WO2000037512A2 - Olefin polymerization catalysts, their production and use - Google Patents

Olefin polymerization catalysts, their production and use Download PDF

Info

Publication number
WO2000037512A2
WO2000037512A2 PCT/US1999/029755 US9929755W WO0037512A2 WO 2000037512 A2 WO2000037512 A2 WO 2000037512A2 US 9929755 W US9929755 W US 9929755W WO 0037512 A2 WO0037512 A2 WO 0037512A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
containing group
catalyst system
phenoxide
bis
Prior art date
Application number
PCT/US1999/029755
Other languages
French (fr)
Other versions
WO2000037512A3 (en
Inventor
Gregory T. Whiteker
Jack A. Smith
Original Assignee
Univation Technologies, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univation Technologies, Llc filed Critical Univation Technologies, Llc
Priority to AU21846/00A priority Critical patent/AU2184600A/en
Publication of WO2000037512A2 publication Critical patent/WO2000037512A2/en
Publication of WO2000037512A3 publication Critical patent/WO2000037512A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • This invention relates to a new family of olefm polymerization catalysts based upon phenoxide complexes of transition metals.
  • metallocene polyolefm catalysts metalliclocene being cyclopentadienyl based transition metal catalyst compounds
  • This field is more than an academic curiosity as new, non-metallocene catalysts may provide an easier pathway to currently available products and may also provide product and process opportunities which are beyond the capability of metallocene catalysts.
  • certain non-cyclopentadienyl ligands will be more economical due to the relative ease of synthesis of a variety of substituted analogs.
  • Non-metallocene polyolefins catalysis Notable classes of bidentate anionic ligands which form active polymerization catalysts include N-N ⁇ and N-O ⁇ ligand sets. Examples of these types of non-metallocene catalysts include amidopyri dines (Kempe, R., "Aminopyridinato Ligands - New Directions and Limitations", 80 th Canadian Society for Chemistry Meeting, Windsor, Ontario, Canada, June 1-4, 1997. Kempe, R. et al , Inorg. Chem. 1996 vol 35 6742.) Likewise, recent reports by Jordan et al. of polyolefm catalysts based on hydroxyquinolines (Bei, X.; Swenson, D. C; Jordan, R. F., Organometallics 1997,
  • European Patent Application 0 803 520 discloses polymerization catalysts containing beta-diketiminate ligands.
  • Other recent non-metallocene olefm polymerization catalysts include US 4,057,565 which discloses 2- dialkylaminobenzyl and 2-dialkylaminomethylphenyl derivatives of selected transition metals and WO 96/08498 which discloses group 4 metal complexes containing a bridged non-aromatic, anionic dienyl ligand group.
  • US 5,637,660 discloses bidentate pyridine based transition metal catalysts.
  • EP 241,560 Al discloses alkoxide ligands in transition metal catalyst systems.
  • EP 0 874 005 Al discloses phenoxide compounds with an imine substituent for use as a polymerization catalyst.
  • This invention relates to a catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 or lanthanide transition metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide, b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C 1 carbon in a group represented by the formula:
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing
  • the activator is preferably one or more of aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, or a borane.
  • This invention further relates to a novel olefin polymerization systems comprising an activator and one or more catalysts represented by the of the following formulae:
  • R 1 to R 5 may be independently hydrogen, a heteroatom containing group or a Ci to Cioo group provided that one of R 2 to R 5 is a group containing a heteroatom (R 5 and/or R 1 also may or may not be bound to the metal M), and further provided that the R and R groups do not form pyridine in the first formula if M is a group 4 metal and the R 4 and R 5 groups do not form pyridine in at least one ring of the second formula if M is a group 4 metal, O is oxygen, M is a group 3 to 10 transition metal or lanthanide metal, n is the valence state of M, Q is an anionic ligand or a bond to an R group containing a heteroatom which may be any of R 1 to R 5 , and further provided that if M is a group 4 metal then R 5 may not be an aldehyde or an ester, and further provided that if M is nickel then R may not be an imine. Any two or more R groups may form a ring
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R 6 and R 7 may be bonded to each other to form a ring.
  • the activator is preferably an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane or a combination thereof.
  • This invention relates to a novel olefm polymerization system comprising an activator and one or more catalysts represented by the following formulae:
  • R 1 is hydrogen or a C 4 to Cioo group, preferably a tertiary alkyl group, preferably a C toC 2 o alkyl group, preferably a C 4 toC 2 o tertiary alkyl group, preferably a neutral C 4 to Cioo group and may or may not also be bound to M
  • at least one of R to R is a group containing a heteroatom
  • the rest of R to R are independently hydrogen or a Ci to Cioo group, preferably a C to C o alkyl group (preferably butyl, isobutyl, pentyl hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, dodecyl ) and any of R 2 to R 5 also may or may not be bound to M, provided that in the first formula if M is a group 4 metal then the R 4 and R 5 groups do not form pyridine and
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R 6 and R 7 may be bonded to each other to form a ring;
  • O is oxygen
  • M is a group 3 to group 10 transition metal or lanthanide metal, preferably a group 4 metal, preferably Ti, Zr or Hf
  • n is the valence state of the metal M, preferably 2, 3, 4, or 5
  • Q is an alkyl, halogen, benzyl, amide, carboxylate, carbamate, thiolate, hydride or alkoxide group, or a bond to an R group containing a heteroatom which may be any of R 1 to R 5 .
  • a heteroatom containing group may be any heteroatom or a heteroatom bound to carbon silica or another heteroatom.
  • Preferred heteroatoms include boron, aluminum, silicon, nitrogen, phosphorus, arsenic, tin, lead, antimony, oxygen, selenium, tellurium.
  • Particularly preferred heteroatoms include nitrogen, oxygen, phosphorus, and sulfur. Even more particularly preferred heteroatoms include oxygen and nitrogen.
  • the heteroatom itself may be directly bound to the phenoxide ring or it may be bound to another atom or atoms that are bound to the phenoxide ring.
  • the heteroatom containing group may contain one or more of the same or different heteroatoms.
  • Preferred heteroatom groups include imines, amines, oxides, phosphines, ethers, ketenes, oxoazolines heterocyclics, oxazolines, thioethers, and the like. Particularly preferred heteroatom groups include imines. Any two adjacent R groups may form a ring structure, preferably a 5 or 6 membered ring. Likewise the R groups may form multi-ring structures. In one embodiment any two or more R groups do not form a 5 membered ring.
  • Preferred catalyst systems of this invention include those comprising catalysts represented by the following formulae:
  • R 5 aldimino, ketimino, alkoxy, ⁇ -alkoxymethyl, thioalkoxy, ⁇ - thioalkoxymethyl, amino, ⁇ -aminomethyl, azo, phosphino, ⁇ -phosphinomethyl, keto or cyclic substituents such as pyrrole, furan, thiophene, imidazole, pyrazole, tetrazole, oxazoline, isoazole, thiazole.
  • preferably tertiary alkyl or silyl group, such as -CMe 3 , -CMe 2 Et, CEt 3 , -
  • R is hydrogen or an alkyl, aryl, silyl group or -OT where O is oxygen and T is hydrogen or an alkyl, aryl or silyl group.
  • M n is a group 3 to 10 transition metal or a lanthanide metal, preferably a group 4 metal, n is the valence of M and M n is also bound to Q n- ⁇ , where Q is as defined above or any of the phenoxide groups in the above formulae.
  • N-benzylidene-2-hydroxybenzylamines can be prepared by condensation of an aldehyde or ketone with the prequisite 2- hydroxybenzylamine. In some instances, such as those involving less-reactive amines or aldehydes, addition of a catalytic amount of formic acid or 3 A molecular sieves may be required.
  • Phenols with heterocychc substituents can also be prepared by standard techniques. For example, ortho-cyanophenols can be converted to oxazolines via reaction with ⁇ -aminoalcohols. Certain ligands, such as ortho-benzotriazole-substituted phenols are commercially available.
  • Metallation of these acidic functionalized phenols can be accomplished by reaction with basic reagents such as Zr(CH 2 Ph) , Ti( ⁇ Me 2 ) . Reaction of phenolic ligands with Zr(CH Ph) 4 occurs with elimination of toluene, whereas reaction with Ti(NMe 2 ) 4 proceeds via amine elimination. In both cases simple alkoxide complexes are formed, as determined by ⁇ NMR spectroscopy. Alternatively, ligands can be deprotonated with reagents such as BuLi, KH or Na metal and then reacted with metal halides, such as ZrCl or TiCl 4 .
  • Preferred transition metal compounds for use in this invention include: bis(N-benzylidene-2-hydroxy-3 ,5 ,di-t-butylbenzylamine) zirconium(IV) dibenzyl; bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IV) dichloride; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) titanium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)
  • one or more of the transition metal compounds named above is combined with an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane, a borate or a mixture thereof.
  • the catalysts described herein are preferably combined with an activator to form an olefm polymerization catalyst system.
  • Preferred activators include alkyl aluminum compounds (such as diethylaluminum chloride), alumoxanes, modified alumoxanes, non-coordinating anions, boranes and the like.
  • alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • ionizing activators neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • ionizing activators neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocen
  • Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion of the ionizing compound.
  • Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-A-0 426 637,
  • Other activators include those described in PCT publication WO 98/07515 such as tris (2, 2', 2"- nonafluorobiphenyl) fluoroaluminate, which is fully incorporated herein by reference.
  • activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, PCT publications WO 94/07928 and WO 95/14044 and U.S. Patent Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference.
  • the transition metal compound and the activator are combined in ratios of about 1000: 1 to about 0.5: 1.
  • the transition metal compound and the activator are combined in a ratio of about 300:1 to about 1 :1, preferably about 10: 1 to about 1 : 1
  • the ratio is preferably about 1 : 1 to about 10: 1
  • alkyl aluminum compounds such as diethylaluminum chloride combined with water
  • the catalysts systems described above can further include other classes of catalysts, such as for example one or more Ziegler-Natta catalysts and/or one or more metallocene catalyst and/or one or more vanadium catalysts and/or one or more chromium catalysts.
  • a Ziegler- Natta catalyst as described in Ziegler-Natta Catalysts and Polymerizations, John Boor, Academic Press, New York, 1979 (with or without a separate activator) is combined with a catalyst system of this invention and used to polymerize one or more olefins.
  • a metallocene catalyst such as a cyclopentadienyl transition metal compound
  • a catalyst system of this invention is combined with a catalyst system of this invention and used to polymerize one or more olefins.
  • Preferred cyclopentadienyl transition metal compounds are those mono-and bis-cyclopentadienyl group 4, 5 and 6 compounds described in U.S.
  • the catalysts and catalyst systems described above can be used in any known olefm polymerization process including gas phase, solution, slurry and high pressure.
  • the catalysts and catalyst systems described above are particularly suitable for use a solution, gas or slurry polymerization process or a combination thereof, most preferably a gas or slurry phase polymerization process.
  • this invention is directed toward the solution, slurry or gas phase polymerization reactions involving the polymerization of one or more of monomers having from 2 to 30 carbon atoms, preferably 2-12 carbon atoms, and more preferably 2 to 8 carbon atoms.
  • Preferred monomers include one or more of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-l, 3,5,5,-trimethyl- hexene-1, hexene-1, octene-1, decene-1, 3-methyl-pentene-l, and cyclic olefins or a combination thereof.
  • a homopolymer of ethylene is produced.
  • a cycling gas stream otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor.
  • a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions.
  • the reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa).
  • the reactor temperature in the gas phase process may vary from about 30°C to about 120°C, preferably from about 60°C to about 1 15°C, more preferably in the range of from about 70°C to 110°C, and most preferably in the range of from about 70°C to about 95°C.
  • the productivity of the catalyst or catalyst system in a gas phase system is influenced by the main monomer partial pressure.
  • the preferred mole percent of the main monomer, ethylene or propylene, preferably ethylene, is from about 25 to 90 mole percent and the monomer partial pressure is in the range of from about
  • the reactor utilized in the present invention is capable and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than
  • a slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0°C to about 120°C.
  • a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers along with catalyst are added.
  • the suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor.
  • the liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane.
  • the medium employed should be liquid under the conditions of polymerization and relatively inert.
  • a propane medium When used the process must be operated above the reaction diluent critical temperature and pressure.
  • a hexane or an isobutane medium is employed.
  • a preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
  • a particle form polymerization or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
  • the preferred temperature in the particle form process is within the range of about 185°F (85°C) to about 230°F (110°C).
  • Two preferred polymerization methods for the slurry process are those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof.
  • Non- limiting examples of slurry processes include continuous loop or stirred tank processes.
  • other examples of slurry processes are described in U.S. Patent No. 4,613,484, which is herein fully incorporated by reference.
  • the slurry process is carried out continuously in a loop reactor.
  • the catalyst as a slurry in isobutane or as a dry free flowing powder is injected regularly to the reactor loop, which is itself filled with circulating slurry of growing polymer particles in a diluent of isobutane containing monomer and comonomer.
  • Hydrogen optionally, may be added as a molecular weight control.
  • the reactor is maintained at pressure of about 525 psig to 625 psig (3620 kPa to 4309 kPa) and at a temperature in the range of about 140 °F to about 220 °F (about 60 °C to about 104 °C) depending on the desired polymer density.
  • Reaction heat is removed through the loop wall since much of the reactor is in the form of a double-jacketed pipe.
  • the slurry is allowed to exit the reactor at regular intervals or continuously to a heated low pressure flash vessel, rotary dryer and a nitrogen purge column in sequence for removal of the isobutane diluent and all unreacted monomer and comonomers.
  • the resulting hydrocarbon free powder is then compounded for use in various applications.
  • the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr).
  • the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11 ,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).
  • the total reactor pressure is in the range of from 400 psig (2758 kPa) to 800 psig (5516 kPa), preferably 450 psig ( 3103 kPa) to about 700 psig (4827 kPa), more preferably 500 psig (3448 kPa) to about 650 psig (4482 kPa), most preferably from about 525 psig (3620 kPa) to 625 psig (4309 kPa).
  • the concentration of ethylene in the reactor liquid medium is in the range of from about 1 to 10 weight percent, preferably from about 2 to about 7 weight percent, more preferably from about 2.5 to about 6 weight percent, most preferably from about 3 to about 6 weight percent.
  • a preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like. This preferred process is described in PCT publication WO 96/08520 and U.S. Patent No. 5,712,352, which are herein fully incorporated by reference.
  • the one or all of the catalysts are tumbled with up to 6 weight % of a metal stearate, (preferably a aluminum stearate, more preferably aluminum distearate) based upon the weight of the catalyst, any support and the stearate, preferably 2 to 3 weight %.
  • a solution of the metal stearate is fed into the reactor.
  • These agents may be dry tumbled with the catalyst or may be fed into the reactor in a solution with or without the catalyst system or its components.
  • the catalyst and/or the activator may be placed on a support.
  • the support can be of any of the solid, porous supports.
  • Typical support materials include talc; inorganic oxides such as silica, magnesium chloride, alumina, silica- alumina; polymeric supports such as polyethylene, polypropylene, polystyrene; and the like.
  • the support is used in finely divided form.
  • Prior to use the support is preferably partially or completely dehydrated. The dehydration may be done physically by calcining or by chemically converting all or part of the active hydroxyls.
  • the catalyst system, the catalyst and or the activator may also be introduced into the reactor in solution.
  • a solution of the activated catalyst in an alkane such as pentane, hexane, isopentane or the like is feed into a gas phase reactor.
  • the polyolefm recovered typically has a melt index as measured by ASTM D-1238, Condition E, at 190°C of 100 g/lOmin or less.
  • the polyolefm is ethylene homopolymer.
  • the catalyst system described above is used to make a polyethylene having a density of between 0.89 and 0.960 g/cm 3 (as measured by ASTM 2839), a melt index of 1.0 or less g/lOmin or less (as measured by ASTM
  • Polyethylene having a melt index of between 0.01 to 10 dg/min is preferably produced.
  • a density of 0.915 to 0.940g/cm 3 would be preferred, in other embodiments densities of 0.930 to 0.960g/cm 3 are preferred.
  • the polyolefins then can be made into films, molded articles, sheets and the like.
  • the films may be formed by any of the conventional technique known in the art including extrusion, co-extrusion, lamination, blowing and casting.
  • the film may be obtained by the flat film or tubular process which may be followed by orientation in an uniaxial direction or in two mutually perpendicular directions in the plane of the film to the same or different extents. Orientation may be to the same extent in both directions or may be to different extents.
  • Particularly preferred methods to form the polymers into films include extrusion or coextrusion on a blown or cast film line.
  • the films produced may further contain additives such as slip, antiblock, antioxidants, pigments, fillers, antifog, UV stabilizers, antistats, polymer processing aids, neutralizers, lubricants, surfactants, pigments, dyes and nucleating agents.
  • Preferred additives include silicon dioxide, synthetic silica, titanium dioxide, polydimethylsiloxane, calcium carbonate, metal stearates, calcium stearate, zinc stearate, talc, BaSO 4 , diatomaceous earth, wax, carbon black, flame retarding additives, low molecular weight resins, hydrocarbon resins, glass beads and the like.
  • the additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to 10 weight %.
  • This invention further relates to a library of a plurality of heteroatom substituted phenoxide group 3 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide, b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C 1 carbon in a group represented by the formula:
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocychc compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R ! and R 2 may be bonded to each other to form a ring.
  • the heteroatom substituted phenoxide group 4 to 10 transition metal or lanthanide metal compounds are represented by the formulae above.
  • MMAO is modified methylalumoxane (type 3 in hexane) commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3 A , covered under patent number US 5,041,584) Example 1.
  • the reactor was then pressurized to 85 psi ( 586 kPa) with ethylene and heated to 75 °C. After 30 minutes, the reactor was cooled to ambient temperature and vented. Solid polyethylene was obtained (0.98 g) which corresponds to an activity of 9200 g PE/mmol Zr»100 psi C 2 H 4 »hr.
  • the catalysts described herein are expected to produce HDPE under ethylene- hexene copolymerization conditions.

Abstract

This invention relates to a catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide; b) if the metal is a group 4 metal then the carbon adjacent to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to C1 carbon in group represented by formula: (I), wherein R?6 and R7¿ are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, a sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R?1 and R2¿ may be bonded to each other to form a ring. The activator may be an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane, a borate or a mixture thereof.

Description

OLEFIN POLYMERIZATION CATALYSTS. THEIR PRODUCTION AND USE
FIELD OF THE INVENTION
This invention relates to a new family of olefm polymerization catalysts based upon phenoxide complexes of transition metals.
BACKGROUND OF THE INVENTION
The intense commercialization of metallocene polyolefm catalysts (metallocene being cyclopentadienyl based transition metal catalyst compounds) has led to widespread interest in the design of non-metallocene, homogeneous catalysts. This field is more than an academic curiosity as new, non-metallocene catalysts may provide an easier pathway to currently available products and may also provide product and process opportunities which are beyond the capability of metallocene catalysts. In addition, certain non-cyclopentadienyl ligands will be more economical due to the relative ease of synthesis of a variety of substituted analogs.
Anionic, multidentate heteroatom ligands have received the most attention in non-metallocene polyolefins catalysis. Notable classes of bidentate anionic ligands which form active polymerization catalysts include N-N~ and N-O~ ligand sets. Examples of these types of non-metallocene catalysts include amidopyri dines (Kempe, R., "Aminopyridinato Ligands - New Directions and Limitations", 80th Canadian Society for Chemistry Meeting, Windsor, Ontario, Canada, June 1-4, 1997. Kempe, R. et al , Inorg. Chem. 1996 vol 35 6742.) Likewise, recent reports by Jordan et al. of polyolefm catalysts based on hydroxyquinolines (Bei, X.; Swenson, D. C; Jordan, R. F., Organometallics 1997,
16, 3282) have been interesting even though the catalytic activities of Jordan's hydroxyquinoline catalysts is low. European Patent Application 0 803 520 discloses polymerization catalysts containing beta-diketiminate ligands. Other recent non-metallocene olefm polymerization catalysts include US 4,057,565 which discloses 2- dialkylaminobenzyl and 2-dialkylaminomethylphenyl derivatives of selected transition metals and WO 96/08498 which discloses group 4 metal complexes containing a bridged non-aromatic, anionic dienyl ligand group.
US 5,637,660 discloses bidentate pyridine based transition metal catalysts.
Further Grubbs et al in Organometallics, Vol 17, 1988 page 3149-3151 disclose that nickel (II) salicylaldiminato complexes combined with B(C6F5)3 polymerized ethylene. (49,500 Mw, Mw/Mn 6.8, and 35 branches per 1000 C's).
Ethylenebis(salicylideneiminato)zirconium dichloride combined with methyl alumoxane deposited on a support and unsupported versions were used to polymerize ethylene by Repo et al in Macromolecules 1997, 30, 171-175.
Further EP 241,560 Al discloses alkoxide ligands in transition metal catalyst systems.
EP 0 874 005 Al discloses phenoxide compounds with an imine substituent for use as a polymerization catalyst.
Thus there is a need in the art for new novel olefm polymerization catalysts.
SUMMARY OF THE INVENTION
This invention relates to a catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 or lanthanide transition metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide, b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C1 carbon in a group represented by the formula:
Figure imgf000005_0001
wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing
• 1 group, or a tin containing group, and R and R may be bonded to each other to form a ring. The activator is preferably one or more of aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, or a borane.
This invention further relates to a novel olefin polymerization systems comprising an activator and one or more catalysts represented by the of the following formulae:
Figure imgf000005_0002
Figure imgf000006_0001
wherein R1 to R5 may be independently hydrogen, a heteroatom containing group or a Ci to Cioo group provided that one of R2 to R5 is a group containing a heteroatom (R5 and/or R1 also may or may not be bound to the metal M), and further provided that the R and R groups do not form pyridine in the first formula if M is a group 4 metal and the R4 and R5 groups do not form pyridine in at least one ring of the second formula if M is a group 4 metal, O is oxygen, M is a group 3 to 10 transition metal or lanthanide metal, n is the valence state of M, Q is an anionic ligand or a bond to an R group containing a heteroatom which may be any of R1 to R5, and further provided that if M is a group 4 metal then R5 may not be an aldehyde or an ester, and further provided that if M is nickel then R may not be an imine. Any two or more R groups may form a ring structure. Provided however that neither R1 nor R5 may be a group represented by the formula
Figure imgf000006_0002
wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R6 and R7 may be bonded to each other to form a ring.
The activator is preferably an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane or a combination thereof. DETAILED DESCRIPTION OF THE INVENTION
This invention relates to a novel olefm polymerization system comprising an activator and one or more catalysts represented by the following formulae:
Figure imgf000007_0001
Figure imgf000007_0002
wherein R1 is hydrogen or a C4 to Cioo group, preferably a tertiary alkyl group, preferably a C toC2o alkyl group, preferably a C4 toC2o tertiary alkyl group, preferably a neutral C4 to Cioo group and may or may not also be bound to M, and at least one of R to R is a group containing a heteroatom, the rest of R to R are independently hydrogen or a Ci to Cioo group, preferably a C to C o alkyl group (preferably butyl, isobutyl, pentyl hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, dodecyl ) and any of R2 to R5 also may or may not be bound to M, provided that in the first formula if M is a group 4 metal then the R4 and R5 groups do not form pyridine and in the second formula if M is a group 4 metal the R4 and R groups do not form pyridine in at least one ring, and further provided that if M is a group 4 metal then R may not be an aldehyde or an ester, and further provided that if M is nickel then R5 may not be an imine, further provided that neither R nor R5 may be a group represented by the formula
Figure imgf000008_0001
wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R6 and R7 may be bonded to each other to form a ring; O is oxygen, M is a group 3 to group 10 transition metal or lanthanide metal, preferably a group 4 metal, preferably Ti, Zr or Hf, n is the valence state of the metal M, preferably 2, 3, 4, or 5, Q is an alkyl, halogen, benzyl, amide, carboxylate, carbamate, thiolate, hydride or alkoxide group, or a bond to an R group containing a heteroatom which may be any of R1 to R5. A heteroatom containing group may be any heteroatom or a heteroatom bound to carbon silica or another heteroatom. Preferred heteroatoms include boron, aluminum, silicon, nitrogen, phosphorus, arsenic, tin, lead, antimony, oxygen, selenium, tellurium. Particularly preferred heteroatoms include nitrogen, oxygen, phosphorus, and sulfur. Even more particularly preferred heteroatoms include oxygen and nitrogen. The heteroatom itself may be directly bound to the phenoxide ring or it may be bound to another atom or atoms that are bound to the phenoxide ring. The heteroatom containing group may contain one or more of the same or different heteroatoms. Preferred heteroatom groups include imines, amines, oxides, phosphines, ethers, ketenes, oxoazolines heterocyclics, oxazolines, thioethers, and the like. Particularly preferred heteroatom groups include imines. Any two adjacent R groups may form a ring structure, preferably a 5 or 6 membered ring. Likewise the R groups may form multi-ring structures. In one embodiment any two or more R groups do not form a 5 membered ring. Preferred catalyst systems of this invention include those comprising catalysts represented by the following formulae:
Figure imgf000009_0001
Figure imgf000009_0002
wherein
R5 = aldimino, ketimino, alkoxy, α-alkoxymethyl, thioalkoxy, α- thioalkoxymethyl, amino, α-aminomethyl, azo, phosphino, α-phosphinomethyl, keto or cyclic substituents such as pyrrole, furan, thiophene, imidazole, pyrazole, tetrazole, oxazoline, isoazole, thiazole.
R° = preferably tertiary alkyl or silyl group, such as -CMe3, -CMe2Et, CEt3, -
CMe2Ph, -CPh3, -SiMe3, -SiEt3, -SiPh3. R = is hydrogen or an alkyl, aryl, silyl group or -OT where O is oxygen and T is hydrogen or an alkyl, aryl or silyl group.
Mn is a group 3 to 10 transition metal or a lanthanide metal, preferably a group 4 metal, n is the valence of M and Mn is also bound to Qn-ι, where Q is as defined above or any of the phenoxide groups in the above formulae.
The synthesis of desired ligands can be accomplished using techniques described in the literature. For example, N-benzylidene-2-hydroxybenzylamines can be prepared by condensation of an aldehyde or ketone with the prequisite 2- hydroxybenzylamine. In some instances, such as those involving less-reactive amines or aldehydes, addition of a catalytic amount of formic acid or 3 A molecular sieves may be required. Phenols with heterocychc substituents can also be prepared by standard techniques. For example, ortho-cyanophenols can be converted to oxazolines via reaction with α-aminoalcohols. Certain ligands, such as ortho-benzotriazole-substituted phenols are commercially available.
Metallation of these acidic functionalized phenols can be accomplished by reaction with basic reagents such as Zr(CH2Ph) , Ti(ΝMe2) . Reaction of phenolic ligands with Zr(CH Ph)4 occurs with elimination of toluene, whereas reaction with Ti(NMe2)4 proceeds via amine elimination. In both cases simple alkoxide complexes are formed, as determined by Η NMR spectroscopy. Alternatively, ligands can be deprotonated with reagents such as BuLi, KH or Na metal and then reacted with metal halides, such as ZrCl or TiCl4.
Preferred transition metal compounds for use in this invention include: bis(N-benzylidene-2-hydroxy-3 ,5 ,di-t-butylbenzylamine) zirconium(IV) dibenzyl; bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IV) dichloride; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) titanium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dichloride; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) di(bis(dimethylamide)); bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',1 '- dimethylbenzyl)phenoxide)zirconium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)titanium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',1 '- dimethylb enzy l)phenoxide)titanium(I V) dib enzyl ; bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',1 '- dimethylbenzyl)phenoxide)titanium(IV) dichloride; and bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',1 '- dimethylbenzyl)phenoxide)hafhium(IV) dibenzyl.
In a preferred embodiment one or more of the transition metal compounds named above is combined with an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane, a borate or a mixture thereof.
The catalysts described herein are preferably combined with an activator to form an olefm polymerization catalyst system. Preferred activators include alkyl aluminum compounds (such as diethylaluminum chloride), alumoxanes, modified alumoxanes, non-coordinating anions, boranes and the like. It is within the scope of this invention to use alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound. Boranes appear to perform better than borates, however this may be an experimental artifact and should not be construed as limiting this invention. Other useful compounds include triphenyl boron, triethyl boron, tri-n-butyl ammonium tetraethylborate, triaryl borane and the like.
There are a variety of methods for preparing alumoxane and modified alumoxanes, non-limiting examples of which are described in U.S. Patent No. 4,665,208, 4,952,540, 5,091,352, 5,206,199, 5,204,419, 4,874,734, 4,924,018, 4,908,463, 4,968,827, 5,308,815, 5,329,032, 5,248,801, 5,235,081 , 5,157,137, 5,103,031, 5,391,793, 5,391,529, 5,693,838, 5,731,253 and 5,731,451 and European publications EP-A-0 561 476, EP-B1-0 279 586 and EP-A-0 594-218, and PCT publication WO 94/10180, all of which are herein fully incorporated by reference.
Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion of the ionizing compound. Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-A-0 426 637,
EP-A-500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Patent Nos. 5,153,157, 5,198,401 , 5,066,741, 5,206,197, 5,241,025, 5,387,568, 5,384,299 and 5,502,124 and U.S. Patent Application Serial No. 08/285,380, filed August 3, 1994, all of which are herein fully incorporated by reference. Other activators include those described in PCT publication WO 98/07515 such as tris (2, 2', 2"- nonafluorobiphenyl) fluoroaluminate, which is fully incorporated herein by reference. Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, PCT publications WO 94/07928 and WO 95/14044 and U.S. Patent Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference.
Also, methods of activation such as using radiation and the like are also contemplated as activators for the purposes of this invention.
In general the transition metal compound and the activator are combined in ratios of about 1000: 1 to about 0.5: 1. In a preferred embodiment the transition metal compound and the activator are combined in a ratio of about 300:1 to about 1 :1, preferably about 10: 1 to about 1 : 1 , for boranes the ratio is preferably about 1 : 1 to about 10: 1 and for alkyl aluminum compounds (such as diethylaluminum chloride combined with water) the ratio is preferably about 0.5: 1 to about 10: 1.
In one embodiment the catalysts systems described above can further include other classes of catalysts, such as for example one or more Ziegler-Natta catalysts and/or one or more metallocene catalyst and/or one or more vanadium catalysts and/or one or more chromium catalysts. In a preferred embodiment a Ziegler- Natta catalyst as described in Ziegler-Natta Catalysts and Polymerizations, John Boor, Academic Press, New York, 1979 (with or without a separate activator) is combined with a catalyst system of this invention and used to polymerize one or more olefins. In another embodiment a metallocene catalyst (such as a cyclopentadienyl transition metal compound) with or without a separate activator is combined with a catalyst system of this invention and used to polymerize one or more olefins. Preferred cyclopentadienyl transition metal compounds are those mono-and bis-cyclopentadienyl group 4, 5 and 6 compounds described in U.S.
Patent Nos. 4,530,914, 4,805,561, 4,937,299, 5,124,418, 5,017,714, 5,057,475, 5,064,802, 5,278,264, 5,278,119, 5,304,614, 5,324,800, 5,347,025, 5,350,723, 5,391,790 5,391,789, EP-A-0 591 756, EP-A-0 520 732, EP-A-0 578,838, EP-A- 0 638,595, EP-A- 0 420 436, WO 91/04257, WO 92/00333, WO 93/08221, WO 93/08199, WO 94/01471, WO 94/07928, WO 94/03506 and W0 95/07140, all of which are fully incorporated by reference herein.
The catalysts and catalyst systems described above can be used in any known olefm polymerization process including gas phase, solution, slurry and high pressure. The catalysts and catalyst systems described above are particularly suitable for use a solution, gas or slurry polymerization process or a combination thereof, most preferably a gas or slurry phase polymerization process.
In one embodiment, this invention is directed toward the solution, slurry or gas phase polymerization reactions involving the polymerization of one or more of monomers having from 2 to 30 carbon atoms, preferably 2-12 carbon atoms, and more preferably 2 to 8 carbon atoms. Preferred monomers include one or more of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-l, 3,5,5,-trimethyl- hexene-1, hexene-1, octene-1, decene-1, 3-methyl-pentene-l, and cyclic olefins or a combination thereof. Other monomers can include vinyl monomers, diolefins such as dienes, polyenes, norbornene, norbornadiene monomers. In one embodiment, a homopolymer of ethylene is produced. Typically in a gas phase polymerization process a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor. Generally, in a gas fluidized bed process for producing polymers, a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer. (See for example U.S. Patent Nos. 4,543,399, 4,588,790, 5,028,670, 5,317,036, 5,352,749, 5,405,922, 5,436,304, 5,453,471, 5,462,999, 5,616,661 and 5,668,228 all of which are fully incorporated herein by reference.)
The reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa).
The reactor temperature in the gas phase process may vary from about 30°C to about 120°C, preferably from about 60°C to about 1 15°C, more preferably in the range of from about 70°C to 110°C, and most preferably in the range of from about 70°C to about 95°C.
The productivity of the catalyst or catalyst system in a gas phase system is influenced by the main monomer partial pressure. The preferred mole percent of the main monomer, ethylene or propylene, preferably ethylene, is from about 25 to 90 mole percent and the monomer partial pressure is in the range of from about
75 psia (517 kPa) to about 300 psia (2069 kPa), which are typical conditions in a gas phase polymerization process. In a preferred embodiment, the reactor utilized in the present invention is capable and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than
10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr).
Other gas phase processes contemplated by the process of the invention include those described in U.S. Patent Nos. 5,627,242, 5,665,818 and 5,677,375, and European publications EP-A- 0 794 200, EP-A- 0 802 202 and EP-B- 634 421 all of which are herein fully incorporated by reference.
A slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0°C to about 120°C. In a slurry polymerization, a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers along with catalyst are added. The suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor. The liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane. The medium employed should be liquid under the conditions of polymerization and relatively inert. When a propane medium is used the process must be operated above the reaction diluent critical temperature and pressure. Preferably, a hexane or an isobutane medium is employed.
In one embodiment, a preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution. Such technique is well known in the art, and described in for instance U.S. Patent No. 3,248,179 which is fully incorporated herein by reference. The preferred temperature in the particle form process is within the range of about 185°F (85°C) to about 230°F (110°C). Two preferred polymerization methods for the slurry process are those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof. Non- limiting examples of slurry processes include continuous loop or stirred tank processes. Also, other examples of slurry processes are described in U.S. Patent No. 4,613,484, which is herein fully incorporated by reference.
In another embodiment, the slurry process is carried out continuously in a loop reactor. The catalyst as a slurry in isobutane or as a dry free flowing powder is injected regularly to the reactor loop, which is itself filled with circulating slurry of growing polymer particles in a diluent of isobutane containing monomer and comonomer. Hydrogen, optionally, may be added as a molecular weight control. The reactor is maintained at pressure of about 525 psig to 625 psig (3620 kPa to 4309 kPa) and at a temperature in the range of about 140 °F to about 220 °F (about 60 °C to about 104 °C) depending on the desired polymer density. Reaction heat is removed through the loop wall since much of the reactor is in the form of a double-jacketed pipe. The slurry is allowed to exit the reactor at regular intervals or continuously to a heated low pressure flash vessel, rotary dryer and a nitrogen purge column in sequence for removal of the isobutane diluent and all unreacted monomer and comonomers. The resulting hydrocarbon free powder is then compounded for use in various applications.
In another embodiment, the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr). In another embodiment the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11 ,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).
In another embodiment in the slurry process of the invention the total reactor pressure is in the range of from 400 psig (2758 kPa) to 800 psig (5516 kPa), preferably 450 psig ( 3103 kPa) to about 700 psig (4827 kPa), more preferably 500 psig (3448 kPa) to about 650 psig (4482 kPa), most preferably from about 525 psig (3620 kPa) to 625 psig (4309 kPa).
In yet another embodiment in the slurry process of the invention the concentration of ethylene in the reactor liquid medium is in the range of from about 1 to 10 weight percent, preferably from about 2 to about 7 weight percent, more preferably from about 2.5 to about 6 weight percent, most preferably from about 3 to about 6 weight percent. A preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like. This preferred process is described in PCT publication WO 96/08520 and U.S. Patent No. 5,712,352, which are herein fully incorporated by reference.
In another preferred embodiment the one or all of the catalysts are tumbled with up to 6 weight % of a metal stearate, (preferably a aluminum stearate, more preferably aluminum distearate) based upon the weight of the catalyst, any support and the stearate, preferably 2 to 3 weight %. In an alternate embodiment a solution of the metal stearate is fed into the reactor. These agents may be dry tumbled with the catalyst or may be fed into the reactor in a solution with or without the catalyst system or its components.
The catalyst and/or the activator may be placed on a support. Typically the support can be of any of the solid, porous supports. Typical support materials include talc; inorganic oxides such as silica, magnesium chloride, alumina, silica- alumina; polymeric supports such as polyethylene, polypropylene, polystyrene; and the like. Preferably the support is used in finely divided form. Prior to use the support is preferably partially or completely dehydrated. The dehydration may be done physically by calcining or by chemically converting all or part of the active hydroxyls. For more information on how to support catalysts please see
US 4,808,561 which teaches how to support a metallocene catalyst system. The techniques used therein are generally applicable for this invention.
The catalyst system, the catalyst and or the activator may also be introduced into the reactor in solution. In one embodiment a solution of the activated catalyst in an alkane such as pentane, hexane, isopentane or the like is feed into a gas phase reactor.
In a preferred embodiment, the polyolefm recovered typically has a melt index as measured by ASTM D-1238, Condition E, at 190°C of 100 g/lOmin or less. In a preferred embodiment the polyolefm is ethylene homopolymer.
In a preferred embodiment the catalyst system described above is used to make a polyethylene having a density of between 0.89 and 0.960 g/cm3 (as measured by ASTM 2839), a melt index of 1.0 or less g/lOmin or less (as measured by ASTM
D-1238, Condition E, at 190°C). Polyethylene having a melt index of between 0.01 to 10 dg/min is preferably produced. In some embodiments, a density of 0.915 to 0.940g/cm3 would be preferred, in other embodiments densities of 0.930 to 0.960g/cm3 are preferred.
The polyolefins then can be made into films, molded articles, sheets and the like. The films may be formed by any of the conventional technique known in the art including extrusion, co-extrusion, lamination, blowing and casting. The film may be obtained by the flat film or tubular process which may be followed by orientation in an uniaxial direction or in two mutually perpendicular directions in the plane of the film to the same or different extents. Orientation may be to the same extent in both directions or may be to different extents. Particularly preferred methods to form the polymers into films include extrusion or coextrusion on a blown or cast film line.
The films produced may further contain additives such as slip, antiblock, antioxidants, pigments, fillers, antifog, UV stabilizers, antistats, polymer processing aids, neutralizers, lubricants, surfactants, pigments, dyes and nucleating agents. Preferred additives include silicon dioxide, synthetic silica, titanium dioxide, polydimethylsiloxane, calcium carbonate, metal stearates, calcium stearate, zinc stearate, talc, BaSO4, diatomaceous earth, wax, carbon black, flame retarding additives, low molecular weight resins, hydrocarbon resins, glass beads and the like. The additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to 10 weight %.
This invention further relates to a library of a plurality of heteroatom substituted phenoxide group 3 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide, b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C1 carbon in a group represented by the formula:
Figure imgf000019_0001
wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocychc compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R! and R2 may be bonded to each other to form a ring. In a preferred embodiment the heteroatom substituted phenoxide group 4 to 10 transition metal or lanthanide metal compounds are represented by the formulae above. These libraries may then be used for the simultaneous parallel screening of catalysts, activators and or monomers by combining the library with one or more activators and or olefins.
EXAMPLES
MMAO is modified methylalumoxane (type 3 in hexane) commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3 A , covered under patent number US 5,041,584) Example 1.
Figure imgf000020_0001
Synthesis ofN-benzylidene-2-hvdroxy-3.5,di-t-butylbenzylamine, A solution of 2-hydroxy-3,5,di-t-butylbenzylamine (prepared by the procedure described by G. E. Stokker, et al.; J. Med. Chem. 1980, 23, 1414; 2.35 g, 10.0 mmol) is prepared in 50 mL methanol. Benzaldehyde (1.06 g, 10.0 mmol) is added, and the resulting solution is stirred for 30 minutes. Product crystallizes upon cooling the solution to -40 °C.
EXAMPLE 2.
Figure imgf000021_0001
Ethylene polymerization using catalyst 1. A solution of N-benzylidene-2- hydroxy-3,5,di-t-butylbenzylamine is prepared in 50 mL toluene. Bz4Zr is added
(0.5 equiv), and the resulting solution is stirred for 30 minutes. A 1 μmol aliquot of the solution is withdrawn and added to 300 equiv of MMAO (Type 3 A, Akzo). The resulting solution is stirred for 5 minutes and is injected into a 1 L slurry reactor, containing 600 mL hexane, 43 mL hexene and 100 μmol zsoBu3Al. The reactor is then pressurized to 85 psi ( 586 kPa) with ethylene and heated to 75 °C.
After 30 minutes, the reactor is cooled to ambient temperature and vented. Solid polyethylene is obtained.
EXAMPLE 3.
Figure imgf000021_0002
2 Ethylene polymerization using catalyst 2. A solution of 2-(2H-Benzotriazol-2- yl)-4,6-di-t-pentylphenol (Aldrich) was prepared in 50 mL toluene. Bz4Zr was added (0.5 equiv), and the resulting solution was stirred for 30 minutes. The resulting solution wa added to 300 equiv of MMAO (Type 3A, Akzo). The resulting solution was stirred for 5 minutes, a 0.25 μmol (Zr) aliquot of the solution was withdrawn and injected into a 1 L slurry reactor, containing 600 mL hexane, 43 mL hexene and 100 μmol soBu3Al. The reactor was then pressurized to 85 psi ( 586 kPa) with ethylene and heated to 75 °C. After 30 minutes, the reactor was cooled to ambient temperature and vented. Solid polyethylene was obtained (0.98 g) which corresponds to an activity of 9200 g PE/mmol Zr»100 psi C2H4»hr.
The catalysts described herein are expected to produce HDPE under ethylene- hexene copolymerization conditions.
All documents described herein are incorporated by reference herein, including any priority documents and/or testing procedures. As is apparent form the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly it is not intended that the invention be limited thereby.

Claims

CLAIMS:We Claim:
1. A catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 transition or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide, b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C1 carbon in a group represented by the formula:
Figure imgf000023_0001
wherein R and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocychc compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R1 and R2 may be bonded to each other to form a ring.
2. A catalyst system comprising the reaction product of an activator and one or more heteroatom substituted phenoxide transition metal compounds represented by the following formulae:
Figure imgf000024_0001
Figure imgf000024_0002
wherein: R1 to R5 may be independently hydrogen, a heteroatom containing group or a Ci to Cioo group provided that at least one of R to R is a group containing a heteroatom, any of R1 to R5 may or may not be bound to the metal M,
O is oxygen,
M is a group 3 to 10 transition metal or a lanthanide metal, n is the valence state of M,
Q is an anionic ligand or a bond to an R group containing a heteroatom which may be any of R1 to R5, and further provided that: a) if M is a group 4 metal then R5 may not be an aldehyde or an ester; b) the R4 and R5 groups do not form pyridine in the first formula if M is a group 4 metal; c) the R and R groups do not form pyridine in at least one ring of the second formula if M is a group 4 metal; and d) neither R1 nor R5 may be a group represented by the formula:
Figure imgf000025_0001
wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocychc compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R6 and R7 may be bonded to each other to form a ring.
3. The catalyst system of any one of the preceding claims wherein the activator is an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borate or a non-coordinating anion, or a mixture thereof.
4. The catalyst system of any one of the preceding claims wherein the transition metal is a Group 4 metal, preferably zirconium.
5. The catalyst system of any one of the preceding claims wherein the heteroatom substituted phenoxide transition metal compound is selected from the group consisting of: bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IN) dibenzyl; bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IV) dichloride; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; bis(N-benzylidene-2-hydroxy-3 ,5 ,di-t-butylbenzylamine) titanium(IN) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dichloride; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) di(bis(dimethylamide)); bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',1 '- dimethylbenzyl)phenoxide)zirconium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)titanium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',l '- dimethylbenzyl)phenoxide)titanium(IV) dibenzyl; bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',1 '- dimethylbenzyl)phenoxide)titanium(IV) dichloride; bis(2-(2H-benzotriazol-2-yl)-4,6-di-(l ',1 '- dimethylbenzyl)phenoxide)hafhium(IV) dibenzyl; and (N-phenyl-3,5-di-(r,r-dimethylbenzyl)salicylimino)zirconium(IV) tribenzyl.
6. The catalyst system of any one of the preceding claims wherein either the transition metal compound or the activator or both are placed on a support.
7. The catalyst system of any one of the preceding claims further comprising a Ziegler-Νatta catalyst, and/or a mono-or bis-cyclopentadienyl Group 4, 5 and 6 transition metal compound and an optional second activator.
8. The catalyst system of any one of the preceding claims wherein the activator is one or more of alumoxane, tris (2, 2', 2"- nonafluorobiphenyl) fluoroaluminate, triphenyl boron, triethyl boron, tri-n-butyl ammonium tetraethylborate, triaryl borane, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron, or diethylaluminum chloride.
9. The catalyst system of claim 2 wherein Q is a bond to any of R2 to R5 and the R group that Q is bound to is a heteroatom containing group, preferably the heteroatom containing group is an imine, a triazole, an oxyzole, nitrogen and/or oxygen.
10. The catalyst system of claim 2 wherein the R1 group is a C4 to C o alkyl group, preferably R1 is a tertiary alkyl group.
11. The catalyst system of claim 2 wherein R5 is bound to the metal, and/or the R2 group is a butyl, isobutyl, tertiary butyl, pentyl hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, or dodecyl group.
12. The catalyst system of any one of the preceding claims wherein two or more R groups form a five or six membered ring, or two or more R groups form a multi-ring system.
13. The catalyst system of claim 2 wherein n is 4 or 3.
14. The catalyst system of claim 2 wherein Q is a halogen, an alkyl group, an amide, carboxylate, carbamate, thiolate, hydride or alkoxide group.
15. The catalyst system of any one of the preceding claims wherein prior to being combined with the transition metal compound and/or the activator and/or the reaction product thereof the support is partially or completely dehydrated.
16. The catalyst system of any one of the preceding claims wherein either the transition metal compound or the activator or the reaction product thereof are placed on a support selected from the group consisting of talc; silica, magnesium chloride, alumina, silica-alumina; polyethylene, polypropylene, polystyrene; or a mixture thereof.
17. The catalyst system of claim 2 wherein the transition metal compound and the activator are combined in ratios of about 1000:1 to about 0.5:1, preferably the transition metal compound and the activator are combined in ratios of about 300:1 to about 1:1, and where the activator is a borane, it is most preferable that the transition metal compound and the borane are combined in ratios of about 1 : 1 to about 10:1
18. The catalyst system of any one of the preceding claims wherein the activator is an alkyl aluminum compound and the transition metal compound and the alkyl aluminum compound are combined in ratios of about 0.5:1 to about 10:1
19. The catalyst system of any one of the preceding claims wherein two or more R groups do not form a five membered ring.
20. A process for polymerizing olefins comprising combining one or more olefins with any one of the catalyst systems of any of the preceding claims.
21. The process of claim 20 wherein the process is a gas phase process, a slurry phase process, a slurry phase process, a slurry phase solution process, or high pressure process, preferably the catalyst and the olefm are reacted in one or more of these processes, preferably a gas phase process.
PCT/US1999/029755 1998-12-18 1999-12-14 Olefin polymerization catalysts, their production and use WO2000037512A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21846/00A AU2184600A (en) 1998-12-18 1999-12-14 Olefin polymerization catalysts, their production and use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21659498A 1998-12-18 1998-12-18
US09/216,594 1998-12-18
US09/248,147 1999-02-10
US09/248,147 US6333389B2 (en) 1998-12-18 1999-02-10 Olefin polymerization catalysts, their production and use

Publications (2)

Publication Number Publication Date
WO2000037512A2 true WO2000037512A2 (en) 2000-06-29
WO2000037512A3 WO2000037512A3 (en) 2000-10-19

Family

ID=26911144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/029755 WO2000037512A2 (en) 1998-12-18 1999-12-14 Olefin polymerization catalysts, their production and use

Country Status (3)

Country Link
US (2) US6333389B2 (en)
AU (1) AU2184600A (en)
WO (1) WO2000037512A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049995A1 (en) * 2000-12-19 2002-06-27 Univation Technologies, Llc Process for oligomerising or polymerising ethylene
WO2003087177A2 (en) * 2002-04-12 2003-10-23 Symyx Technologies, Inc. Ethylene-styrene copolymers, complexes and catalysts with phenol-triazole ligands and processes for polymerizing therewith
WO2006066126A2 (en) * 2004-12-16 2006-06-22 Symyx Technologies, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
US7094848B2 (en) 2003-05-13 2006-08-22 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system
WO2014066602A1 (en) * 2012-10-25 2014-05-01 Chevron Phillips Chemical Company Lp Novel catalyst compositions and methods of making and using same
WO2014066618A1 (en) * 2012-10-25 2014-05-01 Chevron Phillips Chemical Company Lp Novel catalyst compositions and method of making and using the same for the polymerizsation of olefin, high density polyethylene
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW420693B (en) * 1997-04-25 2001-02-01 Mitsui Chemicals Inc Olefin polymerization catalysts, transition metal compounds, and <alpha>-olefin/conjugated diene copolymers
US6596827B2 (en) * 1999-09-10 2003-07-22 Ramot At Tel Aviv University Ltd. Method for catalytic polymerization of alpha-olefin monomers using an ultra-high activity non-metallocene pre-catalyst
US6300439B1 (en) 1999-11-08 2001-10-09 Univation Technologies, Llc Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6274684B1 (en) 1999-10-22 2001-08-14 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6281306B1 (en) * 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
EP1303543A1 (en) * 2000-07-17 2003-04-23 Univation Technologies LLC A catalyst system and its use in a polymerization process
US6930070B2 (en) * 2002-01-28 2005-08-16 Univation Technologies, Llc Heterocyclic nitrogen-containing activators and catalyst systems for olefin polymerization
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7294681B2 (en) 2002-10-15 2007-11-13 Exxonmobil Chemical Patents Inc. Mutliple catalyst system for olefin polymerization and polymers produced therefrom
US7741417B2 (en) * 2004-01-07 2010-06-22 Exxonmobil Chemical Patents Inc. Preparation of polymerization catalyst activators utilizing indole-modified silica supports
US7193017B2 (en) * 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
US6987152B1 (en) 2005-01-11 2006-01-17 Univation Technologies, Llc Feed purification at ambient temperature
US7312279B2 (en) * 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
US7947797B2 (en) 2005-09-14 2011-05-24 Univation Technologies, Llc Method for operating a gas-phase reactor at or near maximum production rates while controlling polymer stickiness
US20070109911A1 (en) * 2005-11-16 2007-05-17 Neubauer Anthony C High speed and direct driven rotating equipment for polyolefin manufacturing
WO2008042182A1 (en) 2006-10-03 2008-04-10 Univation Technologies, Llc Method for preventing catalyst agglomeration based on production rate changes
TWI432456B (en) * 2006-10-03 2014-04-01 Univation Tech Llc Effervescent nozzle for catalyst injection
US8022005B2 (en) * 2007-11-08 2011-09-20 Exxonmobil Chemical Patents Inc. Halogen substituted heterocyclic heteroatom containing ligands-alumoxane activation of metallocenes
EP2112175A1 (en) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Activator for metallocenes comprising one or more halogen substituted heterocyclic heteroatom containing ligand coordinated to an alumoxane
TW200936564A (en) * 2007-11-15 2009-09-01 Univation Tech Llc Methods for the removal of impurities from polymerization feed streams
TW200936619A (en) 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
KR101071399B1 (en) * 2007-12-05 2011-10-07 주식회사 엘지화학 Non-metallocene catalysts having tetrazol group for olefin polymerization and polymerizing method of olefin using the same
US20090286944A1 (en) * 2008-05-15 2009-11-19 Symyx Technologies, Inc. Select phenol-heterocycle ligands, metal complexes formed therefrom, and their uses as catalysts
BRPI0922454A2 (en) 2008-12-18 2018-05-22 Univation Tech Llc seedbed treatment method for a polymerization reaction
WO2011103280A1 (en) 2010-02-18 2011-08-25 Univation Technologies, Llc Methods for operating a polymerization reactor
KR20130026531A (en) 2010-02-22 2013-03-13 유니베이션 테크놀로지즈, 엘엘씨 Catalyst systems and methods for using same to produce polyolefin products
US8722804B2 (en) 2010-04-13 2014-05-13 Univation Technologies, Llc Polymer blends and films made therefrom
EP2593217B1 (en) 2010-07-16 2014-07-02 Univation Technologies, LLC Systems and methods for measuring particle accumulation on reactor surfaces
WO2012009215A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring static charge on particulates
WO2012015898A1 (en) 2010-07-28 2012-02-02 Univation Technologies, Llc Systems and methods for measuring velocity of a particle/fluid mixture
WO2012074710A1 (en) 2010-11-30 2012-06-07 Univation Technologies, Llc. Catalyst composition having improved flow characteristics and methods of making and using the same
MY161173A (en) 2010-11-30 2017-04-14 Univation Tech Llc Processes for the polymerization of olefins with extracted metal carboxlate salts
CN103298842B (en) 2010-12-17 2016-08-31 尤尼威蒂恩技术有限责任公司 System and the method for hydrocarbon is reclaimed from polyolefin purging gaseous product
WO2012158260A1 (en) 2011-05-13 2012-11-22 Univation Technologies, Llc Spray-dried catalyst compositions and polymerization processes employing the same
WO2013028283A1 (en) 2011-08-19 2013-02-28 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
BR112014010900B1 (en) 2011-11-08 2020-02-18 Univation Technologies, Llc METHOD OF PREPARING A CATALYST SYSTEM, CATALYST SYSTEM AND POLYMERIZATION PROCESS
ES2729280T3 (en) 2011-11-08 2019-10-31 Univation Tech Llc Methods to produce polyolefins with catalytic systems
EP4039366A1 (en) 2012-12-28 2022-08-10 Univation Technologies, LLC Supported catalyst with improved flowability
BR112015015373B1 (en) 2012-12-28 2020-12-15 Univation Technologies, Llc METHOD FOR INTEGRATING ALUMINOXAN PRODUCTION IN THE PRODUCTION OF A CATALYST
CN110452318A (en) 2013-01-14 2019-11-15 尤尼威蒂恩技术有限责任公司 The method for preparing high yield antigravity system
CN105189566A (en) 2013-01-30 2015-12-23 尤尼威蒂恩技术有限责任公司 Processes for making catalyst compositions having improved flow
RU2654061C2 (en) 2013-02-07 2018-05-16 ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи Production of polyolefin
WO2014149361A1 (en) 2013-03-15 2014-09-25 Univation Technologies, Llc Ligands for catalysts
ES2667196T3 (en) 2013-03-15 2018-05-10 Univation Technologies, Llc Nitrogen-based tridentate ligands for olefin polymerization catalysts
CN105308007B (en) 2013-06-05 2017-07-21 尤尼威蒂恩技术有限责任公司 Protect phenolic group
CN114957529A (en) 2014-04-02 2022-08-30 尤尼威蒂恩技术有限责任公司 Continuous compositions and methods of making and using the same
WO2016145179A1 (en) 2015-03-10 2016-09-15 Univation Technologies, Llc Spray dried catalyst compositions, methods for preparation and use in olefin polymerization processes
US9745327B2 (en) 2015-03-24 2017-08-29 Exxonmobil Chemical Patents Inc. Bisphenolate transition metal complexes, production and use thereof
CN107428782B (en) 2015-03-24 2020-06-12 埃克森美孚化学专利公司 Bisphenolate transition metal complexes, their preparation and use
ES2924251T3 (en) 2015-04-17 2022-10-05 Univation Tech Llc Procedures and systems for the polymerization of olefins
SG11201708487RA (en) 2015-04-24 2017-11-29 Univation Tech Llc Methods for operating a polymerization reactor
EP3288984B1 (en) 2015-04-27 2023-08-09 Univation Technologies, LLC Supported catalyst compositions having improved flow properties and preparation thereof
US10221260B2 (en) 2016-07-29 2019-03-05 Exxonmobil Chemical Patents Inc. Phenolate transition metal complexes, production and use thereof
WO2018022279A1 (en) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Phenolate transition metal complexes, production and use thereof
US10975183B2 (en) 2016-09-09 2021-04-13 Exxonmobil Chemical Patents Inc. Pilot plant scale semi-condensing operation
US11186654B2 (en) 2016-12-20 2021-11-30 Exxonmobil Chemical Patents Inc. Methods for controlling start up conditions in polymerization processes
US10611857B2 (en) 2017-08-02 2020-04-07 Exxonmobil Chemical Patents Inc. Bisphenolate transition metal complexes, production and use thereof
WO2019213227A1 (en) 2018-05-02 2019-11-07 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
CN112055720B (en) 2018-05-02 2022-11-22 埃克森美孚化学专利公司 Method for scaling up from pilot plant to larger production facility
US11649256B2 (en) 2019-10-11 2023-05-16 Exxonmobil Chemical Patents Inc. Catalysts for olefin polymerization
CA3235407A1 (en) 2021-10-21 2023-04-27 Univation Technologies, Llc Bimodal poly(ethylene-co-1-alkene) copolymer and blow-molded intermediate bulk containers made therefrom
WO2024081271A1 (en) 2022-10-11 2024-04-18 Dow Global Technologies Llc Polyethylene blends containing virgin and recycled hdpe materials
WO2024081272A1 (en) 2022-10-11 2024-04-18 Dow Global Technologies Llc Bimodal hdpe and polyethylene blend containing virgin and recycled hdpe materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798313A1 (en) * 1994-12-13 1997-10-01 Asahi Kasei Kogyo Kabushiki Kaisha Olefin polymerization catalyst
EP0874005A1 (en) * 1997-04-25 1998-10-28 Mitsui Chemicals, Inc. Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and Alpha-olefin/conjugated diene copolymers
EP0950667A2 (en) * 1998-04-16 1999-10-20 Mitsui Chemicals, Inc. Olefin polymerization catalyst and polymerization process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030606A (en) * 1985-10-15 1991-07-09 E. I. Du Pont De Nemours And Company Nickel-catalyzed copolymerization of ethylene
US5637660A (en) * 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
JP3964053B2 (en) * 1997-07-10 2007-08-22 三井化学株式会社 Olefin polymerization catalyst comprising transition metal compound and polymerization method
JP3973765B2 (en) 1997-07-18 2007-09-12 三井化学株式会社 Olefin polymerization catalyst comprising transition metal compound and polymerization method
JP4114221B2 (en) * 1997-09-04 2008-07-09 三井化学株式会社 Olefin polymerization catalyst and olefin polymerization method
US6686490B1 (en) * 2000-11-06 2004-02-03 Ramot University Authority For Applied Research & Industrial Development Ltd. Active non-metallocene pre-catalyst and method for tactic catalytic polymerization of alpha-olefin monomers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798313A1 (en) * 1994-12-13 1997-10-01 Asahi Kasei Kogyo Kabushiki Kaisha Olefin polymerization catalyst
EP0874005A1 (en) * 1997-04-25 1998-10-28 Mitsui Chemicals, Inc. Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and Alpha-olefin/conjugated diene copolymers
EP0950667A2 (en) * 1998-04-16 1999-10-20 Mitsui Chemicals, Inc. Olefin polymerization catalyst and polymerization process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 131, no. 8, 23 August 1999 (1999-08-23) Columbus, Ohio, US; abstract no. 102661, MATSUI, SHIGEKAZU ET AL: "Transition metal compounds useful as olefin polymerization catalysts and polymerization method therewith" XP002135170 & JP 11 199592 A (MITSUI CHEMICALS INC., JAPAN) 27 July 1999 (1999-07-27) *
COLEMAN, W. M., III: "Ligand field effects on kinetic profiles in ethylene, alpha-olefin copolymerization" APPL. CATAL. ( 1986 ), 22(2), 345-59, XP002134858 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531555B2 (en) 2000-12-19 2003-03-11 Univation Technologies, Llp Olefin oligomerization catalysts, their production and use
WO2002049995A1 (en) * 2000-12-19 2002-06-27 Univation Technologies, Llc Process for oligomerising or polymerising ethylene
US7074870B2 (en) 2002-04-12 2006-07-11 Symyx Technologies, Inc. Styrene polymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
WO2003087177A2 (en) * 2002-04-12 2003-10-23 Symyx Technologies, Inc. Ethylene-styrene copolymers, complexes and catalysts with phenol-triazole ligands and processes for polymerizing therewith
WO2003087177A3 (en) * 2002-04-12 2004-04-29 Symyx Technologies Inc Ethylene-styrene copolymers, complexes and catalysts with phenol-triazole ligands and processes for polymerizing therewith
US6794514B2 (en) 2002-04-12 2004-09-21 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US6933355B2 (en) 2002-04-12 2005-08-23 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US6965004B2 (en) 2002-04-12 2005-11-15 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US7479531B2 (en) 2003-05-13 2009-01-20 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system useful for polar monomers
US7094848B2 (en) 2003-05-13 2006-08-22 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system
US7285609B2 (en) 2003-05-13 2007-10-23 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system useful for polar monomers
WO2006066126A3 (en) * 2004-12-16 2006-08-24 Symyx Technologies Inc Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
WO2006066126A2 (en) * 2004-12-16 2006-06-22 Symyx Technologies, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
US7705157B2 (en) 2004-12-16 2010-04-27 Symyx Solutions, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
WO2014066618A1 (en) * 2012-10-25 2014-05-01 Chevron Phillips Chemical Company Lp Novel catalyst compositions and method of making and using the same for the polymerizsation of olefin, high density polyethylene
WO2014066602A1 (en) * 2012-10-25 2014-05-01 Chevron Phillips Chemical Company Lp Novel catalyst compositions and methods of making and using same
CN103772556A (en) * 2012-10-25 2014-05-07 切弗朗菲利浦化学公司 Novel catalyst composition and methods of making and using same
US8895679B2 (en) 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
CN104955802B (en) * 2012-10-25 2017-10-13 切弗朗菲利浦化学公司 Carbon monoxide-olefin polymeric and its preparation and application
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
US9394385B2 (en) 2013-01-29 2016-07-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
US9637573B2 (en) 2013-01-29 2017-05-02 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same

Also Published As

Publication number Publication date
WO2000037512A3 (en) 2000-10-19
US20010031843A1 (en) 2001-10-18
AU2184600A (en) 2000-07-12
US6333389B2 (en) 2001-12-25
US20020016254A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
US6333389B2 (en) Olefin polymerization catalysts, their production and use
EP1185563B1 (en) Method of polymerization
US6320002B1 (en) Olefin polymerization catalyst
US6583083B2 (en) Olefin polymerization catalyst system
US6489263B2 (en) Olefin polymerization catalyst
US6300439B1 (en) Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
CA2416197A1 (en) A catalyst system and its use in a polymerization process
AU2002231225B2 (en) Catalyst composition and method of polymerization
AU2002231225A1 (en) Catalyst composition and method of polymerization
US6878662B2 (en) Polymerization catalyst system, polymerization process and polymer therefrom
Gibson Murray et al.
Wt MWD
AU2002227431A1 (en) Polymerization catalyst system, polymerization process and polymer therefrom

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU BR CA JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AU BR CA JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase