WO2000051415A1 - Improvements in the formation of brassica napus f1 hybrid seeds high oleic acid content and a reduced linolenic acid content - Google Patents

Improvements in the formation of brassica napus f1 hybrid seeds high oleic acid content and a reduced linolenic acid content Download PDF

Info

Publication number
WO2000051415A1
WO2000051415A1 PCT/US2000/001113 US0001113W WO0051415A1 WO 2000051415 A1 WO2000051415 A1 WO 2000051415A1 US 0001113 W US0001113 W US 0001113W WO 0051415 A1 WO0051415 A1 WO 0051415A1
Authority
WO
WIPO (PCT)
Prior art keywords
parent
seeds
percent
oleic acid
brassica napus
Prior art date
Application number
PCT/US2000/001113
Other languages
French (fr)
Inventor
David G. Charne
Original Assignee
Pioneer Hi-Bred International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi-Bred International, Inc. filed Critical Pioneer Hi-Bred International, Inc.
Priority to AU27292/00A priority Critical patent/AU2729200A/en
Priority to CA002320842A priority patent/CA2320842C/en
Publication of WO2000051415A1 publication Critical patent/WO2000051415A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • A01H6/202Brassica napus [canola]

Definitions

  • Canola oil presently is commercially available which consists of approximately 6 percent saturated fatty acids primarily in the form of stearic acid (C18:0) and palmitic acid (C16:0), approximately 62 percent by weight oleic acid (C18:l) which contains a single double bond per molecule, approximately 22 percent by weight linoleic acid (C18:2) which contains two double bonds per molecule, approximately 10 percent by weight linolenic acid (C18:3) which contains three double bonds per molecule, and less than one percent by weight erucic acid (C22:l) which contains a single double bond per molecule.
  • parent (ii) is a Brassica napus plant possessing in each of the A-genome and the C-genome a homozygous modified FAD-2 gene pair that causes the expression of an elevated oleic acid concentration in the endogenously formed oil of the seeds formed thereon whereby oleic acid is formed in the endogenously formed oil of the seeds in a greater concentration than in the seeds of parent (i) under the same growing conditions, and further possesses at least one homozygous modified FAD-3 gene pair that results in a reduced linolenic acid concentration in the endogenously formed oil of the seeds formed thereon; (b) growing Brassica napus plants resulting from the planting of step (a);
  • fatty acid concentrations discussed herein are determined in accordance with a standard procedure wherein the oil is removed from the Brassica napus oilseeds by crushing and is extracted as fatty acid methyl esters following reaction with methanol and sodium methoxide. Next the resulting ester is analyzed for fatty acid content by gas liquid chromatography using a capillary column which allows separation on the basis of the degree of unsaturation and chain length. This analysis procedure is described in the work of J.K. Daun et al, J. Amer. Oil Chem. Soc.. 60:1751-1754 (1983) which is herein incorporated by reference.
  • Brassica napus is a dibasic allotetraploid formed of two genomes (i.e.. the A-genome and C-genome) and has a total of 38 chromosomes.
  • the A-genome component is derived from Brassica campestris and consists of 20 chromosomes.
  • the C-genome component is derived from Brassica oleracea and consists of 18 chromosomes.
  • two parent plants described herein are planted in a planting area and are grown in pollinating proximity, self-pollination of the female parent plants (i.e.. seed parent plants) is prevented, pollen is transferred from the male parent plants to the female parent plants to achieve fertilization, and F j hybrid seeds are formed thereon in a yield that exceeds that of both parent plants having an elevated oleic acid (C18:l) content of at least 80 percent by weight based upon the total fatty acid content in the endogenously formed vegetable oil of the seeds.
  • "Pollinating proximity" is used herein to specify that the parent plants are grown in sufficient closeness to make possible the transfer of pollen while maintaining the viability of such pollen.
  • the high oleic acid concentration of the vegetable oil is achieved through the concept of the present invention without sacrifice in agronomic properties.
  • the improved plant breeding process of the present invention involves the selection and utilization of specifically-defined Brassica napus parent plants. Such parent plants have been found through empirical research to be capable of yielding the advantageous results with respect to highly elevated oleic acid content and reduced linolenic acid content in the endogenously formed vegetable oil of the seeds combined with good agronomic performance which commonly was lacking in the prior art.
  • the Brassica napus female parent (i.e.. the seed parent) selected for use in the hybridization process of the present invention possesses solely in either the A-genome or the C-genome a homozygous modified FAD-2 (i.e.. oleate desaturase) gene pair that causes the expression of an elevated oleic acid (C18: l) concentration in the endogenously formed oil of the seeds combined with at least one homozygous modified FAD-3 L&., linolate desaturase) gene pair that causes the expression of a reduced linolenic acid (C18:3) concentration in the endogenously formed oil of the seeds.
  • FAD-2 i.e.. oleate desaturase
  • Such female parent commonly is selected that forms an oleic acid content of approximately 77 to 79 percent by weight based upon the total fatty acid content in the endogenously formed vegetable oil of the seeds.
  • the vegetable oil oleic acid content of the female parent commonly will exceed that of the well-known Profit variety which possesses an unmodified FAD-2 gene pair by at least 14 percent (e.g.. by 14 to 17 percent) by weight under the same growing conditions.
  • the reference Profit variety was introduced by Agriculture Canada during 1989 and is known and publicly available. Seeds of the
  • Profit variety can be obtained from Agriculture and Agri-Food Canada, Sakatoon, Saskatchewan, Canada. It has been found to be essential that the modified FAD-2 gene pair be present solely in either the A-genome or the C-genome so as to avoid the impairment of agronomic qualities that otherwise are observed if such modification were present in both genomes.
  • the presence of the modified FAD-2 gene pair in both genomes i.e.. in the A-genome as well as in the C-genome
  • which leads to an even more highly elevated oleic acid production in the endogenously formed vegetable oil of the seeds commonly has been found to concomitantly impact adversely upon lipid loading throughout the plant including the cell membranes and to result in reduced agronomic performance as previously discussed.
  • a modified FAD-2 gene pair solely in one genome can be confirmed by a oleic acid (C18:l) in the endogenously formed vegetable oil of the seeds of approximately 76 to 79 percent by weight based upon the total fatty acid content.
  • the Brassica napus male parent (i.e.. the pollen parent) selected for use in the hybridization process of the present invention possesses in each of the A-genome and in the C-genome a homozygous modified FAD-2 gene pair that causes the expression of an elevated oleic acid concentration in the endogenously formed oil of the seeds in a greater concentration than in the seeds of the female parent.
  • Such male parent commonly is selected that forms an oleic acid content of approximately 85 to 89 percent by weight based upon the total fatty acid content in the endogenously formed vegetable oil of the seeds.
  • the vegetable oil oleic acid content of the male parent commonly will exceed that of the well-known Profit variety by at least 20 percent (e.g. , by 20 to 25 percent) by weight under the same growing conditions.
  • the overall agronomic qualities of the male parent are lesser than those of the female parent.
  • Parent plants possessing the modified genomes as discussed above can be formed by genetic engineering or the mutagenesis of conventional Brassica napus germplasm (e.g.. existing canola varieties), or can be selected from previously available sources that already incorporate the requisite modified genomes as discussed herein. Once on hand, the requisite genes can be readily transferred by conventional plant breeding into other Brassica napus germplasms.
  • one selects plant cells capable of regeneration (e.g.. seeds, microspores, ovules, pollen, vegetative parts) from any of the oilseed Brassica napus varieties (e.g.. canola) which are recognized to have superior agronomic characteristics.
  • the Brassica napus plants may be of either the summer or winter types.
  • the oilseed Brassica napus plant cells are subjected in at least one generation to mutagenesis, and an oilseed Brassica napus plant is regenerated from the cells to produce an oilseed plant and to form an oilseed in at least one subsequent generation that possesses the ability to form the atypical modified FAD-2 gene pair in the female parent and the atypical modified FAD-2 gene pairs in the male parent.
  • Parent oilseed Brassica napus plants possessing the requisite FAD-2 gene pair(s) may be produced following mutagenesis via self-pollination for a sufficient number of generations (e.g.. 2 to 8 generations) to achieve substantial genetic homogeneity.
  • the desired characteristics can be fixed through the formation of a new plant from a haploid microspore cell, causing the haploid to double, and producing a homozygous diploid plant in accordance with known techniques.
  • the mutagenesis preferably is accomplished by subjecting the plant cells (e.g. , an oilseed) to a technique selected from the group consisting of contact with a chemical mutagen, gamma irradiation, and a combination of the foregoing, for a sufficient duration to accomplish the desired genetic modification but insufficient to completely destroy the viability of the cells and their ability to be regenerated into a plant.
  • the Brassica napus oilseed preferably possesses a moisture content of approximately 5 to 6 percent by weight at the time of such mutagenesis.
  • the mutagenesis may be accomplished by use of chemical means, such as by contact with ethylmethylsulfonate, ethylnitrosourea, etc., and by the use of physical means, such as x-rays, etc.
  • the mutagenesis also may be carried out by gamma radiation, such as that supplied by a Cesium 137 source.
  • the gamma radiation preferably is supplied to the plant cells (e.g.. an oilseed) in a dosage of approximately 60 to 200 Krad., and most preferably in a dosage of approximately 60 to 90 Krad. It should be understood that even when operating at radiation dosages within the ranges specified, some plant cells (e.g. , oilseeds) may completely lose their viability and must be discarded. See commonly assigned United States Patent Nos. 5,625,130 and 5,638,637 which are herein incorporated by reference for a further discussion of the mutagenesis treatment.
  • the other halfseed which will be genetically the same as the halfseed which was subjected to halfseed analysis, can next be caused to germinate and an oilseed Brassica napus plant is formed from the same and is allowed to undergo self-pollination.
  • Such planting of the halfseed preferably also is carried out in a greenhouse in which the pollination is carefully controlled and is monitored.
  • the resulting oilseeds formed on a plant resulting from the halfseed are harvested, planted, and are self-pollinated for a sufficient number of generations to achieve substantial genetic homogeneity.
  • the genetic stabilization of the oilseed Brassica napus plant material enables the creation of plants having a reasonably predictable genotype which can be used as breeding or source material.
  • each of the female and male parent plants possesses at least one homozygous modified FAD-3 (i.e.. linolate desaturase) gene pair that causes the expression of a reduced linolenic acid (i.e.. alpha-linolenic acid) concentration in the endogenously formed oil of the seeds.
  • FAD-3 i.e.. linolate desaturase
  • modified FAD-3 gene pair can be obtained by genetic engineering or the mutagenesis of conventional Brassica napus germplasm (e.g.. existing canola varieties) or can be selected from previously available sources that already incorporate the requisite FAD-3 gene modification.
  • the modified FAD-3 gene pair can be present in either the A-genome or in the C-genome, and preferably is present in each of the these genomes.
  • the modified FAD-3 gene pair likewise preferably is obtainable by mutagenesis.
  • a reduced linolenic acid content of no more than 3 percent by weight based upon the total fatty acid content preferably is exhibited by each of the parent plants in the endogenously formed vegetable oil of the seeds.
  • both the female parent and the male parent exhibit a linolenic acid (C18:3) content of approximately 1 to 3 percent by weight (e.g.. 1 to 2 percent by weight) based upon the total fatty acid content.
  • Oilseed Brassica napus germplasm containing the requisite homozygous modified FAD-3 gene pair(s) that causes a reduced linolenic acid concentration in the endogenously formed oil of the seeds is known and is publicly available. For instance, rape germplasm possessing this trait has been available in Germany from the mid- 1970 's, and in North American since 1983. Representative commercially available rape varieties that include the genetic means for the expression of this low linolenic acid trait include STELLAR, and APOLLO.
  • a particularly preferred source for the requisite FAD-3 gene pair for the expression of enhanced linolenic acid in the stated concentration is the STELLAR variety that was developed at the University of Manitoba, Manitoba, Canada, during 1987, following receipt of support from the Western Canola and Rapeseed Recommending Committee.
  • a particularly preferred source for the requisite FAD-3 gene pair for the expression of enhanced linolenic acid in the stated concentration is the APOLLO variety that was developed at the University of Manitoba, and was registered in Canada as No. 3,694 during February, 1992, following the receipt of support from the Western Canola and Rapeseed Recommending Committee.
  • Brassica napus seeds designated NS1973 and NS2037 and possessing the requisite modified FAD-2 gene pair solely in one genome as well as the modified FAD- 3 gene pair suitable for use as the female parent in the process of the present invention were deposited at the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia, U.S.A. 20110-2209, on June 25, 1998.
  • a 2,500 seed deposit of NS1973 has been assigned ATCC Accession No. 209997.
  • a 2,500 seed deposit of NS2037 has been assigned ATCC Accession No. 209994.
  • a 2,500 seed deposit of 95SN-56605 has been assigned ATCC Accession No. 209995.
  • a 2,500 seed deposit of 95SN-56634 has been assigned ATCC
  • male sterility can be cytoplasmic male sterility (i.e..
  • genic-cytoplasmic nuclear male sterility
  • molecular male sterility wherein a transgene inhibits microsporogenesis and/or pollen formation, or be produced by self-incompatability.
  • the female parent plants possess cytoplasmic male sterility of the ogura (OGU) type and the male parent plants include a fertility restorer as available from Institut National debericht Agricole (INRA) of Rennes, France. See also in this regard the technology of International Publication Nos. WO92/05251 and WO98/027806 which is herein incorporated by reference.
  • the improved process of the present invention can be used to advantage to form single-cross Brassica napus F j hybrids.
  • the parent plants can be grown as substantially homogeneous adjoining populations so as to well facilitate natural cross-pollination from the male parent plants to the female parent plants.
  • the F j seed formed on the female parent plants next is selectively harvested by conventional means.
  • three- way crosses can be carried out wherein a single-cross F j hybrid is used as a female parent and is crossed with a different male parent that satisfies the fatty acid parameters for the female parent of the first cross.
  • the overall oleic acid content of the vegetable oil will be reduced over that of a simple single-cross hybrid; however, the seed yield will be further enhanced in view of the good agronomic performance of both parents when making the second cross.
  • the formation of double-cross hybrids can be carried out wherein the products of two different single- crosses are combined. Self-incompatibility can be used to particular advantage to prevent self-pollination of female parents when forming a double-cross hybrid.
  • the final seed product will be a composite of more than one genotype wherein the overall oleic acid content is at least 80 percent by weight based upon the total fatty acid content.
  • the F j hybrid seeds made possible by the use of the technology of the present invention commonly exhibit an oleic acid concentration of approximately 80 to 86 percent by weight and a linolenic acid content of approximately 1 to 3 percent by weight based upon the total fatty acid content, and are capable of forming plants which following self-pollination and seed set yield a seed harvest bearing a vegetable oil having average oleic acid and linolenic acid concentrations within the specified ranges.
  • the improved process of the present invention makes possible the formation of Brassica napus F j hybrid seeds which when planted are capable of producing a crop in a yield that exceeds that of each parent used in the formation of the F j hybrid when each parent is pollinated by a pollen source possessing a genotype substantially the same as that of each parent and is grown under the same conditions.
  • Additive gene action with respect to oleic acid production is achieved without sacrifice of agronomic characteristics.
  • This good yield is made possible while making possible an oleic acid content in the vegetable oil of at least 80 percent (e.g. , 80 to 86 percent) by weight based upon the total fatty acid content.
  • a Brassica napus line designated NS1973 was selected for use as the female parent. Such line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523). In the endogenously formed vegetable oil of NS 1973 there was exhibited an average oleic acid (C18: l) content of 79.02 percent by weight and an average linolenic acid (C18:3) content of
  • a Brassica napus line designated 95SN56605 was selected for use as the male parent. Such line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523). In the endogenously formed vegetable oil of 95SN56605 there was exhibited an average oleic acid (C18: l) content of 87.09 percent by weight and an average linolenic acid (C18:3) content of 1.64 percent by weight based upon the total fatty acid content.
  • C18: l average oleic acid
  • C18:3 average linolenic acid
  • the bags were removed at the end of flowering so that the fatty acid composition of the selfed seed would not be affected by an artificial bagged environment during the final portion of the seed filling when most of the lipid accumulation takes place.
  • the selfed plants were harvested individually. Fatty acid and yield determinations were made. When determining yield the total weight of harvested seed was adjusted to 8.5 percent moisture. A value of 100 was assigned to the seed yield of the NS1973 female parent. On this scale, a seed yield of only 43 percent that of the female parent was found to form on the 95SN56605 male parent.
  • F j hybrid seeds and F 2 seeds were produced in a common filed environment at the same location and were evaluated for yield and fatty acid composition. More specifically, the flowers of the NS1973 female parent were hand emasculated at an early stage of flower development according to the procedure described in Chapter 35 entitled “Rapeseed and Mustard" by R.K. Downey et al appearing at Pages 495 to 509 of "Hybridization of Crop Plants” edited by Walter R. Fehr and Henry H. Hadley (1980) in order to prevent the self-pollination of the female parent plants. At the appropriate stage in flower maturity, pollen was transferred by hand from the 95SN56605 male parent plants to the NS1973 female parent plants to accomplish fertilization. F ⁇ hybrid seeds were next produced on the fertilized NS1973 female parent plants which were selectively harvested and were analyzed for the fatty acid composition of the endogenously formed vegetable oil of the seeds.
  • the resulting Fj hybrid seeds were found to exhibit an average elevated oleic acid content of 82.36 percent by weight and a reduced linolenic acid content of 1.59 percent by weight based upon the total fatty acid content. Also, the F, hybrid seed yield was found to be 127 percent of the female parent and exceeded that of each of the parent plants. Also, when the F j hybrid seeds were planted, they were found to exhibit good agronomic characteristics unlike the male parent plants.
  • Example II Example I was repeated with the exception that Brassica napus 95SN56634 (ATCC Accession No. 209996) was substituted for male parent 95SN56605.
  • Such 95SN56634 line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523).
  • In the endogenously formed vegetable oil of 95SN56634 there was exhibited an average oleic acid (C18: l) content of 86.57 percent by weight and an average linolenic acid (C18:3) content of 1.42 percent by weight based upon the total fatty acid content.
  • the seed yield of the 95SN56634 male parent was found to be only 50 percent that of the female parent.
  • the highly elevated average oleic acid content of the male parent was created through the presence of a homozygous modified FAD-2 gene pair in both the A-genome and the C-genome that was formed through mutagenesis and the reduced linolenic acid content was created through the presence of at least one homozygous modified FAD-3 gene pair that was formed through mutagenesis.
  • the resulting Fj hybrid seeds were found to exhibit an average elevated oleic acid content of 82.6 percent by weight and an average reduced linolenic acid content of 1.69 percent by weight based upon the total fatty acid content. Also, the F x hybrid seed yield was found to be 108 percent that of the female parent. When the Fj hybrid seeds were planted, the resulting plants were found to exhibit good agronomic characteristics unlike the male parent plants.
  • Example III Example I was repeated with the exception that Brassica napus line NS2037 (ATCC Accession No. 209994) was substituted for female parent line NS1973 and Brassica napus line 95SN56634 was substituted for male parent line 95SN56605.
  • Brassica napus line NS2037 ATCC Accession No. 209994
  • Brassica napus line 95SN56634 was substituted for male parent line 95SN56605.
  • NS2037 line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523).
  • endogenously formed vegetable oil of NS2037 there was exhibited an average oleic acid (C18: l) content of 78.64 percent by weight and an average linolenic acid (C18:3) content of 1.52 percent by weight based upon the total fatty acid content.
  • the elevated oleic acid content was created through the presence of a homozygous modified FAD-2 gene pair solely in one genome that was formed through mutagenesis and the reduced linolenic acid content was created through the presence of at least one homozygous modified FAD-3 gene pair that was formed through mutagenesis.
  • the Fj hybrid seed was found to exhibit an average elevated oleic acid content of 82.3 percent by weight and an average reduced linolenic acid content of 1.51 percent by weight based upon the total fatty acid content. Also, the Fj hybrid seed yield was found to be 150 percent that of the female parent and exceeded that of each of the parent plants. Also, when the F,_ hybrid plants were planted, the resulting plants were found to exhibit good agronomic characteristics unlike the male parent plants.
  • Example I was repeated with the exception that Brassica napus line NS2037(ATCC Accession No. 20994) utilized in Example III was substituted for female parent line NS1973.
  • the Fj hybrid seed was found to exhibit an average elevated oleic acid (C18: l) content of 82.69 percent by weight and an average reduced linolenic acid (C18:3) content of 1.46 percent by weight based upon the total fatty acid content. Also, the Fj hybrid seed yield was found to be 119 percent that of the female parent. When F, hybrid plants were planted, the resulting plants were found to exhibit good agronomic characteristics unlike the male parent plants.
  • the homozygous modified FAD-2 and FAD-3 gene pairs present in the Brassica napus parent plants of all Examples can be readily transferred by conventional plant breeding to other Brassica napus germplasms which can likewise be used to carry out the process of the present invention.
  • the prevention of the self-pollination of the female parent plants when carrying out the process of the present invention can be expeditiously carried out on a larger scale by the use of various types of male sterility, etc., as previously discussed.
  • Such techniques to preclude self-pollination of the female parent plants are already known and available to those skilled in plant breeding.

Abstract

An improved route is provided for producing seeds capable of forming a Brassica napus F1 hybrid via plant breeding wherein the vegetable oil of the seeds exhibits a highly elevated oleic acid (C18:1) content of at least 80 percent by weight (e.g. 80 to 86 percent by weight) and a reduced linolenic acid (C18:3) content of no more than 3 percent by weight (e.g. 1 to 3 percent by weight) based upon the total fatty acid content. The female parent plant (i.e., the seed parent) possesses a homozygous modified FAD-2 gene pair for elevated oleic acid production solely in either the A-genome or the C-genome, and the male parent (i.e., the pollen parent) possesses a homozygous modified FAD-2 gene pair for highly elevated oleic acid production in both the A-genome and the C-genome. Both parent plants also include at least one homozygous modified FAD-3 gene pair for reduced linolenic acid production. An endogenously formed Brassica napus oil is provided that is particularly well suited for use in frying application. Such oil exhibits further stability in view of the low concentration of linolenic acid that concomitantly is produced within the seeds.

Description

IMPROVEMENTS IN THE FORMATION OF BRASSICA NAPUS F HYBRID SEEDS WITH HIGH OLEIC ACID CONTENT AND A REDUCED LINOLENIC ACID CONTENT
Background of the Invention
Canola oil presently is commercially available which consists of approximately 6 percent saturated fatty acids primarily in the form of stearic acid (C18:0) and palmitic acid (C16:0), approximately 62 percent by weight oleic acid (C18:l) which contains a single double bond per molecule, approximately 22 percent by weight linoleic acid (C18:2) which contains two double bonds per molecule, approximately 10 percent by weight linolenic acid (C18:3) which contains three double bonds per molecule, and less than one percent by weight erucic acid (C22:l) which contains a single double bond per molecule.
Over the years scientists have worked to improve the fatty acid profile for rapeseed oil. Initially the erucic acid (C22: l) composition of rapeseed oil was reduced to produce what is often termed to be "canola" oil. The oxidative stability of the vegetable oil is related to the number of double bonds in its fatty acids. Molecules with several double bonds are recognized to be less stable. Thus, scientists also have worked to reduce the content of linolenic acid (C 18:3) in order to improve shelf life and oxidative stability, particularly upon exposure to heat. This has not proved to be possible through the use of naturally occurring germplasm and the reported values for linolenic acid (C18:3) for such germplasm have been greater than 6 percent by weight (£ L, greater than 6 up to approximately 12 percent by weight). As reported by Gerhard Robbelen in Chapter 10 entitled "Changes and Limitations of Breeding for Improved Polyenic Fatty Acids Content in Rapeseed" from "Biotechnology for the Oils and Fats Industry" edited by Colin Ratledge, Peter Dawson, and James Rattray, American Oil Chemists' Society (1984), a mutagenesis experiment was able to achieve lines with less than approximately 3.5 percent by weight of linolenic acid (C18:3) based upon the total fatty acid content. The profiles of these lines indicated that nearly all of the linolenic acid was being directed to linoleic acid (C18:2) and that the levels of oleic acid (C18: l) increased only one or two percent. Nevertheless the oil appeared to offer some advantages over normal canola oil. For instance, the refining process required less hydrogenation than normal canola oil and it exhibited a superior fry life.
Studies have established the value of monounsaturated fatty acids as a dietary constituent. This has led to the popularization of the "Mediterranean Diet," with its emphasis on olive oil, a naturally occurring high source of oleic acid (C18: l). Such a diet is thought to avoid the problem of arteriosclerosis that results from the consumption of saturated fatty acids. However, even in this diet olive oil is thought to be less than ideal, due to its level of saturates. Canola oil is potentially a superior dietary oil, since it contains approximately one-half the saturated fat content of olive oil.
Mutagenesis techniques have been disclosed in the technical literature for increasing the oleic acid (C18: l) content of endogenously formed canola oil over that typically encountered. See in this regard the teachings of United States Patent Nos.
5,625,130 and 5,638,637; European Patent No. 0323753; and International Publication Nos. WO90/10380 and WO92/03919.
Also, approaches involving genetic engineering have been utilized to modify the fatty acid profile of the oil that is endogenously formed in rapeseeds. See, for instance, International Publication No. WO 93/11245, and the Hitz et al. article appearing in the
Proceedings of the Ninth International Rapeseed Congress, Cambridge, UK, Vol. 2, Pages 470 to 472 (1995).
Heretofore, it commonly has been observed that when a rape plant is provided that endogenously forms a vegetable oil having an oleic acid content (C18: l) of at least 80 percent by weight that such plant also exhibits less than optimum agronomic performance. Such reduced agronomic performance often is manifest by reduced plant vigor, a later flowering propensity, a lesser number of seed pods per plant, a lesser number of seeds per pod, a lesser overall plant yield, a smaller number of leaves per plant, a lesser total leaf area per plant, a lesser plant height, and a requirement for more time for the plant to reach full maturity. This reduced agronomic performance must be weighed against the improved character of the endogenously formed vegetable oil with respect to oleic acid production that is made possible by such plants.
It is an object of the present invention to provide an improved plant breeding process for forming Brassica napus Fj hybrid seed having an enhanced commercial value attributable to a combination of (1) the atypical fatty acid profile of the endogenously formed seeds, and (2) the seed yield.
It is an object of the present invention to provide an improved plant breeding process for forming Brassica napus F} hybrid seed which exhibits a highly elevated oleic acid (C18: l) content.
It is a further object of the present invention to provide an improved process for forming Brassica napus F^ hybrid seeds which exhibit a highly elevated oleic acid (C18:l) content and when planted can be grown to form rape plants associated with high oleic acid production which are free from the agronomic shortcomings commonly encountered in the prior art with rape plants that yield such an elevated oleic acid content.
These and other objects and advantages as well as the scope, nature, and utilization of the claimed invention will be apparent to those skilled in the art from the following detailed description and appended claims.
Summary of the Invention It has been found that an improved process for producing seeds capable of forming Fi hybrid Brassica napus plants comprises:
(a) planting in pollinating proximity in a planting area parent plants (i) and (ii), wherein parent (i) is a Brassica napus plant possessing solely in either the A-genome or the C-genome a homozygous modified FAD-2 (i.e.. oleate desaturase) gene pair that causes expression of an elevated oleic acid concentration in the endogenously formed oil of the seeds formed thereon, and further possesses at least one homozygous modified FAD-3 (i.e.. linolate desaturase) gene pair that causes the expression of a reduced linolenic acid concentration in the endogenously formed oil of the seeds, and wherein parent (ii) is a Brassica napus plant possessing in each of the A-genome and the C-genome a homozygous modified FAD-2 gene pair that causes the expression of an elevated oleic acid concentration in the endogenously formed oil of the seeds formed thereon whereby oleic acid is formed in the endogenously formed oil of the seeds in a greater concentration than in the seeds of parent (i) under the same growing conditions, and further possesses at least one homozygous modified FAD-3 gene pair that results in a reduced linolenic acid concentration in the endogenously formed oil of the seeds formed thereon; (b) growing Brassica napus plants resulting from the planting of step (a);
(c) preventing self-pollination of the plants of parent (i);
(d) transferring pollen between parent (ii) and parent (i); and
(e) harvesting Fj hybrid seeds produced on plants of parent (i) that are capable of forming Brassica napus plants that upon self-pollination form seeds possessing an endogenously formed vegetable oil having an oleic acid concentration of at least 80 percent by weight and which exceeds that of parent (i), a linolenic acid concentration of no more than 3 percent by weight, and wherein the resulting Fi hybrid seeds when planted are capable of producing a crop in a yield that exceeds that of parent (i) and parent (ii) when each parent is pollinated by a pollen source possessing a genotype substantially the same as that of each parent plant and is grown under the same conditions.
Description of Preferred Embodiments The fatty acid concentrations discussed herein are determined in accordance with a standard procedure wherein the oil is removed from the Brassica napus oilseeds by crushing and is extracted as fatty acid methyl esters following reaction with methanol and sodium methoxide. Next the resulting ester is analyzed for fatty acid content by gas liquid chromatography using a capillary column which allows separation on the basis of the degree of unsaturation and chain length. This analysis procedure is described in the work of J.K. Daun et al, J. Amer. Oil Chem. Soc.. 60:1751-1754 (1983) which is herein incorporated by reference.
It is recognized that Brassica napus is a dibasic allotetraploid formed of two genomes (i.e.. the A-genome and C-genome) and has a total of 38 chromosomes. The A-genome component is derived from Brassica campestris and consists of 20 chromosomes. The C-genome component is derived from Brassica oleracea and consists of 18 chromosomes.
When carrying out the process of the present invention, two parent plants described herein are planted in a planting area and are grown in pollinating proximity, self-pollination of the female parent plants (i.e.. seed parent plants) is prevented, pollen is transferred from the male parent plants to the female parent plants to achieve fertilization, and Fj hybrid seeds are formed thereon in a yield that exceeds that of both parent plants having an elevated oleic acid (C18:l) content of at least 80 percent by weight based upon the total fatty acid content in the endogenously formed vegetable oil of the seeds. "Pollinating proximity" is used herein to specify that the parent plants are grown in sufficient closeness to make possible the transfer of pollen while maintaining the viability of such pollen. The high oleic acid concentration of the vegetable oil is achieved through the concept of the present invention without sacrifice in agronomic properties. The improved plant breeding process of the present invention involves the selection and utilization of specifically-defined Brassica napus parent plants. Such parent plants have been found through empirical research to be capable of yielding the advantageous results with respect to highly elevated oleic acid content and reduced linolenic acid content in the endogenously formed vegetable oil of the seeds combined with good agronomic performance which commonly was lacking in the prior art.
The Brassica napus female parent (i.e.. the seed parent) selected for use in the hybridization process of the present invention possesses solely in either the A-genome or the C-genome a homozygous modified FAD-2 (i.e.. oleate desaturase) gene pair that causes the expression of an elevated oleic acid (C18: l) concentration in the endogenously formed oil of the seeds combined with at least one homozygous modified FAD-3 L&., linolate desaturase) gene pair that causes the expression of a reduced linolenic acid (C18:3) concentration in the endogenously formed oil of the seeds. Such female parent commonly is selected that forms an oleic acid content of approximately 77 to 79 percent by weight based upon the total fatty acid content in the endogenously formed vegetable oil of the seeds. The vegetable oil oleic acid content of the female parent commonly will exceed that of the well-known Profit variety which possesses an unmodified FAD-2 gene pair by at least 14 percent (e.g.. by 14 to 17 percent) by weight under the same growing conditions. The reference Profit variety was introduced by Agriculture Canada during 1989 and is known and publicly available. Seeds of the
Profit variety can be obtained from Agriculture and Agri-Food Canada, Sakatoon, Saskatchewan, Canada. It has been found to be essential that the modified FAD-2 gene pair be present solely in either the A-genome or the C-genome so as to avoid the impairment of agronomic qualities that otherwise are observed if such modification were present in both genomes. The presence of the modified FAD-2 gene pair in both genomes (i.e.. in the A-genome as well as in the C-genome) which leads to an even more highly elevated oleic acid production in the endogenously formed vegetable oil of the seeds commonly has been found to concomitantly impact adversely upon lipid loading throughout the plant including the cell membranes and to result in reduced agronomic performance as previously discussed. The presence of a modified FAD-2 gene pair solely in one genome can be confirmed by a oleic acid (C18:l) in the endogenously formed vegetable oil of the seeds of approximately 76 to 79 percent by weight based upon the total fatty acid content.
The Brassica napus male parent (i.e.. the pollen parent) selected for use in the hybridization process of the present invention possesses in each of the A-genome and in the C-genome a homozygous modified FAD-2 gene pair that causes the expression of an elevated oleic acid concentration in the endogenously formed oil of the seeds in a greater concentration than in the seeds of the female parent. Such male parent commonly is selected that forms an oleic acid content of approximately 85 to 89 percent by weight based upon the total fatty acid content in the endogenously formed vegetable oil of the seeds. The vegetable oil oleic acid content of the male parent commonly will exceed that of the well-known Profit variety by at least 20 percent (e.g. , by 20 to 25 percent) by weight under the same growing conditions. In view of the presence of the modified FAD-2 gene pair in both the A-genome and the C-genome, the overall agronomic qualities of the male parent are lesser than those of the female parent.
Parent plants possessing the modified genomes as discussed above can be formed by genetic engineering or the mutagenesis of conventional Brassica napus germplasm (e.g.. existing canola varieties), or can be selected from previously available sources that already incorporate the requisite modified genomes as discussed herein. Once on hand, the requisite genes can be readily transferred by conventional plant breeding into other Brassica napus germplasms.
In a preferred embodiment when carrying out mutagenesis, one selects plant cells capable of regeneration (e.g.. seeds, microspores, ovules, pollen, vegetative parts) from any of the oilseed Brassica napus varieties (e.g.. canola) which are recognized to have superior agronomic characteristics. The Brassica napus plants may be of either the summer or winter types. The oilseed Brassica napus plant cells are subjected in at least one generation to mutagenesis, and an oilseed Brassica napus plant is regenerated from the cells to produce an oilseed plant and to form an oilseed in at least one subsequent generation that possesses the ability to form the atypical modified FAD-2 gene pair in the female parent and the atypical modified FAD-2 gene pairs in the male parent. Parent oilseed Brassica napus plants possessing the requisite FAD-2 gene pair(s) may be produced following mutagenesis via self-pollination for a sufficient number of generations (e.g.. 2 to 8 generations) to achieve substantial genetic homogeneity. Alternatively, the desired characteristics can be fixed through the formation of a new plant from a haploid microspore cell, causing the haploid to double, and producing a homozygous diploid plant in accordance with known techniques.
The mutagenesis preferably is accomplished by subjecting the plant cells (e.g. , an oilseed) to a technique selected from the group consisting of contact with a chemical mutagen, gamma irradiation, and a combination of the foregoing, for a sufficient duration to accomplish the desired genetic modification but insufficient to completely destroy the viability of the cells and their ability to be regenerated into a plant. The Brassica napus oilseed preferably possesses a moisture content of approximately 5 to 6 percent by weight at the time of such mutagenesis. The mutagenesis may be accomplished by use of chemical means, such as by contact with ethylmethylsulfonate, ethylnitrosourea, etc., and by the use of physical means, such as x-rays, etc. The mutagenesis also may be carried out by gamma radiation, such as that supplied by a Cesium 137 source. The gamma radiation preferably is supplied to the plant cells (e.g.. an oilseed) in a dosage of approximately 60 to 200 Krad., and most preferably in a dosage of approximately 60 to 90 Krad. It should be understood that even when operating at radiation dosages within the ranges specified, some plant cells (e.g. , oilseeds) may completely lose their viability and must be discarded. See commonly assigned United States Patent Nos. 5,625,130 and 5,638,637 which are herein incorporated by reference for a further discussion of the mutagenesis treatment.
When a mature Brassica napus halfseed is found to possess a desired mutation(s), the other halfseed, which will be genetically the same as the halfseed which was subjected to halfseed analysis, can next be caused to germinate and an oilseed Brassica napus plant is formed from the same and is allowed to undergo self-pollination. Such planting of the halfseed preferably also is carried out in a greenhouse in which the pollination is carefully controlled and is monitored. The resulting oilseeds formed on a plant resulting from the halfseed are harvested, planted, and are self-pollinated for a sufficient number of generations to achieve substantial genetic homogeneity. The genetic stabilization of the oilseed Brassica napus plant material enables the creation of plants having a reasonably predictable genotype which can be used as breeding or source material.
In accordance with the concept of the present invention, it additionally is essential that each of the female and male parent plants possesses at least one homozygous modified FAD-3 (i.e.. linolate desaturase) gene pair that causes the expression of a reduced linolenic acid (i.e.. alpha-linolenic acid) concentration in the endogenously formed oil of the seeds.
Such modified FAD-3 gene pair can be obtained by genetic engineering or the mutagenesis of conventional Brassica napus germplasm (e.g.. existing canola varieties) or can be selected from previously available sources that already incorporate the requisite FAD-3 gene modification. The modified FAD-3 gene pair can be present in either the A-genome or in the C-genome, and preferably is present in each of the these genomes. The modified FAD-3 gene pair likewise preferably is obtainable by mutagenesis. A reduced linolenic acid content of no more than 3 percent by weight based upon the total fatty acid content preferably is exhibited by each of the parent plants in the endogenously formed vegetable oil of the seeds. In a preferred embodiment, both the female parent and the male parent exhibit a linolenic acid (C18:3) content of approximately 1 to 3 percent by weight (e.g.. 1 to 2 percent by weight) based upon the total fatty acid content. Oilseed Brassica napus germplasm containing the requisite homozygous modified FAD-3 gene pair(s) that causes a reduced linolenic acid concentration in the endogenously formed oil of the seeds is known and is publicly available. For instance, rape germplasm possessing this trait has been available in Germany from the mid- 1970 's, and in North American since 1983. Representative commercially available rape varieties that include the genetic means for the expression of this low linolenic acid trait include STELLAR, and APOLLO. A particularly preferred source for the requisite FAD-3 gene pair for the expression of enhanced linolenic acid in the stated concentration is the STELLAR variety that was developed at the University of Manitoba, Manitoba, Canada, during 1987, following receipt of support from the Western Canola and Rapeseed Recommending Committee. Also, a particularly preferred source for the requisite FAD-3 gene pair for the expression of enhanced linolenic acid in the stated concentration is the APOLLO variety that was developed at the University of Manitoba, and was registered in Canada as No. 3,694 during February, 1992, following the receipt of support from the Western Canola and Rapeseed Recommending Committee.
Brassica napus seeds designated NS1973 and NS2037 and possessing the requisite modified FAD-2 gene pair solely in one genome as well as the modified FAD- 3 gene pair suitable for use as the female parent in the process of the present invention were deposited at the American Type Culture Collection, 10801 University Boulevard, Manassas, Virginia, U.S.A. 20110-2209, on June 25, 1998. A 2,500 seed deposit of NS1973 has been assigned ATCC Accession No. 209997. A 2,500 seed deposit of NS2037 has been assigned ATCC Accession No. 209994. Brassica napus seeds designated 95SN-56605 and 95SN-56634 and possessing the requisite modified FAD-2 gene pair in both the A-genome and the C-genome as well as modified FAD-3 gene pair suitable for use as the male parent in the process of the present invention additionally were deposited at the American Type Culture Collection on June 25, 1998. A 2,500 seed deposit of 95SN-56605 has been assigned ATCC Accession No. 209995. A 2,500 seed deposit of 95SN-56634 has been assigned ATCC
Accession No. 209996.
When the parent plants are grown within pollinating proximity of each other in accordance with the process of the present invention, it is essential that self-pollination of the female parent plants be precluded. This can be done through the emasculation of the flowers at an early stage of flower development. Such impediment to self- pollination preferably is accomplished through the prevention of pollen formation on the female parent plants through any one of a variety of techniques that is inherent within the plant. Such female parent plants can incorporate some form of male sterility. For instance, male sterility can be cytoplasmic male sterility (i.e.. genic-cytoplasmic), nuclear male sterility, molecular male sterility wherein a transgene inhibits microsporogenesis and/or pollen formation, or be produced by self-incompatability. In a particularly preferred embodiment the female parent plants possess cytoplasmic male sterility of the ogura (OGU) type and the male parent plants include a fertility restorer as available from Institut National de Recherche Agricole (INRA) of Rennes, France. See also in this regard the technology of International Publication Nos. WO92/05251 and WO98/027806 which is herein incorporated by reference.
The improved process of the present invention can be used to advantage to form single-cross Brassica napus Fj hybrids. During such single-cross embodiment the parent plants can be grown as substantially homogeneous adjoining populations so as to well facilitate natural cross-pollination from the male parent plants to the female parent plants. The Fj seed formed on the female parent plants next is selectively harvested by conventional means. One also has the option of growing the two parent plants during the formation of a single-cross hybrid in bulk and harvesting a composite seed blend of high oleic acid content consisting of Fj hybrid seed, formed on the female parent and seed formed upon the male parent as the result of self-pollination. Alternatively, three- way crosses can be carried out wherein a single-cross Fj hybrid is used as a female parent and is crossed with a different male parent that satisfies the fatty acid parameters for the female parent of the first cross. Here, assuming a bulk planting, the overall oleic acid content of the vegetable oil will be reduced over that of a simple single-cross hybrid; however, the seed yield will be further enhanced in view of the good agronomic performance of both parents when making the second cross. Also, the formation of double-cross hybrids can be carried out wherein the products of two different single- crosses are combined. Self-incompatibility can be used to particular advantage to prevent self-pollination of female parents when forming a double-cross hybrid. Here the final seed product will be a composite of more than one genotype wherein the overall oleic acid content is at least 80 percent by weight based upon the total fatty acid content.
The Fj hybrid seeds made possible by the use of the technology of the present invention commonly exhibit an oleic acid concentration of approximately 80 to 86 percent by weight and a linolenic acid content of approximately 1 to 3 percent by weight based upon the total fatty acid content, and are capable of forming plants which following self-pollination and seed set yield a seed harvest bearing a vegetable oil having average oleic acid and linolenic acid concentrations within the specified ranges. The improved process of the present invention makes possible the formation of Brassica napus Fj hybrid seeds which when planted are capable of producing a crop in a yield that exceeds that of each parent used in the formation of the Fj hybrid when each parent is pollinated by a pollen source possessing a genotype substantially the same as that of each parent and is grown under the same conditions. Additive gene action with respect to oleic acid production is achieved without sacrifice of agronomic characteristics. This good yield is made possible while making possible an oleic acid content in the vegetable oil of at least 80 percent (e.g. , 80 to 86 percent) by weight based upon the total fatty acid content. Commonly, seed yields of equal to or greater than those of widely grown canola varieties which lack the modified fatty acid profile are made possible. In a preferred embodiment the yield exceeds that of the well-known Legend variety under the same growing conditions. The reference Legend variety was introduced by Svalof AB during 1988 and is known and publicly available. Seeds of the Legend variety can be obtained from Svalof- Weibull Canada Ltd. , of Lindsay, Ontario, Canada.
The following Examples are presented as specific illustrations of the claimed invention. It should be understood, however, that the invention is not limited to the specific details set forth in the Examples.
EXAMPLE I
A Brassica napus line designated NS1973 was selected for use as the female parent. Such line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523). In the endogenously formed vegetable oil of NS 1973 there was exhibited an average oleic acid (C18: l) content of 79.02 percent by weight and an average linolenic acid (C18:3) content of
1.65 percent by weight based upon the total fatty acid content. In this female parent the elevated oleic acid content was created through the presence of a homozygous modified FAD-2 gene pair solely in one genome that was formed through mutagenesis and the reduced linolenic acid content was created through the presence of at least one homozygous modified FAD-3 gene pair that was formed through mutagenesis. Seeds of NS1973 bear ATCC Accession No. 209997 as earlier discussed.
A Brassica napus line designated 95SN56605 was selected for use as the male parent. Such line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523). In the endogenously formed vegetable oil of 95SN56605 there was exhibited an average oleic acid (C18: l) content of 87.09 percent by weight and an average linolenic acid (C18:3) content of 1.64 percent by weight based upon the total fatty acid content. In this male parent the highly elevated oleic acid content was created through the presence of a homozygous modified FAD-2 gene pair in both the A-genome and the C-genome that was formed through mutagenesis and the reduced linolenic acid content was created through the presence of at least one homozygous modified FAD-3 gene pair that was formed through mutagenesis. Seeds of 95SN56605 bear ATCC Accession No. 209995 as previously discussed. In order to determine parent yield potential, the parent lines were grown as a plot of twenty plants each in a replicated yield trial at Acton, Ontario, Canada, and were bagged to ensure self-pollination. The bags were removed at the end of flowering so that the fatty acid composition of the selfed seed would not be affected by an artificial bagged environment during the final portion of the seed filling when most of the lipid accumulation takes place. At maturity the selfed plants were harvested individually. Fatty acid and yield determinations were made. When determining yield the total weight of harvested seed was adjusted to 8.5 percent moisture. A value of 100 was assigned to the seed yield of the NS1973 female parent. On this scale, a seed yield of only 43 percent that of the female parent was found to form on the 95SN56605 male parent.
Fj hybrid seeds and F2 seeds were produced in a common filed environment at the same location and were evaluated for yield and fatty acid composition. More specifically, the flowers of the NS1973 female parent were hand emasculated at an early stage of flower development according to the procedure described in Chapter 35 entitled "Rapeseed and Mustard" by R.K. Downey et al appearing at Pages 495 to 509 of "Hybridization of Crop Plants" edited by Walter R. Fehr and Henry H. Hadley (1980) in order to prevent the self-pollination of the female parent plants. At the appropriate stage in flower maturity, pollen was transferred by hand from the 95SN56605 male parent plants to the NS1973 female parent plants to accomplish fertilization. Fλ hybrid seeds were next produced on the fertilized NS1973 female parent plants which were selectively harvested and were analyzed for the fatty acid composition of the endogenously formed vegetable oil of the seeds.
The resulting Fj hybrid seeds were found to exhibit an average elevated oleic acid content of 82.36 percent by weight and a reduced linolenic acid content of 1.59 percent by weight based upon the total fatty acid content. Also, the F, hybrid seed yield was found to be 127 percent of the female parent and exceeded that of each of the parent plants. Also, when the Fj hybrid seeds were planted, they were found to exhibit good agronomic characteristics unlike the male parent plants.
EXAMPLE II Example I was repeated with the exception that Brassica napus 95SN56634 (ATCC Accession No. 209996) was substituted for male parent 95SN56605. Such 95SN56634 line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523). In the endogenously formed vegetable oil of 95SN56634 there was exhibited an average oleic acid (C18: l) content of 86.57 percent by weight and an average linolenic acid (C18:3) content of 1.42 percent by weight based upon the total fatty acid content. The seed yield of the 95SN56634 male parent was found to be only 50 percent that of the female parent. The highly elevated average oleic acid content of the male parent was created through the presence of a homozygous modified FAD-2 gene pair in both the A-genome and the C-genome that was formed through mutagenesis and the reduced linolenic acid content was created through the presence of at least one homozygous modified FAD-3 gene pair that was formed through mutagenesis. The resulting Fj hybrid seeds were found to exhibit an average elevated oleic acid content of 82.6 percent by weight and an average reduced linolenic acid content of 1.69 percent by weight based upon the total fatty acid content. Also, the Fx hybrid seed yield was found to be 108 percent that of the female parent. When the Fj hybrid seeds were planted, the resulting plants were found to exhibit good agronomic characteristics unlike the male parent plants.
EXAMPLE III Example I was repeated with the exception that Brassica napus line NS2037 (ATCC Accession No. 209994) was substituted for female parent line NS1973 and Brassica napus line 95SN56634 was substituted for male parent line 95SN56605. Such
NS2037 line was derived through crossing and pedigree selection in progeny generations from FA677M5-132 (ATCC Accession No. 40523). In the endogenously formed vegetable oil of NS2037 there was exhibited an average oleic acid (C18: l) content of 78.64 percent by weight and an average linolenic acid (C18:3) content of 1.52 percent by weight based upon the total fatty acid content. In such female parent the elevated oleic acid content was created through the presence of a homozygous modified FAD-2 gene pair solely in one genome that was formed through mutagenesis and the reduced linolenic acid content was created through the presence of at least one homozygous modified FAD-3 gene pair that was formed through mutagenesis. The Fj hybrid seed was found to exhibit an average elevated oleic acid content of 82.3 percent by weight and an average reduced linolenic acid content of 1.51 percent by weight based upon the total fatty acid content. Also, the Fj hybrid seed yield was found to be 150 percent that of the female parent and exceeded that of each of the parent plants. Also, when the F,_ hybrid plants were planted, the resulting plants were found to exhibit good agronomic characteristics unlike the male parent plants.
EXAMPLE IV Example I was repeated with the exception that Brassica napus line NS2037(ATCC Accession No. 20994) utilized in Example III was substituted for female parent line NS1973. The Fj hybrid seed was found to exhibit an average elevated oleic acid (C18: l) content of 82.69 percent by weight and an average reduced linolenic acid (C18:3) content of 1.46 percent by weight based upon the total fatty acid content. Also, the Fj hybrid seed yield was found to be 119 percent that of the female parent. When F, hybrid plants were planted, the resulting plants were found to exhibit good agronomic characteristics unlike the male parent plants.
The homozygous modified FAD-2 and FAD-3 gene pairs present in the Brassica napus parent plants of all Examples can be readily transferred by conventional plant breeding to other Brassica napus germplasms which can likewise be used to carry out the process of the present invention. Also, the prevention of the self-pollination of the female parent plants when carrying out the process of the present invention can be expeditiously carried out on a larger scale by the use of various types of male sterility, etc., as previously discussed. Such techniques to preclude self-pollination of the female parent plants are already known and available to those skilled in plant breeding. Although the invention has been described with preferred embodiments, it is to be understood that variations and modifications may be resorted to as will be apparent to those skilled in the art. Such variations and modifications are to be considered within the purview and scope of the claims appended hereto.

Claims

WE CLAIM:
1. An improved process for producing seeds capable of forming Fj hybrid Brassica napus plants comprising:
(a) planting in pollinating proximity in a planting area parent plants (i) and (ii), wherein parent (i) is a Brassica napus plant possessing solely in either the A-genome or the C-genome a homozygous modified FAD-2 gene pair that causes expression of an elevated oleic acid concentration in the endogenously formed oil of the seeds formed thereon, and further possesses at least one homozygous modified FAD-3 gene pair that causes the expression of a reduced linolenic acid concentration in the endogenously formed oil of said seeds, and wherein parent (ii) is a Brassica napus plant possessing in each of the A-genome and the C-genome a homozygous modified FAD-2 gene pair that causes the expression of an elevated oleic acid concentration in the endogenously formed oil of the seeds formed thereon whereby oleic acid is formed in the endogenously formed oil of said seeds in a greater concentration than in the seeds of parent (i) under the same growing conditions, and further possesses at least one homozygous modified FAD-3 gene pair that results in a reduced linolenic acid concentration in the endogenously formed oil of the seeds formed thereon; (b) growing Brassica napus plants resulting from said planting of step
(a);
(c) preventing self-pollination of the plants of parent (i);
(d) transferring pollen between said parent (ii) and said parent (i); and
(e) harvesting Fj hybrid seeds produced on plants of parent (i) that are capable of forming Brassica napus plants that upon self-pollination form seeds possessing an endogenously formed vegetable oil having an oleic acid concentration of at least 80 percent by weight and which exceeds that of parent (i), and a linolenic acid concentration of no more than 3 percent by weight, and wherein said resulting Fj hybrid seeds when planted are capable of producing a crop in a yield that exceeds that of parent (i) and parent (ii) when each parent is pollinated by a pollen source possessing a genotype substantially the same as that of each parent plant and is grown under the same conditions.
2. An improved process according to Claim 1 wherein parent plant (i) is male sterile.
3. An improved process according to Claim 2 wherein parent plant (i) is cytoplasmic male sterile.
4. An improved process according to Claim 2 wherein parent plant (i) and parent plant (ii) each is planted and grown in at least one substantially homogeneous adjoining population so as to facilitate natural cross pollination.
5. An improved process according to Claim 1 wherein said parent plant (i) possesses a homozygous modified FAD-2 gene pair that is present solely in either the A-genome or the C-genome which is capable of producing when pollinated by a pollen source possessing substantially the same genotype an enhanced oleic acid concentration in the endogenously formed oil of seeds formed thereon which exceeds that of the Profit variety which possesses an unmodified FAD-2 gene pair by at least 14 percent by weight based upon the total fatty acid content when grown under the same conditions.
6. An improved process according to Claim 1 wherein said parent plant (ii) possesses a homozygous modified FAD-2 gene pair in each of the A-genome and the C-genome which are capable of producing when pollinated by a pollen source possessing substantially the same genotype an enhanced oleic acid concentration in the endogenously formed oil of seeds formed thereon which exceeds that of the Profit variety which possesses an unmodified FAD-2 gene pair by at least 20 percent by weight based upon the total fatty acid content when grown under the same conditions.
7. An improved process according to Claim 1 wherein said parent plant (i) exhibits in the seeds formed thereon when pollinated by a pollen source possessing substantially the same genotype an oleic acid concentration of approximately 77 to 79 percent by weight and a linolenic acid concentration of approximately 1 to 3 percent by weight based upon the total fatty acid content when grown under the same conditions, and said parent plant (ii) exhibits in the seeds formed thereon when pollinated by a pollen source possessing substantially the same genotype an oleic acid concentration of approximately 85 to 89 percent by weight and a linolenic acid concentration of approximately 1 to 2 percent by weight based upon the total fatty acid content when grown under the same conditions.
8. An improved process according to Claim 1 wherein said Fj hybrid seeds that are harvested in step (e) exhibit an oleic acid concentration of approximately 80 to 86 percent by weight and a linolenic acid content of approximately 1 to 3 percent by weight based upon the total fatty acid content.
9. An improved process according to Claim 1 wherein said Fj hybrid seeds are harvested in step (e) that are capable of producing a crop in a yield that exceeds that of the Legend variety under the same growing conditions.
10. Fj hybrid Brassica napus seeds that were harvested in step (e) of the process of Claim 1.
11. Fj hybrid Brassica napus plants resulting from the planting and growing of the Fγ hybrid seeds harvested in step (e) of the process of Claim 1.
12. An improved process for producing seeds capable of forming F, hybrid Brassica napus plants comprising: (a) planting in pollinating proximity parent plants (i) and (ii), wherein parent (i) is a Brassica napus plant possessing solely in either the A-genome or the C-genome a homozygous modified FAD-2 gene pair that results in an elevated oleic acid production in the endogenously formed oil of the seeds formed thereon which exceeds that of the Profit variety which possesses an unmodified FAD-2 gene pair by at least 14 percent by weight based upon the total fatty acid content under the same growing conditions, and at least one homozygous modified FAD-3 gene pair that results in a reduced linolenic acid production in the endogenously formed oil of the seeds formed thereon of no more than 3 percent by weight based upon the total fatty acid content, and wherein parent (ii) is a Brassica napus plant possessing in each of the A-genome and the C-genome a homozygous modified FAD-2 gene pair that results in an elevated oleic acid production in the endogenously formed oil of the seeds formed thereon which exceeds that of the Profit variety which possesses an unmodified FAD-2 gene pair by at least 20 percent by weight based upon the total fatty acid content and forms oleic acid in the endogenously formed oil of said seeds in a greater concentration than parent (i) under the same growing conditions, and a homozygous modified FAD-3 gene pair that results in a reduced linolenic acid content in the endogenously formed oil of the seeds formed thereon of no more than 3 percent by weight based upon the total fatty acid content;
(b) growing Brassica napus plants resulting from said planting of step (a);
(c) preventing self-pollination of the plants of parent (i); (d) transferring pollen between said parent (ii) and said parent (i); and
(e) harvesting Fj hybrid seeds produced on plants of parent (i) that are capable of forming Brassica napus plants that upon self-pollination form seeds possessing an endogenously formed vegetable oil having an oleic acid concentration of at least 80 percent by weight and which exceeds that of parent (i), and a linolenic acid concentration of no more than 3 percent by weight, and wherein said resulting Fj hybrid seeds when planted are capable of producing a crop in a yield that exceeds that of parent (i) and parent (ii) when each is pollinated by a pollen source possessing a genotype substantially the same as that of each parent plant and is grown under the same conditions.
13. An improved process according to Claim 12 wherein said parent plant (i) is male sterile.
14. An improved process according to Claim 13 wherein parent plant (i) is cytoplasmic male sterile.
15. An improved process according to Claim 13 wherein parent plant (i) and parent plant (ii) each is planted and grown in at least one substantially homogeneous adjoining population so as to facilitate natural cross pollination.
16. An improved process according to Claim 12 wherein said parent plant (i) exhibits in the seeds formed thereon when pollinated by a pollen source possessing substantially the same genotype an oleic acid concentration of approximately 77 to 79 percent by weight and a linolenic acid concentration of approximately 1 to 3 percent by weight based upon the total fatty acid content when grown under the same conditions, and parent plant (ii) exhibits in the seeds formed when pollinated by a pollen source possessing substantially the same genotype an oleic acid concentration of approximately 85 to 89 percent by weight and a linolenic acid concentration of approximately 1 to 3 percent by weight based upon the total fatty acid content when grown under the same conditions.
17. An improved process according to Claim 12 wherein said Fj hybrid seeds that are harvested in step (e) exhibit an oleic acid concentration of approximately 80 to 86 percent by weight and a linolenic acid content of approximately 1 to 3 percent by weight based upon the total fatty acid content, and are capable of forming plants which upon self-pollination which produce a crop having average oleic acid and linolenic acid concentrations within the specified ranges.
18. An improved process according to Claim 12 wherein said Fj hybrid seeds are harvested in step (e) are capable of forming a crop in a yield that exceeds that of the Legend variety under the same growing conditions.
19. Fj hybrid Brassica napus seeds that were harvested in step (e) of the process of Claim 12.
20. F hybrid Brassica napus plants resulting from the planting and growing of the Fj hybrid seeds harvested in step (e) of the process of Claim 12.
PCT/US2000/001113 1999-03-01 2000-01-19 Improvements in the formation of brassica napus f1 hybrid seeds high oleic acid content and a reduced linolenic acid content WO2000051415A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU27292/00A AU2729200A (en) 1999-03-01 2000-01-19 Improvements in the formation of (brassica napus) f1 hybrid seeds high oleic acid content and reduced linolenic acid content
CA002320842A CA2320842C (en) 1999-03-01 2000-01-19 Improvements in the formation of brassica napus f1 hybrid seeds with high oleic acid content and a reduced linolenic acid content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/259,346 US6323392B1 (en) 1999-03-01 1999-03-01 Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds
US09/259,346 1999-03-01

Publications (1)

Publication Number Publication Date
WO2000051415A1 true WO2000051415A1 (en) 2000-09-08

Family

ID=22984563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/001113 WO2000051415A1 (en) 1999-03-01 2000-01-19 Improvements in the formation of brassica napus f1 hybrid seeds high oleic acid content and a reduced linolenic acid content

Country Status (4)

Country Link
US (1) US6323392B1 (en)
AU (1) AU2729200A (en)
CA (1) CA2320842C (en)
WO (1) WO2000051415A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102032A1 (en) * 2004-04-26 2005-11-03 The Rice Research Institute Of Guangdong Academy Of Agricultural Sciences The selection methods of self-pollination and normal cross pollination in population, variety of crops
WO2013052956A2 (en) 2011-10-07 2013-04-11 E. I. Du Pont De Nemours And Company Liquid compositions used as insulating and heat transfer means, electrical devices containing said compositions and preparation methods for such compositions
US8637740B2 (en) 2008-11-04 2014-01-28 Dow Agrosciences, Llc. Omega-9 quality Brassica juncea

Families Citing this family (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998518B1 (en) * 2003-01-31 2006-02-14 Pioneer Hi-Bred International, Inc. Soybean variety 91M50
WO2005063988A1 (en) * 2003-12-23 2005-07-14 Pioneer Hi-Bred International, Inc. Alteration of oil traits in plants
US7968764B2 (en) * 2005-05-02 2011-06-28 Purdue Research Foundation Methods for increasing the yield of fermentable sugars from plant stover
EP1806398A1 (en) * 2006-01-04 2007-07-11 Monsanto S.A.S. Fad-2 mutants and high oleic plants
CA2638739A1 (en) 2006-03-01 2007-09-13 Pioneer Hi-Bred International, Inc. Compositions related to the quantitative trait locus 6 (qtl6) in maize and methods of use
WO2008024840A2 (en) * 2006-08-22 2008-02-28 Dow Agrosciences Llc Aqueous processing of oilseed press cake
CL2007003744A1 (en) 2006-12-22 2008-07-11 Bayer Cropscience Ag COMPOSITION THAT INCLUDES A 2-PYRIDILMETILBENZAMIDE DERIVATIVE AND AN INSECTICIDE COMPOUND; AND METHOD TO CONTROL FITOPATOGENOS CULTURES AND INSECTS FACING OR PREVENTIVELY.
CL2007003743A1 (en) 2006-12-22 2008-07-11 Bayer Cropscience Ag COMPOSITION THAT INCLUDES FENAMIDONA AND AN INSECTICIDE COMPOUND; AND METHOD TO CONTROL FITOPATOGENOS CULTURES AND INSECTS FACING OR PREVENTIVELY.
US7777102B2 (en) * 2007-02-08 2010-08-17 University Of Tennessee Research Foundation Soybean varieties
WO2008110280A2 (en) * 2007-03-12 2008-09-18 Bayer Cropscience Ag Phenoxy substituted phenylamidine derivatives and their use as fungicides
US9199922B2 (en) * 2007-03-12 2015-12-01 Bayer Intellectual Property Gmbh Dihalophenoxyphenylamidines and use thereof as fungicides
EP1969934A1 (en) 2007-03-12 2008-09-17 Bayer CropScience AG 4-cycloalkyl or 4-aryl substituted phenoxy phenylamidines and their use as fungicides
EP1969929A1 (en) 2007-03-12 2008-09-17 Bayer CropScience AG Substituted phenylamidines and their use as fungicides
EP1969930A1 (en) * 2007-03-12 2008-09-17 Bayer CropScience AG Phenoxy phenylamidines and their use as fungicides
BRPI0808798A2 (en) * 2007-03-12 2014-10-07 Bayer Cropscience Ag 3,5-DISSUBSTITUTED PHENOXYPHENYLAMIDINS AND THEIR USE AS FUNGICIDES
EP1969931A1 (en) 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoroalkyl phenylamidines and their use as fungicides
WO2008128639A1 (en) 2007-04-19 2008-10-30 Bayer Cropscience Aktiengesellschaft Thiadiazolyl oxyphenyl amidines and the use thereof as a fungicide
DE102007045919B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
DE102007045922A1 (en) * 2007-09-26 2009-04-02 Bayer Cropscience Ag Drug combinations with insecticidal and acaricidal properties
DE102007045956A1 (en) * 2007-09-26 2009-04-09 Bayer Cropscience Ag Combination of active ingredients with insecticidal and acaricidal properties
DE102007045920B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistic drug combinations
DE102007045953B4 (en) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Drug combinations with insecticidal and acaricidal properties
WO2009046837A2 (en) * 2007-10-02 2009-04-16 Bayer Cropscience Ag Methods of improving plant growth
EP2090168A1 (en) 2008-02-12 2009-08-19 Bayer CropScience AG Method for improving plant growth
EP2072506A1 (en) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide
US7947877B2 (en) * 2008-05-14 2011-05-24 Monosanto Technology LLC Plants and seeds of spring canola variety SCV328921
US7935870B2 (en) * 2008-05-14 2011-05-03 Monsanto Technology Llc Plants and seeds of spring canola variety SCV354718
US8829282B2 (en) * 2008-05-14 2014-09-09 Monsanto Technology, Llc Plants and seeds of spring canola variety SCV425044
US7964774B2 (en) * 2008-05-14 2011-06-21 Monsanto Technology Llc Plants and seeds of spring canola variety SCV384196
EP2168434A1 (en) 2008-08-02 2010-03-31 Bayer CropScience AG Use of azols to increase resistance of plants of parts of plants to abiotic stress
CA2733958A1 (en) 2008-08-14 2010-02-18 Bayer Cropscience Ag Insecticidal 4-phenyl-1h-pyrazoles
DE102008041695A1 (en) * 2008-08-29 2010-03-04 Bayer Cropscience Ag Methods for improving plant growth
EP2201838A1 (en) 2008-12-05 2010-06-30 Bayer CropScience AG Active ingredient-beneficial organism combinations with insecticide and acaricide properties
EP2198709A1 (en) 2008-12-19 2010-06-23 Bayer CropScience AG Method for treating resistant animal pests
WO2010075966A1 (en) 2008-12-29 2010-07-08 Bayer Cropscience Ag Method for improved use of the production potential of genetically modified plants
EP2204094A1 (en) 2008-12-29 2010-07-07 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants Introduction
EP2223602A1 (en) 2009-02-23 2010-09-01 Bayer CropScience AG Method for improved utilisation of the production potential of genetically modified plants
EP2039770A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2039772A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants introduction
EP2039771A2 (en) 2009-01-06 2009-03-25 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
EP2387309A2 (en) 2009-01-19 2011-11-23 Bayer CropScience AG Cyclic diones and their use as insecticides, acaricides and/or fungicides
EP2227951A1 (en) 2009-01-23 2010-09-15 Bayer CropScience AG Application of enaminocarbonyl compounds for combating viruses transmitted by insects
WO2010086311A1 (en) 2009-01-28 2010-08-05 Bayer Cropscience Ag Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
AR075126A1 (en) 2009-01-29 2011-03-09 Bayer Cropscience Ag METHOD FOR THE BEST USE OF THE TRANSGENIC PLANTS PRODUCTION POTENTIAL
US8373025B2 (en) 2009-02-09 2013-02-12 Chromatin Germplasm, Llc Herbicide resistant sorghum
EP2218717A1 (en) 2009-02-17 2010-08-18 Bayer CropScience AG Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
EP2398770B1 (en) 2009-02-17 2016-12-28 Bayer Intellectual Property GmbH Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives
TW201031331A (en) 2009-02-19 2010-09-01 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
US8846568B2 (en) 2009-03-25 2014-09-30 Bayer Cropscience Ag Active compound combinations having insecticidal and acaricidal properties
EP2232995A1 (en) 2009-03-25 2010-09-29 Bayer CropScience AG Method for improved utilisation of the production potential of transgenic plants
CN102448304B (en) 2009-03-25 2015-03-11 拜尔农作物科学股份公司 Active ingredient combinations having insecticidal and acaricidal properties
EP2410849A1 (en) 2009-03-25 2012-02-01 Bayer CropScience AG Active ingredient combinations having insecticidal and acaricidal properties
US9012360B2 (en) 2009-03-25 2015-04-21 Bayer Intellectual Property Gmbh Synergistic combinations of active ingredients
BRPI0924451B1 (en) 2009-03-25 2017-12-26 Bayer Intellectual Property Gmbh Combinations of active substances and their uses, as well as methods for the control of animal pests and method for the manufacture of insecticides and acaricides
EP2239331A1 (en) 2009-04-07 2010-10-13 Bayer CropScience AG Method for improved utilization of the production potential of transgenic plants
CA2758824A1 (en) 2009-04-17 2010-10-21 Basf Plant Science Company Gmbh Plant promoter operable in endosperm and uses thereof
CN102458125B (en) 2009-05-06 2015-04-29 拜尔农作物科学股份公司 Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides
AR076839A1 (en) 2009-05-15 2011-07-13 Bayer Cropscience Ag FUNGICIDE DERIVATIVES OF PIRAZOL CARBOXAMIDAS
EP2251331A1 (en) 2009-05-15 2010-11-17 Bayer CropScience AG Fungicide pyrazole carboxamides derivatives
EP2255626A1 (en) 2009-05-27 2010-12-01 Bayer CropScience AG Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress
PL2437595T3 (en) 2009-06-02 2019-05-31 Bayer Cropscience Ag Use of fluopyram for controlling sclerotinia ssp
WO2010147825A1 (en) 2009-06-09 2010-12-23 Pioneer Hi-Bred International, Inc. Early endosperm promoter and methods of use
US8071848B2 (en) * 2009-06-17 2011-12-06 Monsanto Technology Llc Plants and seeds of spring canola variety SCV218328
CN103548836A (en) 2009-07-16 2014-02-05 拜尔农作物科学股份公司 Synergistic active substance combinations containing phenyl triazoles
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (en) 2009-09-02 2011-03-09 Bayer CropScience AG Active compound combinations
IN2012DN03073A (en) 2009-10-26 2015-07-31 Pioneer Hi Bred Int
EP2343280A1 (en) 2009-12-10 2011-07-13 Bayer CropScience AG Fungicide quinoline derivatives
CA3041371A1 (en) 2009-12-18 2011-06-23 Cargill Incorporated Brassica plants yielding oils with a low total saturated fatty acid content
WO2011080254A2 (en) 2009-12-28 2011-07-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
TW201141381A (en) 2009-12-28 2011-12-01 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
BR112012012107B1 (en) 2009-12-28 2019-08-20 Bayer Cropscience Ag Compound, fungicidal composition and method for controlling plant pathogenic fungi
WO2011089071A2 (en) 2010-01-22 2011-07-28 Bayer Cropscience Ag Acaricide and/or insecticide active substance combinations
US8143488B2 (en) * 2010-02-26 2012-03-27 Monsanto Technoloy LLC Plants and seeds of spring canola variety SCV470336
US8138394B2 (en) * 2010-02-26 2012-03-20 Monsanto Technology Llc Plants and seeds of spring canola variety SCV431158
US8148611B2 (en) * 2010-02-26 2012-04-03 Monsanto Technology Llc Plants and seeds of spring canola variety SCV453784
WO2011107504A1 (en) 2010-03-04 2011-09-09 Bayer Cropscience Ag Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants
US8581048B2 (en) * 2010-03-09 2013-11-12 Monsanto Technology, Llc Plants and seeds of spring canola variety SCV119103
US8153865B2 (en) * 2010-03-11 2012-04-10 Monsanto Technology Llc Plants and seeds of spring canola variety SCV152154
JP2013523795A (en) 2010-04-06 2013-06-17 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー Use of 4-phenylbutyric acid and / or salt thereof to enhance stress tolerance of plants
EP2555626A2 (en) 2010-04-09 2013-02-13 Bayer Intellectual Property GmbH Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress
WO2011134913A1 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
BR112012027558A2 (en) 2010-04-28 2015-09-15 Bayer Cropscience Ag '' Compound of formula (I), fungicidal composition and method for the control of crop phytogenic fungi ''
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
US9695434B2 (en) 2010-05-25 2017-07-04 Cargill, Incorporated Brassica plants yielding oils with a low alpha linolenic acid content
WO2011150028A2 (en) * 2010-05-25 2011-12-01 Cargill, Incorporated Brassica plants yielding oils with a low alpha linolenic acid content
JP5730993B2 (en) 2010-06-03 2015-06-10 バイエル・クロップサイエンス・アーゲーBayer Cropscience Ag N-[(Heta) arylalkyl)] pyrazole (thio) carboxamides and their hetero-substituted analogues
UA110703C2 (en) 2010-06-03 2016-02-10 Байєр Кропсайнс Аг Fungicidal n-[(trisubstitutedsilyl)methyl]carboxamide
CA2796191A1 (en) 2010-06-03 2011-12-08 Bayer Cropscience Ag N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues
AR082286A1 (en) 2010-07-20 2012-11-28 Bayer Cropscience Ag BENZOCICLOALQUENOS AS ANTIFUNGIC AGENTS
AU2011298423B2 (en) 2010-09-03 2015-11-05 Bayer Intellectual Property Gmbh Substituted fused pyrimidinones and dihydropyrimidinones
EP2460406A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Use of fluopyram for controlling nematodes in nematode resistant crops
MX2013003159A (en) 2010-09-22 2013-05-01 Bayer Ip Gmbh Use of biological or chemical control agents for controlling insects and nematodes in resistant crops.
CN103338638B (en) 2010-10-07 2016-04-06 拜尔农科股份公司 Comprise the fungicide composite of tetrazole radical 9 oxime derivate and Thiazolylpiperidine derivatives
KR20130129203A (en) 2010-10-21 2013-11-27 바이엘 인텔렉쳐 프로퍼티 게엠베하 N-benzyl heterocyclic carboxamides
JP2013541553A (en) 2010-10-21 2013-11-14 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 1- (Heterocycliccarbonyl) piperidines
US9320276B2 (en) 2010-11-02 2016-04-26 Bayer Intellectual Property Gmbh N-hetarylmethyl pyrazolylcarboxamides
EP2640191A1 (en) 2010-11-15 2013-09-25 Bayer Intellectual Property GmbH 5-halogenopyrazole(thio)carboxamides
AR083876A1 (en) 2010-11-15 2013-03-27 Bayer Cropscience Ag 5-HALOGENOPIRAZOLCARBOXAMIDAS
EP2640706B1 (en) 2010-11-15 2017-03-01 Bayer Intellectual Property GmbH N-aryl pyrazole(thio)carboxamides
CN103281900A (en) 2010-12-01 2013-09-04 拜耳知识产权有限责任公司 Use of fluopyram for controlling nematodes in crops and for increasing yield
EP2460407A1 (en) 2010-12-01 2012-06-06 Bayer CropScience AG Agent combinations comprising pyridylethyl benzamides and other agents
EP2474542A1 (en) 2010-12-29 2012-07-11 Bayer CropScience AG Fungicide hydroximoyl-tetrazole derivatives
WO2012089757A1 (en) 2010-12-29 2012-07-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
EP2471363A1 (en) 2010-12-30 2012-07-04 Bayer CropScience AG Use of aryl-, heteroaryl- and benzylsulfonamide carboxylic acids, -carboxylic acid esters, -carboxylic acid amides and -carbonitriles and/or its salts for increasing stress tolerance in plants
EP2494867A1 (en) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituted compounds in combination with fungicides
BR112013022998A2 (en) 2011-03-10 2018-07-03 Bayer Ip Gmbh method to improve seed germination.
JP2014509599A (en) 2011-03-14 2014-04-21 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー Fungicide hydroxymoyl-tetrazole derivative
US8513487B2 (en) 2011-04-07 2013-08-20 Zenon LISIECZKO Plants and seeds of spring canola variety ND-662c
WO2012136581A1 (en) 2011-04-08 2012-10-11 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
US8513494B2 (en) 2011-04-08 2013-08-20 Chunren Wu Plants and seeds of spring canola variety SCV695971
AR090010A1 (en) 2011-04-15 2014-10-15 Bayer Cropscience Ag 5- (CICLOHEX-2-EN-1-IL) -PENTA-2,4-DIENOS AND 5- (CICLOHEX-2-EN-1-IL) -PENT-2-EN-4-INOS REPLACED AS ACTIVE PRINCIPLES AGAINST THE ABIOTIC STRESS OF PLANTS, USES AND TREATMENT METHODS
EP2511255A1 (en) 2011-04-15 2012-10-17 Bayer CropScience AG Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives
AR085568A1 (en) 2011-04-15 2013-10-09 Bayer Cropscience Ag 5- (BICYCLE [4.1.0] HEPT-3-EN-2-IL) -PENTA-2,4-DIENOS AND 5- (BICYCLE [4.1.0] HEPT-3-EN-2-IL) -PENT- 2-IN-4-INOS REPLACED AS ACTIVE PRINCIPLES AGAINST ABIOTIC STRESS OF PLANTS
AR085585A1 (en) 2011-04-15 2013-10-09 Bayer Cropscience Ag VINIL- AND ALQUINILCICLOHEXANOLES SUBSTITUTED AS ACTIVE PRINCIPLES AGAINST STRIPS ABIOTIQUE OF PLANTS
ES2714714T3 (en) 2011-04-22 2019-05-29 Bayer Cropscience Ag Compositions of active compounds comprising a (thio) carboximide derivative and a fungicidal compound
US8507761B2 (en) 2011-05-05 2013-08-13 Teresa Huskowska Plants and seeds of spring canola variety SCV372145
US8513495B2 (en) 2011-05-10 2013-08-20 Dale Burns Plants and seeds of spring canola variety SCV291489
BR112014000267A2 (en) 2011-07-04 2016-09-20 Bayer Ip Gmbh use of substituted isoquinolinones, isoquinolinediones, isoquinolinetrionas and dihydroisoquinolinones or, in each case, salts thereof as active agents against abiotic stress in plants
BR112014002855A2 (en) 2011-08-10 2017-02-21 Bayer Ip Gmbh active compound combinations including specific tetramic acid derivatives
CN103748092A (en) 2011-08-22 2014-04-23 拜耳知识产权有限责任公司 Fungicide hydroximoyl-tetrazole derivatives
EP2561759A1 (en) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth
RU2014113760A (en) 2011-09-09 2015-10-20 Байер Интеллекчуал Проперти Гмбх Acyl-homoserine lactone derivatives for increasing crop yields
JP6002225B2 (en) 2011-09-12 2016-10-05 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Bactericidal 4-substituted-3- {phenyl [(heterocyclylmethoxy) imino] methyl} -1,2,4-oxadiazol-5 (4H) -one derivatives
BR112014006217B1 (en) 2011-09-16 2019-01-15 Bayer Intellectual Property Gmbh use of acylsulfonamides to improve plant yield, method for inducing growth regulating responses in useful plants or crop plants and composition.
UA113967C2 (en) 2011-09-16 2017-04-10 APPLICATION OF 5-PHENYL OR 5-BENZYL-2-ISOXAZOLINE-3-CARBOXYLATES TO IMPROVE PLANT PRODUCTIVITY
IN2014CN01860A (en) 2011-09-16 2015-05-29 Bayer Ip Gmbh
EP2757886A1 (en) 2011-09-23 2014-07-30 Bayer Intellectual Property GmbH Use of 4-substituted 1-phenyl-pyrazole-3-carboxylic-acid derivatives as agents against abiotic plant stress
WO2013050410A1 (en) 2011-10-04 2013-04-11 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013050324A1 (en) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress
KR20140102238A (en) 2011-11-21 2014-08-21 바이엘 인텔렉쳐 프로퍼티 게엠베하 Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
CA2857438A1 (en) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives
IN2014CN04325A (en) 2011-12-19 2015-09-04 Bayer Cropscience Ag
US20130167262A1 (en) 2011-12-21 2013-06-27 The Curators Of The University Of Missouri Soybean variety s05-11268
US9204603B2 (en) 2011-12-21 2015-12-08 The Curators Of The University Of Missouri Soybean variety S05-11482
EP2797895B1 (en) 2011-12-29 2015-08-05 Bayer Intellectual Property GmbH Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives
CN104470896B (en) 2011-12-29 2016-11-09 拜耳知识产权有限责任公司 3-[(pyridine-2-ylmethoxyimino) (phenyl) methyl]-2-substituted-1,2,4-diazole-5 (2H) the-one derivant of antifungal
EP2800816A1 (en) 2012-01-06 2014-11-12 Pioneer Hi-Bred International Inc. Ovule specific promoter and methods of use
WO2013103365A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. Pollen preferred promoters and methods of use
PT2816897T (en) 2012-02-22 2018-04-02 Bayer Cropscience Ag Use of fluopyram for controlling wood diseases in grape
PE20190346A1 (en) 2012-02-27 2019-03-07 Bayer Ip Gmbh ACTIVE COMPOUND COMBINATIONS
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
CN104245687B (en) 2012-04-12 2016-12-14 拜尔农科股份公司 N-acyl group-2-(ring) alkyl pyrrolidine and piperidines as antifungal
KR102062517B1 (en) 2012-04-20 2020-01-06 바이엘 크롭사이언스 악티엔게젤샤프트 N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
US20150080337A1 (en) 2012-04-20 2015-03-19 Bayer Cropscience N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives
US8802935B2 (en) 2012-04-26 2014-08-12 Monsanto Technology Llc Plants and seeds of spring canola variety SCV942568
US8859857B2 (en) 2012-04-26 2014-10-14 Monsanto Technology Llc Plants and seeds of spring canola variety SCV259778
US8835720B2 (en) 2012-04-26 2014-09-16 Monsanto Technology Llc Plants and seeds of spring canola variety SCV967592
US8878009B2 (en) 2012-04-26 2014-11-04 Monsanto Technology, LLP Plants and seeds of spring canola variety SCV318181
EP2662362A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662360A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole indanyl carboxamides
EP2662370A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole benzofuranyl carboxamides
EP2847170B1 (en) 2012-05-09 2017-11-08 Bayer CropScience AG Pyrazole indanyl carboxamides
EP2662361A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol indanyl carboxamides
JP6326043B2 (en) 2012-05-09 2018-05-16 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 5-halogenopyrazole indanyl carboxamides
EP2662364A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazole tetrahydronaphthyl carboxamides
EP2662363A1 (en) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenopyrazole biphenylcarboxamides
AR091104A1 (en) 2012-05-22 2015-01-14 Bayer Cropscience Ag COMBINATIONS OF ACTIVE COMPOUNDS THAT INCLUDE A LIPO-CHYTOOLIGOSACARIDE DERIVATIVE AND A NEMATICIDE, INSECTICIDE OR FUNGICIDE COMPOUND
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
AU2012208997B1 (en) 2012-07-30 2013-09-19 Dlf Usa Inc. An alfalfa variety named magnum salt
CN104780764A (en) 2012-09-05 2015-07-15 拜尔农作物科学股份公司 Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress
US20150259696A1 (en) 2012-10-11 2015-09-17 Shane E. Abbitt Guard cell promoters and uses thereof
US20150250176A1 (en) 2012-10-19 2015-09-10 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
LT2908641T (en) 2012-10-19 2018-04-25 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
EP2908639A1 (en) 2012-10-19 2015-08-26 Bayer Cropscience AG Active compound combinations comprising carboxamide derivatives
AU2013333845B2 (en) 2012-10-19 2017-06-08 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2014079957A1 (en) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selective inhibition of ethylene signal transduction
EP2735231A1 (en) 2012-11-23 2014-05-28 Bayer CropScience AG Active compound combinations
JP6367215B2 (en) 2012-11-30 2018-08-01 バイエル・クロップサイエンス・アクチェンゲゼルシャフト Two-component disinfectant mixture
BR122020019349B1 (en) 2012-11-30 2021-05-11 Bayer Cropscience Ag composition, its preparation process, method for controlling one or more harmful microorganisms, seed resistant to harmful microorganisms and its method of treatment
CA2892702A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal or pesticidal mixture
US9775351B2 (en) 2012-11-30 2017-10-03 Bayer Cropscience Ag Ternary fungicidal and pesticidal mixtures
CA2892701A1 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
EP2740356A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives
EP2740720A1 (en) 2012-12-05 2014-06-11 Bayer CropScience AG Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants
WO2014086751A1 (en) 2012-12-05 2014-06-12 Bayer Cropscience Ag Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress
WO2014090765A1 (en) 2012-12-12 2014-06-19 Bayer Cropscience Ag Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops
BR112015014307A2 (en) 2012-12-19 2017-07-11 Bayer Cropscience Ag difluoromethyl nicotinic tetrahydronaphthyl carboxamides
TW201446759A (en) 2013-03-07 2014-12-16 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives
AU2014241045B2 (en) 2013-03-13 2017-08-31 Pioneer Hi-Bred International, Inc. Glyphosate application for weed control in brassica
EP2970363B1 (en) 2013-03-14 2020-07-08 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
WO2014150914A2 (en) 2013-03-15 2014-09-25 Pioneer Hi-Bred International, Inc. Phi-4 polypeptides and methods for their use
JP2016522800A (en) 2013-04-12 2016-08-04 バイエル・クロップサイエンス・アクチェンゲゼルシャフト New triazoline thione derivatives
MX2015014365A (en) 2013-04-12 2015-12-07 Bayer Cropscience Ag Novel triazole derivatives.
MX358633B (en) 2013-04-19 2018-08-28 Bayer Cropscience Ag Method for improved utilization of the production potential of transgenic plants involving the application of a phthaldiamide derivative.
WO2014170364A1 (en) 2013-04-19 2014-10-23 Bayer Cropscience Ag Binary insecticidal or pesticidal mixture
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
TW201507722A (en) 2013-04-30 2015-03-01 Bayer Cropscience Ag N-(2-halogen-2-phenethyl)carboxamides as nematicides and endoparasiticides
US9770022B2 (en) 2013-06-26 2017-09-26 Bayer Cropscience Ag N-cycloalkyl-N-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
US20160150782A1 (en) 2013-07-09 2016-06-02 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
EP2837287A1 (en) 2013-08-15 2015-02-18 Bayer CropScience AG Use of prothioconazole for increasing root growth of Brassicaceae
US10006045B2 (en) 2013-08-16 2018-06-26 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN105705007A (en) 2013-09-13 2016-06-22 先锋国际良种公司 Insecticidal proteins and methods for their use
UA120701C2 (en) 2013-12-05 2020-01-27 Байєр Кропсайєнс Акцієнгезелльшафт N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives
CN105873907B (en) 2013-12-05 2019-03-12 拜耳作物科学股份公司 N- naphthenic base-N- { [2- (naphthenic base that 1- replaces) phenyl] methylene }-(thio) carboxamides derivatives
RU2021113662A (en) 2014-02-07 2021-05-31 Пайонир Хай-Бред Интернэшнл, Инк. INSECTICIDE PROTEINS AND METHODS OF THEIR APPLICATION
EP3102684B1 (en) 2014-02-07 2020-05-06 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US9686931B2 (en) 2014-07-07 2017-06-27 Alforex Seeds LLC Hybrid alfalfa variety named HybriForce-3400
AR101214A1 (en) 2014-07-22 2016-11-30 Bayer Cropscience Ag CIANO-CICLOALQUILPENTA-2,4-DIENOS, CIANO-CICLOALQUILPENT-2-EN-4-INAS, CIANO-HETEROCICLILPENTA-2,4-DIENOS AND CYANO-HETEROCICLILPENT-2-EN-4-INAS REPLACED AS ACTIVE PRINCIPLES PLANTS ABIOTIC
CA2955828A1 (en) 2014-08-08 2016-02-11 Pioneer Hi-Bred International, Inc. Ubiquitin promoters and introns and methods of use
US20170247719A1 (en) 2014-09-17 2017-08-31 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CA2962242A1 (en) 2014-09-29 2016-04-07 Agrigenetics, Inc. Low lignin non-transgenic alfalfa varieties and methods for producing the same
CN107108705B (en) 2014-10-16 2021-05-25 先锋国际良种公司 Insecticidal proteins and methods of use thereof
AR103024A1 (en) 2014-12-18 2017-04-12 Bayer Cropscience Ag SELECTED PYRIDONCARBOXAMIDS OR ITS SALTS AS ACTIVE SUBSTANCES AGAINST ABIOTIC PLANTS STRESS
US20170359965A1 (en) 2014-12-19 2017-12-21 E I Du Pont De Nemours And Company Polylactic acid compositions with accelerated degradation rate and increased heat stability
EP3283476B1 (en) 2015-04-13 2019-08-14 Bayer Cropscience AG N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives
CN108064233B (en) 2015-05-19 2022-07-15 先锋国际良种公司 Insecticidal proteins and methods of use thereof
BR112017027382A2 (en) 2015-06-16 2018-08-28 Pioneer Hi-Bred International, Inc. silencing element, dna construct, expression construct, expression cassette, host cell, composition, plant cell, plant or plant part, transgenic seed, method for controlling a plant insect pest, kit for controlling insect pests
CN109475096B (en) 2015-08-06 2022-08-23 先锋国际良种公司 Plant-derived insecticidal proteins and methods of use thereof
AU2016315655A1 (en) 2015-08-28 2018-02-01 E. I. Du Pont De Nemours And Company Ochrobactrum-mediated transformation of plants
EP3390431A1 (en) 2015-12-18 2018-10-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CA3004056C (en) 2015-12-22 2024-01-23 Pioneer Hi-Bred International, Inc. Tissue-preferred promoters and methods of use
CA3018384A1 (en) 2016-05-04 2017-11-09 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112018076047A2 (en) 2016-06-16 2019-03-26 Pioneer Hi Bred Int silencing element, dna construct, expression cassette, host cell, composition, plant cell, plant or plant part, transgenic seed, method for controlling a plant insect pest and kit
CA3026653A1 (en) 2016-06-24 2017-12-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2018005411A1 (en) 2016-07-01 2018-01-04 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
US20210292778A1 (en) 2016-07-12 2021-09-23 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CA3032030A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
CN109715621A (en) 2016-09-22 2019-05-03 拜耳作物科学股份公司 New triazole derivative
WO2018054829A1 (en) 2016-09-22 2018-03-29 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives and their use as fungicides
WO2018077711A2 (en) 2016-10-26 2018-05-03 Bayer Cropscience Aktiengesellschaft Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications
EP3535285B1 (en) 2016-11-01 2022-04-06 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112019011616A2 (en) 2016-12-08 2019-10-22 Bayer Ag use of insecticides to control larvae
WO2018108627A1 (en) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants
EP3332645A1 (en) 2016-12-12 2018-06-13 Bayer Cropscience AG Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress
WO2019025153A1 (en) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants
WO2019060383A1 (en) 2017-09-25 2019-03-28 Pioneer Hi-Bred, International, Inc. Tissue-preferred promoters and methods of use
US11702668B2 (en) 2018-05-22 2023-07-18 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
US20210323950A1 (en) 2018-06-04 2021-10-21 Bayer Aktiengesellschaft Herbicidally active bicyclic benzoylpyrazoles
US20210277409A1 (en) 2018-06-28 2021-09-09 Pioneer Hi-Bred International, Inc. Methods for selecting transformed plants
EA202190389A1 (en) 2018-07-26 2021-06-16 Байер Акциенгезельшафт APPLICATION OF FLUOPYRAM SUCCINATE DEHYDROGENASE INHIBITOR TO CONTROL ROOT ROT AND / OR FUSARIUM ROT CAUSED BY RHIZOCTONIA SOLANI, BRUSHARIUM SPECIES AND PYTHIUM SPP. SPECIES
JP2022512817A (en) 2018-10-31 2022-02-07 パイオニア ハイ-ブレッド インターナショナル, インコーポレイテッド Compositions and Methods for Ochrobactrum-mediated Plant Transformation
CA3047768A1 (en) 2019-06-21 2020-12-21 BASF Agricultural Solutions Seed US LLC Canola hybrid variety 7cn0425
US11672218B2 (en) 2020-04-24 2023-06-13 BASF Agricultural Solutions Seed US LLC Canola hybrid variety 7CN0065
EP4182466A2 (en) 2020-07-14 2023-05-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2022072833A2 (en) 2020-10-02 2022-04-07 Impossible Foods Inc. Expression constructs and methods of genetically engineering cells
WO2022072846A2 (en) 2020-10-02 2022-04-07 Impossible Foods Inc. Transgenic plants with altered fatty acid profiles and upregulated heme biosynthesis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003919A1 (en) * 1990-08-30 1992-03-19 E.I. Du Pont De Nemours And Company Seeds, plants and oils with altered fatty acid profiles
WO1994018337A1 (en) * 1993-02-05 1994-08-18 Monsanto Company Altered linolenic and linoleic acid content in plants
WO1997021340A1 (en) * 1995-12-14 1997-06-19 Cargill, Incorporated Plants having mutant sequences that confer altered fatty acid profiles
WO1997030582A1 (en) * 1996-02-06 1997-08-28 Carnegie Institution Of Washington Production of hydroxylated fatty acids in genetically modified plants

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2667078B1 (en) * 1990-09-21 1994-09-16 Agronomique Inst Nat Rech DNA SEQUENCE GIVING MALE CYTOPLASMIC STERILITY, MITOCHONDRIAL, MITOCHONDRIA AND PLANT CONTAINING THE SAME, AND PROCESS FOR THE PREPARATION OF HYBRIDS.
AU692791B2 (en) * 1993-10-12 1998-06-18 Agrigenetics, Inc. Brassica napus variety AG019
US5850026A (en) * 1996-07-03 1998-12-15 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003919A1 (en) * 1990-08-30 1992-03-19 E.I. Du Pont De Nemours And Company Seeds, plants and oils with altered fatty acid profiles
WO1994018337A1 (en) * 1993-02-05 1994-08-18 Monsanto Company Altered linolenic and linoleic acid content in plants
WO1997021340A1 (en) * 1995-12-14 1997-06-19 Cargill, Incorporated Plants having mutant sequences that confer altered fatty acid profiles
WO1997030582A1 (en) * 1996-02-06 1997-08-28 Carnegie Institution Of Washington Production of hydroxylated fatty acids in genetically modified plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE BIOSIS BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1998, TANHUANPAA ET AL.: "Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (BRassica rapa ssp. oleifera)", XP002139724 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102032A1 (en) * 2004-04-26 2005-11-03 The Rice Research Institute Of Guangdong Academy Of Agricultural Sciences The selection methods of self-pollination and normal cross pollination in population, variety of crops
US8637740B2 (en) 2008-11-04 2014-01-28 Dow Agrosciences, Llc. Omega-9 quality Brassica juncea
WO2013052956A2 (en) 2011-10-07 2013-04-11 E. I. Du Pont De Nemours And Company Liquid compositions used as insulating and heat transfer means, electrical devices containing said compositions and preparation methods for such compositions
US9240259B2 (en) 2011-10-07 2016-01-19 E I Du Pont De Nemours And Company Liquid compositions used as insulating and heat transfer means, electrical devices containing said compositions and preparation method for such compositions

Also Published As

Publication number Publication date
US6323392B1 (en) 2001-11-27
CA2320842A1 (en) 2000-09-08
AU2729200A (en) 2000-09-21
CA2320842C (en) 2002-10-22

Similar Documents

Publication Publication Date Title
US6323392B1 (en) Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds
EP0813357B1 (en) Improved oilseed brassica bearing an endogenous oil with desirable levels of unsaturated and saturated fatty acids
US5434283A (en) Edible endogenous vegetable oil extracted from rapeseeds of reduced stearic and palmitic saturated fatty acid content
US5840946A (en) Vegetable oil extracted from rapeseeds having a genetically controlled unusually high oleic acid content
EP0566216B1 (en) Improved rapeseed exhibiting an enhanced oleic acid content
US6084157A (en) Seeds, plants and oils with altered fatty acid profiles
US6303849B1 (en) Brassica juncea lines bearing endogenous edible oils
JP2000505654A (en) Oilseed Brassica Containing Improved Fertility Restoring Gene for Ogura Cytoplasmic Male Sterility
JPH05199821A (en) Sunflower product with low containing level of saturated fatty acid
AU642907B2 (en) Production of improved rapeseed exhibiting an enhanced oleic acid content
US5912416A (en) Safflower products with very high levels of unsaturated fatty acids
CA2391612C (en) Improvements in the formation of brassica napus f1 hybrid seeds with high oleic acid content and a reduced linolenic acid content
CA2253984C (en) Brassica juncea lines bearing endogenous edible oils
MXPA97006836A (en) Brazilian oil seed improved with an endogenous oil with desirable concentrations of saturated fatty acids and insatura
JPH04506607A (en) Production of improved rapeseed showing reduced saturated fatty acid content

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2320842

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase