WO2000048137A1 - Coin discriminating device, coin handling apparatus including such a device, and coin discriminating method - Google Patents

Coin discriminating device, coin handling apparatus including such a device, and coin discriminating method Download PDF

Info

Publication number
WO2000048137A1
WO2000048137A1 PCT/SE2000/000189 SE0000189W WO0048137A1 WO 2000048137 A1 WO2000048137 A1 WO 2000048137A1 SE 0000189 W SE0000189 W SE 0000189W WO 0048137 A1 WO0048137 A1 WO 0048137A1
Authority
WO
WIPO (PCT)
Prior art keywords
coin
images
discriminating device
camera
coins
Prior art date
Application number
PCT/SE2000/000189
Other languages
French (fr)
Inventor
Jerry Karlsson
Original Assignee
Scan Coin Industries Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scan Coin Industries Ab filed Critical Scan Coin Industries Ab
Priority to JP2000598982A priority Critical patent/JP2002541538A/en
Priority to AU29525/00A priority patent/AU2952500A/en
Priority to EP00908152A priority patent/EP1151418B1/en
Priority to AT00908152T priority patent/ATE222390T1/en
Priority to DK00908152T priority patent/DK1151418T3/en
Priority to DE60000332T priority patent/DE60000332T2/en
Publication of WO2000048137A1 publication Critical patent/WO2000048137A1/en

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/005Testing the surface pattern, e.g. relief

Definitions

  • COIN DISCRIMINATING DEVICE COIN HANDLING APPARATUS INCLUDING SUCH A DEVICE, AND COIN DISCRIMINATING METHOD
  • the present invention relates to coin discriminating devices, particularly of the kind comprising camera means for producing an image of a surface of a coin, and processing means, operatively connected to the camera means, for analyzing the image and determining a type of the coin.
  • the present invention also relates to a coin handling apparatus incorporating such a coin discriminating device, and to a coin discriminating method.
  • Coin discriminating devices are used in e.g. coin counting/sorting machines for identifying the type (e.g. denomination) of each coin that is processed by the machine. Furthermore, coin discriminators are used in coin inspection systems for sorting out foreign coins, counterfeit coins as well as coins that are unfit for further circulation (due to e.g. excessive wear) .
  • Some coin discriminators operate inductively by exposing the coins to an alternating magnetic field by means of one or more than one coil and by detecting a physical property of the coin in response to the magnetic field exposure. For instance, the decay of eddy currents induced in the coin may be measured and used for determining the conductivity of the coin. Furthermore, magnetic properties such as permeability may be determined, as well as dimensional information, e.g. diameter or thickness.
  • Inductive coin discriminators are often able to successfully identify the metallic composition of the coin, thereby allowing a determination of the coin denomination by additionally using measurement data related to e.g. the coin diameter.
  • measurement data related to e.g. the coin diameter.
  • not all coin types are distinctive enough, in terms of their magnetic and electric characteristics, to allow differentiation by means of an inductive coin discriminator.
  • a different and considerably more expensive kind of coin discriminators is optical pattern recognition discriminators, which produce e.g. a gray-scale or monochromatic image of the coin surface and identify the coin type by image analysis methods and comparisons with stored coin reference data.
  • Optical pattern recognition discriminators of this type are shown in EP-A-0 798 669, EP-A-0 798 670, JP-A-10105765, JP-A-09259320 and US-A-5 576 825. They comprise light emitting means for projecting light onto one surface of a coin, a camera or other optical sensor means for producing an image from the light reflected from the coin, and processing means for determining a type of the coin by comparing the image with reference data related to different types of coins.
  • a common drawback of these prior art discriminators is that only one surface of the coin is photographed and analyzed. Whether the determination is made for the front coin surface or for the rear coin surface will be completely random; it all depends on the orientation of the coin at the moment it passes the discriminator, i.e. whether the front surface or the rear surface faces the camera. There- fore, if the photographed surface has been severely altered due to e.g. excessive wear or other mechanical damage, the determination of type will be less accurate. Furthermore, since only one of the coin surfaces is used for the determination, the discriminator may experience severe difficul- ties in differentiating between two individual coins of different currency or denomination, if one surface of the first coin happens to resemble one surface of the second coin. Summary of the Invention
  • the object of the present invention is to provide an optical coin discriminating device, which more accurately may determine the type of individual coins .
  • This object is achieved by providing the discriminator with two separate cameras or optical sensors for producing one image of the first surface of each coin, and another image of the second coin surface.
  • the processor of the discriminator is arranged to analyze both images and compare them to predetermined coin reference data in order to separately determine a type of the first surface and a type of the second surface . By combining the two determined surfaces, a type of the coin may be accurately established.
  • An important aspect of the present invention is the realization that such a coin discriminating device may advantageously be incorporated in an advanced coin handling apparatus recently developed by the applicant. In such a coin handling apparatus only an edge portion of each coin is engaged between two rotary transport means, thereby ex- posing a majority of both the front surface and the rear surface to the two cameras .
  • FIGs 1 and 2 are schematic perspective views illustrating a coin handling apparatus incorporating a coin discriminating device according to a preferred embodiment
  • FIG 3 is a plan view of a separating device in the coin handling apparatus of FIGs 1 and 2
  • FIG 4 is a perspective sectional view of the separating device
  • FIG 5 is an enlarged view of a portion of FIG 4.
  • FIG 1 illustrates a coin handling apparatus having a separating device 30, which is mounted on a support frame 38 and a stand 40.
  • a cabinet 42 having a door 44 is provided beneath the stand 40.
  • a top cover 32 and additional side covers (not shown) protect and enclose the separating device 30 during operation.
  • the cover 32 has a coin inlet 36 and an inspection window 34.
  • An optical coin discriminator cabinet 50 is mounted next to the separating device 30.
  • the discriminator cabinet 50 comprises a first and a second fan 54, 56 and a door 51, which may be unlocked by means of a lock handle 52 and swung open, as shown in FIG 2.
  • FIG 2 illustrates the coin handling apparatus with the top cover removed and with the discriminator cabinet door 51 in an opened position.
  • Three key elements of the inventive coin discriminating device are attached to the inner side of the door 51: a first camera 70, a second camera 80 and a processor 90.
  • the cameras 70 and 80 are mounted on respective mounting rails 72 and 82.
  • the cameras 70, 80 and the processor 90 all have a respective accomo- dation 58, 60 and 62 in the cabinet 50.
  • the cameras 70 and 80 are digital CCD cameras, which are arranged to produce digital grayscale images of both surfaces of a coin 15, as will be described in more detail below.
  • the cam- eras may be replaced by any other optical sensors capable of producing monochromatic, grayscale or color images. Therefore, the term "camera means" used in the appended claims is to be interpreted in the broadest possible sense.
  • the processor 90 is implemented in the preferred em- bodiment by any commercially available computer, such as a PC-compatible computer, which is provided with an appropriate storage device (such as a hard disk) , controller (such as a CPU) , memory (such as RAM memory) , operating system and image processing software.
  • processor may equally well be realized as another kind of hardware (such as ASIC circuits and/or discrete analog and digital components) and/or software, as is readily understood by a man skilled in the art. Consequently, the term "processing means" used in the appended claims is to be interpreted in the broadest possible sense.
  • the processor 90 is operatively connected to the cameras 70 and 80 and is arranged to receive the respective images once produced.
  • the separating device 30 is illustrated in more de- tail in FIGs 3-5 and is thoroughly described in PCT application No. PCT/SE98/02406 (not published yet), which is fully incorporated herein by reference. A summary of the separating device 30 follows below. Notice that no parts of the optical coin discriminating device 50 are shown in FIGs 3-5.
  • the coin separating device 30 comprises an apparatus frame 10, a plurality of coin chutes 18, 19 and corresponding coin bag attachments 20 (only a few of which are shown in FIG 2) , which are all circularly arranged around the central components of the device, as described below.
  • the bag attachments 20 may be provided with coin bags (not shown) for receiving and storing coins, that have been processed by the device.
  • the lower ends of such coin bags may be supported by the top of the stand 40.
  • An essentially flat rotating disk 1 is mounted in its center point to an axle 11.
  • a stationary ring 2 is arranged above the rotating disk 1 and is preferably made from steel, aluminium or plastics. The stationary ring 2 does not reach contact with the rotating disk 1 but is arranged immediately above the latter with only a minimum gap between them.
  • a rotating ring 3 On the outside of the stationary ring 2 a rotating ring 3 is mounted by means of three bearings 5, which are equiangularly located at the circumference of the rotating ring 3. On the underside thereof the rotating ring 3 is provided with an resilient strip or rim 14, as appears particularly from FIG 5.
  • the resilient rim 14 is advantageously made from an elastomer material .
  • the rotating ring 3 is biased towards the rotating disk 1 by the mounting of bearings 5, so that the resilient rim 14 frictionally engages the upper surface of the rotating disk 1, thereby forcing the periphery of the rotating disk 1 to rotate at the same speed as the rotating ring 3, when the latter is driven by means of an electric motor 12 and a drive belt 13.
  • the rotating disk 1 is arranged to receive an un- sorted plurality of coins 15 from e.g. a human user or a coin supply device not disclosed herein. For reasons of clarity, only a few coins 15, 15a...15h have been indicated in the drawings. In reality, the number of coins may be considerably larger.
  • the disk 1 is rotated in a direction indicated by an arrow 22 in FIG 3, the coins deposited onto the disk are accelerated by the centrifugal force in the radial direction of the disk towards the stationary ring 2, as indicated by 15a in FIG 3.
  • the plurality of coins are driven through an opening 23 in the stationary ring 2 and are forced into contact with the inside of the resilient rim 14 on the rotating ring 3 (see 15b) .
  • a thin stationary edge or knife 4 is mounted on the underside of the stationary ring 2 with a minimum gap to the upper sur- face of the rotating disk 1.
  • the stationary edge 4 has a curved shape, which starts tangen- tially from the outside wall of the stationary ring 2 and extends elliptically along a short, curved path towards the centerpoint of the disk 1.
  • the stationary edge 4 ends at a point, which is located far enough from the periphery of the rotating ring 3 (i.e. the resilient rim 14) for allowing also coins of the largest possible diameter to be peeled off by this stationary edge 4, as described below.
  • the thickness of the stationary edge 4 is chosen so that only a single-layer file of coins will be deviated therefrom.
  • the lowest layer of coins will be deviated or peeled off by the sta- tionary edge 4 to form a single file of coins 15c, which are engaged between the resilient rim 14 and the rotating disk 1.
  • the stationary edge 4 pushes the lowest layer of coins in a single file through the resilient rim 14 to the outside wall of the stationary ring 2, which forms a reference edge.
  • the coins 15 are engaged at the periphery thereof between the resilient rim 14 and the rotating disk 1 and are accurately transported, essentially without friction or other energy losses, along a circular sorting path.
  • FIG 5 provides a detailed illustration of a coin 15g, which is engaged at a short edge portion 15g' thereof between the rim 14 and the disk 1. As appears from FIG 3, the coin 15g has been carried approximately 180° around its circular path starting from the point of engagement at 15c. Coins of small diameter (as seen at 15c and 15e) as well as coins of a larger diameter (as seen at 15d and 15g) may be freely engaged and transported between the resilient rim 14 and the rotating disk 1 in the manner described above .
  • both the front (upper) and the rear (lower) surfaces of a coin 15 will be essentially exposed to the first and second cameras 70, 80.
  • the processor 90 will issue a control signal to the cameras 70, 80 to initiate the capturing of a first photographic image, by the first camera 70, of the front surface of coin 15, as well as a second photographic image, by the second camera 80, of the rear surface of said coin.
  • the coin surfaces may have to be irradiated with external light, as is readily realized by the skilled person.
  • measures may have to be taken for preventing optical interference between the two cameras 70, 80 due to such external light.
  • the first and second images thus produced will be transmitted to the processor 90 via suitable interface means (such as electrical wiring, electrical connectors at both ends, and electrical controllers) .
  • the processor will execute an image processing software routine to derive simplified and filtered digital images of the two coin surfaces.
  • the end results thus obtained will be compared, by the processor 90, to predetermined coin reference data, which represent a plurality of known coin types and are stored in a storage device belonging to the processor 90.
  • the processor 90 calculates a maximum correlation between each of said first and second images and said predetermined reference data and determines a type of the coin 15 in response.
  • the coin type may relate to a denomination of the coin 15 or a currency of the coin 15.
  • the determined type may be used by the processor 90 for differentiating authentic coins from counterfeit coins, or for identifying worn or damaged coins.
  • the coin separating device 30 may be provided with an additional coin discriminator 8, which is located prior to the optical discriminator 50 and is arranged to detect the passage of a respective coin 15d inductively, thereby identifying certain physical properties thereof, such as size, diameter, thickness, electric conductivity or magnetic per- meability.
  • inductive coin discriminators are well-known per se . Among many other publications, a suitable coin discriminator is described in WO87/07742. The output of the inductive coin discriminator 8 will be supplied to the processor 90, which will use this information in addition to the images provided by the cameras 70, 80 when determining a type of the coin.
  • the coin separating device 30 may also be provided with an encoder 24 for determining the rotational speed of the rotating disk 1 and the rotating ring 3.
  • the encoder 24 is operatively connected to the processor 90, which will use information received from the encoder and the inductive coin discriminator 8 to determine the correct position of coin 15 for capturing the images by the cameras 70, 80 (i.e., the position in which the coin 15 is vertically aligned with the cameras 70, 80) .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Image Processing (AREA)

Abstract

A coin discriminating device has a first camera (70) for producing a first image of a first surface of a coin (15), a second camera (80) for producing a second image of a second surface of the coin (15), and a processor (90), e.g. a computer, which is operatively connected to the first and second cameras. The processor analyzes the first and second images in order to determine a type of the coin.

Description

COIN DISCRIMINATING DEVICE, COIN HANDLING APPARATUS INCLUDING SUCH A DEVICE, AND COIN DISCRIMINATING METHOD
Technical Field
The present invention relates to coin discriminating devices, particularly of the kind comprising camera means for producing an image of a surface of a coin, and processing means, operatively connected to the camera means, for analyzing the image and determining a type of the coin. The present invention also relates to a coin handling apparatus incorporating such a coin discriminating device, and to a coin discriminating method.
Background Art
Coin discriminating devices, or coin discriminators, are used in e.g. coin counting/sorting machines for identifying the type (e.g. denomination) of each coin that is processed by the machine. Furthermore, coin discriminators are used in coin inspection systems for sorting out foreign coins, counterfeit coins as well as coins that are unfit for further circulation (due to e.g. excessive wear) .
Some coin discriminators operate inductively by exposing the coins to an alternating magnetic field by means of one or more than one coil and by detecting a physical property of the coin in response to the magnetic field exposure. For instance, the decay of eddy currents induced in the coin may be measured and used for determining the conductivity of the coin. Furthermore, magnetic properties such as permeability may be determined, as well as dimensional information, e.g. diameter or thickness.
Inductive coin discriminators are often able to successfully identify the metallic composition of the coin, thereby allowing a determination of the coin denomination by additionally using measurement data related to e.g. the coin diameter. However, not all coin types are distinctive enough, in terms of their magnetic and electric characteristics, to allow differentiation by means of an inductive coin discriminator.
A different and considerably more expensive kind of coin discriminators is optical pattern recognition discriminators, which produce e.g. a gray-scale or monochromatic image of the coin surface and identify the coin type by image analysis methods and comparisons with stored coin reference data. Optical pattern recognition discriminators of this type are shown in EP-A-0 798 669, EP-A-0 798 670, JP-A-10105765, JP-A-09259320 and US-A-5 576 825. They comprise light emitting means for projecting light onto one surface of a coin, a camera or other optical sensor means for producing an image from the light reflected from the coin, and processing means for determining a type of the coin by comparing the image with reference data related to different types of coins.
A common drawback of these prior art discriminators is that only one surface of the coin is photographed and analyzed. Whether the determination is made for the front coin surface or for the rear coin surface will be completely random; it all depends on the orientation of the coin at the moment it passes the discriminator, i.e. whether the front surface or the rear surface faces the camera. There- fore, if the photographed surface has been severely altered due to e.g. excessive wear or other mechanical damage, the determination of type will be less accurate. Furthermore, since only one of the coin surfaces is used for the determination, the discriminator may experience severe difficul- ties in differentiating between two individual coins of different currency or denomination, if one surface of the first coin happens to resemble one surface of the second coin. Summary of the Invention
The object of the present invention is to provide an optical coin discriminating device, which more accurately may determine the type of individual coins . This object is achieved by providing the discriminator with two separate cameras or optical sensors for producing one image of the first surface of each coin, and another image of the second coin surface. The processor of the discriminator is arranged to analyze both images and compare them to predetermined coin reference data in order to separately determine a type of the first surface and a type of the second surface . By combining the two determined surfaces, a type of the coin may be accurately established. An important aspect of the present invention is the realization that such a coin discriminating device may advantageously be incorporated in an advanced coin handling apparatus recently developed by the applicant. In such a coin handling apparatus only an edge portion of each coin is engaged between two rotary transport means, thereby ex- posing a majority of both the front surface and the rear surface to the two cameras .
Other objects, features and advantages of the present invention appear from the following detailed disclosure, from the drawings as well as from the appended claims.
Brief Description of the Drawing
The present invention will now be described in more detail, reference being made to the accompanying drawings, in which: FIGs 1 and 2 are schematic perspective views illustrating a coin handling apparatus incorporating a coin discriminating device according to a preferred embodiment,
FIG 3 is a plan view of a separating device in the coin handling apparatus of FIGs 1 and 2, FIG 4 is a perspective sectional view of the separating device, and
FIG 5 is an enlarged view of a portion of FIG 4.
Detailed Disclosure of the Invention
FIG 1 illustrates a coin handling apparatus having a separating device 30, which is mounted on a support frame 38 and a stand 40. A cabinet 42 having a door 44 is provided beneath the stand 40. A top cover 32 and additional side covers (not shown) protect and enclose the separating device 30 during operation. The cover 32 has a coin inlet 36 and an inspection window 34. An optical coin discriminator cabinet 50 is mounted next to the separating device 30. The discriminator cabinet 50 comprises a first and a second fan 54, 56 and a door 51, which may be unlocked by means of a lock handle 52 and swung open, as shown in FIG 2.
FIG 2 illustrates the coin handling apparatus with the top cover removed and with the discriminator cabinet door 51 in an opened position. Three key elements of the inventive coin discriminating device are attached to the inner side of the door 51: a first camera 70, a second camera 80 and a processor 90. The cameras 70 and 80 are mounted on respective mounting rails 72 and 82. The cameras 70, 80 and the processor 90 all have a respective accomo- dation 58, 60 and 62 in the cabinet 50.
In the preferred embodiment, the cameras 70 and 80 are digital CCD cameras, which are arranged to produce digital grayscale images of both surfaces of a coin 15, as will be described in more detail below. However, the cam- eras may be replaced by any other optical sensors capable of producing monochromatic, grayscale or color images. Therefore, the term "camera means" used in the appended claims is to be interpreted in the broadest possible sense. The processor 90 is implemented in the preferred em- bodiment by any commercially available computer, such as a PC-compatible computer, which is provided with an appropriate storage device (such as a hard disk) , controller (such as a CPU) , memory (such as RAM memory) , operating system and image processing software. However, the processor may equally well be realized as another kind of hardware (such as ASIC circuits and/or discrete analog and digital components) and/or software, as is readily understood by a man skilled in the art. Consequently, the term "processing means" used in the appended claims is to be interpreted in the broadest possible sense.
The processor 90 is operatively connected to the cameras 70 and 80 and is arranged to receive the respective images once produced.
The separating device 30 is illustrated in more de- tail in FIGs 3-5 and is thoroughly described in PCT application No. PCT/SE98/02406 (not published yet), which is fully incorporated herein by reference. A summary of the separating device 30 follows below. Notice that no parts of the optical coin discriminating device 50 are shown in FIGs 3-5.
The coin separating device 30 comprises an apparatus frame 10, a plurality of coin chutes 18, 19 and corresponding coin bag attachments 20 (only a few of which are shown in FIG 2) , which are all circularly arranged around the central components of the device, as described below. The bag attachments 20 may be provided with coin bags (not shown) for receiving and storing coins, that have been processed by the device. The lower ends of such coin bags may be supported by the top of the stand 40. An essentially flat rotating disk 1 is mounted in its center point to an axle 11. A stationary ring 2 is arranged above the rotating disk 1 and is preferably made from steel, aluminium or plastics. The stationary ring 2 does not reach contact with the rotating disk 1 but is arranged immediately above the latter with only a minimum gap between them. On the outside of the stationary ring 2 a rotating ring 3 is mounted by means of three bearings 5, which are equiangularly located at the circumference of the rotating ring 3. On the underside thereof the rotating ring 3 is provided with an resilient strip or rim 14, as appears particularly from FIG 5. The resilient rim 14 is advantageously made from an elastomer material . The rotating ring 3 is biased towards the rotating disk 1 by the mounting of bearings 5, so that the resilient rim 14 frictionally engages the upper surface of the rotating disk 1, thereby forcing the periphery of the rotating disk 1 to rotate at the same speed as the rotating ring 3, when the latter is driven by means of an electric motor 12 and a drive belt 13. The rotating disk 1 is arranged to receive an un- sorted plurality of coins 15 from e.g. a human user or a coin supply device not disclosed herein. For reasons of clarity, only a few coins 15, 15a...15h have been indicated in the drawings. In reality, the number of coins may be considerably larger. As the disk 1 is rotated in a direction indicated by an arrow 22 in FIG 3, the coins deposited onto the disk are accelerated by the centrifugal force in the radial direction of the disk towards the stationary ring 2, as indicated by 15a in FIG 3. The plurality of coins are driven through an opening 23 in the stationary ring 2 and are forced into contact with the inside of the resilient rim 14 on the rotating ring 3 (see 15b) . A thin stationary edge or knife 4 is mounted on the underside of the stationary ring 2 with a minimum gap to the upper sur- face of the rotating disk 1. As appears from FIG 3, the stationary edge 4 has a curved shape, which starts tangen- tially from the outside wall of the stationary ring 2 and extends elliptically along a short, curved path towards the centerpoint of the disk 1. The stationary edge 4 ends at a point, which is located far enough from the periphery of the rotating ring 3 (i.e. the resilient rim 14) for allowing also coins of the largest possible diameter to be peeled off by this stationary edge 4, as described below. The thickness of the stationary edge 4 is chosen so that only a single-layer file of coins will be deviated therefrom. As a plurality of coins 15b are centrifugally forced towards the rotating ring 3 and approach the stationary edge 4 by the rotation of the disk 1, the lowest layer of coins will be deviated or peeled off by the sta- tionary edge 4 to form a single file of coins 15c, which are engaged between the resilient rim 14 and the rotating disk 1. In other words the stationary edge 4 pushes the lowest layer of coins in a single file through the resilient rim 14 to the outside wall of the stationary ring 2, which forms a reference edge. The coins 15 are engaged at the periphery thereof between the resilient rim 14 and the rotating disk 1 and are accurately transported, essentially without friction or other energy losses, along a circular sorting path. FIG 5 provides a detailed illustration of a coin 15g, which is engaged at a short edge portion 15g' thereof between the rim 14 and the disk 1. As appears from FIG 3, the coin 15g has been carried approximately 180° around its circular path starting from the point of engagement at 15c. Coins of small diameter (as seen at 15c and 15e) as well as coins of a larger diameter (as seen at 15d and 15g) may be freely engaged and transported between the resilient rim 14 and the rotating disk 1 in the manner described above .
Consequently, as shown in FIG 2, both the front (upper) and the rear (lower) surfaces of a coin 15 will be essentially exposed to the first and second cameras 70, 80. When the coin 15 has been carried by the separating device 30 to the position shown in FIG 2, the coin will be in vertical alignment with both cameras 70, 80. At this moment, the processor 90 will issue a control signal to the cameras 70, 80 to initiate the capturing of a first photographic image, by the first camera 70, of the front surface of coin 15, as well as a second photographic image, by the second camera 80, of the rear surface of said coin. Depending on implementational conditions, the coin surfaces may have to be irradiated with external light, as is readily realized by the skilled person. Furthermore, measures may have to be taken for preventing optical interference between the two cameras 70, 80 due to such external light.
The first and second images thus produced will be transmitted to the processor 90 via suitable interface means (such as electrical wiring, electrical connectors at both ends, and electrical controllers) . The processor will execute an image processing software routine to derive simplified and filtered digital images of the two coin surfaces. The end results thus obtained will be compared, by the processor 90, to predetermined coin reference data, which represent a plurality of known coin types and are stored in a storage device belonging to the processor 90. Preferably, the processor 90 calculates a maximum correlation between each of said first and second images and said predetermined reference data and determines a type of the coin 15 in response. The coin type may relate to a denomination of the coin 15 or a currency of the coin 15. Alternatively, the determined type may be used by the processor 90 for differentiating authentic coins from counterfeit coins, or for identifying worn or damaged coins. The coin separating device 30 may be provided with an additional coin discriminator 8, which is located prior to the optical discriminator 50 and is arranged to detect the passage of a respective coin 15d inductively, thereby identifying certain physical properties thereof, such as size, diameter, thickness, electric conductivity or magnetic per- meability. As already mentioned, inductive coin discriminators are well-known per se . Among many other publications, a suitable coin discriminator is described in WO87/07742. The output of the inductive coin discriminator 8 will be supplied to the processor 90, which will use this information in addition to the images provided by the cameras 70, 80 when determining a type of the coin.
The coin separating device 30 may also be provided with an encoder 24 for determining the rotational speed of the rotating disk 1 and the rotating ring 3. The encoder 24 is operatively connected to the processor 90, which will use information received from the encoder and the inductive coin discriminator 8 to determine the correct position of coin 15 for capturing the images by the cameras 70, 80 (i.e., the position in which the coin 15 is vertically aligned with the cameras 70, 80) .
The invention has been described above with reference to a preferred embodiment, the purpose of which is to exemplify the invention but in no way to limit the same. Therefore, the invention may be carried out in other ways than the one described above, and the scope of the invention is only limited by the appended independent patent claims.

Claims

1. A coin discriminating device, comprising camera means (70, 80) for producing a first image of a first surface of a coin (15) and a second image of a second surface of the coin (15) , the first and second surfaces being opposite each other; and processing means (90) , coupled to the camera means, for analyzing the first and second images and determining a type of the coin, characterized by- first and second rotary members (1, 3) adapted to engage the coin (15) at a peripheral portion thereof and transport the coin past the camera means (70, 80), the camera means being positioned so that the first and second surfaces of the coin are exposed to the camera means (70, 80), when the coin passes the camera means.
2. A coin discriminating device as in claim 1, wherein the camera means (70, 80) comprise a first camera (70) positioned and adapted to produce the first image of the first surface of the coin (15), and a second camera (80) positioned and adapted to produce the second image of the second surface of the coin (15) .
3. A coin discriminating device as in claim 1 or 2 , wherein the first and second surfaces of the coin (15) are the front and rear surfaces thereof .
4. A coin discriminating device as in any preceding claim, wherein the first and second images are produced essentially simultaneously by the camera means (70, 80)
5. A coin discriminating device as in any preceding claim, wherein the first and second images produced by the camera means (70, 80) are digital color images.
6. A coin discriminating device as in any preceding claim, wherein the first and second images produced by the camera means (70, 80) are digital grayscale images.
7. A coin discriminating device as in any preceding claim, wherein the first and second images produced by the camera means (70, 80) are digital monochromatic images.
8. A coin discriminating device according to claim 2, wherein the first and/or second camera means (70, 80) comprise (s) a CCD camera.
9. A coin discriminating device according to any preceding claim, wherein the type determined by the processing means (90) relates to a denomination of the coin (15) .
10. A coin discriminating device according to any preceding claim, wherein the type determined by the processing means (90) relates to a currency of the coin (15) .
11. A coin discriminating device according to any preceding claim, wherein the type determined by the processing means (90) is used for differentiating authentic coins from counterfeit coins .
12. A coin discriminating device according to any preceding claim, wherein the type determined by the processing means (90) is used for identifying worn or damaged coins .
13. A coin handling apparatus for processing coins (15), preferably for sorting and/or counting said coins, the apparatus comprising a separating device (30) for separating coins of different types into different locations, characterized by a coin discriminating device according to any preceding claim.
14. A coin handling apparatus according to claim 13, wherein the first and second rotary members (1, 3) are a functional part of the separating device (30) .
15. A coin handling apparatus according to any of claims 13-14, further comprising an inductive coin discriminator (8) for determining a physical property of the coin (15) .
16. A coin handling apparatus according to claim 15, wherein said physical property is one of the following: size, diameter, thickness, electric conductivity or magnetic permeability.
17. A coin discriminating method, wherein first and second images, respectively, are produced of opposite surfaces of a coin (15) and wherein the first and second images are analyzed with respect to predetermined reference data related to a plurality of coin types so as to determine a type of the coin, characterized by the steps of providing first and second rotary members (1, 3 ) ; engaging the coin (15) , at a peripheral portion thereof, between the first and second rotary means; transporting the coin to at least one predetermined position; and producing the first and second images at said at least one predetermined position.
18. A coin discriminating method according to claim 17, wherein the first and second images are produced essentially simultaneously at one predetermined position.
PCT/SE2000/000189 1999-02-10 2000-02-01 Coin discriminating device, coin handling apparatus including such a device, and coin discriminating method WO2000048137A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000598982A JP2002541538A (en) 1999-02-10 2000-02-01 Coin identification device, coin processing device having coin identification device, and coin identification method
AU29525/00A AU2952500A (en) 1999-02-10 2000-02-01 Coin discriminating device, coin handling apparatus including such a device, andcoin discriminating method
EP00908152A EP1151418B1 (en) 1999-02-10 2000-02-01 Coin discriminating device, coin handling apparatus including such a device, and coin discriminating method
AT00908152T ATE222390T1 (en) 1999-02-10 2000-02-01 COIN TESTING DEVICE, COIN PROCESSING APPARATUS WITH SUCH A COIN TESTING DEVICE AND COIN TESTING METHOD
DK00908152T DK1151418T3 (en) 1999-02-10 2000-02-01 Coin discrimination device, coin handling apparatus including such device and coin discrimination method
DE60000332T DE60000332T2 (en) 1999-02-10 2000-02-01 COIN CHECKING DEVICE, COIN PROCESSING APPARATUS WITH SUCH A COIN CHECKING DEVICE AND COIN CHECKING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9900448-3 1999-02-10
SE9900448A SE520847C2 (en) 1999-02-10 1999-02-10 Coin-separating device, coin-handling apparatus including such device and a method for separating coins

Publications (1)

Publication Number Publication Date
WO2000048137A1 true WO2000048137A1 (en) 2000-08-17

Family

ID=20414422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2000/000189 WO2000048137A1 (en) 1999-02-10 2000-02-01 Coin discriminating device, coin handling apparatus including such a device, and coin discriminating method

Country Status (10)

Country Link
US (1) US6761257B2 (en)
EP (1) EP1151418B1 (en)
JP (1) JP2002541538A (en)
AT (1) ATE222390T1 (en)
AU (1) AU2952500A (en)
DE (1) DE60000332T2 (en)
DK (1) DK1151418T3 (en)
ES (1) ES2181643T3 (en)
SE (1) SE520847C2 (en)
WO (1) WO2000048137A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1049054A3 (en) * 1999-04-26 2001-03-21 Laurel Bank Machines Co., Ltd. Coin discriminating apparatus
KR101445210B1 (en) 2014-07-22 2014-09-29 (주)엠지엠월드 Cassino Chip Inspection Automation Equipment

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363164B1 (en) 1996-05-13 2002-03-26 Cummins-Allison Corp. Automated document processing system using full image scanning
US8701857B2 (en) 2000-02-11 2014-04-22 Cummins-Allison Corp. System and method for processing currency bills and tickets
US6634482B1 (en) * 2001-01-24 2003-10-21 Robert J. Miele Bill and coin checker
US6896118B2 (en) 2002-01-10 2005-05-24 Cummins-Allison Corp. Coin redemption system
US7743902B2 (en) 2002-03-11 2010-06-29 Cummins-Allison Corp. Optical coin discrimination sensor and coin processing system using the same
US6892871B2 (en) * 2002-03-11 2005-05-17 Cummins-Allison Corp. Sensor and method for discriminating coins of varied composition, thickness, and diameter
US6755730B2 (en) 2002-03-11 2004-06-29 Cummins-Allison Corp. Disc-type coin processing device having improved coin discrimination system
TW564376B (en) * 2002-07-05 2003-12-01 Sunplus Technology Co Ltd Currency recognition device and the method thereof
US8171567B1 (en) 2002-09-04 2012-05-01 Tracer Detection Technology Corp. Authentication method and system
US6976589B2 (en) 2003-02-03 2005-12-20 Streamline Innovations Gmbh Apparatus for sorting articles
US8393455B2 (en) 2003-03-12 2013-03-12 Cummins-Allison Corp. Coin processing device having a moveable coin receptacle station
US8523641B2 (en) * 2004-09-15 2013-09-03 Cummins-Allison Corp. System, method and apparatus for automatically filling a coin cassette
US9934640B2 (en) 2004-09-15 2018-04-03 Cummins-Allison Corp. System, method and apparatus for repurposing currency
US8602200B2 (en) 2005-02-10 2013-12-10 Cummins-Allison Corp. Method and apparatus for varying coin-processing machine receptacle limits
JP2007014625A (en) * 2005-07-08 2007-01-25 Glory Ltd Token counting management system
WO2007044570A2 (en) 2005-10-05 2007-04-19 Cummins-Allison Corp. Currency processing system with fitness detection
US7980378B2 (en) 2006-03-23 2011-07-19 Cummins-Allison Corporation Systems, apparatus, and methods for currency processing control and redemption
US7967126B2 (en) * 2008-04-18 2011-06-28 Coinsecure, Inc. Self-centering loading, indexing, and flipping mechanism for coinage and coin analysis
US9138163B2 (en) * 2009-09-25 2015-09-22 Ortho Kinematics, Inc. Systems and devices for an integrated imaging system with real-time feedback loop and methods therefor
US8336699B2 (en) 2009-11-02 2012-12-25 Shuffle Master Gmbh & Co Kg Chip sorting devices, components therefor and methods of ejecting chips
WO2012036956A1 (en) * 2010-09-15 2012-03-22 Identicoin, Inc. Coin identification method and apparatus
US8545295B2 (en) 2010-12-17 2013-10-01 Cummins-Allison Corp. Coin processing systems, methods and devices
US9053595B2 (en) * 2012-02-02 2015-06-09 Jared Grove Coin identification system and method using image processing
US9036890B2 (en) 2012-06-05 2015-05-19 Outerwall Inc. Optical coin discrimination systems and methods for use with consumer-operated kiosks and the like
US9092924B1 (en) 2012-08-31 2015-07-28 Cummins-Allison Corp. Disk-type coin processing unit with angled sorting head
US9022841B2 (en) 2013-05-08 2015-05-05 Outerwall Inc. Coin counting and/or sorting machines and associated systems and methods
US9443367B2 (en) 2014-01-17 2016-09-13 Outerwall Inc. Digital image coin discrimination for use with consumer-operated kiosks and the like
US9501885B1 (en) 2014-07-09 2016-11-22 Cummins-Allison Corp. Systems, methods and devices for processing coins utilizing near-normal and high-angle of incidence lighting
US9508208B1 (en) 2014-07-25 2016-11-29 Cummins Allison Corp. Systems, methods and devices for processing coins with linear array of coin imaging sensors
US10685523B1 (en) 2014-07-09 2020-06-16 Cummins-Allison Corp. Systems, methods and devices for processing batches of coins utilizing coin imaging sensor assemblies
US9916713B1 (en) 2014-07-09 2018-03-13 Cummins-Allison Corp. Systems, methods and devices for processing coins utilizing normal or near-normal and/or high-angle of incidence lighting
US9430893B1 (en) 2014-08-06 2016-08-30 Cummins-Allison Corp. Systems, methods and devices for managing rejected coins during coin processing
US10089812B1 (en) 2014-11-11 2018-10-02 Cummins-Allison Corp. Systems, methods and devices for processing coins utilizing a multi-material coin sorting disk
US9875593B1 (en) 2015-08-07 2018-01-23 Cummins-Allison Corp. Systems, methods and devices for coin processing and coin recycling
US9836909B2 (en) 2016-04-06 2017-12-05 Shuffle Master Gmbh & Co Kg Chip sorting devices and related assemblies, components and methods
JP2017213067A (en) * 2016-05-30 2017-12-07 株式会社ユニバーサルエンターテインメント Game medium selection device
US10679449B2 (en) 2016-10-18 2020-06-09 Cummins-Allison Corp. Coin sorting head and coin processing system using the same
US10181234B2 (en) 2016-10-18 2019-01-15 Cummins-Allison Corp. Coin sorting head and coin processing system using the same
US10497198B2 (en) * 2017-04-10 2019-12-03 Douglas A. Pinnow Method and apparatus for discriminating gold and silver coins and bars from counterfeit
US10096192B1 (en) 2017-08-30 2018-10-09 Shuffle Master Gmbh & Co Kg Chip sorting devices and related assemblies and methods
GB2613488B (en) 2019-01-04 2023-08-23 Cummins Allison Corp Coin pad for coin processing system
JP6768914B2 (en) * 2019-11-29 2020-10-14 株式会社ユニバーサルエンターテインメント Game machine and game medium discrimination device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061302A2 (en) * 1981-03-21 1982-09-29 Icc Machines Limited Coin discrimination
JPH06274736A (en) * 1993-03-24 1994-09-30 Mitsubishi Heavy Ind Ltd Coin recognition device
EP0675466A2 (en) * 1994-03-28 1995-10-04 Österreichisches Forschungszentrum Seibersdorf Ges.m.b.H. Method and device for recognizing or checking objects
EP0784298A1 (en) * 1996-01-11 1997-07-16 Cummins-Allison Corporation Improved coin sorter
US5743373A (en) * 1995-03-07 1998-04-28 Cummins-Allison Corp. Coin discrimination sensor and coin handling system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2121582A (en) * 1982-04-16 1983-12-21 Icc Machines Sorting and other selection of articles one from another
DE3514779A1 (en) 1985-04-24 1986-10-30 Wolfgang 8800 Ansbach Frieß Projection device, in particular coin projector
US5133019A (en) * 1987-12-03 1992-07-21 Identigrade Systems and methods for illuminating and evaluating surfaces
US5321470A (en) 1988-05-13 1994-06-14 Canon Kabushiki Kaisha Apparatus with anti-forgery provision
JP2639766B2 (en) 1991-04-10 1997-08-13 ローレルバンクマシン株式会社 Money sorting device
DE4241173A1 (en) 1992-12-07 1994-06-09 Wella Ag Hair colorants containing 3-pyridine azo dyes and new 3-pyridineazo dyes
JP3525360B2 (en) 1994-05-19 2004-05-10 ローレルバンクマシン株式会社 Coin discriminator
AT1348U1 (en) 1995-10-24 1997-03-25 Schulze Anny Gmbh METHOD FOR DETECTING AND CHECKING THE REALITY OF BANKNOTES AND DEVICE FOR IMPLEMENTING THIS METHOD
JPH1011629A (en) 1996-06-27 1998-01-16 Toshiba Corp Image input device for coin and coin discriminating device
JPH1166377A (en) 1997-08-11 1999-03-09 Asahi Seiko Co Ltd Discriminating device for worked disc
DE19909851C2 (en) * 1999-03-08 2003-09-04 Zimmermann Gmbh & Co Kg F Device for distinguishing false coins from real coins

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061302A2 (en) * 1981-03-21 1982-09-29 Icc Machines Limited Coin discrimination
JPH06274736A (en) * 1993-03-24 1994-09-30 Mitsubishi Heavy Ind Ltd Coin recognition device
EP0675466A2 (en) * 1994-03-28 1995-10-04 Österreichisches Forschungszentrum Seibersdorf Ges.m.b.H. Method and device for recognizing or checking objects
US5743373A (en) * 1995-03-07 1998-04-28 Cummins-Allison Corp. Coin discrimination sensor and coin handling system
EP0784298A1 (en) * 1996-01-11 1997-07-16 Cummins-Allison Corporation Improved coin sorter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1049054A3 (en) * 1999-04-26 2001-03-21 Laurel Bank Machines Co., Ltd. Coin discriminating apparatus
US6328150B1 (en) 1999-04-26 2001-12-11 Laurel Bank Machines Co., Ltd. Coin discriminating apparatus
KR101445210B1 (en) 2014-07-22 2014-09-29 (주)엠지엠월드 Cassino Chip Inspection Automation Equipment

Also Published As

Publication number Publication date
SE9900448D0 (en) 1999-02-10
AU2952500A (en) 2000-08-29
DK1151418T3 (en) 2002-12-09
US6761257B2 (en) 2004-07-13
ES2181643T3 (en) 2003-03-01
SE9900448L (en) 2000-08-11
JP2002541538A (en) 2002-12-03
EP1151418A1 (en) 2001-11-07
DE60000332T2 (en) 2002-12-12
ATE222390T1 (en) 2002-08-15
DE60000332D1 (en) 2002-09-19
EP1151418B1 (en) 2002-08-14
SE520847C2 (en) 2003-09-02
US20020074209A1 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
US6761257B2 (en) Coin discriminating device, coin handling apparatus including such a device, and coin discriminating method
US6609604B1 (en) Coin processing system for discriminating and counting coins from multiple countries
JP2994461B2 (en) Method and apparatus for currency identification and counting
US6640956B1 (en) Method of coin detection and bag stopping for a coin sorter
EP0731429B1 (en) Coin discrimination sensor and coin handling system
JP3253964B2 (en) Method and apparatus for currency identification and counting
EP0686292B1 (en) Counterfeit document detection apparatus
EP0926634A2 (en) Coin handling apparatus and a coin deposit machine incorporating such an apparatus
CA2419948C (en) Methods and apparatus for detection of coin denomination and other parameters
JP2000113269A (en) Paper money discriminating device
JP2000149019A (en) Circular object discriminating device
JP2910834B2 (en) Coin identification device
WO2002073545A1 (en) Item identifying apparatus and method
AU645523C (en) Method and apparatus for currency discrimination and counting
JPH0612548A (en) Coin discriminating device
JPH08138108A (en) Discrimination device for coin of different material quality
JPH0831151B2 (en) Coin sorter
JP2002230616A (en) Coin identification method and device therefor
JP2000251107A (en) Coin processor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000908152

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 598982

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000908152

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000908152

Country of ref document: EP