyme amplification assay
US3975237A (en) * 1972-11-06 1976-08-17 Syva Company Compounds for enzyme amplification assay - - ecgonine analogs
US4604364A (en) 1974-01-04 1986-08-05 Kosak Kenneth M Bioluminescent tracer composition and method of use in immunoassays
US4600690A (en) * 1978-08-07 1986-07-15 Albert Einstein College Of Medicine Of Yeshiva University, A Division Of Yeshiva University Immunoassay
US5156965A (en) * 1983-11-29 1992-10-20 Igen, Inc. Catalytic antibodies
US5096807A (en) * 1985-03-06 1992-03-17 Murex Corporation Imaging immunoassay detection system with background compensation and its use
US4693970A (en) * 1985-06-21 1987-09-15 Becton, Dickinson And Company Immunoassay using complement
US5149626A (en) 1987-05-14 1992-09-22 Mclean Hospital Corporation Multiple antigen immunoassay
US5447837A (en) 1987-08-05 1995-09-05 Calypte, Inc. Multi-immunoassay diagnostic system for antigens or antibodies or both
IL83451A (en) * 1987-08-06 1991-06-10 Univ Ramot Stabilized water soluble enzymes and a method for their preparation
US4943525A (en) 1987-11-02 1990-07-24 Bioventures, Inc. Simultaneous immunoassay for the determination of antigens and antibodies
US5252459A (en) 1988-09-23 1993-10-12 Abbott Laboratories Indicator reagents, diagnostic assays and test kits employing organic polymer latex particles
IE921342A1 (en) * 1991-04-26 1992-11-04 Surface Active Ltd Novel antibodies, and methods for their use
US5596434A (en) * 1993-09-24 1997-01-21 University Research Corporation Self-assembled monolayers for liquid crystal alignment
US5681571A (en) * 1993-10-08 1997-10-28 Duotol Ab Immunological tolerance-inducing agent
WO1995033803A1 (en) 1994-06-06 1995-12-14 Hoechst Celanese Corporation Thermotropic liquid crystalline poly(esteramides)
GB9417593D0 (en) * 1994-09-01 1994-10-19 Secr Defence Luciferase labelling method
US6207369B1 (en) * 1995-03-10 2001-03-27 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US6001571A (en) 1995-11-30 1999-12-14 Mandecki; Wlodek Multiplex assay for nucleic acids employing transponders
GB9712818D0 (en) * 1996-07-08 1997-08-20 Cambridge Antibody Tech Labelling and selection of specific binding molecules
GB9622524D0 (en) * 1996-10-29 1997-01-08 London Biotechnology Ltd Enzyme labels for assays
US5763158A (en) * 1997-02-06 1998-06-09 The United States Of America As Represented By The Secretary Of The Army Detection of multiple antigens or antibodies
IL129848A (en) 1997-09-09 2003-04-10 Select Release L C Coated particles and methods of making and using same
US6284197B1 (en) 1998-06-05 2001-09-04 The Regents Of The University Of California Optical amplification of molecular interactions using liquid crystals
US6171802B1 (en) 1998-06-10 2001-01-09 Kent State University Detection and amplification of ligands
US20020052002A1 (en) * 1998-06-10 2002-05-02 Niehaus Gary D. Detection and amplification of ligands
AU1763701A (en) * 1999-11-12 2001-06-06 3M Innovative Properties Company Liquid crystal alignment structures and optical devices containing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3617710A1 (en) * 1985-05-28 1986-12-04 Olympus Optical Co., Ltd., Tokio/Tokyo Method for carrying out immunological determinations

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUPTA, V.K. ET AL.: "Design of Surfaces for Patterned Alignment of Liquid Crystals on Planar and Curved Substrates", SCIENCE, vol. 276, 6 June 1997 (1997-06-06), pages 1533 - 1536, XP002115847 *
GUPTA, V.K. ET AL.: "Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals", SCIENCE, vol. 279, 27 March 1998 (1998-03-27), pages 2077 - 2080, XP002115846 *
R. SEABROOK AND T. ATKINSON: "Modification of Antibodies", STOCKTON PRESS, 1991; ISBN: 1-56159-020-7, NEW YORK, USA; PAGES 53-77, XP002115849 *
R. SUTHERLAND ET AL.: "Surface effect immunoassay", STOCKTON PRESS, 1991; ISBN: 1-56159-020-7, NEW YORK, USA; PAGES 515-542, XP002115848 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061325A3 (en) * 2000-02-16 2002-04-11 Wisconsin Alumni Res Found Biochemical blocking layer for liquid crystal assay
WO2001061325A2 (en) * 2000-02-16 2001-08-23 Wisconsin Alumni Research Foundation Biochemical blocking layer for liquid crystal assay
US6692699B2 (en) 2000-02-16 2004-02-17 Wisconsin Alumni Research Foundation Biochemical blocking layer for liquid crystal assay
US6797463B2 (en) 2000-02-16 2004-09-28 Wisconsin Alumni Research Foundation Method and apparatus for detection of microscopic pathogens
US7662751B2 (en) 2000-02-16 2010-02-16 Wisconsin Alumni Research Foundation Method and apparatus for detection of microscopic pathogens
US7651662B2 (en) 2000-02-16 2010-01-26 Wisconsin Alumni Research Foundation Biochemical blocking layer for liquid crystal assay
US7135143B2 (en) 2001-03-14 2006-11-14 Wisconsin Alumni Research Foundation Detecting compounds with liquid crystals
WO2002093243A1 (en) * 2001-05-11 2002-11-21 Kent State University Bulk alignment of lyotropic chromonic liquid crystals
US6570632B2 (en) 2001-05-11 2003-05-27 Kent State University Lyotropic chromonic liquid crystals
US6673398B2 (en) 2001-05-14 2004-01-06 Kent State University Alignment of lyotropic chromonic liquid crystals at surfaces as monolayers and multilayered stacks
US6824837B2 (en) 2001-09-04 2004-11-30 Wisconsin Alumni Research Foundation Liquid crystal switching mechanism
US7807348B2 (en) 2002-03-20 2010-10-05 Wisconsin Alumni Research Foundation Optical imaging of nanostructured substrates
US7125592B2 (en) 2002-04-10 2006-10-24 Wisconsin Alumni Research Foundation Detecting interactions at biomimetic interfaces with liquid crystals
US7724319B2 (en) 2002-04-10 2010-05-25 Wisconsin Alumni Research Foundation Detecting interactions at biomimetic interfaces with liquid crystals
US6849321B2 (en) 2002-11-08 2005-02-01 Wisconsin Alumni Research Foundation Surfaces with gradients in surface topography
US7303694B2 (en) 2003-07-17 2007-12-04 Wisconsin Alumni Research Foundation Liquid crystals with reduced toxicity and applications thereof
US7951577B2 (en) 2003-07-17 2011-05-31 Wisconsin Alumni Research Foundation Liquid crystals with reduced toxicity and applications thereof

Also Published As

Publication number Publication date
JP2002517756A (en) 2002-06-18
US7927827B2 (en) 2011-04-19
AU3984499A (en) 1999-12-30
US6171802B1 (en) 2001-01-09
US20070059780A1 (en) 2007-03-15
ATE287539T1 (en) 2005-02-15
US20080138244A1 (en) 2008-06-12
EP1086374B1 (en) 2005-01-19
US7732219B2 (en) 2010-06-08
US20070243593A1 (en) 2007-10-18
JP4377058B2 (en) 2009-12-02
DE69923313D1 (en) 2005-02-24
US20070218508A1 (en) 2007-09-20
IL139911A0 (en) 2002-02-10
BR9910982A (en) 2001-02-13
AU753758B2 (en) 2002-10-31
US7267957B2 (en) 2007-09-11
CA2334712A1 (en) 1999-12-16
IL139911A (en) 2008-06-05
EP1086374A1 (en) 2001-03-28

Similar Documents

Publication Publication Date Title
US7927827B2 (en) Detection and amplification of ligands
CA2285919C (en) Diagnostic tests and kits for clostridium difficile
US7160736B2 (en) Detection and amplification of ligands
JP5199067B2 (en) Immunoagglutination reagent kit and antigen measurement method
JP2009185037A (en) Composition and method for detecting ehrlichiacanis and ehrlichiachaffeensis antibody
EP2972367A1 (en) Biomarkers for detecting the presence of bacteria
AU2016342373B2 (en) Anti-bed bug monoclonal antibodies and methods of making and uses thereof
US20150276739A1 (en) Soluble treponema pallidum protein tp0453, tp0453-tp0326 fusion protein, and use in syphilis diagnosis
CN101356438A (en) Turbidimetric immunoassay for assessing human cysteine proteinase inhibitor C
JP2001512574A (en) Methods and kits for determining haptoglobin phenotype and uses thereof
MXPA00012140A (en) Detection of ligands with signal amplification
RU2478970C1 (en) Method for immunofluorescent detection of protective antigen of anthrax agent
KR102404143B1 (en) An antibody specific for nucleoprotein of lassa virus, hybridoma cell line producing the same, and a kit for detecting lassa virus using the same
JP2015127666A (en) Method of quickly detecting kudoa septempunctata
JP2868841B2 (en) Method and kit for detecting GMP abnormality
Abdel-Hamid Development of a portable immunoassay system for rapid and sensitive analyte detection
JPH07501396A (en) HLA (human leukocyte antigen) type classification method
WO2005024026A1 (en) Recombinant duffy antigens, fusions thereof, and use for detection of antibodies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 139911

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1999922970

Country of ref document: EP

Ref document number: 39844/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/012140

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 553806

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2334712

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1999922970

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 39844/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999922970

Country of ref document: EP