WO2000000567A1 - Chemical mechanical polishing slurry useful for copper/tantalum substrate - Google Patents

Chemical mechanical polishing slurry useful for copper/tantalum substrate Download PDF

Info

Publication number
WO2000000567A1
WO2000000567A1 PCT/US1999/014557 US9914557W WO0000567A1 WO 2000000567 A1 WO2000000567 A1 WO 2000000567A1 US 9914557 W US9914557 W US 9914557W WO 0000567 A1 WO0000567 A1 WO 0000567A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
polishing slurry
slurry
abrasive
Prior art date
Application number
PCT/US1999/014557
Other languages
French (fr)
Inventor
Vlasta Brusic Kaufman
Rodney C. Kistler
Shumin Wang
Original Assignee
Cabot Microelectronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Microelectronics Corporation filed Critical Cabot Microelectronics Corporation
Priority to DE69928537T priority Critical patent/DE69928537T2/en
Priority to AU47235/99A priority patent/AU4723599A/en
Priority to CA002335033A priority patent/CA2335033A1/en
Priority to JP2000557321A priority patent/JP4261058B2/en
Priority to EP99930777A priority patent/EP1098948B1/en
Priority to IL14030399A priority patent/IL140303A0/en
Publication of WO2000000567A1 publication Critical patent/WO2000000567A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • This invention concerns chemical mechanical polishing slurries that are useful when used in sequence for polishing a substrate including a copper portion and a tantalum portion.
  • the invention includes a first chemical mechanical polishing slurry including an abrasive, an oxidizing agent, a complexing agent and at least one organic amino compound.
  • the invention also includes a second chemical mechanical polishing slurry including an abrasive, an oxidizing agent and a complexing agent where the weight ratio of oxidizing agent to complexing agent is greater than 15.
  • This invention also includes a method for using the first and second chemical mechanical polishing slurries to sequentially polish a substrate including a copper portion and a tantalum portion.
  • Integrated circuits are made up of millions of active devices formed in or on a silicon substrate.
  • the active devices which are initially isolated from one another, are interconnected to form functional circuits and components.
  • the devices are interconnected through the use of multilevel interconnections.
  • Interconnection structures normally have a first layer of metallization, an interconnection layer, a second level of metallization, and sometimes a third and subsequent level of metallization.
  • Interlevel dielectrics such as doped and undoped silicon dioxide (SiO 2 ), or low- ⁇ dielectrics tantalum nitride are used to electrically isolate the different levels of metallization in a silicon substrate or well.
  • the electrical connections between different interconnection levels are made through the use of metallized vias.
  • metal contacts are used to form electrical connections between interconnection levels and devices formed in a well.
  • the metal vias and contacts may be filled with various metals and alloys including titanium (Ti), titanium nitride (TiN), tantalum (Ta), aluminum copper (Al-Cu), aluminum silicon (Al-Si), copper (Cu), tungsten (W), and combinations thereof.
  • the metal vias and contacts generally employ an adhesion layer such as titanium nitride (TiN), titanium (Ti), Tantalum (Ta), Tantalum nitride (TaN) or combinations thereof to adhere the metal layer to the SiO 2 substrate. At the contact level, the adhesion layer acts as a diffusion barrier to prevent the filled metal and SiO 2 from reacting.
  • metallized vias or contacts are formed by a blanket metal deposition followed by a chemical mechanical polish (CMP) step.
  • CMP chemical mechanical polish
  • via holes are etched through an interlevel dielectric (I D) to interconnection lines or to a semiconductor substrate.
  • I D interlevel dielectric
  • a thin adhesion layer such as tantalum nitride and/or tantalum is generally formed over the ILD and is directed into the etched via hole.
  • a metal film is blanket deposited over the adhesion layer and into the via hole. Deposition is continued until the via hole is filled with the blanket deposited metal.
  • CMP chemical mechanical polishing
  • the substrate is placed in direct contact with a rotating polishing pad.
  • a carrier applies pressure against the backside of the substrate.
  • the pad and table are rotated while a downward force is maintained against the substrate back.
  • An abrasive and chemically reactive solution commonly referred to as a "slurry" is applied to the pad during polishing.
  • the slurry initiates the polishing process by chemically reacting with the film being polished.
  • the polishing process is facilitated by the rotational movement of the pad relative to the substrate as slurry is provided to the wafer/pad interface. Polishing is continued in this manner until the desired film on the insulator is removed.
  • the slurry composition is an important factor in the CMP step.
  • the polishing slurry can be tailored to provide effective polishing to metal layers at desired polishing rates while minimizing surface imperfections, defects and corrosion and erosion. Furthermore, the polishing slurry may be used to provide controlled polishing selectivities to other thin-film materials used in current integrated circuit technology such as titanium, titanium nitride, tantalum, tantalum nitride, and the like.
  • CMP polishing slurries typically contain an abrasive material, such as silica or alumina, suspended in an oxidizing, aqueous medium.
  • abrasive material such as silica or alumina
  • U.S. patent No. 5,244,534 to Yu et al. reports a slurry containing alumina, hydrogen peroxide, and either potassium or ammonium hydroxide that is useful to remove tungsten at predictable rates with little removal of the underlying insulating layer.
  • U.S. Patent 5,209,816 to Yu et al. discloses a slurry comprising perchloric acid, hydrogen peroxide and a solid abrasive material in an aqueous medium that is useful for polishing aluminum.
  • U.S. Patent 5,340,370 to Cadien and Feller discloses a tungsten polishing slurry comprising approximately 0.1M potassium ferricyanide, approximately 5 weight percent silica and potassium acetate. Acetic acid is added to
  • U.S. Patent No. 4,789,648 to Beyer et al. discloses a slurry formulation using alumina abrasives in conjunction with sulfuric, nitric, and acetic acids and deionized water.
  • U.S. Patent Nos. 5,391,258 and 5,476,606 disclose slurries for polishing a composite of metal and silica which includes an aqueous medium, abrasive particles and an anion which controls the rate of silica removal.
  • Other polishing slurries for use in CMP applications are described in U.S. Patent No. 5,527,423 to Neville et al., U.S. Patent No. 5,354,490 to Yu et al., U.S.
  • Patent No. 5,340,370 to Cadien et al. U.S. Patent No. 5,209,816 to Yu et al.
  • U.S. Patent No. 5,157,876 to Medellin U.S. Patent No. 5,137,544 to Medellin
  • the metal surface may be polished using a slurry in which a surface film is not formed in which case the process proceeds by mechanical removal of metal particles and their dissolution in the slurry.
  • the chemical dissolution rate should be slow in order to avoid wet etching.
  • a more preferred mechanism is, however, one where a thin abradable layer is continuously formed by reaction between the metal surface and one or more components in the slurry such as a complexing agent and/or a film forming layer. The thin abradable layer is then removed in a controlled manner by mechanical action. Once the mechanical polishing process has stopped a thin passive film remains on the surface and controls the wet etching process. Controlling the chemical mechanical polishing process is much easier when a CMP slurry polishes using this mechanism.
  • the present invention is directed to a first chemical mechanical polishing slurry that is able to selectively polish the copper portion of a copper and tantalum or tantalum nitride containing substrate.
  • the present invention is also directed to a second chemical mechanical polishing slurry that is able to selectively polishing the tantalum and/or tantalum nitride portion of a copper and tantalum and/or tantalum nitride containing substrate. Furthermore, this invention is directed to methods for sequentially using a first and second chemical mechanical polishing slurry to polish a substrate including a copper portion and a tantalum and/or tantalum nitride portion. Another aspect of this invention are first and second chemical mechanical polishing slurry precursors that lack an oxidizing agent and that are separately combined with an oxidizing agent prior to use to give a useful CMP slurries.
  • This invention is a first chemical mechanical polishing slurry.
  • the first chemical mechanical polishing slurry comprising at least one abrasive, at least one oxidizing agent, at least one complexing agent, and at least one organic amino compound.
  • a preferred embodiment of the first polishing slurry is a composition comprising alumina, at least one oxidizing agent, tartaric acid, benzotriazole, and at least one organic amino compound.
  • This invention also includes a second chemical mechanical polishing slurry comprising at least one abrasive, at least one oxidizing agent, and acetic acid wherein the weight ratio of oxidizing agent to acetic acid is greater than about 10.
  • a preferred embodiment of the second chemical mechanical polishing slurry is a composition comprising an aqueous dispersion of alumina, hydrogen peroxide, from about 0.01 to about 3.0 wt% acetic acid, and from about 0.01 to about 0.2wt% benzotriazole wherein the weight ratio of oxidizing agent to acetic acid is greater than about 10, and wherein the slurry has a pH of from about 4 to about 9.
  • This invention is also a method for polishing a substrate including a copper portion and a portion selected from tantalum or tantalum nitride.
  • the method includes applying a first aqueous chemical mechanical polishing slurry comprising at least one abrasive, at least one oxidizing agent, at least one complexing agent, and at least one organic amino compound to the substrate.
  • a portion of the copper is removed from the substrate by bringing a pad into contact with the substrate and moving the pad in relation to the substrate to give a partially polished substrate.
  • a second slurry is applied to the partially polished substrate.
  • the second chemical mechanical polishing slurry comprises at least one abrasive, at least one oxidizing agent, and acetic acid wherein the weight ratio of oxidizing agent to acetic acid is greater than about 10. At least a portion of the tantalum or tantalum nitride is removed from the partially polished substrate by bringing a pad into contact with the substrate and thereafter moving the pad in relation to the substrate to give a polished substrate. DESCRIPTION OF THE CURRENT EMBODIMENT
  • the present invention relates to two chemical mechanical polishing slurries and to a method for using both slurries to sequentially polish a substrate including a copper portion and a tantalum or tantalum nitride portion at acceptable rates and with very few defects.
  • the first chemical mechanical polishing slurry may be used to polish a copper or copper alloy containing substrate
  • the second polishing slurry can be used to polish a tantalum or tantalum nitride containing substrate.
  • the chemical mechanical polishing slurry (“CMP slurry”), is a useful product of this invention that comprises an oxidizer, an abrasive, a complexing agent, an organic amino compound, and other optional ingredients.
  • the CMP slurry is useful for polishing a multiple level metallization which may include but are not limited to semi-conductor thin- films, integrated circuit thin-films, and for any other films and surfaces where CMP processes are useful.
  • copper and “copper containing alloys” are used interchangeably herein as it is within the understanding of one of skill in the art that the terms include but are not limited to substrates comprising layers of pure copper, copper aluminum alloys, and Ti/TiN/Cu, and Ta/TaN/Cu multi-layer substrates.
  • the terms “tantalum” and “tantalum containing alloys” are used interchangeably herein to refer to the tantalum and/or tantalum nitride adhesion layer under the conductive layer such as a conductive copper layer.
  • the first chemical mechanical polishing slurry is useful for polishing metals, especially copper and copper alloy containing metal layers associated with a substrate selected from the group including integrated circuits, thin films, multiple level semiconductors, and wafers.
  • the first CMP slurry is most useful for polishing the copper portion of a copper containing substrate of high rates.
  • the first chemical mechanical polishing slurry may be useful for polishing other metal layers besides copper.
  • the first CMP slurry includes at least one oxidizing agent.
  • the oxidizing agent aids in oxidizing the substrate metal layer or layers to their corresponding oxide, hydroxide, or ions.
  • the oxidizer may be used to oxidize a metal layer to its corresponding oxide or hydroxide, e.g., titanium to titanium oxide, tungsten to tungsten oxide, copper to copper oxide, and aluminum to aluminum oxide.
  • the oxidizing agent is useful when incorporated into the first CMP slurry to polish metals and metal based components including titanium, titanium nitride, tantalum, copper, tungsten, aluminum, and aluminum alloys such as aluminum/copper alloys, and various mixtures and combinations thereof by mechanically polishing the metals to remove the respective oxide layer.
  • the oxidizing agents used in the first CMP slurry of this invention are one or more inorganic or organic per-compounds.
  • a per-compound as defined by Hawley 's Condensed Chemical Dictionary is a compound containing at least one peroxy group (-O-O-) or a compound containing an element in its highest oxidation state.
  • Examples of compounds containing an element in its highest oxidation state include but are not limited to periodic acid, periodate salts, perbromic acid, perbromate salts, perchloric acid, perchloric salts, perboric acid, and perborate salts and permanganates.
  • Examples of non-per compounds that meet the electrochemical potential requirements include but are not limited to bromates, chlorates, chromates, iodates, iodic acid, and cerium (IV) compounds such as ammonium cerium nitrate.
  • Preferred oxidizing agents are peracetic acid, urea-hydrogen peroxide, hydrogen peroxide, monopersulfuric acid, dipersulfuric acid, salts thereof, and mixtures thereof including mixtures of urea and hydrogen peroxide.
  • a most preferred oxidizing agent is the combination of hydrogen peroxide and urea.
  • the oxidizing agent may be present in the first chemical mechanical polishing slurry in an amount ranging from about 0.3 to about 30.0 weight percent. It is preferred that the oxidizing agent is present in the first CMP slurry of this invention in an amount ranging from about 0.3 to about 17.0 weight percent and most preferably from about 0.5 to about 12.0 weight percent.
  • An optional oxidizing agent is urea hydrogen peroxide. Because urea hydrogen peroxide is 34.5 wt % hydrogen peroxide and 65.5 wt % urea, a greater amount by weight of urea hydrogen peroxide must be included in the first CMP slurry to achieve the desired oxidizer loading set forth above. For example, a range of 0.5 to 12.0 weight percent oxidizing agent corresponds to a urea hydrogen peroxide weight three times as great or from 1.5 to 36.0 weight percent.
  • a first CMP slurry comprising urea hydrogen peroxide can be formulated by a number of methods including combining urea peroxide with water, and by combining urea and hydrogen peroxide in an aqueous solution in a mole ratio range of from about 0.75:1 to about 2:1 to give a urea hydrogen peroxide oxidizer.
  • the first CMP slurry of this invention forms a passivation layer on the substrate surface. Once a passivation layer is formed, it becomes important to be able to disturb the passivation layer in order to more easily abrade metal oxides from the substrate surface with the abrasive component of the first CMP slurry.
  • One class of compounds that is included in the first CMP slurry for disturbing the passivation layer are complexing agents.
  • Useful complexing agents include but are not limited to acids such as citric, lactic, malonic, tartaric, succinic, acetic, oxalic, and other acids, as well as amino acid and amino sulfuric acids, phosphoric acids, phosphonic acids, and their salts.
  • a preferred first CMP slurry complexing agent is tartaric acid.
  • the complexing agent will be present in the first CMP slurry in an amount ranging from about 0.2 to about 5.0 weight present and preferably in an amount ranging from about 0.5 to about 3.0 weight percent.
  • the first CMP slurry of this invention will include at least one organic amino compound.
  • the organic amino compounds absorb on the polished substrate and inhibit the substrate material removal rate.
  • Organic amino compounds useful in the first CMP slurry include alkylamines, alcohol amines, amino acids, urea, derivatives of urea, and mixtures thereof. Preferred organic amino compounds are long chain alkylamines and alcoholamines.
  • long chain alkylamines refers to alkylamines having from 7 to 12 or more carbon atoms including, for example, nonylamine and dodecylamine.
  • useful alcoholamines include, but are not limited to monoethanolamine, and triethanolamine.
  • useful derivatives of urea include, but are not limited to biurea.
  • a preferred organic amino compound is the long chain alklyamine, dodecylamine.
  • a preferred alcoholamine is triethanolamine.
  • the organic amino compound should be present in the first CMP slurry in an amount ranging from about 0.005 to about 10.0 weight percent. More preferably, the organic amino compound is present in the first CMP slurry in an amount ranging from about 0.01 to about 5.0 weight percent.
  • the first CMP slurry of this invention may include an optional film forming agent.
  • the film forming agent may be any compound or mixtures of compounds that are capable of facilitating the formation of a passivation layer of metal oxides and dissolution inhibiting layers on the surface of the metal layer. Passivation of the substrate surface layer is important to prevent wet etching of the substrate surface.
  • Useful film forming agents are nitrogen containing cyclic compounds such as imidazole, benzotriazole, benzimidazole and benzothiazole and their derivatives with hydroxy, amino, imino, carboxy, mercapto, nitro and alkyl substituted groups, as well as urea, thiourea and others.
  • a preferred film forming agent is benzotriazole ("BTA").
  • the optional film forming agent may be present in the first CMP slurry of this invention in an amount ranging from about 0.01 weight percent to about 1.0 weight percent. It is preferred that film forming agent is present in the first CMP slurry in an amount ranging from about 0.01 to about 0.2 weight percent.
  • BTA, or other film forming agents included in the first CMP slurry may destabilize the uniform dispersion of abrasive in the slurry.
  • a variety of optional CMP slurry additives such as surfactants, stabilizers, or dispersing agents, can be used.
  • a surfactant is added to the first CMP slurry, then it may be an anionic, cationic, nonionic, or amphoteric surfactant or a combination of two or more surfactants can be employed.
  • a surfactant may be useful to reduce the within-wafer-non-uniformity (WIWNU) of the wafers, thereby improving the surface of the wafer and reducing wafer defects.
  • WIWNU within-wafer-non-uniformity
  • the amount of additive such as a surfactant that may be used in the first CMP slurry should be sufficient to achieve effective stabilization of the slurry and will typically vary depending on the particular surfactant selected and the nature of the surface of the metal oxide abrasive. For example, if not enough of a selected surfactant is used, it will have little or no effect on first CMP slurry stabilization. On the other hand, too much surfactant in the CMP slurry may result in undesirable foaming and/or flocculation in the slurry.
  • stabilizers such as surfactants should generally be present in the slurry of this invention in an amount ranging from about 0.001% to about 0.2% by weight, and preferably from about 0.001 to about 0.1 weight percent.
  • the additive may be added directly to the slurry or treated onto the surface of the metal oxide abrasive utilizing known techniques. In either case, the amount of additive is adjusted to achieve the desired concentration in the first polishing slurry.
  • Preferred surfactants useful in the first CMP slurry include dodecyl sulfate sodium salt, sodium lauryl sulfate, dodecyl sulfate ammonium salt, and mixtures thereof.
  • the pH of the first CMP slurry of this invention may be adjusted using any known acid, base, or amine. However, the use of an acid or base that contains no metal ions, such as ammonium hydroxide and amines, or nitric, phosphoric, sulfuric, or organic acids are preferred to avoid introducing undesirable metal components into the first CMP slurry.
  • the second CMP slurry is formulated so that it exhibits a low polishing rate towards copper and a typical polishing rate towards tantalum or tantalum nitride. It is preferred, therefore, that the second CMP slurry has a copper to tantalum polishing selectivity of less than about 2 to 1 and most preferably and less than about 1 to 5.
  • the second CMP slurry includes at least one oxidizing agent.
  • the oxidizing agent aids in oxidizing the substrate metal layer or layers to their corresponding oxide, hydroxide, or ions.
  • the oxidizer may be used to oxidize a metal layer to its corresponding oxide or hydroxide, e.g., tantalum to tantalum oxide.
  • the oxidizing agent is useful when incorporated into the second CMP slurry to polish metals and metal based components including titanium, titanium nitride, tantalum, copper, tungsten, aluminum, and aluminum alloys such as aluminum/copper alloys, and various mixtures and combinations thereof by mechanically polishing the metals with removal of the respective oxide layer.
  • the oxidizing agents used in the second CMP slurry of this invention are one or more inorganic or organic per-compounds.
  • a per-compound as defined by Hawley's Condensed Chemical Dictionary is a compound containing at least one peroxy group (-O-O-) or a compound containing an element in its highest oxidation state.
  • Examples of compounds containing an element in its highest oxidation state include but are not limited to periodic acid, periodate salts, perbromic acid, perbromate salts, perchloric acid, perchloric salts, perboric acid, and perborate salts and permanganates.
  • Examples of non-per compounds that meet the electrochemical potential requirements include but are not limited to bromates, chlorates, chromates, iodates, iodic acid, and cerium (IV) compounds such as ammonium cerium nitrate.
  • Non-exclusive examples of useful oxidizing agents include, but are not limited to peracetic acid, urea-hydrogen peroxide, hydrogen peroxide, monopersulfuric acid, dipersulfuric acid, salts thereof, and mixtures thereof including mixtures of urea and hydrogen peroxide.
  • a preferred oxidizing agent is hydrogen peroxide.
  • the oxidizing agent may be present in the second chemical mechanical polishing slurry in an amount ranging from about 0.3 to about 30.0 weight percent. It is preferred that the oxidizer is present in the second CMP slurry of this invention in an amount ranging from about 0.3 to about 17.0 weight percent and most preferably from about 1.0 to about 12.0 weight percent.
  • One class of compounds that is included in the second CMP slurry are complexing agents.
  • Useful complexing agents include but are not limited to acids such as citric, lactic, tartaric, succinic, acetic, oxalic and other acids, as well as amino acid and amino sulfuric acids, phosphonic acids, phosphoric acids, and their salts.
  • a preferred complexing agent is acetic acid.
  • the complexing agent will be present in the CMP slurry of this invention in an amount ranging from about 0.1 to about 5.0 weight present and preferably in an amount ranging from about 0.1 to about 3.0 weight percent.
  • the second CMP slurry include a far smaller weight amount of complexing agent in comparison of the weight amount of oxidizing agent in the slurry.
  • the second CMP slurry should have a oxidizing agent to complexing agent weight ratio greater than about 10, and preferably greater than about 25.
  • the second CMP slurry of this invention may include an optional film forming agent.
  • the film forming agent may be any compound or mixtures of compounds that are capable of facilitating the formation of a passivation layer of metal oxides and dissolution inhibiting layers on the surface of the metal layer. Passivation of the substrate surface layer is important to prevent wet etching of the substrate surface.
  • Useful film forming agents are nitrogen containing cyclic compounds such as imidazole, benzotriazole, benzimidazole and benzothiazole and their derivatives with hydroxy, amino, imino, carboxy, mercapto, nitro and alkyl substituted groups, as well as urea, thiourea and others.
  • a preferred film forming agent is benzotriazole ("BTA").
  • the film forming agent may be present in the second CMP slurry in an amount ranging from about 0.01 weight percent to about 1.0 weight percent. It is preferred that film forming agent is present in the second CMP slurry in an amount ranging from about 0.01 to about 0.5 weight percent.
  • BTA, or other film forming agents included in the second CMP slurry may destabilize the uniform dispersion of abrasive in the slurry.
  • CMP slurry additives such as surfactants, stabilizers, or dispersing agents.
  • a surfactant is added to the second CMP slurry, then it may be an anionic, cationic, nonionic, or amphoteric surfactant or a combination of two or more surfactants can be employed.
  • a surfactant may be useful to reduce the wi thin-wafer-non-uniformity (WIWNU) of the wafers, thereby improving the surface of the wafer and reducing wafer defects.
  • WIWNU wi thin-wafer-non-uniformity
  • the amount of additive such as a surfactant that may be used in the second CMP slurry should be sufficient to achieve effective stabilization of the slurry and will typically vary depending on the particular surfactant selected and the nature of the surface of the metal oxide abrasive. For example, if not enough of a selected surfactant is used, it will have little or no effect on CMP slurry stabilization. On the other hand, too much surfactant in the second CMP slurry may result in undesirable foaming and/or flocculation in the slurry. As a result, stabilizers such as surfactants should generally be present in the second slurry in an amount ranging from about 0.001% to about 0.2% by weight, and preferably from about 0.001 to about 0.1 weight percent.
  • the additive may be added directly to the slurry or treated onto the surface of the metal oxide abrasive utilizing known techniques. In either case, the amount of additive is adjusted to achieve the desired concentration in the first polishing slurry.
  • Preferred surfactants include dodecyl sulfate sodium salt, sodium lauryl sulfate, dodecyl sulfate ammonium salt, and mixtures thereof. Examples of useful surfactants include TRITON ® DF-16 manufactured by Union Carbide, and SURFYNOL ® manufactured by Air Products and Chemicals.
  • the pH of the second CMP slurry of this invention may be adjusted using any known acid, base, or amine. However, the use of an acid or base that contains no metal ions, such as ammonium hydroxide and amines, or nitric, phosphoric, sulfuric, or organic acids are preferred to avoid introducing undesirable metal components into the CMP slurry of this invention. It is most preferred that the second CMP slurry has a pH of from about 4 to about 7.5. III.
  • the first and second CMP slurries of this each invention include an abrasive.
  • the abrasive is typically a metal oxide.
  • the metal oxide abrasive may be selected from the group including alumina, titania, zirconia, germania, silica, ceria and mixtures thereof.
  • the first and second CMP slurries of this invention preferably each include from about 0.5 to about 15.0 weight percent or more of an abrasive. It is more preferred, however, that the first and second CMP slurries of this invention include from about 1.5 to about 6.0 weight percent abrasive.
  • the metal oxide abrasive may be produced by any techniques known to those skilled in the art.
  • Metal oxide abrasives can be produced using any high temperature process such as sol-gel, hydrothermal or, plasma process, or by processes for manufacturing fumed or precipitated metal oxides.
  • the metal oxide is a fumed or precipitated abrasive and, more preferably it is a fumed abrasive such as fumed silica or fumed alumina.
  • the production of fumed metal oxides is a well-known process which involves the hydrolysis of suitable feedstock vapor (such as aluminum chloride for an alumina abrasive) in a flame of hydrogen and oxygen.
  • Molten particles of roughly spherical shapes are formed in the combustion process, the diameters of which are varied through process parameters. These molten spheres of alumina or similar oxide, typically referred to as primary particles, fuse with one another by undergoing collisions at their contact points to form branched, three dimensional chain-like aggregates. The force necessary to break aggregates is considerable. During cooling and collecting, the aggregates undergo further collision that may result in some mechanical entanglement to form agglomerates. Agglomerates are thought to be loosely held together by van der Waals forces and can be reversed, i.e., de-agglomerated, by proper dispersion in a suitable media.
  • Precipitated abrasives may be manufactured by conventional techniques such as by coagulation of the desired particles from an aqueous medium under the influence of high salt concentrations, acids or other coagulants. The particles are filtered, washed, dried and separated from residues of other reaction products by conventional techniques known to those skilled in the art.
  • a preferred metal oxide will have a surface area, as calculated from the method of S. Brunauer, P.H. Emmet, and I. Teller, J. Am. Chemical Society, Volume 60, Page 309 (1938) and commonly referred to as BET, ranging from about 5 m 2 /g to about 430 m 2 /g and preferably from about 30m 2 /g to about 170 m 2 /g. Due to stringent purity requirements in the IC industry the preferred metal oxide should be of a high purity. High purity means that the total impurity content, from sources such as raw material impurities and trace processing contaminants, is typically less than 1% and preferably less than 0.01% (i.e., 100 ppm).
  • the metal oxide abrasive useful in the dispersion of this invention may consist of metal oxide aggregates or individual single sphere particles.
  • the term "particle” as it is used herein refers to both aggregates of more than one primary particle and to single particles. It is preferred that the metal oxide abrasive consists of metal oxide particles having a size distribution less than about 1.0 micron, a mean particle diameter less than about 0.4 micron and a force sufficient to repel and overcome the van der Waals forces between abrasive aggregates themselves.
  • Such metal oxide abrasives have been found to be effective in minimizing or avoiding scratching, pit marks, divots and other surface imperfections during polishing.
  • the particle size distribution in the present invention may be determined utilizing known techniques such as transmission electron microscopy (TEM).
  • the mean particle diameter refers to the average equivalent spherical diameter when using TEM image analysis, i.e., based on the cross-sectional area of the particle.
  • force is meant that either the surface potential or the hydration force of the metal oxide particles must be sufficient to repel and overcome the van der Waals attractive forces between the particles.
  • the metal oxide abrasive may consist of discrete, individual metal oxide particles having a primary particle diameter less than 0.4 micron (400nm) and a surface area ranging from about 10 m 2 /g to about 250 m 2 /g.
  • the metal oxide abrasive is incorporated into the aqueous medium of the polishing slurry as a concentrated aqueous dispersion of metal oxides, comprising from about 3% to about 45% solids, and preferably between 10% and 20% solids.
  • the aqueous dispersion of metal oxides may be produced utilizing conventional techniques, such as slowly adding the metal oxide abrasive to an appropriate media, for example, deionized water, to form a colloidal dispersion.
  • the dispersion is typically completed by subjecting it to high shear mixing conditions known to those skilled in the art.
  • the pH of the slurry may be adjusted away from the isoelectric point to maximize colloidal stability.
  • polishing slurry additives may be incorporated into the first CMP slurry and/or into the second CMP slurry.
  • One class of optional additives are inorganic acids and/or salts thereof which may be added to the first and/or second CMP slurry to further improve or enhance the polishing rate of the barrier layers in the wafer, such as titanium and tantalum.
  • Useful inorganic additives include sulfuric acid, phosphoric acid, phosphonic acid, nitric acid, HF acid, ammonium fluoride, ammonium salts, potassium salts, sodium salts or other cationic salts of sulfates, phosphates, phosphonates, and fluorides.
  • the first and second CMP slurries of this invention may be produced using conventional techniques known to those skilled in the art.
  • the oxidizing agent and other non-abrasive components are mixed into an aqueous medium, such as deionized or distilled water, at pre-determined concentrations under low shear conditions until such components are completely dissolved in the medium.
  • a concentrated dispersion of the metal oxide abrasive, such as fumed alumina, is added to the medium and diluted to the desired loading level of abrasive in the final CMP slurry.
  • the first and second CMP slurries of the present invention may be supplied as one package system including all of the slurry additives. Due to concerns about shipping CMP slurries containing oxidizing agents, and especially hydrogen peroxide, it is preferred that the first and second CMP slurries of this invention are prepared and packaged as a CMP precursor containing every ingredient except the oxidizing agent or agents, shipped to a customer, and combined with hydrogen peroxide or any oxidizing agent at the customer's facility prior to use. Therefore, an aspect of this invention is a first and second CMP composition and/or slurry precursor comprising one or more ingredients selected from the group including catalysts, abrasives, and stabilizers in dry or aqueous form but lacking an oxidizing agent. The first and second CMP precursors are separately combined with at least one oxidizing agent prior to use.
  • first and second CMP slurries of this invention including urea hydrogen peroxide can be formulated by adding hydrogen peroxide to a slurry precursor comprising urea and any other useful slurry components to give a urea hydrogen peroxide containing CMP slurries.
  • a preferred slurry precursor of this invention will comprise a dry or aqueous mixture of urea and at least one metal oxide abrasive. Additional ingredients may be incorporated into the urea containing slurry precursor are useful in first and second CMP slurries.
  • the CMP slurry of this invention may be used to polish any type of metal layer
  • the first chemical mechanical polishing slurry of this invention has been found to have a high copper, and low tantalum and tantalum nitride polishing rate.
  • the second chemical mechanical polishing slurry exhibits desirable low polishing rates towards the copper layer, while exhibiting a desirable high polishing rate towards the tantalum dielectric insulating layer.
  • the first and second CMP slurries may be used with any standard polishing equipment appropriate for use on the desired metal layer of the wafer.
  • the first and second CMP slurries of this invention are most useful for polishing a substrate including either a tantalum or tantalum nitride portion and a copper alloy containing portion, both over a dielectric layer.
  • the first chemical mechanical polishing slurry is applied to the substrate and the substrate is polished by conventional means using polishing machines and a polishing pad.
  • the substrate may be washed with deionized water or other solvents to remove the first CMP slurry from the partially polished substrate.
  • the second CMP slurry of this invention is applied to the substrate and the substrate is polished using conventional techniques in order to preferentially polish the tantalum or tantalum nitride portion in comparison to the copper portion of the partially polished substrate.
  • the second CMP slurry is washed from the substrate with deionized water or another solvent and the substrate is ready for further processing.
  • the first and/or the second CMP slurries may be applied directly to the substrate, to a polishing pad, or to both in a controlled manner during substrate polishing. It is preferred however that the first and second CMP slurries are applied to the pad which thereafter is placed against the substrate after which the pad is moved in relationship to the substrate in order to achieve substrate polishing.
  • the first and second CMP slurries polishes copper, titanium, titanium nitride, tantalum, and tantalum nitride layers at good rates under controllable conditions.
  • the polishing slurries of the present invention may be used during the various stages of semiconductor integrated circuit manufacture to provide effective polishing at desired polishing rates while minimizing surface imperfections and defects.
  • CMP polishing was accomplished using two CMP slurries.
  • the first slurry included an aqueous dispersion of 3.0 weight percent of a fumed alumina abrasive from SEMI-SPERSE * W-A355 dispersion sold by the
  • Ta in each slurry were tested by electrochemical techniques.
  • the set-up used a rotating disk electrode in a three-electrode cell with a 273 potentiostat and Corrosion Software by PAR.
  • Electrochemical data where obtained with a pre-selected electrode rotation of 500 rpm (or 19.94 m/sec maximum) with the rotator and the metal of interest in contact with the abrasive pad (with a down force of 5.9 psi) or raised above the pad.
  • the former value was assumed to be an approximate measure of the chemical rate during polishing, while the later approach gave the corrosion rate of the metal in a given slurry.
  • electrochemical data ware recorded as a potentiodynamic polarization curves, with the potential swept by a rate of 10 mV/sec from about -0.25 V cathodic to the open potential to some anodic potential.
  • the test results are listed in Table 1, columns 3- 4.
  • the copper and tantalum polishing rates were evaluated with an IPEC 472 polishing machine using a down force of 3 psi, a table speed of 55 rpm, and a spindle speed of 30 rpm.
  • the slurries were applied to an IC1000/SUBA IV pad stack manufactured by Rodel at a rate of 200ml/min. Polishing data are reported in Table 1, columns 5-6.
  • This example studies the effect of varying the weight ratio of oxidizing agent and complexing agent is second CMP slurries of this invention on copper and tantalum dissolution rates.
  • This example used a CMP slurry having the following composition; 1.25 weight percent tartaric acid; hydrogen peroxide in an amount identified in Table 2; 3.0 weight percent alumina abrasive (W-A355), 50 ppm Triton DF-16 surfactant with the remainder being deionized water.
  • the pH of the slurries were adjusted to 7.0 using ammonium hydroxide.
  • Polishing results using slurries with different ratios of tartaric acid and hydrogen peroxide oxidizing agent are listed in Table 2.
  • each slurry contained 3.65wt% urea.
  • the polishing rates were determined using blanket wafers on an IPEC 472 polishing tool, with an IC1000/SUBA IV pad stack manufactured by Rodel. The wafers were polished using a 3 psi down force, a table speed of 55 rpm, a spindle speed of 30 rpm, and a slurry flow rate of 200 ml/min. Table 2
  • polishing results show that increasing the tartaric acid/peroxide weight ratio increases the Cu removal rate without significantly affecting the Ta rate.
  • Example 2 Table 3 were used as the basis for formulating a second chemical mechanical polishing slurry useful for polishing tantalum and tantalum nitride.
  • the copper and tantalum polishing rates for several second polishing slurry candidates are reported in Table 4, below.
  • the alumina used in the chemical mechanical polishing slurries was a fumed alumina diluted from SEMI-SPERSE * W-A355, an alumina dispersion sold by the Microelectronics Materials Division of Cabot Corporation, in Aurora, Illinois.

Abstract

The present invention is a first CMP slurry including an abrasive, an oxidizing agent, a complexing agent, a film forming agent and an organic amino compound, a second polishing slurry including an abrasive, an oxidizing agent, and acetic acid wherein the weight ratio of the oxidizing agent to acetic acid is at least 10 and a method for using the first and second polishing slurries sequentially to polish a substrate containing copper and containing tantalum or tantalum nitride or both tantalum and tantalum nitride.

Description

TITLE
CHEMICAL MECHANICAL POLISHING SLURRY USEFUL FOR COPPER/TANTALUM SUBSTRATE
BACKGROUND OF THE INVENTION
(1) Field of the Invention.
This invention concerns chemical mechanical polishing slurries that are useful when used in sequence for polishing a substrate including a copper portion and a tantalum portion. The invention includes a first chemical mechanical polishing slurry including an abrasive, an oxidizing agent, a complexing agent and at least one organic amino compound. The invention also includes a second chemical mechanical polishing slurry including an abrasive, an oxidizing agent and a complexing agent where the weight ratio of oxidizing agent to complexing agent is greater than 15. This invention also includes a method for using the first and second chemical mechanical polishing slurries to sequentially polish a substrate including a copper portion and a tantalum portion.
(2) Description of the Art.
Integrated circuits are made up of millions of active devices formed in or on a silicon substrate. The active devices, which are initially isolated from one another, are interconnected to form functional circuits and components. The devices are interconnected through the use of multilevel interconnections. Interconnection structures normally have a first layer of metallization, an interconnection layer, a second level of metallization, and sometimes a third and subsequent level of metallization. Interlevel dielectrics such as doped and undoped silicon dioxide (SiO2), or low-κ dielectrics tantalum nitride are used to electrically isolate the different levels of metallization in a silicon substrate or well. The electrical connections between different interconnection levels are made through the use of metallized vias. U.S. Patent No. 5,741,626, which is incorporated herein by reference, describes a method for preparing dielectric tantalum nitride layers.
In a similar manner, metal contacts are used to form electrical connections between interconnection levels and devices formed in a well. The metal vias and contacts may be filled with various metals and alloys including titanium (Ti), titanium nitride (TiN), tantalum (Ta), aluminum copper (Al-Cu), aluminum silicon (Al-Si), copper (Cu), tungsten (W), and combinations thereof. The metal vias and contacts generally employ an adhesion layer such as titanium nitride (TiN), titanium (Ti), Tantalum (Ta), Tantalum nitride (TaN) or combinations thereof to adhere the metal layer to the SiO2 substrate. At the contact level, the adhesion layer acts as a diffusion barrier to prevent the filled metal and SiO2 from reacting.
In one semiconductor manufacturing process, metallized vias or contacts are formed by a blanket metal deposition followed by a chemical mechanical polish (CMP) step. In a typical process, via holes are etched through an interlevel dielectric (I D) to interconnection lines or to a semiconductor substrate. Next, a thin adhesion layer such as tantalum nitride and/or tantalum is generally formed over the ILD and is directed into the etched via hole. Then, a metal film is blanket deposited over the adhesion layer and into the via hole. Deposition is continued until the via hole is filled with the blanket deposited metal. Finally, the excess metal is removed by chemical mechanical polishing, (CMP) to form metal vias. Processes for manufacturing and/or CMP of vias are disclosed in U.S. Patent Nos. 4,671,851, 4,910,155 and 4,944,836.
In a typical chemical mechanical polishing process, the substrate is placed in direct contact with a rotating polishing pad. A carrier applies pressure against the backside of the substrate. During the polishing process, the pad and table are rotated while a downward force is maintained against the substrate back. An abrasive and chemically reactive solution, commonly referred to as a "slurry" is applied to the pad during polishing. The slurry initiates the polishing process by chemically reacting with the film being polished. The polishing process is facilitated by the rotational movement of the pad relative to the substrate as slurry is provided to the wafer/pad interface. Polishing is continued in this manner until the desired film on the insulator is removed. The slurry composition is an important factor in the CMP step. Depending on the choice of the oxidizing agent, the abrasive, and other useful additives, the polishing slurry can be tailored to provide effective polishing to metal layers at desired polishing rates while minimizing surface imperfections, defects and corrosion and erosion. Furthermore, the polishing slurry may be used to provide controlled polishing selectivities to other thin-film materials used in current integrated circuit technology such as titanium, titanium nitride, tantalum, tantalum nitride, and the like.
Typically CMP polishing slurries contain an abrasive material, such as silica or alumina, suspended in an oxidizing, aqueous medium. For example, U.S. patent No. 5,244,534 to Yu et al. reports a slurry containing alumina, hydrogen peroxide, and either potassium or ammonium hydroxide that is useful to remove tungsten at predictable rates with little removal of the underlying insulating layer. U.S. Patent 5,209,816 to Yu et al. discloses a slurry comprising perchloric acid, hydrogen peroxide and a solid abrasive material in an aqueous medium that is useful for polishing aluminum. U.S. Patent 5,340,370 to Cadien and Feller discloses a tungsten polishing slurry comprising approximately 0.1M potassium ferricyanide, approximately 5 weight percent silica and potassium acetate. Acetic acid is added to buffer the pH at approximately 3.5.
U.S. Patent No. 4,789,648 to Beyer et al. discloses a slurry formulation using alumina abrasives in conjunction with sulfuric, nitric, and acetic acids and deionized water. U.S. Patent Nos. 5,391,258 and 5,476,606 disclose slurries for polishing a composite of metal and silica which includes an aqueous medium, abrasive particles and an anion which controls the rate of silica removal. Other polishing slurries for use in CMP applications are described in U.S. Patent No. 5,527,423 to Neville et al., U.S. Patent No. 5,354,490 to Yu et al., U.S. Patent No. 5,340,370 to Cadien et al., U.S. Patent No. 5,209,816 to Yu et al., U.S. Patent No. 5,157,876 to Medellin, U.S. Patent No. 5,137,544 to Medellin, and U.S. Patent No. 4,956,313 to Cote et al.
There are various mechanisms disclosed in the prior art by which metal surfaces can be polished with slurries. The metal surface may be polished using a slurry in which a surface film is not formed in which case the process proceeds by mechanical removal of metal particles and their dissolution in the slurry. In such a mechanism, the chemical dissolution rate should be slow in order to avoid wet etching. A more preferred mechanism is, however, one where a thin abradable layer is continuously formed by reaction between the metal surface and one or more components in the slurry such as a complexing agent and/or a film forming layer. The thin abradable layer is then removed in a controlled manner by mechanical action. Once the mechanical polishing process has stopped a thin passive film remains on the surface and controls the wet etching process. Controlling the chemical mechanical polishing process is much easier when a CMP slurry polishes using this mechanism.
Current copper containing substrates that are polished using chemical mechanical polishing also use Ta and TaN adhesion layers. Ta and TaN are chemically very passive and mechanically very hard and thus difficult to remove by polishing. The use of a single slurry, which performs with a high Cu:Ta selectivity demand prolonged polishing times for Ta, i.e. a significant overpolishing times for copper, during which there is a significant degradation of dishing and erosion performance. Several relevant Cu chemistries have been discussed in the open literature, each failing to deliver a process which successfully addresses all of the key requirements of a chemical-mechanical polishing slurry useful for a substrate including both copper and tantalum. As a result, there is a need for one or more CMP slurries that can be used successfully to polish copper and tantalum containing substrates.
SUMMARY OF THE INVENTION
The present invention is directed to a first chemical mechanical polishing slurry that is able to selectively polish the copper portion of a copper and tantalum or tantalum nitride containing substrate.
The present invention is also directed to a second chemical mechanical polishing slurry that is able to selectively polishing the tantalum and/or tantalum nitride portion of a copper and tantalum and/or tantalum nitride containing substrate. Furthermore, this invention is directed to methods for sequentially using a first and second chemical mechanical polishing slurry to polish a substrate including a copper portion and a tantalum and/or tantalum nitride portion. Another aspect of this invention are first and second chemical mechanical polishing slurry precursors that lack an oxidizing agent and that are separately combined with an oxidizing agent prior to use to give a useful CMP slurries.
This invention is a first chemical mechanical polishing slurry. The first chemical mechanical polishing slurry comprising at least one abrasive, at least one oxidizing agent, at least one complexing agent, and at least one organic amino compound. A preferred embodiment of the first polishing slurry is a composition comprising alumina, at least one oxidizing agent, tartaric acid, benzotriazole, and at least one organic amino compound. This invention also includes a second chemical mechanical polishing slurry comprising at least one abrasive, at least one oxidizing agent, and acetic acid wherein the weight ratio of oxidizing agent to acetic acid is greater than about 10. A preferred embodiment of the second chemical mechanical polishing slurry is a composition comprising an aqueous dispersion of alumina, hydrogen peroxide, from about 0.01 to about 3.0 wt% acetic acid, and from about 0.01 to about 0.2wt% benzotriazole wherein the weight ratio of oxidizing agent to acetic acid is greater than about 10, and wherein the slurry has a pH of from about 4 to about 9.
This invention is also a method for polishing a substrate including a copper portion and a portion selected from tantalum or tantalum nitride. The method includes applying a first aqueous chemical mechanical polishing slurry comprising at least one abrasive, at least one oxidizing agent, at least one complexing agent, and at least one organic amino compound to the substrate. A portion of the copper is removed from the substrate by bringing a pad into contact with the substrate and moving the pad in relation to the substrate to give a partially polished substrate. A second slurry is applied to the partially polished substrate. The second chemical mechanical polishing slurry comprises at least one abrasive, at least one oxidizing agent, and acetic acid wherein the weight ratio of oxidizing agent to acetic acid is greater than about 10. At least a portion of the tantalum or tantalum nitride is removed from the partially polished substrate by bringing a pad into contact with the substrate and thereafter moving the pad in relation to the substrate to give a polished substrate. DESCRIPTION OF THE CURRENT EMBODIMENT
The present invention relates to two chemical mechanical polishing slurries and to a method for using both slurries to sequentially polish a substrate including a copper portion and a tantalum or tantalum nitride portion at acceptable rates and with very few defects. Besides being used in combination to polish a copper and tantalum containing substrate, the first chemical mechanical polishing slurry may be used to polish a copper or copper alloy containing substrate, and the second polishing slurry can be used to polish a tantalum or tantalum nitride containing substrate. Before describing the details of the various preferred embodiments of this invention, some of the terms that are used herein will be defined. The chemical mechanical polishing slurry, ("CMP slurry"), is a useful product of this invention that comprises an oxidizer, an abrasive, a complexing agent, an organic amino compound, and other optional ingredients. The CMP slurry is useful for polishing a multiple level metallization which may include but are not limited to semi-conductor thin- films, integrated circuit thin-films, and for any other films and surfaces where CMP processes are useful.
The terms "copper" and "copper containing alloys" are used interchangeably herein as it is within the understanding of one of skill in the art that the terms include but are not limited to substrates comprising layers of pure copper, copper aluminum alloys, and Ti/TiN/Cu, and Ta/TaN/Cu multi-layer substrates.
The terms "tantalum" and "tantalum containing alloys" are used interchangeably herein to refer to the tantalum and/or tantalum nitride adhesion layer under the conductive layer such as a conductive copper layer. The first chemical mechanical polishing slurry is useful for polishing metals, especially copper and copper alloy containing metal layers associated with a substrate selected from the group including integrated circuits, thin films, multiple level semiconductors, and wafers. I. The First Chemical Mechanical Polishing Slurry
The first CMP slurry is most useful for polishing the copper portion of a copper containing substrate of high rates. The first chemical mechanical polishing slurry may be useful for polishing other metal layers besides copper.
The first CMP slurry includes at least one oxidizing agent. The oxidizing agent aids in oxidizing the substrate metal layer or layers to their corresponding oxide, hydroxide, or ions. For example, in the first CMP slurry, the oxidizer may be used to oxidize a metal layer to its corresponding oxide or hydroxide, e.g., titanium to titanium oxide, tungsten to tungsten oxide, copper to copper oxide, and aluminum to aluminum oxide. The oxidizing agent is useful when incorporated into the first CMP slurry to polish metals and metal based components including titanium, titanium nitride, tantalum, copper, tungsten, aluminum, and aluminum alloys such as aluminum/copper alloys, and various mixtures and combinations thereof by mechanically polishing the metals to remove the respective oxide layer.
The oxidizing agents used in the first CMP slurry of this invention are one or more inorganic or organic per-compounds. A per-compound as defined by Hawley 's Condensed Chemical Dictionary is a compound containing at least one peroxy group (-O-O-) or a compound containing an element in its highest oxidation state. Examples of compounds containing at least one peroxy group include but are not limited to hydrogen peroxide and its adducts such as urea hydrogen peroxide and percarbonates, organic peroxides such as benzyl peroxide, peracetic acid, and di-t-butyl peroxide, monopersulfates (SO5 =), dipersulfates (S2O8 =), and sodium peroxide. Examples of compounds containing an element in its highest oxidation state include but are not limited to periodic acid, periodate salts, perbromic acid, perbromate salts, perchloric acid, perchloric salts, perboric acid, and perborate salts and permanganates. Examples of non-per compounds that meet the electrochemical potential requirements include but are not limited to bromates, chlorates, chromates, iodates, iodic acid, and cerium (IV) compounds such as ammonium cerium nitrate. Preferred oxidizing agents are peracetic acid, urea-hydrogen peroxide, hydrogen peroxide, monopersulfuric acid, dipersulfuric acid, salts thereof, and mixtures thereof including mixtures of urea and hydrogen peroxide. A most preferred oxidizing agent is the combination of hydrogen peroxide and urea. The oxidizing agent may be present in the first chemical mechanical polishing slurry in an amount ranging from about 0.3 to about 30.0 weight percent. It is preferred that the oxidizing agent is present in the first CMP slurry of this invention in an amount ranging from about 0.3 to about 17.0 weight percent and most preferably from about 0.5 to about 12.0 weight percent. An optional oxidizing agent is urea hydrogen peroxide. Because urea hydrogen peroxide is 34.5 wt % hydrogen peroxide and 65.5 wt % urea, a greater amount by weight of urea hydrogen peroxide must be included in the first CMP slurry to achieve the desired oxidizer loading set forth above. For example, a range of 0.5 to 12.0 weight percent oxidizing agent corresponds to a urea hydrogen peroxide weight three times as great or from 1.5 to 36.0 weight percent.
A first CMP slurry comprising urea hydrogen peroxide can be formulated by a number of methods including combining urea peroxide with water, and by combining urea and hydrogen peroxide in an aqueous solution in a mole ratio range of from about 0.75:1 to about 2:1 to give a urea hydrogen peroxide oxidizer. The first CMP slurry of this invention forms a passivation layer on the substrate surface. Once a passivation layer is formed, it becomes important to be able to disturb the passivation layer in order to more easily abrade metal oxides from the substrate surface with the abrasive component of the first CMP slurry. One class of compounds that is included in the first CMP slurry for disturbing the passivation layer are complexing agents. Useful complexing agents include but are not limited to acids such as citric, lactic, malonic, tartaric, succinic, acetic, oxalic, and other acids, as well as amino acid and amino sulfuric acids, phosphoric acids, phosphonic acids, and their salts. A preferred first CMP slurry complexing agent is tartaric acid.
The complexing agent will be present in the first CMP slurry in an amount ranging from about 0.2 to about 5.0 weight present and preferably in an amount ranging from about 0.5 to about 3.0 weight percent. The first CMP slurry of this invention will include at least one organic amino compound. The organic amino compounds absorb on the polished substrate and inhibit the substrate material removal rate. Organic amino compounds useful in the first CMP slurry include alkylamines, alcohol amines, amino acids, urea, derivatives of urea, and mixtures thereof. Preferred organic amino compounds are long chain alkylamines and alcoholamines. The term "long chain alkylamines" refers to alkylamines having from 7 to 12 or more carbon atoms including, for example, nonylamine and dodecylamine. Examples of useful alcoholamines include, but are not limited to monoethanolamine, and triethanolamine. Examples of useful derivatives of urea include, but are not limited to biurea. A preferred organic amino compound is the long chain alklyamine, dodecylamine. A preferred alcoholamine is triethanolamine.
The organic amino compound should be present in the first CMP slurry in an amount ranging from about 0.005 to about 10.0 weight percent. More preferably, the organic amino compound is present in the first CMP slurry in an amount ranging from about 0.01 to about 5.0 weight percent.
The first CMP slurry of this invention may include an optional film forming agent. The film forming agent may be any compound or mixtures of compounds that are capable of facilitating the formation of a passivation layer of metal oxides and dissolution inhibiting layers on the surface of the metal layer. Passivation of the substrate surface layer is important to prevent wet etching of the substrate surface. Useful film forming agents are nitrogen containing cyclic compounds such as imidazole, benzotriazole, benzimidazole and benzothiazole and their derivatives with hydroxy, amino, imino, carboxy, mercapto, nitro and alkyl substituted groups, as well as urea, thiourea and others. A preferred film forming agent is benzotriazole ("BTA").
The optional film forming agent may be present in the first CMP slurry of this invention in an amount ranging from about 0.01 weight percent to about 1.0 weight percent. It is preferred that film forming agent is present in the first CMP slurry in an amount ranging from about 0.01 to about 0.2 weight percent.
BTA, or other film forming agents included in the first CMP slurry may destabilize the uniform dispersion of abrasive in the slurry. In order to stabilize the first CMP slurry against settling, flocculation, and decomposition, a variety of optional CMP slurry additives, such as surfactants, stabilizers, or dispersing agents, can be used. If a surfactant is added to the first CMP slurry, then it may be an anionic, cationic, nonionic, or amphoteric surfactant or a combination of two or more surfactants can be employed. Furthermore, it has been found that the addition of a surfactant may be useful to reduce the within-wafer-non-uniformity (WIWNU) of the wafers, thereby improving the surface of the wafer and reducing wafer defects.
In general, the amount of additive such as a surfactant that may be used in the first CMP slurry should be sufficient to achieve effective stabilization of the slurry and will typically vary depending on the particular surfactant selected and the nature of the surface of the metal oxide abrasive. For example, if not enough of a selected surfactant is used, it will have little or no effect on first CMP slurry stabilization. On the other hand, too much surfactant in the CMP slurry may result in undesirable foaming and/or flocculation in the slurry. As a result, stabilizers such as surfactants should generally be present in the slurry of this invention in an amount ranging from about 0.001% to about 0.2% by weight, and preferably from about 0.001 to about 0.1 weight percent. Furthermore, the additive may be added directly to the slurry or treated onto the surface of the metal oxide abrasive utilizing known techniques. In either case, the amount of additive is adjusted to achieve the desired concentration in the first polishing slurry. Preferred surfactants useful in the first CMP slurry include dodecyl sulfate sodium salt, sodium lauryl sulfate, dodecyl sulfate ammonium salt, and mixtures thereof. Examples of preferred surfactants include TRITON® DF-16 manufactured by Union Carbide, and SURFYNOL® manufactured by Air Products and Chemicals. It is desirable to maintain the pH of the first CMP slurry of this invention within a range of from about 2.0 to about 12.0, and preferably between from about 4.0 to about 8.0 in order to facilitate control of the CMP process. The pH of the CMP slurry of this invention may be adjusted using any known acid, base, or amine. However, the use of an acid or base that contains no metal ions, such as ammonium hydroxide and amines, or nitric, phosphoric, sulfuric, or organic acids are preferred to avoid introducing undesirable metal components into the first CMP slurry. II. The Second Chemical Mechanical Polishing Slurry
The second CMP slurry is formulated so that it exhibits a low polishing rate towards copper and a typical polishing rate towards tantalum or tantalum nitride. It is preferred, therefore, that the second CMP slurry has a copper to tantalum polishing selectivity of less than about 2 to 1 and most preferably and less than about 1 to 5.
The second CMP slurry includes at least one oxidizing agent. The oxidizing agent aids in oxidizing the substrate metal layer or layers to their corresponding oxide, hydroxide, or ions. For example, in the second CMP slurry, the oxidizer may be used to oxidize a metal layer to its corresponding oxide or hydroxide, e.g., tantalum to tantalum oxide. The oxidizing agent is useful when incorporated into the second CMP slurry to polish metals and metal based components including titanium, titanium nitride, tantalum, copper, tungsten, aluminum, and aluminum alloys such as aluminum/copper alloys, and various mixtures and combinations thereof by mechanically polishing the metals with removal of the respective oxide layer.
The oxidizing agents used in the second CMP slurry of this invention are one or more inorganic or organic per-compounds. A per-compound as defined by Hawley's Condensed Chemical Dictionary is a compound containing at least one peroxy group (-O-O-) or a compound containing an element in its highest oxidation state. Examples of compounds containing at least one peroxy group include but are not limited to hydrogen peroxide and its adducts such as urea hydrogen peroxide and per carbonates, organic peroxides such as benzyl peroxide, peracetic acid, and di-t-butyl peroxide, monopersulfates (SO5 =), dipersulfates (S2O8 =), and sodium peroxide. Examples of compounds containing an element in its highest oxidation state include but are not limited to periodic acid, periodate salts, perbromic acid, perbromate salts, perchloric acid, perchloric salts, perboric acid, and perborate salts and permanganates. Examples of non-per compounds that meet the electrochemical potential requirements include but are not limited to bromates, chlorates, chromates, iodates, iodic acid, and cerium (IV) compounds such as ammonium cerium nitrate. Non-exclusive examples of useful oxidizing agents include, but are not limited to peracetic acid, urea-hydrogen peroxide, hydrogen peroxide, monopersulfuric acid, dipersulfuric acid, salts thereof, and mixtures thereof including mixtures of urea and hydrogen peroxide. A preferred oxidizing agent is hydrogen peroxide. The oxidizing agent may be present in the second chemical mechanical polishing slurry in an amount ranging from about 0.3 to about 30.0 weight percent. It is preferred that the oxidizer is present in the second CMP slurry of this invention in an amount ranging from about 0.3 to about 17.0 weight percent and most preferably from about 1.0 to about 12.0 weight percent. One class of compounds that is included in the second CMP slurry are complexing agents. Useful complexing agents include but are not limited to acids such as citric, lactic, tartaric, succinic, acetic, oxalic and other acids, as well as amino acid and amino sulfuric acids, phosphonic acids, phosphoric acids, and their salts. A preferred complexing agent is acetic acid. The complexing agent will be present in the CMP slurry of this invention in an amount ranging from about 0.1 to about 5.0 weight present and preferably in an amount ranging from about 0.1 to about 3.0 weight percent.
It is important that the second CMP slurry include a far smaller weight amount of complexing agent in comparison of the weight amount of oxidizing agent in the slurry. The second CMP slurry should have a oxidizing agent to complexing agent weight ratio greater than about 10, and preferably greater than about 25.
The second CMP slurry of this invention may include an optional film forming agent. The film forming agent may be any compound or mixtures of compounds that are capable of facilitating the formation of a passivation layer of metal oxides and dissolution inhibiting layers on the surface of the metal layer. Passivation of the substrate surface layer is important to prevent wet etching of the substrate surface. Useful film forming agents are nitrogen containing cyclic compounds such as imidazole, benzotriazole, benzimidazole and benzothiazole and their derivatives with hydroxy, amino, imino, carboxy, mercapto, nitro and alkyl substituted groups, as well as urea, thiourea and others. A preferred film forming agent is benzotriazole ("BTA"). The film forming agent may be present in the second CMP slurry in an amount ranging from about 0.01 weight percent to about 1.0 weight percent. It is preferred that film forming agent is present in the second CMP slurry in an amount ranging from about 0.01 to about 0.5 weight percent.
BTA, or other film forming agents included in the second CMP slurry may destabilize the uniform dispersion of abrasive in the slurry. In order to stabilize the second CMP slurry against settling, flocculation, and decomposition, a variety of optional CMP slurry additives, such as surfactants, stabilizers, or dispersing agents, can be used. If a surfactant is added to the second CMP slurry, then it may be an anionic, cationic, nonionic, or amphoteric surfactant or a combination of two or more surfactants can be employed. Furthermore, it has been found that the addition of a surfactant may be useful to reduce the wi thin-wafer-non-uniformity (WIWNU) of the wafers, thereby improving the surface of the wafer and reducing wafer defects.
In general, the amount of additive such as a surfactant that may be used in the second CMP slurry should be sufficient to achieve effective stabilization of the slurry and will typically vary depending on the particular surfactant selected and the nature of the surface of the metal oxide abrasive. For example, if not enough of a selected surfactant is used, it will have little or no effect on CMP slurry stabilization. On the other hand, too much surfactant in the second CMP slurry may result in undesirable foaming and/or flocculation in the slurry. As a result, stabilizers such as surfactants should generally be present in the second slurry in an amount ranging from about 0.001% to about 0.2% by weight, and preferably from about 0.001 to about 0.1 weight percent. Furthermore, the additive may be added directly to the slurry or treated onto the surface of the metal oxide abrasive utilizing known techniques. In either case, the amount of additive is adjusted to achieve the desired concentration in the first polishing slurry. Preferred surfactants include dodecyl sulfate sodium salt, sodium lauryl sulfate, dodecyl sulfate ammonium salt, and mixtures thereof. Examples of useful surfactants include TRITON® DF-16 manufactured by Union Carbide, and SURFYNOL® manufactured by Air Products and Chemicals.
It is desirable to maintain the pH of the second CMP slurry of this invention within a range of from about 2.0 to about 12.0, and preferably between from about 4.0 to about 9.0 in order to facilitate control of the CMP process. The pH of the CMP slurry of this invention may be adjusted using any known acid, base, or amine. However, the use of an acid or base that contains no metal ions, such as ammonium hydroxide and amines, or nitric, phosphoric, sulfuric, or organic acids are preferred to avoid introducing undesirable metal components into the CMP slurry of this invention. It is most preferred that the second CMP slurry has a pH of from about 4 to about 7.5. III. The Abrasive
The first and second CMP slurries of this each invention include an abrasive. The abrasive is typically a metal oxide. The metal oxide abrasive may be selected from the group including alumina, titania, zirconia, germania, silica, ceria and mixtures thereof. The first and second CMP slurries of this invention preferably each include from about 0.5 to about 15.0 weight percent or more of an abrasive. It is more preferred, however, that the first and second CMP slurries of this invention include from about 1.5 to about 6.0 weight percent abrasive.
The metal oxide abrasive may be produced by any techniques known to those skilled in the art. Metal oxide abrasives can be produced using any high temperature process such as sol-gel, hydrothermal or, plasma process, or by processes for manufacturing fumed or precipitated metal oxides. Preferably, the metal oxide is a fumed or precipitated abrasive and, more preferably it is a fumed abrasive such as fumed silica or fumed alumina. For example, the production of fumed metal oxides is a well-known process which involves the hydrolysis of suitable feedstock vapor (such as aluminum chloride for an alumina abrasive) in a flame of hydrogen and oxygen. Molten particles of roughly spherical shapes are formed in the combustion process, the diameters of which are varied through process parameters. These molten spheres of alumina or similar oxide, typically referred to as primary particles, fuse with one another by undergoing collisions at their contact points to form branched, three dimensional chain-like aggregates. The force necessary to break aggregates is considerable. During cooling and collecting, the aggregates undergo further collision that may result in some mechanical entanglement to form agglomerates. Agglomerates are thought to be loosely held together by van der Waals forces and can be reversed, i.e., de-agglomerated, by proper dispersion in a suitable media. Precipitated abrasives may be manufactured by conventional techniques such as by coagulation of the desired particles from an aqueous medium under the influence of high salt concentrations, acids or other coagulants. The particles are filtered, washed, dried and separated from residues of other reaction products by conventional techniques known to those skilled in the art.
A preferred metal oxide will have a surface area, as calculated from the method of S. Brunauer, P.H. Emmet, and I. Teller, J. Am. Chemical Society, Volume 60, Page 309 (1938) and commonly referred to as BET, ranging from about 5 m2/g to about 430 m 2/g and preferably from about 30m2/g to about 170 m2/g. Due to stringent purity requirements in the IC industry the preferred metal oxide should be of a high purity. High purity means that the total impurity content, from sources such as raw material impurities and trace processing contaminants, is typically less than 1% and preferably less than 0.01% (i.e., 100 ppm).
The metal oxide abrasive useful in the dispersion of this invention may consist of metal oxide aggregates or individual single sphere particles. The term "particle" as it is used herein refers to both aggregates of more than one primary particle and to single particles. It is preferred that the metal oxide abrasive consists of metal oxide particles having a size distribution less than about 1.0 micron, a mean particle diameter less than about 0.4 micron and a force sufficient to repel and overcome the van der Waals forces between abrasive aggregates themselves. Such metal oxide abrasives have been found to be effective in minimizing or avoiding scratching, pit marks, divots and other surface imperfections during polishing. The particle size distribution in the present invention may be determined utilizing known techniques such as transmission electron microscopy (TEM). The mean particle diameter refers to the average equivalent spherical diameter when using TEM image analysis, i.e., based on the cross-sectional area of the particle. By force is meant that either the surface potential or the hydration force of the metal oxide particles must be sufficient to repel and overcome the van der Waals attractive forces between the particles.
In another preferred embodiment, the metal oxide abrasive may consist of discrete, individual metal oxide particles having a primary particle diameter less than 0.4 micron (400nm) and a surface area ranging from about 10 m2/g to about 250 m2/g. Preferably, the metal oxide abrasive is incorporated into the aqueous medium of the polishing slurry as a concentrated aqueous dispersion of metal oxides, comprising from about 3% to about 45% solids, and preferably between 10% and 20% solids. The aqueous dispersion of metal oxides may be produced utilizing conventional techniques, such as slowly adding the metal oxide abrasive to an appropriate media, for example, deionized water, to form a colloidal dispersion. The dispersion is typically completed by subjecting it to high shear mixing conditions known to those skilled in the art. The pH of the slurry may be adjusted away from the isoelectric point to maximize colloidal stability.
IV. Optional Additives
Other well known polishing slurry additives may be incorporated into the first CMP slurry and/or into the second CMP slurry. One class of optional additives are inorganic acids and/or salts thereof which may be added to the first and/or second CMP slurry to further improve or enhance the polishing rate of the barrier layers in the wafer, such as titanium and tantalum. Useful inorganic additives include sulfuric acid, phosphoric acid, phosphonic acid, nitric acid, HF acid, ammonium fluoride, ammonium salts, potassium salts, sodium salts or other cationic salts of sulfates, phosphates, phosphonates, and fluorides.
V. Methods of Making and Using the First and Second CMP Slurries
The first and second CMP slurries of this invention may be produced using conventional techniques known to those skilled in the art. Typically, the oxidizing agent and other non-abrasive components, are mixed into an aqueous medium, such as deionized or distilled water, at pre-determined concentrations under low shear conditions until such components are completely dissolved in the medium. A concentrated dispersion of the metal oxide abrasive, such as fumed alumina, is added to the medium and diluted to the desired loading level of abrasive in the final CMP slurry.
The first and second CMP slurries of the present invention may be supplied as one package system including all of the slurry additives. Due to concerns about shipping CMP slurries containing oxidizing agents, and especially hydrogen peroxide, it is preferred that the first and second CMP slurries of this invention are prepared and packaged as a CMP precursor containing every ingredient except the oxidizing agent or agents, shipped to a customer, and combined with hydrogen peroxide or any oxidizing agent at the customer's facility prior to use. Therefore, an aspect of this invention is a first and second CMP composition and/or slurry precursor comprising one or more ingredients selected from the group including catalysts, abrasives, and stabilizers in dry or aqueous form but lacking an oxidizing agent. The first and second CMP precursors are separately combined with at least one oxidizing agent prior to use.
It has been determined that first and second CMP slurries of this invention including urea hydrogen peroxide can be formulated by adding hydrogen peroxide to a slurry precursor comprising urea and any other useful slurry components to give a urea hydrogen peroxide containing CMP slurries.
A preferred slurry precursor of this invention will comprise a dry or aqueous mixture of urea and at least one metal oxide abrasive. Additional ingredients may be incorporated into the urea containing slurry precursor are useful in first and second CMP slurries. Although the CMP slurry of this invention may be used to polish any type of metal layer, the first chemical mechanical polishing slurry of this invention has been found to have a high copper, and low tantalum and tantalum nitride polishing rate. In addition, the second chemical mechanical polishing slurry exhibits desirable low polishing rates towards the copper layer, while exhibiting a desirable high polishing rate towards the tantalum dielectric insulating layer.
The first and second CMP slurries may be used with any standard polishing equipment appropriate for use on the desired metal layer of the wafer. The first and second CMP slurries of this invention are most useful for polishing a substrate including either a tantalum or tantalum nitride portion and a copper alloy containing portion, both over a dielectric layer.
When used to polish a substrate including a tantalum or tantalum nitride portion and a copper portion, the first chemical mechanical polishing slurry is applied to the substrate and the substrate is polished by conventional means using polishing machines and a polishing pad. When substrate polishing using the first CMP slurry is complete, the substrate may be washed with deionized water or other solvents to remove the first CMP slurry from the partially polished substrate. Next, the second CMP slurry of this invention is applied to the substrate and the substrate is polished using conventional techniques in order to preferentially polish the tantalum or tantalum nitride portion in comparison to the copper portion of the partially polished substrate. Once the second polishing step is complete, the second CMP slurry is washed from the substrate with deionized water or another solvent and the substrate is ready for further processing.
In both polishing steps, the first and/or the second CMP slurries may be applied directly to the substrate, to a polishing pad, or to both in a controlled manner during substrate polishing. It is preferred however that the first and second CMP slurries are applied to the pad which thereafter is placed against the substrate after which the pad is moved in relationship to the substrate in order to achieve substrate polishing.
The first and second CMP slurries polishes copper, titanium, titanium nitride, tantalum, and tantalum nitride layers at good rates under controllable conditions. The polishing slurries of the present invention may be used during the various stages of semiconductor integrated circuit manufacture to provide effective polishing at desired polishing rates while minimizing surface imperfections and defects.
EXAMPLES
We have discovered a first CMP slurry that polished copper at high rate and tantalum and tantalum nitride layers at lesser rates, and a second CMP slurry that polishes tantalum and tantalum nitride layers at acceptable rates and copper at comparatively lower rates than the first CMP slurry.
The following examples illustrate preferred embodiments of this invention as well as preferred methods for using CMP slurries of this invention.
EXAMPLE 1
In this example, CMP polishing was accomplished using two CMP slurries.
The first slurry included an aqueous dispersion of 3.0 weight percent of a fumed alumina abrasive from SEMI-SPERSE* W-A355 dispersion sold by the
Microelectronics Materials Division of Cabot Corporation, in Aurora, Illinois, 2.5 wt% hydrogen peroxide, 3.65 wt% urea, 1.25 wt% tartaric acid, and 50 ppm Triton DF-16 surfactant. The second slurry included all of the components of the first slurry plus 0.015 wt% dodecylamine. Both slurries tested were adjusted to a pH of 7.0 with ammonium hydroxide. The CMP slurries were tested by two methods. Dissolution rates of Cu and
Ta in each slurry were tested by electrochemical techniques. The set-up used a rotating disk electrode in a three-electrode cell with a 273 potentiostat and Corrosion Software by PAR. Electrochemical data where obtained with a pre-selected electrode rotation of 500 rpm (or 19.94 m/sec maximum) with the rotator and the metal of interest in contact with the abrasive pad (with a down force of 5.9 psi) or raised above the pad. Thus metal dissolution could be evaluated as its surface was abraded as well as after abrasion. The former value was assumed to be an approximate measure of the chemical rate during polishing, while the later approach gave the corrosion rate of the metal in a given slurry. In typical tests, electrochemical data ware recorded as a potentiodynamic polarization curves, with the potential swept by a rate of 10 mV/sec from about -0.25 V cathodic to the open potential to some anodic potential. The test results are listed in Table 1, columns 3- 4.
The copper and tantalum polishing rates, using the same slurries, were evaluated with an IPEC 472 polishing machine using a down force of 3 psi, a table speed of 55 rpm, and a spindle speed of 30 rpm. The slurries were applied to an IC1000/SUBA IV pad stack manufactured by Rodel at a rate of 200ml/min. Polishing data are reported in Table 1, columns 5-6.
Table 1
Figure imgf000021_0001
Figure imgf000022_0001
Adding a small amount of dodecylamine into the slurry inhibits Ta removal and significantly increases the Cu:Ta selectivity ratio to about 45:1. This makes the organic amino compound containing slurry more suitable for use as copper polishing slurry with a polishing stop on Ta.
The results of the Table 1 also indicate that trends observed in electrochemical tests are reproduced in polishing: dodecylamine inhibits Ta dissolution with abrasion, and therewith the polishing rate, in a more pronounced fashion than measured on copper. Thus dodecylamine is a dissolution inhibitor for Ta.
EXAMPLE 2
This example studies the effect of varying the weight ratio of oxidizing agent and complexing agent is second CMP slurries of this invention on copper and tantalum dissolution rates. This example used a CMP slurry having the following composition; 1.25 weight percent tartaric acid; hydrogen peroxide in an amount identified in Table 2; 3.0 weight percent alumina abrasive (W-A355), 50 ppm Triton DF-16 surfactant with the remainder being deionized water. The pH of the slurries were adjusted to 7.0 using ammonium hydroxide.
Polishing results using slurries with different ratios of tartaric acid and hydrogen peroxide oxidizing agent are listed in Table 2. In addition to the compounds listed in Table 2, each slurry contained 3.65wt% urea. The polishing rates were determined using blanket wafers on an IPEC 472 polishing tool, with an IC1000/SUBA IV pad stack manufactured by Rodel. The wafers were polished using a 3 psi down force, a table speed of 55 rpm, a spindle speed of 30 rpm, and a slurry flow rate of 200 ml/min. Table 2
Figure imgf000023_0001
The polishing results show that increasing the tartaric acid/peroxide weight ratio increases the Cu removal rate without significantly affecting the Ta rate.
Metal dissolution and corrosion rates using the same base slurries described above but with varying tartaric acid amounts (T) and varying hydrogen peroxide amounts (HPO) were evaluated by electrochemical methods according to the method set forth in Example 1 with the results being reported in Table 3.
Table 3
Figure imgf000023_0002
The results from Tables 2 and 3 show that the copper polishing rate corresponds to the activity measured on copper electrochemically, both decreasing with an increase of the weight ratio of oxidizing agent to complexing agent, while the tantalum polishing rate, and electrochemical dissolution, are essentially unaffected by the changing composition.
EXAMPLE 3
The trends observed in Example 2, Table 3 were used as the basis for formulating a second chemical mechanical polishing slurry useful for polishing tantalum and tantalum nitride. The copper and tantalum polishing rates for several second polishing slurry candidates are reported in Table 4, below. The alumina used in the chemical mechanical polishing slurries was a fumed alumina diluted from SEMI-SPERSE* W-A355, an alumina dispersion sold by the Microelectronics Materials Division of Cabot Corporation, in Aurora, Illinois.
Table 4
Figure imgf000024_0001
Increasing the ratio of oxidizing agent to complexing agent to a value greater than 10 significantly decreased copper removal rates as shown in Table 4.
Furthermore, the date in Table 4 shows that acetic acid, which is a poor copper complexing agent, significantly inhibits the copper removal rate while the tantalum removal rate remains essentially unaffected.
What we claim is:

Claims

1. A chemical mechanical polishing slurry precursor comprising: at least one abrasive; and at least one organic amino compound selected from long chain alkylamines, alcoholamines and mixtures thereof.
2. The chemical mechanical polishing slurry precursor of claim 1 including a film forming agent.
3. The chemical mechanical polishing slurry precursor of claim 1 wherein the complexing agent is selected from the group of compounds including acetic acid, citric acid, lactic acid, malonic acid, tartaric acid, succinic acid, oxalic acids, amino acids, salts thereof, and mixtures thereof.
4. The chemical mechanical polishing slurry precursor of claim 3 wherein the complexing agent is tartaric acid.
5. The chemical mechanical polishing slurry precursor of claim 4 wherein the tartaric acid is present in an amount ranging from 0.5 to about 5.0 weight percent.
6. The chemical mechanical polishing slurry precursor of claim 1 wherein the film forming agent is benzotriazole.
7. The chemical mechanical polishing slurry precursor of claim 6 including from about 0.01 to about 0.2 weight percent benzotriazole.
8. The chemical mechanical polishing slurry precursor of claim 1 wherein the slurry has a pH of from about 4.0 to about 8.0.
9. The chemical mechanical polishing slurry precursor of claim 1 including from about 0.005 wt% to about 10.0 wt% of at least one organic amino compound.
10. A chemical mechanical polishing slurry comprising: at least one abrasive; at least one oxidizing agent; and at least one organic amino compound selected from long chain alkylamines, alcoholamines and mixtures thereof.
11. The chemical mechanical polishing slurry of claim 10 including a film forming agent.
12. The chemical mechanical polishing slurry of claim 10 wherein the complexing agent is selected from the group of compounds including acetic acid, citric acid, lactic acid, malonic acid, tartaric acid, succinic acid, oxalic acids, amino acids, salts thereof, and mixtures thereof.
13. The chemical mechanical polishing slurry of claim 10 wherein the complexing agent is tartaric acid.
14. The chemical mechanical polishing slurry of claim 13 wherein the tartaric acid is present in an amount ranging from 0.5 to about 5.0 weight percent.
15. The chemical mechanical polishing slurry of claim 10 wherein the film forming agent is benzotriazole.
16. The chemical mechanical polishing slurry of claim 15 including from about 0.01 to about 0.2 weight percent benzotriazole.
17. The chemical mechanical polishing slurry of claim 10 wherein the slurry has a pH of from about 4.0 to about 8.0.
18. The chemical mechanical polishing slurry of claim 10 including from about 0.005 wt% to about 10.0 wt% of at least one organic amino compound.
19. The chemical mechanical polishing slurry of claim 10 wherein the abrasive is at least one metal oxide.
20. The chemical mechanical polishing slurry of claim 19 wherein the metal oxide abrasive is selected from the group including alumina, ceria, germania, silica, titania, zirconia, and mixtures thereof.
21. The chemical mechanical polishing slurry of claim 10 wherein the abrasive is an aqueous dispersion of a metal oxide.
22. The chemical mechanical polishing slurry of claim 21 wherein the metal oxide abrasive consists of metal oxide aggregates having a size distribution less than about 1.0 micron and a mean aggregate diameter less than about 0.4 micron.
23. The chemical mechanical polishing slurry of claim 19 wherein the metal oxide abrasive consists of discrete, individual metal oxide spheres having a primary particle diameter less than 0.400 micron and a surface area ranging from about 10 m2/g to about 250 m2/g.
24. The chemical mechanical polishing slurry of claim 10 wherein the abrasive is selected from the group consisting of precipitated abrasives or fumed abrasives.
25. The chemical mechanical polishing slurry of claim 10 wherein the abrasive is an aqueous dispersion of alumina.
26. The chemical mechanical polishing slurry precursor of claim 10 wherein the oxidizing agent is selected from hydrogen peroxide, urea hydrogen peroxide, urea, and combinations thereof.
27. The chemical mechanical polishing slurry of claim 10 wherein the slurry has a Cu:Ta polishing selectivity ratio of at least 40.
28. A chemical mechanical polishing slurry comprising: alumina; at least one oxidizing agent; tartaric acid; benzotriazole; and at least one organic amino compound selected from long chain alkylamines, alcoholamines, and mixtures thereof.
29. The chemical mechanical polishing slurry of claim 28 wherein the organic amino compound is dodecylamine.
30. The chemical mechanical polishing slurry of claim 28 wherein the organic amino compound is triethanolamine.
31. The chemical mechanical polishing slurry of claim 28 wherein the oxidizing agent is selected from hydrogen peroxide, urea hydrogen peroxide, urea, and combinations thereof.
32. A chemical mechanical polishing slurry comprising: from about 0.5 to about 15 wt% alumina; from about 0.5 to about 5 wt% tartaric acid; from about 0.01 to about 0.2 wt% benzotriazole; from about 0.005 to about 10.0 wt% of an organic amino compound selected from dodecylamine, triethanolamine, and mixtures thereof; and an oxidizing agent comprising the admixture of from about 1 to about 20wt% urea and from about 1 to about 12.0 wt% hydrogen peroxide wherein the chemical mechanical polishing slurry has a pH of from about 4 to about 8 and a Cu:Ta polishing selectivity ratio greater than 10.
33. The chemical mechanical polishing slurry of claim 32 including at least one surfactant.
PCT/US1999/014557 1998-06-26 1999-06-25 Chemical mechanical polishing slurry useful for copper/tantalum substrate WO2000000567A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE69928537T DE69928537T2 (en) 1998-06-26 1999-06-25 SUSPENSION FOR CHEMICAL-MECHANICAL POLISHING OF COPPER / TANTAL SUBSTRATE
AU47235/99A AU4723599A (en) 1998-06-26 1999-06-25 Chemical mechanical polishing slurry useful for copper/tantalum substrate
CA002335033A CA2335033A1 (en) 1998-06-26 1999-06-25 Chemical mechanical polishing slurry useful for copper/tantalum substrate
JP2000557321A JP4261058B2 (en) 1998-06-26 1999-06-25 Chemical mechanical polishing slurry useful for copper / tantalum substrates
EP99930777A EP1098948B1 (en) 1998-06-26 1999-06-25 Chemical mechanical polishing slurry useful for copper/tantalum substrate
IL14030399A IL140303A0 (en) 1998-06-26 1999-06-25 Chemical mechanical polishing slurry useful for copper/tantalum substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/105,555 US6063306A (en) 1998-06-26 1998-06-26 Chemical mechanical polishing slurry useful for copper/tantalum substrate
US09/105,555 1998-06-26

Publications (1)

Publication Number Publication Date
WO2000000567A1 true WO2000000567A1 (en) 2000-01-06

Family

ID=22306489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/014557 WO2000000567A1 (en) 1998-06-26 1999-06-25 Chemical mechanical polishing slurry useful for copper/tantalum substrate

Country Status (13)

Country Link
US (1) US6063306A (en)
EP (1) EP1098948B1 (en)
JP (1) JP4261058B2 (en)
KR (1) KR100491060B1 (en)
CN (1) CN1158373C (en)
AU (1) AU4723599A (en)
CA (1) CA2335033A1 (en)
DE (1) DE69928537T2 (en)
ID (1) ID28618A (en)
IL (1) IL140303A0 (en)
MY (1) MY116324A (en)
TW (1) TWI245788B (en)
WO (1) WO2000000567A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252242A (en) * 1998-12-28 2000-09-14 Hitachi Chem Co Ltd Polishing liquid for metal and polishing method using the same
WO2001041973A2 (en) * 1999-12-07 2001-06-14 Cabot Microelectronics Corporation Chemical-mechanical polishing method
SG83822A1 (en) * 1999-10-27 2001-10-16 Applied Materials Inc Cmp slurry for planarizing metals
SG88775A1 (en) * 1998-12-01 2002-05-21 Fujimi Inc Polishing composition and polishing method employing it
US6428388B2 (en) 1998-11-06 2002-08-06 Beaver Creek Concepts Inc. Finishing element with finishing aids
US6451697B1 (en) 2000-04-06 2002-09-17 Applied Materials, Inc. Method for abrasive-free metal CMP in passivation domain
WO2002100963A1 (en) * 2001-06-13 2002-12-19 Advanced Micro Devices, Inc. Use of a gettering agent in a chemical mechanical polishing and rinsing operation and apparatus therefor
WO2002102920A1 (en) * 2001-06-14 2002-12-27 Ppg Industries Ohio, Inc. A silica and a silica-based slurry
WO2002102910A1 (en) * 2001-06-14 2002-12-27 Ppg Industries Ohio, Inc. A silica-based slurry
US6541381B2 (en) 1998-11-06 2003-04-01 Beaver Creek Concepts Inc Finishing method for semiconductor wafers using a lubricating boundary layer
US6551933B1 (en) 1999-03-25 2003-04-22 Beaver Creek Concepts Inc Abrasive finishing with lubricant and tracking
US6592742B2 (en) 2001-07-13 2003-07-15 Applied Materials Inc. Electrochemically assisted chemical polish
US6634927B1 (en) 1998-11-06 2003-10-21 Charles J Molnar Finishing element using finishing aids
US6656023B1 (en) 1998-11-06 2003-12-02 Beaver Creek Concepts Inc In situ control with lubricant and tracking
US6739947B1 (en) 1998-11-06 2004-05-25 Beaver Creek Concepts Inc In situ friction detector method and apparatus
WO2004067660A1 (en) * 2003-01-23 2004-08-12 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Selective barrier metal polishing solution
US6796883B1 (en) 2001-03-15 2004-09-28 Beaver Creek Concepts Inc Controlled lubricated finishing
KR100450985B1 (en) * 2000-11-24 2004-10-02 도꾜 지끼 인사쯔 가부시키가이샤 Slurry for chemical mechanical polishing
US6872329B2 (en) 2000-07-28 2005-03-29 Applied Materials, Inc. Chemical mechanical polishing composition and process
JP2006245598A (en) * 1999-08-13 2006-09-14 Cabot Microelectronics Corp Polishing system with stopping compound and method of its use
US7131890B1 (en) 1998-11-06 2006-11-07 Beaver Creek Concepts, Inc. In situ finishing control
US7156717B2 (en) 2001-09-20 2007-01-02 Molnar Charles J situ finishing aid control
US7247567B2 (en) 2004-06-16 2007-07-24 Cabot Microelectronics Corporation Method of polishing a tungsten-containing substrate
US7253111B2 (en) 2004-04-21 2007-08-07 Rohm And Haas Electronic Materials Cmp Holding, Inc. Barrier polishing solution
US7427362B2 (en) 2005-01-26 2008-09-23 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Corrosion-resistant barrier polishing solution
US7582127B2 (en) 2004-06-16 2009-09-01 Cabot Microelectronics Corporation Polishing composition for a tungsten-containing substrate

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039891A (en) * 1996-09-24 2000-03-21 Cabot Corporation Multi-oxidizer precursor for chemical mechanical polishing
US5954997A (en) * 1996-12-09 1999-09-21 Cabot Corporation Chemical mechanical polishing slurry useful for copper substrates
US6309560B1 (en) * 1996-12-09 2001-10-30 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US6126853A (en) 1996-12-09 2000-10-03 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US5759917A (en) * 1996-12-30 1998-06-02 Cabot Corporation Composition for oxide CMP
US6592776B1 (en) * 1997-07-28 2003-07-15 Cabot Microelectronics Corporation Polishing composition for metal CMP
US6432828B2 (en) 1998-03-18 2002-08-13 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
US6693035B1 (en) * 1998-10-20 2004-02-17 Rodel Holdings, Inc. Methods to control film removal rates for improved polishing in metal CMP
JP3998813B2 (en) * 1998-06-15 2007-10-31 株式会社フジミインコーポレーテッド Polishing composition
US6533832B2 (en) * 1998-06-26 2003-03-18 Cabot Microelectronics Corporation Chemical mechanical polishing slurry and method for using same
US6358853B2 (en) * 1998-09-10 2002-03-19 Intel Corporation Ceria based slurry for chemical-mechanical polishing
DE69942615D1 (en) * 1998-10-23 2010-09-02 Fujifilm Electronic Materials A CHEMICAL-MECHANICAL POLISHING AIRBREAKING, CONTAINING A ACCELERATOR SOLUTION
SG99289A1 (en) 1998-10-23 2003-10-27 Ibm Chemical-mechanical planarization of metallurgy
SG73683A1 (en) * 1998-11-24 2000-06-20 Texas Instruments Inc Stabilized slurry compositions
EP1150341A4 (en) * 1998-12-28 2005-06-08 Hitachi Chemical Co Ltd Materials for polishing liquid for metal, polishing liquid for metal, method for preparation thereof and polishing method using the same
US6114246A (en) * 1999-01-07 2000-09-05 Vlsi Technology, Inc. Method of using a polish stop film to control dishing during copper chemical mechanical polishing
US6752844B2 (en) * 1999-03-29 2004-06-22 Intel Corporation Ceric-ion slurry for use in chemical-mechanical polishing
US6375693B1 (en) * 1999-05-07 2002-04-23 International Business Machines Corporation Chemical-mechanical planarization of barriers or liners for copper metallurgy
TW486514B (en) * 1999-06-16 2002-05-11 Eternal Chemical Co Ltd Chemical mechanical abrasive composition for use in semiconductor processing
DE60014907T2 (en) * 1999-07-13 2006-03-09 Kao Corp. ABRASIVE COMPOSITION
US6630433B2 (en) * 1999-07-19 2003-10-07 Honeywell International Inc. Composition for chemical mechanical planarization of copper, tantalum and tantalum nitride
US6322425B1 (en) * 1999-07-30 2001-11-27 Corning Incorporated Colloidal polishing of fused silica
TW501197B (en) * 1999-08-17 2002-09-01 Hitachi Chemical Co Ltd Polishing compound for chemical mechanical polishing and method for polishing substrate
US6348076B1 (en) * 1999-10-08 2002-02-19 International Business Machines Corporation Slurry for mechanical polishing (CMP) of metals and use thereof
US6432826B1 (en) * 1999-11-29 2002-08-13 Applied Materials, Inc. Planarized Cu cleaning for reduced defects
US6825117B2 (en) * 1999-12-14 2004-11-30 Intel Corporation High PH slurry for chemical mechanical polishing of copper
JP3805588B2 (en) * 1999-12-27 2006-08-02 株式会社日立製作所 Manufacturing method of semiconductor device
JP3450247B2 (en) * 1999-12-28 2003-09-22 Necエレクトロニクス株式会社 Metal wiring formation method
US6881674B2 (en) * 1999-12-28 2005-04-19 Intel Corporation Abrasives for chemical mechanical polishing
JP2001267273A (en) * 2000-01-11 2001-09-28 Sumitomo Chem Co Ltd Abrasive for metal, abrasive composition, and polishing method
TW572980B (en) * 2000-01-12 2004-01-21 Jsr Corp Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing process
EP1193745A4 (en) * 2000-02-04 2003-05-14 Showa Denko Kk Polishing composite for use in lsi manufacture and method of manufacturing lsi
US6354916B1 (en) 2000-02-11 2002-03-12 Nu Tool Inc. Modified plating solution for plating and planarization and process utilizing same
US6355075B1 (en) * 2000-02-11 2002-03-12 Fujimi Incorporated Polishing composition
WO2001058643A1 (en) * 2000-02-11 2001-08-16 Nu Tool, Inc. Modified plating solution for plating and planarization and process utilizing same
US6328774B1 (en) * 2000-02-23 2001-12-11 Fujimi America Inc. Polishing composition and method for producing a memory hard disk
US6332831B1 (en) * 2000-04-06 2001-12-25 Fujimi America Inc. Polishing composition and method for producing a memory hard disk
KR100364831B1 (en) * 2000-03-20 2002-12-16 엘지.필립스 엘시디 주식회사 Etching solution for Molybdenum metal layer
JP2001269859A (en) * 2000-03-27 2001-10-02 Jsr Corp Aqueous dispersing element for polishing chemical machine
AU2001253308A1 (en) * 2000-04-11 2001-10-23 Cabot Microelectronics Corporation System for the preferential removal of silicon oxide
US6409781B1 (en) * 2000-05-01 2002-06-25 Advanced Technology Materials, Inc. Polishing slurries for copper and associated materials
US6486108B1 (en) * 2000-05-31 2002-11-26 Micron Technology, Inc. Cleaning composition useful in semiconductor integrated circuit fabrication
US6458013B1 (en) 2000-07-31 2002-10-01 Asml Us, Inc. Method of chemical mechanical polishing
US7029381B2 (en) * 2000-07-31 2006-04-18 Aviza Technology, Inc. Apparatus and method for chemical mechanical polishing of substrates
CN1466676A (en) * 2000-07-31 2004-01-07 Asml美国公司 In-situ method and apparatus for end point detection in chemical mechanical polishing
JP2002050595A (en) * 2000-08-04 2002-02-15 Hitachi Ltd Polishing method, wiring forming method and method for manufacturing semiconductor device
JP2002075927A (en) * 2000-08-24 2002-03-15 Fujimi Inc Composition for polishing and polishing method using it
US7192335B2 (en) 2002-08-29 2007-03-20 Micron Technology, Inc. Method and apparatus for chemically, mechanically, and/or electrolytically removing material from microelectronic substrates
US7112121B2 (en) * 2000-08-30 2006-09-26 Micron Technology, Inc. Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
US6551935B1 (en) * 2000-08-31 2003-04-22 Micron Technology, Inc. Slurry for use in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods
US7220166B2 (en) 2000-08-30 2007-05-22 Micron Technology, Inc. Methods and apparatus for electromechanically and/or electrochemically-mechanically removing conductive material from a microelectronic substrate
US7078308B2 (en) * 2002-08-29 2006-07-18 Micron Technology, Inc. Method and apparatus for removing adjacent conductive and nonconductive materials of a microelectronic substrate
US7074113B1 (en) 2000-08-30 2006-07-11 Micron Technology, Inc. Methods and apparatus for removing conductive material from a microelectronic substrate
US7153410B2 (en) 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for electrochemical-mechanical processing of microelectronic workpieces
US6602117B1 (en) 2000-08-30 2003-08-05 Micron Technology, Inc. Slurry for use with fixed-abrasive polishing pads in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods
US7129160B2 (en) * 2002-08-29 2006-10-31 Micron Technology, Inc. Method for simultaneously removing multiple conductive materials from microelectronic substrates
US7094131B2 (en) 2000-08-30 2006-08-22 Micron Technology, Inc. Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material
US7160176B2 (en) * 2000-08-30 2007-01-09 Micron Technology, Inc. Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
US7134934B2 (en) * 2000-08-30 2006-11-14 Micron Technology, Inc. Methods and apparatus for electrically detecting characteristics of a microelectronic substrate and/or polishing medium
US7153195B2 (en) 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for selectively removing conductive material from a microelectronic substrate
US6867448B1 (en) 2000-08-31 2005-03-15 Micron Technology, Inc. Electro-mechanically polished structure
US6468137B1 (en) 2000-09-07 2002-10-22 Cabot Microelectronics Corporation Method for polishing a memory or rigid disk with an oxidized halide-containing polishing system
US6541384B1 (en) 2000-09-08 2003-04-01 Applied Materials, Inc. Method of initiating cooper CMP process
DE10048477B4 (en) 2000-09-29 2008-07-03 Qimonda Ag Process for the chemical-mechanical polishing of layers of platinum group metals
EP1243633A4 (en) * 2000-10-02 2009-05-27 Mitsui Mining & Smelting Co Cerium based abrasive material and method for producing cerium based abrasive material
KR100396883B1 (en) * 2000-11-23 2003-09-02 삼성전자주식회사 Slurry for chemical mechanical polishing and manufacturing method of copper metal interconnection layer using the same
JP3816743B2 (en) * 2000-11-24 2006-08-30 Necエレクトロニクス株式会社 Chemical mechanical polishing slurry
US6846225B2 (en) * 2000-11-29 2005-01-25 Psiloquest, Inc. Selective chemical-mechanical polishing properties of a cross-linked polymer and specific applications therefor
US7059946B1 (en) 2000-11-29 2006-06-13 Psiloquest Inc. Compacted polishing pads for improved chemical mechanical polishing longevity
WO2002043922A1 (en) * 2000-11-29 2002-06-06 Psiloquest, Inc. Crosslinked polyethylene polishing pad for chemical-mechnical polishing, polishing apparatus and polishing method
US6579604B2 (en) 2000-11-29 2003-06-17 Psiloquest Inc. Method of altering and preserving the surface properties of a polishing pad and specific applications therefor
US20050266226A1 (en) * 2000-11-29 2005-12-01 Psiloquest Chemical mechanical polishing pad and method for selective metal and barrier polishing
US6596388B1 (en) 2000-11-29 2003-07-22 Psiloquest Method of introducing organic and inorganic grafted compounds throughout a thermoplastic polishing pad using a supercritical fluid and applications therefor
US6688956B1 (en) 2000-11-29 2004-02-10 Psiloquest Inc. Substrate polishing device and method
US20020068454A1 (en) 2000-12-01 2002-06-06 Applied Materials, Inc. Method and composition for the removal of residual materials during substrate planarization
DE10060343A1 (en) * 2000-12-04 2002-06-06 Bayer Ag Polishing slurry for the chemical mechanical polishing of metal and dielectric structures
US6896776B2 (en) * 2000-12-18 2005-05-24 Applied Materials Inc. Method and apparatus for electro-chemical processing
JP2004526308A (en) * 2001-01-16 2004-08-26 キャボット マイクロエレクトロニクス コーポレイション Polishing system and method containing ammonium oxalate
US6383065B1 (en) 2001-01-22 2002-05-07 Cabot Microelectronics Corporation Catalytic reactive pad for metal CMP
US6764574B1 (en) 2001-03-06 2004-07-20 Psiloquest Polishing pad composition and method of use
US6575823B1 (en) 2001-03-06 2003-06-10 Psiloquest Inc. Polishing pad and method for in situ delivery of chemical mechanical polishing slurry modifiers and applications thereof
US6530824B2 (en) 2001-03-09 2003-03-11 Rodel Holdings, Inc. Method and composition for polishing by CMP
JP2004523123A (en) * 2001-03-12 2004-07-29 ロデール ホールディングス インコーポレイテッド Methods and compositions for CMP polishing
US7323416B2 (en) * 2001-03-14 2008-01-29 Applied Materials, Inc. Method and composition for polishing a substrate
US20060169597A1 (en) * 2001-03-14 2006-08-03 Applied Materials, Inc. Method and composition for polishing a substrate
US6899804B2 (en) * 2001-12-21 2005-05-31 Applied Materials, Inc. Electrolyte composition and treatment for electrolytic chemical mechanical polishing
US6811680B2 (en) * 2001-03-14 2004-11-02 Applied Materials Inc. Planarization of substrates using electrochemical mechanical polishing
US7128825B2 (en) 2001-03-14 2006-10-31 Applied Materials, Inc. Method and composition for polishing a substrate
US7160432B2 (en) * 2001-03-14 2007-01-09 Applied Materials, Inc. Method and composition for polishing a substrate
US7582564B2 (en) * 2001-03-14 2009-09-01 Applied Materials, Inc. Process and composition for conductive material removal by electrochemical mechanical polishing
US7232514B2 (en) 2001-03-14 2007-06-19 Applied Materials, Inc. Method and composition for polishing a substrate
US20040159050A1 (en) * 2001-04-30 2004-08-19 Arch Specialty Chemicals, Inc. Chemical mechanical polishing slurry composition for polishing conductive and non-conductive layers on semiconductor wafers
US6818301B2 (en) * 2001-06-01 2004-11-16 Psiloquest Inc. Thermal management with filled polymeric polishing pads and applications therefor
US6783432B2 (en) 2001-06-04 2004-08-31 Applied Materials Inc. Additives for pressure sensitive polishing compositions
US7279119B2 (en) * 2001-06-14 2007-10-09 Ppg Industries Ohio, Inc. Silica and silica-based slurry
US6627546B2 (en) * 2001-06-29 2003-09-30 Ashland Inc. Process for removing contaminant from a surface and composition useful therefor
US6811470B2 (en) 2001-07-16 2004-11-02 Applied Materials Inc. Methods and compositions for chemical mechanical polishing shallow trench isolation substrates
KR100465761B1 (en) * 2002-06-17 2005-01-13 삼성전자주식회사 Semiconductor interconnect structure with TaN and method of forming the same
KR20030013146A (en) * 2001-08-07 2003-02-14 에이스하이텍 주식회사 Method for silicon wafer polishing fluid composition
JP4954398B2 (en) * 2001-08-09 2012-06-13 株式会社フジミインコーポレーテッド Polishing composition and polishing method using the same
US6692546B2 (en) 2001-08-14 2004-02-17 Advanced Technology Materials, Inc. Chemical mechanical polishing compositions for metal and associated materials and method of using same
US7029373B2 (en) * 2001-08-14 2006-04-18 Advanced Technology Materials, Inc. Chemical mechanical polishing compositions for metal and associated materials and method of using same
US6511906B1 (en) * 2001-08-30 2003-01-28 Micron Technology, Inc. Selective CMP scheme
US6638326B2 (en) * 2001-09-25 2003-10-28 Ekc Technology, Inc. Compositions for chemical mechanical planarization of tantalum and tantalum nitride
DE60230538D1 (en) * 2001-11-20 2009-02-05 Rensselaer Polytech Inst METHOD FOR POLISHING THE SURFACE OF A SUBSTRATE
KR100460312B1 (en) * 2001-12-10 2004-12-04 제일모직주식회사 Slurry composition for chemical mechanical polishing of metal lines
US6866792B2 (en) * 2001-12-12 2005-03-15 Ekc Technology, Inc. Compositions for chemical mechanical planarization of copper
US20070295611A1 (en) * 2001-12-21 2007-12-27 Liu Feng Q Method and composition for polishing a substrate
DE10164262A1 (en) * 2001-12-27 2003-07-17 Bayer Ag Composition for the chemical mechanical polishing of metal and metal / dielectric structures
KR100457417B1 (en) * 2001-12-28 2004-11-18 제일모직주식회사 Slurry For Polishing Metal Lines
US7025659B2 (en) * 2002-01-14 2006-04-11 Hitachi Global Storage Technologies Netherlands B.V. Simultaneous planarization of pole piece and coil materials for write head applications
US20030136759A1 (en) * 2002-01-18 2003-07-24 Cabot Microelectronics Corp. Microlens array fabrication using CMP
US7316603B2 (en) * 2002-01-22 2008-01-08 Cabot Microelectronics Corporation Compositions and methods for tantalum CMP
US7097541B2 (en) 2002-01-22 2006-08-29 Cabot Microelectronics Corporation CMP method for noble metals
US6527622B1 (en) * 2002-01-22 2003-03-04 Cabot Microelectronics Corporation CMP method for noble metals
US7524346B2 (en) * 2002-01-25 2009-04-28 Dupont Air Products Nanomaterials Llc Compositions of chemical mechanical planarization slurries contacting noble-metal-featured substrates
US7199056B2 (en) * 2002-02-08 2007-04-03 Applied Materials, Inc. Low cost and low dishing slurry for polysilicon CMP
US6884729B2 (en) * 2002-02-11 2005-04-26 Cabot Microelectronics Corporation Global planarization method
KR20030070191A (en) * 2002-02-21 2003-08-29 주식회사 동진쎄미켐 Chemical Mechanical Polishing Slurry Composition Having Improved Stability and Polishing Speed on Tantalum Metal Layer
US6821309B2 (en) 2002-02-22 2004-11-23 University Of Florida Chemical-mechanical polishing slurry for polishing of copper or silver films
US20030168627A1 (en) * 2002-02-22 2003-09-11 Singh Rajiv K. Slurry and method for chemical mechanical polishing of metal structures including refractory metal based barrier layers
US6853474B2 (en) * 2002-04-04 2005-02-08 Cabot Microelectronics Corporation Process for fabricating optical switches
US6716281B2 (en) * 2002-05-10 2004-04-06 Electrochemicals, Inc. Composition and method for preparing chemically-resistant roughened copper surfaces for bonding to substrates
US7087187B2 (en) * 2002-06-06 2006-08-08 Grumbine Steven K Meta oxide coated carbon black for CMP
US6936543B2 (en) * 2002-06-07 2005-08-30 Cabot Microelectronics Corporation CMP method utilizing amphiphilic nonionic surfactants
US6974777B2 (en) * 2002-06-07 2005-12-13 Cabot Microelectronics Corporation CMP compositions for low-k dielectric materials
US20040007690A1 (en) * 2002-07-12 2004-01-15 Cabot Microelectronics Corp. Methods for polishing fiber optic connectors
JP2004071673A (en) * 2002-08-02 2004-03-04 Nec Electronics Corp Slurry for polishing copper-based metal
JP4083502B2 (en) * 2002-08-19 2008-04-30 株式会社フジミインコーポレーテッド Polishing method and polishing composition used therefor
US6838169B2 (en) * 2002-09-11 2005-01-04 Psiloquest, Inc. Polishing pad resistant to delamination
US20100009540A1 (en) * 2002-09-25 2010-01-14 Asahi Glass Company Limited Polishing compound, its production process and polishing method
AU2003266619A1 (en) * 2002-09-25 2004-04-19 Asahi Glass Company, Limited Polishing compound composition, method for producing same and polishing method
US6866793B2 (en) * 2002-09-26 2005-03-15 University Of Florida Research Foundation, Inc. High selectivity and high planarity dielectric polishing
JP3981616B2 (en) * 2002-10-02 2007-09-26 株式会社フジミインコーポレーテッド Polishing composition
US7063597B2 (en) 2002-10-25 2006-06-20 Applied Materials Polishing processes for shallow trench isolation substrates
US20040144038A1 (en) * 2002-12-09 2004-07-29 Junaid Ahmed Siddiqui Composition and associated method for oxide chemical mechanical planarization
US6893476B2 (en) 2002-12-09 2005-05-17 Dupont Air Products Nanomaterials Llc Composition and associated methods for chemical mechanical planarization having high selectivity for metal removal
WO2004053456A2 (en) * 2002-12-09 2004-06-24 Corning Incorporated Method using multi-component colloidal abrasives for cmp processing of semiconductor and optical materials
US20040175942A1 (en) * 2003-01-03 2004-09-09 Chang Song Y. Composition and method used for chemical mechanical planarization of metals
US7148147B2 (en) * 2003-03-06 2006-12-12 J.G. Systems, Inc. CMP composition containing organic nitro compounds
US20040188379A1 (en) * 2003-03-28 2004-09-30 Cabot Microelectronics Corporation Dielectric-in-dielectric damascene process for manufacturing planar waveguides
US20040209066A1 (en) * 2003-04-17 2004-10-21 Swisher Robert G. Polishing pad with window for planarization
US20040232379A1 (en) * 2003-05-20 2004-11-25 Ameen Joseph G. Multi-oxidizer-based slurry for nickel hard disk planarization
US7390429B2 (en) * 2003-06-06 2008-06-24 Applied Materials, Inc. Method and composition for electrochemical mechanical polishing processing
US20040259366A1 (en) * 2003-06-20 2004-12-23 Kim Seong Han Method and composition for the chemical-vibrational-mechanical planarization of copper
WO2005019364A1 (en) * 2003-08-14 2005-03-03 Ekc Technology, Inc. Periodic acid compositions for polishing ruthenium/high k substrates
US6986284B2 (en) * 2003-08-29 2006-01-17 Rohm And Haas Electronic Materials Cmp Holdings, Inc. System and method for characterizing a textured surface
JP2007505749A (en) * 2003-09-15 2007-03-15 サイロクエスト インコーポレーテッド Polishing pad for chemical mechanical polishing
US7112122B2 (en) * 2003-09-17 2006-09-26 Micron Technology, Inc. Methods and apparatus for removing conductive material from a microelectronic substrate
US6929983B2 (en) 2003-09-30 2005-08-16 Cabot Microelectronics Corporation Method of forming a current controlling device
US20050092620A1 (en) * 2003-10-01 2005-05-05 Applied Materials, Inc. Methods and apparatus for polishing a substrate
US7419911B2 (en) * 2003-11-10 2008-09-02 Ekc Technology, Inc. Compositions and methods for rapidly removing overfilled substrates
US20050104048A1 (en) * 2003-11-13 2005-05-19 Thomas Terence M. Compositions and methods for polishing copper
US20050109980A1 (en) * 2003-11-25 2005-05-26 Hongyu Wang Polishing composition for CMP having abrasive particles
JP3892846B2 (en) * 2003-11-27 2007-03-14 株式会社東芝 CMP slurry, polishing method, and semiconductor device manufacturing method
US20050148289A1 (en) * 2004-01-06 2005-07-07 Cabot Microelectronics Corp. Micromachining by chemical mechanical polishing
US7390744B2 (en) * 2004-01-29 2008-06-24 Applied Materials, Inc. Method and composition for polishing a substrate
US20060021974A1 (en) * 2004-01-29 2006-02-02 Applied Materials, Inc. Method and composition for polishing a substrate
US7120989B2 (en) * 2004-02-18 2006-10-17 Headway Technologies, Inc. Process of manufacturing a perpendicular magnetic pole structure
US7153777B2 (en) * 2004-02-20 2006-12-26 Micron Technology, Inc. Methods and apparatuses for electrochemical-mechanical polishing
US6971945B2 (en) 2004-02-23 2005-12-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Multi-step polishing solution for chemical mechanical planarization
US6979252B1 (en) 2004-08-10 2005-12-27 Dupont Air Products Nanomaterials Llc Low defectivity product slurry for CMP and associated production method
US7210988B2 (en) * 2004-08-24 2007-05-01 Applied Materials, Inc. Method and apparatus for reduced wear polishing pad conditioning
US20060043534A1 (en) * 2004-08-26 2006-03-02 Kirby Kyle K Microfeature dies with porous regions, and associated methods and systems
US7566391B2 (en) * 2004-09-01 2009-07-28 Micron Technology, Inc. Methods and systems for removing materials from microfeature workpieces with organic and/or non-aqueous electrolytic media
US20060088976A1 (en) * 2004-10-22 2006-04-27 Applied Materials, Inc. Methods and compositions for chemical mechanical polishing substrates
US20060089093A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20060089095A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20060089094A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
JP2006179845A (en) * 2004-11-26 2006-07-06 Fuji Photo Film Co Ltd Polishing solution for metal, and polishing method
US20060118760A1 (en) * 2004-12-03 2006-06-08 Yang Andy C Slurry composition and methods for chemical mechanical polishing
US20060154579A1 (en) * 2005-01-12 2006-07-13 Psiloquest Thermoplastic chemical mechanical polishing pad and method of manufacture
WO2006081589A2 (en) * 2005-01-28 2006-08-03 Applied Materials, Inc. Tungsten electroprocessing
US20060169674A1 (en) * 2005-01-28 2006-08-03 Daxin Mao Method and composition for polishing a substrate
DE102005004384A1 (en) * 2005-01-31 2006-08-10 Advanced Micro Devices, Inc., Sunnyvale A method of making a defined recess in a damascene structure using a CMP process and a damascene structure
EP1702965A3 (en) * 2005-03-17 2007-07-25 FUJIFILM Corporation Metal chemical mechanical polishing solution and polishing method
CN1854234B (en) 2005-04-21 2013-03-20 安集微电子(上海)有限公司 Polished sizing material, its use and using method
JP5133874B2 (en) * 2005-04-28 2013-01-30 テクノ セミケム シーオー., エルティーディー. Chemical mechanical polishing composition with automatic polishing stop function for planarization of high step oxide film
US20060249395A1 (en) * 2005-05-05 2006-11-09 Applied Material, Inc. Process and composition for electrochemical mechanical polishing
US20060249394A1 (en) * 2005-05-05 2006-11-09 Applied Materials, Inc. Process and composition for electrochemical mechanical polishing
US20060278879A1 (en) * 2005-06-09 2006-12-14 Cabot Microelectronics Corporation Nanochannel device and method of manufacturing same
US7576361B2 (en) * 2005-08-03 2009-08-18 Aptina Imaging Corporation Backside silicon wafer design reducing image artifacts from infrared radiation
US7803203B2 (en) 2005-09-26 2010-09-28 Cabot Microelectronics Corporation Compositions and methods for CMP of semiconductor materials
TW200720493A (en) * 2005-10-31 2007-06-01 Applied Materials Inc Electrochemical method for ecmp polishing pad conditioning
KR101134588B1 (en) * 2005-12-07 2012-04-09 삼성코닝정밀소재 주식회사 Chemical mechanical polishing composition for metal circuit
US20070151866A1 (en) * 2006-01-05 2007-07-05 Applied Materials, Inc. Substrate polishing with surface pretreatment
US20070158207A1 (en) * 2006-01-06 2007-07-12 Applied Materials, Inc. Methods for electrochemical processing with pre-biased cells
US20070227902A1 (en) * 2006-03-29 2007-10-04 Applied Materials, Inc. Removal profile tuning by adjusting conditioning sweep profile on a conductive pad
US20070249167A1 (en) * 2006-04-21 2007-10-25 Cabot Microelectronics Corporation CMP method for copper-containing substrates
US20070254485A1 (en) * 2006-04-28 2007-11-01 Daxin Mao Abrasive composition for electrochemical mechanical polishing
US7368066B2 (en) * 2006-05-31 2008-05-06 Cabot Microelectronics Corporation Gold CMP composition and method
US20080148652A1 (en) * 2006-12-21 2008-06-26 Junaid Ahmed Siddiqui Compositions for chemical mechanical planarization of copper
KR101621580B1 (en) * 2009-01-30 2016-05-16 렌즈세이버스, 엘엘씨 Compositions and methods for restoring plastic covers and lenses
CN102373014A (en) * 2010-08-24 2012-03-14 安集微电子(上海)有限公司 Chemical-mechanical polishing solution
EP2502969A1 (en) * 2011-03-22 2012-09-26 Basf Se A chemical mechanical polishing (cmp) composition comprising two types of corrosion inhibitors
CN104480522B (en) * 2014-12-03 2016-10-12 南京三乐电子信息产业集团有限公司 The tantalum foil material primary emission body electrochemical deburring of magnetron and oxide layer solution and burr removing method thereof
KR101682085B1 (en) * 2015-07-09 2016-12-02 주식회사 케이씨텍 Slurry composition for tungsten polishing
KR101922289B1 (en) * 2015-11-26 2018-11-27 삼성에스디아이 주식회사 Cmp slurry composition and polishing method of organic film using the same
CN106811618B (en) * 2017-02-13 2018-05-11 东莞市佳乾新材料科技有限公司 A kind of red copper row of environment-friendly type fastness and preparation method thereof
US10106705B1 (en) 2017-03-29 2018-10-23 Fujifilm Planar Solutions, LLC Polishing compositions and methods of use thereof
US10685935B2 (en) 2017-11-15 2020-06-16 Taiwan Semiconductor Manufacturing Company, Ltd. Forming metal bonds with recesses
CN111040640A (en) * 2020-01-07 2020-04-21 郑州中科新兴产业技术研究院 Composite abrasive chemical mechanical polishing slurry for silicon wafer substrate and preparation method thereof
KR20210092376A (en) * 2020-01-15 2021-07-26 오씨아이 주식회사 Abrasive and method fop planarization using the same
KR102367056B1 (en) * 2020-02-27 2022-02-25 주식회사 케이씨텍 Slurry composition for chemical mechanical polishing
WO2022093688A1 (en) * 2020-10-29 2022-05-05 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions and methods of using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263186A (en) * 1988-04-15 1989-10-19 Showa Denko Kk Polishing composition for aluminum magnetic disk
WO1996038262A1 (en) * 1995-06-01 1996-12-05 Rodel, Inc. Compositions for polishing silicon wafers and methods
EP0811665A2 (en) * 1996-05-10 1997-12-10 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
EP0846742A2 (en) * 1996-12-09 1998-06-10 Cabot Corporation Chemical mechanical polishing slurry useful for copper substrates
WO1998044061A1 (en) * 1997-04-02 1998-10-08 Advanced Chemical Systems International, Inc. Planarization composition for removing metal films
EP0896042A1 (en) * 1997-07-28 1999-02-10 Cabot Corporation A polishing composition including an inhibitor of tungsten etching

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1198312A (en) * 1967-07-22 1970-07-08 Geigy Uk Ltd Corrosion Inhibiting Chemical Compositions
SE400581B (en) * 1974-12-13 1978-04-03 Nordnero Ab BATH FOR CHEMICAL POLISHING OF COPPER AND ITS ALLOYS
US4944836A (en) * 1985-10-28 1990-07-31 International Business Machines Corporation Chem-mech polishing method for producing coplanar metal/insulator films on a substrate
US4671851A (en) * 1985-10-28 1987-06-09 International Business Machines Corporation Method for removing protuberances at the surface of a semiconductor wafer using a chem-mech polishing technique
US4789648A (en) * 1985-10-28 1988-12-06 International Business Machines Corporation Method for producing coplanar multi-level metal/insulator films on a substrate and for forming patterned conductive lines simultaneously with stud vias
US4956313A (en) * 1987-08-17 1990-09-11 International Business Machines Corporation Via-filling and planarization technique
US4892612A (en) * 1988-10-11 1990-01-09 Huff John E Polishing method
US4910155A (en) * 1988-10-28 1990-03-20 International Business Machines Corporation Wafer flood polishing
SU1763468A1 (en) * 1990-01-08 1992-09-23 Одесский Конструкторско-Технологический Институт По Поршневым Кольцам Lapping suspension
US5244523A (en) * 1990-02-07 1993-09-14 Tollini Dennis R Bandage for replaceable dressing and method of fabrication thereof
US5137544A (en) * 1990-04-10 1992-08-11 Rockwell International Corporation Stress-free chemo-mechanical polishing agent for II-VI compound semiconductor single crystals and method of polishing
US5157876A (en) * 1990-04-10 1992-10-27 Rockwell International Corporation Stress-free chemo-mechanical polishing agent for II-VI compound semiconductor single crystals and method of polishing
US5225034A (en) * 1992-06-04 1993-07-06 Micron Technology, Inc. Method of chemical mechanical polishing predominantly copper containing metal layers in semiconductor processing
US5209816A (en) * 1992-06-04 1993-05-11 Micron Technology, Inc. Method of chemical mechanical polishing aluminum containing metal layers and slurry for chemical mechanical polishing
US5575837A (en) * 1993-04-28 1996-11-19 Fujimi Incorporated Polishing composition
US5391258A (en) * 1993-05-26 1995-02-21 Rodel, Inc. Compositions and methods for polishing
US5340370A (en) * 1993-11-03 1994-08-23 Intel Corporation Slurries for chemical mechanical polishing
US5575885A (en) * 1993-12-14 1996-11-19 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing semiconductor device
JP3397501B2 (en) * 1994-07-12 2003-04-14 株式会社東芝 Abrasive and polishing method
US5527423A (en) * 1994-10-06 1996-06-18 Cabot Corporation Chemical mechanical polishing slurry for metal layers
US5700383A (en) * 1995-12-21 1997-12-23 Intel Corporation Slurries and methods for chemical mechanical polish of aluminum and titanium aluminide
US5993686A (en) * 1996-06-06 1999-11-30 Cabot Corporation Fluoride additive containing chemical mechanical polishing slurry and method for use of same
JP3507628B2 (en) * 1996-08-06 2004-03-15 昭和電工株式会社 Polishing composition for chemical mechanical polishing
US6068787A (en) * 1996-11-26 2000-05-30 Cabot Corporation Composition and slurry useful for metal CMP
US5735963A (en) * 1996-12-17 1998-04-07 Lucent Technologies Inc. Method of polishing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263186A (en) * 1988-04-15 1989-10-19 Showa Denko Kk Polishing composition for aluminum magnetic disk
WO1996038262A1 (en) * 1995-06-01 1996-12-05 Rodel, Inc. Compositions for polishing silicon wafers and methods
EP0811665A2 (en) * 1996-05-10 1997-12-10 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
EP0846742A2 (en) * 1996-12-09 1998-06-10 Cabot Corporation Chemical mechanical polishing slurry useful for copper substrates
WO1998044061A1 (en) * 1997-04-02 1998-10-08 Advanced Chemical Systems International, Inc. Planarization composition for removing metal films
EP0896042A1 (en) * 1997-07-28 1999-02-10 Cabot Corporation A polishing composition including an inhibitor of tungsten etching

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 8948, Derwent World Patents Index; AN 352276, XP002117393, MIYAZAKI K: "Abrasive composition" *
DATABASE WPI Week 9338, Derwent World Patents Index; AN 301484, XP002117392, KHOMA M I, KRAIZE A D: "Abrasive composition" *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541381B2 (en) 1998-11-06 2003-04-01 Beaver Creek Concepts Inc Finishing method for semiconductor wafers using a lubricating boundary layer
US7131890B1 (en) 1998-11-06 2006-11-07 Beaver Creek Concepts, Inc. In situ finishing control
US6739947B1 (en) 1998-11-06 2004-05-25 Beaver Creek Concepts Inc In situ friction detector method and apparatus
US6428388B2 (en) 1998-11-06 2002-08-06 Beaver Creek Concepts Inc. Finishing element with finishing aids
US6656023B1 (en) 1998-11-06 2003-12-02 Beaver Creek Concepts Inc In situ control with lubricant and tracking
US6634927B1 (en) 1998-11-06 2003-10-21 Charles J Molnar Finishing element using finishing aids
SG88775A1 (en) * 1998-12-01 2002-05-21 Fujimi Inc Polishing composition and polishing method employing it
US6428721B1 (en) 1998-12-01 2002-08-06 Fujimi Incorporated Polishing composition and polishing method employing it
JP2000252242A (en) * 1998-12-28 2000-09-14 Hitachi Chem Co Ltd Polishing liquid for metal and polishing method using the same
US6551933B1 (en) 1999-03-25 2003-04-22 Beaver Creek Concepts Inc Abrasive finishing with lubricant and tracking
JP2006245598A (en) * 1999-08-13 2006-09-14 Cabot Microelectronics Corp Polishing system with stopping compound and method of its use
JP4723409B2 (en) * 1999-08-13 2011-07-13 キャボット マイクロエレクトロニクス コーポレイション Polishing composition, polishing system and polishing method
US6520840B1 (en) 1999-10-27 2003-02-18 Applied Materials, Inc. CMP slurry for planarizing metals
SG83822A1 (en) * 1999-10-27 2001-10-16 Applied Materials Inc Cmp slurry for planarizing metals
US6435944B1 (en) 1999-10-27 2002-08-20 Applied Materials, Inc. CMP slurry for planarizing metals
WO2001041973A2 (en) * 1999-12-07 2001-06-14 Cabot Microelectronics Corporation Chemical-mechanical polishing method
WO2001041973A3 (en) * 1999-12-07 2002-01-03 Cabot Microelectronics Corp Chemical-mechanical polishing method
US6451697B1 (en) 2000-04-06 2002-09-17 Applied Materials, Inc. Method for abrasive-free metal CMP in passivation domain
US6872329B2 (en) 2000-07-28 2005-03-29 Applied Materials, Inc. Chemical mechanical polishing composition and process
KR100450985B1 (en) * 2000-11-24 2004-10-02 도꾜 지끼 인사쯔 가부시키가이샤 Slurry for chemical mechanical polishing
US6796883B1 (en) 2001-03-15 2004-09-28 Beaver Creek Concepts Inc Controlled lubricated finishing
WO2002100963A1 (en) * 2001-06-13 2002-12-19 Advanced Micro Devices, Inc. Use of a gettering agent in a chemical mechanical polishing and rinsing operation and apparatus therefor
WO2002102910A1 (en) * 2001-06-14 2002-12-27 Ppg Industries Ohio, Inc. A silica-based slurry
WO2002102920A1 (en) * 2001-06-14 2002-12-27 Ppg Industries Ohio, Inc. A silica and a silica-based slurry
US6656241B1 (en) 2001-06-14 2003-12-02 Ppg Industries Ohio, Inc. Silica-based slurry
US6592742B2 (en) 2001-07-13 2003-07-15 Applied Materials Inc. Electrochemically assisted chemical polish
US7156717B2 (en) 2001-09-20 2007-01-02 Molnar Charles J situ finishing aid control
CN100408648C (en) * 2003-01-23 2008-08-06 罗门哈斯电子材料Cmp控股股份有限公司 Selective barrier metal polishing solution
US7300602B2 (en) 2003-01-23 2007-11-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Selective barrier metal polishing solution
WO2004067660A1 (en) * 2003-01-23 2004-08-12 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Selective barrier metal polishing solution
US7253111B2 (en) 2004-04-21 2007-08-07 Rohm And Haas Electronic Materials Cmp Holding, Inc. Barrier polishing solution
US7247567B2 (en) 2004-06-16 2007-07-24 Cabot Microelectronics Corporation Method of polishing a tungsten-containing substrate
US7582127B2 (en) 2004-06-16 2009-09-01 Cabot Microelectronics Corporation Polishing composition for a tungsten-containing substrate
US7427362B2 (en) 2005-01-26 2008-09-23 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Corrosion-resistant barrier polishing solution

Also Published As

Publication number Publication date
TWI245788B (en) 2005-12-21
MY116324A (en) 2003-12-31
CN1158373C (en) 2004-07-21
DE69928537T2 (en) 2006-03-30
CN1312845A (en) 2001-09-12
EP1098948B1 (en) 2005-11-23
KR20010053166A (en) 2001-06-25
JP2002519475A (en) 2002-07-02
IL140303A0 (en) 2002-02-10
KR100491060B1 (en) 2005-05-24
EP1098948A1 (en) 2001-05-16
DE69928537D1 (en) 2005-12-29
AU4723599A (en) 2000-01-17
US6063306A (en) 2000-05-16
JP4261058B2 (en) 2009-04-30
CA2335033A1 (en) 2000-01-06
ID28618A (en) 2001-06-21

Similar Documents

Publication Publication Date Title
US6063306A (en) Chemical mechanical polishing slurry useful for copper/tantalum substrate
EP1090083B1 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6432828B2 (en) Chemical mechanical polishing slurry useful for copper substrates
US5954997A (en) Chemical mechanical polishing slurry useful for copper substrates
EP1559762B1 (en) Chemical mechanical polishing slurry useful for copper substrates
US6362106B1 (en) Chemical mechanical polishing method useful for copper substrates
US5783489A (en) Multi-oxidizer slurry for chemical mechanical polishing
US6033596A (en) Multi-oxidizer slurry for chemical mechanical polishing
JP2002519471A5 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99809560.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2335033

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 140303

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020007014741

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 557321

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999930777

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999930777

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007014741

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007014741

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999930777

Country of ref document: EP