WO2000048756A1 - Chaine de laminage a fil machine - Google Patents

Chaine de laminage a fil machine Download PDF

Info

Publication number
WO2000048756A1
WO2000048756A1 PCT/JP2000/000814 JP0000814W WO0048756A1 WO 2000048756 A1 WO2000048756 A1 WO 2000048756A1 JP 0000814 W JP0000814 W JP 0000814W WO 0048756 A1 WO0048756 A1 WO 0048756A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
mills
roll
mill
pass
Prior art date
Application number
PCT/JP2000/000814
Other languages
English (en)
French (fr)
Inventor
Ryo Takeda
Takao Ogawa
Shigeharu Ochi
Takeshi Tange
Original Assignee
Kawasaki Steel Corporation
Sumitomo Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11037812A external-priority patent/JP2000237803A/ja
Priority claimed from JP05592599A external-priority patent/JP3308924B2/ja
Priority claimed from JP22762399A external-priority patent/JP3339571B2/ja
Application filed by Kawasaki Steel Corporation, Sumitomo Heavy Industries, Ltd. filed Critical Kawasaki Steel Corporation
Priority to US09/647,355 priority Critical patent/US6405573B1/en
Priority to BR0005117-9A priority patent/BR0005117A/pt
Priority to KR1020007011347A priority patent/KR20010042648A/ko
Priority to EP00902964A priority patent/EP1110630A1/en
Priority to AU24625/00A priority patent/AU2462500A/en
Publication of WO2000048756A1 publication Critical patent/WO2000048756A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/02Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/08Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
    • B21B13/10Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane
    • B21B13/103Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane for rolling bars, rods or wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/08Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
    • B21B13/12Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process axes being arranged in different planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B35/00Drives for metal-rolling mills, e.g. hydraulic drives
    • B21B35/02Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills
    • B21B35/04Drives for metal-rolling mills, e.g. hydraulic drives for continuously-operating mills each stand having its own motor or motors

Definitions

  • the present invention relates to a wire rod rolling line in which the subsequent stage of the finishing mill group is configured by combining a plurality of 4-roll mills.
  • stable operation with high dimensional accuracy can be achieved by arranging a 4-roll mill with an improved motor drive system at the end of the finishing mill group of the wire rod rolling line.
  • the pass schedule will be simplified to improve production efficiency, and it will also be possible to expand the size-free range and reduce equipment costs.
  • Fig. 1A shows an example of a general wire rod rolling line and pass schedule using a two-roll mill.
  • the wire rod rolling line is composed of a group of rough rolling mills, a group of intermediate rolling mills and a group of finishing rolling mills.
  • Each rolling mill group has a plurality of rolling mills arranged in series.
  • the top row of Fig. 1A shows the arrangement of rolling mills after the intermediate rolling mill group in the wire rod rolling line.
  • the second and subsequent stages in Fig. LA show the cross section of the material and the pass schedule in the form of roll holes at each stand.
  • the roll hole type is a roll gap shape of a rolling mill.
  • a billet with a square cross section of 15 Omm on each side 1 force After passing through a mff rolling mill group (1st stand to 6th stand), not shown, an intermediate rolling mill group 2 consisting of 7th stand 21 to 10th stand 24 and The finishing rolling mill group 3 consisting of the 1st stand 31 to the 18th stand 38 forces finally rolls continuously into circular rods 41 to 49 having a predetermined product size (wire diameter) and a circular cross section.
  • the odd-numbered stands have a vertical mouth and the even-numbered stands have a horizontal mouth.
  • the product size is 41: 9.0mm, 42: 9.3mm, 43: 9.5mm, 44: 9.75mm, 45: 10.0mm, 46: 10.2mm, 47: 10.3mm, 48: 10.5mm, 49: 11.0mm.
  • Fig.lA shows a front view of the rolling status of the opal pass.
  • R1 is the upper horizontal roll
  • R2 is the lower horizontal roll
  • 8 is the pass line.
  • Figure 1C shows the rolling status of the round pass.
  • R3 and R4 are left and right vertical rolls, and 8 is a pass line.
  • Fig. 1A All the pore types shown in Fig. 1A differ in size. In other words, it is necessary to prepare a dedicated hole type for each product size, and every time the product size changes, the line must be stopped and the stand must be rearranged.
  • Fig. LA nine product sizes are obtained by preparing nine types of lines. To manufacture these nine-size products, nine line stops and 76 rearrangement stands are required.
  • a “size-free rolling technology” has been proposed that can produce products of different sizes with high dimensional accuracy in a stepless manner by using the same hole type roll and changing the roll gap. Reached.
  • wire rolling technology in which two 4-roll rolling mills are arranged in series with the rolling direction shifted by 45 ° as the final finishing rolling stand of a wire rod rolling line is disclosed in, for example, Japanese Patent Publication No. 3-68641. Gazette: It is disclosed in Japanese Patent Application Laid-Open No. 6-63601.
  • Fig. 2A shows an example of a wire rod rolling line to which the size-free rolling technology is applied and a path schedule.
  • the top row shows the layout of the rolling mills after the intermediate rolling mill in the wire rod rolling line.
  • the configurations of the rolling mills in the intermediate rolling mill group 2 and the former stage 3 of the finishing rolling mill group are the same as in Fig. L. Further downstream of the former stage 3 of the finishing mill group, the latter stage 5 of the finishing mill group is arranged. Finishing mill group first stage 3 and finishing mill group rear stage 5 together form a finishing mill group.
  • the final stage of finishing mill group 5 is 4 5 in the rolling direction. It consists of two stands of four-roll rolling mills 51 and 52 staggered.
  • the rolling state by the four-roll rolling mill 51 is shown in front view in FIG. 2B
  • the rolling state by the four-roll rolling mill 52 is shown in front view in FIG. 2C.
  • R1-R4 are rolling rolls
  • 8 is a pass line.
  • the two pass schedules with different size-free ranges in the second and third tiers in Fig. 2A are shown by the roll hole type at each stand.
  • wire rods 61 with a product size of 9.0 to 10.0 mm can be size-free rolled.
  • the wire 62 having a product size of 10.1 to 11.1 mm can be size-free rolled.
  • any product size can be obtained within the range of 9.0-11.1 mm, including the 9-size product of the pass schedule shown in Fig. 1A.
  • the number of line stops due to the size change is only two.
  • the number of rearrangement stands required for size change is 24 stand.
  • one mill motor (hereinafter simply referred to as a motor) is provided for each of the two four-roll rolling mills used as the final pass, and the two four-roll rolling mills are separately connected to each other.
  • the motor is driven to rotate. If two 4-roll rolling mills, each equipped with a motor, are arranged in series, interference between motor spaces must be avoided, and the distance between stands is naturally limited. That Therefore, there are the following problems.
  • the 4-roll rolling mill can change the rolling size in a stepless manner (size-free rolling) only by changing the roll gap using the same roll hole form. It is necessary to maintain the rolling speed. However, when one motor is used in common to drive two 4-roll rolling mills, the range in which the rolling speed can be adjusted is limited by the size-free range. ⁇ It is difficult to expand the size free rolling range.
  • the 4-roll mill is capable of “size-free rolling,” in which the rolling size is changed steplessly by simply changing the roll gap using the same roll hole form.
  • a wire rod rolling line that continuously rolls wire rods by arranging a plurality of 4-roll mills in series, the peripheral speed of the downstream mill where the cross-sectional area of the material to be rolled is smaller is increased, and the upstream and downstream It is necessary to balance the mass flow of the H-rolled material with the side. By balancing the mass flow, the material to be rolled between the mills can be rolled without buckling and causing misalignment or tearing.
  • the roll peripheral speed ratio of the three 4-roll mills 71, 72, and 73 is fixed.
  • the cross-sectional area of the roll gap is uniquely determined (cross-sectional area of the rolled material) X (roll peripheral speed), that is, the mass flow is fixed, and the mass flow in each mill is balanced. Therefore, between the first 4-roll mill 71 (first pass) and the second 4-roll mill 72 (second pass) in Fig.3, and the second 4-roll mill 71 (second pass) Third 4-roll mill 73 (3rd pass)
  • the cross-sectional area ratio cannot be changed.
  • the present invention provides a wire rolling line with an extremely high operation rate, which is capable of expanding the range of size-free rolling and, at the same time, making it possible to construct a path schedule that simplifies the path schedule of the upstream path in order to shorten the line stop time.
  • the purpose is to provide. Disclosure of the invention
  • the present invention relating to a wire rod rolling line is characterized in that, in a wire rod rolling mill arranged in a finishing rolling mill group, the last three mills are four Lorenole mills, and these three mills are used.
  • the rolling direction is 4 5.
  • the two mills from the end are driven by a common motor, and are driven separately from the third 4-roll mill from the end It is characterized by the following.
  • the wire rod rolling line of the present invention employs a drive system that takes advantage of both the single motor drive system and the common motor drive system.
  • the last two mills were driven by a common motor, and were driven separately from the third four-roll mill. This is so that the cross-sectional area ratio of the material to be rolled that balances the mass flow in each mill is not restricted between the third and second passes from the end. Therefore, a maximum reduction of 15% and 15% can be set for both the third pass and the second pass from the end. In other words, as in the case of the single-pass drive shown in Fig. 3, the size free range is widened to a maximum of 15% of the diameter of the material to be rolled.
  • the final pass mill which does not contribute to the size-free range, is driven by a motor shared with the second mill from the final pass.
  • the number of motors was reduced, and the distance between mills was shortened as in the case of single-path driving.
  • capital investment including motors and control devices could be reduced.
  • by reducing the distance between mills it was possible to prevent the occurrence of misrolling due to the rotation of the material to be rolled between mills and a reduction in product dimensional accuracy.
  • the four-roll mill in the third pass from the end can be driven by a single motor, or it can be driven by a shared motor with the fourth mill from the end.
  • the fourth mill from the end is also a 4-roll mill, and the third and fourth mills from the last are arranged in series with the rolling direction shifted by 45 °.
  • the final and third mills from the last should be installed so that the outgoing material has a circular cross-section, and between the one of the last two mills and the drive motor, the dedicated mill must be installed.
  • a switching gearbox common to the two mills is provided with a common switching gearbox for the two mills, and a common switching gearbox for the two mills is provided between the other mill and the drive motor. And the last two It is also preferable to connect the motor and the drive motor.
  • Fig. 1A is a schematic diagram of a conventional wire rod rolling line using a two-roll rolling mill and an example of a pass schedule.
  • Figures 1B and 1C are a front view of the rolling status of the oval pass (IB) and a front view of the rolling status of the round pass (1C).
  • Fig. 2A is a schematic diagram of a conventional wire rod rolling line that can be rolled in a size-free manner incorporating a 4-port rolling mill.
  • Fig.2B and 2C are front views of the rolling situation by a 4-roll rolling mill.
  • Fig. 3 is a schematic diagram of a conventional wire rod rolling line equipped with three 4-roll rolling mills of the all-pass common drive motor type driven by one motor at the final stage of the finishing rolling mill group.
  • Fig. 4 is a schematic diagram of a conventional wire rod rolling line equipped with three 4-roll rolling mills of the single pass motor type driven by one motor each at the final stage of the finishing rolling mill group. .
  • FIG. 5 is a schematic diagram of the wire rod rolling line of the present invention including three four-roll rolling mills at the final stage of the finishing rolling mill group.
  • FIG. 6 is a plan view schematically showing the arrangement of three four-roll rolling mills constituting the final stage of the finishing mill group of the wire rod rolling line of the present invention.
  • FIG. 7 is a schematic diagram of the wire rod rolling line of the present invention including four 4-roll rolling mills at the final stage of the finishing rolling mill group.
  • Fig. 8 is a diagram showing the cross-sectional shape of the rolled material of each pass of the four 4-roll mills shown in Fig. 7.
  • Fig. 9 is an example of the pass schedule of the wire rod rolling line of the present invention in which four four-roll rolling mills are provided at the final stage of the finishing mill group.
  • Fig.10 shows an example of the pass schedule of a conventional wire rod rolling line capable of size-free rolling incorporating two 4-port rolling mills.
  • Fig. Ll is a schematic diagram of the wire rod rolling line of the present invention in which the driving method of the last two passes has been changed.
  • Figure 12 shows the experimental results showing the size-free rolling range when the speed increase ratio of a 4-roll rolling mill was fixed to one type.
  • Figure 13 shows the experimental results showing the size-free rolling range when the speed increase ratio of one 4-port rolling mill can be switched between two types.
  • Fig.14 is a diagram to explain the change in motor torque characteristics by switching the speed increase ratio of the common switching speed increaser.
  • FIG. 5 is a schematic diagram of the wire rod rolling line of the present invention provided with three four-roll rolling mills at the final stage of the finishing rolling mill group.
  • the configuration of the former stage 3 of the finishing mill group is not particularly limited.
  • the rolling direction of the 10 two-roll rolling mills is alternately changed to horizontal and vertical, and the rolling direction may be changed.
  • the opal hole type and the round hole type were alternately pressed down from the vertical and horizontal directions, and the rolled material having a circular cross section was Finally, a wire rod having a predetermined diameter is finished through the round hole type of three four-roll rolling mills 71, 72, 73 constituting the wire rod rolling line of the present invention.
  • Fig. 6 is a plan view schematically showing the arrangement of three four-roll rolling mills constituting the final stage of the finishing mill group of the wire rod rolling line of the present invention.
  • three drive rolls 71, 72, and 73 are equipped with two drive motors 94 and 95 connected via a speed increasing gearbox 8.
  • Each of the rolling mills 71, 72 and 73 has four rolling rolls built into the housing ⁇ .
  • the illustration of the driving force transmission mechanism between the driving input shafts 711, 721, 731 to the rolling mill and the rolling roll shafts 712, 722, 732 is omitted.
  • the drive input shaft 711 of the four-roll rolling mill 71 in the first pass is connected to a drive output shaft 941 of a dedicated drive motor 94 via a speed increasing gear 84.
  • the drive input shaft 721 of the 4-pass rolling mill 72 in the second pass and the drive input shaft 731 of the 4-roll rolling mill 73 in the third pass are connected to the drive output shaft 951 of the shared drive motor 95 and the speed increasing gear 85. And 86.
  • the rolling mill 71 of the first pass among the three four-roll mills 71, 72, 73 is independently driven by the dedicated drive motor 94.
  • the second pass rolling mill 72 and the third pass rolling mill 73 are driven by a common drive motor 95. This has the following advantageous effects.
  • the size-free rolling range can be widened.
  • the product wire size range of the exit side of the 4-roll rolling mill 73 Has a wire diameter of 5.5mn! ⁇ 6.1 mm.
  • the product was obtained by rolling only the roll gap adjustment using the same hole type roll at the subsequent stage of the finishing mill group.
  • the size-free range is 0.6 mm. That is, a wide size-free range of 0.6Z6.110% with respect to the diameter of the material to be rolled was obtained.
  • the product wire size range obtained by the wire rod rolling line of all-pass common drive system shown in Fig. 3 is the wire diameter range of 5.8 to 6.1 mm. It became.
  • the distance between the mills 71, 72, and 73 is determined by the distance between the mill housings. In other words, only the shortest spaces a and b required when the housing is detached or a trouble occurs should be provided between the mill housings.
  • the distance 1 between the mill 71 in the first pass and the mill 72 in the second pass and the distance 1 2 between the mill 72 in the second pass and the mill 73 in the third pass are 1
  • the installation was extremely compact. As a result, the rolled material could be prevented from falling down, and high-precision wire rolling could be achieved.
  • each of the speed increasing gears 84, 85, 86 may be capable of switching the speed increasing ratio by clutch or stepless switching.
  • a larger size free rolling range can be obtained than in the case of the motor drive system that is used for all passes. As a result, the number of roll changes associated with the size change is reduced, the line stop time is reduced, and production efficiency is improved.
  • FIG. 7 shows one of the embodiments of the present invention, in which four 4-roll rolling mills are installed at the end of a group of finishing mills.
  • this line passed through a rough rolling mill group and an intermediate rolling mill group (not shown).
  • the rolling direction Downstream of the upstream stage 3 of the finishing mill group that processes the material to be rolled into a circular cross section, the rolling direction is 45.
  • Two sets of four-roll rolling mills arranged in series with a shift are arranged in series, and two sets are arranged in series to constitute the latter stage of the finishing rolling mill group.
  • the two 4-roll rolling mills 71 and 72 of the rolling mill set 701 constituting the first half of the latter stage of the finishing rolling mill group are driven by one common motor 96.
  • the two 4-port rolling mills 73 and 74 of the rolling mill set 702 constituting the latter half of the finishing rolling mill group are driven by another common motor 97.
  • the two 4-roll mills are driven by one motor, so the two-roll mills, which are commonly used, are driven independently by different motors.
  • the space between the motors does not interfere with each other. That is, the four roll mills in each set 701, 702 can be closely spaced.
  • an expensive roller guide required for preventing rotation of the material is not required at a normal stand-to-stand distance.
  • the mill configuration of the 4-port rolling mills 71 and 72 of the set 701 and the 4-roll rolling mills 73 and 74 of the set 702 is adjusted so that the delivery side material of each set has a circular cross section. That is, it is set so that the first pass is rolled (cross section: square) and the second pass is formed simultaneously with rolling (cross section: circular).
  • the configuration of the former stage 3 of the finishing mill group is not particularly limited. As shown in Fig.7 Although the n rolling stands that constitute the finishing rolling mill group are arranged such that the rolling directions are alternately changed horizontally and vertically, any other rolling stands may be used.
  • the wire rolling in this case is performed as follows.
  • the base material having a square cross-section is gradually reduced in cross-sectional area while being pressed down alternately in the vertical and horizontal directions by flat rolls of a rough rolling mill group (not shown).
  • the rolled material passes through a group of intermediate rolling mills (not shown), and is then pressed down alternately in a vertical direction and a horizontal direction by a roll hole type in the former stage of the group of finishing rolling mills to form a circular cross section.
  • the wire having the circular cross section is rolled so as to have a substantially square cross section with the groove shape of the upstream 4-roll rolling mill 71 of the first set 701 (the first set) in the latter half of the finishing mill group.
  • This material is then rolled and formed so that the cross-section is substantially circular in the form of the downstream 4-roll mill 72. Since the distance between the stands between the rolling mills 71 and 72 is short and the material does not rotate, the phase of rolling down to the rolling mill 72 in the next pass does not change even without a roller guide. That is, the material passes through the first set 701 in the latter half of the finishing mill group and is accurately roll-formed into a circular cross section.
  • the wire having the circular cross section is rolled so as to have a substantially square cross section with the shape of the upstream 4-roll rolling mill 73 of the latter set 702 (second set) of the latter half of the finishing mill group.
  • This material is then rolled and formed into a circular cross-section with a die of a downstream four-roll mill 74 to form a product.
  • the roll is accurately formed into a circular cross section by the rolling mill 74 of the next pass without passing through the mouth guide.
  • the series of changes in the cross-sectional shape of the material are summarized in Fig. 8 and shown as the cross-section of the material to be rolled at the entrance side of the finishing mill group and at the exit side of each component stand.
  • each of the delivery members of each set is formed in a circular cross section. In other words, even if the distance between the first set and the second set is long, Has a circular cross section, so stable operation can be achieved regardless of the reduction phase on the second set entry side.
  • the range of size-free rolling can be expanded by installing two or more sets each including two 4-roll rolling mills at the end of the wire rod rolling line. Furthermore, since the path schedule of the upstream path can be simplified, the line stop time due to the type change when changing the product size can be shortened. As a result, the operation rate of the line is increased and the production efficiency is improved.
  • FIG. 9 shows one pass schedule according to the embodiment of the present invention.
  • three sets of two 4-roll rolling mills arranged in series with the rolling direction shifted by 45 ° are installed downstream of the former stage 3 of the finishing mill group for wire rods.
  • Set 701 (four-roll mills 71, 72) and set 702 (four-roll mills 73, 74) and set 701 and set 703 (four-roll mills 75, 76) are connected in series, respectively.
  • sets 702 and 703 are arranged in parallel independently of each other.
  • the two 4-roll mills of each set 701, 702, 703 are driven by one common motor.
  • the distance between stands can be shortened to prevent material rotation, and as a result, an effect that an expensive roller guide can be omitted can be obtained.
  • Fig. 10 shows a pass schedule similar to that shown in Fig. 2 as a conventional example of size-free rolling.
  • the finishing rolling mill group 301 consisting of eight stands, in which a global pass and a round pass are alternately arranged in series, Two 4-roll mills are arranged at 45 ° offset. Size-free range in which the diameter can be reduced in the range of 0.5 to 1.5 mm 1.
  • the upper pass line with Omm set 501, the same finishing mill group 302 and two 4-roll mills The lower pass line, which also has a set 502 whose size free range is 1. Omm, is arranged in two lines in a switchable manner.
  • the product size is 9.0-; Size free rolling is possible.
  • the wire diameter of the incoming material to the set 502 is 11.6 mm, size-free rolling can be performed within the product size range of 10.1-11.1 mm.
  • the wire diameter of the incoming material to the set 701 is 12. Omm
  • the wire diameter of the outgoing material of the set 702 is 10.5 to 11.5 mm. If this is sent to the next set 702, size-free rolling can be performed in the product size range of 9.0 to 10.0 mm. Also, if the product is sent from the set 701 to the set 703, the product size can be rolled in a size-free range of 10.0 to 11.0 mm.
  • Each of the sets 701, 702, and 703 was designed to be able to reduce in diameter in the range of 0.5 to 1.5 mm in diameter.
  • Fig. 10 is a schematic diagram of the wire rod rolling line of the present invention in which the final two-pass drive system was changed.
  • This line includes three 4-roll rolling mills 31 as the final three passes downstream of the first stage 3 of the finishing rolling mill group, which processes the base metal that has passed through the rough rolling mill group and intermediate rolling mill group (not shown) into a circular cross section. 32, 33, and the rolling direction is 45. They are staggered and arranged in series.
  • the configuration of the former stage 3 of the finishing mill group is not particularly limited.
  • the front stage of the finishing mill group comprises n stands, which are arranged so as to be horizontally and vertically rolled in alternate directions, but may be of any other type.
  • the sectional area is gradually reduced by rolling a square billet having a square cross section while changing the rolling direction alternately between vertical and horizontal by the flat rolls of the rough rolling mill group.
  • the rolled material passes through the intermediate rolling mills, and is alternately pressed down from the vertical direction and the horizontal direction by the oval hole type and the land hole type in the former stage of the finishing rolling mill group 3 to form a circular cross section.
  • the rolled material is finished to a wire having a predetermined wire diameter through the round hole dies of three four-roll rolling mills 31, 32, and 33 shifted in the rolling direction by 45 °.
  • the four-way rolling mills 32 and 33 arranged as the last two passes are commonly driven by one motor 98. And, between each four-roll rolling mill 32, 33 and the motor 98, one of the four-roll rolling mills 32, 33 is shared with a switching gearbox 87 exclusively used for one of the four-roll rolling mills 32, and two four-roll rolling mills 32, 33 are shared.
  • a common switching gearbox 88 is provided.
  • a motor is connected to the input shaft of the switching gearbox 88.
  • One of the two output shafts of the switch gearbox 88 is directly connected to the four-roll mill 33, and the other output shaft is connected to the input shaft of the switch gearbox 87.
  • the output shaft of the switching gearbox 87 is connected to the four-roll mill 32.
  • Each gearbox has a built-in clutch that switches the gear ratio between two stages Have been.
  • the final two four-roll rolling mills 32, 33 and one motor 98 are connected via two dedicated and shared switching gearboxes 87, 88. It has the following functions and effects.
  • Fig.12 shows two 4-port rolling mills 32,33 driven by one common motor 98,
  • This is a diagram schematically showing the results of a wire rod rolling experiment performed by fixing the speed increaser of the four-roll rolling mill 32 to one kind of gear ratio: i 2 1: 1.060.
  • the entry side material When a 5 mm entry side material is reduced by a 4-port rolling mill 32, the entry side material is elongated in the longitudinal direction by the reduction, and is rolled so that its cross section becomes substantially square while its outer diameter decreases. Further, it is rolled down by a 4-roll rolling mill 33 and rolled into a wire having a circular cross section of a wire diameter of 5.35 mm to 5.60 mm. If the wire diameter exceeds 5.60 mm, the tension of the material is excessively increased between the passes of the rolling mills 31 and 32 because the elongation of the material is too small, and as a result, the material breaks. On the other hand, for rolling with a wire diameter of less than 5.35 mm, It was clarified that the material elongation between the passes was too large, so the compression was excessive and cobbles occurred.
  • the wire diameter of the incoming material was 6.0 mm, and the rollable size range when the gear ratio was A was 5.50 mm to 5.75 mm, that is, the size free range was 0.25 mm.
  • the rollable size range was 5.25 mm to 5.50 mm, and the size free range was 0.25 mm. there were.
  • the size-free rolling range was expanded to 0.5 mm by switching the speed-up ratio of speed-up gear 87 to two stages of speed-up ratio A and speed-up ratio B.
  • the size-free rolling range was expanded to 0.5 mm by switching the speed-up ratio of speed-up gear 87 to two stages of speed-up ratio A and speed-up ratio B.
  • rolling by changing the speed increase ratio of the shared switching gearbox 88 rolling from small diameter to large diameter can be performed by the motor 98 of relatively small capacity, and the applicable size range is wide.
  • Fig. 14 schematically shows the change in torque characteristics due to gear ratio switching of the gearbox.
  • the area surrounded by the solid line is the high-speed use area with the speed increase ratio C, which corresponds to low tonnolek and high-speed rolling of small diameter materials.
  • the area surrounded by the dashed-line hatched area is the low-speed use area with the speed increase ratio D, which corresponds to high-torque, low-speed rolling of large-diameter materials.
  • the wire rod rolling rolling speed 100111 3 in diameter 5.5111111
  • the wire diameter 1 9 mm in rolling speed 16 m / s the rolling speed range of both wire becomes on 6 more than double.
  • the present invention is not limited to this. It may be a switching type gearbox.
  • the wire rod rolling line according to the present invention a wider size-free rolling range than before can be obtained.
  • the number of roll changes associated with the size change is reduced, the line stop time is shortened, and the production efficiency is improved.
  • the distance between mills can be reduced, and as a result, the material to be rolled is prevented from falling or rotating, and high-precision wire rolling can be performed.
  • the installation space can be reduced, saving investment.

Description

明細書
線材圧延ライン 技術分野
本発明は、 仕上圧延機群の後段が複数台の 4ロールミルを組み合わせて構成 される線材圧延ラインに係る。 特に、 モータ駆動方式を改良した 4ロールミル を線材圧延ライン仕上圧延機群の最終に配設することにより、 高寸法精度で安 定操業できる。 またパススケジュールを簡略にして生産能率を向上させるとと もに、 サイズフリー範囲の拡大と設備コストの低減も可能とする。 背景技術
Fig. 1 A に、 2ロールミルを使用した一般的な線材圧延ラインおよびパスス ケジュールの例を示した。 線材圧延ラインは粗圧延機群、 中間圧延機群および 仕上圧延機群で構成され、 各圧延機群は複数の圧延機が直列に配置されている。 Fig. 1 A の最上段には線材圧延ラインにおける中間圧延機群以後の圧延機の配 置を示した。 Fig. l Aの 2段目以下には、 素材おょぴ製品の断面と各スタンド におけるロール孔型でパススケジュールを示した。 なお、 ロール孔型とは、 圧 延機のロール隙形状のことである。 一辺 1 5 O mmの断面角形のビレツト 1力 図示されない mff延機群 (第 1スタンド〜第 6スタンド) を経た後、 第 7スタ ンド 21〜第 1 0スタンド 24からなる中間圧延機群 2及び第 1 1スタンド 31〜 第 1 8スタンド 38力 らなる仕上げ圧延機群 3 により、 最終的に所定の製品サ ィズ (線径) を有する断面円形の線材 41〜49 に連続圧延される。 なお、 奇数 番スタンドは垂直口ールが、 偶数番スタンドには水平口ールが組み込まれてい る。 また、 製品サイズは、 41:9.0mm,42:9.3mm,43:9.5mm,44:9.75mm, 45:10.0mm, 46:10.2mm, 47:10.3麵, 48:10.5mm, 49:11.0mmである。 これらの製品サイズの線 材を得るためのパススケジュールが個々に Fig.lAに示されている。 第 7〜第 1 8の各スタンドの 2ロール圧延機により、 楕円形のロール孔型を有するオーバ ルパスと、 円形の口一ル孔型を有するラウンドパスを最終パス迄交互に繰り返 す。 ここで、 オーパルパスの圧延状況の正面図を Fig. 1 Bに示す。 R1が上水平 ロール、 R2が下水平ロール、 8がパスラインである。 また、 ラウンドパスの圧 延状況を Fig. 1 Cに示す。 R3,R4が左右垂直ロール、 8がパスラインである。
Fig. 1 A に示す孔型はすべてサイズが異なっている。 つまり、 製品サイズ毎 に専用孔型を用意することが必要で、 製品サイズ変更毎にラインを一旦停止し てスタンドの組み替えを行わねばならない。 Fig. l Aの場合、 9通りのライン を用意することにより 9種類の製品サイズを得ている。 この 9サイズの製品を 製造するには、 9回のライン停止と 7 6台の組替えスタンドが必要である。 これに対して、 最近、 同一孔型のロールを使用し、 そのロール間隙を変更す ることにより、 無段階に異なるサイズの製品を高寸法精度で製造できる 『サイ ズフリー圧延技術』 が提案されるに至った。
すなわち、 線材圧延ラインの最終仕上げ圧延スタンドとして、 2台の 4ロー ル圧延機を、 その圧下方向を 4 5 ° ずらして直列に配置する線材圧延技術が、 例えば特公平 3— 6 8 4 1号公報ゃ特開平 6— 6 3 6 0 1号公報に開示されて いる。
Fig. 2 A には、 サイズフリー圧延技術の適用された線材圧延ラインおよびパ ススケジュール例を示した。 最上段には線材圧延ラインの中間圧延機以後の圧 延機の配置を示した。 中間圧延機群 2および仕上げ圧延機群前段 3の圧延機の 構成は Fig. lと同様である。 仕上げ圧延機群前段 3 のさらに下流に、 仕上げ圧 延機群後段 5が配置されている。 仕上げ圧延機群前段 3 と仕上げ圧延機群後段 5を合わせて、仕上圧延機群を成す。仕上げ圧延機群後段 5は圧下方向を 4 5。 ずらして配置された 2スタンドの 4ロール圧延機 51,52 からなる。 ここで、 4 ロール圧延機 51 による圧延状況を Fig. 2 Bに、 4ロール圧延機 52による圧延 状況を Fig. 2 Cにそれぞれ正面図で示す。 R1-R4が圧延ロールであり、 8がパス ラインである。 Fig.2A の 2段目および 3段目にサイズフリー範囲が異なる 2通 りのパススケジュールを、 各スタンドにおけるロール孔型で示した。 2段目の パススケジュールで製品サイズ 9 . 0〜1 0 . O mm迄の線材 61 がサイズフ リー圧延できる。 3段目のパススケジュールで製品サイズ 1 0 . 1〜1 1 . 1 mm迄の線材 62がサイズフリ一圧延できる。 したがって、 Fig. 1 Aのパススケ ジュールの 9サイズの製品を含めて、 9 . 0〜1 1 . 1 mmの範囲内であれば 自由な製品サイズが得られる。 しかもサイズ変更に伴うライン停止回数は 2回 だけで済む。 さらにはサイズ変更に必要な組替えスタンド数も 2 4スタンドで 足りる。
このように、 仕上げ圧延機群に 2台 1組の 4ロール圧延機を組込むことで、 型替えなしで製造できる製品サイズの範囲が増やせる。 したがって、 サイズ変 更の型替えに伴うライン停止時間が短縮されラインの稼働率が高くなる。
これに対して、 従来の 2ロールや 3ロールを用いて線材圧延を行う場合は、 線材のサイズ毎に専用孔型を用意することが必要である。 したがって、 製造可 能サイズ数に制限があり、 かつ幅広がり変形するため寸法精度にも限界がある。
しかしながら、 Fig. 2の例では、 最終パスとして用いる 2台の 4ロール圧延 機のそれぞれに 1台ずつミルモータ (以下、 単にモータという) を配設し、 2 台の 4ロール圧延機を各別のモータで回転駆動させている。 それぞれにモータ を備えた 2台の 4ロール圧延機を直列に配置した場合、 モータスペースの干渉 を避けねばならないのでスタンド間距離は自ずから制約されてしまう。 そのた め、 以下のような問題がある。
①最終仕上パスの二つのスタンドの設置スペースが大きくならざるを得ない。 →省スペース化及び設備コストの低減が困難である。
②スタンド間距離が長いと、 両スタンド間で線材が自然に回転する。 しかして、 上流側の 4ロール圧延機を通過した線材の断面は略正方形に近い形状になり、 これを下流側の 4ロール圧延機で圧下方向を 4 5 ° ずらして圧延することで断 面円形の製品が得られるのであるから、 正確な圧下方向を維持するには両スタ ンド間での角形線材の回転を避けなければならない。 したがって、 従来は、 角 形断面が回転しないように姿勢保持するため、 両スタンド間に高価なローラガ ィドを設ける必要があった。 —設備コストの低減が困難である。
一方で、 1台のモータを共用して 2台の 4口ール圧延機を駆動する場合にも、 以下のような問題がある。
③ 4ロール圧延機は、 同一ロール孔型を使用してロール間隙を変更するだけで 無段階に圧延サイズを変更すること (サイズフリー圧延) が可能であるが、 サ ィズに応じた適正な圧延速度を維持する必要がある。 しかし、 1台のモータを 共用して 2台の 4ロール圧延機を駆動する場合は、 圧延速度の調整可能範囲に サイズフリ一の範囲が制約される。 →サイズフリ一圧延可能範囲の拡大が困難 である。
④大径材と小径材では圧延速度及び所要トルクが大きく異なる。 したがって、 2台の 4口ール圧延機を 1台のモータで駆動しつつ広範囲のサイズの線材の圧 延に対応するには、 大容量モータが必要となる。 →モーター設備コストアップ が避けがたい。
つまり、 仕上げ圧延機群の最終 2段にのみ、 4ロールミルを配置する線材圧 延ラインには、 駆動装置も考慮するとまだ改善の余地があつた。 また、 従来では、 線材圧延ラインの最終仕上げ圧延スタンドとして、 3台の 4ロールミノレを、 その圧下方向を交互に 4 5 ° ずらして直列に配置した、 Fig. 3あるいは Fig. 4に示すような線材圧延ラインが適用される場合もあった。 3 台の 4ロールミルは、 一般的な 2ロールミルからなる仕上げ圧延機群前段 3の 下流に配設されている。
Fig. 3に示す線材圧延ラインでは、 3台の 4ロールミル 71, 72, 73 を、 1台 の増速機 8を介して 1台の共用モータ 9で駆動する方式 (以下、 全パス共用駆 動方式という) が適用されている。 一方、 Fig. 4に示す線材圧延ラインでは、 3台の 4ロールミル 71, 72, 73に対し、 全 3台の増速機 81, 82, 83 と全 3台 のモータ 91, 92, 93 をそれぞれに 1台ずつ組合せて単独に駆動する方式 (以 下、 全パス単独駆動方式という) が適用されている。
4ロールミルは、 同一ロール孔型を使用してロール隙を変更するだけで無段 階に圧延サイズを変更する 「サイズフリー圧延」 が可能である。 その 4ロール ミルを複数台直列に配置して線材を連続的に圧延する線材圧延ラインでは、 被 圧延材の断面積が小さくなる下流側のミルほどロール周速を速くして、 上流側 と下流側との ¾H延材のマスフローをバランスさせることが必要である。 マス フローをバランスさせることにより、 ミル間の被圧延材が座屈してミス口ール になったり、 引きちぎれたりすることなく圧延することができる。
し力 しながら、 Fig.3の全パス共用駆動方式にあっては、 3台の 4ロールミル 71, 72, 73 のロール周速比率は固定となる。 ロール隙断面積は一義的に (被圧 延材断面積) X (ロール周速)すなわちマスフローが一定となるになるように決定 され、 各ミルでのマスフローをバランスさせている。 それゆえ、 Fig.3の 1台目 の 4ロールミル 71 (第 1パス) と 2台目の 4ロールミル 72 (第 2パス) との 間、 および 2台目の 4ロールミル 71 (第 2パス) と 3台目の 4ロールミル 73 (第 3パス) との間の断面積比率を変えることはできない。 つまり、 4ロール ミルからなる仕上げ圧延機群後段直前の仕上げ圧延機群前段 3 の出側材と 1台 目の 4ロールミル 71 の出側材との面積比率 (第 1パスの減面率) のみが変更 可能であるにすぎない。 ところが 4口ールミルの 1パス当たりの最大減面率す なわち断面積変更可能率は最大で 1 5 %程度である。 したがって、 この全パス 共用駆動方式の線材圧延機の場合のサイズフリ一範囲は、 最大でも被圧延材の 直径の 7〜 8 %程度に制限されてしまう。
サイズフリ一範囲がこのように狭いと、 必要なロール型の種類が増えてしま う力 ら、 次の問題点が生じる。
①圧延機およびロールなど、 圧延機設備の保有数が増大し、 また広い保管ス ペースも必要となり、 投資額が増大する。
②ロール交換頻度が多くなり、 圧延ラインの運転停止時間が長くなる。
③オフラインでの口一ル改削, 圧延機へのロールガイドセット等の段取り作 業に多くの人手を必要とする。
更には、 このように 1台の共用モータ 9 で駆動される 3台の 4ロールミル で連続圧延する場合、 製品の寸法は入側材料の寸法に大きく影響を受けるので、 入側材料の寸法精度が悪レ、と製品も悪くなるという問題もある。
一方、 Fig.4の全パス単独駆動方式にあっては、 3台の 4ロールミル 71, 72, 73 を 3台のモータ 91, 92, 93 でそれぞれ別々に単独駆動する。 そのため、 全 パス共用駆動方式の場合のように、 各パスの被圧延材の断面積比率を予め設定 しておく必要はなくなる。 それゆえ、 4ロール圧延の第 1パスと第 2パスとの 双方でそれぞれに最大 1 5 %の減面率を設定することができる。 結局この場合 のサイズフリ一範囲は被圧延材の直径の最大で 1 5 %と倍増する。 なお、 4口 ール圧延の第 3パスは製品径を安定させるための最終パスであって、 5 %程度 の適正な減面率が必要であり、 サイズフリ一範囲には寄与しない。
しかしながら、 サイズフリ一範囲が全パス共用駆動方式の約 2倍に拡大でき る全パス単独駆動方式にも、 次のような問題点がある。
①モータ台数が増えるので、 その制御設備も含めて投資額が増大する。
②各モータに高精度な回転数設定が必要となり、 圧延機間でコブルや引きち ぎれ等の操業トラブルが発生しやすい。
③使用されるモータは 5 0 0 KW程度なのでモータ同士の干渉を避けること ができないため、 Fig.4に示すように、 1台目の 4ロールミル 71 と 2台目の 4 ローノレミル 72 との間の距離 100を長くせざるを得ない。 ミル間距離 100が増 長すると、 1台目の 4ロールミル 71 と 2台目の 4ロールミル 72の間での被圧 延材料の回転が顕著になる。 その結果、 圧延機ガイドに突掛けてのミスロール や、 製品寸法精度低下の危険性を増大させる。
しかし、 現今、 線材圧延におけるサイズフリー圧延範囲の更なる拡大と共に より一層の生産能率の向上と設備コストの低減が求められている。
そこで、 本発明は、 サイズフリー圧延の範囲を拡げることができると同時に、 ライン停止時間を短くすべく、 上流パスのパススケジュールを簡略化したパス スケジュールが構成できる、 稼働率の極めて高い線材圧延ラインを提供するこ とを目的とする。 発明の開示
上記の目的を達成するために、 線材圧延ラインに係る本発明は、 仕上圧延機 群に配設される線材圧延機において、 最終から 3台のミルが 4 ローノレミルであ り、 これら 3台のミルが圧下方向を 4 5。 ずつずらして直列に配し、 最終から 2台のミルは共用モータ駆動とし、 最終から 3台目の 4ロールミルとは別駆動 とすることを特徴とする。
本発明の線材圧延ラインは、 単独モータ駆動方式と共用モータ駆動方式の両 方の長所を生かした駆動方式としたものである。
すなわち、 最終から 2台のミルは共用モータ駆動とし、 最終から 3台目の 4 ロールミルとは別駆動とした。 これは、 各ミルでのマスフローをバランスさせ る被圧延材の断面積比率が、 最終から 3パスめと 2パスめの間では制約を受け ないようにするためである。 したがって、 最終から 3パスめと 2パスめとの双 方でそれぞれに最大 1 5 %, 1 5 %の減面率を設定することができる。 つまり、 Fig. 3に示す全パス単独駆動の場合と同様に、 最大で被圧延材の直径の 1 5 % と、 サイズフリー範囲は広くなる。
しかも、 最終成形パスであって、 サイズフリー範囲には寄与しない、 最終パ スのミルを最終から 2パスめのミルとの共用モータ駆動とした。 この結果、 モ ータ台数を減らすと共にミル間距離を全パス単独駆動の場合と同様に短縮でき た。 つまり、 モータ台数を減らすことにより、 モータ並びに制御装置を含む設 備投資を低減できた。 同時に、 ミル間距離の短縮により、 ミル間での被圧延材 の回転によるミスロールの発生や製品寸法精度の低下を防止できた。
さらに、 最終から 3パスめの 4ロールミルは単独モータ駆動でも、 最終から 4台目のミルとの共用モータ駆動でもよレ、。 共用モータ駆動の場合は、 最終か ら 4台目のミルも 4ロールミルであり、 最終から 3台目および 4台目のミルが 圧下方向を 4 5 ° ずつずらして直列に配置されている。 また、 最終および最終 から 3台目のミルの出側材が円形断面となるように設置すること、 および、 最 終から 2台のミルの一方のミルと駆動モータとの間に、 該ミル専用の切替え増 速機と 2台のミルに共通の切替え増速機とを配設し、 他方のミルと駆動モータ との間に、 2台のミルに共通の切替え増速機とを配設して、 最終から 2台のミ ルと駆動モータとを連結することも好ましい。 図面の簡単な説明
Fig. 1 A は、 2ロール圧延機による従来の線材圧延ラインの模式図およびパ ススケジユーノレの例である。
Fig. 1 B,1Cは、 オーバルパスの圧延状況の正面図(I B)およびラウンドパスの 圧延状況の正面図(1 C)である。
Fig. 2 A は、 4口ール圧延機を組み込んだサイズフリ一圧延可能な従来の線 材圧延ラィン模式図おょぴパススケジュールの例である。
Fig.2B,2Cは、 4ロール圧延機による圧延状況の正面図である。
Fig.3は、 1台のモータで駆動する全パス共用駆動モータ方式の 3台の 4ロー ル圧延機を仕上げ圧延機群の最終段に備えた従来の線材圧延ラインの模式図で ある。
Fig.4は、 各 1台のモータで駆動する全パス単独駆動モータ方式の 3台の 4口 ール圧延機を仕上げ圧延機群の最終段に備えた従来の線材圧延ラインの模式図 である。
Fig.5は、 3台の 4ロール圧延機を仕上げ圧延機群の最終段に備えた本発明の 線材圧延ラインの模式図である。
Fig.6は、 本発明の線材圧延ラインの仕上げ圧延機群の最終段を構成する 3台 の 4ロール圧延機の配置を模式的に示す平面図である。
Fig.7は、 4台の 4ロール圧延機を仕上げ圧延機群の最終段に備えた本発明の 線材圧延ラインの模式図である。
Fig.8 は、 Fig. 7の 4台の 4口ール圧延機の各パスの圧延材断面形状を示す図 である。 Fig.9は、 4台の 4ロール圧延機を仕上げ圧延機群の最終段に備えた本発明の 線材圧延ラィンのパススケジュールの例である。
Fig.10 は、 2台の 4口ール圧延機を組み込んだサイズフリ一圧延可能な従来 の線材圧延ラインのパススケジュールの例である。
Fig.ll は、 最終 2パスの駆動方式を変更した本発明の線材圧延ラインの模式 図である。
Fig.12 は、 4ロール圧延機の増速比を 1種類に固定した場合のサイズフリー 圧延範囲を示した実験結果である。
Fig.13 は、 一方の 4口ール圧延機の増速比を 2種類に切り替え可能にした場 合のサイズフリ一圧延範囲を示した実験結果である。
Fig.14 は、 共通の切替え増速機の増速比切替えによる、 モータトルク特性変 化を説明する図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して説明する。
Fig. 5は、 3台の 4ロール圧延機を仕上げ圧延機群の最終段に備えた本発明 の線材圧延ラインの模式図である。
このラインには、 図示されない粗圧延機群, 中間圧延機群を経た被圧延材を 円形断面に加工する仕上げ圧延機群前段 3 の後に、 仕上げ圧延機群後段の 3パ スとして 3台の 4ロール圧延機 71, 72, 73 力 その圧下方向を交互に 4 5 ° ずつずらして直列に配設されている。
この場合の仕上げ圧延機群前段 3 の構成は、 特に限定はされない。 図示のも のは、 1 0台の 2ロール圧延機の圧延方向を水平一垂直と交互に入れ換えて配 列しているが、 その他どんなものでも良い。 粗圧延機群, 中間圧延機群を経て仕上げ圧延機群 3 のオーパル孔型とラウン ド孔型とで交互に鉛直方向と水平方向とから圧下され、 円形断面とされた被圧 延材は、 最後に、 本発明の線材圧延ラインを構成している 3台の 4ロール圧延 機 71, 72, 73のラウンド孔型を通して、 所定の線径の線材に仕上げられる。
Fig. 6に、 本発明の線材圧延ラインの仕上げ圧延機群の最終段を構成する 3 台の 4ロール圧延機の配置を模式的に平面図で示す。 Fig. 6に示すように、 3 台の 4ロール圧延機 71, 72, 73 に増速ギヤボックス 8 を介して接続された 2 台の駆動モータ 94, 95を備えている。 なお、 各圧延機 71, 72, 73はいずれも ハウジング內に 4本の圧延ロールが内蔵されている。 なお、 圧延機への駆動入 力軸 711,721,731 と圧延ロール軸 712,722,732 との間の駆動力伝達機構の図示は 省略した。
第 1パスの 4ロール圧延機 71の駆動入力軸 711は、 専用の駆動モータ 94の 駆動出力軸 941と増速ギア 84を介して連結されている。
一方、 第 2パスの 4ロール圧延機 72 の駆動入力軸 721 及び第 3パスの 4口 ール圧延機 73の駆動入力軸 731は、 共用の駆動モータ 95の駆動出力軸 951 と 増速ギア 85及び 86を介して連結されている。
本発明の線材圧延ラインに関わる仕上げ圧延機群後段は、 このように、 3台 の 4ロール圧延機 71, 72, 73のうち第 1パスの圧延機 71 を専用の駆動モータ 94で単独駆動し、 第 2パスの圧延機 72と第 3パスの圧延機 73とを共用の駆動 モータ 95 で駆動する構成となっている。 このため、 以下のような有利な効果 力ある。
( 1 ) サイズフリー圧延範囲を広くできる。
圧延実験した結果の代表例を示す。 4ロール圧延機 71 の入側材の円形断面 の線径が 6 . 5 mmの場合、 4ロール圧延機 73 の出側の製品線材サイズ範囲 は線径 5. 5mn!〜 6. 1mmとなった。 なお該製品は、 仕上げ圧延機群後段 で同一孔型ロールを用いロール隙調整のみで圧延して得られたものである。 換 言すれば、 サイズフリー範囲は 0. 6 mmである。 すなわち、 被圧延材の直径 に対して 0. 6Z6. 1 10%と広いサイズフリー範囲が得られた。
因みに、 入側材の線径が同じく 6. 5mmの場合に、 Fig.3の全パス共用駆 動方式の線材圧延ラインで得られた製品線材サイズ範囲は線径 5. 8〜6. 1 mmとなった。 サイズフリー範囲は 0. 3 mmである。 すなわち、 被圧延材の 直径に対して 0. 3Z6. 1 =5%と狭いサイズフリー範囲しか得ることがで きなかった。
(2) 仕上げ圧延機群後段の各パス圧延機間距離を短縮でき、 コンパクトに設 置できる。
Fig.6に示すように、 駆動モータ 94, 95間の干渉による制限が緩和される結 果、 各ミル 71, 72, 73 間の距離は、 ミルハウジング同士の間隔により決定さ れることになる。 つまりミルハウジング間に、 ハウジングの脱着及びトラブル 発生時に必要な最短スペース a, bのみを設ければ良い。
いま、
ミル 71〜72のハウジング間隔 a = 60mm
ミル 72〜73のハウジング間隔 b = 60mm
ミルの駆動入力軸 711と口ール軸 712との間隔 c = 200 mm
4口ールミルの口ール Rの径 d = 220 mm
とした場合、
第 1パスのミル 71 と第 2パスのミル 72 とのミル間距離 1 i及ぴ第 2パスの ミル 72と第 3パスのミル 73とのミル間距離 12は、 それぞれ
1! = 400 mm 1 2 = 2 6 0 mm
となり、 極めてコンパクトに設置できた。 これにより、 被圧延材の倒れも防止 でき、 高寸法精度の線材圧延が達成できた。
( 3 ) 3台の 4ロールミルに対し 2台の駆動モータで足りる。、 全パス単独駆 動モータ方式と比較して、 駆動モータ 1台及びその制御装置類を省略できる。 その結果、 設備額を低減できる。
なお、 各増速ギア 84, 85, 86 は、 増速比をクラッチまたは無段切替えで切 替え可能なものであっても良い。
以上説明したように、 本発明例に係る線材圧延ラインでは、 最終の 3パスに 用いる 3台の 4ロールミルに対して 2台の駆動モータを配して、 第 1パスのミ ルは単独モータ駆動、 第 2, 第 3のミルは共用モータ駆動する構成とした。 こ のため、 全パス共用モータ駆動方式と全パス単独モータ駆動方式との欠点を解 消して長所を活用することとなった。 すなわち、 以下に示す種々の効果を奏す る。
①全パス共用モータ駆動方式の場合より広いサイズフリ一圧延範囲が得られ る。 そのため、 サイズ変更に伴うロール交換が減ってライン停止時間が短縮さ れ、 生産能率が向上する。
②ミル間距離を小さくでき、 その結果被圧延材の倒れや回転が防止されて高 寸法精度の線材圧延が可能である。
③投資額を節約できる。
④設置スペースが狭くて済む。
Fig. 7は、 本発明実施形態のひとつで、 4台の 4ロール圧延機を仕上圧延機 群の最終に設置したものである。
すなわち、 このラインには、 図示されない粗圧延機群, 中間圧延機群を経た 被圧延材を円形断面に加工する仕上げ圧延機群前段 3 の下流に、 圧下方向を 4 5。 ずらして直列に並べた 2台の 4ロール圧延機を 1セットとして、 2セット 直列に配設して、 仕上げ圧延機群後段を構成している。 仕上げ圧延機群後段の 前半部を構成する圧延機セット 701 の 2台の 4ロール圧延機 71, 72 は、 1台 の共用モータ 96 で駆動する。 仕上げ圧延機群後段の後半部を構成する圧延機 セット 702の 2台の 4口ール圧延機 73, 74は他の 1台の共用モータ 97で駆動 するようにしてある。
このように、 2台の 4ロール圧延機を 1台のモータで駆動する構成としたた め、 一般的に行われている 2台の 4ロール圧延機をそれぞれ別のモータで駆動 する独立駆動方式のようにモータ同士のスペースが干渉することがない。 つま り、 各セット 701, 702 内の 4ロール圧延機は接近して配置できる。 このよう に、 各セット 701, 702 におけるスタンド間の距離を短くすると、 スタンド間 での材料の回転をなくすことが可能になる。 したがって、 通常のスタンド間距 離では材料の回転防止に必要とされる高価なローラガイドが、 不要であるとい う利点がある。
しかし、 各セット間の距離は、 各モータ 96, 97 のスペース干渉があるため 長くならざるを得ない。 そのためセット間では材料の回転を生じる。 そこで、 この材料回転が後段のセット 702の第 1パス (4ロール圧延機 73) の圧下の位 相に影響を与えないようにする必要がある。 そこで、 各セッ トの出側材が円形 断面となるように、 セット 701 の 4口ール圧延機 71, 72及ぴセット 702の 4 ロール圧延機 73, 74 のミル構成を調整する。 すなわち、 1パス目が圧延 (断 面:角形) となり、 2パス目が圧延と同時に成形 (断面:円形) となるように 設定してある。
なお、 仕上げ圧延機群前段 3の構成は、 特に限定はされない。 Fig.7に図示の ものは、 仕上げ圧延機群を構成する n台の圧延スタンドが圧延方向を、 水平一 垂直に交互に入れ換えて配列されているが、 その他どんなものでも良い。
この場合の線材圧延は次のように行われる。
先ず、 断面が正方形の母材は、 粗圧延機群 (図示されていない) のフラット ロールにより鉛直方向と水平方向とに交互に圧下されながら、 断面積を徐々に 小さくされる。 続いて、 圧延材は中間圧延機群 (図示されていない) を経た後、 仕上げ圧延機群前段のロール孔型で鉛直方向と水平方向に交互に圧下され、 円 形断面とされる。 この円形断面の線材は、 仕上げ圧延機群後段の前半のセット 701 ( 1セット目) の上流側 4ロール圧延機 71 の孔型で断面が略正方形になる よう圧延される。 この材料は、 次に下流側 4ロール圧延機 72 の孔型で断面が ほぼ円形になるように圧延と成形を施される。 圧延機 71, 72 間のスタンド間 距離が短くて材料は回転しないから、 ローラガイド無しでも次パスの圧延機 72 への圧下の位相が変わることはない。 すなわち、 材料は仕上げ圧延機群後段の 前半のセット 701を通過して円形断面に正確に圧延成形される。
続いて、 この円形断面の線材は、仕上げ圧延機群後段の後半のセット 702 ( 2 セット目) の上流側 4ロール圧延機 73 の孔型で断面が略正方形になるよう圧 延される。 この材料は、 次に下流側 4ロール圧延機 74 の孔型で断面が円形に なるよう圧延と成形を施され、 製品となる。 このときも、 前記セット 701 にお けると同様に、 口一ラガイドを通さずに次パスの圧延機 74 で円形断面に正確 に圧延成形される。 これら一連の材料断面形状の変化をまとめて、 Fig. 8に仕 上げ圧延機群後段の入り側および各構成スタンド出側の被圧延材断面として示 した。
このように、 各セットの出側材はいずれも円形断面に成形されている。 つま り、 1セット目と 2セット目とのセット間距離が長くても、 1セット目出側で は円形断面なので、 2セット目入側の圧下の位相がどんな場合でも安定操業で さる。
以上説明したように、 線材圧延ラインの最終に、 2台の 4ロール圧延機を 1 セットとしたものを 2セット以上設置したことにより、 サイズフリー圧延の範 囲を拡げることができる。 さらにまた、 上流パスのパススケジュールを簡略化 できるので、 製品サイズ変更時の型替えに伴うライン停止時間を短縮すること ができる。 その結果、 ラインの稼働率を高め、 生産能率が向上するという効果 ち得ら; る。
Fig. 9は、 本発明実施形態のひとつのパススケジュールを示す。 この場合は、 線材の仕上げ圧延機群前段 3 の下流に、 圧下方向を 4 5 ° ずらして直列に並べ た 2台の 4ロール圧延機を 1セットとしたものを 3セット設置している。 セッ ト 701 ( 4ローノレ圧延機 71, 72) とセット 702 ( 4ロール圧延機 73, 74) 及び セット 701 とセット 703 ( 4ロール圧延機 75, 76) はそれぞれ直列に接続され ている。 一方、 セット 702, 703は互いに独立に並列に配置されている。 なお、 各セット 701, 702, 703 の 2台の 4ロール圧延機の駆動は、 1台の共用モータ で駆動する方式である。 スタンド間距離を短くできて材料回転が防止され、 そ の結果、 高価なローラガイドを省くことができるという効果が得られる。
このように、 2台の 4ロール圧延機を 1セットとしたものを 3セット設置し たことにより、 仕上げ圧延機群前段 3 で構成される上流パスのパススケジュ一 ルを統合することができる。 以下に従来のサイズフリ一圧延のパススケジユー ルと対比して説明する。
Fig.10は、 従来のサイズフリー圧延例として Fig. 2に示したものとほぼ同様 のパススケジュールである。 すなわち、 ォ一バルパスとラウンドパスを交互に 直列に配置した 8 スタンドからなる仕上げ圧延機群 301の下流に、 圧下方向を 45° ずらした 2台の 4ロール圧延機を配置する。 径 0. 5〜1. 5mmの範 囲で圧下減径できるサイズフリー範囲 1. Ommのセット 501 を備える上側の パスラインと、 同様の仕上げ圧延機群 302と 2台の 4ロール圧延機からなり、 同じくサイズフリー範囲が 1. Ommのセット 502 を備える下側のパスライン とを、 切り替え可能に 2ライン並列させている。
この 2ライン並列のパススケジュールによれば、 上側パスラインでは、 セッ ト 501 への入側材の線径が 10. 5 mmの場合、 製品サイズ 9. 0〜; L 0. 0 mmの範囲でサイズフリー圧延できる。 また、 下側パスラインに切り替えれば、 セット 502への入側材の線径が 1 1. 6 mmの場合、 製品サイズ 10. 1〜 1 1. 1 mmの範囲でサイズフリー圧延できる。
これに対して、 Fig.9の本発明では、 セット 701 への入側材の線径を 12. Ommにすると、 セット 702の出側材の線径は 10. 5〜11. 5mmとなる。 これを次のセット 702 に送れば製品サイズ 9. 0〜10. 0mmの範囲でサイ ズフリー圧延できる。 また、 セット 701からセット 703に送れば、 製品サイズ を 10. 0〜1 1. 0mmの範囲でサイズフリー圧延できる。 なお、 各セット 701, 702, 703 はそれぞれ径 0. 5〜1. 5 mmの範囲で圧下減径できるもの とした。
すなわち、本発明によれば、従来は Fig.10のように、仕上げ圧延機群前段 301 と 302との 2ラインで構成していた仕上げ圧延前段パスを、 Fig.9の 1ラインの 仕上げ圧延機群 3 に統合することができる。 そのため、 従来必要であったサイ ズ変更時の型替えが不要となる。 結局型替えに伴うライン停止時間が短縮され るから、 ラインの稼働率が高く生産能率が向上する。 また更に、 各セットの出 側材が円形断面となるように設置することで、 次セットでの圧下の位相に無関 係となり、 その結果、 線材連続圧延の安定操業が可能になる。 Fig.11 は、 最終 2パスの駆動方式を変更した本発明の線材圧延ラインの模式 図である。
このラインには、 図示されない粗圧延機群, 中間圧延機群を経た母材を円形 断面に加工する仕上げ圧延機群前段 3 の下流に、 最終の 3パスとして 3台の 4 ロール圧延機 31, 32、 33 を、 その圧下方向を 4 5。 ずらして直列に配設して いる。
この場合の仕上げ圧延機群前段 3 の構成は、 特に限定はされない。 図示のも のは、 仕上げ圧延機群前段が nスタンドからなり、 水平一垂直に交互方向に圧 延するよう配列されているが、 その他どんなものでも良い。
先ず、 断面が正方形の角ビレットを、 粗圧延機群のフラットロ一ルにより圧 下方向を鉛直方向と水平方向とに交互に変えながら、 圧延することにより、 断 面積を徐々に小さくしていく。 圧延材は続いて、 中間圧延機群を経て、 仕上げ 圧延機群前段 3 のオーバル孔型とラゥンド孔型とで交互に鉛直方向と水平方向 とから圧下され、 円形断面となる。 最後に、 圧延材は、 圧下方向を 4 5 ° ずら した 3台の 4ロール圧延機 31,32,33 のラウンド孔型を通して、 所定の線径の線 材に仕上げられる。
最終の 2パスとして配設した 4口ール圧延機 32, 33は、 1台のモータ 98で 共通駆動される。 そして各 4ロール圧延機 32, 33 とモータ 98 との間に、 一方 の 4口一ル圧延機 32専用の切替え増速機 87と、 2台の 4口ール圧延機 32, 33 で共用する共通切替え増速機 88が配設されている。 切替え増速機 88の入力軸 にはモータが連結されている。 切替え増速機 88 の 2本の出力軸の一つは 4口 ール圧延機 33に直接連結され、 他方の出力軸は切替え増速機 87の入力軸に連 結されている。 そして、 切替え増速機 87 の出力軸が 4ロール圧延機 32に連結 されている。 各切替え増速機には、 ギア比を 2段に切り替えるクラッチが内蔵 されている。
この本発明の線材圧延ラインでは、 最終 2台の 4ロール圧延機 32, 33 と 1 台のモータ 98を、 専用 ·共用の 2台の切替え増速機 87, 88を介して連結する 構成としたため、 以下のような、 作用と効果を有する。
(A) 2台の 4口一ル圧延機 32, 33のスタンド間距離は、 それぞれがモータ を専有する場合のようにモータスペースの干渉を考慮する必要がないため、 よ り接近させることができる。 これにより、 圧延機設置スペースを小さくできる し、 且つまたパス間での材料回転が生じなくなるから、 従来パス間に設置され ている高価なローラガイドが不要になる。
(B) 専用の切替え増速機 87を設置したことにより、 サイズフリー圧延範囲 を広くできる。
Fig.12は、 2台の 4口ール圧延機 32, 33を共通の 1台のモータ 98で駆動し、
4ロール圧延機 32 の増速機を 1種類のギア比 : i 2 = 1 : 1 . 0 6 0に固 定して線材の圧延実験を行った結果を模式的に示したものである。
すなわち、 上流の 4ロール圧延機 31から 4ロール圧延機 32に供給される円 形断面の入側材の線径が 5 . 8 5 mmの場合に、 同一孔型ロールを用いロール 間隙調整のみでの圧延可能サイズ範囲は線径 5 . 3 5 mn!〜 5 . 6 O mm、 換 言すればサイズフリー範囲は 0 . 2 5 mmであった。 このように、 線径 5 . 8
5 mmの入側材を、 4口ール圧延機 32 で圧下すると、 入側材は圧下により長 手方向へ伸び、 その外径が減径しながら断面が略角形になるよう圧延され、 さ らに 4ロール圧延機 33 で圧下されて線径 5 . 3 5 mm〜5 . 6 0 mmの円形 断面の線材に圧延される。 線径が 5 . 6 0 mmを超える場合は、 前記材料の伸 びが少な過ぎるため、 圧延機 31,32 のパス間でテンションが過大になり、 その 結果材料が破断する。一方、線径 5 . 3 5 mm未満の圧延では、逆に圧延機 31,32 のパス間での材料の伸びが大き過ぎるため、 コンプレツションが過大になって コブルが発生することが明らかになつた。
Fig.13は、 4ロール圧延機 32の増速機 87を 2種類のギア比 : i 2 = 1 : 1. 060 (増速比 Aという) 及び : i2 = l : 1. 105 (増速比 Bとい う) に切り替えて圧延した実験結果である。
入側材の線径は 6. 0 mmで、 増速比 Aとした場合の圧延可能サイズ範囲は 線径 5. 50mm〜5. 75 mm、 即ちサイズフリ一範囲は 0. 25mmであ つた。 次に、 増速機 87 のクラッチを操作し増速比 Bに切り替えて圧延したと ころ、 圧延可能サイズ範囲は線径 5. 25mm〜5. 50 mmで、 サイズフリ 一範囲は 0. 25mmであった。 結局、 増速機 87 の増速比を増速比 A, 増速 比 Bの 2段に切り替えて圧延することで、 サイズフリー圧延範囲は 0. 5 mm に拡大された。 つまり、 共用の切替え増速機 88 の増速比を切り替えて圧延す ることで、 比較的小容量のモータ 98 により小径材から大径材に及ぶ圧延が可 能になり、 適用サイズ範囲が広くなつた。
Fig.14 は、 切替え増速機のギヤ比切替えによるトルク特性変化を模式的に表 したものである。 実線で囲んだ領域は、 増速比 Cの高速使用域であり、 小径材 の低トノレク, 高速圧延に対応する範囲である。 破線ハッチングで囲んだ領域は、 増速比 Dの低速使用域であり、 大径材の高トルク, 低速圧延に対応する範囲で ある。 例えば、 線材圧延の場合、 線径 5. 5111111で圧延速度100111 3、 線 径 1 9 mmでは圧延速度 16 m/ sとすると、 両線材の圧延速度範囲は 6倍以 上となる。 いま、 増速比を変えずに 1台のモータで、 このような大小の線径に 対応しょうとすると、 Fig.14 に一点鎖線で示されるモータ特 14を有する大容量 モータが必要になる。 しかし、 切替え増速機を増速比 Cと増速比 Dとに切り替 えて使用すれば、 切り替えなしの場合に必要なモータトルクの 1/2の小容量 モータで足りることがわかる。
なお、 上記の実施の形態では、 各切替え増速機 87, 88 の増速比をクラッチ により大小 2段に切り替えるものを説明したが、 本発明にあっては、 これに限 らず無段切替え式の切替え増速機でもよい。
以上説明したように、 Fig.l l に示す本発明に係る線材圧延ラインによれば、 以下に示す種々の効果が得られる。
①最終の 2パスに用いる 2台の 4ロール圧延機に対して 1台のモータを配し たため、 モ一タスペースを小さくでき且つ高価なローラガイドも不要になり設 備費を低減できる。
②一方の 4ロール圧延機に専用の切替え増速機を配設し、 その増速比を切り 替えて圧延することで、 サイズフリー圧延範囲をさらに拡大することができる。
③共用の切替え増速機の増速比を切り替えて圧延することで、 比較的小容量 のモータにより小径材から大径材に及ぶ広範囲の線材圧延に対応できる。 産業上の利用可能性
以上説明したように、 本発明に係る線材圧延ラインでは、 従来より広いサイズ フリー圧延範囲が得られる。 そのため、 サイズ変更に伴うロール交換が減って ライン停止時間が短縮され、 生産能率が向上する。 また、 ミル間距離を小さく でき、 その結果被圧延材の倒れや回転が防止されて高寸法精度の線材圧延が可 能である。 さらに設置スペースが狭くて済むので、 投資額を節約できる。

Claims

請求の範囲
1 .仕上圧延機群の最終から 3台のミルが 4ロールミルであり、 これら 3台の ミルが圧下方向を 4 5 ° ずつずらして直列に配され、 最終から 2台のミルは共 用モータ駆動とする線材圧延ライン。
2 .請求項 1において、 最終から 3台目の 4ロールミルは単独モータ駆動とす る線材圧延ライン。
3 . 請求項 1において、 最終から 4台目のミルが 4ロールミルであり、 最終か ら 3台目および 4台目のミルが圧下方向を 4 5 ° ずつずらして直列に配され、 これら 2台のミルは共用モータ駆動とする線材圧延ライン。
4 . 請求項 3において、 最終おょぴ最終から 3台目のミルの出側材が円形断面 となるように 4ロールミルを設置した線材圧延ライン。
5 .請求項 1において、 最終から 2台のミルの一方のミルと駆動モータとの間 に、 該ミル専用の切替え増速機と 2台のミルに共通の切替え増速機とを配設し、 他方のミルと駆動モータとの間に、 2台のミルに共通の切替え増速機とを配設 して、 最終から 2台のミルと駆動モータとを連結する線材圧延ライン。
PCT/JP2000/000814 1999-02-16 2000-02-15 Chaine de laminage a fil machine WO2000048756A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/647,355 US6405573B1 (en) 1999-02-16 2000-02-15 Wire rod rolling line
BR0005117-9A BR0005117A (pt) 1999-02-16 2000-02-15 Linha de laminação de arame bruto
KR1020007011347A KR20010042648A (ko) 1999-02-16 2000-02-15 선재 압연라인
EP00902964A EP1110630A1 (en) 1999-02-16 2000-02-15 Wire rod rolling line
AU24625/00A AU2462500A (en) 1999-02-16 2000-02-15 Wire rod rolling line

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11037812A JP2000237803A (ja) 1999-02-16 1999-02-16 線材圧延機
JP11/37812 1999-02-16
JP11/55925 1999-03-03
JP05592599A JP3308924B2 (ja) 1999-03-03 1999-03-03 線材圧延機
JP22762399A JP3339571B2 (ja) 1999-08-11 1999-08-11 線材圧延機
JP11/227623 1999-08-11

Publications (1)

Publication Number Publication Date
WO2000048756A1 true WO2000048756A1 (fr) 2000-08-24

Family

ID=27289599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000814 WO2000048756A1 (fr) 1999-02-16 2000-02-15 Chaine de laminage a fil machine

Country Status (7)

Country Link
US (2) US7154563B1 (ja)
EP (1) EP1110630A1 (ja)
KR (1) KR20010042648A (ja)
AU (1) AU2462500A (ja)
BR (1) BR0005117A (ja)
TW (1) TW494023B (ja)
WO (1) WO2000048756A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546777B2 (en) * 2000-09-08 2003-04-15 Morgan Construction Company Method and apparatus for reducing and sizing hot rolled ferrous products
DE10200441B4 (de) * 2002-01-09 2004-02-05 Sms Meer Gmbh Walzenstraße zum Walzen von Draht oder Feineisen
KR101129172B1 (ko) * 2004-09-24 2012-03-26 주식회사 포스코 304에이치 스테인레스강 선재의 혼립조직 억제를 위한열처리방법
KR101129175B1 (ko) * 2004-12-24 2012-03-26 주식회사 포스코 304에이치 스테인레스강 선재의 혼립조직 억제를 위한선재 마무리 압연방법
CN101564733A (zh) * 2009-05-11 2009-10-28 秦建平 轧制金属棒线材的设备
US8215146B2 (en) * 2009-08-27 2012-07-10 Siemens Industry, Inc. Method of rolling feed products into different sized finished products
IT1400496B1 (it) * 2010-06-09 2013-06-11 Danieli Off Mecc Apparato e processo di laminazione vergella ad alta velocità.
JP2013180302A (ja) * 2012-02-29 2013-09-12 Jfe Steel Corp 内質に優れた鋼材の製造方法
CN104070063B (zh) * 2013-03-31 2016-10-12 汉威广园(广州)机械设备有限公司 一种高速线材生产工艺设备
CN103357661B (zh) * 2013-08-01 2016-07-20 中冶赛迪工程技术股份有限公司 一种圆钢的万能法轧制工艺
CN104338746B (zh) * 2013-08-05 2017-08-04 汉威广园(广州)机械设备有限公司 一种基于模块化轧机自由组合的精轧机组
CN110170524B (zh) * 2019-05-21 2020-06-12 柳州钢铁股份有限公司 用高线普碳钢孔型系统轧制不锈钢的孔型调整方法
CN110538870B (zh) * 2019-09-02 2020-12-08 苏州厚发精线有限公司 一种金属异型长材冷成型的加工装置及加工工艺及产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363682A (en) * 1991-11-29 1994-11-15 Kawasaki Steel Corporation Four-roller type sizing mill apparatus for producing round steel rods
JP2527283B2 (ja) * 1991-07-31 1996-08-21 川崎製鉄株式会社 丸棒鋼のサイジング圧延方法
JPH09192703A (ja) * 1996-01-06 1997-07-29 Sumitomo Heavy Ind Ltd 棒鋼・線材の圧延方法およびそれに用いる圧延設備
JPH09225502A (ja) * 1996-02-27 1997-09-02 Kawasaki Steel Corp サイジング圧延装置及び圧延方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553978A (en) * 1978-10-17 1980-04-19 Sony Corp Automatic luminance adjusting device for television picture receiver
JPS56107674A (en) * 1980-01-31 1981-08-26 Sony Corp Gradation correcting device of video signal
US4295166A (en) * 1980-02-05 1981-10-13 Rca Corporation Failure compensated automatic kinescope beam current limiter
US4599643A (en) * 1983-12-29 1986-07-08 Rca Corporation Apparatus responsive to plural color video signals for amplitude limiting the video signals to assist beam current limiting
JPS63219291A (ja) * 1986-12-12 1988-09-12 Hitachi Ltd ホワイトバランス制御装置
FR2640839B1 (fr) * 1988-12-20 1991-03-15 Portenseigne Radiotechnique Appareil de reproduction d'image video muni d'un reglage de contraste, et procede de reglage du contraste d'un tel appareil de reproduction
US5258828A (en) * 1989-11-13 1993-11-02 Hitachi, Ltd. Color CRT drive apparatus having automatic white balance adjusting circuit and CRT display
AU643143B2 (en) * 1991-06-21 1993-11-04 Sumitomo Heavy Industries Ltd. A method of and an apparatus for producing wire
US5317400A (en) * 1992-05-22 1994-05-31 Thomson Consumer Electronics, Inc. Non-linear customer contrast control for a color television with autopix
KR970000851B1 (ko) * 1992-09-01 1997-01-20 마쯔시다덴기산교 가부시기가이샤 영상신호처리장치
JP3316979B2 (ja) * 1992-11-30 2002-08-19 住友金属工業株式会社 管の圧延方法及びその実施に使用する装置
JPH09155401A (ja) * 1995-11-30 1997-06-17 Daido Steel Co Ltd 8ロール式圧延機及びこれを用いた圧延方法
JPH09271037A (ja) * 1996-03-29 1997-10-14 Toshiba Microelectron Corp カラー受像機及びカラー受像機の白バランス自己調整装置
IT1290131B1 (it) * 1997-03-20 1998-10-19 Pomini Spa Treno di laminazione e relativo procedimento di laminazione a resa migliorata

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527283B2 (ja) * 1991-07-31 1996-08-21 川崎製鉄株式会社 丸棒鋼のサイジング圧延方法
US5363682A (en) * 1991-11-29 1994-11-15 Kawasaki Steel Corporation Four-roller type sizing mill apparatus for producing round steel rods
JPH09192703A (ja) * 1996-01-06 1997-07-29 Sumitomo Heavy Ind Ltd 棒鋼・線材の圧延方法およびそれに用いる圧延設備
JPH09225502A (ja) * 1996-02-27 1997-09-02 Kawasaki Steel Corp サイジング圧延装置及び圧延方法

Also Published As

Publication number Publication date
AU2462500A (en) 2000-09-04
KR20010042648A (ko) 2001-05-25
TW494023B (en) 2002-07-11
EP1110630A1 (en) 2001-06-27
BR0005117A (pt) 2001-01-02
US7154563B1 (en) 2006-12-26
US6405573B1 (en) 2002-06-18

Similar Documents

Publication Publication Date Title
WO2000048756A1 (fr) Chaine de laminage a fil machine
CA2066475C (en) Method and apparatus for continuously hot rolling of ferrous long products
KR100231280B1 (ko) 압연기
US5566564A (en) Rolling block for rolling metallic bars or wires
US4000637A (en) Rolling mills
JP3321353B2 (ja) 棒鋼・線材の圧延方法およびそれに用いる圧延設備
RU2374019C2 (ru) Отделочный моноблок с оптимизированным передаточным отношением для агрегата для прокатки заготовок
JP3339571B2 (ja) 線材圧延機
US6546776B2 (en) High speed finishing block
US5280714A (en) Finishing block with dual speed sizing capability
JP3308924B2 (ja) 線材圧延機
KR100975537B1 (ko) 압연기용 구동 장치
US4020667A (en) Tube rolling
JPH1052705A (ja) ワイヤ、棒、管又は偏平金属圧延材の圧延のための圧延ブロック
JP3386001B2 (ja) 丸棒鋼製品の圧延方法およびブロック圧延機
US4347725A (en) Rolling blocks
RU2155644C2 (ru) Линейный стан продольной прокатки
JP2825984B2 (ja) 金属板の熱間仕上圧延装置および圧延方法
US6564608B2 (en) Rolling method and line for rails or other sections
JP2002301503A (ja) 2つの平行なラインのためのコンパクト圧延ブロック
JP2003136104A (ja) 圧延装置
RU2264877C2 (ru) Профилегибочный стан легкого типа
JP2612792B2 (ja) 細径線材の製造方法及びその製造装置
JPH09253705A (ja) 棒鋼・線材圧延機とその制御方法
JPH0679320A (ja) 3ロール式圧延機の動力伝達機構

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR ID KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000902964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007011347

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09647355

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007011347

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000902964

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000902964

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007011347

Country of ref document: KR