WO2000013342A1 - Terminal de communication radio et procede de commande de puissance d'emission - Google Patents

Terminal de communication radio et procede de commande de puissance d'emission Download PDF

Info

Publication number
WO2000013342A1
WO2000013342A1 PCT/JP1999/004467 JP9904467W WO0013342A1 WO 2000013342 A1 WO2000013342 A1 WO 2000013342A1 JP 9904467 W JP9904467 W JP 9904467W WO 0013342 A1 WO0013342 A1 WO 0013342A1
Authority
WO
WIPO (PCT)
Prior art keywords
directivity
channel signal
transmission
power
power control
Prior art date
Application number
PCT/JP1999/004467
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Hiramatsu
Kazuyuki Miya
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CA002307204A priority Critical patent/CA2307204C/en
Priority to US09/529,912 priority patent/US6539234B1/en
Priority to EP99938535A priority patent/EP1028547A4/en
Priority to KR1020007004530A priority patent/KR100333201B1/ko
Priority to AU53019/99A priority patent/AU5301999A/en
Publication of WO2000013342A1 publication Critical patent/WO2000013342A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Definitions

  • the present invention relates to a wireless communication terminal device and a transmission power control method for a wireless communication device such as a mobile phone and a car phone.
  • terminal devices In order to perform good communication in wireless communication systems such as mobile phones and car phones, which have spread rapidly in recent years, transmission is performed by base station devices and wireless communication terminal devices (hereinafter simply referred to as “terminal devices”). It is indispensable to finely control the power.
  • FIG. 1 is a block diagram showing a configuration of a conventional terminal device.
  • the signal received by the antenna 11 is input to the reception RF unit 13 via the duplexer 12 and the power of the reception signal is amplified by the reception RF unit 13 and the frequency of the reception signal is converted. Then, a baseband signal is extracted. This baseband signal is demodulated by the demodulation unit 14 and the signal of the individual channel of the own station is extracted.
  • reception power measurement unit 15 measures the reception power of the individual channel of the own station output from the demodulation unit 14 and the transmission power control unit 16 determines the transmission amplifier of the transmission amplifier based on the reception power. A gain is calculated.
  • the transmission signal is modulated by the modulation section 17, the frequency is converted by the transmission RF section 18, the power is amplified based on the gain of the transmission amplifier, and the antenna 1 1 is passed through the duplexer 12. Sent from
  • the communication device since the signal transmitted by radio is attenuated in the propagation path, the communication device It is necessary to control the transmission power in consideration of the amount of attenuation.
  • the terminal device controls the transmission power so that the reception power is constant in the base station device.
  • the reception power RM (tl) of the individual channel of the own station received by the terminal apparatus is Is calculated by the following equation (1).
  • the received power RB (t2) of the base station device is expressed by the following equation ( It is calculated by 2).
  • each power value handles gain, so it is unified in dB and calculated by addition and subtraction.
  • the propagation path is regarded as the same. It is possible to treat the downlink attenuation LD (tl) at time tl and the uplink attenuation LU (t2) at time t2 to be the same.
  • the gain GM (t2) of the transmission amplifier of the terminal device is a value obtained by adding the downlink attenuation LD (tl) to the expected reception power RB (t2) of the base station device, which is the target gain. It can be expressed as equation (3).
  • the gain GM (tl) of the transmission amplifier of the base station device is constant and the expected received power RB (t2) of the base station device is controlled to be constant, the sum of these values is fixed gain GO and Then, the gain GM (t2) of the transmission amplifier of the terminal device is calculated from Expressions (1) and (3) by Expression (4) shown below.
  • the conventional terminal device controls the gain GM (t2) of the transmission amplifier based on the measured received power RM (tl) such that the received power RB (t2) of the base station device becomes constant.
  • the base station device transmits a signal with a narrow directivity
  • the received power decreases due to a difference in directivity with respect to the terminal device in addition to the attenuation of the received power in the propagation path.
  • the conventional terminal device described above regards even a case where the received signal is reduced due to a difference in directivity as attenuation in the propagation path, and transmits a signal with excessive power. There is a problem that the amount of interference with the device is increased and other terminal devices in the vicinity become unable to communicate, and the battery life is shortened. Disclosure of the invention
  • the purpose is to provide a control method.
  • the purpose is to calculate the transmission gain from the received power of the individual channel, determine the presence or absence of directivity deviation from the ratio of the average received power of the individual channel and the average received power of the common channel. This is achieved by calculating the correction value and correcting the transmission gain.
  • FIG. 1 is a block diagram showing a configuration of a conventional wireless communication terminal device
  • FIG. 2 is a system configuration diagram including the wireless communication terminal device of the present invention
  • FIG. 3 is a block diagram illustrating a configuration of the wireless communication terminal device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a transmission power control of the wireless communication terminal device according to the first embodiment.
  • FIG. 5 is a flowchart illustrating transmission power control of the wireless communication terminal apparatus according to Embodiment 2.
  • FIG. 6 is a flowchart showing transmission power control of a wireless communication terminal apparatus according to Embodiment 3.
  • FIG. 2 is a system configuration diagram of a wireless communication system including a wireless communication terminal device (hereinafter, simply referred to as “terminal device”) of the present invention.
  • the base station apparatus 100 transmits a common channel signal with a wide transmission directivity from the antenna 101, and simultaneously transmits an individual channel signal with a narrow directivity to each terminal apparatus. Note that a perch channel or a broadcast channel is used as a common channel depending on the system.
  • the terminal device 200 receives a common channel signal having a wide transmission directivity and a dedicated channel signal having a narrow transmission direction from the antenna 201.
  • orthogonal spreading codes are assigned to each terminal device, and transmission data is spread by the spreading codes and transmitted.
  • orthogonal codes By employing orthogonal codes between a plurality of terminal devices, it is possible to communicate with a plurality of terminal devices using the same frequency at the same time at the same time.
  • FIG. 3 is a block diagram showing a configuration of a terminal device according to Embodiment 1.
  • Duplexer 202 switches the path through which the signal passes during transmission and reception, outputs the signal received from antenna 201 to reception RF section 203, and outputs it from transmission RF section 211. The output transmission signal is output to antenna 201.
  • the reception RF section 203 amplifies the reception power, converts the frequency of the reception signal, and outputs a baseband signal.
  • the dedicated channel demodulation unit 204 despreads the baseband signal with the dedicated channel spreading code, demodulates the signal, and obtains the dedicated channel signal of the own station. put out.
  • Common channel demodulation section 205 despreads the baseband signal with a common channel spreading code.
  • First received power measuring section 206 measures the received power RMD (tl) of the despread dedicated channel.
  • the second received power measuring section 207 measures the received power RMC (tl) of the despread common channel.
  • First average power calculation section 208 calculates average value ARMD (tl) of measured received power RMD (tl) of the dedicated channel.
  • Second average power calculation section 209 calculates an average value ARMC (tl) of the measured reception power of common channel RMC (tl).
  • the decision unit 210 determines whether the directivity of the individual channel is to the terminal device based on whether the difference between the average received power ARMD (tl) of the individual channel and the average received power ARMC (tl) of the common channel is larger than a threshold value C. It is determined whether or not there is a deviation.
  • the threshold value C can be set as a system, or can be reported from the base station apparatus at the start of communication of an individual channel.
  • the threshold value C If the difference between the average received power ARMC (tl) of the common channel and the average received power ARMD (tl) of the individual channel is smaller than the threshold value C, it can be determined that the directivity of the individual channel is suitable for the terminal device. If the threshold value is larger than the threshold value C, it can be determined that the directivity of the individual channel is shifted from the terminal device.
  • the reason why the average received power is used to determine the presence or absence of directivity is to suppress instantaneous fluctuation due to fading.
  • the transmission power control unit 211 calculates the gain GM (t2) of the transmission amplifier using the reception power of the individual channel and the reception power of the common channel based on the determination result of the determination unit 210.
  • the amplifier in the transmission RF section 2 13 is controlled.
  • the base station apparatus since the base station apparatus normally receives signals with a plurality of directivities and combines the received signals, the base station apparatus can correctly receive signals even when the directivity on the downlink is shifted.
  • the directivity of the individual channel is matched and the directivity gain is large, Since the received power is higher than the expected arrival power, if the transmission power is controlled based on the received power of the dedicated channel, the received power at the base station apparatus will be reduced, and the base station apparatus may not be able to receive correctly.
  • the transmission power control unit 211 determines the following equation (5) based on the fixed gain GO and the reception power RMD (tl) of the dedicated channel of the own station. Controls the gain GM (t2) of the transmission amplifier.
  • the fixed gain GO is the sum of the expected gain GB (tl) of the transmission amplifier of the base station apparatus and the received power RB (t2) of the base station apparatus.
  • the received power of the dedicated channel will be smaller than the expected arrival power.Therefore, if the transmission power is controlled based on the received power of the dedicated channel, However, the power that reaches the base station apparatus is increased by an amount corresponding to the decrease in the received signal due to the deviation in directivity.
  • the transmission power control unit 211 compares the directivity with the case where the directivity is determined as shown in Expression (6) below.
  • the gain GM (t2) of the transmission amplifier of the terminal device is set smaller by the constant G1.
  • Modulating section 212 performs primary modulation such as PSK or QAM on a transmission signal, and performs secondary modulation using a spread code.
  • the transmission RF section 213 converts the frequency of the modulated transmission signal and amplifies the transmission power based on the gain GM (t2) of the transmission amplifier.
  • GM gain of the transmission amplifier
  • the baseband signal is despread by a dedicated channel demodulation unit 204 with a dedicated channel spreading code, demodulated, and the signal of the local channel of the own station is extracted.
  • Ma The baseband signal is despread by common channel demodulation section 205 with a common channel spreading code.
  • the power calculation section 209, the determination section 210, and the transmission power control section 211 perform transmission power control described later, and calculate the gain GM (t2) of the transmission amplifier.
  • the transmission signal is modulated by the modulation section 212, frequency-converted by the transmission RF section 213, amplified based on the gain GM (t2) of the transmission amplifier, and transmitted from the antenna 201 via the duplexer 202.
  • the first received power measuring section 206 measures the received power RMD (tl) of the local channel of the own station (ST301), and similarly, the second received power measuring section 207 similarly despreads the common channel.
  • the received power RMC (tl) is measured (ST302).
  • the first average power calculation section 208 calculates the average received power ARMD (tl) of the individual channel (ST 303), and similarly, the second average power calculation section 209 calculates the average of the common channel.
  • the received power ARMC (tl) is calculated (ST304).
  • the decision unit 210 determines whether the directivity of the individual channel is determined by whether or not a value obtained by subtracting the average received power ARMD (tl) of the individual channel from the average received power ARMC (tl) of the common channel is larger than a threshold value C. It is determined whether there is any deviation (ST 305).
  • the transmission power control section 211 calculates the gain GM (t2) of the transmission amplifier from Equation (5) (ST 306), and the directivity is shifted. Is determined, the transmission power control section 211 calculates the gain GM (t2) of the transmission amplifier from equation (6) (ST307). In this way, the presence or absence of directivity deviation is determined from the average received power of the common channel and the average received power of the individual channel, and if the directivity of the individual channel is deviated, the transmission gain is corrected by a constant. Accordingly, it is possible to prevent the transmission power from becoming excessively high, suppress interference with other stations, and extend the battery life of the terminal device.
  • Embodiment 2 is a mode in which, when the directivity of the dedicated channel is deviated, the transmission gain is corrected based on the average received power of the common channel and the average received power of the dedicated channel.
  • the configuration of the terminal device according to Embodiment 2 is the same as that shown in FIG.
  • the transmission power control unit 211 compares the terminal with the terminal in which the directivity is determined as shown in the following equation (7). Set the gain GM (t2) of the transmission amplifier of the equipment smaller by the value obtained by subtracting the difference between the average received power ARMC (tl) of the common channel and the average received power ARMD (tl) of the individual channel from the threshold C.
  • GM (t2) GO-RMD (tl)-(C-(ARMC (tl)-ARMD (tl))) (7)
  • the received power of the despread individual channel of the own station is measured (ST401), and similarly, in the second received power measuring section 207. Then, the received power of the despread common channel is measured (ST 402).
  • the first average power calculation section 208 calculates the average received power of the individual channel (ST 403).
  • the second average power calculation section 209 calculates the average of the common channel.
  • the received power is calculated (ST404).
  • the judgment unit 210 determines the individual channel index based on whether or not a value obtained by subtracting the average received power of the individual channel from the average received power of the common channel is larger than a threshold value. It is determined whether or not the directionality is shifted (ST405).
  • the transmission power control unit 211 calculates the gain GM (t2) of the transmission amplifier from Equation (5) (ST406). If determined, the transmission power control section 211 calculates the gain GM (t2) of the transmission amplifier from equation (8) (ST 407).
  • Embodiment 3 is a mode in which, when the directivity of an individual channel is deviated, the transmission gain is calculated based on the reception power of the common channel.
  • the configuration of the terminal device according to the third embodiment is the same as that shown in FIG.
  • the transmission power control unit 211 determines the fixed gain GO and the measured common channel reception power RMC (tl) as shown in the following equation (8). Then, the gain GM (t2) of the transmission amplifier is controlled by the following equation.
  • GM (t2) GO-RMC (tl) (8)
  • the first received power measuring section 206 measures the received power of the despread individual channel of its own station (ST501), and similarly, the second received power measuring section 207 similarly despreads the common channel. Is measured (ST 502).
  • first average power calculation section 208 calculates the average received power of the individual channel (ST 503), and similarly, second average power calculation section 209 calculates the average received power of the common channel. (ST504).
  • determination section 210 determines whether or not the directivity of the individual channel is deviated based on whether or not a value obtained by subtracting the average received power of the individual channel from the average received power of the common channel is larger than a threshold value. (ST 505).
  • the transmission power control section 211 calculates the gain GM (t2) of the transmission amplifier from Equation (5) (ST 506), and the directivity is shifted. When it is determined, the transmission power control section 211 calculates the gain GM (t2) of the transmission amplifier from Equation (8) (ST 507).
  • the terminal device when the directivity of the individual channel is deviated, by calculating the transmission gain based on the reception power of the common channel, the terminal device becomes unable to receive a signal of variable directivity because the directivity deviates greatly. In this case, transmission power control can be performed.
  • the terminal device and the transmission power control method of the present invention when the base station device transmits a signal with narrow directivity, it is possible to accurately determine the cause of the decrease in the reception power.
  • the transmission power can be accurately controlled.

Description

明 細 書 無線通信端末装置及び送信電力制御方法 技術分野
本発明は、 携帯電話や自動車電話等の無線通ィ, :おける無線通信端 末装置及び送信電力制御方法に関する。 背景技術
近年、 急速に普及してきた携帯電話や自動車電話等の無線通信システムにお いて良好な通信を行うためには、 基地局装置及び無線通信端末装置 (以下、 単 に 「端末装置」 という) において送信電力をきめ細かく制御することが必須で あ 。
以下、 従来の端末装置の動作について、 図面を用いて説明する。 図 1は、 従 来の端末装置の構成を示すブロック図である。
アンテナ 1 1で受信された信号は、 共用器 1 2を経由して受信 R F部 1 3に 入力され、 受信 R F部 1 3にて、 受信信号の電力が増幅され、 受信信号の周波 数が変換されてべ一スバンド信号が取り出される。 このベースバンド信号は、 復調部 1 4にて復調され、 自局の個別チャネルの信号が取り出される。
また、 受信電力測定部 1 5にて、 復調部 1 4から出力された自局の個別チヤ ネルの受信電力が測定され、 送信電力制御部 1 6にて、 受信電力に基づいて送 信増幅器の利得が算出される。
送信信号は、 変調部 1 7にて変調され、 送信 R F部 1 8にて周波数を変換さ れ、 送信増幅器の利得に基づいて電力を増幅され、 共用器 1 2を経由してアン テナ 1 1から送信される。
ここで、 無線送信された信号は伝搬路において減衰するため、 通信装置は、 減衰量を考慮して送信電力を制御する必要がある。 端末装置は、 基地局装置に おいて受信電力が一定となるように送信電力を制御する。
時刻 tlにおいて、 基地局装置の送信増幅器の利得を GB(tl)、 下り回線の減 衰量を LD(tl)とすると、 端末装置が受信した自局の個別チャネルの受信電力 RM(tl)は、 以下に示す式 (1 ) により算出される。
また、 時刻 t2 において、 端末装置の送信増幅器の利得を GM(t2)、 上り回 線の減衰量を LU(t2)とすると、 基地局装置の受信電力 RB(t2)は、 以下に示す 式 (2 ) により算出される。 なお、 以下の説明における各電力値は、 利得を扱 うので dB表現で統一し、 加減算で算出する。
RM(tl) = GB(tl) - LD(tl) ( 1 )
RB(t2) = GM(t2) - LU(t2) ( 2 )
ここで、 T D D (Time Division Duplex)通信方式では、 上り回線と下り回線 で同一の周波数を用いているので、 受信スロッ卜と送信スロッ卜の時間間隔が 短い場合には伝搬路を同一とみなすことができ、 時刻 tl の下り回線の減衰量 LD(tl)と時刻 t2の上り回線の減衰量 LU(t2)を同一と扱うことができる。
よって、 端末装置の送信増幅器の利得 GM(t2)は、 目標利得である予想する 基地局装置の受信電力 RB(t2)に下り回線の減衰量 LD(tl)を加算した値となり、 以下に示す式 (3 ) として表現できる。
GM(t2)二 RB(t2) + LD(tl) ( 3 )
ここで、 基地局装置の送信増幅器の利得 GM(tl)が一定であり、 予想する基 地局装置の受信電力 RB(t2)を一定に制御する場合、 これらの加算値を固定利 得 GOとすると、端末装置の送信増幅器の利得 GM(t2)は、式(1 )及び式(3 ) から以下に示す式 (4 ) にて算出される。
GM(t2)二 GO - RM(tl) ( 4 )
このように、 従来の端末装置は、 測定した受信電力 RM(tl)に基づいて、 基 地局装置の受信電力 RB(t2)が一定となるように送信増幅器の利得 GM(t2)を制 御している。
ここで、 基地局装置が狭い指向性で信号を送信している場合、 伝搬路におけ る受信電力の減衰の他に、 端末装置に対する指向性のずれによっても受信電力 は低下する。
この場合、 上記の従来の端末装置は、 指向性のずれによって受信信号が低下 した場合であっても伝搬路における減衰とみなし、 過剰な電力で信号を送信し てしまうため、 周辺の他の端末装置に対する干渉量が増加して周辺の他の端末 装置が通信不能となり、 しかも、 バッテリ寿命が短くなるという問題を有しい る。 発明の開示
本発明の目的は、 基地局装置が狭い指向性で信号を送信している場合でも、 受信電力が低下した原因を的確に判断し、 送信電力を精度良く制御することが できる端末装置及び送信電力制御方法を提供することである。
この目的は、 個別チャネルの受信電力から送信利得を算出し、 個別チャネル の平均受信電力と共通チャネルの平均受信電力比から指向性のずれの有無を判 定し、 指向性のずれがある場合に補正値を算出して送信利得を補正することに より達成される。 図面の簡単な説明
図 1は、 従来の無線通信端末装置の構成を示すプロック図、
図 2は、 本発明の無線通信端末装置を含むシステム構成図、
図 3は、 実施の形態 1における無線通信端末装置の構成を示すブロック図、 図 4は、 実施の形態 1における無線通信端末装置の送信電力制御を示すフ口 一図
5は、 実施の形態 2における無線通信端末装置の送信電力制御を示すフ口 一図、 及び、
図 6は、 実施の形態 3における無線通信端末装置の送信電力制御を示すフロ 一図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 図 2は、 本発明の無線通信端末装置 (以下、 単に 「端末装置」 という) を含 む無線通信システムのシステム構成図である。 基地局装置 1 0 0は、 アンテナ 1 0 1から広い送信指向性で共通チャネル信号を送信し、 同時に、 各端末装置 に対して狭い指向性で個別チャネル信号を送信する。 なお、 システムに応じ、 共通チャネルとして止まり木チャネルや報知チャネル等が使用される。
端末装置 2 0 0は、 アンテナ 2 0 1から広い送信指向性の共通チャネル信号 及び狭い指向性の個別チャネル信号を受信する。
なお、 以下の実施の形態においては、 C DMA方式で通信する場合について 説明する。 C D MA方式は、各端末装置に互いに直交する拡散符号を割り当て、 その拡散符号で送信データを拡散して送信する。 複数の端末装置間で直交した 符号を採用することにより同一ェリァ、 同一時刻で同じ周波数を用いて複数の 端末装置と通信することができる。
(実施の形態 1 )
図 3は、 実施の形態 1における端末装置の構成を示すブロック図である。 共用器 2 0 2は、 送信時と受信時において信号が通過する経路を切替え、 ァ ンテナ 2 0 1から受信された信号を受信 R F部 2 0 3に出力し、 送信 R F部 2 1 3から出力された送信信号をアンテナ 2 0 1に出力する。
受信 R F部 2 0 3は、 受信電力を増幅し、 受信信号の周波数を変換しベース バンド信号を出力する。 個別チャネル復調部 2 0 4は、 ベースバンド信号を個 別チャネル用拡散符号で逆拡散し、 復調して自局の個別チャネルの信号を取り 出す。 共通チャネル復調部 2 0 5は、 ベースバンド信号を共通チャネル用拡散 符号で逆拡散する。
第 1受信電力測定部 2 0 6は、 逆拡散された個別チャネルの受信電力 RMD(tl)を測定する。 第 2受信電力測定部 2 0 7は、 逆拡散された共通チヤ ネルの受信電力 RMC(tl)を測定する。 第 1平均電力算出部 2 0 8は、 測定さ れた個別チャネルの受信電力 RMD(tl)の平均値 ARMD(tl)を算出する。 第 2 平均電力算出部 2 0 9は、 測定された共通チャネル RMC(tl)の受信電力の平 均値 ARMC(tl)を算出する。
判定部 2 1 0は、 個別チャネルの平均受信電力 ARMD(tl)と共通チャネル の平均受信電力 ARMC(tl)の差が閾値 C より大きいか否かにより、 個別チヤ ネルの指向性が端末装置に対してずれているか否かを判定する。 閾値 C は、 システムとして設定することもできるし、 個別チャネルの通信開始時に基地局 装置から報知することもできる。
共通チャネルの平均受信電力 ARMC(tl)と個別チャネルの平均受信電力 ARMD(tl)の差が、 閾値 Cよりも小さい場合には個別チャネルの指向性が端末 装置に対して合っていると判定でき、 閾値 C よりも大きい場合には個別チヤ ネルの指向性が端末装置に対してずれていると判定できる。
なお、 指向性の有無の判定において平均受信電力を用いるのは、 フェージン グによる瞬時変動を抑圧するためである。
送信電力制御部 2 1 1は、 判定部 2 1 0の判定結果に基づいて、 個別チヤネ ルの受信電力と共通チャネルの受信電力とを用いて、送信増幅器の利得 GM(t2) を算出し、 送信 R F部 2 1 3における増幅器を制御する。
ここで、 基地局装置は、 通常、 複数の指向性で受信して、 受信後の信号を合 成するため、 下り回線における指向性がずれている場合でも信号を正しく受信 できる。
個別チャネルの指向性が合っていて指向性利得が大きい場合、 個別チャネル の受信電力が予想到達電力よりも大きくなるので、 個別チャネルの受信電力に 基づいて送信電力制御を行うと、 基地局装置における受信電力が小さくなり、 基地局装置にて正しく受信できない場合が生じる。
よって、 指向性が合っていると判定された場合、 送信電力制御部 2 1 1は、 固定利得 GO と自局の個別チャネルの受信電力 RMD(tl)に基づいて、 以下に 示す式 (5 ) により送信増幅器の利得 GM(t2)を制御する。 なお、 固定利得 GO は、 基地局装置の送信増幅器の利得 GB(tl)と予想される基地局装置の受信電 力 RB(t2)の加算値である。
GM(t2) 二 GO - RMD(tl) ( 5 )
一方、 個別チャネルの指向性がずれていて指向性利得が小さい場合、 個別チ ャネルの受信電力が予想到達で電力よりも小さくなるので、 個別チャネルの受 信電力に基づいて送信電力制御を行うと、 基地局装置に届く電力は、 指向性の ずれによつて受信信号が低下した分だけ大きくなつてしまう。
よって、 指向性がずれていると判定された場合、 送信電力制御部 2 1 1は、 以下に示す式 (6 ) のように、 指向性が合っていると判定された場合と比較し て、 端末装置の送信増幅器の利得 GM(t2)を定数 G1だけ小さく設定する。
GM(t2) 二 GO - RMD(tl) - G1 ( 6 )
変調部 2 1 2は、 送信信号に対して P S Kや Q AM等の一次変調を行い、 拡 散符号による二次変調を行う。 送信 R F部 2 1 3は、 変調された送信信号の周 波数を変換し、 送信増幅器の利得 GM(t2)に基づいて送信電力を増幅する。 以下、 実施の形態 1の端末装置における信号の流れについて説明する。 アンテナ 2 0 1で受信された信号は、 共用器 2 0 2を経由して受信 R F部 2 0 3に入力され、 受信 R F部 2 0 3にて、 受信信号の電力が増幅され、 受信信 号の周波数が変換されてベースバンド信号が取り出される。
ベースバンド信号は、 個別チャネル復調部 2 0 4にて、 個別チャネル用拡散 符号で逆拡散され、 復調されて自局の個別チャネルの信号が取り出される。 ま た、 ベースバンド信号は、 共通チャネル復調部 205にて、 共通チャネル用拡 散符号で逆拡散される。
そして、 個別チャネルの受信電力 RMD(tl)と共通チャネルの受信電力 RMC(tl)とから第 1受信電力測定部 206、 第 2受信電力測定部 207、 第 1 平均電力算出部 208、 第 2平均電力算出部 209、 判定部 210、 及び、 送 信電力制御部 21 1にて、 後述する送信電力制御がなされ、 送信増幅器の利得 GM(t2)が算出される。
送信信号は、 変調部 212にて変調され、 送信 RF部 213にて周波数を変 換され、 送信増幅器の利得 GM(t2)に基づいて増幅され、 共用器 202を経由 してアンテナ 201から送信される。
次に、 実施の形態 1における端末装置の送信電力制御について、 図 4のフロ —図を用いて説明する。
まず、 第 1受信電力測定部 206にて、 自局の個別チャネルの受信電力 RMD(tl)が測定され (ST301) 、 同様に、 第 2受信電力測定部 207に て、 逆拡散された共通チャネルの受信電力 RMC(tl)が測定される (ST30 2) 。
次に、 第 1平均電力算出部 2 0 8にて、 個別チャネルの平均受信電力 ARMD(tl)が算出され (ST 303) 、 同様に、 第 2平均電力算出部 209に て、 共通チャネルの平均受信電力 ARMC(tl)が算出される (ST304) 。 次に、 判定部 210にて、 共通チャネルの平均受信電力 ARMC(tl)から個別 チャネルの平均受信電力 ARMD(tl)を減算した値が閾値 C より大きいか否か により、個別チャネルの指向性がずれているか否かが判定される(S T 305)。 そして、指向性が合っていると判定された場合、送信電力制御部 21 1にて、 式 (5) より送信増幅器の利得 GM(t2)が算出され (ST 306) 、 指向性が ずれていると判定された場合、 送信電力制御部 21 1にて、 式 (6) より送信 増幅器の利得 GM(t2)が算出される (ST307) 。 このように、 共通チャネルの平均受信電力と個別チャネルの平均受信電力か ら指向性のずれの有無を判定し、 個別チャネルの指向性がずれている場合、 定 数にて送信利得を補正することにより、送信電力を過剰に高くすることを防ぎ、 他局に対する干渉を抑圧し、 端末装置のバッテリ寿命を延ばすことができる。
(実施の形態 2 )
実施の形態 2は、 個別チャネルの指向性がずれている場合、 共通チャネルの 平均受信電力と個別チャネルの平均受信電力に基づいて送信利得を補正する形 態である。
実施の形態 2における端末装置の構成は、 図 2に示したものと同様であるの で説明を省略する。
指向性がずれていると判定された場合、 送信電力制御部 2 1 1は、 以下に示 す式 (7 ) のように、 指向性が合っていると判定された場合と比較して、 端末 装置の送信増幅器の利得 GM(t2)を共通チャネルの平均受信電力 ARMC(tl)と 個別チャネルの平均受信電力 ARMD(tl)の差を閾値 C から減算した値だけ小 さく設定する。
GM(t2) = GO - RMD(tl) - (C - (ARMC(tl) - ARMD(tl))) ( 7 ) 以下、 実施の形態 2における端末装置の送信電力制御の流れをについて、 図 5に示すフロー図を用いて説明する。
まず、 第 1受信電力測定部 2 0 6にて、 逆拡散された自局の個別チャネルの 受信電力が測定され (S T 4 0 1 ) 、 同様に、 第 2受信電力測定部 2 0 7にて、 逆拡散された共通チャネルの受信電力が測定される (S T 4 0 2 ) 。
次に、 第 1平均電力算出部 2 0 8にて、 個別チャネルの平均受信電力が算出 され (S T 4 0 3 ) 、 同様に、 第 2平均電力算出部 2 0 9にて、 共通チャネル の平均受信電力が算出される (S T 4 0 4 ) 。
次に、 判定部 2 1 0にて、 共通チャネルの平均受信電力から個別チャネルの 平均受信電力を減算した値が閾値より大きいか否かにより、 個別チャネルの指 向性がずれているか否かが判定される (ST405) 。
そして、指向性が合っていると判定された場合、送信電力制御部 21 1にて、 式 (5) より送信増幅器の利得 GM(t2)が算出され (ST406) 、 指向性が ずれていると判定された場合、 送信電力制御部 21 1にて、 式 (8) より送信 増幅器の利得 GM(t2)が算出される ( S T 407 ) 。
このように、 個別チャネルの指向性がずれている場合、 指向性のずれによる 共通チャネルと個別チャネルとの平均受信電力の差に基づいて送信利得を補正 することにより、 定数を用いて補正した場合と比較して、 送信電力制御の精度 を高くすることができる。
(実施の形態 3)
実施の形態 3は、 個別チャネルの指向性がずれている場合、 共通チャネルの 受信電力に基づいて送信利得を算出する形態である。
実施の形態 3における端末装置の構成は、 図 2に示したものと同様であるの で説明を省略する。
指向性がずれていると判定された場合、 送信電力制御部 21 1は、 以下に示 す式( 8 )のように、固定利得 GOと、測定した共通チャネルの受信電力 RMC(tl) に基づいて、 以下に示す式により送信増幅器の利得 GM(t2)を制御する。
GM(t2) = GO - RMC(tl) ( 8 )
以下、 実施の形態 3における端末装置の送信電力制御の流れをについて、 図 6に示すフロー図を用いて説明する。
まず、 第 1受信電力測定部 206にて、 逆拡散された自局の個別チャネルの 受信電力が測定され(ST501) 、 同様に、 第 2受信電力測定部 207にて、 逆拡散された共通チャネルの受信電力が測定される (ST 502) 。
次に、 第 1平均電力算出部 208にて、 個別チャネルの平均受信電力が算出 され (ST 503) 、 同様に、 第 2平均電力算出部 209にて、 共通チャネル の平均受信電力が算出される (ST504) 。 次に、 判定部 210にて、 共通チャネルの平均受信電力から個別チャネルの 平均受信電力を減算した値が閾値より大きいか否かにより、 個別チャネルの指 向性がずれているか否かが判定される (ST 505) 。
そして、指向性が合っていると判定された場合、送信電力制御部 21 1にて、 式 (5) より送信増幅器の利得 GM(t2)が算出され (ST 506) 、 指向性が ずれていると判定された場合、 送信電力制御部 21 1にて、 式 (8) より送信 増幅器の利得 GM(t2)が算出される (ST 507) 。
このように、 個別チャネルの指向性がずれている場合、 共通チャネルの受信 電力に基づいて送信利得を算出することにより、 端末装置は、 指向性が大きく ずれて可変指向性の信号を受信できなくなった場合でも送信電力制御を実行す ることができる。
なお、 上記の各実施の形態において、 指向性のずれに関する情報を送信フレ —ムに多重化して基地局装置に送信することもできる。 これにより、 送信電力 を精度良く制御することができ、 同時に、 基地局装置に指向性がずれているか 否かを報告することができる。
また、 上記の各実施の形態においては、 CDMA方式で通信する場合につい て説明したが、 本発明はこれに限られるものではなく、 他の多元接続方式を用 いても同様の効果を得ることができる。
以上説明したように、 本発明の端末装置及び送信電力制御方法によれば、 基 地局装置が狭い指向性で信号を送信している場合において、 受信電力の低下し た原因を的確に判断し、 送信電力を精度良く制御することができる。
本明細書は、 1998年 8月 28日出願の特願平 10— 243744号に基 づくものである。 この内容をここに含めておく。

Claims

請 求 の 範 囲
1 . 広指向性の共通チャネル信号の受信電力を測定する第 1電力測定手段と、 狭指向性の個別チャネル信号の受信電力を測定する第 2電力測定手段と、 前記 第 1電力測定手段及び前記第 2電力測定手段の測定結果に基づいて指向性のず れの有無を判定する判定手段と、 前記判定手段の判定結果に基づいて送信電力 制御を行う送信電力制御手段と、 を具備する無線通信端末装置。
2 . 判定手段は、 共通チャネル信号の平均受信電力から個別チャネル信号の平 均受信電力を減算した値が閾値を越えた場合に指向性がずれていると判定する 請求の範囲 1記載の無線通信端末装置。
3 . 送信電力制御手段は、 指向性が合っている場合、 初期設定利得から個別チ ャネル信号の受信電力を減算した値を送信利得とする請求の範囲 1記載の無線
4 . 送信電力制御手段は、 指向性がずれている場合、 初期設定利得から個別チ ャネル信号の受信電力を減算し、 さらに補正値を減算した値を送信利得とする 請求の範囲 1記載の無線通信端末装置。
5 . 送信電力制御手段は、 閾値に個別チャネル信号の平均受信電力を加算し、 共通チャネル信号の平均受信電力を減算した値を補正値とする請求の範囲 4記 載の無線通信端末装置。
6 . 送信電力制御手段は、 指向性がずれている場合、 初期設定利得から共通チ ャネル信号の受信電力を減算した値を送信利得とする請求の範囲 1記載の無線 通信端末装置。
7 . 指向性のずれに関する情報を送信信号に多重する多重手段を具備する請求 の範囲 1記載の無線通信端末装置。
8 . 広指向性で共通チャネル信号を送信し、 狭指向性で個別チャネル信号を送 信し、 請求の範囲 1記載の無線通信端末装置と無線通信を行う基地局装置。
9 . 広指向性の共通チャネル信号の受信電力と狭指向性の個別チャネル信号の 受信電力に基づいて指向性のずれの有無を判定し、 判定結果に基づいて送信電 力制御を行う送信電力制御方法。
1 0 . 共通チャネル信号の平均受信電力から個別チャネル信号の平均受信電力 を減算した値が閾値を越えた場合に指向性がずれていると判定する請求の範囲
9記載の送信電力制御方法。
1 1 . 指向性が合っている場合、 初期設定利得から個別チャネル信号の受信電 力を減算した値を送信利得とする請求の範囲 9記載の送信電力制御方法。
1 2 . 指向性がずれている場合、 初期設定利得から個別チャネル信号の受信電 力を減算し、 さらに補正値を減算した値を送信利得とする請求の範囲 9記載の 送信電力制御方法。
1 3 . 閾値に個別チャネル信号の平均受信電力を加算し、 共通チャネル信号の 平均受信電力を減算した値を補正値とする請求の範囲 1 2記載の送信電力制御 方法。
1 4 . 指向性がずれている場合、 初期設定利得から共通チャネル信号の受信電 力を減算した値を送信利得とする請求の範囲 9記載の送信電力制御方法。
PCT/JP1999/004467 1998-08-28 1999-08-20 Terminal de communication radio et procede de commande de puissance d'emission WO2000013342A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002307204A CA2307204C (en) 1998-08-28 1999-08-20 Radio communication terminal apparatus and transmission power control method
US09/529,912 US6539234B1 (en) 1998-08-28 1999-08-20 Radio communication terminal and transmission power control method
EP99938535A EP1028547A4 (en) 1998-08-28 1999-08-20 WIRELESS COMMUNICATION TERMINAL AND METHOD FOR SENDING POWER CONTROL
KR1020007004530A KR100333201B1 (ko) 1998-08-28 1999-08-20 무선통신 단말장치 및 송신전력 제어방법
AU53019/99A AU5301999A (en) 1998-08-28 1999-08-20 Radio communication terminal and transmission power control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24374498A JP3499448B2 (ja) 1998-08-28 1998-08-28 無線通信端末装置及び送信電力制御方法
JP10/243744 1998-08-28

Publications (1)

Publication Number Publication Date
WO2000013342A1 true WO2000013342A1 (fr) 2000-03-09

Family

ID=17108350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004467 WO2000013342A1 (fr) 1998-08-28 1999-08-20 Terminal de communication radio et procede de commande de puissance d'emission

Country Status (8)

Country Link
US (1) US6539234B1 (ja)
EP (1) EP1028547A4 (ja)
JP (1) JP3499448B2 (ja)
KR (1) KR100333201B1 (ja)
CN (1) CN1116748C (ja)
AU (1) AU5301999A (ja)
CA (1) CA2307204C (ja)
WO (1) WO2000013342A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536197B2 (en) * 2000-07-28 2009-05-19 Ciena Corporation Apparatus and method of loop and rate dependent power cutback
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6760882B1 (en) * 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
JP3829051B2 (ja) * 2000-09-19 2006-10-04 株式会社日立コミュニケーションテクノロジー ハンドオーバの制御方法、基地局制御装置および移動体端末
US8605686B2 (en) 2001-02-12 2013-12-10 Qualcomm Incorporated Method and apparatus for power control in a wireless communication system
JP4021256B2 (ja) * 2002-06-24 2007-12-12 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける無線チャネル設定方法、移動通信システム及び移動通信制御装置
US20050099968A1 (en) * 2002-06-25 2005-05-12 Osamu Yamano Power control method and apparatus
US7430403B2 (en) * 2005-03-01 2008-09-30 Matsushita Electric Industrial Co., Ltd. Method and apparatus for hysteresis control
JP5132055B2 (ja) * 2005-12-26 2013-01-30 富士通株式会社 物理チャネルの再設定を行う装置および方法
US8971948B1 (en) * 2010-11-19 2015-03-03 Qualcomm Incorporated Systems and methods for compensating antenna gain imbalance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787011A (ja) * 1993-09-14 1995-03-31 Toshiba Corp 無線通信システム及び無線装置及びスイッチ
JPH1051380A (ja) * 1996-08-06 1998-02-20 Mitsubishi Electric Corp Cdmaシステム及びその送信電力制御装置及びdbfアンテナ
JPH1056421A (ja) * 1996-08-07 1998-02-24 Matsushita Electric Ind Co Ltd Cdma無線伝送システム並びに該システムにおいて用いられる送信電力制御装置および送信電力制御用測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129098A (en) * 1990-09-24 1992-07-07 Novatel Communication Ltd. Radio telephone using received signal strength in controlling transmission power
FI943889A (fi) * 1994-08-24 1996-02-25 Nokia Telecommunications Oy Menetelmä lähetystehon säätämiseksi solukkoradiojärjestelmässä ja vastaanotin
TW347616B (en) * 1995-03-31 1998-12-11 Qualcomm Inc Method and apparatus for performing fast power control in a mobile communication system a method and apparatus for controlling transmission power in a mobile communication system is disclosed.
JP3323438B2 (ja) * 1998-03-27 2002-09-09 松下電器産業株式会社 無線通信システム及び無線通信方法
JP3712160B2 (ja) * 1998-04-17 2005-11-02 松下電器産業株式会社 無線装置、無線装置における送信電力制御方法および記録媒体
JP3240998B2 (ja) * 1998-07-27 2001-12-25 日本電気株式会社 送信パワー制御回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787011A (ja) * 1993-09-14 1995-03-31 Toshiba Corp 無線通信システム及び無線装置及びスイッチ
JPH1051380A (ja) * 1996-08-06 1998-02-20 Mitsubishi Electric Corp Cdmaシステム及びその送信電力制御装置及びdbfアンテナ
JPH1056421A (ja) * 1996-08-07 1998-02-24 Matsushita Electric Ind Co Ltd Cdma無線伝送システム並びに該システムにおいて用いられる送信電力制御装置および送信電力制御用測定装置

Also Published As

Publication number Publication date
US6539234B1 (en) 2003-03-25
CN1116748C (zh) 2003-07-30
CN1275274A (zh) 2000-11-29
EP1028547A1 (en) 2000-08-16
EP1028547A4 (en) 2005-06-15
KR20010031493A (ko) 2001-04-16
CA2307204C (en) 2004-03-23
CA2307204A1 (en) 2000-03-09
JP2000078076A (ja) 2000-03-14
AU5301999A (en) 2000-03-21
KR100333201B1 (ko) 2002-04-18
JP3499448B2 (ja) 2004-02-23

Similar Documents

Publication Publication Date Title
EP0987834B1 (en) Diversity transmission/reception apparatus and transmit power control method
US6526028B1 (en) CDMA mobile communication system with consideration of fading
EP0607359B1 (en) Transmitter power control system
US6912405B2 (en) Mobile station apparatus and transmission power control method
US7151740B2 (en) Transmit power control for an OFDM-based wireless communication system
TW391094B (en) Initial transmit power determination a radiocommunication system
EP0584241B1 (en) Methods and apparatus for controlling transmission power in a cdma cellular mobile telephone system
JP3212019B2 (ja) Cdma移動通信システムにおける送信電力制御方法およびcdma移動通信システム
US8219137B2 (en) Method for controlling interference generated by a mobile station on neighbor base stations
JP2001268637A (ja) 移動機及び基地局並びにそれ等を用いた移動通信システム
JP2001111480A (ja) 無線通信装置及び送信電力制御方法
KR20000071302A (ko) 이동국의 개루프 전력 제어 장치 및 방법
WO2000013342A1 (fr) Terminal de communication radio et procede de commande de puissance d'emission
KR100340831B1 (ko) 확산 스펙트럼 통신 시스템 및 기지국
WO2000031900A1 (fr) Station base et procede ce commande de puissance d'emission
CA2290406C (en) Base station (apparatus and method) with directivity and transmission power control
JP2001069073A (ja) 送信電力制御回路及び制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801365.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2307204

Country of ref document: CA

Ref document number: 2307204

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09529912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999938535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007004530

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999938535

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007004530

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007004530

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999938535

Country of ref document: EP