WO2000013018A2 - Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers - Google Patents

Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers Download PDF

Info

Publication number
WO2000013018A2
WO2000013018A2 PCT/EP1999/006317 EP9906317W WO0013018A2 WO 2000013018 A2 WO2000013018 A2 WO 2000013018A2 EP 9906317 W EP9906317 W EP 9906317W WO 0013018 A2 WO0013018 A2 WO 0013018A2
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
receptors
synthesis
channels
support
Prior art date
Application number
PCT/EP1999/006317
Other languages
English (en)
French (fr)
Other versions
WO2000013018B1 (de
WO2000013018A3 (de
Inventor
Cord F. STÄHLER
Peer F. STÄHLER
Manfred Müller
Fritz STÄHLER
Hans Lindner
Original Assignee
Febit Ferrarius Biotechnology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27512654&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000013018(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US09/763,914 priority Critical patent/US7097974B1/en
Priority to AU57424/99A priority patent/AU749884B2/en
Priority to DE59912120T priority patent/DE59912120D1/de
Priority to EP99944538A priority patent/EP1117478B1/de
Priority to AT99944538T priority patent/ATE296677T1/de
Application filed by Febit Ferrarius Biotechnology Gmbh filed Critical Febit Ferrarius Biotechnology Gmbh
Priority to CA002341896A priority patent/CA2341896A1/en
Priority to JP2000571081A priority patent/JP2002525590A/ja
Publication of WO2000013018A2 publication Critical patent/WO2000013018A2/de
Publication of WO2000013018A3 publication Critical patent/WO2000013018A3/de
Publication of WO2000013018B1 publication Critical patent/WO2000013018B1/de
Priority to US11/510,565 priority patent/US20070031877A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/00432Photolithographic masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00439Maskless processes using micromirror arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00441Maskless processes using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00448Maskless processes using microlens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00479Means for mixing reactants or products in the reaction vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00529DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00675In-situ synthesis on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00704Processes involving means for analysing and characterising the products integrated with the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/97Test strip or test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/973Simultaneous determination of more than one analyte

Definitions

  • Carrier for analyte determination methods and method for producing the carrier are Carrier for analyte determination methods and method for producing the carrier
  • sequencing provides valuable data for research and applied medicine.
  • an increasing number of instruments for determining important patient parameters have been developed through in vitro diagnostics (IVD) and made available to the treating doctor. For many diseases, a diagnosis at a sufficiently early point in time would not be possible without these instruments.
  • IVD in vitro diagnostics
  • genetic analysis has established itself as an important new procedure, for example for infectious diseases such as HIV and HBV, genetic predisposition to certain types of cancer or other diseases, forensics and a large number of other areas of application.
  • This invention also enables the rapid, cost-effective analysis of foods, for example for the presence of certain genes from pathogenic germs or from genetically modified organisms.
  • the screening of medical products is also of great importance.
  • the production of blood preparations, for example, is still associated with a high outlay for the safety precautions for purity.
  • a time- and cost-effective screening of such samples will be possible with this invention, for example to prevent contamination with infectious material (HIV, HBV, HCV, etc.).
  • BioChips are miniaturized hybrid functional elements with biological and technical components, e.g. Biomaterials immobilized on the surface of a support that can serve as specific interaction partners (e.g. DNA oligonucleotides) and a silicon matrix. Most of these functional elements are arranged in rows and columns; this is called BioChip arrays. Since thousands of biochemical functional elements can be arranged on the BioChip, they have to be manufactured using microtechnical methods.
  • BioChips can be classified according to the following criteria: * Principle of detection: - Chromatographic methods Interaction of analytes with a solid phase, mostly immobilized interaction partners (eg hybridization of nucleic acids to DNA oligonucleotides).
  • Luminescence or marker-free detection methods (light generation for reaction detection).
  • Manufacturing process e.g. synthesize oligonucleotides directly on the BioChip light-activated, spot synthesized oligonucleotides, coat beads or tubes.
  • Types of supports glass chips, plastic chips, microtiter plates, tubes or beads).
  • Affymetrix uses the principle of photolithography for a "high density" generation of DNA arrays on a planar surface, which has by far advanced the parallelization of the detection of oligo sequences.
  • oligonucleotides are produced by in situ synthesis of DNA oligonucleotides on planar chips in high density (July 98: up to 64,000 different oligos on 1 cm 2 ).
  • the manufacturing process is based on the photolithography used and optimized in the semiconductor industry, whereby a light-activatable binding of oligos to the chip surface, as well as to existing oligos is used. Due to a large number of process steps, the production time is several hours.
  • the detection is carried out by serial optical detection of the planar chip in a fluorescence scanner.
  • the hybridization time of the sample on a chip is approx. 1.5 hours.
  • the first products (sequencing chip for tumor marker p53 exons 2-1 1, breast cancer gene BRCA1 exon 1 1, HIV GeneChip) are already commercially available. The costs are currently in the range of several hundred dollars for a GenChip, an additional detection unit is also required.
  • the invention relates to a method according to claim 1 for producing a support for the determination of analytes comprising the steps
  • the carrier is a solid phase that can be equipped or equipped with biological or chemically functional materials or receptors (probes) or components thereof.
  • the carrier has one with depressions, for example at least one Channel and particularly preferably provided with a plurality of channels surface.
  • the channels are preferably microchannels with a cross section of, for example, 10 to 1000 / m.
  • the channels can be capillary channels, but also channels without capillary action (for example due to coating with Teflon).
  • the carrier is preferably at least partially optically transparent in the area of the positions or areas to be equipped with receptors.
  • the areas of the carrier to be equipped with receptors are preferably chemically and physically identical to one another, ie they have an essentially identical surface quality.
  • Another object of the invention is a method according to claim 14 for integrated synthesis and analyte determination on a support comprising the steps (a) providing a support body,
  • step (d) optionally repeating steps (b) and (c) until the desired receptors have been synthesized at the respectively predetermined positions or regions on the support, (e) bringing the support into contact with a sample containing the analytes to be determined and (f ) Determine the analytes via their binding to the receptors immobilized on the support.
  • planar carriers can also be used.
  • the subject of claim 26 is a carrier for the determination of analytes comprising at least one channel and preferably a plurality of channels, in particular capillary channels, a plurality of different receptors being immobilized in the channels.
  • the carrier is preferably optically transparent at least in the region of the regions to be equipped with receptors.
  • the invention further relates to a reagent kit according to claim 28 comprising a carrier as described above and building blocks for the synthesis of polymeric receptors on the carrier.
  • the reagent kit can also contain reaction liquids for the synthesis of the receptors on the support.
  • the invention also relates to a device for integrated synthesis and analyte determination on a carrier according to claim 29, comprising a programmable light source matrix, a detector matrix, a carrier arranged between the light source and detector matrix, and means for supplying fluids into the carrier and for removing fluids from the carrier .
  • the programmable light source or exposure matrix can be a reflection matrix, a light valve matrix, e.g. an LCD matrix or a self-emitting exposure matrix. Preferred embodiments of these devices are the subject of claims 30 and 31.
  • the invention also relates to the use of the claimed method, carrier, reagent kit and the claimed device for determining an analyte in a sample.
  • Preferred applications are the subject of claims 33 to 38.
  • An embodiment of the present invention is a method and system for cyclic integrated synthesis and analysis, which as
  • ISA system should be called.
  • This preferred direct coupling of synthesis and analysis according to the invention makes cyclical in one current method enables a significantly improved high-throughput determination of analytes compared to the prior art.
  • the substances to be analyzed can be present, for example, as fragments or fragments of a larger molecular chain.
  • a direct logical connection is provided between the results of the analysis of a first carrier and the synthesis of the carrier to be subsequently created, the information obtained from a previous cycle being able to be transferred into a subsequent cycle. In this way, learning of the analysis system is gradually developed.
  • Said cyclical sequence of synthesis, sequence comparison, analysis of the comparison results and, in turn, synthesis of receptors on the support can be repeated as often as desired - until a desired termination criterion of your choice is reached.
  • the method and the device according to the invention are also suitable for researching very large and complex analyte molecule chains, e.g. suitable for sequencing individual genomes, such as the human genome.
  • the time required is improved at least a hundred times, rather a thousand times and potentially 10,000 times.
  • the method can be used for "new sequencing" of unknown nucleic acid sequences (DNA, cDNA, RNA) including their spatial assignment or mapping. With this procedure it is possible to create an individual gene profile of each individual and each species, be it by sequencing parts of the genome or the entire genome. Furthermore, the method can be used for "resequencing" nucleic acid sequences, ie for comparing already known sequences (represented in the form of the receptor probes) with unknown sequences in the sample to be examined. For this purpose, the known sequences are targeted and selected according to the question.
  • the resequencing described enables the user to generate individual polymeric receptors on site on the carrier according to the invention, starting from a neutral carrier, and then immediately to carry out an analysis of the sample to be examined. This possibility creates a maximum variety of receptors with minimal space requirements.
  • diagnostic tests or medication can be quickly adapted to the needs of an individual.
  • expression patterns can be analyzed extremely flexibly.
  • the corresponding receptors or polymer probes are usually selected on the basis of known sequences.
  • the method for determining gene expression can also be used in the context of high-throughput screening.
  • the need to store finished and complex polymeric receptors is completely eliminated.
  • the required number of receptors can be distributed over several reaction carriers or several cycles in one reaction carrier, since the individual receptors are not subject to any location requirements for the logical evaluation of the comparison results.
  • the present invention relates to a new "support” as the basis for the use of a preferably light-controlled synthesis of individual bases (G, A, C and T) or entire oligonucleotides (base sequences) to form a highly parallel, planar and dense arrangement (Array) of these oligonucleotides in a solid carrier matrix (chip).
  • the new BioChip contains a structure of microchannels, preferably capillaries in an at least partially transparent and preferably flat body.
  • the liquid feedstocks are guided through the channels in the carrier and bind, locally activated, to the channel walls.
  • Density and parallelism are of the same order of magnitude as with competitive techniques, with several hundred thousand defined oligonucleotides on one support.
  • the advantage of the new technology is the cheaper physico-chemical Properties of the flow and wetting processes in the channels in comparison with a uniform surface.
  • the chip production consists of the production of a carrier body, preferably provided with microchannels, from a suitable, translucent material, and the biochemical coating process, preferably on the walls of the individual microchannels, so that the polymeric receptors, e.g. Oligonucleotides in which channels can be synthesized.
  • polymeric receptors e.g. Oligonucleotides in which channels can be synthesized.
  • individual receptor building blocks, oligomeric synthons e.g. di-, tri-, tetra- or pentanucleotides
  • entire base sequences oligos
  • the regions are separated from one another in one dimension of the planar carrier by the walls of the channels and a corresponding free space is left along the individual channels between two adjacent regions in the photoactivated bond.
  • a highly parallel, highly integrated array of specific receptors is created.
  • the test material eg DNA, RNA in solution
  • the test material is led through the channels and given the opportunity to bind to the Receptors, for example by hybridization to complementary strands, if these are present.
  • High-resolution, parallel CCD chips are preferably used for the detection and evaluation of the respective analyte binding, for example a DNA hybridization.
  • the binding of the analyte to the immobilized receptor is achieved by suitable signaling groups known from the prior art, for example light-emitting groups.
  • suitable signaling groups known from the prior art, for example light-emitting groups.
  • new detection methods can also be used.
  • optically imaging lens systems can be dispensed with if the size of the channels is chosen such that each measuring point covers a sufficient number of pixel elements of the detector, for example a CCD chip.
  • the invention thus covers essential requirements in DNA analysis, namely simultaneous determination of a large number of
  • the basic solution in this system is based on the step-by-step biochemical synthesis of receptors on the surfaces of a large number of channel walls on a support. These channels are arranged on the carrier, for example a small planar chip.
  • the synthesis takes place with the appropriate bases or polybasic oligonucleotides (base sequences) via a light-activated site-specific binding.
  • base sequences base sequences
  • the carrier synthesis comprises the provision of the carrier body, which preferably consists of a suitable, translucent material, and the biochemical production of receptors on the walls of the individual channels.
  • the specific synthesis of the receptors can either take place directly in the manufacture of the carrier body or only at the user.
  • the carrier body can be used for different materials. It is important that the walls of the channels are well permeable to both the excitation waves in the light-activated synthesis and the light waves (possibly excitation and reaction signal) in the subsequent detection (analysis). Depending on the material used, the walls of the channels must be coated with a reactive material so that the receptors or receptor building blocks can bind to the surface.
  • the geometry of the carrier corresponds, for example, to a "check card", the size of the area covered by the channels being determined by the CCD chip used for detection.
  • Different manufacturing processes can be used for the channels in the carrier.
  • the influence of the cross-sectional geometry of the channels has to be taken into account, which has a great influence on the resulting fluidic forces and the possibility of cleaning the channels.
  • Lasers, milling machines, etching techniques or injection molding can be used as manufacturing processes.
  • the positions (reaction areas) intended for coating with receptors are filled with one or more fluids through channels from containers via feed lines, valves and fittings.
  • a light emission / detection device known from German patent application 198 39 254.0, which preferably represents a programmable light source or exposure matrix, as described in German patent application 199 07 080.6
  • selected positions or areas of the carrier can be exposed and onto them How the individual synthesis of receptors are controlled, the carrier being an opto-fluidic microprocessor in this context.
  • an individual fluidic activation of the selected reaction areas is also possible.
  • the reaction areas are rinsed and refilled, which is followed by an activation cycle.
  • the course of the receptor synthesis can be monitored and controlled by means of suitable detection devices.
  • the sample to be examined normally contains DNA or RNA. This may have to be isolated and amplified in an amplification step (e.g. PCR) and thereby receives a label, e.g. a dye, fluorescent or luminescent label.
  • an amplification step e.g. PCR
  • a label e.g. a dye, fluorescent or luminescent label.
  • a sufficiently large number of receptor-equipped areas (reaction areas) also allows sequencing of a DNA molecule (Sequencing-by-Hybridization SBH, see BioTec 3/98, pp. 52-58), other applications show the determination of punk mutation polymorphisms (ie Differences between individuals in individual bases in a defined DNA section) and allow, among other things, the identification of such polymorphisms in hundreds of test subjects in parallel (Science 280, 5/98, pp. 1077-1082).
  • it is also possible to examine entire genomes and the gene expression status of whole cells eg Proc.Nat.Acad. Sei. USA 95, 3/98, pp. 3752-3757).
  • the invention described here accordingly allows the use of a large number of established methods for the investigation of nucleic acids and genetic material. At the same time, there is a sharp increase in such applications and an enormous scientific advance, since the opto-fluidic microprocessor is expected to provide such a technology more flexibly than the existing methods and at significantly lower costs.
  • receptor components e.g. individual bases (G, A, C, T) or oligonucleotide sequences (preferably about 2 to 4 bases long) attached site-specifically.
  • the channels are sequenced with the synthesis building blocks, e.g. G, A, C and T, filled and irradiated along the channels site-specifically with high-resolution light of a certain wavelength and intensity. Between the coating cycles, the channels are rinsed to remove unbound receptor building blocks.
  • reaction areas specifically binding or hybridization sites
  • each reaction area being used for the binding and subsequent detection of a specific analyte, for example a DNA fragment, due to its individual receptor sequence.
  • the reaction areas are separated from one another by the walls of the channels in one dimension of the planar carrier and in the second dimension along the individual channels Leave a corresponding space between two adjacent reaction areas during photoactivation.
  • Photolithography can continue to be used for the light-activated binding of the receptor building blocks. However, other methods can also be used.
  • An exposure method using a programmable light source matrix e.g. a self-illuminating light source matrix, a light valve matrix or a reflection matrix, the matrix points or light source elements of which can be controlled in a targeted manner, in particular with regard to the intensity and possibly color of the light.
  • a programmable light source matrix e.g. a self-illuminating light source matrix, a light valve matrix or a reflection matrix
  • the matrix points or light source elements of which can be controlled in a targeted manner, in particular with regard to the intensity and possibly color of the light.
  • the two-dimensional exposure patterns required can be generated in a simple manner, in particular with the aid of a computer.
  • the preferred photoactivation of the oligos during the production of the carrier takes place directly through the exposure matrix.
  • the wavelength of 365 nm required for this can be controlled with all variants of the programmable light source matrix.
  • receptors can also be built up from amino acid and / or peptide building blocks.
  • the binding of a DNA analyte should lead directly or indirectly to a detectable signal, for example to a light signal.
  • a detectable signal for example to a light signal.
  • This can be done for example by absorption, an excitation light (fluorescence) or by photon emission (luminescence).
  • a CCD chip is preferably used for signal detection and is preferably placed directly under the carrier.
  • the excitation light source is preferably placed over the carrier and it is measured accordingly in the transmitted light method.
  • Each light signal can be recorded on the CCD chip, differentiated according to intensity and if necessary also according to wavelength (color). The recorded spectrum can be evaluated qualitatively or quantitatively.
  • the differentiation of wavelengths and intensities also allows differentiation of signal sources.
  • the types of excitation light for the detection method must be selected monochromatic (e.g. laser light for fluorescence excitation) or heterogeneous (e.g. white light for absorption measurement).
  • the new carriers overcome the disadvantages of mask-based photolithography or in-situ spotting listed below.
  • Chip production is not realizable, except by space and handling-intensive dipping processes (chip is immersed in liquid) or liquid-intensive rinsing processes along the surface (e.g. centrifugation principle from semiconductor technology), which is a very large one from the device development point of view
  • Distribution of the sample on the chip surface is complex (no simple and therefore reliable mixing processes possible) and a correspondingly large amount of sample fluid is required.
  • the search for a rare event in the sample is not possible because sufficient contact of all sample components with all specific measuring points cannot be guaranteed.
  • the major advance of the new carriers lies in the possibility of drastically reducing the manufacturing times in the individual synthesis of the receptor-equipped carriers by means of a corresponding multiplexing between receptor components as starting materials and the channels.
  • the number of cycles required for a specific carrier is individual for each carrier and can only be given as a statistical average if the number of reaction areas on or in the carrier, the number of parallel channels and the length of the oligos to be synthesized on the carrier is specified.
  • the optimization of the synthesis times of a carrier should take place by means of a software tool to be developed (for example CAMS Computer Aided Multiplexing Synthesis), which is integrated into the control of the analysis system to be developed or into the connected computer.
  • channels reduces the amount of fluid required and at the same time increases the quality both in the carrier synthesis and in the subsequent detection of a sample, in comparison to the use of a simple surface. This is the even wetting of channels Fluidically very simple, uses little fluid and is therefore very easy to miniaturize and automate. This also applies in particular to the required washing processes for the channels with sufficient quality.
  • the walls of the channels which in principle cover the space between two reaction areas in the carrier array, already reduce the required fluid by 50%. This applies both to the coating of the carrier in production, the synthesis of the receptors and the "sample application" for analysis.
  • a further reduction of the fluid quantities takes place through the good wetting of the channel walls by a flowing fluid and above all through the effective washing processes, which can be greatly improved, for example, by "cleaning" gas bubbles in the channels.
  • a good, statistically sufficient distribution of the sample on an area can only be achieved with a very large amount of sample.
  • Another advantage of the channels is the shorter cycle times, which result from the smaller fluid volumes and the associated faster chemical reactions and processes. This results in both shorter synthesis and hybridization times.
  • the usable reaction surface can be enlarged by a suitable design of the cross-sectional geometry of the individual channels.
  • the size of this area is just as important for the attachment of the oligos during production as for the attachment of the DNA fragments flowing past from the sample and the resulting intensity of the light signals when hybridization has taken place.
  • a rectangular channel assuming the same height and width, has four times the reaction surface when using the walls and the ceiling with an identical base area, i.e. the same space requirement in the two dimensions of a planar beam.
  • the ducts are designed to be round on the inside due to fluidic requirements (for example, better cleaning options due to gas bubbles in the duct), there is still approximately three times the reaction surface in comparison with a planar surface.
  • the input material requirement production and analysis
  • Another effect can also be influenced by the cross-sectional geometry of the channels: the refraction of light at the transition from the interior of the channels to the surrounding material of the carrier. Every curvature has either a focusing or a scattering influence on the direction of propagation of the light.
  • the beam can be optimized by selecting the top and bottom of the flow channel geometry.
  • Measuring the light signals of all reaction areas of the wearer "at once" uses the constantly growing potential of the high-resolution CCD camera Crisps. These allow the detection of all light signals for reaction or hybridization detection in a single measurement process.
  • Current color CCD chips provide around 3000 x 3000 pixels with a pixel size of approximately 10 x 10 ⁇ m on an area of 40 x 40 mm. The current state of research is already in the case of corresponding CCD chips with approx. 4000 x 6000 pixels. The signal detection is done synchronously for all pixels in a fraction of a second. This results in great growth potential for the described application of the CCD chip technology and the parallel detection of 10 6 individual reaction areas in the carrier is technically feasible. This avoids the time-consuming scanning processes of conventional systems and the pure measuring time is reduced to a minimum, which becomes completely meaningless in relation to other process steps.
  • the direct detection of the light signals, without optics, by means of a CCD chip has the advantage of a significantly lower amount of energy, which the light requires for error-free detection.
  • Such an arrangement should - in a different context - only consume 1 0% of the excitation light quantity of a comparable arrangement with an optical system.
  • the optics swallow 90% of the light energy. Due to the lower light intensity, undesired scattered light effects in the carrier surrounding the channels, as well as any cooling of the light source used, are greatly reduced.
  • the elimination of optics means a large saving of space and a reduction in the manufacturing costs for the detection unit. Complex movement devices for the carrier or the detection unit, as are necessary in scanners, are also completely eliminated.
  • the specified dimensions of the CCD chips (several cm 2 ) enable the use of a very large number of parallel channels (several 100) with a moderate channel size (in the 10-100 ⁇ m range).
  • the carriers can be designed as simple disposables (disposable chips). In principle, glass, silicon, metal, ceramic or plastic chips (inexpensive injection molding processes) as well as other designs are possible.
  • biochips of other technologies are also designed as disposable for a few measurements.
  • the very high price due to the complex manufacture of the chips usually speaks against throwing away the chip after only one or a few measurements.
  • the fast and inexpensive production enables a variety of individual applications, in which e.g. taking into account sequence and gene databases on the Internet, specific oligonucleotide arrays can be synthesized.
  • the great flexibility of the technology is also important with regard to the knowledge that the genes of individual individuals differ very greatly, so that one cannot create a general gene catalog for all species.
  • the carrier opens up the possibility, for example, to compare the basic data as it is made available on the Internet - freely accessible or only specifically for the system customer - with the individual differences of a patient in a first measurement cycle and to use the results to add a corresponding second DNA array form, which carries out the actual tests adapted to the individual.
  • the solution according to the invention can also be used for the synthesis of peptide sequences in the channels. This would provide highly complex and inexpensive peptide arrays for a variety of applications.
  • the advantage of only one channel lies in the presentation of the sample at all measuring points of the array and is therefore particularly suitable for the search for rare components.
  • a large number of parallel channels has the advantage that the production times for carrier synthesis can be minimized by multiplexing the starting materials and channels and all flow processes. This channel arrangement is therefore preferred for carrier synthesis as well as all analyzes with a sufficient number of copies of each analyte in the sample.
  • a variety of structures and microchannel profiles are possible as an arrangement for the channels above the detector surface.
  • parallel or "snake-shaped" structures are obvious.
  • Spiral arrangements have the advantage that they have less turbulent flow processes and are easier to clean.
  • Their big disadvantage is the supply and discharge, which in the third dimension up or down must be done, which is rather unfavorable from a manufacturing and optical point of view.
  • the structure can be done in two layers, which may or may not be joined together, for example by gluing or bonding.
  • the structure of the channels can either be introduced in one side or in both sides or halves.
  • the manufacturing processes include Laser or precision milling can be used. Injection molding, which can be produced in sufficient quality, is particularly cost-effective. Other processes are the LIGA technique or hot molding.
  • the synthesis unit consists of a suitable light source, which irradiates the reaction areas in the carrier array during the synthesis of the receptors, for example bases or base sequences, on the carrier surface or the channel walls in a highly precise and precisely resolving manner, specific to the location.
  • the exposure can take place using a programmable light source matrix.
  • the feed materials can be made available directly in the carrier in appropriate reservoirs.
  • the superfluous input materials must be collected in a corresponding chamber in the carrier.
  • the volume of such a chamber can be easily extended to a multiple of the total channel volume by extending it in the third dimension up or down.
  • the principle of capillary force can be used directly for the fluid transport in the carrier. Any mechanics would be omitted and the capillaries could be filled with the feed materials and the sample by simply adjusting a valve in the carrier.
  • the "waste chamber" could be through the Embedding a suitable nonwoven fabric will develop a supportive suction effect.
  • Another variant is a vertical alignment of the planar carriers, so that gravitational forces can also be used for the fluid transport in the carrier. If these forces are not sufficient to implement all the necessary fluid transport into the carrier, other suitable pump mechanisms must be provided.
  • One possibility for this is an electrophoretic movement of the fluids through electrodes integrated in the carrier, or through a volume reduction in chambers of the carrier by means of a corresponding force input from the outside into the carrier (classic pump).
  • the provision of the starting materials for the carrier synthesis in storage containers offers the advantage of multiplexing finished base sequences and parallel channels, which is why this embodiment variant is recommended for (ultra) high-throughput screening and carrier manufacturers.
  • the multiplexing can take place at the interface to the carrier in which a specific base sequence wets a different channel for each synthesis cycle.
  • a technically more complex, but possibly more reliable method is multiplexing in the device using a corresponding valve system.
  • the carry-over must be noted, which can arise from the use of different base sequences.
  • Another point that must be taken into account is the collection and removal of the excess material at the exit of the individual channels. Both circulation (reuse of the escaping material) and elimination of the escaping feedstocks are conceivable here.
  • nucleic acid sequences are analyzed by hybridizing nucleic acids in the sample material to complementary strands among the immobilized oligonucleotides.
  • peptide sequences can also be coupled into the channels, likewise according to in situ synthesis principles.
  • Such peptides are capable of diverse and in some cases highly specific binding reactions with peptides, proteins and other substances, so that the spectrum of potential analytes can be expanded considerably.
  • the synthesis in the carrier would for the first time provide massively parallel and at the same time inexpensive peptide arrays for a multitude of applications.
  • analytes are nucleic acids (DNA, RNA, in special cases also PNA). These nucleic acids can be obtained from whole genomes, fragments thereof, chromosomes, plasmids or synthetic sources (eg cDNA). In one embodiment, the sample material can come from the human genome.
  • Other examples of analytes are proteins, polypeptides and peptides in all forms, for example hormones, growth factors, enzymes, tumor antigens, serum factors, antibodies, carbohydrates, for example various sugars in foods or agricultural plants, functional sugars, polymers and other organic molecules, for example drugs of abuse. , Pharmaceuticals, metabolites, amino acids, transmitters, pesticides, insecticides, varnishes, various toxins etc.
  • the binding of the analyte to the receptor can be achieved by hybridizing complementary nucleic acids e.g. longer molecules such as cDNA, synthetic oligonucleotides, PNA, RNA occur.
  • Peptides as receptors e.g. synthetic peptides or natural peptides can bind to the analyte via protein-protein or protein-nucleic acid interactions.
  • Two principles for signal generation are preferably used, namely: the direct detection of an analyte previously or in the reaction (preferred method in nucleic acid analysis by means of hybridization) and the indirect detection by competition of the analyte or the target sequence with a labeled standard.
  • the first variant is well established for some applications, but rather poorly suited for diagnostics, for example of serum components, which is also possible in the carrier with peptide arrays.
  • the second variant is therefore preferable for these applications, and in principle it also allows easier sample preparation by the user.
  • a direct detection can be carried out by labeling the analytes with a dye for absorption measurement, a fluorescent dye, labeling the analytes with reporter enzyme, then reaction (for example chemo- or bioluminescence), selective labeling of the bound analyte, for example in the case of nucleic acids by intercalating (fluorescence) Dyes, double-strand-binding proteins or double-strand-binding antibodies or a secondary detection of the bound analyte with a second component, for example in the case of PNA-DNA hybrids by DNA-specific antibodies.
  • Enzyme-linked standards for example chemo- and bioluminescence with alkaline phosphatase, peroxidase etc.
  • fluorescent- dye-coupled standards can be used as labeled standards.
  • Protein standards can be used as fusion proteins with a reporter enzyme (see above) or an autofluorescent protein (eg GFP), for example for recombinant antibodies, protein hormones, growth factors etc.
  • Sample preparation can either be done manually in the laboratory, in a separate analysis system or in a preparation unit integrated in the same system.
  • the sample ready for detection is then introduced into the carrier by means of manual or automatic pipetting or comparable methods. 6.4.2 Sample preparation in the same carrier "all in one"
  • the upstream cell disruption can also be integrated, for example, using processes that can be automated, such as ultrasound or high voltage, as well as DNA isolation.
  • the light signals for the detection reactions in the carrier array are to be read out in a detection unit, the excitation light source (fluorescence, luminescence or absorption as optical detection) being arranged directly opposite the CCD chip for light signal measurement.
  • the carrier array is located between the light source and the detection chip (sandwich construction).
  • An exposure matrix can be used as the excitation light source.
  • the spatial arrangement of this unit can be done as required (eg use of gravitation for flow processes in the chip). This construction, which is as compact as possible, minimizes the light path and thus also the required light intensity.
  • the use of complex, space-intensive, light-absorbing and expensive optics should be avoided on both the excitation and the detection side. 6.5.1 Temperature during hybridization
  • the temperature control (currently typically at 60 ° C - the latest developments already enable hybridization at 25 ° C with low salt conditions) during hybridization can be carried out either by appropriate temperature elements in the detection unit or by the excitation light source or the excitation light itself. Temperature elements in the carriers are also possible.
  • the sources of light are highly parallel light from a lamp (white light), highly parallel light from a flash tube, highly parallel monochromatic light, a monochromatic laser light line, a two-dimensional exposure by expanding the laser beam, a monochromatic laser beam or a programmable light source matrix in question.
  • a corresponding optical grating or a corresponding optic can be provided between the excitation light source and the carrier array.
  • the detection unit preferably consists of only one CCD chip. These currently have an area of 25 x 37 mm, for example, around 2000 x 3000 pixels (Cannon). If you arrange around 500 parallel channels with a diameter of approx. 20 ⁇ m on such a surface of 25 x 37 mm (every second double pixel row), you will get 750 measuring points (fields) in each channel if you only use every second double pixel under the channel. This would have 375,000 reaction areas on a single support, whereby each reaction area covers 4 color or 12 black and white pixels and has an area of 20 x 20 ⁇ m.
  • the light signals must be generated as close as possible to the optical CCD chip, so that an incorrect assignment of light signals and measuring points with their specific base sequence and a superimposition of adjacent light signals can be excluded. Otherwise serial overlapping areas can be detected or fiber optic elements are used.
  • the processing of the data amounts is easily possible due to the development of the performance with a simultaneous price drop of modern computer systems.
  • the detection of the detection reaction can make both qualitative and quantitative statements, namely which catcher molecules (position in the array) have attachment partners found (evaluation of e.g. fluorescence-labeled labels) and how many capture molecules in a class have found a hybridization partner.
  • a corresponding optical grating or a corresponding optic can be provided between the carrier array and the CCD camera chip.
  • the detection in the analysis system can also be carried out using other, more sensitive sensors.
  • an inspection unit as described in German patent application 198 39254.0.
  • This inspection unit comprises an electronically controllable light source matrix and a light sensor matrix facing the light source matrix, namely CCD image recorders.
  • the pixels in between can be used for permanent process control. So you can e.g. track the inflow of a gas bubble between two fluids in a channel individually and dynamically.
  • a coloring of the carrier fluids for G, A, C and T would also be conceivable, so that the presence of the correct oligos could be checked and a change in color could signal carryover. In the subsequent detection, location-specific and, if necessary, even color-specific light excitation could again take place. This opens up completely new possibilities for detection methods that are not yet available.
  • the inspection unit allows the flow processes in the channels in a carrier to be monitored both during production - that is to say oligo synthesis - and during the analysis.
  • cleaning gas bubbles between two fluids in the channels or a coloring of the individual fluids can be used.
  • an exposure matrix can be used which generates and transmits the necessary wavelength of, for example, 360-370 nm.
  • the detection reaction in the carrier can also be detected in the inspection unit. If the detection is carried out using fluorescent markers, the background lighting would have to be changed (automatically possible), using optical filters and / or glass fiber elements ("tapers"). If necessary, new detection methods are also used here, which are only possible due to the extremely flexible, individual illumination and detection of the individual reaction area.
  • RNA and PNA strands For a standard hybridization of DNA, RNA and PNA strands with each other you need a temperature of approx. 55 - 65 ° C. In the simplest case, this temperature can be generated by the radiated energy of the exposure matrix (waste heat and wavelength). This would allow the arrangement to be further compacted.
  • the synthesis of DNA molecules in channels can be carried out using standard synthons, for example phosphoramidite building blocks, with suitable protective groups, for example dimethoxymethyl (DMT).
  • suitable protective groups for example dimethoxymethyl (DMT).
  • Appropriate fluidic DNA synthesis can take place starting from a linker coupled to the solid phase.
  • this format can be combined with light-dependent control of DNA synthesis.
  • protective groups are known which allow light-dependent deprotection, so that the protective group, which is usually bound to the 5'-carbon atom of the synthon, is split off by light of a suitable wavelength. In this way, the synthesis of nucleic acids with a length of 18 or more nucleotides is possible in capillaries.
  • the reaction products can e.g. can be analyzed by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the efficiency of capillary DNA synthesis can be shown by the proportion of full-length products.
  • the reaction area on the support is exposed to a specific light or location and / or time, e.g. with a mercury vapor lamp, laser light (e.g. nitrogen laser with 373 nm) or with a UV LED.
  • a specific light or location and / or time e.g. with a mercury vapor lamp, laser light (e.g. nitrogen laser with 373 nm) or with a UV LED.
  • laser light e.g. nitrogen laser with 373 nm
  • UV LED e.g. UV LED
  • Other light sources which have a sufficiently high-energy radiation are also suitable.
  • Fig. 1 shows a highly schematic plan view of a carrier according to the invention.
  • Fig. 2 shows examples of channel arrangements in a carrier according to the
  • Fig. 3 shows a schematic representation of a carrier in a
  • FIG. 4 shows a schematic representation of an inventive
  • FIG. 5 shows the structure from FIG. 4 for a fluidic individualization of reaction areas.
  • Figure 1 shows the transparent carrier in a plan view in a highly schematic manner.
  • the channels 1 running parallel to one another can be seen, for example 500 channels with a length of 37 nm.
  • T, G, A, C in FIG. 1 denote reservoirs for the individual starting materials (bases). With 3 the gas inlet is designated.
  • 5 denotes a valve.
  • 7 denotes the sample entry and 9 denotes an access for further synthetic chemicals and cleaning / washing liquid.
  • Figure 3 shows the carrier according to Figure 1 in an inspection unit made of a programmable light source matrix, e.g. an LCD matrix and a CCD detection matrix.
  • a programmable light source matrix e.g. an LCD matrix and a CCD detection matrix.
  • FIG. 4 shows a device according to the invention with an exchangeable carrier 40, the basic structure being independent of whether the carrier is replaced in each cycle or only when it is worn. In the latter case, the same channels are cleaned and then reused.
  • a programmable light source matrix 30 is shown. Its programmability can be integrated into the system component 20, which consists of a computer or a computer, so that only a freely controllable light source matrix is necessary as component 30.
  • This light source matrix 30 emits light of a defined wavelength and intensity to arbitrarily controllable locations at least two-dimensional matrix, which serves for the highly parallel exposure of the reaction areas in the carrier 40.
  • Said carrier 40 is individually irradiated by the light source matrix 30 with the computer-controlled light pattern consisting of energy waves in all reaction areas.
  • the fluids provided by the fluidic module 60 are transported into the carrier 40 via the fluidic connection system 64 and are passed on to the reaction areas in a suitable manner in the microstructure (not shown in the drawing).
  • the carrier 40 becomes an opto-fluidic micro-processor. This can either be changed after each application or cleaned after each application and only changed for service purposes when worn.
  • the incoming light can be used, for example, for absorption measurements, the activation of photo reactions or the excitation of fluorescence.
  • the light emerging from the carrier 40 or the opto-fluidic microprocessor can be, for example, the light of the light source matrix 30 that passes through the carrier in transmitted light.
  • these can also be light signals which are generated in the individual reaction areas of the carrier 40 by, for example, fluorescence or luminescence.
  • the detector matrix 50 which consists, for example, of a CCD chip with or without optics, is arranged opposite a light source matrix 30 with a carrier 40 in between such that a triple matrix arrangement of light, carrier and detector matrix is created.
  • the fluid module 60 serves to supply the reaction carrier 40 with, for example, feedstocks, protective gases, chemicals, such as solvents, etc. and sample material.
  • the fluid module 60 consists of tanks 61 which pass through
  • Pumps 62 and valves 63 are emptied in a suitable manner.
  • the tanks can be replaced individually or in a cluster or refilled. Permanently required fluids, such as protective gas, can also be supplied continuously (without tanks in the system) by means of lines.
  • the fluidic waste of the various processes can be collected either in the carrier 40 in integrated tanks or in a waste system 65 or in clusters outside the individual system.
  • system boundary 10 of the device which can be used as a single device or in central or decentralized clusters. These clusters are always linked together in terms of information technology.
  • the systems located in one place can also be supplied with energy, fluids such as feedstocks, reaction chemicals, protective gases and sample material, as well as with the necessary carriers, by manual operation or automated components.
  • the system component 20 in the form of a computer or computer takes over the control of the system. This includes the control of the light source matrix 30 and of the fluid component 60 on the basis of the calculation of the probe or receptor sequences for the individual reaction areas. Furthermore, the data of the detector matrix 50 are recorded and evaluated.
  • FIG. 5 shows the structure from FIG. 4 for fluidic individualization of the reaction areas.
  • a carrier 41 is shown again. This is used individually by the fluidic deprotection module 32 under computer control.
  • the fluids provided by the fluid module 60 are transported into the carrier via the fluidic connection system 64 and are passed on to the reaction areas in a suitable manner in the microstructure (not shown in the drawing).
  • the carrier 41 becomes an opto-fluidic microprocessor. This can either be changed after each application or cleaned after each application and only changed for service purposes when worn.
  • Light can be fed into this carrier, for example, from above and / or from the side for the excitation of fluorescence reactions etc.
  • the light emerging from the carrier or the opto-fluidic microprocessor can be generated, for example, by luminescence at the reaction areas.
  • the fluidic deprotection module 32 can individually bring each reaction area on the carrier 41 into contact with fluids with at least one of the wetting components 33 (e.g. nozzles, capillaries, etc.). This enables, for example, local chemical and biochemical reactions to be activated.
  • the wetting components 33 e.g. nozzles, capillaries, etc.
  • the fluid module 31 serves to supply the fluidic deprotection module 32 with feed materials or chemicals.
  • the fluid module 31 has a structure comparable to that of module 60 and, depending on requirements, consists of tanks, lines, valves, etc.
  • the detector matrix 50 which consists, for example, of a CCD chip with or without optics, is thus opposite a fluidic deprotection module 32 arranged with a carrier 41 in between, which in turn creates a triple matrix arrangement.
  • the fluid module 60 is used to supply the carrier 41 with, for example, starting materials, protective gases, chemicals, such as solvents, etc. and sample material.
  • the fluid module 60 consists of tanks 61, which are emptied in a suitable manner by pumps 62 and valves 63. The tanks can be replaced or refilled individually or in a cluster. Permanently required fluids, such as protective gas, can also be supplied continuously (without tanks in the system) by means of lines.
  • the fluidic waste of the various processes can be collected either in the carrier 41 in integrated tanks or in a waste system 65 or in clusters outside the individual system.
  • the system boundary 10 of the device which has already been explained, and the system component 20 in the form of a computer or computer which controls or regulates the system is shown again.
  • Each device can thus communicate beyond its system boundary 10 with other devices or systems, which in turn consist of a device according to the invention or other computers or databases. This can be done, for example, via lines, bus systems or via the Internet. Communication can take place in a centrally coordinated manner via host computers or as a cluster of equal systems.
  • a data interface 21 to the system environment is also provided.

Abstract

Es wird ein Träger (40) für Analytbestimmungsverfahren angegeben, umfassend eine Vielzahl von Kanälen (1), insbesondere Kapillarkanälen, wobei in den Kanälen (1) eine Vielzahl von unterschiedlichen Rezeptoren insbesondere durch Belichtung immobilisiert ist. Ferner wird ein Verfahren zur Herstellung eines solches Trägers beschrieben. Der Träger (40) umfasst vorzugsweise auch Reservoirs (T, G, A, C) für die einzelnen Einsatzstoffe, ein Gaseinlass (3), ein Ventil (5), eine Probeneingabe (7) und ein Zugang (9) für weitere Synthesechemikalien.

Description

Träger für Analytbestimmungsverfahren und Verfahren zur Herstellung des Trägers
Beschreibung
1 Anwendungsgebiet der Erfindung
1 .1 Hintergrund
Für die Grundlagenforschung in den Biowissenschaften und für die medizinische Diagnostik sowie einige andere Disziplinen ist die präzise Detektion biologisch relevanter Moleküle in definiertem Untersuchungsmaterial von herausragender Bedeutung. Dabei liegt die genetische Information in Form einer enormen Vielfalt von unterschiedlichen Nu- kleinsäuresequenzen vor, der DNA. Die Realisation dieser Information führt über die Herstellung von Abschriften der DNA in RNA meist zur Synthese von Proteinen, die ihrerseits häufig an biochemischen Reaktionen beteiligt sind.
Die Detektion von bestimmten Nukleinsäuren und die Bestimmung der Abfolge der vier Basen in der Kette der Nukleotide, die generell als Sequenzierung bezeichnet wird, liefert wertvolle Daten für Forschung und angewandte Medizin. In der Medizin konnte in stark zunehmendem Masse durch die in vitro-Diagnostik (IVD) ein Instrumentarium zur Bestimmung wichtiger Patientenparameter entwickelt und dem behandelnden Arzt zur Verfügung gestellt werden. Für viele Erkrankungen wäre eine Diagnose zu einem ausreichend frühen Zeitpunkt ohne dieses Instrumentarium nicht möglich. Hier hat sich die genetische Analyse als wichtiges neues Verfahren etabliert, z.B. für Infektionskrankheiten wie HIV und HBV, genetische Prädisposition für bestimmte Krebsarten oder andere Erkrankungen, Forensik und eine Vielzahl weiterer Anwendungsgebiete. In enger Verzahnung von Grundlagenforschung und klinischer Forschung konnten die molekularen Ursachen und (pathologischen) Zusammenhänge einiger Krankheitsbilder bis auf die Ebene der genetischen Information zurückverfolgt und aufgeklärt werden. Diese Entwicklung steht allerdings noch am Anfang, und gerade für die Umsetzung in Therapiestrategien bedarf es stark intensivierter Anstrengungen. Insgesamt haben die Genomwissenschaften und die damit verbundene Nukleinsäureanalytik sowohl zum Verständnis der molekularen Grundlagen des Lebens als auch zur Aufklärung sehr komplexer Krankheitsbilder und pathologischer Vorgänge enorme Beiträge geleistet.
Die weitere Entwicklung in der medizinischen Versorgung wird durch die Explosion der Kosten belastet, die mit entsprechend aufwendigen Verfahren verbunden sind. Hier muß nicht nur auf die Realisation der Möglichkeiten an diagnostischem und therapeutischem Nutzen gedrängt, sondern auch eine Integration in ein tragfähiges, finanzierbares Gesundheitssystem vorangetrieben werden.
Eine Anwendung entsprechender Technologien in der Forschung kann ebenfalls nur dann in breitem Umfang und auch im akademischen Bereich erfolgen, wenn die damit verbundenen Kosten reduziert werden.
1 .2 Bedarf
Die Entwicklung der Genom- und Proteomwissenschaften und die Entschlüsselung des Erbgutes stehen noch am Anfang der Entwicklung, ebenso die Realisation des diagnostischen Potentials einer genetischen bzw. gentechnischen Analyse. Die bisher etablierten Verfahren sind meist arbeitsaufwendig und relativ ineffizient, was sich in Kosten und Kapazität z.B. an Informationsgewinn niederschlägt. Wichtigste Neuerung ist die Entwicklung von sog. Oligonukieotid-Arrays, bei denen eine sehr große Anzahl von relativ kurzen Oligonukleotiden definierter Sequenz auf einer festen Matrix (meist Silizium) angekoppelt sind und dadurch für eine parallele Hybridisierung komplementärer Sequenzen im Untersuchungsgut zur Verfügung stehen. Die aufwendige Herstellung und der hohe Preis lassen die Vermarktung als Massenprodukt zum gegenwärtigen Zeitpunkt aber nicht zu.
1.3 Anwendungsfelder
Für die in vitro Diagnostik und klinische Diagnostik soll durch deutlich preiswertere Systeme die Anwendung in der Routine möglich werden, z.B. für Infektionskrankheiten (HIV, HBV etc.) und deren Subtypen, für die Onkologie (Tumorfrüherkennung, Tumorklassifizierung, z.B. Typ und Status), und für die Bestimmung einer genetischen Prädisposition.
Für die biologische Grundlagenforschung, insbesondere die Genomik, ist die Erfassung von sehr vielen Meßpunkten im untersuchten System, z.B. alle exprimierten Gene wünschenswert. Daraus ergibt sich ein enormer Erkenntnisgewinn in der biologischen Grundlagenforschung (Entwicklungsbiologie, Stammzellkultur, Tissue-engineering, Transplantationsmedizin, Regeneration) ableiten, der auch zu wichtigen Durchbrüchen in der Biomedizin und zu entsprechenden Anwendungen führen wird.
Wie für die Verwendung von DNA-Chips gezeigt wurde (Science 280: 1 077- 1 082) , kann durch entsprechende biochemische Rahmenbedingungen in der Hybridisierung zwischen Punktmutationen in der Basenabfolge unterschieden werden. Mit dem hier beschriebenen System ist damit ein breit angelegtes Screening möglich, das für forensische Zwecke, z.B. zur Überführung von Straftätern oder zum Verwandtschaftsnachweis eingesetzt werden kann.
Durch diese Erfindung wird auch das rasche, kosteneffektive Analysieren von Lebensmitteln z.B. auf das Vorhandensein bestimmter Gene von pathogenen Keimen oder von genetisch veränderten Organismen hin möglich. Ebenfalls von großer Bedeutung ist das Screening von medizinischen Produkten. Die Herstellung z.B. von Blutpräparaten ist immer noch mit einem hohen Aufwand für die Sicherheitsvorkehrungen zur Reinheit verbunden. Ein zeit- und kosteneffektives Screening solcher Proben wird mit dieser Erfindung möglich werden, um z.B eine Kontamination mit infektiösem Material zu verhindern (HIV, HBV, HCV etc).
2. Stand der Technik
Bei BioChips handelt es sich um miniaturisierte hybride Funktionselemente mit biologischen und technischen Komponenten, z.B. an der Oberfläche eines Trägers immobilisierte Biomaterialien, die als spezifische Interaktionspartner dienen können (z.B. DNA-Oligonukleotide) und eine SiliziumMatrix. Meist sind diese Funktionselemente in Reihen und Spalten angeordnet, man spricht dann von BioChip-Arrays. Da Tausende von biochemischen Funkionselementen auf dem BioChip angeordnet sein können, müssen diese mit mikrotechnischen Methoden hergestellt werden.
Vor allem in den USA wird die Entwicklung von miniaturisierten BioChips mit enormen Mitteln vorangetrieben. Die wichtigsten in diesem Umfeld tätigen Firmen sind im folgenden aufgelistet:
Affymetrix, Beckman Instruments, Blue Chip Biosystems, Caliper Technologies, Cura-Gen, Genometrix, Gene Trace Systems, Hyseq, Incyte Pharmaceuticals, MolecularTool, Nanogen, Pharmacia, Synteni, Third Wave Technologies, Vysis.
Bisher bekannte BioChips lassen sich nach folgenden Kriterien klassifizieren: * Nachweisprinzip: - Chromatographische Verfahren Interaktion von Analyten mit fester Phase, meist immobilisierter Interaktionspartner (z.B. Hybridisierung von Nukleinsäuren an DNA-Oligonukleotide).
* Detektionsverfahren (optisch, elektrisch). * Markerbasierte Nachweisverfahren (z.B. Absorption, Fluoreszenz oder
Lumineszenz) oder markerfreie Nachweisverfahren (Lichterzeugung zum Reaktionsnachweis).
* Zuordnung des Analyten zu seinem Träger [Festphase]
(Array mit mehr als einem immobilisierten Interaktionspartner pro Träger oder Single mit nur einem immobilisierten Interaktionspartner pro Träger).
* Herstellungsverfahren (z.B. Oligonukleotide direkt auf dem BioChip lichtaktiviert synthetisieren, fertig synthetisierte Oligonukleotide spotten, Beads oder Tubes beschichten). * Trägerarten (Glas-Chips, Kunststoff-Chips, Mikrotiterplatten, Tubes oder Beads).
* Präsentation zur Detektion (seriell, parallel).
* Optische Detektion (seriell im Scanner oder parrallel mit einer CCD- Kamera).
Unter den aufgeführten Firmen verwendet lediglich Affymetrix das Prinzip der Photolithographie für eine "high density" Erzeugung von DNA-Arrays auf einer planaren Oberfläche, wodurch sie die Parallelisierung der Detektion von Oligo-Sequenzen mit Abstand weitesten voran getrieben haben.
GenChip von Affymetrix Inc., Santa Clara, Kalifornien:
Die Herstellung erfolgt durch in situ Synthese von DNA-Oligonukleotiden auf planaren Chips in hoher Dichte (Juli 98: bis 64.000 unterschiedliche Oligos auf 1 cm2). Das Herstellungsverfahren basiert auf der in der Halbleiter-Industrie verwendeten und optimierten Photolithographie, wobei eine lichtaktivierbare Bindung von Oligos an die Chipoberfläche, sowie an bereits vorhandene Oligos, verwendet wird. Die Herstellungsdauer beträgt aufgrund einer Vielzahl von Verfahrensschritten mehrere Stunden. Der Nachweis erfolgt durch serielle optische Detektion des planaren Chips in einem Fluoreszenzscanner. Die Hybridisierungsdauer der Probe auf einem Chip beträgt ca. 1 .5 Stunden. Erste Produkte (Sequenzierchip für Tumormarker p53 Exons 2-1 1 , Brustkrebsgen BRCA1 Exon 1 1 , HIV GeneChip) sind bereits kommerziell erhältlich. Die Kosten liegen zur Zeit im Bereich mehrerer hundert Dollar für einen GenChip, zusätzlich wird noch eine Detektionseinheit benötigt.
Weiterer relevanter Stand der Technik sind WO91 /18276, EP-A-0 671 626 und EP-A-0 430 248.
3. Gegenstand der Erfindung und damit gelöste Aufgabe
Gegenstand der Erfindung ist ein Verfahren nach Anspruch 1 zur Herstellung eines Trägers für die Bestimmung von Analyten umfassend die Schritte
(a) Bereitstellen eines Trägerkörpers umfassend mindestens einen Kanal,
(b) Leiten von Flüssigkeit mit Bausteinen für die Synthese polymerer Rezeptoren durch den Kanal oder die Kanäle des Trägerkörpers,
(c) orts- oder/und zeitspezifisches Immobilisieren der Rezeptorbausteine an jeweils vorbestimmten Positionen bzw. Bereichen in dem Kanal oder in den Kanälen und
(d) Wiederholen der Schritte (b) und (c) bis die gewünschten Rezeptoren an den jeweils vorbestimmten Positionen bzw. Bereichen synthetisiert worden sind.
Bevorzugte Ausgestaltungen dieses Verfahrens sind Gegenstand der Ansprüche 2 bis 13. Der Träger ist ein mit biologischen oder chemisch funktioneilen Materialien bzw. Rezeptoren (Sonden) oder Bausteinen davon bestückbare oder bestückte Festphase. In dieser Ausführungsform der Erfindung weist der Träger eine mit Vertiefungen, z.B. mindestens einem Kanal und besonders bevorzugt mit einer Vielzahl von Kanälen versehene Oberfläche auf. Die Kanäle sind vorzugsweise Mikrokanäle mit einem Querschnitt von z.B. 10 bis 1000 /m. Die Kanäle können - abhängig von den Oberflächeneigenschaften - Kapillarkanäle, aber auch Kanäle ohne Kapillarwirkung (z.B. aufgrund von Beschichtung mit Teflon) sein. Der Träger ist bevorzugt zumindest teilweise im Bereich der mit Rezeptoren zu bestückenden Positionen bzw. Bereiche optisch transparent. Die mit Rezeptoren zu bestückenden Bereiche des Trägers sind vorzugsweise chemisch und physikalisch miteinander identisch, d.h. sie weisen eine im wesentlichen gleiche Oberflächenbeschaffenheit auf.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren nach Anspruch 14 zur integrierten Synthese und Analytbestimmung an einem Träger umfassend die Schritte (a) Bereitstellen eines Trägerkörpers,
(b) Leiten einer Flüssigkeit mit darin enthaltenen Rezeptoren oder Bausteinen für die Synthese von polymeren Rezeptoren über den Träger,
(c) orts- oder/und zeitspezifisches Immobilisieren der Rezeptoren oder Rezeptorbausteine an jeweils vorbestimmten Positionen bzw.
Bereichen auf dem Träger,
(d) gegebenenfalls Wiederholen der Schritte (b) und (c) bis die gewünschten Rezeptoren an den jeweils vorbestimmten Positionen bzw. Bereichen auf dem Träger synthetisiert worden sind, (e) Inkontaktbringen des Trägers mit einer die zu bestimmenden Analyten enthaltenden Probe und (f) Bestimmen der Analyten über deren Bindung an die auf dem Träger immobilisierten Rezeptoren.
Bevorzugte Ausgestaltungen dieses Verfahrens sind Gegenstand der Ansprüche 1 5 bis 25. In dieser Ausführungsform können auch planare Träger verwendet werden. Gegenstand von Anspruch 26 ist ein Träger für die Bestimmung von Analyten umfassend mindestens einen Kanal und vorzugsweise eine Vielzahl von Kanälen insbesondere Kapillarkanälen, wobei in den Kanälen eine Vielzahl von unterschiedlichen Rezeptoren immobilisiert ist. Vorzugsweise ist der Träger zumindest im Bereich der mit Rezeptoren zu bestückenden Bereiche optisch transparent.
Gegenstand der Erfindung ist weiterhin ein Reagenzienkit nach Anspruch 28 umfassend einen Träger wie zuvor beschrieben und Bausteine für die Synthese von polymeren Rezeptoren auf dem Träger. Weiterhin kann der Reagenzienkit noch Reaktionsflüssigkeiten zur Synthese der Rezeptoren auf dem Träger enthalten.
Gegenstand der Erfindung ist auch eine Vorrichtung zur integrierten Synthese und Analytbestimmung an einem Träger nach Anspruch 29 umfassend eine programmierbare Lichtquellenmatrix, eine Detektormatrix, einen zwischen Lichtquellen -und Detektormatrix angeordneten Träger sowie Mittel zur Zufuhr von Fluids in den Träger und zur Ableitung von Fluids aus demTräger. Die programmierbare Lichtquellen- bzw. Belichtungsmatrix kann eine Reflexionsmatrix, eine Lichtventilmatrix, z.B. eine LCD-Matrix oder eine selbstemittierende Belichtungsmatrix sein. Bevorzugte Ausgestaltungen dieser Vorrichtungen ist Gegenstand der Ansprüche 30 und 31 .
Schließlich noch ein Gegenstand der Erfindung ist die Verwendung des beanspruchten Verfahrens, Trägers, Reagenzienkits sowie der beanspruchten Vorrichtung zur Bestimmung eines Analyten in einer Probe. Bevorzugte Anwendungen sind Gegenstand der Ansprüche 33 bis 38.
Eine Ausführungsform der vorliegenden Erfindung stellt ein Verfahren und System zur zyklischen integrierten Synthese und Analyse dar, welches als
ISA-System bezeichnet sein soll. Durch diese erfindungsgemäß bevorzugte unmittelbare Kopplung von Synthese und Analyse wird in einem zyklisch verlaufenden Verfahren eine gegenüber dem Stand der Technik deutlich verbesserte Hochdurchsatz-Bestimmung von Analyten ermöglicht. Dabei können die zu analysierenden Substanzen beispielsweise als Bruchstücke oder Fragmente einer größeren Molekülkette vorliegen.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird eine direkte logische Verknüpfung zwischen den Ergebnissen der Analyse eines ersten Trägers und der Synthese des darauffolgend zu erstellenden Trägers bereitgestellt, wobei sich der Informationsgewinn aus einem vorhergehenden Zyklus in einen nachfolgenden Zyklus übertragen läßt. Auf diese Weise wird ein Lernen des Analysesystems schrittweise entwickelt.
Die besagte zyklisch verlaufende Abfolge von Synthese, Sequenzvergleich, Analyse der Vergleichsergebnisse und wiederum erfolgender Synthese von Rezeptoren am Träger kann beliebig oft - bis zum Erreichen eines gewünschten, beliebig zu wählenden Abbruchkriteriums - wiederholt werden.
Durch die Rückkopplung und den damit verbundenen Lernprozeß von vorhergehendem Zyklus sind das erfindungsgemäße Verfahren und die Vorrichtung auch für die Erforschung sehr großer und komplexer Analyt- Molekülketten, z.B. zum Sequenzieren individueller Genome, wie dem menschlichen Genom, geeignet. Der Zeitaufwand verbessert sich dabei gegenüber dem Stand der Technik mindestens um das hundertfache, eher um das tausendfache und potentiell um das 10.000-fache.
Das Verfahren kann zur "Neusequenzierung" nicht bekannter Nukleinsäuresequenzen (DNA, cDNA, RNA) einschließlich deren räumlichen Zuordnung, respektive Kartierung eingesetzt werden. Mit diesem Vorgehen ist es möglich, ein individuelles Genprofil jedes Individuums und jeder Spezies zu erstellen, sei es durch Sequenzierung von Teilen des Genoms oder des ganzen Genoms. Weiterhin kann das Verfahren zur "Resequenzierung" von Nukleinsäuresequenzen eingesetzt werden, d.h. zum Vergleich von bereits bekannten Sequenzen (repräsentiert in Form der Rezeptorsonden) mit unbekannten Sequenzen in der zu untersuchenden Probe. Die bekannten Sequenzen werden dazu gezielt und der Fragestellung entsprechend ausgewählt.
Die beschriebene Resequenzierung erlaubt es dem Anwender, individuelle polymere Rezeptoren vor Ort auf dem erfindungsgemäßen Träger ausgehend von einem neutralen Träger zu erzeugen und anschließend sofort eine Analyse der zu untersuchenden Probe durchzuführen. Durch diese Möglichkeit entsteht eine maximale Variantenvielfalt der Rezeptoren bei minimalem Platzbedarf.
Durch Kombination von Neu- und Resequenzierung, können diagnostische Tests oder Medikamente kurzfristig an die Bedürfnisse eines Individuums angepaßt werden.
Als weiteres wichtiges Anwendungsgebiet können außerordentlich flexibel Expressionsmusteranalysiert werden. Die entsprechenden Rezeptoren bzw. Polymersonden werden dazu in aller Regel anhand bekannter Sequenzen ausgewählt. Der Einsatz des Verfahrens zur Bestimmung der Genexpression kann auch im Kontext von Hochdurchsatz-Screening erfolgen.
Darüber hinaus sind mit unterschiedlichen natürlich vorkommenden und künstlichen Rezeptorsonden unterschiedliche Ansätze für Screening- Verfahren und den Aufbau und die Analyse von Substanzbibliotheken denkbar. Dies kann z.B. im Zusammenhang mit der Suche nach und der Charakterisierung von pharmakologisch aktiven Substanzen erfolgen.
Die Anwendungsfelder für das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung zur zyklisch integrierten Synthese und Bestimmung von Analyten sind breitgefächert und erstrecken sich prinzipiell auf alle Anwendungen der Analyse wie Gas-Chromatographie, Dünnschicht- Chromatographie, Gel-Elektrophorese, Kapillar-Elektrophorese, Massenspektrometrie etc. Gleiches gilt prinzipiell für alle Anwendungen hochparalleler Festphasen-Analyse.
Die Notwendigkeit, fertige und komplexe polymere Rezeptoren zu lagern, entfällt vollständig. Darüber hinaus gibt es keine physikalische Beschränkung bezüglich der Anzahl und Auswahl der Rezeptoren. Die benötigte Anzahl der Rezeptoren kann über mehrere Reaktionsträger bzw. mehrere Zyklen in einem Reaktionsträger verteilt werden, da die einzelnen Rezeptoren für die logische Auswertung der Vergleichsergebnisse keinen Ortsvorgaben unterliegen.
Gegenstand der vorliegenden Erfindung ist ein neuer "Träger" als Basis für die Verwendung einer vorzugsweise lichtgesteuerten Synthese einzelner Basen (G, A, C und T) oder ganzer Oligonukleotide (Basen- Sequenzen) zur Bildung einer hochparallelen, -planaren und -dichten Anordnung (Array) dieser Oligonukleotide in einer festen Trägermatrix (Chip).
Der neue BioChip, der "opto-fluidische Mikroprozessor", enthält eine Struktur aus Mikrokanälen, vorzugsweise Kapillaren in einem zumindest teilweise durchsichtigen und vorzugsweise flachen Körper. Die flüssigen Einsatzstoffe werden bei der Rezeptorsynthese oder -immobilisierung durch die Kanäle im Träger geführt und binden, lokal aktiviert, an den Kanalwänden. Damit werden die technischen Vorraussetzungen für eine schnelle, effiziente und damit kostengünstige Herstellung geschaffen, was den breiten Einsatz dieser Träger ermöglichen wird. Dichte und Parallelität liegen in der gleichen Größenordnung wie bei Konkurrenztechniken, mit mehreren hunderttausend definierten Oligonukleotiden auf einem Träger. Der Vorteil der neuen Technik liegt in den günstigeren physiko-chemischen Eigenschaften der Strömungs- und Benetzungsvorgänge in den Kanälen im Vergleich mit einer einheitlichen Oberfläche.
Die Chip-Produktion besteht aus der Erzeugung eines vorzugsweise mit Mikrokanälen versehenen Trägerkörpers aus einem geeigneten, lichtdurchlässigen Materia l sowie dem biochemischen Beschichtungsvorgang vorzugsweise an den Wänden der einzelnen Mikrokanäle, so daß anschließend die polymeren Rezeptoren, z.B. Oligonukleotide, in den Kanälen synthetisiert werden können. Hierbei werden in den einzelnen Kanälen im Träger, mittels Photoaktivierung durch eine geeignete Lichtquelle einzelne Rezeptorbausteine, oligomere Synthone (z.B. Di-, Tri-, Tetra- oder Pentanukleotide) oder ganze Basen-Sequenzen (Oligos) ortsspezifisch angelagert. Dadurch entstehen in jedem Kanal eine Vielzahl an Rezeptor-bestückten Bereichen (spezifische Bindungs- bzw. Hybridisierungsstellen), wobei jeder Bereich aufgrund seiner individuellen Rezeptor-Sequenz-Kombination für die Bindung und anschließende Detektion eines spezifischen Analyten, z.B. eines DNA-Fragments dient. Die Bereiche sind in einer Dimension des planaren Trägers durch die Wände der Kanäle voneinander getrennt und entlang der einzelnen Kanäle wird zwischen zwei benachbarten Bereichen bei der photoaktivierten Bindung ein entsprechender Freiraum gelassen. Es entsteht ein hoch paralleler, hoch integrierter Array von spezifischen Rezeptoren. Aufgrund der Möglichkeit des Multiplexens von Oligo-Sequenzen und parallelen Kanälen (Details siehe Kapitel 5) ist eine Reduktion der Herstellzeiten auf 1/4 bei der Verwendung einfacher Basen, 1 /8 bei Dinukleotiden und auf 1/16 bei Trinukleotiden durch entsprechendes Multiplexing der Oligos (Einsatzstoffe) und der zu benetzenden Kanälen möglich. Damit wird auch eine flexible Anpassung an Kundenwünsche, der "massgeschneiderte" BioChip, möglich. Diese systematische Beschleunigung ist in planaren Systemen (planaren Chips) nicht möglich.
Für die Analyse wird das Untersuchungsmaterial (z.B. DNA, RNA in Lösung) durch die Kanäle geführt und erhält Gelegenheit zur Bindung an die Rezeptoren, z.B. durch Hybridisierung an komplementäre Stränge, sofern diese vorhanden sind. Zur Detektion und Auswertung der jeweiligen Analytbindung, z.B. einer DNA-Hybridisierung, werden vorzugsweise hochauflösende, parallele CCD- Chips verwendet. Die Bindung des Analyten an den immobilisierten Rezeptor wird durch geeignete aus dem Stand der Technik bekannte signalgebende Gruppen, z.B. Licht-emittierende Gruppen. Es sind aber auch neue Detektionsverfahren anwendbar. Bei der Detektion kann auf optisch abbildende Linsensysteme verzichtet werden, wenn die Größe der Kanäle so gewählt wird, daß jeder Meßpunkt eine ausreichende Anzahl Pixelelemente des Detektors, z.B. eines CCD-Chips überdeckt. Durch diese direkte Nutzung (keine Optik) hoch paralleler CCD-Matrix Chips mit einer großen Anzahl (derzeit 16 Mio. Pixel pro 1 cm2; Stand der Forschung: 80 Mio. Pixel pro 1 cm2) an Pixeln (optischen Sensoren) ist es möglich eine Vielzahl von Lichtsignalen parallel zu detektieren (siehe BioScanner der Firma Genometrix). Damit wird versucht, auch bei der Detektionseinheit statt teurer optischer Anordnungen auf ein in großer Stückzahl und zu niedrigen Preis gefertigtes High-Tech Produkt zurückzugreifen.
Durch die Erfindung werden somit wesentliche Anforderungen in der DNA-Analytik abgedeckt, nämlich simultane Bestimmung einer Vielzahl an
DNA-Sequenzen (erreicht durch hoch integrierte, miniaturisierte Träger und eine hochauflösende optische Detektion), Bereitstellung kostengünstiger
Tests (Multiplexing in der Produktion, billige "Disposable"- Träger zum
Beispiel aus Spritzguß, schnelle Synthese bei der Produktion), eine schnelle Durchführung bei der Analyse aufgrund kleinerer Volumina und günstiger
Benetzungsvorgänge, Reduktion der Einsatzstoffe durch die
Strömungsgeometrie des Träger etc.), schnelle Auswertung (erreicht durch die parallele optische Auswertung in planarer Anordnung [DNA-Chip Array]), ein kostengünstiges Analysesystem (erreicht durch den Verzicht auf teure, mikrosystemtechnische und optische Komponenten) und die Sicherstellung der Qualität sowohl bei der Produktion, als auch bei der Analyse (erreicht durch definierte Strömungsvorgänge im Träger). Die Verwendung der Photoaktivierung von chemischen Reaktionen im Bereich der Träger-Synthese kommt insbesondere in Kombination mit der Technologieplattform des opto-fluidischen Mikroprozessors zusammen mit einer programmierbaren Lichtquellenmatrix zum Durchbruch, da hierdurch die Produktionskosten für einen einzelnen Träger, bei gleichzeitiger Qualitätsverbesserung, um den Faktor 10-100 reduziert werden können. Dadurch wird zum ersten mal eine kostengünstige, massiv parallele, hoch integrierte und gleichzeitig einfach miniaturisier- und automatisierbare DNA-Chip-Technologie zur Verfügung gestellt.
Trotz der komplexen Datenauswertung bedarf es nur eines Minimums an unterschiedlichen Hardware-Komponenten, da die Trägerkörper, die entweder pro Zyklus oder auch nur bei Verschleiß gewechselt werden müssen, zunächst - vor Beginn der Rezeptorsynthese - alle identisch sind. Alle Individualität ergibt sich erst aus der spezifischen Rezeptorsynthese und aus der schrittweise durch die Analyse gewonnene Information, die nach dem Synthese/Analysezyklus wieder in Information überführt wird, so daß die Individualität, d.h. die kennzeichnenden Merkmale der biologischen/chemischen Materie wiederum nur in Form elektronischer Daten vorliegen.
4. Grundzüge des Lösungsweges
Der prinzipielle Lösungsweg in diesem System basiert auf der schrittweisen biochemischen Synthese von Rezeptoren an die Oberflächen einer Vielzahl von Kanalwänden auf einen Träger. Diese Kanäle sind auf dem Träger, z.B. einem kleinen planaren Chip, angeordnet. Die Synthese erfolgt mit den entsprechenden Basen oder mehrbasigen Oligonukleotiden (Basen- Sequenzen) über eine lichtaktivierte ortsspezifische Bindung. Die Benetzung dieser spezifisch "gelabelten" Kanäle mit den zu untersuchenden DNA-Analyten und der anschließenden Detektion der Bindungsreaktion über geeignete signalgebende Gruppen schließt einen Verfahrenszyklus ab. 4.1 MikroStruktur als Trägermatrix
Die Träger-Synthese umfaßt die Bereitstellung des Trägerkörpers, der vorzugsweise aus einem geeigneten, lichtdurchlässigen Material besteht, sowie dem biochemischen Erzeugen von Rezeptoren an den Wänden der einzelnen Kanäle. Die spezifische Synthese der Rezeptoren kann entweder direkt bei der Herstellung des Trägerkörpers oder erst beim Anwender erfolgen.
Für die Trägerkörper können unterschiedliche Materialien (z.B. Glas, Silizium, Keramik, Metall oder Kunststoff) verwendet werden. Wichtig ist, daß die Wände der Kanäle sowohl für die Anregungswellen bei der lichtaktivierten Synthese sowie die Lichtwellen (ggf. Anregung und Reaktionssignal) bei der anschließenden Detektion (Analyse) gut durchlässig sind. Je nachdem welches Material eingesetzt wird, müssen die Wände der Kanäle mit einem reaktionsfähigen Material beschichtet werden, damit die Rezeptoren oder Rezeptorbausteine an der Oberfläche binden können.
Die Geometrie der Träger entspricht beispielsweise einer "Scheckkarte", wobei die Größe der von den Kanäle bedeckten Fläche von dem zur Detektion verwendeten CCD-Chip bestimmt wird. Für die Kanäle im Träger sind unterschiedliche Herstellverfahren einsetzbar. Hierbei ist der Einfluß der Querschnittsgeometrie der Kanäle zu berücksichtigen, welcher großen Einfluß auf die entstehenden strömungstechnischen Kräfte und die Möglichkeit der Reinigung der Kanäle hat. Als Herstellverfahren kann man zum Beispiel Laser, Fräsen, Ätztechniken oder Spritzguß verwenden.
Bei der Anordnung der Kanäle in der Ebene sind die folgenden Aspekte zu berücksichtigen: Verwendet man eine Vielzahl an parallelen Kanälen, so kann man die Zeiten bei der Synthese minimieren, allerdings ist die Benetzung bzw. Befüllung des einzelnen Kanals entsprechend komplex. Hat man im anderen Extrem nur einen einzigen langen Kanal, so ist die Synthese entsprechend langsam, da das Multiplexing von Kanälen zu Basen oder ganzen Oligos nicht verwendet werden kann und alle Vorgänge nur seriell nacheinander ablaufen können. Der Vorteil nur eines Kanals liegt in der Analyse, wo die Probe an jedem Meßpunkt in allen Kanälen vorbeiströmt.
4.2 Synthesezyklus im Träger
In einem Trägerkörper werden die zur Beschichtung mit Rezeptoren vorgesehenen Positionen (Reaktionsbereiche) durch Kanäle aus Behältern über Zuleitungen, Ventile und Fittings mit einem oder mehreren Fluiden befüllt. Mit Hilfe einer aus der deutschen Patentanmeldung 198 39 254.0 bekannten Lichtemissions/Detektionseinrichtung, die vorzugweise eine programmierbare Lichtquellen- bzw. Belichtungsmatrix darstellt, wie sie in der deutschen Patentanmeldung 199 07 080.6 beschrieben ist, können ausgewählte Positionen bzw. Bereiche des Trägers belichtet und auf diese Weise die individuelle Synthese von Rezeptoren gesteuert werden, wobei der Träger in diesem Zusammenhang einen opto-fluidischen Mikroprozessor darstellt. Anstelle einer Belichtung ist auch eine individuelle fluidische Aktivierung der ausgewählten Reaktionsbereiche möglich. Nach Abschluß der Reaktion werden die Reaktionsbereiche gespült und neu gefüllt, wonach sich wiederum ein Aktivierungszyklus anschließt. Der Verlauf der Rezeptorsynthese kann mittels geeigneter Detektionseinrichtungen verfolgt und gesteuert werden.
Sobald die Synthese der Rezeptoren abgeschlossen ist, werden die Rea ktionsbereiche gereinigt und stehen dann für ein Analytbestimmungsverfahren zur Verfügung. 4.3 Nukleinsäureanalytik mittels Oligo-chips - Grundprinzip
Wie bereits für mehrere Anordnungen gezeigt (z.B. Molekular Medicin Today, 9/97, S. 384-389; Trends in Biotechnology, 1 1 /97, S. 465-468) kann die Hybridisierung von Nukleinsäuresträngen an eine meist kurze komplementäre Sequenz, ein sog. Oligonukleotid oder Oligo, für die Sequenz-Analyse verwendet werden. Dazu werden hochdichte Anordnungen synthetischer Oligonukleotide auf einer festen Matrix erzeugt und erlauben multiple parallele Hybridisierungsexperimente. Führendes Verfahren (August 98) ist eine photolithographische und damit lokale Aktivierung von Synthese-Vorstufen. In Anlehnung an die aus der Mikroelektronikherstellung entlehnte Technik werden die parallelen Anordnungen als Chips bezeichnet.
Durch eine massive Erhöhung der Zahl an Reaktionsbereichen ('Meßpunkten'), d.h. definierten Oligos an definiertem Ort, wird eine enorme analytische Kapazität geschaffen.
Die zu untersuchende Probe enthält normalerweise DNA oder RNA. Diese muß eventuell isoliert und in einem Amplifizierungsschritt (z.B. PCR) vermehrt werden und erhält dabei eine Markierung, z.B. ein Farbstoff-, Fluoreszenz- oder Lumineszenzlabel.
Durch ausreichend viele Rezeptor-bestückte Bereiche (Reaktionsbereiche) ist auch eine Sequenzierung eines DNA Moleküls möglich (Sequencing-by-Hybridization SBH, siehe BioTec 3/98, S. 52-58), andere Anwendungen zeigen die Bestimmung von Punkmutations-Polymorphismen (d.h. Unterschiede zwischen Individuen in einzelnen Basen in einem definierten DNA Abschnitt) und erlauben u.a. eine Identifizierung von solchen Polymorphismen bei hunderten von Probanden parallel (Science 280, 5/98, S. 1077-1082). Erstmals wird auch die Untersuchung von ganzen Genomen und des Gen-Expressions-Statusganzer Zellen möglich (z.B. Proc.Nat.Acad. Sei. USA 95, 3/98, S. 3752-3757).
Die hier beschriebene Erfindung läßt demnach die Anwendung einer Vielzahl von etablierten Verfahren zur Untersuchung von Nukleinsäuren und genetischem Material zu. Damit ist gleichzeitig ein starker Anstieg solcher Anwendungen und damit ein enormer wissenschaftlicher Fortschritt verbunden, da erwartet wird, daß der opto-fluidische Mikroprozessor eine solche Technologie flexibler als die vorhandenen Verfahren und zu deutlich niedrigeren Kosten bereitstellt.
4.4 Lichtaktivierte Synthese von Oligonukleotiden und Peptiden auf dem Träger
Beim Aufbau von Rezeptoren auf dem Träger werden in den einzelnen Bereichen mittels Photoaktivierung durch eine geeignete Lichtquelle Rezeptorbausteine, z.B. einzelne Basen (G, A, C, T) oder Oligonukleotid- Sequenzen (vorzugsweise etwa 2 bis 4 Basen lang) ortsspezifisch angelagert. Die Kanäle werden sequentiell mit den Synthesebausteinen, z.B. G, A, C und T, gefüllt und entlang der Kanäle ortsspezifisch mit hochauflösendem Licht bestimmter Wellenlänge und Intensität bestrahlt. Zwischen den Beschichtungszyklen werden die Kanäle entsprechend gespült, um nicht gebundene Rezeptorbausteine zu beseitigen.
Hierdurch entstehen in jedem Kanal eine Vielzahl an Reaktionsbereichen (spezifische Bindungs- bzw. Hybridisierungsstellen), wobei jeder Reaktionsbereich aufgrund seiner individuellen Rezeptor-Sequenz für die Bindung und anschließende Detektion eines spezifischen Analyten, z.B. eines DNA-Fragments dient. Die Reaktionsbereiche sind in der einen Dimension des planaren Trägers durch die Wände der Kanäle voneinander getrennt und in der zweiten Dimension, entlang der einzelnen Kanäle, wird zwischen zwei benachbarten Reaktionsbereichen bei der Photoaktivierung ein entsprechender Freiraum gelassen.
Die Photolithographie kann auch weiterhin für die lichtaktivierte Bindung der Rezeptorbausteine verwendet werden. Es können aber auch andere Verfahren eingesetzt werden.
Besonders bevorzugt wird ein Belichtungsverfahren unter Verwendung einer programmierbaren Lichtquellenmatrix, z.B. einer selbstleuchtenden Lichtquellenmatrix, einer Lichtventilmatrix oder einer Reflexionsmatrix durchgeführt, deren Matrixpunkte bzw. Lichtquellenelemente gezielt steuerbar sind, insbesondere hinsichtlich der Intensität und gegebenenfalls Farbe des Lichtes. Mit einer solchen Matrix können also jeweils benötigte zweidimensionale Belichtungsmuster auf einfache Weise, insbesondere rechnergestützt erzeugt werden. Die bevorzugte Photoaktivierung der Oligos bei der Herstellung des Trägers erfolgt direkt durch die Belichtungsmatrix. Die hierfür benötigte Wellenlänge von beispielsweise 365 nm (oberer UV- Bereich nahe dem sichtbaren Licht) läßt sich mit allen Varianten der programmierbaren Lichtquellenmatrix steuern.
Auf entsprechende Weise können auch Rezeptoren aus Aminosäureoder/und Peptidbausteinen aufgebaut werden.
4.5 CCD-Chip-Detektion der spezifischen Nachweisreaktion
Wie beschrieben soll die Bindung eines DNA-Analyten direkt oder indirekt zu einem nachweisbaren Signal, z.B. zu einem Lichtsignal führen. Dies kann beispielsweise durch Absorbtion, ein Anregungslicht (Fluoreszenz) oder durch Photonenemission (Lumineszenz) erfolgen. Zur Signaldetektion wird vorzugsweise ein CCD-Chip verwendet, der vorzugsweise direkt unter dem Träger plaziert wird. Die Anregungslichtquelle wird vorzugsweise über dem Träger plaziert und es wird entsprechend im Durchlichtverfahren gemessen. Jedes Lichtsignal kann auf dem CCD-Chip erfaßt werden, und zwar nach Intensität und bei Bedarf auch nach Wellenlänge (Farbe) differenziert. Das aufgenommene Spektrum kann qualitativ oder quantitativ ausgewertet werden. Zudem läßt die Unterscheidung von Wellenlängen und Intensitäten auch eine Unterscheidung von Signalquellen zu.
Die Anregungslichtarten für das Nachweisverfahren müssen je nach Anforderungen monochromatisch (z.B. Laserlicht für Fluoreszenzanregung) oder heterogen (z.B. Weißlicht für Absorptionsmessung) gewählt werden.
5. Verbesserungen und Vorteile gegenüber vorhandenen Systemen
Durch die neuen Träger werden die nachfolgend aufgeführten Nachteile von maskenbasierten Photolithographieverfahren oder dem in situ-Spotten überwunden.
* Das Prinzip der flächigen Benetzung der gesamten Chipoberfläche mit Fluid erlaubt keinerlei Multiplexing in der Produktion. So erhöht sich die Zahl der Hesrstellungszyklen für 20 Basen lange Oligos bei einer Verwendung von Dinukleotiden (42 = 1 6 Möglichkeiten) von 4 x 20
= 80 Hybridisierungsschritten auf 16 x 10 = 160, was eine Verdoppelung bedeutet. Das Gleiche gilt natürlich auch für die zwischengelagerten Waschzyklen.
* Die Synthese der photoaktivierbaren Basen an die planare Chipoberfläche, ebenso wie die benötigten Waschschritte bei der
Chipherstellung sind, außer durch platz- und handhabungsintensive Tauchvorgänge (Chip wird in Flüssigkeit getaucht) oder flüssigkeitsintensive Spülvorgänge entlang der Oberfläche (z.B. ZentrifugationsprinzipausderHalbleitertechni), nichtrealisierbar, was von der Geräteentwicklung her gesehen ein sehr großes
Miniaturisierungs- und Automatisierungshemmnis darstellt. * Bei der anschließenden DNA-Sequenz-Detektion ist eine gleichmäßige
Verteilung der Probe auf der Chipoberfläche aufwendig (keine einfachen und damit zuverlässigen Mischverfahren möglich) und es Bedarf einer entsprechend großen Menge an Proben-Fluid. Die Suche nach einem seltenen Ereignis in der Probe ist nicht möglich, da ein ausreichender Kontakt aller Probenbestandteile mit allen spezifischen Meßpunkten nicht gewährleistet werden kann.
5.1 Reduktion der Produktionszeiten durch Multiplexing beim Synthetisieren
Der wesentliche Fortschritt der neuen Träger liegt in der Möglichkeit der drastischen Reduktion der Herstellzeiten bei der individuellen Synthese der Rezeptor-bestückten Träger durch ein entsprechendes Multiplexen zwischen Rezeptorbausteinen als Einsatzstoffen und den Kanälen.
Für die ortsspezifische Erzeugung einer Vielzahl an unterschiedlichen Rezeptorsequenzen, z.B. Basen-Sequenzen einer bestimmten Länge (z.B. 20 Basen) auf einer planaren Oberfläche mittels örtlich hochauflösender Photoaktivierung benötigt man in jeder Ebene (Rechenbeispiel: 20 Basen in jeder Basen- Sequenz) des DNA-Chip-Arrays 4 (bedingt durch die vier verschiedenen Basen) Synthesezyklen. Für 20 Basen- Ebenen sind es folglich 4 x 20 = 80 Zyklen. Verwendet man auf der gleichen Oberfläche Dinukleotide (2 Basen) so entstehen 2 Ebenen auf einmal, allerdings sind für diese zwei Ebenen 42 = 16 Synthesezyklen notwendig. Für 20 Ebenen werden folglich 10 x 16 = 160 Synthesezyklen anstelle von 80 Zyklen benötigt, was eine Verdoppelung der Produktionszeiten bedeutet. Bei der Verwendung von Trinukleotiden (3 Basen) verstärkt sich dieser Effekte auf mehr als die fünffache Anzahl an Zyklen. Somit ist bei einer einfachen planaren Oberfläche die Verwendung von einzelnen Basen als die schnellste Möglichkeit zur photoaktivierten DNA-Chip Erzeugung gegeben. Es besteht keine Möglichkeit die Anzahl an Synthesezyklen zu reduzieren. Bei der Synthese des opto-fluidischen Trägers besteht im Unterschied hierzu die Möglichkeit, die Einsatzstoffe, sprich die Basen oder die unterschiedlichen Varianten der Di- (42 = 16 Kombinationen) oder Trinukleotide (43 = 64 Kombinationen) auf verschiedene Kanäle zu verteilen. D.h., zumindest in den unteren - "trägernahen" - Ebenen wird je Kanal nur immer eine Base bzw. eine der möglichen Basen-Sequenzen eingebracht. Je nach Festlegung der insgesamt zu erzeugenden Basen- Sequenzen in den Kanälen des Trägers kann es sein, daß in den oberen Ebenen dieses Prinzip teilweise aufgehoben werden muß, sprich für eine Basen-, Di- oder Trinukleotid- Ebene muß mehr als eine Base oder Oligo durch einen der Kanäle fließen. Dadurch erhöht sich auch hier die Anzahl der Synthesezyklen ggf. wieder etwas. Insgesamt bleibt jedoch eine sehr große Reduktion der Herstellzeiten auf theoretisch 1/4 der Zyklen bei einfachen Basen, 1 /8 der Zyklen bei Dinukleotiden und auf 1 /16 der Zyklen bei Verwendung von Trinukleotiden als Einsatzstoffe bei der Rezeptor- Synthese (und so weiter bei längeren Oligos). Die Anzahl der für einen spezifischen Träger benötigten Zyklen ist für jeden Träger individuell und kann nur als statistischer Mittelwert angegeben werden, wenn die Anzahl an Reaktionsbereichen auf bzw. in dem Träger, die Anzahl an parallelen Kanälen und die Länge der auf dem Träger zu synthetisierenden Oligos vorgegeben ist. Die Optimierung der Synthesezeiten eines Trägers soll mittels eines zu entwickelnden Softwaretools (z.B. CAMS Computer Aided Multiplexing Synthesis) erfolgen, welches in die Steuerung des zu entwickelnden Analysesystems bzw. in den angekoppelten Rechner integriert wird.
5.2 Reduktion der Einsatzstoffe und Qualitätssicherung
Die Verwendung von Kanälen reduziert die benötigte Fluidmenge und erhöht gleichzeitig die Qualität sowohl bei der Träger-Synthese, als auch bei der anschließenden Detektion einer Probe, im Vergleich zur Verwendung einer einfachen Fläche sehr stark. So ist das gleichmäßige Benetzen von Kanälen strömungstechnisch sehr einfach, verbraucht wenig Fluid und ist daher sehr leicht miniaturisier- und automatisierbar. Dies gilt insbesondere auch für die benötigten Waschvorgänge der Kanäle mit einer ausreichenden Qualität.
Durch die Wände der Kanäle, welche im Prinzip den Zwischenraum zwischen zwei Reaktionsbereichen im Träger-Array bedecken, wird das benötigte Fluid bereits um 50% reduziert. Dies gilt sowohl für das Beschichten des Trägers in der Produktion, das Synthetisieren der Rezeptoren als auch für den "Probenauftrag" für die Analyse. Eine weitere Reduktion der Fluidmengen erfolgt durch die gute Benetzung der Kanalwände durch ein durchströmendes Fluid und vor allem durch die effektiven Waschvorgänge, welche zum Beispiel durch "reinigende" Gasblasen in den Kanälen stark verbessert werden können. Eine gute, statistisch ausreichende Verteilung der Probe auf einer Fläche ist dagegen nur mit einer sehr großen Probenmenge realisierbar.
Ein weiterer Vorteil der Kanäle liegt in den kürzeren Zykluszeiten, welche durch die kleineren Fluidvolumina und die damit verbundenen schnelleren chemischen Reaktionen und Abläufen entstehen. Dies hat sowohl kürzere Synthese- als auch Hybridisierungszeiten zur Folge.
Zusätzlich wird hierdurch eine deutliche Fehlerreduktion sowohl bei der Produktion wie bei der Detektion erzielt, was die Zahl der auswertbaren Messungen pro Material- und Zeiteinsatz weiter erhöht und die Grundlage für eine Qualitätssicherung bildet, welche auf genau definierbare und reproduzierbare Strömungsvorgänge aufbaut.
Die einfache Miniaturisierung und Automatisierung der Abläufe in den neuen Trägern bilden die Basis für eine einfache Miniaturisierung und Automatisierung des gesamten neuen Analysesystems, welches auf den Trägern aufbaut. 5.3 Dreidimensionale Reaktionsoberflächen
Durch eine geeignete Auslegung der Querschnittsgeometrie der einzelnen Kanäle läßt sich die nutzbare Reaktionsoberfläche vergrößern. Die Größe dieser Fläche ist für die Anlagerung der Oligos bei der Produktion ebenso von Bedeutung wie für die Anlagerung der vorbeiströmenden DNA-Fragmente aus der Probe und der daraus resultierenden Intensität der Lichtsignale bei erfolgter Hybridisierung.
So hat ein rechteckiger Kanal, gleiche Höhe wie Breite vorausgesetzt, bei einer Nutzung der Wände und der Decke die vierfache Reaktionsoberfläche bei einer identischen Grundfläche, sprich dem gleichen Platzbedarf in den zwei Dimensionen eines planaren Trägers. Selbst wenn man die Kanäle, aus strömungstechnischen Anforderungen heraus, innen rund auslegt (zum Beispiel bessere Reinigungsmöglichkeiten durch Gasblasen im Kanal), bleibt noch eine etwa dreifache Reaktionsoberfläche im Vergleich mit einer planaren Oberfläche. Durch die Nutzung dieser dreidimensionalen Strömungsgeometrie kann der Einsatzstoffbedarf (Produktion und Analyse) weiter reduziert werden.
Ein anderer Effekt läßt sich ebenfalls durch die Querschnittsgeometrie der Kanäle beeinflussen: Die Lichtbrechung am Übergang vom Innenraum der Kanäle in das umgebende Material des Trägers. So hat jede Krümmung entweder einen fokussierenden oder streuenden Einfluß auf die Ausbreitungsrichtung des Lichtes. So kann man beim Träger durch eine entsprechende Wahl der Ober- und Unterseite der Strömungskanalgeometrie die Lichtwege optimieren.
5.4 Parallele CCD-Chip Detektion
Das Messen der Lichtsignale aller Reaktionsbereich des Trägers "auf einmal" nutzt das ständig wachsende Potential der hochauflösenden CCD-Kamera Chips. Diese erlauben die Detektion aller Lichtsignale zum Reaktions- bzw. Hybridisierungsnachweis in einem einzigen Meßvorgang. Hierfür stellen aktuelle Farb-CCD-Chips auf einer Fläche von 40 x 40 mm etwa 3000 x 3000 Pixel mit einer Pixelgröße von etwa 10 x 10 μm zur Verfügung. Der Stand der Forschung ist bereits bei entsprechenden CCD-Chips mit ca. 4000 x 6000 Pixeln. Die Signaldetektion erfolgt in Bruchteilen einer Sekunde für alle Pixel synchron. Damit ergibt sich auch für die beschriebene Applikation der CCD-Chip Technologie ein großes Wachstumspotential und die parallele Detektion von 106 individuellen Reaktionsbereiche im Träger ist technisch machbar. Dadurch werden die zeitaufwendigen Scann-Vorgänge herkömmlicher Systeme vermieden und die reine Meßzeit reduziert sich auf ein Minimum, welche im Verhältnis zu anderen Verfahrensschritten völlig bedeutungslos wird.
Das Bearbeiten der anfallenden Datenmengen ist, durch die Entwicklung der Leistungsfähigkeit bei gleichzeitigem Preisverfall von modernen Rechnersystemen, problemlos möglich.
5.5 Direktdetektion ohne Optik
Die direkte Detektion der Lichtsignale, ohne Optik, durch einen CCD-Chip hat den Vorteil einer wesentlich niedrigeren Energiemenge, welche das Licht für eine fehlerfreie Detektion benötigt. Eine solche Anordnung soll - in einem anderen Zusammenhang untersucht - lediglich 1 0% der Anregungslichtmenge einer vergleichbaren Anordnung mit einer Optik verbrauchen. Anders ausgedrückt, die Optik schluckt 90% der Lichtenergie. Durch die geringere Lichtintensität werden unerwünschte Streulichteffekte im - die Kanäle umgebenden - Träger, ebenso wie eine eventuelle notwendige Kühlung der verwendeten Lichtquelle, stark reduziert. Außerdem bedeutet der Wegfall einer Optik eine große Platzersparnis sowie eine Verringerung der Herstellkosten für die Detektionseinheit. Aufwendige Bewegungseinrichtungen für den Träger oder die Detektionseinheit, wie sie in Scannern notwendig sind, entfallen ebenfalls völlig. Die vorgegebenen Abmessungen der CCD-Chips (mehrere cm2) ermöglichen die Verwendung einer sehr großen Zahl an parallelen Kanälen (mehrere 100) mit einer moderaten Kanalgröße (im 10-100 μm Bereich).
5.6 Disposable Träger
Die Träger können als einfache Disposables (Einweg-Chips) ausgeführt werden. Prinzipiell sind sowohl Glas-, Silizium-, Metall-, Keramik- oder Kunststoff-Chips (kostengünstige Spritzguß-Verfahren) sowie andere Ausführungen möglich.
Die Biochips anderer Technologien sind ebenfalls als Disposable für wenige Messungen ausgelegt. Hier spricht jedoch der aufgrund der aufwendigen Herstellung der Chips sehr hohe Preis meist gegen das Wegwerfen des Chips nach nur einer oder ein paar Messungen.
5.7 Flexibilität der Anwendung
Die schnelle und kostengünstige Produktion ermöglicht eine Vielfalt von individuellen Anwendungen, bei denen z.B. unter Berücksichtigung von Sequenz- und Gendatenbanken im Internet gezielt Oligonukleotid-Arrays synthetisiert werden.
Durch die Verwendung eines einzigen, vielfach gewundenen oder spiralförmigen Kanals könnte eine Hybridisierung im (langsamen) Durchfluß etabliert werden, die auch die Detektion von seltenen Ereignissen (z.B. selten exprimierte Gene) ermöglicht. Damit würde ein chromatographisches Prinzip in die DNA Array Technologie eingeführt werden. Durch die Verwendung von Di-, Tri- oder längeren Oligonukleotiden als Synthesebausteinen ist eine weitere Reduktion der Herstellungszeiten erreichbar. Vor allem für einfachere Arrays können Syntheseeinheiten direkt beim Kunden zur Anwendung kommen und damit die Zusammensetzung des Arrays endgültig individualisieren.
Die große Flexibilität der Technologie ist auch im Hinblick auf die Erkenntnis von Bedeutung, daß sich die Gene einzelner Individuen sehr stark unterscheiden, so daß man keinen generellen Genkatalog für alle Spezies anlegen kann. Der Träger eröffnet hier die Möglichkeit, zum Beispiel in einem ersten Meßzyklus die Basisdaten, wie sie im Internet - frei zugänglich oder nur spezifisch für den Systemkunden - bereitgestellt sind mit den individuellen Unterschieden eines Patienten abzugleichen und aus den Ergebnissen einen entsprechenden zweiten DNA-Array zu bilden, welcher die eigentlichen Tests auf das Individuum angepaßt durchführt.
Die erfindungsgemäße Lösung kann auch für die Synthese von Peptidsequenzen in den Kanälen verwendet werden. Damit würden für eine Vielzahl von Anwendungen hoch komplexe und zugleich kostengünstige Peptidarrays bereitgestellt werden.
6. Überblick über einige Aspekte der Erfindung
6.1 Ausführungsvarianten des Trägers
Bei der Gestaltung ebenso wie bei der Fertigung der Träger gibt es eine Vielzahl von Ausführungsvarianten. Bei der Anordnung der Kanäle im Träger über der Fläche der Detektionseinheit ist die Verwendung nur eines Kanals ebenso denkbar wie die Anordnung einer Vielzahl an parallelen Kanälen. So sind auf einer Fläche von 25 x 37 mm fertigungstechnisch problemlos 500 Kanäle (Stand der Technik: 500 parallele Kapillaren mit einem Durchmesser von 900 nm) mit einer Länge von 37 mm und jeweils etwa 750 Reaktionsbereichen anzuordnen. Die gleiche Anzahl an Reaktionsbereichen (500 x 750 = 375.000) ließe sich auch in einem einzigen schlangenförmigen Kanal mit etwa 20 m Länge unterbringen.
Der Vorteil nur eines Kanals liegt in der Präsentation der Probe an allen Meßpunkten des Arrays und ist daher für die Suche nach seltenen Bestandteilen besonders geeignet. Ein Vielzahl an parallelen Kanälen hat den Vorteil, daß sich die Produktionszeiten bei der Träger-Synthese durch das Multiplexen von Einsatzstoffen und Kanälen sowie alle Strömungsvorgänge minimieren lassen. Deshalb ist diese Kanalanordnung für die Träger-Synthese sowie alle Analysen mit einer ausreichenden Anzahl an Kopien jedes Analyten in der Probe zu bevorzugen.
Um beide Vorteile in einem Träger zu nutzen ist es möglich die Einsatzstoffe bei der Träger-Synthese mittels paralleler Fittings am Zugang zu den Kanälen einzubringen, obwohl der Kanal von der Probeneingabe an nur aus einem einzigen, langen Mikrokanal besteht. Dieser Effekt kann auch durch die Integration von Ventilen in den Träger oder die umgebenden Gerätekomponenten erfolgen. So hat die Firma Biacore fluidisch angesteuerte Ventile in einem zweiteiligen Spritzguss-Chip durch eine Membran realisiert, welche von unten in die Kanäle auf der Oberseite des Chips drückt und so die Kanäle verschließt.
Als Anordnung für die Kanäle über der Detektorfläche ist eine Vielzahl an Strukturen und Mikrokanalverläufen möglich. Für eine hohe Parallelität der fluidischen Vorgänge sind beispielsweise parallele oder "snakeförmige" Strukturen naheliegend. Die Aufteilung der Kanäle sollte hierbei nach dem Dualprinzip erfolgen, wo aus jedem Kanal zwei neue entstehen und alle Kanäle gleich lang sind. So erreicht man nach 10 Teilungen bereits 210 = 2048 Kanäle. Spiralförmige Anordnungen haben den Vorteil, das sie weniger turbulente Strömungsvorgänge aufweisen und besser zu reinigen sind. Ihr großer Nachteil liegt in der Zu- bzw. Abführung, welche in der dritten Dimension nach oben oder unten erfolgen muß, was fertigungstechnisch und optisch eher ungünstig ist.
Als Material für die Träger ist beispielsweise Glas, Silizium, Keramik, Metall oder/und Kunststoff möglich. Der Aufbau kann in zwei Schichten erfolgen, welche zum Beispiel durch Kleben oder Bonden aneinandergefügt werden können oder nicht. Die Struktur der Kanäle kann hierbei entweder nur in die eine, oder aber in beide Seiten bzw. Hälften eingebracht werden. Hierfür sind als Fertigungsverfahren u.a. Laser oder Präzisionsfräsen verwendbar. Besonders kostengünstig ist Spritzguß, welcher in einer ausreichenden Qualität gefertigt werden kann. Weitere Verfahren sind die LIGA-Technik oder Heißformen.
6.2 Träger - Synthese
Für die Synthese der individuellen Fänger-Rezeptoren, z.B. Oligos, auf den Reaktionsbereichen im Träger-Array gibt es prinzipiell zwei Möglichkeiten. Der Kunde ersteht fertige Träger vom Hersteller mit einer vorgegebenen Auswahl an immobilisierten Basen- Sequenzen, oder er synthetisiert sich in einer Syntheseeinheit seine selbstgewählten Sequenzen auf ungelabelte Träger. Informationen über entsprechende Sequenzen können zum Beispiel aus Datenbanken im Internet entnommen werden, die hier frei oder auch speziell durch den Träger- Hersteller bereitgestellt werden.
6.2.1 Syntheseeinheit
Die Syntheseeinheit besteht aus einer geeigneten Lichtquelle, welche die Reaktionsbereiche im Träger-Array bei der Synthese der Rezeptoren, z.B. Basen oder Basen-Sequenzen, an der Trägeroberfläche bzw. den Kanalwänden ortsspezifisch hochgenau und exakt auflösend bestrahlt. Wie bereits unter 4.4 erwähnt, kann die Belichtung mittels einer programmierbaren Lichtquellenmatrix erfolgen. Verwendet werden kann auch eine Photolithographie- Einrichtung, wie sie in der Halbleiter- Chip- Produktion für das lichtaktivierte Ätzen von Si- Wafern zum Einsatz kommt.
6.2.2 Fertige Träger - Synthese beim Hersteller
Beim Vertrieb fertiger Träger erfolgt die Synthese beim Hersteller. Dieser benötigt hierfür eine entsprechend leistungsfähige Syntheseeinheit, welche möglichst lange Oligos (3 oder mehr Basen lang) als Einsatzstoffe verwendet, die parallel in die Kanäle eingebracht (eingespritzt) werden, und so die Synthesezeiten pro Träger minimieren (Multiplexing). Hierbei ist es möglich, in den Trägern spezielle Zugänge vorzusehen, mit dem Ziel möglichst viele parallele und damit kurze Kanäle zu erhalten, unabhängig davon, welche Kanalstruktur für den Analysevorgang vorgesehen ist.
6.2.3 Einsatzstoffe im Träger
Für Anwendungen, wo es nicht auf eine schnelle Synthese der Träger, aber auf eine individuelle Gestaltung der Arrays ankommt, ist eine Bereitstellung der Einsatzstoffe (G, A, C, T und Puffer etc.) direkt im Träger in entsprechenden Reservoirs möglich. Die überflüssigen Einsatzstoffe müssen in einer entsprechenden Kammer im Träger aufgefangen werden. Das Volumen einer solchen Kammer ist durch eine Ausdehnung in der dritten Dimension nach oben oder unten problemlos auf ein Vielfaches des gesamten Kanalvolumens auslegbar. Eine Anwendungen dieser Träger- Variante ist gerade für Forschungslabors, aber auch kleine Arztpraxen denkbar.
Das Prinzip der Kapillarkraft kann hierbei in einer möglichen Ausführungsvariante direkt für den Fluidtransport im Träger verwendet werden. Jegliche Mechanik würde entfallen und die Befüllung der Kapillaren mit den Einsatzstoffen sowie der Probe könnte über die einfache Verstellung eines Ventils im Träger erfolgen. Die "Abfallkammer" könnte durch die Einbettung eines geeigneten Vlies-Stoffes eine unterstützende Saugwirkung entwickeln. Um eine Minimierung der benötigten Fluidmengen zu erreichen, sollte bei diesen Einwegströmungs- Ausführungen (keine Zirkulation und damit Wiederverwendung der Einsatzstoffe) auf immer gleich lange Kapillaren geachtet werden. Dies ist ebenfalls von Bedeutung für das Funktionieren der Kapillarkraft als Pumpe.
Ein weitere Variante ist eine vertikale Ausrichtung der planaren Träger, so daß auch Gravitationskräfte für den Fluidtransport im Träger genutzt werden können. Wenn diese Kräfte nicht ausreichen, um alle notwendige Fluidtransporte in den Träger zu realisieren, so sind andere geeignete Pumpmechanismen vorzusehen. Eine Möglichkeit hierzu ist eine elektrophoretische Bewegung der Fluide durch - in den Träger integrierte - Elektroden, oder durch eine Volumenreduktion in Kammern des Träger durch einen entsprechenden Krafteintrag von außen in den Träger (klassische Pumpe).
6.2.4 Einsatzstoffe in der Syntheseeinheit
Die Bereitstellung der Einsatzstoffe für die Träger-Synthese in Vorratsbehältern bietet prinzipiell den Vorteil des Multiplexens von fertigen Basen-Sequenzen und parallelen Kanälen, weshalb diese Ausführungsvariante für (Ultra)Hochdurchsatz-Screening und Träger- Hersteller empfehlenswert ist. Das Multiplexen kann an der Schnittstelle zum Träger erfolgen, in dem eine spezifische Basen- Sequenz für jeden Synthese-Zyklus einen anderen Kanal benetzt. Eine technisch aufwendigere, aber ggf. zuverlässigere Methode ist ein Multiplexen im Gerät durch ein entsprechendes Ventilsystem. Hier ist die Verschleppung zu beachten, welche durch die Verwendung unterschiedlicher Basen- Sequenzen entstehen kann. Ein weiterer Punkt, welcher berücksichtigt werden muß, ist das Auffangen und Beseitigen des überschüssigen Materials am Ausgang der einzelnen Kanäle. Hier ist sowohl eine Zirkulation (Wiederverwendung des austretenden Materials) als auch eine Beseitigung der austretenden Einsatzstoffe denkbar.
6.3 Analytbestimmung
Die Analyse von Nukleinsäure- Sequenzen erfolgt wie bei anderen Oligonukleotid-Arrays durch Hybridisieren von Nukleinsäuren im Probenmaterial an komplementäre Stränge unter den immobilisierten Oligonukleotiden.
Als eine weitere mögliche Anwendung des Trägers können auch Peptidsequenzen in den Kanälen angekoppelt werden, ebenfalls nach in situ Syntheseprinzipien. Solche Peptide sind zu vielfältigen und teilweise hochspezifischen Bindungsreaktionen mit Peptiden, Proteinen und anderen Substanzen in der Lage, so daß sich das Spektrum potentieller Analyten erheblich ausweiten läßt.
Die Synthese im Träger würde erstmals massiv parallele und gleichzeitig kostengünstige Peptid-Arrays für eine Vielzahl von Anwendungen zur Verfügung stellen.
6.3.1 Analyten
Beispiele für Analyten sind Nukleinsäuren (DNA, RNA, in Spezialfällen auch PNA). Diese Nukleinsäuren können aus Gesamtgenomen, Fragmenten davon, Chromosomen, Plasmiden oder synthetischen Quellen (z.B. cDNA) gewonnen werden. In einer Ausführungsform kann das Probenmaterial aus dem menschlichen Genom stammen. Weitere Beispiele für Analyten sind Proteine, Polypeptide und Peptide in allen Erscheinungsformen z.B. Hormone, Wachstumsfaktoren, Enzyme, Tumorantigene, Serumfaktoren, Antikörper, Carbohydrate, z.B. verschiedene Zucker in Lebensmitteln oder Agrarpflanzen, funktioneile Zucker, Polymere und andere organische Moleküle, z.B. drugs of abuse', Pharmaka, Metabolite, Aminosäuren, Transmitter, Pestizide, Insektizide, Lacke, verschiedene Toxine etc.
6.3.2 Varianten zur Bindung an den immobilisierten Interaktionspartner (Rezeptor)
Die Bindung des Analyten an den Rezeptor kann bei Nukleinsäuren durch Hybridisierung von komplementären Nukleinsäuren z.B. längere Moleküle wie cDNA, synthetische Oligonukleotide, PNA, RNA erfolgen. Peptide als Rezeptoren , z.B. synthetische Peptide oder natürliche Peptide können über Protein-Protein oder Protein-Nukleinsäure-Wechselwirkungen an den Analyten binden.
6.3.3 Varianten zur Signalerzeugung
Zwei Prinzipien zur Signalerzeugung werden bevorzugt eingesetz, nämlich: die direkte Detektion eines vorher oder in der Reaktion markierten Analyten (bevorzugte Methode in der Nukleinsäureanalytik mittels Hybridisierung) und die indirekte Detektion durch Kompetition des Analyten bzw. der Zielsequenz mit einem markierten Standard. Die erste Variante ist für einige Anwendungen gut etabliert, für Diagnostik z.B. von Serumkomponenten aber eher schlecht geeignet, die mit Peptid-Arrays auch im Träger möglich ist. Die zweite Variante ist für diese Anwendungen daher vorzuziehen, außerdem erlaubt sie prinzipiell eine einfachere Probenvorbereitung durch den Anwender. Eine direkte Detektion kann erfolgen durch Markierung der Analyten mit einem Farbstoff für die Absorptionsmessung, einem Fluoreszenzfarbstoff, Markierung der Analyten mit Reporterenzym, anschließend Reaktion (z.B. Chemo- oder Biolumineszenz), selektive Markierung des gebundenen Analyten, z.B. bei Nukleinsäuren durch interkalierende (Fluoreszenz-) Farbstoffe, Doppelstrang-bindende Proteine oder Doppelstrang-bindende Antikörper oder eine sekundäre Detektion des gebundenen Analyten mit einer zweiten Komponente, z.B. bei PNA-DNA Hybriden durch DNA spezifischen Antikörper. Als markierte Standards verwendet werden können enzymgekoppelte Standards (z.B. Chemo- und Biolumineszenz mit alkalischer Phosphatase, Peroxidase etc.) oder Fluoreszenz-) Farbstoff gekoppelte Standards. Proteinstandards können als Fusionsproteine mit einem Reporterenzym (siehe oben) oder einem autofluoreszierendem Protein (z.B. GFP), z.B. für rekombinante Antikörper, Protein-Hormone, Wachstumsfaktoren etc. eingesetzt werden.
6.4 Bereitstellung des Probenmaterials
Für die Bereitstellung des Probenmaterials gibt es ebenfalls wieder unterschiedliche Ausführungsvarianten. Für die eigentliche Detektion ist die Art der Bereitstellung nicht relevant, da an der Schnittstelle immer in Flüssigkeit gelöste DNA-Fragmente in ausreichender Menge für die angestrebte Untersuchung bereitzustellen sind.
6.4.1 Externe Probenvorbereitung
Die Probenvorbereitung kann entweder manuell im Labor, in einem getrennten Analysesystem oder in einer in das gleiche System integrierten Vorbereitungseinheit erfolgen. Die detektionsbereite Probe wird dann mittels manuellem oder automatischem Pipettieren oder vergleichbaren Verfahren in den Träger eingebracht. 6.4.2 Probenvorbereitung im gleichen Träger "all in one"
Gerade, wenn das Multiplexen bei der Träger-Synthese zur Reduktion der Produktionszeiten verwendet wird, können gleiche oder sogar kürzere Zeiten für die Rezeptorsynthese erreicht werden, als z.B. für die DNA- Amplifizierung der Probe mittels PCR notwendig wäre. Dadurch wird eine Integration einer PCR in das Synthese- System oder sogar in den Träger für viele Anwendungen sinnvoll.
Neben der zeitintensiven PCR ist auch der vorgelagerte Zellaufschluß zum Beispiel über gut automatisierbare Verfahren wie Ultraschall oder Hochspannung ebenso wie die DNA-Isolierung integrierbar.
6.5 Detektionseinheit
Die Auslesung der Lichtsignale für die Nachweisreaktionen im Träger-Array soll in einer Detektionseinheit erfolgen, wobei die Anregungslichtquelle (Fluoreszenz, Lumineszenz oder Absorption als optischer Nachweis) dem CCD-Chip zur Lichtsignalmessung direkt gegenüber angeordnet wird. Der Träger-Array befindet sich zwischen Lichtquelle und Detektions-Chip (Sand wichbau weise). Als Anregungs-lichtquelle kann eine Belichtungsmatrix herangezogen werden. Die räumliche Anordnung dieser Einheit kann je nach Bedarf erfolgen (z.B. Nutzung der Gravitation für Strömungsvorgänge im Chip). Durch diese möglichst kompakte Bauweise werden die Lichtlauf wege und damit auch die benötigte Lichtintensität minimiert. Auf die Verwendung einer aufwendigen, platzintensiven, lichtschluckenden und teuren Optik soll sowohl auf der Anregungs-, als auch auf der Detektionsseite verzichtet werden. 6.5.1 Temperatur bei der Hybridisierung
Die Temperierung (derzeittypischerweise bei 60°C - neueste Entwicklungen ermöglichen auch schon eine Hybridisierung bei 25 °C mit Niedrigsalz- Bedingungen) bei der Hybridisierung kann entweder durch entsprechende Temperaturelemente in der Detektionseinheit oder durch die Anregungslichtquelle bzw. das Anregungslicht an sich erfolgen. Temperaturelemente in den Trägern sind ebenfalls möglich.
6.5.2 Anregungslichtquelle
Als Lichtquellen kommen je nach den Markern der Analyten (Nachweisverfahren via Absorption oder Fluoreszenz etc.) hochparalleles Licht aus einer Lampe (Weißes Licht), hochparalleles Licht aus einer Blitzröhre, hochparalleles monochromatisches Licht, ein monochromatischer Laserlichtstrich, eine flächige Belichtung mittels Aufweitung des Laserstrahls, ein monochromatischer Laserstrahl oder eine programmierbare Lichtquellenmatrix in Frage.
Gegebenenfalls kann ein entsprechendes optisches Gitter oder eine entsprechende Optik zwischen Anregungslichtquelle und Träger-Array vorgesehen sein.
6.5.3 CCD-Kamera Detektion
Die Detektionseinheit besteht vorzugsweise nur aus einem CCD-Chip. Diese haben aktuell auf einer Fläche von beispielsweise 25 x 37 mm etwa 2000 x 3000 Pixel (Cannon). Ordnet man auf einer solchen Fläche von 25 x 37 mm etwa 500 parallele Kanälen mit ca. 20 μm Durchmesser an (jede zweite Doppel-Pixelreihe), so erhält man in jedem Kanal 750 Meßpunkte (Felder), wenn man nur jeden zweiten Doppel-Pixel unter dem Kanal nutzt. Damit hätte man 375.000 Reaktionsbereiche auf einem einzigen Träger, wobei jeder Reaktionsbereich 4 Färb- bzw. 12 Schwarzweiß-Pixel überdeckt und eine Fläche von 20 x 20 μm hat. Die Lichtsignale müssen möglichst dicht am optischen CCD-Chip erzeugt werden, damit eine fehlerhafte Zuordnung von Lichtsignalen und Meßpunkten mit ihrer spezifischen Basen- Sequenz sowie eine Überlagerung benachbarter Lichtsignale ausgeschlossen werden kann. Ansonsten kann eine serielle Detektion sich überlagernder Bereiche erfolgen oder es werden faseroptische Elemente eingesetzt.
Die entstehende Vielzahl an Meßwerten (4 x 500 x 750 = 1 .5 Mio. Farbsignale bzw. 4.5 Mio. Intensitätswerte zwischen 0 und 4096 Digitalwerten), welche zur Verfügung stehen (aktueller Stand der CCD-Chip Technik), bilden die Basis welche eine umfangreiche Statistik bei der Analyse der detektierten Lichtsignale erlaubt. Das Bearbeiten der anfallenden Datenmengen ist, durch die Entwicklung der Leistungsfähigkeit bei gleichzeitigem Preisverfall von modernen Rechnersystemen, problemlos möglich.
Die Detektion der Nachweisreaktion kann sowohl qualitative als auch quantitative Aussagen machen und zwar welche Fängermoleküle (Position im Array) haben Anlagerungspartner gefunden (Auswertung der z.B. fluoreszenzmarkierten Labels) und wieviele Fängermoleküle einer Klasse haben einen Hybridisierungspartner gefunden.
Gegebenenfalls kann ein entsprechendes optisches Gitter oder eine entsprechende Optik zwischen dem Träger-Array und dem CCD-Kamera Chip vorgesehen sein.
Wenn die Detektion mit einer CCD-Kamera bzw. einem CCD-Chip keine ausreichenden Signale ergibt, kann die Detektion im Analysesystem auch mittels anderer, empfindlicherer Sensoren erfolgen. Interessant im Zusammenhang mit der vorliegenden Erfindung ist die Verwendung einer Inspektionseinheit, wie in der deutschen Patentanmeldung 198 39254.0 beschrieben ist. Diese Inspektionseinheit umfaßt eine elektronisch steuerbare Lichtquellenmatrix und eine der Lichtquellenmatrix zugewandt-gegenüberliegende Lichtsensormatrix, nämlich CCD-Bildaufnehmer.
In diesem Zusammenhang ist es denkbar, daß der Anwender sich seine Träger selbst erzeugt und direkt verwendet. Er lädt sich einfach die benötigten Daten (DNA-Sequenzen) von einer CD-ROM oder aus dem Internet und erzeugt in seiner Belichtungsmatrix-CCD-Einheit seinen individuellen DNA-Chip, benetzt ihn anschließend mit der Probe und liest die Signale aus.
Mißt man z.B. jeden zweiten Pixel in dieser Anordnung für die Photoaktivierung, so kann man die Pixel dazwischen, welche in Projektion innerhalb eines Kanals liegen, für eine permanente Prozeßkontrolle verwenden. So kann man z.B. das Einströmen einer Gasblase zwischen zwei Fluiden in einem Kanal individuell und dynamisch verfolgen. Auch ein Färben der Trägerfluide für G, A, C und T wäre denkbar, so daß die Anwesenheit der richtigen Oligos überprüfbar würde und eine Farbveränderung könnte eine Verschleppung signalisieren. Bei der anschließenden Detektion könnte wiederum eine ortsspezifische und wenn notwendig sogar farbspezifische Lichtanregung erfolgen. Hierdurch ergeben sich ganz neue Möglichkeiten für Nachweisverfahren, wie sie derzeit noch nicht vorhanden sind.
Durch die Inspektionseinheit (Belichtungsmatrix-CCD-Einheit) können die Strömungsvorgänge in den Kanälen in einem Träger sowohl während der Produktion - sprich der Oligo-Synthese - als auch während der Analyse überwacht werden. Hierzu können z.B. Reinigungsgasblasen zwischen zwei Fluiden in den Kanälen oder eine Färbung der einzelnen Fluide verwendet werden. Für die lichtinduzierte Abspaltung von Schutzgruppen während der Synthese von DNA-Oligos auf oder in dem Träger kann eine Belichtungsmatrix dienen, die die notwendige Wellenlänge von z.B. 360-370 nm erzeugt und überträgt.
Die Detektion der Nachweisreaktion im Träger kann ebenfalls in der Inspektionseinheit erfolgen. Wenn der Nachweis über Fluoreszenzmarker realisiert wird, müßte hierzu ggf. die Hintergrundbeleuchtung gewechselt werden (automatisch möglich), wobei optische Filter oder/und Glasfaserelemente ("Taper") verwendet werden können. Gegebenenfalls kommen hier auch neue Detektionsverfahren zum Einsatz, welche erst durch die extrem flexible, individuelle Anstrahlung und Detektion des einzelnen Reaktionsbreichs möglich werden.
Für eine Standard-Hybridisierung von DNA-, RNA- und PNA-Strängen miteinander benötigt man eine Temperatur von ca. 55 - 65°C. Im einfachsten Fall kann diese Temperatur durch die abgestrahlte Energie der Belichtungsmatrix erzeugt werden (Abwärme und Wellenlänge) . Damit ließe sich eine weitere Kompaktierung der Anordnung erreichen.
8. Exemplarische Ausführungsformen
Die Synthese von DNA-Molekülen in Kanälen kann unter Verwendung von Standard-Synthonen, z.B. Phosphoramidit-Bausteinen, mit geeigneten Schutzgruppen, z.B. Dimethoxymethyl (DMT) erfolgen. Ausgehend von einem an die Festphase gekoppelten Linker kann eine entsprechende fluidische DNA-Synthese erfolgen. Dieses Format kann für die bevorzugte Ausführungsform der Erfindung mit einer lichtabhängigen Steuerung der DNA-Synthese kombiniert werden. Dazu sind Schutzgruppen bekannt, die eine lichtabhängige Entschützung erlauben, so daß die Schutzgruppe, die meist am 5'-Kohlenstoffatom des Synthons gebunden ist, durch Licht geeigneter Wellenlänge abgespalten wird. Auf diese Weise ist in Kapillaren die Synthese von Nukleinsäuren mit einer Länge von 1 8 oder mehr Nukleotiden möglich.
Durch Ablösung des synthetisierten DNA-Oligomere, wie es durch Verwendung geeigneter Linker möglich ist, können die Reaktionsprodukte z.B. durch Hochleistungflüssigchromatographie (HPLC) analysiert werden. Dabei läßt sich über den Anteil der Vollängenprodukte die Effizienz der kapillaren DNA-Synthese zeigen.
Für die lichtabhängige DNA-Synthese wird der Reaktionsbereich auf dem Träger orts- oder/und zeitspezifisch mit einer geeigneten Lichtquelle belichtet, z.B. mit einer Quecksilberdampflampe, Laserlicht (z.B. Stickstofflaser mit 373 nm) oder mit einer UV-LED. Ebenso geeignet sind auch andere Lichtquellen, die eine ausreichend energiereiche Strahlung aufweisen.
Fig. 1 zeigt in einer stark schematisierten Draufsicht einen Träger nach der Erfindung.
Fig. 2 zeigt Beispiele für Kanalanordnungen in einem Träger nach der
Erfindung.
Fig. 3 zeigt eine schematische Darstellung eines Trägers in einer
Inspektionseinheit aus programmierbarer Lichtquellenmatrix und CCD-Matrix. Fig. 4 zeigt eine schematische Darstellung einer erfindungsgemäßen
Vorrichtung für ein lichtgestütztes integriertes Synthese- und Analyseverfahren und
Fig. 5 zeigt den Aufbau aus Fig. 4 für eine fluidische Individualisierung von Reaktionsbereichen.
Figur 1 zeigt einen den transparenten Träger in einer Draufsicht in stark schematisierter Weise. Man erkennt die parallel zueinander verlaufenden Kanäle 1 , beispielsweise 500 Kanäle mit einer Länge von 37 nm. Mit T, G, A, C sind in Fig. 1 Reservoirs für die einzelnen Einsatzstoffe (Basen) bezeichnet. Mit 3 ist der Gaseinlaß bezeichnet. 5 kennzeichnet ein Ventil. 7 kennzeichnet die Probeneingabe und mit 9 ist ein Zugang für weitere Synthesechemikalien sowie Reinigungs-/Waschflüssigkeit bezeichnet.
In Figur 2 sind schematisch weitere Beispiele für alternative Kanalanordnungen dargestellt.
Figur 3 zeigt den Träger nach Fig. 1 in einer Inspektionseinheit aus programmierbarer Lichtquellenmatrix, z.B. einer LCD-Matrix und einer CCD- Detektionsmatrix.
In Figur 4 ist eine erfindungsgemäße Vorrichtung mit einem auswechselbaren Träger 40 dargestellt, wobei der prinzipielle Aufbau unabhängig davon ist, ob der Träger in jedem Zyklus oder erst bei Verschleiß ausgewechselt wird. In letzterem Fall findet eine Reinigung und anschließende Wiederverwendung derselben Kanäle statt. Dargestellt ist eine programmierbare Lichtquellenmatrix 30. Deren Programmierbarkeit kann in die Systemkomponente 20, die aus einem Rechner bzw. einem Computer besteht, integriert sein, so daß nur eine frei ansteuerbare Lichtquellenmatrix als Komponente 30 notwendig ist. Diese Lichtquellenmatrix 30 strahlt Licht definierter Wellenlänge und Intensität auf beliebig ansteuerbare Orte einer zumindest zweidimensionalen Matrix, die der hochparallelen Belichtung der Reaktionsbereiche im Träger 40 dient. Besagter Träger 40 wird durch die Lichtquellenmatrix 30 mit dem rechnergesteuerten Lichtmuster bestehend aus Energiewellen in allen Reaktionsbreichen individuell bestrahlt. Über das fluidische Anschlußsystem 64 werden die vom Fluidikmodul 60 bereitgestellten Fluide in den Träger 40 transportiert und in dessen in der Zeichnung nicht dargestellten MikroStruktur in geeigneter Weise an die Reaktionsbereiche weitergeleitet. Dadurch wird der Träger 40 zu einem opto-fluidischen Mikroporzessor. Dieser kann entweder nach jeder Anwendung gewechselt werden oder nach jeder Anwendung gereinigt und nur zu Servicezwecken bei Verschleiß gewechselt werden.
Das eintretende Licht kann zum Beispiel für Absorptionsmessungen, die Aktivierung von Photoreaktionen oder das Anregen von Fluoreszenz genutzt werden.
Das aus dem Träger 40, bzw. dem opto-fluidischen Mikroprozessor austretende Licht kann beispielsweise das im Durchlicht den Träger passierende Licht der Lichtquellenmatrix 30 sein. Es kann sich dabei jedoch auch um Lichtsignale handeln, die in den einzelnen Reaktionsbereichen des Trägers 40 durch beispielsweise Fluoreszenz oder Lumineszenz erzeugt werden.
Die Detektormatrix 50, die zum Beispiel aus einem CCD-Chip mit oder ohne Optik besteht, ist so gegenüber einer Lichtquellenmatrix 30 mit einem dazwischen liegenden Träger 40 angeordnet, daß dadurch eine dreifache Matrixanordnung aus Licht-, Träger und Detektormatrix entsteht.
Das Fluidmodul 60 dient der Versorgung des Reaktionsträgers 40 zum Beispiel mit Einsatzstoffen, Schutzgasen, Chemikalien, wie Lösemitteln, etc. und Probenmaterial. Das Fluidmodul 60 besteht aus Tanks 61 , die durch
Pumpen 62 und Ventile 63 in geeigneter Weise entleert werden. Die Tanks können einzeln oder im Cluster ausgewechselt oder neu gefüllt werden. Permanent benötigte Fluide, wie beispielsweise Schutzgas, können auch mittels Leitungen kontinuierlich (ohe Tanks im System) zugeführt werden. Der fluidische Abfall der verschiedenen Verfahren kann entweder im Träger 40 in integrierten Tanks oder in einem Abfallsystem 65 oder bei Clustern außerhalb des einzelnen Systems aufgefangen werden.
Ebenfalls dargestellt ist die Systemgrenze 10 der Vorrichtung, die als Einzelgerät oder auch in zentralen oder dezentralen Clustern eingesetzt werden kann. Diese Cluster sind immer informationstechnisch miteinander verknüpft. Die an einem Ort befindlichen Systeme können auch gemeinsam durch manuelle Bedienung oder automatisierte Komponenten mit Energie, Fluiden, wie Einsatzstoffen, Reaktionschemikalien, Schutzgasen und Probenmaterial, sowie mit den benötigen Trägern versorgt werden.
Die Systemkomponente 20 in Form eines Computers oder Rechners übernimmt die Steuerung bzw. Regelung des Systems. Hierunter fallen auf der Basis der Berechnung der Sonden- bzw. Rezeptorsequenzen für die einzelnen Reaktionsbereiche die Steuerung der Lichtquellenmatrix 30 sowie der Fluidkompnente 60. Ferner werden die Daten der Dektormatrix 50 erfaßt und ausgewertet.
Jede Vorrichtung kann somit über seine Systemgrenze 10 hinweg mit anderen Vorrichtungen oder Systemen, bestehend aus wiederum einer erfindungsgemäßen Vorrichtung oder anderen Rechnern oder Datenbanken, kommunizieren. Dies kann beispielsweise über Leitungen, Bussysteme oder über das Internet erfolgen. Dabei kann die Kommunikation zentral koordiniert über Leitrechner erfolgen oder als Cluster gleichberechtigter Systeme. Ebenfalls vorgesehen ist eine Datenschnittstelle 21 zur Systemumgebung. Figur 5 zeigt den Aufbau aus Figur 4 für eine fluidische Individualisierung der Reaktionsbereiche. Wiederum dargestellt ist ein Träger 41 . Dieser wird durch das fluidische Entschützungsmodul 32 rechnergesteuert individuell benutzt. Über das fluidische Anschlußsystem 64 werden die vom Fluidmodul 60 bereitgestellten Fluide in den Träger transportiert und in dessen in der Zeichnung nicht dargestellten MikroStruktur in geeigneter Weise an die Reaktionsbereiche weitergeleitet. Dadurch wird der Träger 41 zu einem opto-fluidischen Mikroprozessor. Dieser kann entweder nach jeder Anwendung gewechselt werden oder nach jeder Anwendung gereinigt und nur zu Servicezwecken bei Verschleiß gewechselt werden.
In diesen Träger kann zum Beispiel von oben oder/und von der Seite Licht für die Anregung von Fluoreszenzreaktionen etc. eingespeist werden.
Das aus dem Träger, bzw. dem opto-fluidischen Mikroprozessor austretende Licht kann beispielsweise durch Lumineszenz an den Reaktionsbereichen erzeugt werden.
Das fluidische Entschützungsmodul32 kann jeden Reaktionsbereich auf dem Träger 41 mit mindestens einer der Benetzungskomponenten 33 (z.B. Düsen, Kapillaren, etc.) individuell mit Fluiden in Kontakt bringen. Hierdurch können zum Beispiel lokal chemische und biochemische Reaktionen aktiviert werden.
Das Fluidmodul 31 dient der Versorgung des fluidischen Entschützungs- moduls 32 mit Einsatzstoffen oder Chemikalien. Das Fluidmodul 31 ist dem Modul 60 vergleichbar aufgebaut und besteht je nach Bedarf aus Tanks, Leitungen, Ventilen, etc.
Die Detektormatrix 50, die zum Beispiel aus einem CCD-Chip mit oder ohne Optik besteht, ist so gegenüber einem fluidischen Entschützungsmodul 32 mit einem dazwischen liegenden Träger 41 angeordnet, daß dadurch wiederum eine dreifache Matrixanordnung entsteht.
Das Fluidmodul 60 dient der Versorgung des Trägers 41 zum Beispiel mit Einsatzstoffen, Schutzgasen, Chemikalien, wie Lösemitteln, etc. und Probenmaterial. Das Fluidmodul 60 besteht aus Tanks 61 , die durch Pumpen 62 und Ventile 63 in geeigneter Weise entleert werden. Die Tanks können einzeln oder im Cluster ausgewechselt oder neu gefüllt werden. Permanent benötigte Fluide, wie beispielsweise Schutzgas, können auch mittels Leitungen kontinuierlich (ohne Tanks im Ssystem) zugeführt werden. Der fluidische Abfall der verschiedenen Verfahren kann entweder im Träger 41 in integrierten Tanks oder in einem Abfallsystem 65 oder bei Clustern außerhalb des einzelnen Systems aufgefangen werden.
Wiederum dargestellt ist die bereits erläuterte Systemgrenze 10 der Vorrichtung und die Systemkomponente 20 in Form eines Computers oder Rechners, der die Steuerung bzw. Regelung des System übernimmt. Hierunter fallen auf der Basis der Berechnung der Sondensequenzen für die einzelnen Reaktionsbereiche die Steuerung der Fluidmodule 31 und 60, sowie des fluidischen Entschützungsmoduls 32. Ferner werden die Daten der Detektormatrix 50 erfaßt und ausgewertet.
Jede Vorrichtung kann somit über seine Systemgrenze 10 hinweg mit anderen Vorrichtungen oder Systemen, bestehend aus wiederum einer erfindungsgemäßen Vorrichtung oder anderen Rechnern oder Datenbanken, kommunizieren. Dies kann beispielsweise über Leitungen, Bussysteme oder über das Internet erfolgen. Dabei kann die Kommunikation zentral koordiniert über Leitrechner erfolgen ode als Cluster gleichberechtigter Systeme. Ebenfalls vorgesehen ist eine Datenschnittstelle 21 zur Systemumgebung.

Claims

Ansprüche
1. Verfahren zur Herstellung eines Trägers für die Bestimmung von Analyten, umfassend die Schritte
(a) Bereitstellen eines Trägerkörpers umfassend mindestens einen Kanal,
(b) Leiten von Flüssigkeit mit Bausteinen für die Synthese polymerer Rezeptoren durch den Kanal oder die Kanäle des Trägerkörpers,
(c) orts- oder/und zeitspezifisches Immobilisieren der Rezeptorbausteine an jeweils vorbestimmten Positionen in dem Kanal oder in den Kanälen und
(d) Wiederholen der Schritte (b) und (c) bis die gewünschten Rezeptoren an den jeweils vorbestimmten Positionen synthetisiert worden sind.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man einen Träger herstellt, der definierte Flächenbereiche mit jeweils gleichen Rezeptorspezies enthält.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Kanäle auf mindestens einer Trägeroberfläche angeordnet sind.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Träger eine Vielzahl von Kanälen enthält, die vorzugsweise parallel zueinander angeordnet sind.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Rezeptoren aus Nukleinsäuren und Nukleinsäureanaloga ausgewählt werden.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Rezeptorbausteine aus Nukleotiden, Oligonukleotiden, Nukleotidanaloga und Oligonukleotidanaloga ausgewählt werden.
7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Rezeptoren aus Polypeptiden ausgewählt werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Rezeptorbausteine aus Aminosäuren und Peptiden ausgewählt werden.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das orts- oder/und zeitspezifische Immobilisieren der Rezeptorbausteine durch Belichten erfolgt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, das Belichten über eine programmierbare Lichtquellenmatrix erfolgt.
1 1 . Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das orts- oder/und zeitspezifische Immobilisieren der Rezeptorbausteine durch Benetzung mit einem aktivierenden Fluid unter steuerbarer Auswahl der aktivierten Positionen erfolgt.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, daß das Muster der polymeren Rezeptoren durch eine Computerprogammierung festgelegt wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß man den Träger zur Bestimmung von Analyten in einer Probe verwendet.
14. Verfahren zur integrierten Synthese und Analytbestimmung an einem Träger umfassend die Schritte:
(a) Bereitstellen eines Trägerkörpers, (b) Leiten einer Flüssigkeit mit darin enthaltenen Rezeptoren oder
Bausteinen für die Synthese von polymeren Rezeptoren über den Träger,
(c) orts- oder/und zeitspezifisches Immobilisieren der Rezeptoren oder Rezeptorbausteine an jeweils vorbestimmten Positionen auf dem Träger,
(d) gegebenenfalls Wiederholen der Schritte (b) und (c) bis die gewünschten Rezeptoren an den jeweils vobestimmten Positionen auf dem Träger synthetisiert worden sind,
(e) Inkontaktbringen des Trägers mit einer Analyten enthaltenden Probe und
(f) Bestimmen der Analyten über deren Bindung an die auf dem Träger immobilisierten Rezeptoren.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Synthese und Analytbestimmung in einer integrierten Vorrichtung durchgeführt wird, wobei der Synthese- oder/und der Analytbestimmungsprozeß in einer beliebigen Anzahl von Positionen auf dem Träger überwacht und geregelt wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß man eine integrierte Vorrichtung verwendet, umfassend eine programmierbare Lichtquellenmatrix, eine Detektormatrix, einen zwischen Lichtquellen - und Detektormatrix angeordneten Träger sowie Mittel zur Zufuhr von Fluids in den Träger und zur Ableitung von Fluids aus dem Träger.
17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß nach der Bestimmung der Analyt wieder vom Träger entfernt wird.
18. Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß mehrere Synthese/Analytbestimmungszyklen durchgeführt werden, wobei die Rezeptoren für einen nachfolgenden Zyklus auf Basis der Informationen aus einem vorhergehenden Zyklus synthetisiert werden.
1 9. Verfahren nach Anspruch 1 8, dadurch gekennzeichnet, daßfür den nachfolgenden Zyklus einer Verlängerung der Rezeptoren aus dem vorhergehenden Zyklus erfolgt.
20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß für den nachfolgenden Zyklus ein neuer Träger mit gegenüber dem vorhergehenden Zyklus modifizierten Rezeptoren synthetisiert wird.
21 . Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß die Modifizierung der Rezeptoren eine Änderung der Sequenz oder/und einen Ausschluß negativer Rezeptoren des vorhergehenden
Zyklus umfaßt.
22. Verfahren nach einem der Ansprüche 14 bis 21 , dadurch gekennzeichnet, daß man einen planaren Träger verwendet.
23. Verfahren nach einem der Ansprüche 14 bis 21 , dadurch gekennzeichnet, daß man einen Träger mit einer Vielzahl von Kanälen verwendet.
24. Verfahren nach einem der Ansprüche 14 bis 23, dadurch gekennzeichnet, daß für einen Synthese/Analytbestimmungszyklus mehrere Träger verwendet werden.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die mehreren Träger in unterschiedlichen Detektionsvorrich- tungen synthetisiert und analysiert werden, die informationstechnisch miteinander verknüpft sind, jedoch voneinander räumlich getrennt sein können.
26. Träger für die Bestimmung von Analyten umfassend eine Vielzahl von Kanälen, insbesondere Kapillarkanälen, wobei in den Kanälen eine Vielzahl von unterschiedlichen Rezeptoren immobilisiert ist.
27. Träger nach Anspruch 26, dadurch gekennzeichnet, daß er zumindest im Bereich der Reaktionsbereiche optisch transparent ist.
28. Reagenzienkit umfassend einen Träger nach Anspruch 26 oder 27 und Bausteine für die Synthese polymerer Rezeptoren auf dem Träger.
29. Vorrichtung zur integrierten Synthese und Analytbestimmung an einem Träger umfassend eine programmierbare Lichtquellenmatrix, eine Detektormatrix, einen zwischen Lichtquellen- und Detektormatix angeordneten Träger sowie Mittel zur Zufuhr von Fluids in den Träger und zur Ableitung von Fluids aus dem Träger.
30. Vorrichtung nach Anspruch 29 weiterhin umfassend Mittel zur Entschützung von Reaktionskomponenten auf den Träger.
31 . Vorrichtung nach Anspruch 29 oder 30 weiterhin umfassend elektronische Steuerungs- und Regelungsmittel.
32. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 25, des Trägers nach Anspruch 26 oder 27, des Reagenzienkits nach Anspruch 28 oder der Vorrichtung nach einem der Ansprüche 29 bis 31 zur Bestimmung eines Analyten in einer Probe.
33. Verwendung nach Anspruch 32 zur Sequenzierung von Nukleinsäuren.
34. Verwendung nach Anspruch 33 zur Neusequenzierung oder/und Resequenzierung von komplexen genetischem Material, wie etwa individueller Genome oder synthetischen Nukleinsäuren.
35. Verwendung nach Anspruch 32 zur Gewinnung diagnostischer Informationen für die individuelle Patientenversorgung wie etwa die individuelle Wirkung von Pharmaka.
36. Verwendung nach Anspruch 32 zur Wirkungsanalyse pharma- kologischer Substanzen.
37. Verwendung nach Anspruch 32 zur Erstellung und Analyse von Substanzbibliotheken.
38. Verwendung nach Anspruch 32 zum Vergleich von Individiuen in einer Population.
PCT/EP1999/006317 1998-08-28 1999-08-27 Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers WO2000013018A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000571081A JP2002525590A (ja) 1998-08-28 1999-08-27 分析物測定法のための支持体および該支持体を製造する方法
AU57424/99A AU749884B2 (en) 1998-08-28 1999-08-27 Support for a method for determining an analyte and a method for producing the support
DE59912120T DE59912120D1 (de) 1998-08-28 1999-08-27 Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers
EP99944538A EP1117478B1 (de) 1998-08-28 1999-08-27 Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers
AT99944538T ATE296677T1 (de) 1998-08-28 1999-08-27 Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers
US09/763,914 US7097974B1 (en) 1998-08-28 1999-08-27 Support for a method for determining an analyte and a method for producing the support
CA002341896A CA2341896A1 (en) 1998-08-28 1999-08-27 Support for a method for determining an analyte and a method for producing the support
US11/510,565 US20070031877A1 (en) 1998-08-28 2006-08-28 Support for analyte determination methods and method for producing the support

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE19839256.7 1998-08-28
DE19839255.9 1998-08-28
DE19839254.0 1998-08-28
DE19839255 1998-08-28
DE19839254 1998-08-28
DE19839256 1998-08-28
DE19907080.6 1999-02-19
DE19907080 1999-02-19
DE19924327.1 1999-05-27
DE19924327 1999-05-27

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/763,914 A-371-Of-International US7097974B1 (en) 1998-08-28 1999-08-27 Support for a method for determining an analyte and a method for producing the support
US10/727,566 Division US20040175734A1 (en) 1998-08-28 2003-12-05 Support for analyte determination methods and method for producing the support
US11/510,565 Continuation US20070031877A1 (en) 1998-08-28 2006-08-28 Support for analyte determination methods and method for producing the support

Publications (3)

Publication Number Publication Date
WO2000013018A2 true WO2000013018A2 (de) 2000-03-09
WO2000013018A3 WO2000013018A3 (de) 2000-09-14
WO2000013018B1 WO2000013018B1 (de) 2000-10-26

Family

ID=27512654

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP1999/006315 WO2000012123A2 (de) 1998-08-28 1999-08-27 Verfahren und messeinrichtung zur bestimmung einer vielzahl von analyten in einer probe
PCT/EP1999/006317 WO2000013018A2 (de) 1998-08-28 1999-08-27 Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers
PCT/EP1999/006316 WO2000013017A2 (de) 1998-08-28 1999-08-27 Verfahren und vorrichtung zur herstellung und/oder analyse von biochemischen reaktionsträgern

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006315 WO2000012123A2 (de) 1998-08-28 1999-08-27 Verfahren und messeinrichtung zur bestimmung einer vielzahl von analyten in einer probe

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006316 WO2000013017A2 (de) 1998-08-28 1999-08-27 Verfahren und vorrichtung zur herstellung und/oder analyse von biochemischen reaktionsträgern

Country Status (8)

Country Link
US (5) US7737088B1 (de)
EP (6) EP1117996B1 (de)
JP (3) JP2002523781A (de)
AT (4) ATE296677T1 (de)
AU (3) AU771238B2 (de)
CA (2) CA2341894A1 (de)
DE (8) DE59915204D1 (de)
WO (3) WO2000012123A2 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066259A1 (en) * 1999-05-05 2000-11-09 Ut-Battelle, Llc Method and apparatus for combinatorial chemistry
WO2002032567A1 (de) * 2000-10-17 2002-04-25 Febit Ag Verfahren und vorrichtung zur integrierten synthese und analytbestimmung an einem träger
WO2003038122A2 (de) * 2001-10-26 2003-05-08 Febit Ag Asymmetrische sonden
WO2004058393A2 (de) * 2002-12-23 2004-07-15 Febit Biotech Gmbh Verfahren zum validierten aufbau von arrays
WO2004059003A2 (de) * 2002-12-23 2004-07-15 Febit Biotech Gmbh Einbau von hapten-gruppen bei der herstellung von trägern für die analytbestimmung
US7097974B1 (en) 1998-08-28 2006-08-29 Febit Biotech Gmbh Support for a method for determining an analyte and a method for producing the support
US7122799B2 (en) 2003-12-18 2006-10-17 Palo Alto Research Center Incorporated LED or laser enabled real-time PCR system and spectrophotometer
WO2008022789A2 (de) 2006-08-23 2008-02-28 Febit Holding Gmbh Programmierbare oligonukleotidsynthese
DE102006062089A1 (de) 2006-12-29 2008-07-03 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
US7416841B2 (en) 2002-08-07 2008-08-26 Seiko Epson Corporation Diagnostic analytical system comprising DNA chips with thin-film transistor (TFT) elements
DE102007018833A1 (de) 2007-04-20 2008-10-23 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
US7470540B2 (en) 2000-10-17 2008-12-30 Febit Ag Method and device for the integrated synthesis and analysis of analytes on a support
WO2009065620A2 (de) 2007-11-23 2009-05-28 Febit Holding Gmbh Flexibles extraktionsverfahren für die herstellung sequenzspezifischer molekülbibliotheken
EP2065702A1 (de) 2001-10-10 2009-06-03 febit holding GmbH Mikrofluidisches Extraktionsverfahren
US7560417B2 (en) 2005-01-13 2009-07-14 Wisconsin Alumni Research Foundation Method and apparatus for parallel synthesis of chain molecules such as DNA
WO2010094772A1 (en) 2009-02-20 2010-08-26 Febit Holding Gmbh Synthesis of sequence-verified nucleic acids
WO2010106109A1 (en) 2009-03-17 2010-09-23 Febit Holding Gmbh Multi-use of biochips
US8133670B2 (en) * 2003-06-13 2012-03-13 Cold Spring Harbor Laboratory Method for making populations of defined nucleic acid molecules
US8501416B2 (en) 2005-04-19 2013-08-06 President And Fellows Of Harvard College Fluidic structures including meandering and wide channels

Families Citing this family (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251691B1 (en) 1996-04-25 2001-06-26 Bioarray Solutions, Llc Light-controlled electrokinetic assembly of particles near surfaces
US6426184B1 (en) 1998-02-11 2002-07-30 The Regents Of The University Of Michigan Method and apparatus for chemical and biochemical reactions using photo-generated reagents
US7101914B2 (en) 1998-05-04 2006-09-05 Natural Asa Isomer enriched conjugated linoleic acid compositions
US6271957B1 (en) * 1998-05-29 2001-08-07 Affymetrix, Inc. Methods involving direct write optical lithography
AU766434B2 (en) * 1998-11-05 2003-10-16 Chemometec A/S A method for the assessment of particles and a system and a device for use in the method
ATE456652T1 (de) * 1999-02-19 2010-02-15 Febit Holding Gmbh Verfahren zur herstellung von polymeren
US7387891B2 (en) 1999-05-17 2008-06-17 Applera Corporation Optical instrument including excitation source
US7410793B2 (en) 1999-05-17 2008-08-12 Applera Corporation Optical instrument including excitation source
US20050279949A1 (en) 1999-05-17 2005-12-22 Applera Corporation Temperature control for light-emitting diode stabilization
WO2001002094A1 (de) * 1999-07-02 2001-01-11 Clondiag Chip Technologies Gmbh Microchip-matrix-vorrichtung zur vervielfältigung und charakterisierung von nukleinsäuren
JP2001078175A (ja) 1999-07-07 2001-03-23 Fuji Photo Film Co Ltd 蛍光観察装置
JP2001070227A (ja) 1999-07-07 2001-03-21 Fuji Photo Film Co Ltd 蛍光観察装置
US6784982B1 (en) * 1999-11-04 2004-08-31 Regents Of The University Of Minnesota Direct mapping of DNA chips to detector arrays
US6867851B2 (en) 1999-11-04 2005-03-15 Regents Of The University Of Minnesota Scanning of biological samples
US20050164293A1 (en) * 1999-11-29 2005-07-28 Peer Stahler Dynamic determination of analytes
DE19962803A1 (de) * 1999-12-23 2001-07-05 Basf Ag Verfahren und Vorrichtung zur maskenfreien Herstellung von Biopolymeren
DE10024132B4 (de) * 2000-01-28 2007-03-22 Leica Microsystems Cms Gmbh Anordnung zur Detektion von Fluoreszenzlicht mehrerer Probenpunkte
DE10013254A1 (de) 2000-03-17 2001-10-04 Friz Biochem Gmbh Vorrichtung und Verfahren zum Nachweis organischer Moleküle in einer Probensubstanz
CA2404799C (en) 2000-04-06 2007-08-07 Conlinco, Inc. Conjugated linoleic acid compositions
JP5258134B2 (ja) 2000-04-18 2013-08-07 エイカー バイオマリン アーエスアー 共役リノール酸粉末
DE10023423B4 (de) * 2000-05-12 2009-03-05 Gnothis Holding Sa Direkter Nachweis von Einzelmolekülen
ATE319087T1 (de) * 2000-06-21 2006-03-15 Bioarray Solutions Ltd Multianalytische molekularanalyse durch verwendung anwendungsspezifischer zufallspartikelarrays
US9709559B2 (en) 2000-06-21 2017-07-18 Bioarray Solutions, Ltd. Multianalyte molecular analysis using application-specific random particle arrays
AU2001271893A1 (en) * 2000-07-07 2002-01-21 Nimblegen Systems, Inc. Method and apparatus for synthesis of arrays of dna probes
DE10036457A1 (de) * 2000-07-26 2002-02-14 Giesing Michael Verwendung eines bildgebenden photoelektrischen Flächensensors zur Auswertung von Biochips und Bildgebungsverfahren hierfür
US6576472B1 (en) * 2000-07-26 2003-06-10 Smithkline Beecham Corporation Chemical constructs for solution phase chemistry
US6567163B1 (en) 2000-08-17 2003-05-20 Able Signal Company Llc Microarray detector and synthesizer
US6545758B1 (en) 2000-08-17 2003-04-08 Perry Sandstrom Microarray detector and synthesizer
FR2813121A1 (fr) * 2000-08-21 2002-02-22 Claude Weisbuch Dispositif perfectionne de support d'elements chromophores
US20030045005A1 (en) * 2000-10-17 2003-03-06 Michael Seul Light-controlled electrokinetic assembly of particles near surfaces
DE10058095C2 (de) * 2000-11-03 2003-12-18 Fraunhofer Ges Forschung Vorrichtung zur Bestimmung von Analyten durch Chemilumineszenz
GB2368903A (en) * 2000-11-08 2002-05-15 Proimmune Ltd Analysis of biological and biochemical assays
DE10060433B4 (de) * 2000-12-05 2006-05-11 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Verfahren zur Herstellung eines Fluidbauelements, Fluidbauelement und Analysevorrichtung
DE10062244A1 (de) * 2000-12-14 2002-07-04 Infineon Technologies Ag Sensor zur Detektion von makromolekularen Biopolymeren, Sensoranordnung, Verfahren zur Detektion von makromolekularen Biopolymeren und Verfahren zum Herstellen eines Sensors zur Detektion von makromolekularen Biopolymeren
DE10103954B4 (de) * 2001-01-30 2005-10-06 Advalytix Ag Verfahren zur Analyse von Makromolekülen
DE10113711A1 (de) * 2001-03-16 2002-09-26 Lifebits Ag Verfahren zum Nachweis biochemischer Reaktionen und Messträger zur Durchführung des Verfahrens
EP1565747B1 (de) * 2001-03-29 2013-11-27 Cellect Technologies Corp. Verfahren and System zum Sortieren und Trennen von Teilchen
DE10115474A1 (de) * 2001-03-29 2002-10-10 Infineon Technologies Ag Mikrofluidkanalstruktur und Verfahren zur Herstellung einer derartigen Mikrofluidkanalstruktur
US20020160427A1 (en) * 2001-04-27 2002-10-31 Febit Ag Methods and apparatuses for electronic determination of analytes
DE10122357A1 (de) * 2001-05-09 2002-11-14 Febit Ferrarius Biotech Gmbh Hybridverfahren zur Herstellung von Trägern für die Analytbestimmung
US6794658B2 (en) 2001-06-06 2004-09-21 Digital Optical Imaging Corporation Light modulated microarray reader and methods relating thereto
US7262063B2 (en) 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
DE10156329A1 (de) * 2001-07-17 2003-02-06 Frieder Breitling Verfahren und Anordnung zum Anbringen von in Transportmittel immobilisierten Substanzen sowie Monomerpartikel
DE10133844B4 (de) * 2001-07-18 2006-08-17 Micronas Gmbh Verfahren und Vorrichtung zur Detektion von Analyten
DE10136008B4 (de) * 2001-07-24 2005-03-31 Advalytix Ag Verfahren zur Analyse von Makromolekülen und Verfahren zur Herstellung einer Analysevorrichtung
DE10142691B4 (de) * 2001-08-31 2006-04-20 Infineon Technologies Ag Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
ATE437216T1 (de) 2001-09-06 2009-08-15 Genomic Profiling Systems Inc Schnellnachweis replizierender zellen
DE10145701A1 (de) * 2001-09-17 2003-04-10 Infineon Technologies Ag Fluoreszenz-Biosensorchip und Fluoreszenz-Biosensorchip-Anordnung
DE10145700A1 (de) * 2001-09-17 2003-04-10 Infineon Technologies Ag Biochip-Anordnung, Sensor-Anordnung und Verfahren zum Betreiben einer Biochip-Anordnung
DE10148102B4 (de) * 2001-09-28 2006-03-30 Biotez Berlin-Buch Gmbh Biochip zum quantitativen fotometrischen Nachweis von Biomolekülen, seine Verwendung und Verfahren zum quantitativen Nachweis von Biomolekülen durch fotometrisches Erfassen einer Farbreaktion
WO2003034029A2 (en) 2001-10-15 2003-04-24 Bioarray Solutions, Ltd. Multiplexed analysis of polymorphic loci by concurrent interrogation and enzyme-mediated detection
US7413859B2 (en) 2001-11-14 2008-08-19 Siemens Aktiengesellschaft Method and biosensors for detecting macromolecular biopolymers
DE10155892A1 (de) * 2001-11-14 2003-05-28 Infineon Technologies Ag Verfahren zum Erfassen von makromolekularen Biopolymeren mittels mindestens einer Einheit zum Immobilisieren von makromolekularen Biopolymeren und Biosensor zum Erfassen von makromolekularen Biopolymeren
DE10156467A1 (de) * 2001-11-16 2003-06-05 Micronas Gmbh Träger zur Synthese sowie Verfahren zur Herstellung von Biopolymeren
US6677470B2 (en) 2001-11-20 2004-01-13 Natural Asa Functional acylglycerides
US7635588B2 (en) 2001-11-29 2009-12-22 Applied Biosystems, Llc Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength
DE10160987B4 (de) 2001-12-05 2005-08-04 Siemens Ag Baueinheit zur simultanen, optischen Beleuchtung einer Vielzahl von Proben
DE10201463B4 (de) 2002-01-16 2005-07-21 Clondiag Chip Technologies Gmbh Reaktionsgefäß zur Durchführung von Array-Verfahren
DE10206548B4 (de) * 2002-02-13 2005-06-16 Siemens Ag Verfahren zur Analyse von Probenbestandteile tragenden Trägerplatten und Vorrichtungen zur Durchführung dieses Verfahrens
DE10208770A1 (de) * 2002-02-28 2003-09-04 Febit Ag Erhöhung der Sensitivität und Spezifität von Hybridisierungsexperimenten mit Nukleinsäure-Chips
US7504364B2 (en) 2002-03-01 2009-03-17 Receptors Llc Methods of making arrays and artificial receptors
DE10215319A1 (de) * 2002-04-02 2003-10-30 Siemens Ag Gerät zur Beleuchtung einer zu untersuchenden Probenplatte
JP2005526253A (ja) 2002-05-17 2005-09-02 アプレラ コーポレイション 励起波長による複数の蛍光シグナルを分化するための装置および方法
DE10224825A1 (de) * 2002-06-05 2003-12-24 Eppendorf Ag Verfahren zur Analyse von Biomolekülen
FR2842826B1 (fr) * 2002-07-25 2006-01-20 Centre Nat Rech Scient Procede de fabrication de puces biologiques
US7157228B2 (en) * 2002-09-09 2007-01-02 Bioarray Solutions Ltd. Genetic analysis and authentication
DE10242530A1 (de) * 2002-09-12 2004-03-25 Forschungszentrum Jülich GmbH Lichtquelle für ein Meßsystem mit photoempfindlicher Elektrode zum Nachweis eines oder mehrerer Analyten
DE10242529A1 (de) * 2002-09-12 2004-03-25 Forschungszentrum Jülich GmbH Meßsystem mit photoempfindlicher Elektrode
US7469076B2 (en) 2003-09-03 2008-12-23 Receptors Llc Sensors employing combinatorial artificial receptors
US6743931B2 (en) 2002-09-24 2004-06-01 Natural Asa Conjugated linoleic acid compositions
DE10245432A1 (de) 2002-09-27 2004-04-08 Micronas Gmbh Verfahren und Vorrichtung zum Detektieren mindestens eines Lumineszenz-Stoffs
DE10245845B4 (de) * 2002-09-30 2006-06-29 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Meßchip für die Verwendung ein einer Vorrichtung zur quantitativen Bestimmung eines Analyten in einer Probe und Vorrichtung mit diesem Meßchip
US7305112B2 (en) * 2002-10-15 2007-12-04 The Scripps Research Institute Method of converting rare cell scanner image coordinates to microscope coordinates using reticle marks on a sample media
US7175810B2 (en) 2002-11-15 2007-02-13 Eksigent Technologies Processing of particles
US7526114B2 (en) 2002-11-15 2009-04-28 Bioarray Solutions Ltd. Analysis, secure access to, and transmission of array images
US7220592B2 (en) * 2002-11-15 2007-05-22 Eksigent Technologies, Llc Particulate processing system
DE10312670A1 (de) * 2003-03-21 2004-10-07 Friz Biochem Gmbh Substrat zur kontrollierten Benetzung vorbestimmter Benetzungsstellen mit kleinen Flüssigkeitsvolumina, Substratabdeckung und Flusskammer
JP2006521555A (ja) * 2003-03-24 2006-09-21 ローズデイル メディカル インコーポレイテッド 被分析物濃度検出の装置及び方法
US7300755B1 (en) * 2003-05-12 2007-11-27 Fred Hutchinson Cancer Research Center Methods for haplotyping genomic DNA
JP2004361158A (ja) * 2003-06-03 2004-12-24 Moritex Corp 生化学検出装置及び検出方法
US7927796B2 (en) 2003-09-18 2011-04-19 Bioarray Solutions, Ltd. Number coding for identification of subtypes of coded types of solid phase carriers
TW200521436A (en) 2003-09-22 2005-07-01 Bioarray Solutions Ltd Surface immobilized polyelectrolyte with multiple functional groups capable of covalently bonding to biomolecules
US7718133B2 (en) 2003-10-09 2010-05-18 3M Innovative Properties Company Multilayer processing devices and methods
WO2005042763A2 (en) 2003-10-28 2005-05-12 Bioarray Solutions Ltd. Optimization of gene expression analysis using immobilized capture probes
WO2005045059A2 (en) * 2003-10-28 2005-05-19 Bioarray Solutions Ltd. Allele assignment and probe selection in multiplexed assays of polymorphic targets
JP2007509629A (ja) 2003-10-29 2007-04-19 バイオアレイ ソリューションズ リミテッド 二本鎖dnaの切断による複合核酸分析
US20050214811A1 (en) * 2003-12-12 2005-09-29 Margulies David M Processing and managing genetic information
DE102004015272A1 (de) * 2004-03-29 2005-11-03 Infineon Technologies Ag Biosensor-Anordnung zum Erfassen von Biomolekülen und Verfahren zum Erfassen von Biomolekülen
DE102004021904B4 (de) * 2004-05-04 2011-08-18 Carl Zeiss Microlmaging GmbH, 07745 Verfahren und Vorrichtung zur Erzeugung einer Analyseanordnung mit diskreten, separaten Messbereichen zur biologischen, biochemischen oder chemischen Analyse
US7773227B2 (en) * 2004-06-04 2010-08-10 California Institute Of Technology Optofluidic microscope device featuring a body comprising a fluid channel and having light transmissive regions
US7751048B2 (en) * 2004-06-04 2010-07-06 California Institute Of Technology Optofluidic microscope device
US7363170B2 (en) * 2004-07-09 2008-04-22 Bio Array Solutions Ltd. Transfusion registry network providing real-time interaction between users and providers of genetically characterized blood products
US7848889B2 (en) 2004-08-02 2010-12-07 Bioarray Solutions, Ltd. Automated analysis of multiplexed probe-target interaction patterns: pattern matching and allele identification
US7522786B2 (en) * 2005-12-22 2009-04-21 Palo Alto Research Center Incorporated Transmitting light with photon energy information
US7291824B2 (en) * 2005-12-22 2007-11-06 Palo Alto Research Center Incorporated Photosensing throughout energy range and in subranges
WO2006028930A2 (en) 2004-09-03 2006-03-16 Receptors Llc Combinatorial artificial receptors including tether building blocks on scaffolds
DE102004056735A1 (de) 2004-11-09 2006-07-20 Clondiag Chip Technologies Gmbh Vorrichtung für die Durchführung und Analyse von Mikroarray-Experimenten
DE102004056787A1 (de) * 2004-11-24 2006-06-01 Heinrich-Heine-Universität Düsseldorf Vorrichtung und Verfahren zur Messung von Fluoreszenz in mehreren Reaktionsräumen
TWI295730B (en) * 2004-11-25 2008-04-11 Ind Tech Res Inst Microfluidic chip for sample assay and method thereof
DE102005018337A1 (de) * 2005-04-20 2006-11-02 Micronas Gmbh Mikrooptisches Detektionssystem und Verfahren zur Bestimmung temperaturabhängiger Parameter von Analyten
GB0509833D0 (en) * 2005-05-16 2005-06-22 Isis Innovation Cell analysis
US8486629B2 (en) 2005-06-01 2013-07-16 Bioarray Solutions, Ltd. Creation of functionalized microparticle libraries by oligonucleotide ligation or elongation
JP4607684B2 (ja) * 2005-06-29 2011-01-05 富士フイルム株式会社 流路ブロック、センサユニット、及び全反射減衰を利用した測定装置
WO2007038478A2 (en) 2005-09-26 2007-04-05 Rapid Micro Biosystems, Inc Cassette containing growth medium
EP1795965B1 (de) * 2005-12-08 2012-05-16 Electronics and Telecommunications Research Institute Programmierbare Maske zur Herstellung eines Biomoleküls- oder Polymerarrays
US7547904B2 (en) * 2005-12-22 2009-06-16 Palo Alto Research Center Incorporated Sensing photon energies emanating from channels or moving objects
US8437582B2 (en) 2005-12-22 2013-05-07 Palo Alto Research Center Incorporated Transmitting light with lateral variation
US7386199B2 (en) * 2005-12-22 2008-06-10 Palo Alto Research Center Incorporated Providing light to channels or portions
US7433552B2 (en) * 2005-12-22 2008-10-07 Palo Alto Research Center Incorporated Obtaining analyte information
US7420677B2 (en) * 2005-12-22 2008-09-02 Palo Alto Research Center Incorporated Sensing photon energies of optical signals
US7358476B2 (en) * 2005-12-22 2008-04-15 Palo Alto Research Center Incorporated Sensing photons from objects in channels
US8460878B2 (en) 2006-02-21 2013-06-11 The Trustees Of Tufts College Methods and arrays for detecting cells and cellular components in small defined volumes
US11237171B2 (en) 2006-02-21 2022-02-01 Trustees Of Tufts College Methods and arrays for target analyte detection and determination of target analyte concentration in solution
US7768654B2 (en) 2006-05-02 2010-08-03 California Institute Of Technology On-chip phase microscope/beam profiler based on differential interference contrast and/or surface plasmon assisted interference
US9041938B2 (en) 2006-05-02 2015-05-26 California Institute Of Technology Surface wave assisted structures and systems
JP4431549B2 (ja) * 2006-05-31 2010-03-17 株式会社日立ハイテクノロジーズ 蛍光分析装置
US20120269728A1 (en) * 2006-08-02 2012-10-25 Antara Biosciences Inc. Methods and compositions for detecting one or more target agents using tracking components
WO2008049795A1 (en) * 2006-10-23 2008-05-02 Flexgen Bv Method and system for calibrating laser focus and position in micro-arrays
US7532128B2 (en) * 2006-10-25 2009-05-12 Alverix, Inc. Position sensitive indicator detection
DE102006056949B4 (de) * 2006-11-30 2011-12-22 Ruprecht-Karls-Universität Heidelberg Verfahren und Vorrichtung zur Detektion mindestens einer Eigenschaft von mindestens einem Objekt mit einem Mikrochip
US9164037B2 (en) 2007-01-26 2015-10-20 Palo Alto Research Center Incorporated Method and system for evaluation of signals received from spatially modulated excitation and emission to accurately determine particle positions and distances
US8821799B2 (en) 2007-01-26 2014-09-02 Palo Alto Research Center Incorporated Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity
US7633629B2 (en) * 2007-02-05 2009-12-15 Palo Alto Research Center Incorporated Tuning optical cavities
US7852490B2 (en) * 2007-02-05 2010-12-14 Palo Alto Research Center Incorporated Implanting optical cavity structures
US7936463B2 (en) * 2007-02-05 2011-05-03 Palo Alto Research Center Incorporated Containing analyte in optical cavity structures
US7522811B2 (en) * 2007-07-13 2009-04-21 Palo Alto Research Center Incorporated Producing sandwich waveguides
US7529438B2 (en) * 2007-07-13 2009-05-05 Palo Alto Research Center Incorporated Producing fluidic waveguides
EP2020263B1 (de) * 2007-07-27 2014-05-07 F.Hoffmann-La Roche Ag Etikett zur Ausrichtungserkennung, Trägerstruktur für einen Reagenzbehälter und Analysegerät
WO2009029073A1 (en) 2007-08-30 2009-03-05 The Trustees Of Tufts College Methods for determining the concentration of an analyte in solution.
DE102007054602A1 (de) * 2007-11-15 2009-05-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Messaufbau zum Erfassen der Verteilung mindestens einer Zustandsgröße in einem Messfeld mit verschiedenen Sonden
DE202007019582U1 (de) 2007-11-15 2014-01-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Messaufbau zum Erfassen der Verteilung mindestens einer Zustandsgröße in einem Messfeld mit verschiedenen Sonden
US8320983B2 (en) 2007-12-17 2012-11-27 Palo Alto Research Center Incorporated Controlling transfer of objects affecting optical characteristics
US8629981B2 (en) 2008-02-01 2014-01-14 Palo Alto Research Center Incorporated Analyzers with time variation based on color-coded spatial modulation
US8373860B2 (en) 2008-02-01 2013-02-12 Palo Alto Research Center Incorporated Transmitting/reflecting emanating light with time variation
JP2011513794A (ja) * 2008-03-04 2011-04-28 カリフォルニア インスティテュート オブ テクノロジー フォトセンサーアレイを備える光学流体顕微鏡装置
US8325349B2 (en) * 2008-03-04 2012-12-04 California Institute Of Technology Focal plane adjustment by back propagation in optofluidic microscope devices
JP2011513752A (ja) * 2008-03-04 2011-04-28 カリフォルニア インスティテュート オブ テクノロジー 光学流体顕微鏡装置を用いた方法
DE102008021365A1 (de) * 2008-04-29 2009-01-22 Siemens Aktiengesellschaft Verfahren zum Einbringen von Reagenzien in Mikrokanäle einer Analyseeinheit
US8039776B2 (en) 2008-05-05 2011-10-18 California Institute Of Technology Quantitative differential interference contrast (DIC) microscopy and photography based on wavefront sensors
US8222047B2 (en) 2008-09-23 2012-07-17 Quanterix Corporation Ultra-sensitive detection of molecules on single molecule arrays
JP6015889B2 (ja) 2008-09-24 2016-10-26 ファースト ライト バイオサイエンシズ インコーポレイテッド 分析物を試験するためのイメージングアナライザ
WO2010036972A1 (en) 2008-09-25 2010-04-01 The Trustees Of Columbia University In The City Of New York Devices, apparatus and method for providing photostimulation and imaging of structures
RU2385940C1 (ru) * 2008-10-23 2010-04-10 Общество с ограниченной ответственностью "ВИНТЕЛ" Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
WO2010090849A1 (en) * 2009-01-21 2010-08-12 California Institute Of Technology Quantitative differential interference contrast (dic) devices for computed depth sectioning
DE102009014080B4 (de) * 2009-03-23 2011-12-15 Baumer Innotec Ag Vorrichtung zum Bestimmen von Partikelgrössen
FR2943789B1 (fr) * 2009-03-26 2013-07-26 Commissariat Energie Atomique Procede et dispositif pour la caracterisation de la dynamique de coagulation ou sedimentation d'un fluide tel que le sang ou le plasma sanguin
KR20100109196A (ko) * 2009-03-31 2010-10-08 삼성전자주식회사 빛의 투과량 또는 반사량을 이용한 검출 대상물의 농도 측정시스템 및 방법
US8300971B2 (en) * 2009-04-17 2012-10-30 LevelSet Systems, Inc. Method and apparatus for image processing for massive parallel DNA sequencing
US8416400B2 (en) * 2009-06-03 2013-04-09 California Institute Of Technology Wavefront imaging sensor
US8633432B2 (en) * 2009-09-21 2014-01-21 California Institute Of Technology Reflective focusing and transmissive projection device
CN101698146B (zh) * 2009-09-24 2011-10-26 复旦大学附属肿瘤医院 用于合成放射性药物的微量反应器及其应用
JP5012873B2 (ja) * 2009-10-14 2012-08-29 カシオ計算機株式会社 画像処理装置
EP2494400B1 (de) * 2009-10-28 2021-12-08 Alentic Microscience Inc. Mikroskopische bildgebung
US9075225B2 (en) 2009-10-28 2015-07-07 Alentic Microscience Inc. Microscopy imaging
EP2496929B1 (de) * 2009-11-05 2013-07-03 Waterford Institute Of Technology Biosensor mit nanoloch-array
US8415171B2 (en) 2010-03-01 2013-04-09 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
US8236574B2 (en) 2010-03-01 2012-08-07 Quanterix Corporation Ultra-sensitive detection of molecules or particles using beads or other capture objects
US9678068B2 (en) 2010-03-01 2017-06-13 Quanterix Corporation Ultra-sensitive detection of molecules using dual detection methods
CA2791655C (en) 2010-03-01 2014-11-04 Quanterix Corporation Methods and systems for extending dynamic range in assays for the detection of molecules or particles
EP2550522B1 (de) * 2010-03-23 2016-11-02 California Institute of Technology Hochauflösende optofluidische mikroskope für 2d- und 3d-bildgebung
DE102010018678B4 (de) 2010-04-28 2017-06-29 Sartorius Stedim Biotech Gmbh Bioreaktoranordnung, Schüttelvorrichtung und Verfahren zum Bestrahlen eines Mediums in einem Bioreaktor
SE535918C2 (sv) * 2010-06-10 2013-02-19 Hemocue Ab Detektion av magnetiskt inmärkta biologiska komponenter
US8962252B2 (en) 2010-08-31 2015-02-24 Canon U.S. Life Sciences, Inc. Optical system for high resolution thermal melt detection
US9114399B2 (en) 2010-08-31 2015-08-25 Canon U.S. Life Sciences, Inc. System and method for serial processing of multiple nucleic acid assays
WO2012033957A2 (en) 2010-09-09 2012-03-15 California Institute Of Technology Delayed emission detection devices and methods
US9569664B2 (en) 2010-10-26 2017-02-14 California Institute Of Technology Methods for rapid distinction between debris and growing cells
US9643184B2 (en) 2010-10-26 2017-05-09 California Institute Of Technology e-Petri dishes, devices, and systems having a light detector for sampling a sequence of sub-pixel shifted projection images
CN103154662A (zh) 2010-10-26 2013-06-12 加州理工学院 扫描投影无透镜显微镜系统
DE102010056289A1 (de) 2010-12-24 2012-06-28 Geneart Ag Verfahren zur Herstellung von Leseraster-korrekten Fragment-Bibliotheken
US9952237B2 (en) 2011-01-28 2018-04-24 Quanterix Corporation Systems, devices, and methods for ultra-sensitive detection of molecules or particles
JP2014515179A (ja) 2011-03-03 2014-06-26 カリフォルニア インスティチュート オブ テクノロジー 光ガイドピクセル
US20140302532A1 (en) 2011-04-12 2014-10-09 Quanterix Corporation Methods of determining a treatment protocol for and/or a prognosis of a patient's recovery from a brain injury
US8723140B2 (en) 2011-08-09 2014-05-13 Palo Alto Research Center Incorporated Particle analyzer with spatial modulation and long lifetime bioprobes
US9029800B2 (en) 2011-08-09 2015-05-12 Palo Alto Research Center Incorporated Compact analyzer with spatial modulation and multiple intensity modulated excitation sources
US9117149B2 (en) 2011-10-07 2015-08-25 Industrial Technology Research Institute Optical registration carrier
MX368123B (es) 2011-11-07 2019-09-19 Rapid Micro Biosystems Inc Cassette para pruebas de esterilidad.
KR20130073354A (ko) * 2011-12-23 2013-07-03 한국전자통신연구원 바이오 칩 분석 장치
CA2870358C (en) 2012-04-16 2022-11-22 Rapid Micro Biosystems, Inc. Cell culturing device
US9932626B2 (en) 2013-01-15 2018-04-03 Quanterix Corporation Detection of DNA or RNA using single molecule arrays and other techniques
US9518920B2 (en) 2013-06-26 2016-12-13 Alentic Microscience Inc. Sample processing improvements for microscopy
US10502666B2 (en) 2013-02-06 2019-12-10 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
WO2014168734A1 (en) * 2013-03-15 2014-10-16 Cedars-Sinai Medical Center Time-resolved laser-induced fluorescence spectroscopy systems and uses thereof
DE102013106432A1 (de) * 2013-06-20 2014-12-24 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Optische Indikator-Einheit und Vorrichtung und Verfahren zur Bestimmung einer physikalisch-chemischen Eigenschaft eines Prozessmediums in einer prozesstechnischen Anlage
TWI646230B (zh) 2013-08-05 2019-01-01 扭轉生物科技有限公司 重新合成之基因庫
CA2975855A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US10669304B2 (en) 2015-02-04 2020-06-02 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
DE102015003019A1 (de) * 2015-03-06 2016-09-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur optischen Detektion einer Bewegung in einer biologischen Probe mit räumlicher Ausdehnung
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
EP3104208B1 (de) * 2015-06-09 2022-08-24 Nokia Technologies Oy Elektrisches schaltkreis zur ventilsteuerung zur übertragungssteuerung einer optisch aktiven flüssigkeit von einem ersten reservoir zu einem zweiten reservoir
WO2017010375A1 (ja) * 2015-07-10 2017-01-19 ヤマト科学株式会社 組織試料分析装置及び組織試料分析システム
JP6239562B2 (ja) 2015-09-14 2017-11-29 株式会社東芝 照明デバイスおよびそれを備えるバイオ情報計測装置
CA2998169A1 (en) 2015-09-18 2017-03-23 Twist Bioscience Corporation Oligonucleic acid variant libraries and synthesis thereof
CN108698012A (zh) 2015-09-22 2018-10-23 特韦斯特生物科学公司 用于核酸合成的柔性基底
US9895673B2 (en) 2015-12-01 2018-02-20 Twist Bioscience Corporation Functionalized surfaces and preparation thereof
CN106248764B (zh) * 2016-08-03 2020-03-24 南京山诺生物科技有限公司 一种实时可视共享及一体成像的核酸电泳装置及其操作方法
AU2017315294B2 (en) 2016-08-22 2023-12-21 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
JP6871364B2 (ja) 2016-09-21 2021-05-12 ツイスト バイオサイエンス コーポレーション 核酸に基づくデータ保存
KR20180046098A (ko) * 2016-10-27 2018-05-08 삼성전자주식회사 검사장치, 검사 시스템 및 검사장치의 제어방법
GB2573069A (en) 2016-12-16 2019-10-23 Twist Bioscience Corp Variant libraries of the immunological synapse and synthesis thereof
KR20190119107A (ko) 2017-02-22 2019-10-21 트위스트 바이오사이언스 코포레이션 핵산 기반 데이터 저장
CA3056388A1 (en) 2017-03-15 2018-09-20 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
CN111566209A (zh) 2017-06-12 2020-08-21 特韦斯特生物科学公司 无缝核酸装配方法
JP2020536504A (ja) 2017-09-11 2020-12-17 ツイスト バイオサイエンス コーポレーション Gpcr結合タンパク質およびその合成
GB2583590A (en) 2017-10-20 2020-11-04 Twist Bioscience Corp Heated nanowells for polynucleotide synthesis
DE102017127671A1 (de) * 2017-11-23 2019-05-23 Osram Opto Semiconductors Gmbh Photonischer Gassensor und Verfahren zur Herstellung eines photonischen Gassensors
EP3735459A4 (de) 2018-01-04 2021-10-06 Twist Bioscience Corporation Digitale informationsspeicherung auf dna-basis
GB2590196A (en) 2018-05-18 2021-06-23 Twist Bioscience Corp Polynucleotides, reagents, and methods for nucleic acid hybridization
US20210379556A1 (en) 2018-10-24 2021-12-09 Daniel Shafer Microscale Chemical Reactors
CN109289725A (zh) * 2018-11-14 2019-02-01 山东金德新材料有限公司 一种新型微通道反应器
WO2020127828A1 (de) * 2018-12-21 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, vermessungssystem und verfahren zur erfassung einer zumindest teilweise spiegelnden oberfläche unter verwendung zweier spiegelungsmuster
WO2020176680A1 (en) 2019-02-26 2020-09-03 Twist Bioscience Corporation Variant nucleic acid libraries for antibody optimization
EP3930753A4 (de) 2019-02-26 2023-03-29 Twist Bioscience Corporation Variante nukleinsäurebibliotheken für glp1-rezeptor
US11332738B2 (en) 2019-06-21 2022-05-17 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
DE102020123949A1 (de) 2020-09-15 2022-03-17 IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH (IMMS GmbH) Elektrochemische Sensoranordnung und Verwendung eines fotoelektrischen Sensors zur Bestimmung von Ladungsträgern in einem Medium
WO2023187429A1 (en) * 2022-03-31 2023-10-05 Thalesnano Zrt Flow-through type apparatus for performing chemical reaction of reagents principally in space

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001559A2 (de) * 1993-07-02 1995-01-12 Evotec Biosystems Gmbh Probenträger und seine verwendung
WO1996010747A1 (en) * 1994-09-30 1996-04-11 Abbott Laboratories Devices and methods utilizing arrays of structures for analyte capture
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
WO1997019749A1 (en) * 1995-11-27 1997-06-05 Dehlinger Peter J Method and apparatus for producing position-addressable combinatorial libraries
US5677195A (en) * 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
US5723320A (en) * 1995-08-29 1998-03-03 Dehlinger; Peter J. Position-addressable polynucleotide arrays
WO1998013683A1 (en) * 1996-09-26 1998-04-02 Sarnoff Corporation Massively parallel detection
US5755942A (en) * 1994-11-10 1998-05-26 David Sarnoff Research Center, Inc. Partitioned microelectronic device array

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1107714A (en) * 1964-04-18 1968-03-27 Dowty Technical Dev Ltd Hydraulic power transmission
US4342832A (en) 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
DE3301833A1 (de) 1983-01-20 1984-07-26 Gesellschaft für Biotechnologische Forschung mbH (GBF), 3300 Braunschweig Verfahren zur simultanen synthese mehrerer oligonocleotide an fester phase
DE8309254U1 (de) 1983-03-29 1985-01-03 Straub, Hans, Dipl.-Ing.(FH), 7345 Deggingen Verteilereinheit fuer die rohre von zentralheizungsanlagen
DE3322373C2 (de) * 1983-05-19 1986-12-04 Ioannis Dr. 3000 Hannover Tripatzis Testmittel und Verfahren zum Nachweis von Antigenen und/oder Antikörpern
SE8303626D0 (sv) 1983-06-23 1983-06-23 Kabigen Ab A recombinant plasmid a transformant microorganism, a polydoxyrebonucleotide segment, a process for producing a biologically active protein, and the protein thus produced
AU581669B2 (en) * 1984-06-13 1989-03-02 Applied Research Systems Ars Holding N.V. Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor
EP0316018A3 (de) 1985-03-29 1989-07-26 Cetus Oncology Corporation Modifikation von DNS-Sequenzen
SE458968B (sv) * 1987-06-16 1989-05-22 Wallac Oy Biospecifikt analysfoerfarande foer flera analyter i vilket ingaar partikelraekning och maerkning med fluorescerande maerksubstanser
GB8714270D0 (en) * 1987-06-18 1987-07-22 Williams G R Analysis of carbohydrates
US5162863A (en) * 1988-02-15 1992-11-10 Canon Kabushiki Kaisha Method and apparatus for inspecting a specimen by optical detection of antibody/antigen sensitized carriers
AU3869289A (en) 1988-07-14 1990-02-05 Baylor College Of Medicine Solid phase assembly and reconstruction of biopolymers
ATE143696T1 (de) 1989-02-28 1996-10-15 Canon Kk Partiell doppelsträngiges oligonukleotid und verfahren zu seiner bildung
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5925525A (en) * 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5547839A (en) 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5527681A (en) 1989-06-07 1996-06-18 Affymax Technologies N.V. Immobilized molecular synthesis of systematically substituted compounds
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US6309822B1 (en) * 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
FR2652423B1 (fr) 1989-09-22 1992-05-22 Ardt Rgle Dev Techn Procede de microlithographie pour la realisation de structures superficielles submicrometriques sur un substrat du type d'une plaquette de silicium, ainsi qu'un dispositif le mettant en óoeuvre.
AU642444B2 (en) 1989-11-30 1993-10-21 Mochida Pharmaceutical Co., Ltd. Reaction vessel
WO1991018276A1 (en) 1990-05-22 1991-11-28 Kelly Kenneth A Microassay strip device for immunoassay
US5239178A (en) * 1990-11-10 1993-08-24 Carl Zeiss Optical device with an illuminating grid and detector grid arranged confocally to an object
CA2097708A1 (en) * 1990-12-06 1992-06-07 Stephen P. A. Fodor Very large scale immobilized polymer synthesis
DE69130251T2 (de) 1990-12-28 1999-05-27 Matsushita Electric Ind Co Ltd Verfahren zur Bildung ultrafeiner Strukturen
AU2422492A (en) * 1991-08-07 1993-03-02 H & N Instruments, Inc. Synthesis of chain chemical compounds
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
ATE148889T1 (de) 1991-09-18 1997-02-15 Affymax Tech Nv Verfahren zur synthese der verschiedenen sammlungen von oligomeren
US5239176A (en) * 1991-10-03 1993-08-24 Foster-Miller, Inc. Tapered optical fiber sensing attenuated total reflectance
US5605662A (en) 1993-11-01 1997-02-25 Nanogen, Inc. Active programmable electronic devices for molecular biological analysis and diagnostics
US6048690A (en) 1991-11-07 2000-04-11 Nanogen, Inc. Methods for electronic fluorescent perturbation for analysis and electronic perturbation catalysis for synthesis
US5849486A (en) 1993-11-01 1998-12-15 Nanogen, Inc. Methods for hybridization analysis utilizing electrically controlled hybridization
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
US5247180A (en) 1991-12-30 1993-09-21 Texas Instruments Incorporated Stereolithographic apparatus and method of use
US5258295A (en) * 1992-02-25 1993-11-02 Glyko, Inc. Fluorophore-assisted cloning analysis
GB9206671D0 (en) 1992-03-27 1992-05-13 Cranfield Biotech Ltd Electrochemical detection of dna hybridisation
ATE266195T1 (de) * 1992-09-14 2004-05-15 Stanford Res Inst Int Up-converting reporter molekül für biologische und andere testverfahren unter verwendung von laseranregungstechniken
WO1994012632A1 (en) 1992-11-27 1994-06-09 University College London Improvements in nucleic acid synthesis by pcr
DE4241871A1 (de) 1992-12-11 1994-06-16 Schulz Rudolf Ing Grad Molekularer Computer durch atomare Chips in Verbindung mit optischem Transistor sowie assoziativen Speichern
US5368823A (en) 1993-02-11 1994-11-29 University Of Georgia Research Foundation, Inc. Automated synthesis of oligonucleotides
DE4325724A1 (de) 1993-07-30 1995-02-02 Paul Dr Debbage Vorrichtung und Verfahren zur Untersuchung eines Objektes und zur Einwirkung auf das Objekt
DE69328693T2 (de) 1993-09-28 2000-08-31 Beckman Coulter Inc Biopolymersynthese mittels oberflächenaktivierter organischer polymere
US5824473A (en) 1993-12-10 1998-10-20 California Institute Of Technology Nucleic acid mediated electron transfer
US5952172A (en) 1993-12-10 1999-09-14 California Institute Of Technology Nucleic acid mediated electron transfer
DE4343591A1 (de) 1993-12-21 1995-06-22 Evotec Biosystems Gmbh Verfahren zum evolutiven Design und Synthese funktionaler Polymere auf der Basis von Formenelementen und Formencodes
EP0671626B1 (de) 1994-03-08 2000-01-12 Zeptosens AG Vorrichtung und Verfahren, die Bioaffinitätsassay und elektrophoretische Auftrennung kombinieren
US5571639A (en) 1994-05-24 1996-11-05 Affymax Technologies N.V. Computer-aided engineering system for design of sequence arrays and lithographic masks
US6406848B1 (en) * 1997-05-23 2002-06-18 Lynx Therapeutics, Inc. Planar arrays of microparticle-bound polynucleotides
US6974666B1 (en) * 1994-10-21 2005-12-13 Appymetric, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA
JPH08136546A (ja) * 1994-11-15 1996-05-31 Bio Sensor Kenkyusho:Kk 物質分析法
WO1996022531A1 (en) * 1995-01-16 1996-07-25 Erkki Soini A biospecific multiparameter assay method
US5959098A (en) 1996-04-17 1999-09-28 Affymetrix, Inc. Substrate preparation process
BR9607193B1 (pt) * 1995-03-10 2009-01-13 teste de eletroquimioluscÊncia multi-especÍfico de méltiplos conjuntos.
US5736257A (en) 1995-04-25 1998-04-07 Us Navy Photoactivatable polymers for producing patterned biomolecular assemblies
US5624711A (en) 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
US5582705A (en) 1995-05-19 1996-12-10 Iowa State University Research Foundation, Inc. Multiplexed capillary electrophoresis system
US5968745A (en) 1995-06-27 1999-10-19 The University Of North Carolina At Chapel Hill Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof
AU6752496A (en) 1995-07-28 1997-03-05 Ely Michael Rabani Pattern formation, replication, fabrication and devices thereby
US5807525A (en) 1995-08-17 1998-09-15 Hybridon, Inc. Apparatus and process for multi stage solid phase synthesis of long chained organic molecules
US5843655A (en) * 1995-09-18 1998-12-01 Affymetrix, Inc. Methods for testing oligonucleotide arrays
US5728251A (en) 1995-09-27 1998-03-17 Research Frontiers Inc Light modulating film of improved UV stability for a light valve
US5667195A (en) * 1995-11-13 1997-09-16 Matthew Howard McCormick Fluid drain apparatus
US6238884B1 (en) 1995-12-07 2001-05-29 Diversa Corporation End selection in directed evolution
US5747349A (en) * 1996-03-20 1998-05-05 University Of Washington Fluorescent reporter beads for fluid analysis
US6020481A (en) 1996-04-01 2000-02-01 The Perkin-Elmer Corporation Asymmetric benzoxanthene dyes
JP3233851B2 (ja) 1996-04-24 2001-12-04 繁織 竹中 遺伝子の電気化学的検出法およびその装置
ATE234462T1 (de) 1996-04-25 2003-03-15 Pence Inc Biosensor-vorrichtung und verfahren
US5851804A (en) 1996-05-06 1998-12-22 Apollon, Inc. Chimeric kanamycin resistance gene
US6040143A (en) 1996-07-19 2000-03-21 The Regents Of The University Of Michigan DNA encoding von Willebrand factor and methods of use
US5871628A (en) * 1996-08-22 1999-02-16 The University Of Texas System Automatic sequencer/genotyper having extended spectral response
GB9621122D0 (en) * 1996-10-10 1996-11-27 Cambridge Imaging Ltd Improvements in and relating to methods and apparatus for assay analysis
US6024925A (en) 1997-01-23 2000-02-15 Sequenom, Inc. Systems and methods for preparing low volume analyte array elements
IES80556B2 (en) 1997-01-10 1998-09-23 Robert Arpad Foster Electrochemical diagnostic detection device
US5812272A (en) 1997-01-30 1998-09-22 Hewlett-Packard Company Apparatus and method with tiled light source array for integrated assay sensing
US6001311A (en) 1997-02-05 1999-12-14 Protogene Laboratories, Inc. Apparatus for diverse chemical synthesis using two-dimensional array
US5985214A (en) * 1997-05-16 1999-11-16 Aurora Biosciences Corporation Systems and methods for rapidly identifying useful chemicals in liquid samples
DE69838067T2 (de) 1997-05-23 2008-03-13 Bioarray Solutions Ltd. Farbkodierung und in situ abfrage von matrix-gekoppelten chemischen verbindungen
DE19726634A1 (de) 1997-06-18 1998-12-24 Biotools Inst Fuer Computerint Verfahren und Vorrichtung zur Immobilisierung von Makromolekülen
CA2301309A1 (en) 1997-08-13 1999-02-25 Cepheid Microstructures for the manipulation of fluid samples
JP3938982B2 (ja) * 1997-08-29 2007-06-27 オリンパス株式会社 Dnaキャピラリィ
PT1538206E (pt) 1997-09-16 2010-04-12 Centocor Ortho Biotech Inc Método para a síntese química e construção completa de genes e genomas
EP1021558A1 (de) 1997-10-10 2000-07-26 President And Fellows Of Harvard College Oberflächengebundene, doppelsträngige dna-protein-arrays
US6177558B1 (en) 1997-11-13 2001-01-23 Protogene Laboratories, Inc. Method and composition for chemical synthesis using high boiling point organic solvents to control evaporation
US6197503B1 (en) 1997-11-26 2001-03-06 Ut-Battelle, Llc Integrated circuit biochip microsystem containing lens
US6242246B1 (en) 1997-12-15 2001-06-05 Somalogic, Inc. Nucleic acid ligand diagnostic Biochip
US20020076735A1 (en) * 1998-09-25 2002-06-20 Williams Lewis T. Diagnostic and therapeutic methods using molecules differentially expressed in cancer cells
JP2002500897A (ja) 1998-01-27 2002-01-15 クリニカル・マイクロ・センサーズ・インコーポレイテッド 電子的核酸検出の増幅
US6309831B1 (en) 1998-02-06 2001-10-30 Affymetrix, Inc. Method of manufacturing biological chips
US6426184B1 (en) * 1998-02-11 2002-07-30 The Regents Of The University Of Michigan Method and apparatus for chemical and biochemical reactions using photo-generated reagents
ES2344772T3 (es) 1998-02-23 2010-09-06 Wisconsin Alumni Research Foundation Metodo y aparato para la sintesis de matrices de sondas de adn.
US6130046A (en) 1998-05-04 2000-10-10 Affymetrix, Inc. Techniques for synthesis integrity evaluation utilizing cycle fidelity probes
DE19823454A1 (de) * 1998-05-18 1999-11-25 Epigenomics Gmbh Verfahren zur photolithographischen Herstellung von DNA, PNA und Protein Chips
WO1999060170A1 (en) 1998-05-21 1999-11-25 Hyseq, Inc. Linear arrays of immobilized compounds and methods of using same
DE19823876B4 (de) 1998-05-28 2004-07-22 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Mit unterschiedlichen Verbindungen beladenes Bauteil (Biochip) sowie Verfahren zu dessen Herstellung
US6271957B1 (en) * 1998-05-29 2001-08-07 Affymetrix, Inc. Methods involving direct write optical lithography
WO1999063385A1 (en) 1998-06-04 1999-12-09 Board Of Regents, The University Of Texas System Digital optical chemistry micromirror imager
US6908770B1 (en) * 1998-07-16 2005-06-21 Board Of Regents, The University Of Texas System Fluid based analysis of multiple analytes by a sensor array
RU2161653C2 (ru) 1998-08-24 2001-01-10 ФАРМАКОВСКИЙ Дмитрий Александрович Способ количественного электрохимического анализа биомолекул
DE59915204D1 (de) 1998-08-28 2010-10-28 Febit Holding Gmbh Verfahren zur herstellung von biochemischen reaktionsträgern
DE19842164B4 (de) 1998-09-15 2004-06-03 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Verfahren zur Qualitätskontrolle beim Aufbau von Oligomerrastern
DE19921940C2 (de) 1998-11-23 2003-02-06 Friz Biochem Gmbh Verfahren zur elektrochemischen Detektion von Nukleinsäureoligomerhybriden
DE19964220C2 (de) 1998-11-23 2003-07-03 Friz Biochem Gmbh Verfahren zur Herstellung einer modifizierten leitfähigen Oberfläche
DE19901761A1 (de) 1999-01-18 1999-07-01 Gerhard Dr Hartwich Verfahren zur elektrochemischen Detektion von Nukleinsäure-Oligomer-Hybridisierungsereignissen
BR0007571A (pt) 1999-01-18 2001-11-27 Friz Biochem Gmbh OligÈmero de ácido nucléico modificado, processode produção de um oligÈmero de ácido nucléicomodificado, superfìcie condutora modificada,processo de produção de uma superfìciecondutora modificada e processo de detecçãoeletroquìmica de eventos de hibridização deoligÈmero
ATE456652T1 (de) 1999-02-19 2010-02-15 Febit Holding Gmbh Verfahren zur herstellung von polymeren
DE19910392B4 (de) 1999-03-05 2005-03-17 Clondiag Chip Technologies Gmbh Mikrosäulenreaktor
EP1159285B1 (de) 1999-03-08 2005-05-25 Metrigen, Inc. Syntheseverfahren zum ökonomischen aufbau langer dna-sequenzen und zusammensetzungen hierfür
US6114123A (en) * 1999-06-14 2000-09-05 Incyte Pharmaceuticals, Inc. Lipocalin family protein
DE50107386D1 (de) 2000-10-17 2005-10-13 Febit Ag Verfahren und vorrichtung zur integrierten synthese und analytbestimmung an einem träger
DE10051396A1 (de) 2000-10-17 2002-04-18 Febit Ferrarius Biotech Gmbh Verfahren und Vorrichtung zur integrierten Synthese und Analytbestimmung an einem Träger
US20020160427A1 (en) 2001-04-27 2002-10-31 Febit Ag Methods and apparatuses for electronic determination of analytes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677195A (en) * 1991-11-22 1997-10-14 Affymax Technologies N.V. Combinatorial strategies for polymer synthesis
WO1995001559A2 (de) * 1993-07-02 1995-01-12 Evotec Biosystems Gmbh Probenträger und seine verwendung
WO1996010747A1 (en) * 1994-09-30 1996-04-11 Abbott Laboratories Devices and methods utilizing arrays of structures for analyte capture
US5755942A (en) * 1994-11-10 1998-05-26 David Sarnoff Research Center, Inc. Partitioned microelectronic device array
US5545531A (en) * 1995-06-07 1996-08-13 Affymax Technologies N.V. Methods for making a device for concurrently processing multiple biological chip assays
US5723320A (en) * 1995-08-29 1998-03-03 Dehlinger; Peter J. Position-addressable polynucleotide arrays
WO1997019749A1 (en) * 1995-11-27 1997-06-05 Dehlinger Peter J Method and apparatus for producing position-addressable combinatorial libraries
WO1998013683A1 (en) * 1996-09-26 1998-04-02 Sarnoff Corporation Massively parallel detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. D. HOHEISEL : "Oligomer-chip technology" TRENDS IN BIOTECHNOLOGY., Bd. 15, Nr. 11, November 1997 (1997-11), Seiten 465-469-469, XP004092669 ELSEVIER PUBLICATIONS, CAMBRIDGE., GB ISSN: 0167-7799 in der Anmeldung erw{hnt *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097974B1 (en) 1998-08-28 2006-08-29 Febit Biotech Gmbh Support for a method for determining an analyte and a method for producing the support
WO2000066259A1 (en) * 1999-05-05 2000-11-09 Ut-Battelle, Llc Method and apparatus for combinatorial chemistry
WO2002032567A1 (de) * 2000-10-17 2002-04-25 Febit Ag Verfahren und vorrichtung zur integrierten synthese und analytbestimmung an einem träger
US7470540B2 (en) 2000-10-17 2008-12-30 Febit Ag Method and device for the integrated synthesis and analysis of analytes on a support
US7901886B2 (en) 2001-10-10 2011-03-08 Febit Holding Gmbh Microfluidic extraction method
EP2065702A1 (de) 2001-10-10 2009-06-03 febit holding GmbH Mikrofluidisches Extraktionsverfahren
WO2003038122A2 (de) * 2001-10-26 2003-05-08 Febit Ag Asymmetrische sonden
WO2003038122A3 (de) * 2001-10-26 2004-03-25 Febit Ag Asymmetrische sonden
US7416841B2 (en) 2002-08-07 2008-08-26 Seiko Epson Corporation Diagnostic analytical system comprising DNA chips with thin-film transistor (TFT) elements
US7741041B2 (en) 2002-08-07 2010-06-22 Seiko Epson Corporation Diagnostic analytical method utilizing DNA chips with thin-film transistor (TFT) elements
US7499823B2 (en) 2002-08-07 2009-03-03 Seiko Epson Corporation Producing system and its control device, control method, control system and control program
WO2004059003A3 (de) * 2002-12-23 2006-03-30 Febit Biotech Gmbh Einbau von hapten-gruppen bei der herstellung von trägern für die analytbestimmung
WO2004058393A3 (de) * 2002-12-23 2004-09-10 Febit Ag Verfahren zum validierten aufbau von arrays
WO2004058393A2 (de) * 2002-12-23 2004-07-15 Febit Biotech Gmbh Verfahren zum validierten aufbau von arrays
WO2004059003A2 (de) * 2002-12-23 2004-07-15 Febit Biotech Gmbh Einbau von hapten-gruppen bei der herstellung von trägern für die analytbestimmung
US8133670B2 (en) * 2003-06-13 2012-03-13 Cold Spring Harbor Laboratory Method for making populations of defined nucleic acid molecules
US8753811B2 (en) 2003-06-13 2014-06-17 Cold Spring Harbor Laboratory Method for making populations of defined nucleic acid molecules
US7122799B2 (en) 2003-12-18 2006-10-17 Palo Alto Research Center Incorporated LED or laser enabled real-time PCR system and spectrophotometer
US7560417B2 (en) 2005-01-13 2009-07-14 Wisconsin Alumni Research Foundation Method and apparatus for parallel synthesis of chain molecules such as DNA
US8501416B2 (en) 2005-04-19 2013-08-06 President And Fellows Of Harvard College Fluidic structures including meandering and wide channels
US9683993B2 (en) 2005-04-19 2017-06-20 President And Fellows Of Harvard College Fluidic structures including meandering and wide channels
EP2489671A2 (de) 2006-08-23 2012-08-22 febit holding GmbH Programmierbare Oligonukleotidsynthese
WO2008022789A2 (de) 2006-08-23 2008-02-28 Febit Holding Gmbh Programmierbare oligonukleotidsynthese
DE102006062089A1 (de) 2006-12-29 2008-07-03 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
DE102007018833A1 (de) 2007-04-20 2008-10-23 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
WO2009065620A2 (de) 2007-11-23 2009-05-28 Febit Holding Gmbh Flexibles extraktionsverfahren für die herstellung sequenzspezifischer molekülbibliotheken
DE102007056398A1 (de) 2007-11-23 2009-05-28 Febit Holding Gmbh Flexibles Extraktionsverfahren für die Herstellung sequenzspezifischer Molekülbibliotheken
WO2010094772A1 (en) 2009-02-20 2010-08-26 Febit Holding Gmbh Synthesis of sequence-verified nucleic acids
WO2010106109A1 (en) 2009-03-17 2010-09-23 Febit Holding Gmbh Multi-use of biochips

Also Published As

Publication number Publication date
EP1117996B1 (de) 2010-09-15
WO2000013017A2 (de) 2000-03-09
DE19940752A1 (de) 2000-04-27
WO2000012123A2 (de) 2000-03-09
US20040175734A1 (en) 2004-09-09
EP1117478A2 (de) 2001-07-25
AU760425B2 (en) 2003-05-15
WO2000013018B1 (de) 2000-10-26
AU5742499A (en) 2000-03-21
DE19940751A1 (de) 2000-03-02
WO2000013018A3 (de) 2000-09-14
EP1405666B1 (de) 2007-03-21
DE59915204D1 (de) 2010-10-28
DE59914270D1 (de) 2007-05-03
EP1742058B1 (de) 2011-11-30
US20070031877A1 (en) 2007-02-08
AU5625399A (en) 2000-03-21
ATE481637T1 (de) 2010-10-15
CA2341896A1 (en) 2000-03-09
ATE357289T1 (de) 2007-04-15
ATE296677T1 (de) 2005-06-15
US7737088B1 (en) 2010-06-15
EP1117996A2 (de) 2001-07-25
EP1405666A3 (de) 2004-07-28
US20080214412A1 (en) 2008-09-04
AU5971399A (en) 2000-03-21
EP1117478B1 (de) 2005-06-01
AU771238B2 (en) 2004-03-18
EP1742058A2 (de) 2007-01-10
JP2002525587A (ja) 2002-08-13
DE19940749A1 (de) 2000-05-18
AU749884B2 (en) 2002-07-04
EP2273270A1 (de) 2011-01-12
WO2000013017A3 (de) 2000-07-20
ATE535814T1 (de) 2011-12-15
DE59912120D1 (de) 2005-07-07
DE19940810A1 (de) 2000-05-11
WO2000013017A9 (de) 2000-08-24
JP2002525590A (ja) 2002-08-13
JP2002523781A (ja) 2002-07-30
EP1115424A1 (de) 2001-07-18
US7097974B1 (en) 2006-08-29
EP1405666A2 (de) 2004-04-07
CA2341894A1 (en) 2000-03-09
WO2000012123A3 (de) 2001-04-12
EP1742058A3 (de) 2008-12-10
DE19940750A1 (de) 2000-06-21

Similar Documents

Publication Publication Date Title
EP1117478B1 (de) Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers
EP0706646B1 (de) Probenträger und seine verwendung
DE60003171T2 (de) Methoden zur miniaturisierten zellenanordnung und auf zellen basierendes screening gerät
EP2305383B1 (de) Vorrichtungen für die durchführung und analyse von mikroarray-experimenten
DE69333687T2 (de) Optische und elektrische verfahren zur bestimmung von molekülen
DE19731479A1 (de) Vorrichtung und Verfahren mit Feldlichtquellenarray für eine integrierte Probenerfassung
EP1153282A2 (de) Verfahren und vorrichtungen zur erfassung optischer eigenschaften, insbesondere von lumineszenz-reaktionen und brechungsverhalten, von auf einem träger direkt oder indirekt gebundenen molekülen
EP2324911A2 (de) Prozessieren von Proben in Lösungen mit definiert kleiner Wandkontaktfläche
EP1277055B1 (de) Biochip zur archivierung und labormedizinischen analyse von biologischem probenmaterial
DE10142691A1 (de) Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
EP1497030B1 (de) Vorrichtung auf basis von partiell oxidiertem porösen silizium und verfahren zu deren herstellung
EP1281969A2 (de) Verfahren und Vorrichtung zum Bestimmen von Proteinen auf einem Reaktionsträger
Adar et al. A raman microprobe optimized for microarrays and multiple-well plates, Am
EP1420248A2 (de) Validiertes Design für Mikroarrays

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: B1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

B Later publication of amended claims
ENP Entry into the national phase

Ref document number: 2341896

Country of ref document: CA

Ref country code: CA

Ref document number: 2341896

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999944538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 57424/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09763914

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999944538

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 57424/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999944538

Country of ref document: EP