WO2000006998A1 - Feuchtesensor für schichten - Google Patents

Feuchtesensor für schichten Download PDF

Info

Publication number
WO2000006998A1
WO2000006998A1 PCT/EP1999/003704 EP9903704W WO0006998A1 WO 2000006998 A1 WO2000006998 A1 WO 2000006998A1 EP 9903704 W EP9903704 W EP 9903704W WO 0006998 A1 WO0006998 A1 WO 0006998A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
moisture sensor
sensor according
conductors
measuring
Prior art date
Application number
PCT/EP1999/003704
Other languages
English (en)
French (fr)
Inventor
Alexander Brandelik
Christof HÜBNER
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Priority to CA002336925A priority Critical patent/CA2336925A1/en
Priority to DE1999510850 priority patent/DE59910850D1/de
Priority to AU45021/99A priority patent/AU755818B2/en
Priority to EP99927786A priority patent/EP1102979B1/de
Publication of WO2000006998A1 publication Critical patent/WO2000006998A1/de
Priority to US09/754,584 priority patent/US6507200B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content

Definitions

  • the invention relates to a moisture sensor for layers according to the preamble of patent claim 1.
  • a layer is thin when it can be unwound from a roll and laid out on a non-flat surface, but is much thicker than the largest, crushed solid element that is mixed with water and air.
  • Geosynthetic (Clay) Liners are particularly important representatives for these objects.
  • These mats which have a typical thickness of approx. 4 mm to 20, are preferably used as moisture and gas insulation in seals on landfill bases and / or surfaces, rain retention basins, ponds, dams, underwater laying, dams and in general civil engineering . These mats retain their insulation ability if they do not dry out.
  • the problems and disadvantages of the experiment described there are: a) The measuring electric field protrudes from the layer thickness, and thus the materials below and above the mat falsify the measured values. b) It is difficult to prick the probe electrodes well into the center of the mat. c) The lancing probe can only be used for a short, i.e. Detect less representative route because it is not flexible to follow the mostly uneven layer. d) It is known that air bubbles and any air gaps between the probe and material, which inevitably arise when the probe is inserted, falsify the measured value sustainably and differently over time.
  • the description of the weather includes reports on the frost status of the soil and on the icing of objects near the ground.
  • the weather service requires automatic icing sensors that differentiate between the dry, moist and iced conditions.
  • the German Weather Service DWD currently records these conditions through subjective observation. This method is to be replaced.
  • This system is also complicated. Among other things, it uses subcooling and heating of an insulated floor element with Peltier elements. This system is also unsuitable for measuring ground-level icing.
  • the object of the invention is a sensor of the e. G. Kind so that the moisture measurement can be done from the outside.
  • the first object is achieved by the features of patent claim 1.
  • the subclaims describe advantageous embodiments of the invention.
  • Claims 9 and 10 name advantageous uses of the sensor.
  • the probe according to the invention has the following advantages: a) The electrodes are flexible.
  • the probe may be a measurement target material, such as a flexibly beles ribbon cable resting on a marge ⁇ starting uneven surface.
  • the electrodes of the probe are covered with an electrical insulation layer and kept at a constant distance from one another, as a result of which the electrical damping along the electrodes becomes small. The small damping enables the construction of a longer probe, which gives a more representative result.
  • the finite thickness of the insulation layer enables the electrical field of the electrodes to be shielded from the adjacent space by a metal shielding layer on one side of the probe without a direct short circuit or without too great a reduction in the measuring sensitivity.
  • the probe is only sensitive on one side. In this way it is also achieved that the probe no longer has to be pierced into the material. It can be hung up. Already at a contact pressure klei ⁇ NEN a falsifying air gap between the probe and the material is avoided. c) By optimizing the distance between the electrodes and the thickness of the insulation layer, the probe can be adjusted to the thickness of the measuring material with good impedance matching between the probe and the measuring device.
  • the einsei ⁇ term measurement field are still limited to the thickness of the material.
  • the three-wire circuit is used in the usual way. (See the report by Eberle and v. Meubeuge, as above.) If, according to the invention, the middle electrode of the three-wire circuit is formed from the adjacent conductors of two pairs of electrodes running in parallel, there is another free parameter, the distance between the electrode pairs. The choice of this distance can influence the impedance of the probe arrangement for better adaptation.
  • the moisture sensor for layers becomes an icing detector in that a porous water-storing material layer is used instead of the measuring material layer.
  • the porous material layer should be made of non-metallic material with a low dielectric coefficient DK and with a very small volume fraction in a layer of approximately 5 to 20 mm thick. Filter mats made of polyester fibers with a basis weight of 300 g / m 2 and a thickness of 20 mm have proven their worth.
  • the air pores of the layer should be so small that the raindrops can crawl down through the surface tension of the water in the pores but can remain trapped in the layer.
  • the DK of the layer in the dry state will only be negligibly greater than 1, the DK of the air. When it rains, a layer of water will form in this porous material.
  • the DK of the layer will then be approximately 80, the DK of the water. At temperatures below the frost limit, the water turns into ice. As a result, the DK of the layer will be approx. 3.15, the DK of the ice. Evaporation from the mat is only negligibly delayed compared to evaporation from the free area.
  • the solution described here uses the differences in the DK-s of the above states (dry, moist, iced), which differ, like the numbers 1 to 80 and 3.15. This greater dynamic allows for easier instrumentation than the known solutions reported above.
  • One of two moisture sensors as an icing detector will lie on the ground, while the second will be stretched out in the air near the ground. In this way, one can distinguish the icing on the ground from the icing in the air near the ground.
  • Figures 1 to 3 schematically show three different embodiments of the sensor.
  • Figure 1 shows the sensor with the two electrodes 1 as a two-wire ribbon cable.
  • the insulation layer 2 envelops the conductor tracks 1 and forms a continuous spacer between the conductor tracks 1.
  • a metal shielding layer 3 shields the electrical measuring field from the space underneath. With the choice of the distance d1, the measurable layer thickness of the measuring material 4 is determined.
  • a plan view is shown on the right.
  • FIG. 2 shows an advantageous design of the probe in a three-wire circuit comprising two sensors running in parallel.
  • the choice of the distance d2 can also advantageously influence the impedance matching of the sensor to the measuring device.
  • the interconnection of the four conductor tracks 1 is shown on the right.
  • FIG. 3 shows on the layer 4 to be measured a water-permeable metal layer 5 with which the electric field (measuring field) is limited to the layer.
  • the measured dielectric coefficients are assigned to water contents.
  • the dielectric coefficients in areas are assigned to the states dry, moist and iced.
  • An embodiment of the sensor with two landlines is approximately 60 mm wide and 700 mm long and approximately 1.5 mm thick. With a dl of 15mm and a d2 of 20mm, he measures water content by weight in the range from 10% to 150% with an accuracy of approx. + 5%, even in highly compressed bentonite.
  • the metal shielding layer is an aluminum-coated adhesive tape.
  • the sensor is built in three-wire technology.
  • a filter mat made of polyester fibers with a basis weight of 300 g / m 2 and a thickness of 20 mm is used for use as an icing detector.
  • the shielded supply cable between sensor and measuring device can be 20 m long.
  • the measuring device (not shown in the figure) is used for DK measurement.

Abstract

Die Erfindung betrifft einen Feuchtesensor für Schichten bestehend aus mindestens zwei parallelen elektrischen Leitern, einem Zuleitungskabel und einem Meßgerät zum Erfassen von Dielektrizitätskoeffizienten. Aufgabe der Erfindung ist es, den Sensor so auszugestalten, daß die Feuchtemessung von außen erfolgen kann. Gelöst wird die erste Aufgabe dadurch, daß beide elektrische Leiter mit einer Isolierschicht umgeben sind und auf der der Schicht abgewandten Seite zur Abschirmung des Halbraumes von einer Metallabschirmschicht bedeckt sind.

Description

Feuchtesensor für Schichten
Die Erfindung betrifft einen Feuchtesensor für Schichten nach dem Oberbegriff des Patentanspruchs 1.
Für viele /Anwendungen ist es wichtig den Wassergehalt in dünnen Materialschichten die aus einer Mischung von nicht metallischem Feststoff, Wasser und Luft bestehen zu bestimmen. Dünn ist eine Schicht dann, wenn sie von einer Rolle abwickelbar und auf eine nicht ebene Fläche auslegbar ist, und aber wesentlich dicker ist als das größte, zerkleinerte Feststoffelement, das sich in der Mischung mit Wasser und Luft befindet.
Besonders wichtige Repräsentanten für diese Objekte sind geosyn- thetische Lehm oder Bentonit Matten. Der Sammelbegriff für diese Materialien ist Geosynthetic (Clay) Liners . Diese Matten, die eine typische Dicke von ca. 4 mm bis 20 haben, finden bevorzugte Verwendung als Feuchte- und Gasisolation in Dichtungen von Deponiebasen und/oder -Oberflächen, Regenrückhaltebecken, Teichen, Talsperren, Unterwasserverlegungen, Dämmen und im allgemeinen Tief- und Hochbau. Diese Matten behalten ihre Isolationsfähigkeit wenn sie nicht austrocknen. Um der Austrocknung rechtzeitig vorzubeugen, benötigt man die ständige Messung der Mattenfeuchte allein ohne den Einfluß der Konstruktionsmaterialien ober- und unterhalb der Matte. Es ist üblich das nur eine Seite der Matte mit Wasser versorgt wird. In diesen Fällen kann ein starker Wassergehaltsgradient in der Mattendicke ohne Qualitätsverlust der Isolation herrschen. Das hat zur Folge, daß man innerhalb der Matte noch Feuchtegehaltunterschiede messen muß.
Der Konferenzbeitrag, Measuring the In-situ Moisture Content of Geosynthetic Clay Liners (GCLs) Using Time Domain Reflectometry; Matthew A. Eberle and Kent P. von Maubeuge, in 1998 Sixth International Conference on Geosynthetics, 25-29 March 1998, Atlanta, USA gibt den Stand der Technik von heute ausreichend wieder. Die Signallaufzeit wird entlang eines elektrischen Leiters, der in das messende Material eingestochen ist, gemessen. Die so gewonnene Zeit hängt von dem dielektrischen Koeffizienten DK des mes- senden Materials ab, wobei dieser Koeffizient seinerseits von dem Wassergehalt abhängt.
Die Probleme und Nachteile des dort beschriebenen Versuchs sind: a) Das messende elektrische Feld ragt aus der Schichtdicke heraus, und somit die Materialien unter- und oberhalb der Matte die Meßwerte verfälschend beeinflussen. b) Es ist schwierig, die Meßelektroden der Sonde gut in die Mitte der Matte zu stechen. c) Die Stechsonde kann nur eine kurze, d.h. wenig repräsentative Strecke erfassen, weil sie nicht flexibel ist, um der meistens unebenen Schicht zu folgen. d) Es ist bekannt, daß Luftblasen und eventuelle Luftspalten zwischen Sonde und Material, die beim Einstecken der Sonde unvermeidbar entstehen, den Meßwert nachhaltig und mit der Zeit unterschiedlich verfälschen. e) Die dort dargestellte Meßkurve des Meßimpulses zeigt, daß die Bestimmung der Pulslaufzeit, die in Verbindung mit dem Wassergehalt gebracht wird, unsicher ist, weil die Dämpfung entlang der Meßelektrode zu groß ist und weil eine zu große und unkontrollierte Fehlanpassung der Impedanzen zwischen Sonde und Meßgerät herrscht.
Diese Probleme und Nachteile begründen, daß noch keine routinemäßig einsetzbare Meßsonde für diese Aufgabe kommerziell erhältlich ist.
Zur Beschreibung des Wetters gehören die Berichte über den Frostzustand des Bodens und über die Vereisung von bodennahen Objekten. Der Wetterdienst bedarf automatischer Vereisungssensoren, die zwischen den Zuständen trocken, feucht und vereist unterscheiden. Der Deutsche Wetterdienst DWD erfaßt zur Zeit diese Zustände durch subjektive Beobachtung. Diese Methode soll abgelöst werden.
Die Machbarkeitsstudie Intelligenter Sensor zur Messung des Bo- denzustandes-Vereisungsmelder erstellt von STS Systemtechnik Schwerin GmbH im Auftrag des DWD, Hamburg, 1997 beschreibt einen Vorschlag in dem die Schallausbreitung (Geschwindigkeit und Reflexion) in einem Feststoff, der entweder trocken ist oder mit einer Schicht von Wasser oder Eis belegt ist, gemessen wird. Weil die Schallimpedanzen der drei Zuständen wie 3,2 zu 4 und zu 1,5 stehen, braucht man eine verhältnismäßig aufwendige Instrumentierung um diese Unterscheidung ausnutzen zu können. Das Gerät wird zu teuer.
Die Firma Vaisala TMI Ltd, 349 Bristol Road, Birmingham B 5 7SW, UK vertreibt ein Meßsystem für die Straßenzustandmeldung unter dem Namen IceCast Ice Prediction Systems. Dessen Sonde mißt unterschiedliche Parametern, wie elektrische Leitfähigkeit, Polarisation, DK, Temperatur der Straßenoberfläche je nach Zustand. Aus diesen vielen Daten errechnet man die Voraussage einer Vereisungsgefahr. Das System ist kompliziert und sehr teuer. Das Gerät ist nicht geeignet für die Messung der bodennahen Vereisung. Dem gegenüber ist unsere Aufgabe nur den aktuellen Zustand der Bodenoberfläche und die Vereisung von bodennahen Objekten anzugeben.
Die Firma Böschung Verkehrstechnik GmbH, Lützowgasse 14, A-1140 Wien, vertreibt ein Meßsystem ebenfalls für die Straßenzustandvorhersage. Dieses System ist auch kompliziert. Es wendet unter anderem Unterkühlung und Heizung eines isolierten Bodenelements mit Peltier-elementen an. Auch dieses System ist ungeeignet für die Messung der bodennahen Vereisung.
Aufgabe der Erfindung ist es, einen Sensor der e. g. Art so auszugestalten, daß die Feuchtemessung von außen erfolgen kann.
Gelöst wird die erste Aufgabe durch die Merkmale des Patentanspruchs 1. Die Unteransprüche beschreiben vorteilhafte Ausgestaltungen der Erfindung. Die Ansprüche 9 und 10 nennen vorteilhafte Verwendungen des Sensors. Die erfindungsgemäße Sonde hat folgende Vorteile: a) Die Elektroden sind flexibel. Die Sonde kann auf eine weitge¬ hend unebene Fläche eines messenden Materials, wie ein flexi- beles Flachbandkabel, aufliegen. b) Die Elektroden der Sonde sind mit einer elektrischen Isolationschicht ummantelt und in einem konstanten Abstand zu einander gehalten, wodurch die elektrische Dämpfung entlang der Elektroden klein wird. Die kleine Dämpfung ermöglicht den Bau einer längeren Sonde, die ein repräsentativeres Ergebnis liefert. Die endliche Dicke der Isolationschicht ermöglicht, daß das elektrische Feld der Elektroden ohne einen direkten Kurzschluß, oder ohne zu große Reduzierung der Meßempfindlichkeit, auf einer Seite der Sonde durch eine Metallabschirmschicht von dem benachbarten Raum abgeschirmt wird. Die Sonde wird nur einseitig empfindlich. Auf dieser Weise wird auch erreicht, daß die Sonde nicht mehr in das Material gestochen werden muß. Sie kann aufgelegt werden. Schon bei einem klei¬ nen Auflagedruck wird ein verfälschender Luftspalt zwischen Sonde und Material vermieden. c) Mit der Optimierung des Abstandes zwischen den Elektroden und der Dicke der Isolationschicht kann die Sonde auf die Dicke des messenden Materials bei guter Impedanzanpassung zwischen Sonde und Meßgerät eingestellt werden. Bei Bedarf, oder Zweifel an der Eindringstiefe des Meßfeldes, kann man das einsei¬ tige Meßfeld noch auf die Dicke des Materials beschränken. Man bedeckt, wie der Patentanspruch 8 beschreibt, das Material auch oberhalb mit einer metallischen Folie. d) Um die äußeren elektrischen Störungen zu reduzieren, verwendet man, üblicher Weise, die Dreileiterschaltung . (Siehe den Bericht von Eberle und v. Meubeuge, wie oben.) Wenn man erfindungsgemäß die mittlere Elektrode der Dreileiter-Schaltung aus den benachbarnten Leitern von zwei parallel laufenden Elektrodenpaaren bildet, hat man einen weiteren freien Parameter, den Abstand zwischen den Elektrodenpaaren. Mit der Wahl dieses Abstands kann man die Impedanz der Sondenanordnung für bessere Anpassung beeinflussen. Der Feuchtesensor für Schichten wird zum Vereisungsdetektor dadurch, daß anstelle des messenden Materialschicht ein poröse wasserspeichernde Materialschicht eingesetzt wird. Die poröse Materialschicht soll aus nicht metallischen Material mit niedrigem Dielektrizitätskoeffizienten DK und mit sehr kleinen Volumenanteil in einer Schicht von ca. 5 bis 20 mm dick sein. Filtermatten aus Polyesterfasern mit einem Flächengewicht von 300 g/m2 mit einer Dicke von 20 mm haben sich bewährt. Die Luftporen der Schicht sollen so klein sein, daß die Regentropfen durch die Oberflächenspannung des Wassers in den Poren nach unten kriechen können aber in der Schicht festgehalten bleiben. Der DK der Schicht in trockenem Zustand wird nur vernachlässigbar größer sein als 1, der DK der Luft. Beim Regen wird eine Wasserschicht in diesem porösen Material entstehen. Der DK des Schicht wird dann ca. 80 sein, der DK des Wassers. Bei Temperaturen unter der Frostgrenze wandelt sich das Wasser in Eis um. Dadurch wird der DK der Schicht ca, 3,15 sein, der DK des Eises. Die Verdunstung aus der Matte wird nur vernachlässigbar verzögert gegenüber der Verdunstung von der freien Fläche.
Die hier beschriebene Lösung nutzt die Unterschiede der DK-en der obigen Zuständen, (trocken, feucht, vereist) die sich, wie die Zahlen 1 zu 80 und zu 3,15 unterscheiden. Diese größere Dynamik läßt eine einfachere Instrumentierung zu, als die oben berichteten bekannten Lösungen. Von zwei Feuchtesensoren als Vereisungsdetektor wird ein auf dem Boden liegen, während der zweite in der bodennahen Luft ausgespannt wird. Auf dieser Weise kann man die Vereisung am Boden von der Vereisung in der bodennahen Luft unterscheiden.
Die Erfindung wird anhand eines Ausführungsbeispiels mit Hilfe der Figuren näher erläutert.
Die Figuren 1 bis 3 zeigen schematisch drei verschiedene Ausführungsformen des Sensors. Figur 1 zeigt den Sensor mit den beiden Elektroden 1 als zweiadriges Flachbandkabel. Die Isolationschicht 2 umhüllt die Leiterbahnen 1 und bildet einen durchgehenden Abstandshalter zwischen den Leiterbahnen 1. Eine Metallabschirmschicht 3 schirmt das elektrische Meßfeld gegen den darunterliegenden Raum ab. Mit der Wahl der Abstand dl wird die meßbare Schichtdicke des messenden Materials 4 bestimmt. Rechts daneben ist eine Draufsicht dargestellt.
Figur 2 zeigt eine vorteilhafte Gestaltung der Sonde in einer Dreileiterschaltung aus zwei parallel laufenden Sensoren. Auch mit der Wahl der Abstand d2 kann man die Impedanzanpassung des Sensors zu dem Meßgrät vorteilhaft beeinflussen. Rechts daneben ist die Verschaltung der vier Leiterbahnen 1 dargestellt.
Figur 3 zeigt auf der zu messenden Schich 4 eine wasserdurchlässige Metallschicht 5 mit der das elektrische Feld (Meßfeld) auf die Schicht beschränkt wird.
Mit Hilfe von Kalibrationsmessungen werden die gemessenen Dielektrizitätskoeffizienten zu Wassergehalten zugeordnet.
Wenn der Sensor für Schichten zur Detektierung der Vereisung eingesetzt wird, dann werden die Dielektrizitätskoeffizienten in Bereichen zu den Zuständen trocken, feucht und vereist zugeordnet.
Eine Ausführungsform des Sensors mit zwei Stegleitungen ist ca. 60 mm breit und 700 mm lang und ca. 1,5 mm dick. Bei einem dl von 15mm und einem d2 von 20 mm mißt er auf Gewicht bezogene Wassergehalte in dem Bereich von 10 % bis 150% mit einer Genauigkeit von ca. + 5%, auch in hoch verdichtetem Bentonit. Die Metallabschirmschicht ist ein Aluminium kaschiertes Klebeband. Der Sensor ist in Dreileitertechnik gebaut.
Für den Einsatz als Vereisungsdetektor wird eine Filtermatte aus Polyesterfasern mit einem Flächengewicht von 300 g/m2 und mit einer Dicke von 20 mm benutzt. Das abgeschirmte Zuleitungskabel zwischen Sensor und Meßgerät kann 20 m lang sein. Das Messgerät (in der Figur nicht dargestellt) dient der DK- Messung.

Claims

Patentansprüche :
1. Feuchtesensor für Schichten bestehend aus mindestens zwei parallelen elektrischen Leitern einem Zuleitungskabel und einem Meßgerät zum Erfassen von Dielektrizitätskoeffizienten, dadurch gekennzeichnet, daß beide elektrische Leiter (1) mit einer Isolierschicht (2) umgeben sind und auf der der Schicht (4) abgewandten Seite zur Abschirmung des Halbraumes von einer Metallabschirmschicht (3) bedeckt sind.
2. Feuchtesensor nach Anspruch 1, dadurch gekennzeichnet, daß die Leiter (1) mit Isolierschicht (2) und die Metallabschirmschicht (3) flexibel sind.
3. Feuchtesensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Abstand der Leiter (1) so gewählt ist, daß die Eindringtiefe des Meßfeldes mit der Dicke der zu messenden Schicht (4) vergleichbar ist.
4. Feuchtesensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Wellenwiderstand der Leitungen (1) mit Isolierschichten (2) und Metallabschirmschicht (3) im Zustand der Messung an den charakteristischen Widerstand des Meßgerätes (5) angepaßt ist.
5. Feuchtesensor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zwischen den beiden Leitern (1) ein weiterer Leiter (1) mit Isolierschicht liegt, wobei die Leiter in Dreileitertechnik verschaltet sind.
6. Feuchtesensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der in der Mitte liegende Leiter (1) aus zwei benachbarten Leiten (1) von zwei nebeneinanderliegenden Doppelleitern gebildet wird, wobei durch den Abstand dieser Doppelleiter die Impedanz des Leitersystems eingestellt wird.
7. Feuchtesensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sich auf der zu messenden Schicht (4) eine wasserdurchlässige Metallschicht (5) befindet
8. Feuchtesensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die zu messende Schicht (4) aus einem porösen, wasserspeicherndem Material besteht.
9. Verwendung des Feuchtesensors gemäß einem der Ansprüche 1 bis 7 zur Feuchtebestimmung in Bentonit- Schichten.
10. Verwendung des Feuchtesensors gemäß Anspruch 8 zur Messung der Vereisung des Bodens und bodennaher Objekten.
PCT/EP1999/003704 1998-07-24 1999-05-28 Feuchtesensor für schichten WO2000006998A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002336925A CA2336925A1 (en) 1998-07-24 1999-05-28 Moisture sensor for layers
DE1999510850 DE59910850D1 (de) 1998-07-24 1999-05-28 Feuchtesensor für schichten
AU45021/99A AU755818B2 (en) 1998-07-24 1999-05-28 Moisture sensor for layers
EP99927786A EP1102979B1 (de) 1998-07-24 1999-05-28 Feuchtesensor für schichten
US09/754,584 US6507200B2 (en) 1998-07-24 2001-01-05 Moisture sensor for layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833331.5 1998-07-24
DE19833331A DE19833331C2 (de) 1998-07-24 1998-07-24 Feuchtesensor für Schichten

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/754,584 Continuation-In-Part US6507200B2 (en) 1998-07-24 2001-01-05 Moisture sensor for layers

Publications (1)

Publication Number Publication Date
WO2000006998A1 true WO2000006998A1 (de) 2000-02-10

Family

ID=7875164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003704 WO2000006998A1 (de) 1998-07-24 1999-05-28 Feuchtesensor für schichten

Country Status (6)

Country Link
US (1) US6507200B2 (de)
EP (1) EP1102979B1 (de)
AU (1) AU755818B2 (de)
CA (1) CA2336925A1 (de)
DE (2) DE19833331C2 (de)
WO (1) WO2000006998A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054094B2 (en) 1997-04-08 2015-06-09 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US7110235B2 (en) * 1997-04-08 2006-09-19 Xzy Altenuators, Llc Arrangement for energy conditioning
US7336468B2 (en) 1997-04-08 2008-02-26 X2Y Attenuators, Llc Arrangement for energy conditioning
US7301748B2 (en) 1997-04-08 2007-11-27 Anthony Anthony A Universal energy conditioning interposer with circuit architecture
US7321485B2 (en) 1997-04-08 2008-01-22 X2Y Attenuators, Llc Arrangement for energy conditioning
DE10150320A1 (de) * 2001-06-13 2002-12-19 Consens Gmbh Verfahren und Vorrichtung zur Detektion von festen und flüssigen Niederschlägen
DE10150078A1 (de) * 2001-06-14 2002-12-19 Consens Gmbh Verfahren und Vorrichtung zur Detektion von Niederschlägen
AU2003245692A1 (en) * 2002-06-24 2004-01-23 Arichell Technologies, Inc. Automated water delivery systems with feedback control
DE10245411B3 (de) * 2002-09-28 2004-06-24 Forschungszentrum Karlsruhe Gmbh Feuchtesensor
US7225024B2 (en) * 2003-09-30 2007-05-29 Cardiac Pacemakers, Inc. Sensors having protective eluting coating and method therefor
KR20060120683A (ko) 2003-12-22 2006-11-27 엑스2와이 어테뉴에이터스, 엘.엘.씨 내부적으로 차폐된 에너지 컨디셔너
US20050225335A1 (en) * 2004-04-13 2005-10-13 Filipkowski Leonard R Moisture detector
US7817397B2 (en) 2005-03-01 2010-10-19 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
US7630188B2 (en) 2005-03-01 2009-12-08 X2Y Attenuators, Llc Conditioner with coplanar conductors
CN101395683A (zh) * 2006-03-07 2009-03-25 X2Y衰减器有限公司 能量调节装置结构
US8309024B2 (en) * 2008-04-23 2012-11-13 Enerize Corporation Methods and systems for non-destructive determination of fluorination of carbon powders
US9909987B1 (en) 2014-07-30 2018-03-06 Transcend Engineering and Technology, LLC Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a material
US9970969B1 (en) 2014-08-26 2018-05-15 Transcend Engineering and Technology, LLC Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824460A (en) * 1973-04-02 1974-07-16 R Gustafson Leakage sensor
US3965416A (en) * 1974-05-28 1976-06-22 Tylan Corporation Dielectric-constant measuring apparatus
EP0342013A2 (de) * 1988-05-13 1989-11-15 Junkosha Co. Ltd. Fluidum-Leckdetektor
US5073756A (en) * 1989-06-24 1991-12-17 Kernforschungszentrum Karlsruhe Gmbh Method and apparatus for measuring the volumetric water content of mineral and/or organic mixtures
DE4213070A1 (de) * 1992-04-21 1993-10-28 Ingbuero Rinne Und Partner Verfahren und Vorrichtung zur Überwachung einer zweilagigen Abdichtung gegenüber Flüssigkeiten
US5648724A (en) * 1996-02-08 1997-07-15 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Metallic time-domain reflectometry roof moisture sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873927A (en) * 1973-11-05 1975-03-25 Surface Systems System for detecting wet and icy surface conditions
US4749731A (en) * 1986-04-14 1988-06-07 The Celotex Corporation Coating for roof surfaces
DE4334649C2 (de) * 1993-04-29 1995-02-23 Imko Intelligente Micromodule Sonde für Materialfeuchtesensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824460A (en) * 1973-04-02 1974-07-16 R Gustafson Leakage sensor
US3965416A (en) * 1974-05-28 1976-06-22 Tylan Corporation Dielectric-constant measuring apparatus
EP0342013A2 (de) * 1988-05-13 1989-11-15 Junkosha Co. Ltd. Fluidum-Leckdetektor
US5073756A (en) * 1989-06-24 1991-12-17 Kernforschungszentrum Karlsruhe Gmbh Method and apparatus for measuring the volumetric water content of mineral and/or organic mixtures
DE4213070A1 (de) * 1992-04-21 1993-10-28 Ingbuero Rinne Und Partner Verfahren und Vorrichtung zur Überwachung einer zweilagigen Abdichtung gegenüber Flüssigkeiten
US5648724A (en) * 1996-02-08 1997-07-15 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Metallic time-domain reflectometry roof moisture sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRANDELIK A ET AL: "Advanced ground truth for snow and glacier sensing", IGARSS '98. SENSING AND MANAGING THE ENVIRONMENT. 1998 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING. SYMPOSIUM PROCEEDINGS. (CAT. NO.98CH36174), IGARSS '98. SENSING AND MANAGING THE ENVIRONMENT. 1998 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSI, 1998, New York, NY, USA, IEEE, USA, pages 1873 - 1875 vol.4, XP002118889, ISBN: 0-7803-4403-0 *
KENT M ET AL: "Broadband measurement of stripline moisture sensors", JOURNAL OF MICROWAVE POWER, SEPT. 1984, CANADA, vol. 19, no. 3, pages 173 - 179, XP002118888, ISSN: 0022-2739 *

Also Published As

Publication number Publication date
AU755818B2 (en) 2002-12-19
EP1102979A1 (de) 2001-05-30
DE19833331C2 (de) 2001-02-15
DE19833331A1 (de) 2000-02-10
DE59910850D1 (de) 2004-11-18
CA2336925A1 (en) 2000-02-10
EP1102979B1 (de) 2004-10-13
US20010002105A1 (en) 2001-05-31
AU4502199A (en) 2000-02-21
US6507200B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
EP1102979B1 (de) Feuchtesensor für schichten
Kalinski et al. Electrical-resistivity measurements for evaluating compacted-soil liners
Kalinski et al. Estimating water content of soils from electrical resistivity
DE19629745C2 (de) Vorrichtung sowie Verfahren zur Bestimmung von Bodeneigenschaften
DE2612498C2 (de) Verfahren und Vorrichtung zum Messen des Polarisationspotentials von in einem Elektrolyten in einem Stromfeld angeordneten Metallgegenstand
EP0995083B1 (de) Kapazitiver füllstandssensor mit optimierter elektrodengeometrie
DE3310327C2 (de)
EP0926475A2 (de) Kapazitiver Füllstandssensor mit integrierter Schmutzfilmdetektion
DE4235963C1 (de) Verfahren zur Überwachung eines Gebietes
EP1038170B1 (de) Verfahren zur bestimmung des volumetrischen flüssigwasseranteils und der dichte von schnee und vorrichtung zur durchführung des verfahrens
EP0405229B1 (de) Verfahren und eine Vorrichtung zur Messung des volumetrischen Wasseranteils mineralischer und/oder organischer Gemische
EP2290397B1 (de) Messverfahren zur zerstörungsfreien Analyse einer Schneeschichtung und Messvorrichtung zur Durchführung des Messverfahrens
AT511770A1 (de) Vorrichtung zur schneebeschaffenheitsmessung
DE19501196C1 (de) Feuchtesensor für ausgedehnte Schichten
DE10202198A1 (de) Vorrichtung zur Bestimmung des Matrixpotentials im Material
EP2315013A1 (de) Feuchtesensor
EP0925490B1 (de) Vorrichtung zur detektion und ortung von leckageflüssigkeiten an abdichtungssystemen
DE4309411A1 (de) Elektrisches oder optisches Kabel mit einem Feuchtigkeitssensor
EP0911628B1 (de) Sensor zur Wassergehaltsbestimmung
DE10253772B4 (de) Verfahren und eine Vorrichtung zur Bestimmung von Eigenschaften des Erdreichs
JP3516061B2 (ja) 導電率・抵抗率測定用電極棒
DE4013990A1 (de) Vorrichtung zur anzeige eines lecks in einem flachdach
AT370539B (de) Alarmeinrichtung zur anzeige und analyse von lawinenabgaengen
CH696087A5 (de) System und Verfahren zur Überprüfung eines Substrats auf Feuchtigkeitseinbrüche.
DE3005055A1 (de) Einbaugeraet zur schneemessung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999927786

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09754584

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2336925

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 45021/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999927786

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 45021/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999927786

Country of ref document: EP