WO2000003805A1 - Microtitre chemical reaction system - Google Patents

Microtitre chemical reaction system Download PDF

Info

Publication number
WO2000003805A1
WO2000003805A1 PCT/US1999/015694 US9915694W WO0003805A1 WO 2000003805 A1 WO2000003805 A1 WO 2000003805A1 US 9915694 W US9915694 W US 9915694W WO 0003805 A1 WO0003805 A1 WO 0003805A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
microtitre
reaction system
wells
gas
Prior art date
Application number
PCT/US1999/015694
Other languages
French (fr)
Inventor
Klaus M. Gubernator
Joe Cohen
Robert A. Zambias
Original Assignee
Combichem, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Combichem, Inc. filed Critical Combichem, Inc.
Priority to AU49856/99A priority Critical patent/AU4985699A/en
Priority to EP99933903A priority patent/EP1098708A1/en
Priority to JP2000559936A priority patent/JP2002520154A/en
Priority to CA002343749A priority patent/CA2343749A1/en
Publication of WO2000003805A1 publication Critical patent/WO2000003805A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00283Reactor vessels with top opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00308Reactor vessels in a multiple arrangement interchangeably mounted in racks or blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00308Reactor vessels in a multiple arrangement interchangeably mounted in racks or blocks
    • B01J2219/0031Reactor vessels in a multiple arrangement interchangeably mounted in racks or blocks the racks or blocks being mounted in stacked arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • B01J2219/00333Closures attached to the reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • B01J2219/00333Closures attached to the reactor vessels
    • B01J2219/00335Septa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00373Hollow needles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • B01J2219/00484Means for mixing reactants or products in the reaction vessels by shaking, vibrating or oscillating of the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • B01J2219/00488Means for mixing reactants or products in the reaction vessels by rotation of the reaction vessels
    • B01J2219/0049Means for mixing reactants or products in the reaction vessels by rotation of the reaction vessels by centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00495Means for heating or cooling the reaction vessels
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • the present invention relates to reaction wells and more particularly to devices incorporating arrays of microtitre reaction wells.
  • Microtitre plates provide convenient handling systems for processing, shipping, and storing small liquid samples. Such devices are especially useful in high- throughput screening and combinatorial chemistry applications and are well suited for use with robotic automation systems which are adapted to selectively deliver various substances into different individual wells of the microtitre plate. As such, microtitre plates have proven especially useful in various biological, pharmacological, and related processes which analyze and/or synthesize large numbers of small liquid samples .
  • Standard multi-well microtitre plates come in a range of sizes, with shallow well plates having well volumes on the order of 200 to 300 microlitres and deep well plates typically having well volumes of 1.2 mL or 2.0 m .
  • a common example of a multi-well microtitre plate system is the standard 96-well microplate.
  • Such microplates are typically fabricated from a variety of materials including polystyrene, polycarbonate, polypropylene, PTFE, glass, ceramics, and quartz.
  • microtitre plates suffer from a number of limitations, particularly with regard to chemical synthesis. For example, spillage, leakage, evaporation loss, airborne contamination of well contents, and inter-well cross-contamination of liquid samples are some of the common deficiencies that limit the application of standard microtitre plate assemblies in high through-put synthesis systems .
  • the present invention provides a reaction well array device in a microtitre plate format which is adapted to substantially eliminate cross-contamination, spillage, and evaporation from the individual reaction wells. Moreover, the present device is adapted to provide a sealed environment such that the contents in the interior of the reaction wells are not exposed to the external environment.
  • An additional advantage of the present reaction well array device is that gas pressure can easily be equalized over the entire array of reaction wells.
  • gases can selectively be introduced and/or removed from the reaction environment without exposing the contents of the reaction wells to the external environment.
  • the present device is specifically adapted to selectively receive liquid samples introduced or removed by way of robotic or manually controlled injection needles, without violating the internal sealed reaction environment of the system.
  • the present: invention also provides a base plate which can be attached for convenient: mounting of the system on a variety of other devices which handle standard microtitre plate formats such as centrifuges, orbital shakers, shelf dryers, analytical injectors and liquid handling robots.
  • the present invention also provides a small efficient temperature control system for adjusting and maintaining preferred temperatures in the reaction wells.
  • the present invention provides a microtitre reaction system having an array of reaction tubes or wells which are integrally formed into an underlying support rack.
  • the present invention provides an array of reaction wells which are each selectively removable from an underlying support rack.
  • An advantage of this second embodiment is that each of the various reaction wells can be selectively removed and/or replaced in the support rack, as is desired.
  • the present microtitre device is readily adaptable for manual removal of individual reaction wells or for use with an automated robotic system for removing and replacing individual reaction wells.
  • a porous gas distribution plate is positioned over the array of reaction wells.
  • the porous gas distribution plate has an array of holes passing therethrough with a single hole disposed over the open top end of each of the reaction wells.
  • the porous gas distribution plate is formed of small polypropylene particles which are fused together with porous passages or channels remaining between the particles so as to permit gas diffusion through the plate. The porous gas diffusion plate operates to permit gas passage in a common area over the array of adjacent reaction wells.
  • a gasket and a top cover are positioned over the porous gas distribution plate such that a sealed reaction environment is provided for each of the various reaction wells in the array.
  • a gas purge vent is preferably provided in the present device such that gases may be selectively introduced or removed from the reaction environment while liquid transfer out of any individual well or between any two adjacent: wells is prevented.
  • the optional base plate can be attached to conveniently convert the support rack and reaction wells into a deep well microtitre plate configuration such that it can be mounted to a variety of different devices including, centrifuges, orbital shakers, shelf dryers, robotic liquid handlers and automated injectors for analytical and preparative chromatography and the like.
  • the present invention may optionally include a small heating and cooling system which is attached thereto such that enhanced temperature control in the reaction environment is achieved.
  • a generally funnel-shaped reactor cap is included and is received into the open top end of each reaction well, prior to the placement of the gas distribution plate thereover.
  • An example of such generally funnel-shaped reactor caps can be found in U.S. Patent Application No. 08/953,441, assigned to Texperts, Inc., a Delaware
  • funnel-shaped reactor caps include their substantial inhibition of liquid passage out of each reaction well such that liquid spillage is substantially prevented for all orientations of the reaction well array.
  • Such funnel-shaped reactor caps are typically held together in an array formation by way of an interlocking web. In such an array, the reactor caps can be easily fit into an array of reaction wells as a single unit.
  • Fig. 1A is an exploded top pictorial view of the present microtitre reaction device
  • Fig IB is an exploded bottom pictorial view corresponding to Fig. 1A;
  • Fig. 2 is a top perspective view of the microtitre device of Fig. 1A in an assembled condition
  • Fig. 3A is a partial side sectional elevation view of a portion of the microtitre device of Fig. 2, showing an array of reaction wells integrally formed into a support rack;
  • Fig. 3B is a view corresponding to Fig. 3A, but with an array of separately removable reaction wells received in passages passing through the support rack;
  • Fig. 4 is sectional side elevation view of a single prior art reaction well in an upright orientation, as incorporated into the present novel device of Figs. 3A and 3B;
  • Fig. 5 shows the reaction well of Fig. 4 in an inverted position
  • Fig. 6 shows the reaction well of Fig. 4 in a partially inverted position
  • Fig. 7 shows an injection needle received into the reaction well of Fig. 4;
  • Fig. 8 is a top perspective view of prior art reaction caps as incorporated into the novel device of Figs. 1A, IB, 3A and 3B;
  • Fig. 9 is a bottom perspective view of the reaction caps of Fig. 8; and Fig. 10 is a top perspective view of a removable base plate which is adapted to be positioned under and support the closed bottom ends of the reaction wells of the device of Fig. 2;
  • Fig. 11A is a top plan view of one of the devices of Fig. 2 received into a temperature heating and cooling block;
  • Fig. 11B is a sectional elevation view along line 11B-11B in Fig. 11A;
  • Fig. 12 is a top plan view of the temperature heating and cooling block of Fig. 11A;
  • Fig. 13 is a side sectional elevation view of the block of Fig. 12, taken along line 13-13 of Fig. 12;
  • FIG. 14 sectional top plan view of the block of Fig. 12, taken along line 14-14 of Fig. 13.
  • system 15 comprising a support rack 16, having an array of reaction wells 18.
  • system 15 may include a reactor cap assembly IS with an array of reactor caps 20 extending into wells 18.
  • a porous gas distribution plate 22, having an array of holes 23 passing therethrough, is captured between support rack 16 and a gasket 24. (Alternatively, if optional assembly 19 is included, gas distribution plate 22 is captured between assembly 19 and gasket 24) .
  • System 15 further comprises a top cover 26, used to retain all of the system components together, having a plurality of holes 27 passing therethrough.
  • the present design provides a sealed reaction environment for each of the reaction wells 18 and eliminates the problems of spillage, leakage, evaporation loss, airborne contamination of well contents, and inter-well cross-contamination of liquid samples as will be explained.
  • the array of reaction wells 18 is integrally formed together with support rack 16 as a single unit, preferably from a block of injection molded polypropylene.
  • the array of reaction wells 18 comprises selectively removable reaction tubes which are each separately received in an array of passages 17 formed in support rack 16.
  • each separately removable reaction well 18 operates to seal a separate passage 17, such that a sealed reaction environment above the array of reaction wells 18 is provided.
  • reaction tubes comprising wells 18 are preferably formed from glass or polypropylene and support rack 16 is preferably formed from polypropylene.
  • Optional reactor caps 20 are preferably formed from polypropylene and operate to substantially eliminate spillage, leakage, evaporation loss and inter-well cross-contamination among wells 18, as follows. As can be seen in Figs. 3A to 9, each reactor cap 20 has an upper sealing plug portion 34 and a lower funnel cone portion 36. Sealing plug portion 34 is dimensioned to be slidably press fit into the open top end 30 of reaction well 18. Liquids received through a central vent 38 in each reaction cap 20 will pool at the closed bottom end 32 of each reaction well 18 as shown. Funnel cone portion 36 is dimensioned to extend inwardly into reaction well 18 and preferably terminates at a generally centrally located position in reaction well 18. Such generally funnel-shaped reactor caps, which are inserted into the top open end of a reaction well and terminate at a generally centrally located position in the reaction well, are known to exist.
  • gas distribution plate 22 preferably has holes 23 passing therethrough. Holes 23 are disposed in an array formation (best seen in Figs. 1A and IB) such that a single hole 23 is positioned over the open top end of each reaction well 18 (best seen in Figs. 3A and 3B) . Holes 23 permit injection needle access through gasket 24 and into various reaction wells 18, as will be further explained. In alternative embodiments, holes 23 are not initially pre- fabricated in gas distribution plate 22, but are instead later formed by the penetration of injection needles through gasket 24 and gas distribution plate 22 when delivering liquid samples into reaction wells 18. Gas distribution plate 22 is preferably formed from a gas-permeable sheet which is generally resistant to liquid permeation.
  • Such a sheet can be provided from granulated polypropylene wherein small particles of polypropylene are bonded together forming porous passages or channels remaining between the particles so as to permit gas diffusion therethrough.
  • An example of such a material is made by Porex Technologies of Fairborn, Georgia, and sold under the tradename "Porex”.
  • Plate 22 is adapted to permit gas distribution over the entire array of reaction wells 18 by permitting gas distribution between any two adjacent reaction wells 18 as will be more fully explained herein.
  • Gasket 24 is preferably formed from a gas- impermeable material such as silicon rubber and operates to provide a sealed environment above the array of reaction wells 18.
  • Gasket 24 preferably has a perimeter edge 25 which forms a gas-tight seal around the outer perimeter of support rack 16.
  • edge 25 projects downwardly such that sufficient space is provided to accommodate gas distribution plate 22 and reaction caps 20, as seen in Figs. 3A and 3B.
  • Top plate 26 is preferably formed from anodized aluminum and is fastened into position by being pressed tightly downward upon gasket 24 such that retaining clips 28 matingly interlock with notches 21 in support rack 16. Pressing top plate 26 tightly down upon gasket 24 to assemble the device causes gasket 24 to be compressed. Thus, upon removal of a sample delivering injection needle passing therethrough, compressed gasket 24 will self-seal so as to close around the hole which had been formed by the injection needle. Holes 27 in top cover 26 permit easy access of injection needles therethrough when delivering samples into reaction wells 18.
  • a gas port 40 is provided to enable gases to be selectively introduced and/or evacuated from the sealed environment above the array of reaction wells 18 as follows. Gas introduced through gas port 40 passes through the porous gas distribution plate 22 at region 22a adjacent gas port 40. Accordingly, gas introduced through gas port 40 will diffuse through region 22a of plate 22, thereby being introduced into reaction well 18a. Similarly, the gas is able to pass between reaction wells 18a and 18b by passing through region 22b of gas plate 22. As can be appreciated, gases can therefore be variously introduced and/or removed from above the entire array of reaction wells 18 by way of gas port 40. Due to the high resistance to liquid permeation through gas distribution plate 22, an additional advantage of gas distribution plate 22 is that it prevents any cross-contamination of liquids between any two adjacent wells.
  • a similar gas port would be positioned at the opposite end of the device from that shown in the partial view of Fig. 3 such that gas could easily be introduced into a gas port at one end and simultaneously withdrawn from the gas port at the other opposite end of the device.
  • An additional gas port or ports 43 can be provided.
  • gas port 40 would typically be connected to a pneumatic manifold for introducing and removing gasses as desired.
  • Optional reactor caps 20 provide a convenient device for effectively sealing the liquid samples within the various reaction wells 18, yet permitting gas to be introduced or removed easily due to the geometry of the reactor caps. Specifically, the introduction of a liquid sample into a reaction well 18 substantially remains within the well for various orientations of the device.
  • Central vent 38 of reactor cap 20 permits the addition or removal of material to reaction well 18 without requiring that reactor cap 20 be removed. Consequently, an important advantage of the present invention is that when mixing the contents of the array of reaction wells, such as with vibrational shaker equipment, it is not necessary to individually seal the top ends of the reaction wells 18 during this process. As such, a user can synthesize compounds and then shake or otherwise mix the compounds without a substantial loss of the compounds out of open top end 30 of the reaction wells.
  • Figure 4 shows an upright orientation of a single reaction well 18 containing a liquid 42.
  • liquid 42 will pool at the bottom end 32 of reaction well 18.
  • Funnel portion 36 has a narrow open end 37 which operates to hold liquid samples within reaction 'wells 18 for all orientations of the reaction well .
  • Figure 5 shows an inverted orientation of reaction well 18. In this orientation, liquid 42 pools at top end 30 with narrow end 37 of funnel portion 36 positioned at a location above the liquid as shown. Accordingly, inverting reaction well 18 as shown will not permit the liquid 42 to escape from the reaction well.
  • Figure 6 shows a semi-inverted orientation of reaction well 18. In this orientation, the narrow open end 37 of funnel portion 36 still remains above liquid 42. Accordingly, as can be appreciated when viewing Figs.
  • Fig. 7 illustrates a convenient needle guide for directing an injection needle 44 to the central bottom region of reaction well 18, thereby enhancing mixing by penetrating to the deepest portion of the reaction wells as fluid samples are added by needle 44.
  • reactor caps 20 are preferably held together by a interlocking web 39. Accordingly, the array of reactor caps 20 of assembly 19 can be easily and simultaneously inserted into the array of reaction wells 18.
  • web 39 will preferably be formed from polypropylene or polyethylene which will flex to allow for easy positioning.
  • optional reactor cap assembly 19 is integrally forme ⁇ from a single piece of suitable material which may comprise polypropylene.
  • the present multi-well microtitre reaction system 15 can be mounted to and supported by an optional base plate 45 which has holes 48 sized and positioned to receive closed bottoms 32 of reaction wells 18 in a nested relationship therein.
  • system 15 When received in such a temporary nested relationship m base plate 45, system 15 may conveniently be held in place by way of press fitting wells 18 into holes 48.
  • the attachment of base plate 45 permits system 15 to instead be conveniently mounted to any device which operates m conjunction with standard deep well microtitre plate format including centrifuges, orbital shakers, shelf dryers, analytical injectors and liquid handling robots.
  • an optional temperature heating and cooling block 46 can also be provided.
  • block 46 can be dimensioned to accommodate a plurality of separate microtitre reaction systems 15 therein.
  • block 46 is shown dimensioned to nold three microtitre systems. It is to be understoo ⁇ , however, that block 46 could instead be dimensioned to accommodate any number of microtitre reaction systems, including only a single microtitre reaction system.
  • Block 46 has one or more arrays of holes 47 which are dimensioned to mate with lower closed ends 32 of reaction wells 18 of system 15, thereby holding wells 18 in a nested relationship therein.
  • Block 46 can preferably be formed of aluminum.
  • thermocouple controlled heating element 49 may also be provided.
  • heating element 49 spans across the entire bottom of block 46.
  • the application of a current across heating element 49 operates to generate heat which is then radiated upwardly into the various reaction wells 18 when wells 18 are received downwardly into holes 47.
  • Controllably varying the amount of current passing through heating element 49 operates to control the degree of heating provided to the reaction wells.
  • block 46 preferably also includes a plurality of interior channels 53 passing therethrough with a plurality of side portals 50 cut therein. Portals 50 permit fluid to flow through block 46.
  • this fluid is a cooling fluid which is used to lower the temperature in reaction wells 18 when the wells are received in holes 47 of block 46.
  • channels 53 may be disposed within block 46 in any number of geometric orientations. For uniform cooling however, channels 53 will preferably be disposed m block 46 m an orientation such that each individual reaction well 18 will be spaced generally proximal an underlying channel 53.
  • Plugs 51 are preferably formed from the same material as block 46 and can selectively be positioned m channels 53 such that fluid flow path through block 46 can be directed in a preferred path. As shown m Fig. 14, this preferred path can be of a serpentine nature. An advantage of such a serpentine flow is that improved heat exchange will occur between the reaction wells and the cooling fluid, due to the increased time taken for the fluid to pass through block 46, as compared to the instance where plugs 51 are removed. Moreover, fluid tubing connections to block 46 are simplified by plugs 51 installed as shown as fluid need only be introduced through a single portal 50a and exit at another single portal 50b.
  • the heating and cooling effects on the reaction wells can be controllably balanced permitting a desired temperature to be quickly reached and adjusted as required.
  • the materials added to the various reaction wells can be either a liquid, gas or a solid such as pellets or powder.
  • any temperature of fluid can be used in block 46 to provide temperature control.
  • a heating fluid may be used instead of a cooling fluid, thereby reducing or eliminating the need for heating with heating element 49.

Abstract

A microtitre reaction system (15), comprising a support rack (16) having an array of reaction wells (18) disposed therein, each reaction well (18) having an open top end (30) and a closed bottom end (32); a plurality of generally funnel shaped reactor caps (20) with each of reactor caps (20) being received into open top end (30) of each reaction well (18); a porous gas-permeable layer (22) positioned over support rack (16), gas-permeable layer (22) having an array of holes (23) therein with each hole (23) being positioned over open top end (30) of each of the plurality of reaction wells (18); gasket (24) positioned over porous gas-permeable layer (22); and a top cover (26) positioned over gasket (22).

Description

MICROTITRE CHEMICAL REACTION SYSTEM
TECHNICAL FIELD The present invention relates to reaction wells and more particularly to devices incorporating arrays of microtitre reaction wells.
BACKGROUND OF THE INVENTION
Microtitre plates provide convenient handling systems for processing, shipping, and storing small liquid samples. Such devices are especially useful in high- throughput screening and combinatorial chemistry applications and are well suited for use with robotic automation systems which are adapted to selectively deliver various substances into different individual wells of the microtitre plate. As such, microtitre plates have proven especially useful in various biological, pharmacological, and related processes which analyze and/or synthesize large numbers of small liquid samples .
Standard multi-well microtitre plates come in a range of sizes, with shallow well plates having well volumes on the order of 200 to 300 microlitres and deep well plates typically having well volumes of 1.2 mL or 2.0 m . A common example of a multi-well microtitre plate system is the standard 96-well microplate. Such microplates are typically fabricated from a variety of materials including polystyrene, polycarbonate, polypropylene, PTFE, glass, ceramics, and quartz.
Unfortunately, standard microtitre plates suffer from a number of limitations, particularly with regard to chemical synthesis. For example, spillage, leakage, evaporation loss, airborne contamination of well contents, and inter-well cross-contamination of liquid samples are some of the common deficiencies that limit the application of standard microtitre plate assemblies in high through-put synthesis systems .
Existing multi -well reaction arrays are large, bulky devices which can not be conveniently mounted to, and removably exchanged between, devices which handle standard microtitre plates such as centrifuges, orbital shakers, shelf dryers, analytical injectors and liquid-handling robots. In addition, another disadvantage of existing multi-well reaction arrays is that convenient temperature control of the reaction wells is quite limited. Presently, temperature control is typically accomplished by way of large, bulky heating and cooling blocks which can not conveniently be used on liquid- handling robots.
SUMMARY OF THE INVENTION
The present invention provides a reaction well array device in a microtitre plate format which is adapted to substantially eliminate cross-contamination, spillage, and evaporation from the individual reaction wells. Moreover, the present device is adapted to provide a sealed environment such that the contents in the interior of the reaction wells are not exposed to the external environment. An additional advantage of the present reaction well array device is that gas pressure can easily be equalized over the entire array of reaction wells. Another advantage of the present system is that gases can selectively be introduced and/or removed from the reaction environment without exposing the contents of the reaction wells to the external environment. Specifically, the present device is specifically adapted to selectively receive liquid samples introduced or removed by way of robotic or manually controlled injection needles, without violating the internal sealed reaction environment of the system. The present: invention also provides a base plate which can be attached for convenient: mounting of the system on a variety of other devices which handle standard microtitre plate formats such as centrifuges, orbital shakers, shelf dryers, analytical injectors and liquid handling robots. In addition, the present invention also provides a small efficient temperature control system for adjusting and maintaining preferred temperatures in the reaction wells. In one preferred embodiment, the present invention provides a microtitre reaction system having an array of reaction tubes or wells which are integrally formed into an underlying support rack. In an alternative preferred embodiment, the present invention provides an array of reaction wells which are each selectively removable from an underlying support rack. An advantage of this second embodiment is that each of the various reaction wells can be selectively removed and/or replaced in the support rack, as is desired. As such, the present microtitre device is readily adaptable for manual removal of individual reaction wells or for use with an automated robotic system for removing and replacing individual reaction wells.
A porous gas distribution plate is positioned over the array of reaction wells. In a preferred embodiment, the porous gas distribution plate has an array of holes passing therethrough with a single hole disposed over the open top end of each of the reaction wells. In a preferred embodiment, the porous gas distribution plate is formed of small polypropylene particles which are fused together with porous passages or channels remaining between the particles so as to permit gas diffusion through the plate. The porous gas diffusion plate operates to permit gas passage in a common area over the array of adjacent reaction wells.
A gasket and a top cover are positioned over the porous gas distribution plate such that a sealed reaction environment is provided for each of the various reaction wells in the array. A gas purge vent is preferably provided in the present device such that gases may be selectively introduced or removed from the reaction environment while liquid transfer out of any individual well or between any two adjacent: wells is prevented.
The optional base plate can be attached to conveniently convert the support rack and reaction wells into a deep well microtitre plate configuration such that it can be mounted to a variety of different devices including, centrifuges, orbital shakers, shelf dryers, robotic liquid handlers and automated injectors for analytical and preparative chromatography and the like.
Moreover, the present invention may optionally include a small heating and cooling system which is attached thereto such that enhanced temperature control in the reaction environment is achieved. Optionally, a generally funnel-shaped reactor cap is included and is received into the open top end of each reaction well, prior to the placement of the gas distribution plate thereover. An example of such generally funnel-shaped reactor caps can be found in U.S. Patent Application No. 08/953,441, assigned to Texperts, Inc., a Delaware
Corporation. The advantages of such funnel-shaped reactor caps include their substantial inhibition of liquid passage out of each reaction well such that liquid spillage is substantially prevented for all orientations of the reaction well array. Such funnel-shaped reactor caps are typically held together in an array formation by way of an interlocking web. In such an array, the reactor caps can be easily fit into an array of reaction wells as a single unit.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1A is an exploded top pictorial view of the present microtitre reaction device;
Fig IB is an exploded bottom pictorial view corresponding to Fig. 1A;
Fig. 2 is a top perspective view of the microtitre device of Fig. 1A in an assembled condition;
Fig. 3A is a partial side sectional elevation view of a portion of the microtitre device of Fig. 2, showing an array of reaction wells integrally formed into a support rack;
Fig. 3B is a view corresponding to Fig. 3A, but with an array of separately removable reaction wells received in passages passing through the support rack; Fig. 4 is sectional side elevation view of a single prior art reaction well in an upright orientation, as incorporated into the present novel device of Figs. 3A and 3B;
Fig. 5 shows the reaction well of Fig. 4 in an inverted position;
Fig. 6 shows the reaction well of Fig. 4 in a partially inverted position;
Fig. 7 shows an injection needle received into the reaction well of Fig. 4; Fig. 8 is a top perspective view of prior art reaction caps as incorporated into the novel device of Figs. 1A, IB, 3A and 3B;
Fig. 9 is a bottom perspective view of the reaction caps of Fig. 8; and Fig. 10 is a top perspective view of a removable base plate which is adapted to be positioned under and support the closed bottom ends of the reaction wells of the device of Fig. 2;
Fig. 11A is a top plan view of one of the devices of Fig. 2 received into a temperature heating and cooling block;
Fig. 11B is a sectional elevation view along line 11B-11B in Fig. 11A;
Fig. 12 is a top plan view of the temperature heating and cooling block of Fig. 11A; Fig. 13 is a side sectional elevation view of the block of Fig. 12, taken along line 13-13 of Fig. 12;
Fig. 14 sectional top plan view of the block of Fig. 12, taken along line 14-14 of Fig. 13.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As is seen in Figs. 1A, IB and 2, the present invention provides a multi-well microtitre reaction system 15 comprising a support rack 16, having an array of reaction wells 18. Optionally, system 15 may include a reactor cap assembly IS with an array of reactor caps 20 extending into wells 18. A porous gas distribution plate 22, having an array of holes 23 passing therethrough, is captured between support rack 16 and a gasket 24. (Alternatively, if optional assembly 19 is included, gas distribution plate 22 is captured between assembly 19 and gasket 24) . System 15 further comprises a top cover 26, used to retain all of the system components together, having a plurality of holes 27 passing therethrough. Retaining clips 28, which are preferably formed integral with top cover 26, extend downwardly to matingly interlock with notches 21 in the side of support rack 16, thereby holding the system together, as is seen in Figs. 2, 3A and 3B. The present design provides a sealed reaction environment for each of the reaction wells 18 and eliminates the problems of spillage, leakage, evaporation loss, airborne contamination of well contents, and inter-well cross-contamination of liquid samples as will be explained. In a first preferred embodiment as seen in Fig. 3A, the array of reaction wells 18 is integrally formed together with support rack 16 as a single unit, preferably from a block of injection molded polypropylene.
In a second preferred embodiment, as seen in Fig. 3B, the array of reaction wells 18 comprises selectively removable reaction tubes which are each separately received in an array of passages 17 formed in support rack 16. In this second embodiment, each separately removable reaction well 18 operates to seal a separate passage 17, such that a sealed reaction environment above the array of reaction wells 18 is provided. In this embodiment, reaction tubes comprising wells 18 are preferably formed from glass or polypropylene and support rack 16 is preferably formed from polypropylene.
Optional reactor caps 20 are preferably formed from polypropylene and operate to substantially eliminate spillage, leakage, evaporation loss and inter-well cross-contamination among wells 18, as follows. As can be seen in Figs. 3A to 9, each reactor cap 20 has an upper sealing plug portion 34 and a lower funnel cone portion 36. Sealing plug portion 34 is dimensioned to be slidably press fit into the open top end 30 of reaction well 18. Liquids received through a central vent 38 in each reaction cap 20 will pool at the closed bottom end 32 of each reaction well 18 as shown. Funnel cone portion 36 is dimensioned to extend inwardly into reaction well 18 and preferably terminates at a generally centrally located position in reaction well 18. Such generally funnel-shaped reactor caps, which are inserted into the top open end of a reaction well and terminate at a generally centrally located position in the reaction well, are known to exist.
As can be seen, gas distribution plate 22 preferably has holes 23 passing therethrough. Holes 23 are disposed in an array formation (best seen in Figs. 1A and IB) such that a single hole 23 is positioned over the open top end of each reaction well 18 (best seen in Figs. 3A and 3B) . Holes 23 permit injection needle access through gasket 24 and into various reaction wells 18, as will be further explained. In alternative embodiments, holes 23 are not initially pre- fabricated in gas distribution plate 22, but are instead later formed by the penetration of injection needles through gasket 24 and gas distribution plate 22 when delivering liquid samples into reaction wells 18. Gas distribution plate 22 is preferably formed from a gas-permeable sheet which is generally resistant to liquid permeation. Such a sheet can be provided from granulated polypropylene wherein small particles of polypropylene are bonded together forming porous passages or channels remaining between the particles so as to permit gas diffusion therethrough. An example of such a material is made by Porex Technologies of Fairborn, Georgia, and sold under the tradename "Porex". Plate 22 is adapted to permit gas distribution over the entire array of reaction wells 18 by permitting gas distribution between any two adjacent reaction wells 18 as will be more fully explained herein. Gasket 24 is preferably formed from a gas- impermeable material such as silicon rubber and operates to provide a sealed environment above the array of reaction wells 18. Gasket 24 preferably has a perimeter edge 25 which forms a gas-tight seal around the outer perimeter of support rack 16. Specifically, edge 25 projects downwardly such that sufficient space is provided to accommodate gas distribution plate 22 and reaction caps 20, as seen in Figs. 3A and 3B. Top plate 26 is preferably formed from anodized aluminum and is fastened into position by being pressed tightly downward upon gasket 24 such that retaining clips 28 matingly interlock with notches 21 in support rack 16. Pressing top plate 26 tightly down upon gasket 24 to assemble the device causes gasket 24 to be compressed. Thus, upon removal of a sample delivering injection needle passing therethrough, compressed gasket 24 will self-seal so as to close around the hole which had been formed by the injection needle. Holes 27 in top cover 26 permit easy access of injection needles therethrough when delivering samples into reaction wells 18.
A gas port 40 is provided to enable gases to be selectively introduced and/or evacuated from the sealed environment above the array of reaction wells 18 as follows. Gas introduced through gas port 40 passes through the porous gas distribution plate 22 at region 22a adjacent gas port 40. Accordingly, gas introduced through gas port 40 will diffuse through region 22a of plate 22, thereby being introduced into reaction well 18a. Similarly, the gas is able to pass between reaction wells 18a and 18b by passing through region 22b of gas plate 22. As can be appreciated, gases can therefore be variously introduced and/or removed from above the entire array of reaction wells 18 by way of gas port 40. Due to the high resistance to liquid permeation through gas distribution plate 22, an additional advantage of gas distribution plate 22 is that it prevents any cross-contamination of liquids between any two adjacent wells.
Preferably, a similar gas port would be positioned at the opposite end of the device from that shown in the partial view of Fig. 3 such that gas could easily be introduced into a gas port at one end and simultaneously withdrawn from the gas port at the other opposite end of the device. An additional gas port or ports 43 (seen in Fig. 1A) can be provided. In operation, gas port 40 would typically be connected to a pneumatic manifold for introducing and removing gasses as desired. Optional reactor caps 20 provide a convenient device for effectively sealing the liquid samples within the various reaction wells 18, yet permitting gas to be introduced or removed easily due to the geometry of the reactor caps. Specifically, the introduction of a liquid sample into a reaction well 18 substantially remains within the well for various orientations of the device.
Central vent 38 of reactor cap 20 permits the addition or removal of material to reaction well 18 without requiring that reactor cap 20 be removed. Consequently, an important advantage of the present invention is that when mixing the contents of the array of reaction wells, such as with vibrational shaker equipment, it is not necessary to individually seal the top ends of the reaction wells 18 during this process. As such, a user can synthesize compounds and then shake or otherwise mix the compounds without a substantial loss of the compounds out of open top end 30 of the reaction wells.
Figure 4 shows an upright orientation of a single reaction well 18 containing a liquid 42. As can be seen, liquid 42 will pool at the bottom end 32 of reaction well 18. Funnel portion 36 has a narrow open end 37 which operates to hold liquid samples within reaction 'wells 18 for all orientations of the reaction well . Figure 5 shows an inverted orientation of reaction well 18. In this orientation, liquid 42 pools at top end 30 with narrow end 37 of funnel portion 36 positioned at a location above the liquid as shown. Accordingly, inverting reaction well 18 as shown will not permit the liquid 42 to escape from the reaction well. Figure 6 shows a semi-inverted orientation of reaction well 18. In this orientation, the narrow open end 37 of funnel portion 36 still remains above liquid 42. Accordingly, as can be appreciated when viewing Figs. 4, 5 and 6 together, liquid 42 does not flow out of reaction well 1£ as well 13 is rotated from an upright position to an inverted position. Moreover, narrow open end 37 is preferably dimensioned to be of a small enough diameter such that the viscosity and surface tension of the liquid will tend to prevent the liquid from exiting through narrow end 37. Fig. 7 illustrates a convenient needle guide for directing an injection needle 44 to the central bottom region of reaction well 18, thereby enhancing mixing by penetrating to the deepest portion of the reaction wells as fluid samples are added by needle 44.
Referring to Figures 8 and 9, further structural details of optional reactor cap assembly 19 is seen. For example, reactor caps 20 are preferably held together by a interlocking web 39. Accordingly, the array of reactor caps 20 of assembly 19 can be easily and simultaneously inserted into the array of reaction wells 18. As such, web 39 will preferably be formed from polypropylene or polyethylene which will flex to allow for easy positioning. Preferably, for ease of manufacturing, optional reactor cap assembly 19 is integrally formeα from a single piece of suitable material which may comprise polypropylene.
As can be seen m Figure 10, the present multi-well microtitre reaction system 15 can be mounted to and supported by an optional base plate 45 which has holes 48 sized and positioned to receive closed bottoms 32 of reaction wells 18 in a nested relationship therein. When received in such a temporary nested relationship m base plate 45, system 15 may conveniently be held in place by way of press fitting wells 18 into holes 48. However, the attachment of base plate 45 permits system 15 to instead be conveniently mounted to any device which operates m conjunction with standard deep well microtitre plate format including centrifuges, orbital shakers, shelf dryers, analytical injectors and liquid handling robots. As can be seen m Figs. 11a, lib, 12 and 13, an optional temperature heating and cooling block 46 can also be provided. As can ne seen m Figs. 11a, lib and 12, block 46 can be dimensioned to accommodate a plurality of separate microtitre reaction systems 15 therein. In this particular example, block 46 is shown dimensioned to nold three microtitre systems. It is to be understooα, however, that block 46 could instead be dimensioned to accommodate any number of microtitre reaction systems, including only a single microtitre reaction system. Block 46 has one or more arrays of holes 47 which are dimensioned to mate with lower closed ends 32 of reaction wells 18 of system 15, thereby holding wells 18 in a nested relationship therein. Block 46 can preferably be formed of aluminum.
As is also seen in Fig. 13, a thermocouple controlled heating element 49 may also be provided. Preferably, heating element 49 spans across the entire bottom of block 46. The application of a current across heating element 49 operates to generate heat which is then radiated upwardly into the various reaction wells 18 when wells 18 are received downwardly into holes 47. Controllably varying the amount of current passing through heating element 49 operates to control the degree of heating provided to the reaction wells.
As can be seen in Fig. 14, block 46 preferably also includes a plurality of interior channels 53 passing therethrough with a plurality of side portals 50 cut therein. Portals 50 permit fluid to flow through block 46. Preferably, this fluid is a cooling fluid which is used to lower the temperature in reaction wells 18 when the wells are received in holes 47 of block 46. It is to be understood that channels 53 may be disposed within block 46 in any number of geometric orientations. For uniform cooling however, channels 53 will preferably be disposed m block 46 m an orientation such that each individual reaction well 18 will be spaced generally proximal an underlying channel 53.
Plugs 51 are preferably formed from the same material as block 46 and can selectively be positioned m channels 53 such that fluid flow path through block 46 can be directed in a preferred path. As shown m Fig. 14, this preferred path can be of a serpentine nature. An advantage of such a serpentine flow is that improved heat exchange will occur between the reaction wells and the cooling fluid, due to the increased time taken for the fluid to pass through block 46, as compared to the instance where plugs 51 are removed. Moreover, fluid tubing connections to block 46 are simplified by plugs 51 installed as shown as fluid need only be introduced through a single portal 50a and exit at another single portal 50b.
By controlling the temperature, flow path and flow rate of cooling fluid passing through block 46, or by controlling the amount of current passing through heating element 49, the heating and cooling effects on the reaction wells can be controllably balanced permitting a desired temperature to be quickly reached and adjusted as required. Modification and variation can be made to the disclosed embodiments without departing from the subject of the invention as defined in the following claims. For example, the materials added to the various reaction wells can be either a liquid, gas or a solid such as pellets or powder. Moreover, any temperature of fluid can be used in block 46 to provide temperature control. For example, a heating fluid may be used instead of a cooling fluid, thereby reducing or eliminating the need for heating with heating element 49.

Claims

WHAT IS CLAIMED IS:
1. A microtitre reaction system, comprising, a support rack having an array of reaction wells disposed therein, each reaction well having an open top end and a closed bottom end; a gas-permeable layer positioned over the support rack, the gas-permeable layer having an array of holes therein with each hole being positioned over the open top end of each of the plurality of reaction wells; and a gasket positioned over the gas-permeable layer.
2. The microtitre reaction system of Claim 1, further comprising: a base plate dimensioned to be positioned under the support rack, the base plate having an array of receiving holes dimensioned to support the bottom ends of the reaction wells in a nested relationship therein.
3. The microtitre reaction system of Claim 1, wherein, an outer edge of the gasket contacts an outer edge of the support rack, thereby enclosing the interior volumes of the plurality of reaction wells in a sealed environment.
4. The microtitre reaction system of Claim 1, wherein, the gasket is self-sealing.
5. The microtitre reaction system of Claim 1, further comprising: a top cover positioned over the gasket.
5. The microtitre reaction system of Claim 5, wherein, the top cover further comprises a plurality of retaining clips extending downwardly to matingly interlock with the support rack.
7. The microtitre reaction system of Claim 3, further comprising, a gas entry port fluidly coupled to the gas- permeable layer permitting gas exchange between the gas- permeable layer and an external environment .
8. The microtitre reaction system of Claim 1, further comprising, a temperature heating and cooling block dimensioned to be positioned under the support rack, the block having an array of holes dimensioned to support the bottom ends of the reaction wells in a nested relationship therein.
9. The microtitre reaction system of Claim 8, further comprising, a thermocouple controlled heating element.
10. The microtitre reaction system of Claim 8, further comprising, a plurality of interior channels passing through the block.
11. The microtitre reaction system of Claim 10, wherein, the plurality of interior channels form a serpentine flow path.
12. The microtitre reaction system of Claim 1, further comprising: a plurality of generally funnel shaped reactor caps with each of the reactor caps being received into the open top end of each of the reaction wells.
13. The rmcrotitre reaction system of Claim 12, wherein, the reactor cap comprises a sealing plug portion and an open-ended funnel cone portion.
14. The microtitre reaction system of Claim 12, wherein, the plurality of reaction caps are held together in an array formation by an interlocking web.
15. The microtitre reaction system of Claim 14, wherein, the plurality of reaction caps and the interlocking web are integrally formed from a single piece of material.
16. The microtitre reaction system of Claim 1, wherein, the support rack has an array of passages passing therethrough; and each of the reaction wells comprise an individually removable reaction well received into one of the passages of the support rack.
17. The microtitre reaction system of Claim 16, wherein, the reaction well is tightly received into the passage, thereby sealing the passage.
18. The microtitre reaction system of Claim 1, wherein, the support rack is formed from polypropylene.
19. The microtitre reaction system of Claim 1, wherein, the reaction wells are formed from polypropylene.
20. The microtitre reaction system of Claim 1, wherein, the reaction v/eils are formed from class.
21. The microtitre reaction system of Claim 1, wherein, 1 b the gas-permeable layer is formed from polypropylele .
22. The microtitre reaction system of Claim 1, wherein, the gasket is formed from silicone rubber.
23. The microtitre reaction system of Claim 5, wherein, the top cover is formed from anodized aluminum.
24. A microtitre reaction system, comprising, a support rack having an array of passages passing therethrough; an array of individually removable reaction wells disposed in the passages, each reaction well having an open top end and a closed bottom end; a plurality of generally funnel shaped reactor caps with each of the reactor caps being received into the open top end of each of the reaction wells; a gas-permeable layer positioned over the support rack, the gas-permeable layer having an array of holes therein with each hole being positioned over the open top end of each of the plurality of reaction wells; a self-sealing gasket positioned over the gas- permeable layer, an outer edge of the gasket contacting an outer edge of the support rack, thereby enclosing the interior volumes of the plurality of reaction wells in a sealed environment; a top cover positioned over the gasket; and a plurality of retaining clips extending downwardly to matingly interlock with the support rack.
PCT/US1999/015694 1998-07-15 1999-07-12 Microtitre chemical reaction system WO2000003805A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU49856/99A AU4985699A (en) 1998-07-15 1999-07-12 Microtitre chemical reaction system
EP99933903A EP1098708A1 (en) 1998-07-15 1999-07-12 Microtitre chemical reaction system
JP2000559936A JP2002520154A (en) 1998-07-15 1999-07-12 Microconcentration chemical reaction device
CA002343749A CA2343749A1 (en) 1998-07-15 1999-07-12 Microtitre chemical reaction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/116,435 US6436351B1 (en) 1998-07-15 1998-07-15 Microtitre chemical reaction system
US09/116,435 1998-07-15

Publications (1)

Publication Number Publication Date
WO2000003805A1 true WO2000003805A1 (en) 2000-01-27

Family

ID=22367196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/015694 WO2000003805A1 (en) 1998-07-15 1999-07-12 Microtitre chemical reaction system

Country Status (6)

Country Link
US (2) US6436351B1 (en)
EP (1) EP1098708A1 (en)
JP (1) JP2002520154A (en)
AU (1) AU4985699A (en)
CA (1) CA2343749A1 (en)
WO (1) WO2000003805A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001100242B4 (en) * 2000-08-08 2001-08-30 Robert Alexander Micro titre tray assembly and viral diagnostic kit including same
EP1174185A2 (en) * 2000-07-19 2002-01-23 Symyx Technologies, Inc. High pressure parallel reactor
WO2002041993A1 (en) * 2000-11-23 2002-05-30 Evotec Oai Ag Sample support, cover for a sample support and analysis preparation method
WO2002103331A1 (en) * 2001-06-15 2002-12-27 Zeptosens Ag Body for flow-through cells and the use thereof
JP2003227839A (en) * 2001-11-19 2003-08-15 Becton Dickinson & Co Multiwell apparatus
WO2003103813A2 (en) * 2002-06-05 2003-12-18 Bioprocessors Corporation Materials and reactor systems having humidity and gas control
US6896848B1 (en) 2000-12-19 2005-05-24 Tekcel, Inc. Microplate cover assembly
EP1577004A3 (en) * 2001-01-26 2005-11-09 Symyx Technologies, Inc. Apparatus and methods for parallel processing of multiple reaction mixtures
US7122159B2 (en) 2002-04-29 2006-10-17 Symyx Technologies, Inc. High pressure parallel reactor with individually sealable vessels
US7655191B2 (en) 2007-05-14 2010-02-02 Symyx Solutions, Inc. Methods for chemical reactions in a parallel batch reactor
US7807109B2 (en) 2007-05-14 2010-10-05 Freeslate, Inc. Parallel batch reactor with pressure monitoring
DE102009057223A1 (en) * 2009-12-05 2011-07-28 chemagen Biopolymer-Technologie Aktiengesellschaft, 52499 Sample vessel matrix and its production process
US8883093B2 (en) 2010-05-26 2014-11-11 Arcdia International Oy Ltd Sealing of reaction cuvettes for bioaffinity assays
GB2559242A (en) * 2016-12-12 2018-08-01 Bruker Daltonik Gmbh Device and method for the preparation of samples for ionization by laser desorption in a mass spectrometer
CN113275059A (en) * 2021-05-17 2021-08-20 吉林省英华恒瑞生物科技有限公司 Colorectal cancer ctDNA kit with positioning mechanism
WO2021250360A1 (en) * 2020-06-12 2021-12-16 bioMérieux Device for holding tubes used for analysing samples by means of nucleic acid amplification techniques and method for using such a device

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720149B1 (en) * 1995-06-07 2004-04-13 Affymetrix, Inc. Methods for concurrently processing multiple biological chip assays
US6907679B2 (en) * 1998-11-12 2005-06-21 Qlt Usa, Inc. Method for lyophilizing an active agent
US6722054B2 (en) 1998-11-12 2004-04-20 Atrix Laboratories, Inc. Process and delivery container for lyophilizing active agent
US6770482B1 (en) * 1999-07-16 2004-08-03 General Electric Method and apparatus for rapid screening of multiphase reactions
US6572828B1 (en) * 1999-07-16 2003-06-03 General Electric Company Method and apparatus for high-throughput chemical screening
US6939516B2 (en) * 2000-09-29 2005-09-06 Becton, Dickinson And Company Multi-well plate cover and assembly adapted for mechanical manipulation
DE20021326U1 (en) * 2000-12-16 2001-05-31 Qiagen Gmbh Device for taking samples
US6982063B2 (en) * 2001-05-25 2006-01-03 Matrix Technologies Corp Automated pipetting system
US7063979B2 (en) * 2001-06-13 2006-06-20 Grace Bio Labs., Inc. Interface between substrates having microarrays and microtiter plates
US7854896B2 (en) * 2001-09-25 2010-12-21 Becton, Dickinson And Company Closed system storage plates
US20030113937A1 (en) * 2001-12-14 2003-06-19 3M Innovative Properties Company Desiccator system having modular elements
KR100411946B1 (en) * 2001-12-18 2003-12-18 한국해양연구원 Device for simultaneously collecting filtered water and filter paper
US7736594B1 (en) 2002-01-22 2010-06-15 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus
US7731909B1 (en) 2002-01-22 2010-06-08 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus
US20030143124A1 (en) * 2002-01-31 2003-07-31 Roberts Roger Q. Unidirectional flow control sealing matt
EP1364710B1 (en) * 2002-05-13 2009-10-07 Becton, Dickinson and Company Self-aliquoting sample storage plate
DE50300434D1 (en) * 2002-05-31 2005-05-19 Tecan Trading Ag Maennedorf Apparatus, system and method for aspirating liquids from solid phase extraction plates
GB0225631D0 (en) * 2002-07-05 2002-12-11 Aventis Pharma Inc Apparatus and method for use in solid phase chemical synthesis
EP1670577A2 (en) * 2002-07-05 2006-06-21 Aventis Pharmaceuticals, Inc. Apparatus and method for use in solid phase chemical synthesis
CA2499913A1 (en) * 2002-10-10 2004-04-22 Irm, Llc Capacity altering device, holder and methods of sample processing
US8231734B2 (en) 2002-10-10 2012-07-31 Jordco, Inc. Porous material for insertion cleaning of instruments
US8034306B1 (en) 2004-02-20 2011-10-11 Grace Bio-Labs, Inc. Reaction surface array diagnostic apparatus including a flexible microtitre plate
US20050186578A1 (en) * 2004-02-20 2005-08-25 Sven Bulow Chamber array arrangement
US7232038B2 (en) * 2004-04-27 2007-06-19 Whitney Steven G Disposable test tube rack
US20080124250A1 (en) * 2005-04-09 2008-05-29 Cell Biosciences Inc. Capillary storage and dispensing container for automated micro-volume assay system
US8021611B2 (en) * 2005-04-09 2011-09-20 ProteinSimple Automated micro-volume assay system
CN101263754B (en) * 2005-05-23 2012-07-18 安捷伦科技有限公司 Supporting plate of device
US20100261288A1 (en) * 2005-06-13 2010-10-14 Fortebio, Inc. Tip tray assembly for optical sensors
US20070175897A1 (en) 2006-01-24 2007-08-02 Labcyte Inc. Multimember closures whose members change relative position
JP5219181B2 (en) * 2006-02-02 2013-06-26 武蔵エンジニアリング株式会社 Pallet for fixing workpiece and liquid application apparatus having the same
US20070205124A1 (en) * 2006-03-03 2007-09-06 Jordco, Inc. Container for holding endodontic instruments
US20070272587A1 (en) * 2006-05-22 2007-11-29 Nguyen Viet X Vial package
US7851204B2 (en) * 2006-06-09 2010-12-14 Pall Microreactor Technologies, Inc. Closure for milliliter scale bioreactor
EP1872855A1 (en) * 2006-06-27 2008-01-02 F.Hoffmann-La Roche Ag Plate for equilibrating a fluid
EP2125214B1 (en) * 2007-01-12 2013-01-02 HighRes Biosolutions, Inc. Microplate kit
US8221697B2 (en) 2007-01-12 2012-07-17 Nichols Michael J Apparatus for lidding or delidding microplate
US20080175757A1 (en) * 2007-01-19 2008-07-24 Andrew Powell Microarray device with elastomeric well structure
US9157152B2 (en) * 2007-03-29 2015-10-13 Tokyo Electron Limited Vapor deposition system
US20080241377A1 (en) * 2007-03-29 2008-10-02 Tokyo Electron Limited Vapor deposition system and method of operating
US20080293157A1 (en) * 2007-05-24 2008-11-27 Gerald Frederickson Apparatus and method of performing high-throughput cell-culture studies on biomaterials
US8075854B2 (en) * 2007-11-08 2011-12-13 The Ohio State University Research Foundation Bioprocessing Innovative Company Microfluidic chips for rapid multiplex ELISA
US20090226614A1 (en) * 2008-03-04 2009-09-10 Tokyo Electron Limited Porous gas heating device for a vapor deposition system
US8291856B2 (en) * 2008-03-07 2012-10-23 Tokyo Electron Limited Gas heating device for a vapor deposition system
JP6086728B2 (en) * 2009-09-05 2017-03-01 ロンザ バイオロジクス ピーエルシー Deep well plate system with lid
US9474584B2 (en) 2010-03-17 2016-10-25 Jordco, Inc. Dental instrument servicing system
DE102010048443B4 (en) * 2010-10-15 2015-05-21 Technische Universität Braunschweig Carolo-Wilhelmina METHOD FOR CARRYING OUT TIME-RELATED STUDIES ON CELL SAMPLES
WO2013033639A1 (en) 2011-08-31 2013-03-07 Jordco, Inc. Method and apparatus for cleaning and storing endodontic tools
US8808644B2 (en) * 2012-08-20 2014-08-19 Biochemical Diagnostics, Inc. Methods for dispensing fluids into microplates utilizing microwell covers
USD768873S1 (en) * 2013-06-24 2016-10-11 Shockbottle Llc Multiple cartridge case gauge
US9885012B2 (en) * 2013-11-05 2018-02-06 Axion Biosystems, Inc. Devices, systems, and methods for targeted plating of materials in high-throughput culture plates
US9358543B2 (en) * 2013-11-08 2016-06-07 Covaris, Inc. Vessel holder and cap assembly
JP5963370B2 (en) * 2013-11-27 2016-08-03 株式会社椿本チエイン Cap holding rack unit
US20170205318A1 (en) * 2014-07-17 2017-07-20 University Of Washington Ultrasound system for shearing cellular material
JP6343683B2 (en) * 2015-01-19 2018-06-13 株式会社アルバック Stirrer
WO2016117541A1 (en) * 2015-01-22 2016-07-28 株式会社村田製作所 Void array structure and method for producing same
US20170120244A1 (en) * 2015-10-30 2017-05-04 Lonza Limited Modular Well Plates
EP3411647A4 (en) 2016-02-05 2019-09-25 Tolmar Therapeutics, Inc. Vented cover plate for an array of syringes
JP1570764S (en) 2016-02-25 2017-03-06
US11179726B2 (en) * 2016-04-14 2021-11-23 Gen-Probe Incorporated Assemblies for storing sample processing consumables, sample processing instruments, and methods
US10809166B2 (en) 2017-01-20 2020-10-20 Matchstick Technologies, Inc. Ultrasound system for shearing cellular material in a microplate
USD848190S1 (en) * 2018-02-22 2019-05-14 Fujian Foison Intelligent Technology Co., Ltd. Bottom panel of rack
USD888280S1 (en) * 2018-03-29 2020-06-23 Biotix, Inc. Pipette tip tray
JP6694486B2 (en) 2018-03-29 2020-05-13 バイオティクス, インコーポレイテッド Pipette tip tray with increased rigidity
USD908916S1 (en) 2018-06-19 2021-01-26 Tolmar Therapeutics, Inc. Syringe restrictor plate
WO2020037194A1 (en) * 2018-08-17 2020-02-20 Sierra Biosystems, Inc. Row-independent oligonucleotide synthesis
USD1002869S1 (en) 2019-04-02 2023-10-24 DePuy Synthes Products, Inc. Storage rack for sterile packaging
USD966550S1 (en) 2019-04-02 2022-10-11 DePuy Synthes Products, Inc. Storage rack for sterile packaging
USD930852S1 (en) 2019-04-02 2021-09-14 DePuy Synthes Products, Inc. Storage rack for sterile packaging
USD925767S1 (en) 2019-04-02 2021-07-20 DePuy Synthes Products, Inc. Storage rack for sterile packaging
US11083295B2 (en) * 2019-04-02 2021-08-10 DePuy Synthes Products, Inc. Tube rack apparatus
USD998174S1 (en) * 2020-04-21 2023-09-05 Fate Therapeutics, Inc. Vial rack
CA3218174A1 (en) * 2021-05-07 2022-11-10 Beckman Coulter, Inc. Container assembly for microbioreactor
EP4334429A1 (en) * 2021-05-07 2024-03-13 Beckman Coulter, Inc. Container assembly for microbioreactor
WO2024057703A1 (en) 2022-09-12 2024-03-21 シーエステック株式会社 Microplate filter plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297599A (en) * 1991-03-19 1994-03-29 Hoffmann-Laroche Inc. Closure device for sealing reagent containers in an automatic pipetting system
WO1995027196A1 (en) * 1994-04-04 1995-10-12 Sanadi Ashok R Method and apparatus for preventing cross-contamination of multi-well test plates
WO1997009353A1 (en) * 1995-09-07 1997-03-13 Pathogenesis Corporation A device for the synthesis of compounds in an array
WO1999020394A2 (en) * 1997-10-17 1999-04-29 Texperts, Inc. Spillproof microplate assembly

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US86670A (en) 1869-02-09 Improvement in ihkstands
US2627619A (en) 1947-07-29 1953-02-10 Gagen Joseph Wilfrid Nail lacquer bottle assembly, including brush wiper
US4024857A (en) 1974-12-23 1977-05-24 Becton, Dickinson And Company Micro blood collection device
US4040249A (en) * 1975-06-24 1977-08-09 Deere & Company Single shaft gas turbine engine with axially mounted disk regenerator
US4073693A (en) 1976-06-08 1978-02-14 American Home Products Corporation Apparatus and method for conducting a plurality of biological tests
US4070249A (en) 1976-06-08 1978-01-24 American Home Products Corporation Apparatus for compensating for pressure within a biological test device
US4286637A (en) 1978-11-09 1981-09-01 Connaught Laboratories Limited Apparatus for dispensing liquids into tubes
US4278437A (en) 1979-04-09 1981-07-14 Jan Haggar Fluid specimen holder for biological fluid testing
US4599314A (en) 1983-06-14 1986-07-08 Hsc Research Development Corporation Multiple vessel specimen tray with lid for releasably adhering vessel covers
JPS607340A (en) 1983-06-27 1985-01-16 Denki Kagaku Keiki Co Ltd Automatic pipetting apparatus for microplate
US4493815A (en) * 1983-07-28 1985-01-15 Bio-Rad Laboratories, Inc. Supporting and filtering biochemical test plate assembly
US5047215A (en) 1985-06-18 1991-09-10 Polyfiltronics, Inc. Multiwell test plate
US4948564A (en) 1986-10-28 1990-08-14 Costar Corporation Multi-well filter strip and composite assemblies
US4895706A (en) 1986-10-28 1990-01-23 Costar Corporation Multi-well filter strip and composite assemblies
US5110556A (en) 1986-10-28 1992-05-05 Costar Corporation Multi-well test plate
US5084246A (en) 1986-10-28 1992-01-28 Costar Corporation Multi-well test plate
US5108704A (en) 1988-09-16 1992-04-28 W. R. Grace & Co.-Conn. Microfiltration apparatus with radially spaced nozzles
US5219528A (en) * 1989-07-28 1993-06-15 Pierce Chemical Company Apparatus for rapid immunoassays
FI87278C (en) * 1989-08-28 1992-12-10 Labsystems Oy Cuvette matrix and position for this
US5346672A (en) * 1989-11-17 1994-09-13 Gene Tec Corporation Devices for containing biological specimens for thermal processing
US5141719A (en) * 1990-07-18 1992-08-25 Bio-Rad Laboratories, Inc. Multi-sample filtration plate assembly
US5182082A (en) 1991-01-23 1993-01-26 Becton, Dickinson And Company Multiple aliquot device for distributing a liquid solution into a well
US5112574A (en) 1991-04-26 1992-05-12 Imanigation, Ltd. Multititer stopper array for multititer plate or tray
US5368586A (en) * 1991-06-21 1994-11-29 Npbi Nederlands Produktielaboratorium Voor Bloedtransfusieapparatuur En Infusievloeistoffen B.V. Closure for a drug-vial
US5188733A (en) * 1992-02-26 1993-02-23 Trustees Of Boston University Apparatus and process for effecting sequential peptide syntheses
US5244635A (en) 1992-06-19 1993-09-14 Cirrus Diagnostics, Inc. Centrifuge vessel with coaxial waste chamber having cap to prevent waste fluid transfer from the chamber into the vessel
US5714127A (en) 1992-10-08 1998-02-03 Warner-Lambert Company System for multiple simultaneous synthesis
US5702672A (en) 1992-10-08 1997-12-30 Warner-Lambert Company Apparatus and method for multiple simultaneous synthesis
US5324483B1 (en) 1992-10-08 1996-09-24 Warner Lambert Co Apparatus for multiple simultaneous synthesis
US5565173A (en) 1992-10-08 1996-10-15 Warner-Lambert Company Apparatus and method for multiple simultaneous synthesis
US5326533A (en) 1992-11-04 1994-07-05 Millipore Corporation Multiwell test apparatus
WO1994011489A1 (en) 1992-11-06 1994-05-26 Biolog, Inc. Testing device for liquid and liquid suspended samples
US5342581A (en) 1993-04-19 1994-08-30 Sanadi Ashok R Apparatus for preventing cross-contamination of multi-well test plates
US6258325B1 (en) * 1993-04-19 2001-07-10 Ashok Ramesh Sanadi Method and apparatus for preventing cross-contamination of multi-well test plates
US5961926A (en) 1993-09-27 1999-10-05 Packard Instrument Co., Inc. Microplate assembly and method of preparing samples for analysis in a microplate assembly
DE4405375C2 (en) 1994-02-19 1996-07-25 Fritz Nerbe Nachfolger Juergen Microtiter plate
US5460783A (en) 1994-06-14 1995-10-24 Synbiotics Corporation Apparatus for automatically removing microtiter well-strips from well-strip holders
US5514343A (en) 1994-06-22 1996-05-07 Nunc, As Microtitration system
US5609826A (en) 1995-04-17 1997-03-11 Ontogen Corporation Methods and apparatus for the generation of chemical libraries
US5604130A (en) 1995-05-31 1997-02-18 Chiron Corporation Releasable multiwell plate cover
GB9521775D0 (en) 1995-10-24 1996-01-03 Pa Consulting Services Microwell plates
US5709840A (en) 1996-01-11 1998-01-20 Tecan Us., Inc. Reactor flask
US5711917A (en) * 1996-01-11 1998-01-27 Tecan U.S. Laboratory reactor apparatus
US5858309A (en) 1996-03-22 1999-01-12 Corning Incorporated Microplates with UV permeable bottom wells
US5665247A (en) 1996-09-16 1997-09-09 Whatman Inc. Process for sealing microplates utilizing a thin polymeric film
US6054100A (en) * 1996-11-18 2000-04-25 Robbins Scientific Corporation Apparatus for multi-well microscale synthesis
US5780294A (en) * 1997-03-19 1998-07-14 Becton Dickinson And Company Culture vessel assembly
US6159368A (en) * 1998-10-29 2000-12-12 The Perkin-Elmer Corporation Multi-well microfiltration apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297599A (en) * 1991-03-19 1994-03-29 Hoffmann-Laroche Inc. Closure device for sealing reagent containers in an automatic pipetting system
WO1995027196A1 (en) * 1994-04-04 1995-10-12 Sanadi Ashok R Method and apparatus for preventing cross-contamination of multi-well test plates
WO1997009353A1 (en) * 1995-09-07 1997-03-13 Pathogenesis Corporation A device for the synthesis of compounds in an array
WO1999020394A2 (en) * 1997-10-17 1999-04-29 Texperts, Inc. Spillproof microplate assembly

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018589B1 (en) 2000-07-19 2006-03-28 Symyx Technologies, Inc. High pressure parallel reactor
EP1174185A2 (en) * 2000-07-19 2002-01-23 Symyx Technologies, Inc. High pressure parallel reactor
EP1174185A3 (en) * 2000-07-19 2002-04-10 Symyx Technologies, Inc. High pressure parallel reactor
US7556966B2 (en) 2000-07-19 2009-07-07 Symyx Technologies, Inc. High pressure parallel reactor
US7172732B2 (en) 2000-07-19 2007-02-06 Symyx Technologies, Inc. High pressure parallel reactor with individually isolatable vessels
US7141218B2 (en) 2000-07-19 2006-11-28 Symyx Technologies, Inc. High pressure parallel reactor with individually isolatable vessels
US7754165B2 (en) 2000-07-19 2010-07-13 Symyx Solutions, Inc. High pressure parallel reactor
AU2001100242B4 (en) * 2000-08-08 2001-08-30 Robert Alexander Micro titre tray assembly and viral diagnostic kit including same
WO2002041993A1 (en) * 2000-11-23 2002-05-30 Evotec Oai Ag Sample support, cover for a sample support and analysis preparation method
US6896848B1 (en) 2000-12-19 2005-05-24 Tekcel, Inc. Microplate cover assembly
EP1577004A3 (en) * 2001-01-26 2005-11-09 Symyx Technologies, Inc. Apparatus and methods for parallel processing of multiple reaction mixtures
WO2002103331A1 (en) * 2001-06-15 2002-12-27 Zeptosens Ag Body for flow-through cells and the use thereof
US7399628B2 (en) 2001-06-15 2008-07-15 Bayer Technology Services Gmbh Body for flow-through cells and the use thereof
JP2003227839A (en) * 2001-11-19 2003-08-15 Becton Dickinson & Co Multiwell apparatus
US7122159B2 (en) 2002-04-29 2006-10-17 Symyx Technologies, Inc. High pressure parallel reactor with individually sealable vessels
WO2003103813A2 (en) * 2002-06-05 2003-12-18 Bioprocessors Corporation Materials and reactor systems having humidity and gas control
WO2003103813A3 (en) * 2002-06-05 2004-03-04 Bioprocessors Corp Materials and reactor systems having humidity and gas control
US7655191B2 (en) 2007-05-14 2010-02-02 Symyx Solutions, Inc. Methods for chemical reactions in a parallel batch reactor
US7807109B2 (en) 2007-05-14 2010-10-05 Freeslate, Inc. Parallel batch reactor with pressure monitoring
DE102009057223A1 (en) * 2009-12-05 2011-07-28 chemagen Biopolymer-Technologie Aktiengesellschaft, 52499 Sample vessel matrix and its production process
DE102009057223B4 (en) * 2009-12-05 2016-03-24 Chemagen Biopolymer-Technologie Aktiengesellschaft Sample vessel matrix and its production process
US8883093B2 (en) 2010-05-26 2014-11-11 Arcdia International Oy Ltd Sealing of reaction cuvettes for bioaffinity assays
GB2559242A (en) * 2016-12-12 2018-08-01 Bruker Daltonik Gmbh Device and method for the preparation of samples for ionization by laser desorption in a mass spectrometer
US10679837B2 (en) 2016-12-12 2020-06-09 Bruker Daltonik Gmbh Device and method for the preparation of samples for ionization by laser desorption in a mass spectrometer
GB2559242B (en) * 2016-12-12 2021-08-25 Bruker Daltonik Gmbh Device and method for the preparation of samples for ionization by laser desorption in a mass spectrometer
WO2021250360A1 (en) * 2020-06-12 2021-12-16 bioMérieux Device for holding tubes used for analysing samples by means of nucleic acid amplification techniques and method for using such a device
CN113275059A (en) * 2021-05-17 2021-08-20 吉林省英华恒瑞生物科技有限公司 Colorectal cancer ctDNA kit with positioning mechanism

Also Published As

Publication number Publication date
US6436351B1 (en) 2002-08-20
US20020176807A1 (en) 2002-11-28
JP2002520154A (en) 2002-07-09
CA2343749A1 (en) 2000-01-27
AU4985699A (en) 2000-02-07
EP1098708A1 (en) 2001-05-16

Similar Documents

Publication Publication Date Title
US6436351B1 (en) Microtitre chemical reaction system
US5716584A (en) Device for the synthesis of compounds in an array
US6051439A (en) Methods for parallel synthesis of organic compounds
US6309608B1 (en) Method and apparatus for organic synthesis
CA2474263C (en) Parallel chemistry reactor with interchangeable vessel carrying inserts
US6258325B1 (en) Method and apparatus for preventing cross-contamination of multi-well test plates
US4895706A (en) Multi-well filter strip and composite assemblies
US7141218B2 (en) High pressure parallel reactor with individually isolatable vessels
US6436350B1 (en) Multi-well array with adjustable plenum
US6770245B2 (en) Multiple parallel processing assembly
JP4269130B2 (en) Multilayer vial plate
US6640891B1 (en) Rapid thermal cycling device
WO1995027196A1 (en) Method and apparatus for preventing cross-contamination of multi-well test plates
JP2011092937A (en) Support and standoff rib for underdrain apparatus for multi-well devices
CA2295048A1 (en) Apparatus for heating/cooling gases,liquids and/or solids in a reaction vessel
EP1347829B1 (en) Multiple vessel array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999933903

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2343749

Country of ref document: CA

Ref country code: CA

Ref document number: 2343749

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: JP

Ref document number: 2000 559936

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999933903

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999933903

Country of ref document: EP