WO2000070802A1 - Recepteur de signaux et procede de compensation du decalage de frequence - Google Patents

Recepteur de signaux et procede de compensation du decalage de frequence Download PDF

Info

Publication number
WO2000070802A1
WO2000070802A1 PCT/JP2000/003117 JP0003117W WO0070802A1 WO 2000070802 A1 WO2000070802 A1 WO 2000070802A1 JP 0003117 W JP0003117 W JP 0003117W WO 0070802 A1 WO0070802 A1 WO 0070802A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
signal
cross
value
received signal
Prior art date
Application number
PCT/JP2000/003117
Other languages
English (en)
French (fr)
Inventor
Kimihiko Imamura
Yoshiteru Matsushita
Hidekazu Tsuboi
Takashi Yoshimoto
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to EP00925676A priority Critical patent/EP1179901B1/en
Priority to US09/980,752 priority patent/US7149266B1/en
Priority to DE60018060T priority patent/DE60018060T2/de
Publication of WO2000070802A1 publication Critical patent/WO2000070802A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the present invention relates to a signal receiving apparatus and a frequency offset compensation method.
  • the present invention relates to a signal receiving apparatus and a frequency offset compensating method, and more particularly to a signal receiving apparatus for receiving a signal transmitted by a multi-carrier transmission method such as an orthogonal frequency division multiplexing (OFDM) method.
  • the present invention relates to a communication apparatus and a method for compensating for a frequency offset of a subcarrier used for such signal transmission.
  • the OFDM scheme which is a type of multi-carrier transmission scheme
  • a transmission scheme used for large-capacity data transmission such as terrestrial digital television broadcasting and high-speed wireless LAN (Local Area Network).
  • data consisting of symbols that are parallelized to a plurality of subcarriers (subcarriers) that are orthogonal to each other is allocated, so that data is allocated.
  • subcarriers subcarriers
  • a signal transmitted by the OFDM method (hereinafter, referred to as an OFDM signal) is obtained by modulating coded data subjected to serial / parallel conversion into a plurality of subcarriers having a frequency relationship that is orthogonal to each other.
  • the coded data is converted to a digital modulated wave by performing an inverse Fourier transform (converting the frequency domain to the time domain), and the obtained digital modulated wave is converted to parallel-serial. Generated.
  • the demodulator side can reproduce the original coded data by performing a process reverse to the above-described process on the modulator side.
  • FIG. 43 shows the spectrum of the transmitted signal and the received signal in the modulation method using a single carrier (single carrier modulation).
  • FIG. 43B shows the spectrum of the transmission signal and the reception signal in the OFDM system.
  • the transmission signal by the single carrier modulation scheme is affected by frequency selective fading due to fluctuations in the frequency characteristics of the transmission path, and the quality of the received signal is significantly degraded.
  • the transmission signal has a small bandwidth of each subcarrier with respect to fluctuations in the frequency characteristics of the transmission path, it is less susceptible to frequency-selective fusing, and degradation in the quality of the received signal can be reduced.
  • the OFDM scheme uses a plurality of subcarriers to transmit data, the OFDM scheme also has the advantage of high frequency use efficiency.
  • each subcarrier is more densely distributed within a predetermined band, and even if the frequency offset is small, interference between adjacent subcarriers occurs. Occurs violently. Therefore, frequency offset compensation is one of the biggest issues to consider when implementing a real system.
  • the signal line represented by a thick line represents a complex number signal (a signal composed of an in-phase detection axis signal and a quadrature detection axis signal), and the signal line represented by a thin line represents a real number signal. I have.
  • the first half of the conventional OFDM transmission device is composed of a serial-to-parallel converter 1 that performs serial-to-parallel conversion on the input information signal, and information allocated to each parallelized subcarrier.
  • a coding modulator 2 for performing modulation such as DQPSK on the signal an inverse discrete Fourier transformer 3 for performing an inverse discrete Fourier transform on an output signal of the coding modulator 2, and an inverse discrete Fourier transformer 3 It comprises a parallel-serial converter 4 for converting an output signal into a serial signal, and a guard interval insertion circuit 5 for adding a guard interval to the head of the output signal of the parallel-serial converter 4 to generate a data symbol.
  • the latter half of the conventional OFDM transmission apparatus includes a memory 6 for holding a preamble and a start symbol, which constitutes a known symbol added to the head of a packet, and a preamble, a start symbol, and a data symbol.
  • Quadrature modulator 8 that converts the output of digital quadrature modulator 8 to analog data, and D / A converter 9 .
  • the analog data from D / A converter 9 is frequency-converted to OFDM signal.
  • a frequency converter 10 for transmission The OFDM transmitting apparatus further includes a controller 100 composed of a CPU or the like for controlling the operation of the entire OFDM transmitting apparatus.
  • the signal format of the OFDM signal generated by the OFDM transmitting apparatus configured as described above includes a preamble and (two) start symbols added to the head of the packet. And a data symbol obtained by adding a guard interval to the data after the inverse discrete Fourier transform. More specifically, the data symbol is copied from the signal of the section length T gi of the latter half of the output (effective symbol section) of the inverse discrete Fourier transformer 3 and is added before the effective symbol section (guard section). Has been generated by that. By adding the guard section, it becomes possible to have a resistance to a delayed wave that arrives with a time delay within the guard section length T gi.
  • the preamble that constitutes a known symbol is a signal used for automatic gain control (AGC) gain adjustment and symbol synchronization. Further, the start symbol constituting the known symbol is used to determine an initial phase when performing modulation by differential coding, and is a signal including all subcarriers. Each start symbol length is equal to the section length Tw of the effective symbol obtained by removing the guard section from the data symbol.
  • AGC automatic gain control
  • a signal line represented by a thick line represents a complex number signal
  • a signal line represented by a thin line represents a real number signal
  • the first half of the conventional OFDM receiver includes a frequency converter 11 for converting the frequency of a received signal into a predetermined band, and an AZD for converting the output of the frequency converter 11 into digital data.
  • a digital orthogonal detector 13 that separates the output of the AZD converter 12 into a real component and an imaginary component, and a frequency offset that performs frequency offset compensation and estimates symbol timing (position) It has a compensator 14 and a symbol clock generator 15 that generates a symbol clock based on the symbol position estimation value from the frequency offset compensator 14.
  • the latter half of the conventional OFDM receiving apparatus includes a frequency offset compensator according to a guard section removal clock supplied from a controller 20 ° 0 which will be described later based on the symbol clock generated by the symbol clock generator 15.
  • a guard interval elimination circuit 16 that removes the guard interval from the output of 14
  • a serial-parallel converter 17 that converts the output of the guard interval elimination circuit 16 from serial to parallel
  • an output of the serial-parallel converter 17 Discrete Fourier Transformer (FFT) 18 that performs discrete Fourier transform of force
  • Sign judgment circuit 19 that demodulates the output of discrete Fourier transformer 18, and Parallel-serial that parallelizes and serializes the output of sign judgment circuit 19
  • the OFDM receiving apparatus further includes a controller 2000 including a CPU for controlling the operation of the entire OFDM receiving apparatus.
  • the digital quadrature detector 13 shown in Fig. 47 has a local oscillator 21 that oscillates at a constant frequency and a ⁇ / 2 phase that shifts the phase of the output signal of the local oscillator 21 by ⁇ ⁇ 2
  • the shifters 22 and the multipliers 23 and 24 for multiplying the output of the A / D converter 12 and the output of the local oscillator 21 and the output of the ⁇ / 2 phase shifter 22 in FIG.
  • And filters 25 and 26 for extracting a desired complex signal from the outputs of the multipliers 23 and 24, respectively.
  • the frequency offset compensator 14 shown in FIG. 47 includes a delay unit 31 that delays the output signal of the digital quadrature detector 13 (FIG. 47) by the effective symbol section length Tw.
  • the cross-correlator 32 calculates the cross-correlation value between the output of the delay unit 31 and the received signal from the digital quadrature detector 13 and the auto-correlation value of the received signal from the digital quadrature detector 13 And an autocorrelator 33.
  • the frequency offset compensator 14 divides the output of the cross-correlator 32 by the output of the auto-correlator 33 to obtain a peak for detecting the peak position of the cross-correlation value regardless of the received signal level. It has a detector 34 and a symbol synchronization position estimator 35 that outputs an estimated value of the symbol position from the output (peak position of the cross-correlation value) of the peak detector 34.
  • the frequency offset compensator 14 estimates the output of the cross-correlator 32, the output of the peak detector 34 (the peak position of the cross-correlation value), the force, and the rotation angle of the cross-correlation value. Rotates the phase of the received signal from the digital quadrature detector 13 based on the estimated value of the frequency offset from the rotation angle estimator 36 that outputs the estimated value of the frequency offset. Accordingly, a phase rotation circuit 37 for outputting a signal in which the frequency offset is compensated is provided.
  • the correlators 32 and 33 shown in FIG. 49 include a delay line 41, taps 42 and an adder 43 as shown in FIG. Obtained from the signal
  • the correlation value is calculated by integrating the first input signal using the number of taps.
  • the cross-correlator 32 has a digital quadrature detector 1 as the first input signal.
  • the autocorrelator 33 receives in common the received signals of the digital quadrature detector 13 (FIG. 47) as the first and second input signals, and obtains from these received signals. By integrating this received signal over the number of taps M obtained, an autocorrelation value can be obtained.
  • the number of taps M is the discrete Fourier transformer (FFT) 1 8 (Fig.
  • the peak detector 34 calculates the peak position of the cross-correlation value by dividing the output of the cross-correlator 32 by the output of the auto-correlator 33. Based on the detection result of the peak detector 34, the symbol synchronization position estimator 35 generates a symbol synchronization position designation value.
  • the rotation angle estimator 36 calculates the rotation angle ⁇ 0 of the cross-correlation value with respect to the real axis from the peak position of the cross-correlation value. It can be estimated. Based on the rotation angle ⁇ 0, the rotation angle estimator 36 can estimate the frequency offset value ⁇ f using the following equation.
  • ⁇ f ⁇ ⁇ / (2 ⁇ T w)
  • the phase rotation circuit 37 rotates the phase of the signal received from the digital quadrature detector 13 (FIG. It is possible to compensate for the offset.
  • the rotation angle ⁇ 0 of the cross-correlation value with respect to the real axis takes a value between 1 ⁇ and ⁇ , so that the frequency offset in the range of 1 1 / (2 T w) to 1 no (2 T w) Can compensate Noh.
  • the frequency offset is compensated by the phase rotation of the received signal using the phase rotation circuit 37, but the rotation is performed without using the phase rotation circuit 37.
  • the frequency offset value ⁇ ⁇ obtained from the rotation angle ⁇ 0 by the angle estimator 36 is input to the control input (not shown) of the local oscillator 21 in the digital quadrature detector 13 shown in FIG.
  • the frequency offset of the received signal can be compensated.
  • the above-described conventional frequency offset compensator employs a delayed autocorrelation method that uses a signal obtained by delaying a received signal as a reference signal, and performs normalization at subcarrier frequency intervals.
  • the normalized frequency offset there is a problem that only a frequency offset in the range of 0.1-5 to +0.5 can be detected and compensated. Disclosure of the invention
  • An object of the present invention is to provide a signal receiving device and a frequency offset compensating method in which a frequency offset compensating range is expanded.
  • a signal including a data symbol section in which symbols are allocated to a plurality of subcarriers in parallel and modulated, and a start symbol added prior to the data symbol section are received.
  • the signal receiving apparatus for demodulating the signal comprises first memory means, cross-correlation value calculating means, peak position detecting means, frequency offset estimating means, and frequency offset compensating means.
  • the first memory means holds ⁇ ( ⁇ is an integer of 2 or more) kinds of reference signals, each of which corresponds to an arbitrary portion in the start symbol.
  • the cross-correlation value calculation means calculates a cross-correlation value between the received signal and each of the ⁇ types of reference signals.
  • the peak position detecting means detects each peak position of the ⁇ cross-correlation values calculated by the cross-correlation value calculating means.
  • the frequency offset estimating means estimates and outputs a frequency offset estimated value of the subcarrier of the received signal based on the cross-correlation value at each of the ⁇ ⁇ ⁇ peak positions detected by the peak position detecting means.
  • the frequency offset compensating means is based on the frequency offset estimation value estimated by the frequency offset estimating means. Thus, the frequency offset of the subcarrier of the received signal is compensated.
  • a signal consisting of a data symbol section in which symbols are allocated to a plurality of subcarriers in parallel and modulated, and a start symbol added prior to the data symbol section is transmitted.
  • the signal receiving apparatus that receives and demodulates the signal includes first memory means, cross-correlation value calculating means, peak position detecting means, frequency offset estimating means, and frequency offset compensating means.
  • the first memory means holds N (N is an integer of 3 or more) kinds of reference signals, each of which corresponds to an arbitrary part in the start symbol.
  • the cross-correlation value calculation means calculates a cross-correlation value between the received signal and each of the N types of reference signals.
  • the peak position detecting means detects each peak position of the N cross-correlation values calculated by the cross-correlation value calculating means.
  • the frequency offset estimating means estimates and averages a plurality of frequency offset estimating values of the subcarriers of the received signal based on the cross-correlation value at each of the N peak positions detected by the peak position detecting means and outputs the result. I do.
  • the frequency offset compensating means compensates for the subcarrier frequency offset of the received signal based on the averaged frequency offset value estimated and averaged by the frequency offset estimating means.
  • a data symbol section in which symbols are allocated to a plurality of subcarriers in parallel and modulated, and a start symbol added prior to the data symbol section
  • the signal receiving device for receiving and demodulating the signal includes a first memory unit, a cross-correlation value calculating unit, a peak position detecting unit, a frequency offset estimating unit, a phase rotating unit, and a second memory unit. It comprises a memory means, a control means, and a frequency offset compensation means.
  • the first memory means holds N (N is an integer of 2 or more) reference signals, each of which corresponds to an arbitrary portion in the start symbol.
  • the cross-correlation value calculation means calculates a cross-correlation value between the given first signal and each of the N types of reference signals.
  • the peak position detecting means detects each peak position of the N cross-correlation values calculated by the cross-correlation value calculating means.
  • the frequency offset estimating means calculates the frequency offset of the subcarrier of the first signal provided to the cross-correlation value calculating means based on the cross-correlation value at each of the N peak positions detected by the peak position detecting means. To estimate Output and accumulate.
  • the phase rotation means rotates the phase of the given subcarrier of the second signal based on the frequency offset estimation value estimated by the frequency offset estimation means.
  • the second memory means holds the second signal whose phase has been rotated by the phase rotation means.
  • the control means supplies the received signal as a first signal to the cross-correlation value calculating means and supplies the received signal as a second signal to the phase rotating means, thereby accumulating the frequency offset estimation value of the subcarrier of the received signal and receiving the received signal.
  • the first control operation for rotating the phase of the subcarrier of the signal and holding it in the second memory means is performed once, and the signal held in the second memory means is used as the first signal.
  • the frequency offset estimation value of the subcarrier of the signal held in the second memory is accumulated and held in the second memory.
  • the second control operation for rotating the phase of the subcarrier of the input signal and holding the same in the second memory means is repeated (N ⁇ 1) times.
  • the frequency offset compensating means compensates for the frequency offset of the subcarrier of the received signal based on the sum of the N frequency offset estimated values accumulated by the first and second control operations.
  • a data symbol section in which symbols are allocated to a plurality of subcarriers in parallel and modulated, and a start symbol and a power added prior to the data symbol section.
  • a signal receiving device that receives and demodulates a signal including: a first memory means, a cross-correlation value calculating means, a peak position detecting means, a second memory means, a frequency offset estimating means, and an adding means , Phase rotation means, control means, and frequency offset compensation means.
  • the first memory means is composed of N (N is an integer of 2 or more) reference signals, each corresponding to an arbitrary part of the start symbol, and two reference signals each having a certain frequency offset.
  • a plurality of reference data based on a phase rotation angle between cross-correlation values corresponding to a plurality of sets of reference signals or more are held.
  • the cross-correlation value calculation means calculates a cross-correlation value between the given first signal and each set of reference signals.
  • the peak position detecting means detects each peak position of the cross-correlation value calculated by the cross-correlation value calculating means.
  • the second memory means extracts a part of the received signal and Hold.
  • the frequency offset estimating means is configured to output the first cross-correlation value to the cross-correlation value calculating means based on the cross-correlation value at each of the peak positions detected by the peak position detecting means and the reference data corresponding to each set of reference signals.
  • the adding means accumulates the frequency offset estimation value output from the frequency offset estimating means.
  • the phase rotation means rotates the phase of the received signal held in the second memory means based on the frequency offset estimation value estimated by the frequency offset estimation means.
  • the control means supplies the received signal as a first signal to the cross-correlation value calculation means, and calculates a cross-correlation value between each of the sets of reference signals corresponding to the smallest one of the plurality of reference data.
  • the received signal held in the second memory means, which has been phase-rotated based on the reference signal, is supplied to the cross-correlation value calculating means as a first signal, and the reference signal corresponding to the least unused unused reference data among the plurality of reference data
  • a cross-correlation value is calculated between the second set of data and the second memory by the frequency offset estimating means based on the calculated cross-correlation value and the unused minimum reference data.
  • Repeating a second control operation for estimating a frequency offset estimate lifting signal being.
  • the frequency offset compensator compensates the frequency offset of the subcarrier of the received signal based on the sum of the frequency offset estimated values calculated by the first and second control operations accumulated by the adder.
  • a data symbol section in which symbols are allocated to a plurality of subcarriers in parallel and modulated, and a start symbol and power added prior to the data symbol section
  • the signal receiving apparatus that receives and demodulates such a signal includes a CZN detection unit, a memory unit, a reference signal output unit, a cross-correlation value calculation unit, a peak position calculation unit, a frequency offset estimation unit, Frequency offset compensating means.
  • the C / N detection means detects the C / N of the received signal.
  • the memory means holds a data table for specifying an optimal reference signal corresponding to the C / N of the received signal.
  • the reference signal output means outputs N based on the data table according to the detected C / N, each corresponding to an arbitrary portion in the start symbol. (N is an integer of 2 or more) Outputs the optimal reference signals.
  • the cross-correlation value calculation means calculates a cross-correlation value between the received signal and each of the N types of reference signals.
  • the peak position detecting means detects each peak position of the N cross-correlation values calculated by the cross-correlation value calculating means.
  • the frequency offset estimating means estimates the frequency offset estimated value of the subcarrier of the received signal based on the cross-correlation value at each of the N peak positions detected by the peak position detecting means. Output.
  • the frequency offset compensating means compensates for the frequency offset of the subcarrier of the received signal based on the frequency offset estimation value estimated by the frequency offset estimating means.
  • the data symbol section is composed of a data symbol section in which symbols are assigned to a plurality of subcarriers in parallel and modulated, and a start symbol added before the data symbol section.
  • the method of compensating for the frequency offset of the subcarrier of the received signal is based on the reception signal and N (where N is 2 or more) corresponding to an arbitrary part in the start symbol. Calculating a cross-correlation value with each of the reference signals of the types; detecting the peak positions of the calculated N cross-correlation values; and calculating the peak positions of the detected N peak positions. Estimating and outputting the frequency offset estimation value of the subcarrier of the received signal based on the cross-correlation value in each case; Compensating for the frequency offset of the subcarrier of the received signal based on the estimated offset value.
  • the data symbol section is composed of a data symbol section in which symbols are assigned to a plurality of subcarriers in parallel and modulated, and a start symbol added before the data symbol section.
  • the method of compensating for the frequency offset of the subcarrier of the received signal is based on the received signal and N (where N is 3 or more) corresponding to any part of the start symbol. Calculating a cross-correlation value with each of the reference signals of the types; detecting the peak positions of the calculated N cross-correlation values; and calculating the peak positions of the detected N peak positions.
  • a plurality of frequency offset estimation values of the subcarriers of the received signal are estimated, averaged and output. And compensating for the frequency offset of the sub-carriers of the received signal based on the estimated and averaged frequency offset estimate.
  • the data symbol section is composed of a data symbol section in which symbols are assigned to a plurality of subcarriers in parallel and modulated, and a start symbol added before the data symbol section.
  • a method of compensating for a frequency offset of a subcarrier of the received signal includes a first control step, and the first control step includes the steps of: A step of calculating a cross-correlation value with each of N (N is an integer of 2 or more) kinds of reference signals corresponding to an arbitrary part in the symbol, and a peak position of each of the calculated N cross-correlation values And estimating the frequency offset of the subcarrier of the received signal based on the cross-correlation value at each of the detected N peak positions.
  • the data symbol section is composed of a data symbol section in which symbols are assigned to a plurality of subcarriers in parallel and modulated, and a start symbol added before the data symbol section.
  • a signal that receives and demodulates a signal includes N (N is an integer of 2 or more) types of reference signals, each of which corresponds to an arbitrary part in a start symbol. Holding a plurality of reference data based on a phase rotation angle between cross-correlation values each corresponding to a plurality of sets each including two or more types of reference signals in a state where the frequency offset exists.
  • a first control step comprising: calculating a cross-correlation value between the received signal and each of a set of reference signals corresponding to the smallest reference data among the plurality of reference data; and Detecting a peak position of each of the detected cross-correlation values; and receiving the cross-correlation value at each of the detected peak positions and the minimum reference data. Estimating and outputting the frequency offset estimation value of the subcarrier of the signal and accumulating it; extracting and holding a part of the received signal; and holding and storing the frequency offset estimation value based on the estimated frequency offset estimation value.
  • Rotating the phase of the received signal and further comprising a second control step, wherein the second control step comprises: holding the received signal phase-rotated based on the estimated frequency offset estimate; and Calculating a cross-correlation value with each of the pairs of reference signals corresponding to the least unused reference data among the plurality of reference data; and detecting a peak position of each of the calculated cross-correlation values. Based on the cross-correlation values at each of the detected peak positions and the least unused reference data. Estimating and outputting and accumulating the frequency offset estimation value of the received signal, wherein after the first control step, the second control step is repeated, and the first and second steps are performed. And compensating for the frequency offset by rotating the phase of the subcarrier of the received signal based on the added value of the frequency offset estimation value accumulated in the control step.
  • the data symbol section is composed of a data symbol section in which symbols are assigned to a plurality of subcarriers in parallel and modulated, and a start symbol added before the data symbol section.
  • a method of compensating for a frequency offset of a subcarrier of the received signal includes a step of detecting a C / N of the received signal and a method corresponding to the C / N of the received signal.
  • FIG. 1 is a block diagram illustrating a frequency offset compensator of an OFDM receiver according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the operation principle of the frequency offset compensator of the OFDM receiver according to the first embodiment of the present invention.
  • X indicates the equivalent estimated position of the phase rotation angle
  • Ngi indicates the number of samples included in Tgi
  • Nw indicates the number of samples included in Tw.
  • FIG. 3 is an explanatory diagram showing a normalized frequency offset versus bit error rate characteristic of the frequency offset compensator of the OFDM receiver according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing the position of the reference signal with respect to the start symbol of the frequency offset compensator of the OFDM receiver according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a normalized frequency when a reference signal having a different reference data (equivalent estimated time difference) TE is used when the frequency offset compensator of the OFDM receiver according to the first embodiment of the present invention has a high CNR.
  • FIG. 4 is an explanatory diagram showing offset versus bit error rate characteristics.
  • FIG. 6 shows a normalized frequency in the case where the reference data (equivalent estimated time difference) TE is different at the time of low CNR of the frequency offset compensator of the OFDM receiving apparatus according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing offset versus bit rate characteristics.
  • FIG. 7 is an explanatory diagram showing that in the frequency offset compensator of the OFDM receiver, when the noise is relatively small and the TEZTw is small, the frequency offset that can be estimated increases.
  • FIG. 8 is an explanatory diagram showing that in the frequency offset compensator of the OFDM receiver, when TEZTw is large, the estimable frequency offset becomes small.
  • FIG. 9 is an explanatory diagram showing that, in the frequency offset compensator of the OFDM receiver, when TE / Tw is small, a frequency offset estimation error due to noise increases.
  • FIG. 10 is an explanatory diagram showing that, in the frequency offset compensator of the OFDM receiver, when TE / Tw is large, the frequency offset estimation error due to noise becomes small.
  • FIG. 11 is a block diagram showing a frequency offset compensator of the OFDM receiver according to the second embodiment of the present invention.
  • FIG. 12 is an explanatory diagram showing the operation principle of the frequency offset compensator of the OFDM receiver according to the second embodiment of the present invention.
  • X indicates the equivalent estimated position of the phase rotation angle.
  • FIG. 13 is a graph showing a relationship between a frequency offset value and a frequency offset estimation value by a general frequency offset estimation method in the frequency offset compensator of the OFDM receiver.
  • the solid thick line indicates the part without noise, the shaded area indicates the frequency offset estimation error range when there is noise, ⁇ f indicates the frequency offset value, and indicates the frequency offset estimation value.
  • FIG. 14 is an explanatory diagram showing that, in the frequency offset compensator of the OFDM receiver, when the amplitude of the cross-correlation value decreases, the estimation error of the phase angle of the cross-correlation value increases.
  • the shaded area indicates the error range of the cross-correlation value output due to noise.
  • FIG. 15 is a block diagram showing a frequency offset compensator of the OFDM receiver according to the third embodiment of the present invention.
  • FIG. 16 is a block diagram for explaining an operation of the frequency offset compensator of the OFDM receiver according to the third embodiment of the present invention.
  • FIG. 17 is a block diagram for explaining the operation of the frequency offset compensator of the OFDM receiving apparatus according to the third embodiment of the present invention.
  • FIG. 18 is a block diagram for explaining the operation of the frequency offset compensator of the OFDM receiver according to the third embodiment of the present invention.
  • FIG. 19 is a flowchart showing a processing procedure in the frequency offset compensator of the OFDM receiver according to the third embodiment of the present invention.
  • FIG. 20 is a graph showing the relationship between the normalized frequency offset obtained from the frequency offset compensator of the OFDM receiver according to the third embodiment of the present invention and the bit error rate.
  • FIG. 21 is a block diagram showing a frequency offset compensator of an OFDM receiver according to a fourth embodiment of the present invention.
  • FIG. 22 is a block diagram showing a frequency offset compensator of an OFDM receiver according to a fifth embodiment of the present invention.
  • FIG. 23 is a diagram showing a relationship between reference signals held in the memory 211 of the frequency offset estimator shown in FIG. X indicates an equivalent estimated position of the phase rotation angle (the length of the reference signal is constant).
  • FIG. 24 is a flowchart showing a processing procedure in the frequency offset estimator of the OFDM receiving apparatus according to the fifth embodiment of the present invention.
  • FIG. 25 is an explanatory diagram showing the relationship between reference signals held in the memory 211 of the frequency offset estimator of the OFDM receiver according to the sixth embodiment of the present invention.
  • X indicates the equivalent estimated position of the phase rotation angle (the length of the reference signal is constant).
  • FIG. 26 is a block diagram showing a quadrature detection unit with a frequency offset compensation function of an OFDM receiver according to a seventh embodiment of the present invention.
  • FIG. 27 is a block diagram showing a frequency offset estimator of the OFDM receiving apparatus according to the seventh embodiment of the present invention.
  • FIG. 28 is a block diagram showing a digital orthogonal detector of the orthogonal detector with the frequency offset compensation function shown in FIG.
  • FIG. 29 is a block diagram showing the relationship between the frequency offset estimator and the digital quadrature detector of the OFDM receiver according to the eighth embodiment of the present invention.
  • FIG. 30 is a block diagram showing the frequency offset estimator shown in FIG. Figure 31 shows the normalized frequency offset vs. bit error rate characteristics when the width of the reference signal is fixed and the time difference shift of the reference signal is changed when the C / N is relatively small. It is a graph.
  • Fig. 32 is a graph showing the normalized frequency offset vs. bit error rate characteristics when the width of the reference signal is fixed and the time difference shift of the reference signal is changed when the CZN is relatively large in the middle. It is.
  • Figure 33 is a graph showing the normalized frequency offset vs. bit error rate characteristics when the width of the reference signal is fixed and the time difference shift of the reference signal is changed when CZN is relatively large. It is.
  • FIG. 34 is an explanatory diagram showing that the smaller the time difference shift of the reference signal is, the shorter the operation completion time is.
  • A indicates the value of width (constant)
  • B indicates the value of shift (BKB 2)
  • S 21 indicates a reference signal that is correlated after shifting from S1 by B1
  • S22 indicates a reference signal that is correlated after shifting from S1 by B2.
  • Figure 35 is a graph showing the normalized frequency offset vs. bit error rate characteristics when the time difference shift of the reference signal is constant and the width of the reference signal is changed when CZN is relatively small. is there.
  • Figure 36 is a graph showing the normalized frequency offset vs. bit error rate characteristics when the time difference shift of the reference signal is fixed and the width of the reference signal is changed when the CZN is relatively large. is there.
  • Fig. 37 is a graph showing the normalized frequency offset vs. bit error rate characteristics when the time difference shift of the reference signal is fixed and the width of the reference signal is changed when the CZN is relatively large. .
  • FIG. 38 is an explanatory diagram showing that the smaller the width w id t h of the reference signal is, the shorter the operation completion time is.
  • B indicates the value of the width (constant)
  • A indicates the value of the shift (A 1 + A 2)
  • S 12 denotes a reference signal that is correlated after shifting from S 11 by B
  • S 22 denotes a reference signal that is correlated after shifting from S 21 by B.
  • FIG. 39 is a graph showing normalized frequency offset versus bit error rate characteristics when the time difference shift of the reference signal and the width of the reference signal are changed when the CZN is relatively small.
  • FIG. 40 is a graph showing normalized frequency offset vs. bit error rate characteristics when the time difference shift of the reference signal and the width width of the reference signal are changed when the CZN is relatively large.
  • FIG. 41 is a graph showing the normalized frequency offset versus bit error rate characteristics when the time difference shift of the reference signal and the width width of the reference signal are changed when the CZN is relatively large.
  • FIG. 42 is a diagram illustrating a CZN detector that obtains CZN information of a received signal in an OFDM receiving apparatus according to a ninth embodiment of the present invention.
  • FIG. 43A is an explanatory diagram showing a spectrum of the single carrier modulation method.
  • FIG. 43B is an explanatory diagram showing a spectrum of the OFDM transmission system.
  • FIG. 44 is an explanatory diagram showing a frequency offset in an OFDM signal.
  • the vertical dashed line indicates the case without frequency offset (when not affected by other waves), and the solid vertical line indicates the case with frequency offset (when affected by other waves).
  • FIG. 45 is a block diagram showing an OFDM transmitting apparatus according to the related art.
  • FIG. 46 is an explanatory diagram showing a general packet configuration of an OFDM signal.
  • FIG. 47 is a block diagram showing an OFDM receiver according to the related art.
  • FIG. 48 is a block diagram illustrating an example of a digital quadrature detector in an OFDM receiver according to the related art.
  • FIG. 49 is a block diagram illustrating an example of a frequency offset compensator in an OFDM receiver according to the related art.
  • FIG. 50 is a block diagram showing a correlator of a frequency offset compensator in an OFDM receiver according to the related art.
  • FIG. 51 is an explanatory diagram illustrating the operation principle of the frequency offset compensator in the OFDM receiver according to the related art.
  • the OFDM receiver according to the first embodiment is an improvement of the frequency offset compensator 14 in the conventional OFDM receiver described with reference to FIG.
  • the other parts except for have the same configuration as the conventional OFDM receiver.
  • a signal line represented by a thick line represents a complex number signal
  • a signal line represented by a thin line represents a real number signal.
  • each memory 51 corresponds to an arbitrary part in the start symbol.
  • N 2 types of signals are held as reference signals.
  • the cross-correlators 52 and 53 calculate a cross-correlation value between the output signal of the digital quadrature detector 13 (FIG. 47) and each of the two reference signals held in the memory 51.
  • the peak detector 54 detects a peak position at the output of each of the cross-correlators 52 and 53, and the frequency offset estimating circuit 55 uses the cross-correlation value at each peak position detected by the peak detector 54 to calculate Calculate the phase rotation angle and estimate the frequency offset value of the received OFDM signal.
  • the frequency offset estimating circuit 55 includes a phase rotation angle calculation circuit 56 for calculating a phase rotation angle based on the cross-correlation value at each peak position detected by the peak detector 54, and a memory 51.
  • Reference data (equivalent estimated time difference) corresponding to the two held reference signals (equivalent estimated time difference) 2 ⁇
  • the memory 57 for holding TE and the output of the phase rotation angle calculation circuit 56 are output to the reference data 2 ⁇
  • a divider 58 for dividing by.
  • the phase rotation angle ⁇ 6 re between the mutual correlation values calculated corresponding to the two reference signals held in the memory 51, respectively.
  • the reference data held in the memory 57 can be obtained. That is, the reference data (equivalent time difference of the reference signal) ⁇ , which is a value based on the waveform and position of the reference signal held in the memory 51, can be obtained using the following equation.
  • two reference signals each corresponding to a part of two consecutive start symbols have a width width, and their timings are mutually shifted by shift.
  • Ng i + Nw— (shift + width) _2 Ng i + Nw— (shift—width) / 2 is a signal corresponding to the start symbol of the section represented by
  • the reference signal is calculated from the start of the start symbol and is equivalent to the start symbol of the section represented by N gi + Nw— (one shift + width) / 2 to N gi + Nw-(— shift-width) / 2 Signal.
  • the cross-correlators 52 and 53 calculate the cross-correlation value between the received signal from the digital quadrature detector 13 (FIG. 47) and each of the two reference signals, and calculate the phase rotation angle.
  • the phase rotation circuit 37 can compensate for the frequency offset of the signal received from the digital orthogonal detector 13 (FIG. 47).
  • the estimation range of the frequency offset value ⁇ f differs depending on the reference data TE of the phase rotation angle, and as shown in FIG. 3, the estimation of the normalized frequency offset is performed.
  • the range can be between one Tw / (2 TE) and + Tw / (2 TE).
  • the OFDM receiving apparatus of the first embodiment can expand the frequency offset compensation range as compared with the above-described conventional example.
  • Figure 4 shows that the width (number of samples) w id t h of two reference signals is 16 and TE
  • ⁇ f ⁇ ⁇ / (2 ⁇ ) (However, 1 ⁇ ⁇ ⁇ 0 ⁇ ⁇ )
  • ⁇ f + n f ( ⁇ + ⁇ ⁇ ) / (2 ⁇ )
  • the estimation error of the frequency offset can be further reduced by increasing the reference data TE value.
  • the estimation range and accuracy of the frequency offset value can be set arbitrarily by selecting the value of the equivalent time difference reference data TE of the reference signal, that is, by selecting the reference signal itself.
  • two consecutive start symbols each having a length of T gi + Tw are used as known symbols added before data symbols.
  • the length and the number of consecutive start symbols are not limited to these, and any length and any number of start symbols can be added.
  • the frequency offset estimation circuit 65 includes a phase rotation angle calculation circuit 56 that calculates the phase rotation angle of the received signal from the respective cross-correlation values obtained for the first and second reference signals, A divider 58 for dividing the output of the angle calculation circuit 56 by reference data (equivalent estimated time difference) 2 ⁇ ⁇ ⁇ 1 held in a memory 57, and second and third reference signals
  • the phase rotation angle calculation circuit 66 that calculates the phase rotation angle of the received signal from the respective cross-correlation values obtained for and the output of the phase rotation angle calculation circuit 66 is stored in the memory 67.
  • Reference data (Equivalent estimated time difference) 2 Divider 68 divided by ⁇ ⁇ ⁇ 2, average of output of divider 58 and output of divider 68, and output as frequency offset estimation value Circuit 69.
  • the three reference signals each corresponding to a part of two consecutive start symbols, have a width as shown in Fig. 12, and each reference signal is sequentially shifted by a shift. Are off.
  • the phase rotation angle of the received signal is obtained from each cross-correlation value, and these phase rotation angles are compared with each other.
  • the respective cross-correlation values at the corresponding peak positions of the respective cross-correlation values that is, three phase rotation angles are obtained.
  • phase rotation angle difference calculated by the phase rotation angle calculation circuit 56 is referred to as reference data (equivalent estimated time difference) for the first and second reference signals held in the memory 57 2 ⁇ ⁇ ⁇ ⁇
  • reference data equivalent estimated time difference
  • reference data equivalent estimated time difference
  • the reference data (the reference signal of the reference signal) is obtained from the phase rotation angle of each cross-correlation value when a certain frequency offset is applied to the start symbol in advance.
  • phase rotation circuit 37 Is output to the phase rotation circuit 37 as the frequency offset estimation value. Based on the averaged frequency offset estimation value, the phase rotation circuit 37 can compensate for the frequency offset of the received signal from the digital quadrature detector 13 (FIG. 47).
  • the estimated values of N ⁇ 1 frequency offsets are obtained, and these are averaged and output as a final frequency offset estimated value. Therefore, it is possible to perform frequency offset estimation that is resistant to noise.
  • the frequency offset is compensated by the phase rotation of the received signal using the phase rotation circuit 37, but without using the phase rotation circuit 37.
  • the frequency offset value ⁇ ⁇ ⁇ obtained by the frequency offset estimation circuit 65 is input to the control input of the local oscillator 21 (FIG. 48) in the digital quadrature detector 13, and the oscillation signal is variably controlled to obtain the received signal. Can be compensated for.
  • the graph shown in Figure 13 shows the relationship between the frequency offset value and the estimated frequency offset value.
  • the frequency offset estimation error is repeated to reduce the frequency offset estimation error.
  • the frequency offset compensator of the OFDM receiving apparatus includes, as shown in FIG. 15, memories 101 and 102 for holding reference signals, and a time required for calculating a frequency offset.
  • Memory holding only the received signal, memory 104 holding the output from the phase rotation circuit 108, and holding the output or memory 104 of the digital quadrature detector 13 (Fig.
  • a cross-correlator 105, 106 that calculates a cross-correlation value between the received start symbol that has been received and the respective reference signals held in memories 101, 102;
  • the phase detector detects the peak position from each correlator output and estimates the symbol synchronization position, and calculates the phase rotation angle from the outputs of the cross-correlators 105 and 106 to calculate the frequency offset value.
  • Frequency offset calculator 107 to estimate and frequency offset calculation Vessel 1 0 group Hazuki memory 1 to the output from the 7 0 3 or after rotating the phase of the output from the memory 1 ⁇ 4, the phase rotation circuit 1 0 8 to be output to the memory 1 0 4, the quadrature detector 1 3 Based on the output from the frequency offset calculator 107 and the delay unit 109 that delays the output of (Fig. 47) by the time required to compensate for the frequency offset, the output from the delay unit 109 is output.
  • a phase rotation circuit 110 for rotating the phase of the signal, a cross-correlator 105 for selectively switching between the output of the digital quadrature detector 13 (FIG.
  • switch 1 1 1 is on the output side of digital quadrature detector 13 (Fig. 4 7), switch 1 1 2 is on memory 103 side, and switch 1 1 Switch 3 is controlled by the controller 2000 so as to be connected to the switch 1 11 side.
  • the signal from the digital quadrature detector 13 is supplied to the cross-layer interrogators 105 and 106 in common via the switch 111, and is stored in the memory 100 by the cross-correlators 105 and 106.
  • a cross-correlation value is obtained between each reference signal held in 1, 102.
  • the cross-correlation value calculated by each cross-correlator is provided to the frequency offset calculator 107.
  • the signals from the digital quadrature detector 13 are simultaneously held in the memory 103.
  • Frequency offset calculator 1 0 7 calculates the frequency offset estimate based on the two cross-correlation values given.
  • the phase rotation circuit 110 rotates the phase of the output of the delay unit 109 according to the calculated frequency offset estimation value. Note that the delay unit 109 holds the output of the quadrature detector 13 during the period required for calculating the frequency offset estimation value, and outputs it to the phase rotation circuit 110 after the frequency offset estimation is completed. As a result, the frequency offset is compensated from the beginning of the received data.
  • the phase rotation circuit 108 rotates the phase of the signal stored in the memory 1 ⁇ 3 based on the calculated frequency offset estimation value, and stores the result in the memory 104.
  • switching control is performed by the controller 200 so that the switch 1 1 1 is connected to the switch 1 13 side and the switch 1 1 2 is connected to the switch 1 13 side. Is performed.
  • the cross-correlators 105 and 106 calculate the cross-correlation value between the signal held in the memory 104 and the respective reference signals held in the memories 101 and 102. Frequency offset calculator 107 based on the calculated cross-correlation value.
  • the number offset estimated value is calculated and output to the phase rotation circuits 108 and 110.
  • switching control is performed by the controller 2000 so that the switch 113 is connected to the switch 112 side.
  • the phase rotation circuit 108 rotates the phase of the signal stored in the memory 1 14 based on the frequency offset estimated value calculated by the frequency offset calculator 107, and stores the phase again in the memory 104. I do.
  • switching control is performed by the controller 200 ° so as to connect the switch 113 to the switch 111 side.
  • a cross-correlation value between the signal held in the memory 104 and each reference signal is obtained, a frequency offset is estimated based on the calculated cross-correlation value, and the frequency offset is held in the memory 104.
  • the operation of rotating the signal phase and holding it again in the memory 104 is repeated.
  • the frequency offset estimator estimates the start symbol position and the data symbol position by monitoring the cross-correlation value between the received signal and the reference signal with the peak detector 114.
  • step S1 switching control is performed in which the switch 111 is connected to the output side of the digital quadrature detector 13 and the switch 112 is connected to the memory 103 side.
  • step S2 the cross-correlator 105, 106 receives the received signal from the digital quadrature detector 13 and the reference signal held in the memory 101, 102, respectively. Is calculated.
  • step S3 it is determined whether or not the peak position of the cross-correlation value is detected by the peak detector 114, and if the peak position is not detected, the process of step S2 described above is repeated.
  • an estimated frequency offset value (offset value # 1) is calculated from the cross-correlation values calculated by the cross-correlators 105 and 106.
  • step S5 the signal from the quadrature detector 13 stored in the memory 103 is supplied to the phase rotation circuit 108 via the switch 112, and in step S6, the phase The rotation circuit 108 rotates the phase of the signal input from the memory 103 in accordance with the frequency offset estimated value (offset value # 1) of the upper i-port.
  • step S7 the received signal whose phase has been rotated in the phase rotation circuit 108 is held in the memory 104.
  • step S8 switching control is performed so that the switch 1 1 1 is connected to the switch 1 13 side and the switch 1 1 2 is connected to the switch 1 13 side, and further from step S 9 During step S16, the processing described below is repeated (N-1) times.
  • step S10 the cross-correlators 105, 106 are connected to the signals supplied from the memory 104 via the switches 113, 111, and the memories 101, 110, respectively.
  • a cross-correlation value is calculated by interrogating each of the reference signals stored in 2 and, in step S11, the frequency offset calculator 107 calculates an estimated frequency offset value (offset value # 11). .
  • step S12 switching control for connecting the switch 113 to the switch 112 is performed.
  • step S13 the phase rotation circuit 108 stores the memory 104
  • the phase of the signal read out from the switch via the switches 113 and 112 is rotated in accordance with the calculated frequency offset estimated value (offset value #).
  • step S14 the signal whose phase has been rotated by the phase rotation circuit 108 is stored in the memory 104 again.
  • step S15 switching control for connecting switch 113 to switch 111 is performed, and the process from step S10 to step S16 is performed again (N-1) times. Repeat. After the end of (N-1) repetitions, in step S17, all the offset values # 1 to #N calculated so far are added, and in step S18, the added value is calculated. , The phase rotation circuit 11 ° rotates the phase of the output signal from the delay unit 109.
  • a cross-correlation value is calculated between a start symbol in a received signal and a reference signal, a frequency offset estimation value is obtained, and a frequency offset is compensated by the value.
  • a cross-correlation value is calculated between the start symbol after frequency offset compensation and the reference symbol, a frequency offset estimation value is obtained, and the frequency offset is compensated by using the estimated value.
  • the cross-correlation value obtained at this time is 1
  • the frequency offset is estimated using two or more reference signals (N 2) as one set.
  • the phase rotation angle is calculated by the three cross-correlators 105, 106, and 116, and the frequency offset calculator Given to 107.
  • the frequency offset calculator 107 estimates two frequency offset values according to these phase rotation angles, and gives the average value to the phase rotation circuit 108 as an estimated frequency offset value to compensate for the frequency offset. Is being conducted. This makes it possible to suppress an estimation error due to noise when estimating the frequency offset value.
  • the frequency offset estimation value can be basically calculated from a pair of cross-correlation values.
  • ⁇ ⁇ ⁇ ⁇ / (2 ⁇ ⁇ ⁇ ⁇ ), which is a formula for deriving the frequency offset estimation value
  • the frequency offset can be estimated over a wider range as the value of the reference data (equivalent estimation time difference) ⁇ ⁇ becomes smaller It can be understood that the larger the value of the reference data ⁇ ⁇ , the narrower the range of frequency offset estimation.
  • the frequency offset compensator in order to compensate for a wide range of frequency offset with high accuracy, first, the value of the reference data TE is made small to obtain the frequency offset estimation value over a wide range. Then, the frequency offset compensation is performed, and then the value of the reference data TE is increased to estimate and compensate the frequency offset so that the error of the frequency offset compensation performed earlier is reduced. is there.
  • a plurality of reference signal sets each including two reference signals and different reference data TE corresponding to the plurality of reference signal sets are prepared, and the reference data T
  • the frequency offset estimator has a value of Length, which is a length from a start position of a start symbol of a received signal to an end position of a reference signal, and A memory 211 for storing a plurality of reference signals and a plurality of reference data (equivalent estimated time differences) corresponding to a plurality of sets each composed of these reference signals TE value;
  • the memory for holding and the switch for selectively switching between the output of the digital quadrature detector and the output of the memory and the output of the digital quadrature detector.
  • the cross-correlator 204, 2 ⁇ 5, and the cross-correlator 204 which calculate the cross-correlation value between the output and each value of the two (one set) of reference signals held in the memory 211 Detect peak of cross-correlation value from output of 205 and estimate symbol position
  • the output of the peak detector 209 that outputs the value, the output of the cross-correlator 204, 205, the output of the peak detector 209, and the corresponding reference data TE stored in the memory 211
  • the frequency offset calculator 206 that calculates the frequency offset estimation value using the value and the phase of the received start symbol stored in the memory 212 is rotated according to the output of the frequency offset calculator 206.
  • the phase rotation circuit 2 07, the frequency offset calculator 2 206 adds the outputs of the frequency offset calculator 2 06, and outputs the frequency offset estimated value adder 2 14, the received signal from the quadrature detector 13,
  • Delay device 2 13 and the phase of the output of the delay device 2 13 according to the output of the frequency offset estimated value adder 2 14 Phase rotation circuit to rotate 208, switch to control output of signal from peak detector 209 ON / OFF switch 210, peak value output from switch 210, and store in memory 211
  • a start symbol extractor 202 for writing a signal in a start symbol section of a received signal to the memory 212 based on the value is provided.
  • the memory 211 stores a pair of reference signals Re f (n, 1) and R ef (n, 2) and the “equivalent estimated position of the phase rotation angle” of each reference signal.
  • N sets (N is a positive integer) of the sets consisting of the reference data TE (n), which is the distance between them, and the distance from the start of the start symbol to the end of Ref (n, 1) Is held as Length.
  • the reference signals Ref (n, 1) and Ref (n, 2) are each contained within the start symbol, and their lengths are equal and constant.
  • the start symbol extractor 202 first extracts a start symbol from the received signal and starts writing. After the peak output of the cross-correlator 204, if there is a peak output of the cross-correlator 205, the frequency offset calculator 206 estimates the frequency offset, and according to the estimation result, the phase rotation circuit 207 The rewriting of the contents of the memory 21 2 is started by rotating the phase of the start symbol written in 2 2, but the writing of the start symbol extracted by the aforementioned start symbol extractor 202 is overtaken and the memory 21 is overwritten. The contents of 2 will not be rewritten.
  • the start symbol is written from the start symbol extractor 202 to the memory 212 when the start symbol of the next packet arrives. Is not done. Therefore, in the second and subsequent phase rotation processing, only the phase rotation circuit 207 rewrites the contents of the memory 212, and the data of the memory 212 rewritten by the phase rotation circuit 207 is output to the switch 203. Is done.
  • the peak detector 209 has a set threshold value, and operates to determine a peak when a given cross-correlation value exceeds the threshold value.
  • the memory 2 1 2 stores three pairs of reference signals Ref (n, 1) and Ref (n, 2) and reference data (equivalent estimated time difference) TE between the reference signals of each pair.
  • the signal from the digital quadrature detector 13 (FIG. 47) is supplied to the start symbol extractor 202 and is input to the cross-correlators 204 and 205 via the switch 203.
  • the cross-correlators 204 and 205 calculate the relationship between the input signal and the respective values of the pair of reference signals Re f (1, 1) and R ef (1, 2) held in the memory 211.
  • the cross-correlation value is obtained, and the peak detector 209 detects the peak position of the calculated cross-correlation value.
  • the frequency offset calculator 206 estimates the frequency offset value # 1 using the cross-correlation value at each peak position and the value of the corresponding reference data TE (1) held in the memory 211. Further, the output of the peak detector 209 is given to the symbol synchronization position estimator 201 via the switch 210 in the ON state, and the symbol position estimation value output from the symbol synchronization position estimator 201 is the symbol clock shown in FIG. Output to generator 15. Also, the output of the peak detector 209 is input to the start symbol extractor 202 via the switch 210 which is in the ON state, and the start symbol extractor 202 extracts the start symbol from the received signal and stores it in the memory 212.
  • Switch 210 is turned off after peak detection by cross-correlator 204 is performed.
  • the phase of the start symbol stored in the memory 212 is rotated by the phase rotation circuit 207 and written back to the memory 212 using the offset estimated value # 1 for the time being. Also, the offset estimated value # 1 is given to the frequency offset estimated value adder 214 and accumulated.
  • the switch 203 is switched, and the signal held in the memory 212 is input to the cross-correlators 204 and 205.
  • the cross-correlators 204 and 205 generate a signal input from the memory 212 and a signal of a pair of reference signals Re ⁇ (2, 1) and Ref (2, 2) held in the memory 211.
  • a cross-correlation value with each value is obtained, and a peak detector 209 detects a peak position of the cross-correlation value.
  • the frequency offset calculator 206 estimates the frequency offset estimate # 2 using the cross-correlation value at each peak position and the value of the corresponding reference data TE (2) stored in the memory 211. I do. Also, the offset estimation value # 2 is given to the frequency offset estimation value adder 2 1 2 and accumulated. Again, the estimated offset value contains errors, but it is smaller than at the time of the initial estimation.
  • the phase of the start symbol stored in the memory 2 12 is rotated by the phase rotation circuit 2 7. and written back to the memory 2 12.
  • the signal of the memory 212 is again input to the cross-correlator 2 ⁇ 4, 205.
  • the cross-correlators 204 and 205 receive a signal input from the memory 211 and a pair of reference signals R ef (3, 1) and R ef (3, A cross-correlation value with each value of 2) is obtained, and a peak detector 209 detects a peak position of the cross-correlation value.
  • the frequency offset calculator 206 uses the cross-correlation value at the peak position and the value of the corresponding reference data TE (3) held in the memory 211 to estimate the frequency offset estimate # 3. I do. Then, the offset estimation value # 3 is given to the frequency offset estimation value adder 2 14 and accumulated. Again, the estimated offset value includes an error, but it is smaller than in the previous estimation. The result of adding the offset estimated values # 1, # 2, and # 3 calculated in this manner is the final frequency offset estimated value, and the frequency offset estimated value adder 214 adds the offset value to the phase rotation circuit 208. Given. The phase rotation circuit 208 rotates the phase of the received signal output from the delay unit 21 3 in accordance with the frequency offset estimated value output from the frequency offset estimated value adder 214 to perform frequency offset. To compensate.
  • step S25 a cross-correlation value between the output of the switch 203 and the reference signal Ref (n, 1) held in the memory 211 is determined.
  • step S26 the peak position of the mutual correlation value is determined, and if not determined, the processing of steps S25 and S26 is repeated. If the peak position has been determined, the process proceeds to step S27, and the switch 210 is turned off.
  • step S28 a cross-correlation value between the output of the switch 203 and the reference signal R ef (n, 2) of the memory 211 is determined.
  • step S29 the peak position is determined in the same manner as in step S26 described above.
  • step S 29 If the peak position is determined, go to step S
  • a frequency offset (offset estimated value n) is estimated based on each cross-correlation value and the reference data TE (n) held in the memory 211.
  • step S34 If it is determined that the frequency offset estimation processing has been performed, in step S34, the offset estimation values # 1 to #n calculated in the processing so far are added by the frequency offset estimation value adder 214. The result is output to the phase rotation circuit 208 as a frequency offset estimation value.
  • the value of the reference data (equivalent estimated time difference) TE is sequentially increased by the required number of times, and the frequency offset estimated value is changed each time.
  • Frequency offset compensation for the received signal based on the final frequency offset estimation value obtained by adding the frequency offset estimation value obtained each time, so that frequency offset compensation is performed with high accuracy It becomes possible.
  • a pair of reference signals Ref (n, 1) and Ref (n, 2) and “equivalent phase rotation angle N sets of reference data TE (n), which are distances of the ⁇ estimated position ⁇ question, are prepared.
  • the distance from the start of the start symbol to the end of R ef (1) is held as Length.
  • R e ⁇ (l) and Ref (n, 2) are within the start symbol, and their lengths are equal and constant.
  • the phase compensator rotates the phase of the received signal by the phase rotation circuit 208 based on the final frequency offset estimation value added and output by the frequency offset Compensation was being provided.
  • the estimated and added final frequency offset estimation value is stored in the OFDM receiving apparatus shown in FIG. 47. This is intended to compensate for the frequency offset of the received signal by inputting it to the local oscillator of the digital quadrature detector 13 and variably controlling the oscillation frequency.
  • FIG. 26 is a block diagram showing a configuration of a quadrature detection unit with a frequency offset compensation function of the OFDM receiving apparatus according to the seventh embodiment.
  • FIG. 27 is a block diagram of the frequency offset estimator 2 shown in FIG.
  • FIG. 18 is a block diagram showing a configuration of the digital quadrature detector 2 17 shown in FIG. 26.
  • FIG. 28 is a block diagram showing a configuration of the digital quadrature detector 2 17 shown in FIG. Note that the configuration and operation of the frequency offset estimator 218 shown in FIG. 27 are almost the same as the configuration and operation of the frequency offset estimator shown in FIG.
  • the quadrature detection unit with frequency offset compensation function delays the output of A / D converter 12 (Fig.
  • Quadrature detector 2 17 that can separate the output of the detector 2 16 into real and imaginary components, and a frequency offset estimator that estimates and compensates for the frequency offset value of the output of the digital quadrature detector 2 17 2 1 and 8 are provided.
  • the quadrature detector with frequency offset compensation function shown in FIG. 26 will be described. The operations described below are also performed under the control of the controller 2000 (FIG. 47).
  • the output from the A / D converter 12 (FIG. 47) of the OFDM receiver is supplied to the delay unit 2 15 and the switch 2 16.
  • the switch 2 16 first selects the output from the A / D converter 1 2 (Fig. 47) and supplies it to the digital quadrature detector 2 17 .
  • the digital orthogonal detector 2 17 Is decomposed into a real component and an imaginary component, and given to a frequency offset estimator 2 18.
  • the frequency offset estimator 2 18 shown in FIG. 27 As in the fifth embodiment shown in FIG. 22, the frequency offset estimator 2 14
  • the frequency offset estimation value is given to the digital quadrature detector 2 17. Then, as shown in FIG. 28, the variable frequency of the local oscillator 21 used when performing quadrature detection of the output from the delay unit 215 selected by the switch 216 is adjusted by the frequency offset estimation value. Is done. As a result, the digital quadrature detector 211 outputs a signal in which the frequency offset is compensated.
  • the reference signal held in the memory 211 in the frequency offset estimator 218 is configured in the same manner as in the above-described sixth embodiment. However, it is possible to save memory usage.
  • the frequency offset estimator 300 of the OFDM receiving apparatus receives the received signal from the digital quadrature detector 301 and estimates the frequency offset, as shown in FIG.
  • the frequency offset estimation value is provided to the digital quadrature detector 301.
  • the digital quadrature detector 3 ⁇ 1 has the same configuration as the configuration shown in FIG. 28, and the configuration of the other parts in FIG. 29 is the same as the configuration shown in FIG. 47. Description is omitted.
  • the frequency offset estimator 300 in FIG. 29 stores the data table of the optimal reference signal corresponding to the C / N (carrier to noise ratio) of the received signal.
  • a reference signal adjuster that selects an optimal reference signal from the information held in the memory 302 based on the CZN of the received signal and the received signal, and issues an instruction to the memory 304 based on the selected data.
  • a memory 304 that holds the reference signal in advance and outputs the reference signal according to the instruction of the reference signal adjuster 303, and an output and memory 304 of the digital quadrature detector 310 (FIG. 29).
  • a cross-correlator that calculates the cross-correlation value between each of the reference signals output from the CRS and a peak detector that detects the peak position from the output of the cross-correlator and estimates the symbol synchronization position Calculates the phase rotation angle based on the output of 307 and the correlators 305 and 306 And a frequency offset calculator 308 for estimating a frequency offset estimation value.
  • the reference signal adjuster 303 receives the information from a source of information about CZN of a received signal (not shown).
  • the memory 302 stores the reference signal width data and the reference data (equivalent estimated time difference) TE data table corresponding to the CZN of the received signal created based on a certain criterion. I have.
  • the reference signal conditioner 303 determines the corresponding reference signal width data and reference data TE from the above-mentioned tables in the memory 302 based on the information about the CZN of the received signal received. Then, a corresponding set of reference signals is selected.
  • the reference signal adjuster 303 instructs the memory 304 to output the set of reference signals selected as described above.
  • the start symbol is actually held in the memory 304, and the held start symbol part is replaced with a reference signal set so as to satisfy the instruction content from the reference signal adjuster 303 described above.
  • the cross-correlators 305 and 306 refer to the cross-correlation value between each of the given set of reference signals and the output of the digital quadrature detector 301, and refer to each cross-correlation value.
  • the correlation value is input to the frequency offset calculator 308.
  • the frequency offset calculator 308 calculates a frequency offset estimated value based on the given cross-correlation value.
  • the frequency offset estimator 300 estimates the start symbol position and the data symbol position by monitoring the cross-correlation value between the received signal and the reference signal with the peak detector 307, and calculates the peak position.
  • the frequency offset estimation value is calculated from the cross-correlation value at.
  • the above-mentioned reference data TE is monotonically increasing with respect to the time difference shift (time difference between the heads of each reference signal) between a plurality of reference signals.
  • the reference data TE can be increased. Therefore, it is also possible to use shift as a parameter instead of the reference data TE. It should be noted that originally, the reference data TE is used as a parameter.
  • Figures 31, 32, and 33 show that when the comparison C / N is small, medium, and large, respectively, the width of the reference signal is fixed and the time difference data shift between the reference signals is 6 is a graph showing normalized frequency offset vs. bit error rate characteristics when changed.
  • the horizontal axis shows the normalized frequency offset
  • the numbers in parentheses in these figures indicate width and shift, respectively.
  • the reference signal adjuster 303 selects a reference signal corresponding to (width, shift) obtained based on the table according to the CZN of the received signal, and reads the selected signal from the start symbol stored in the memory 304.
  • Cross-correlators 305 and 306 calculate a cross-correlation value based on the read reference signal.
  • the reference signal corresponding to the smaller sh i f t is selected.
  • the completion time can be shortened.
  • the (width, shift) data table corresponding to the C / N set in this way is stored in the memory 302, and the reference signal is set based on the data tape according to the C / N of the received signal.
  • the frequency offset can be estimated with desired accuracy.
  • Fig. 35, Fig. 36, and Fig. 37 show the case where the shift of each reference signal is fixed and the width is changed when the C / N is relatively small, medium, and large, respectively.
  • 4 is a graph showing normalized frequency offset versus bit error rate characteristics.
  • the above settings are stored in the memory 302 in advance as a table of (widt, shift) for C / N.
  • the reference signal adjuster 303 selects a reference signal corresponding to (width, shift) obtained based on the above table according to the C / N of the received signal, and reads the selected signal from the memory 304.
  • Cross-correlators 305 and 306 calculate a cross-correlation value based on the read reference signal.
  • the reference signal corresponding to the smaller widthh is selected.
  • the operation completion time can be shortened and the hardware scale can be reduced, as understood from FIG.
  • the (width, shift) data table for the CZN set in this way is stored in the memory 302, and the reference signal is selected based on the data table according to the C / N of the received signal, thereby achieving desired accuracy. frequency
  • the offset can be estimated.
  • Fig. 39, Fig. 40, and Fig. 41 show the normalized frequency when the shift and width of each reference signal are changed when the is relatively small, medium, and large, respectively.
  • 5 is a graph showing offset versus bit error rate characteristics.
  • the reference signal adjuster 303 selects a reference signal corresponding to (width, shift) obtained based on the table according to the C / N of the received signal, and reads it from the memory 304.
  • the cross-correlators 305 and 306 calculate a cross-correlation value based on the read reference signal. However, if there are two or more (width, shift) values that satisfy the desired BER characteristics, the one that can minimize the operation completion time is selected.
  • the data table of (width, shift) corresponding to the CZN set in this way is stored in the memory 302, and a desired reference signal is selected based on the data table according to the CZN of the received signal.
  • the frequency offset can be estimated with high accuracy.
  • FIG. 42 is a block diagram of an OFDM receiving apparatus showing an example of a C / N information supply source that supplies CZN information of a received signal to frequency offset estimator 300 shown in FIG.
  • the detector 309 detects each output signal level from the discrete Fourier transformer 18 and detects the C / N of the received signal based on the detected signal level. Since the configuration of other parts of the ninth embodiment is the same as that of the embodiment shown in FIG. 29,
  • the OFDM signal generation assumption described above with reference to FIG. 45 the relationship of the number of subcarriers ⁇ the number of FFT samples holds, and the inverse discrete Fourier transformer 3 (FIG. 45)
  • the OFDM signal is generated by allocating an amplitude of 0 to the subcarriers to which is not allocated.
  • the discrete Fourier transformer 18 of the OFDM receiver according to the ninth embodiment shown in FIG. 42 the OFDM signal generated through the above-described generation assumption is input. In the output of the discrete Fourier transformer 18, if no noise is added, the output corresponding to the subcarrier to which the amplitude 0 is assigned has an amplitude of 0.
  • the output of the subcarrier to which the amplitude 0 is assigned has the noise level as the amplitude. Therefore, it is possible to detect the C / N of the received signal based on the output of the subcarrier to which the amplitude 0 is assigned and the output of the subcarrier to which the information data is assigned.
  • the C / N detector 309 of the OFDM receiver according to the ninth embodiment of the present invention detects the C / N of the received signal based on the above-described detection principle, and detects the detected C / N.
  • the information is supplied to the frequency offset estimator 300.
  • the present invention can be applied to a signal receiving apparatus and a frequency offset compensating method, and more specifically, to a signal for receiving a signal transmitted by a multi-carrier transmission scheme such as an OFDM receiving apparatus.
  • the present invention can be applied to a receiving apparatus and a method for compensating for a frequency offset of a subcarrier used for such signal transmission.
  • Peak position detecting means for detecting peak positions of the N cross-correlation values calculated by the cross-correlation value calculating means;
  • Frequency offset estimating means for estimating and outputting the frequency offset estimated value of the subcarrier of the received signal based on the cross-correlation value at each of the N peak positions detected by the peak position detecting means.
  • a signal offset compensator (37) for compensating for a frequency offset of a subcarrier of the received signal based on the frequency offset estimation value estimated by the frequency offset estimator.
  • the frequency offset estimating means includes:
  • Phase rotation angle calculation means (56) for calculating a phase difference between cross-correlation values at each of the N peak positions
  • the frequency offset compensating unit includes a unit that variably controls an oscillation frequency of the local oscillator based on the estimated frequency offset value.
  • a signal for receiving and demodulating a signal consisting of a data symbol section in which symbols are allocated to a plurality of subcarriers in parallel and modulated, and a start symbol added prior to the data symbol section.
  • Cross-correlation value calculation means (52, 53, 61) for calculating a cross-correlation value between the received signal and each of the N types of reference signals;
  • Peak position detecting means for detecting peak positions of the N cross-correlation values calculated by the cross-correlation value calculating means;
  • a signal receiving device comprising:
  • the frequency offset estimating means includes:
  • a plurality of phase rotation angle calculation means (56, 66) for calculating a phase difference of a plurality of predetermined combinations of cross-correlation values at each of the N peak positions;
  • Memory means (5 7, 6 7);
  • a plurality of division means for calculating a plurality of frequency offset estimated values by respectively dividing a plurality of phase differences of the cross-correlation values calculated by the plurality of phase rotation angle calculation means by a corresponding one of the plurality of reference data.
  • the signal receiving apparatus further comprising: an averaging means (69) for averaging and outputting a plurality of frequency offset estimation values output from said plurality of division means.
  • the frequency offset compensating means compensates for a frequency offset by rotating a phase of a subcarrier of the received signal based on the estimated and averaged frequency offset estimation value.
  • Item 5. The signal receiving device according to item 1. 8. It has a local oscillator, and further comprises a detecting means for detecting the received signal, wherein the frequency offset compensating means calculates the oscillation frequency of the local oscillator based on the estimated and averaged frequency offset estimation value. 6.
  • First memory means (101, 102) for holding N (N is an integer of 2 or more) kinds of reference signals each corresponding to an arbitrary portion in the start symbol;
  • a cross-correlation value calculating means (105, 106) for calculating a cross-correlation value between each of the first signal and each of the N types of reference signals;
  • Peak position detecting means (1 14) for detecting a peak position of each of the N cross-correlation values calculated by the cross-correlation value calculating means;
  • a frequency offset estimation value of a subcarrier of the received signal is accumulated. And the subkey of the received signal.
  • a first control operation for rotating the phase of the carrier and holding the second memory means is performed once, and a signal held in the second memory means is used as the first signal.
  • the signal is supplied to the cross-correlation value calculation means and to the phase rotation means as the second signal, thereby accumulating the frequency offset estimation value of the subcarrier of the signal held in the second memory.
  • a signal receiving device comprising:
  • the frequency offset compensation means compensates for a frequency offset by rotating a phase of a subcarrier of the received signal based on an addition value of the frequency offset estimation value.
  • a local oscillator further comprising detection means for detecting the received signal, wherein the frequency offset compensation means variably controls the oscillation frequency of the local oscillator based on the sum of the frequency offset estimation values.
  • the signal receiving apparatus comprising means for performing.
  • Cross-correlation value calculation means (204, 205) for calculating a cross-correlation value between the given first signal and each of the sets of the reference signals;
  • the received signal held in the second memory means, which has been phase-rotated based on the frequency offset estimation value, is given to the cross-correlation value calculation means as the first signal, and the A cross-correlation value is calculated between a set of reference signals corresponding to the least used reference data, and based on the calculated cross-correlation value and the unused minimum reference data,
  • a signal receiving device comprising:
  • the frequency offset compensating means is based on the sum of the frequency offset values.
  • a local oscillator further comprising detection means for detecting the received signal, wherein the frequency offset compensation means variably controls the oscillation frequency of the local oscillator based on the sum of the frequency offset estimation values.
  • the signal receiving device further comprising:
  • N is an integer of 2 or more types of optimal reference signals, each corresponding to an arbitrary portion in the start symbol, based on the data table, according to the detected C / N.
  • Signal output means (303, 304);
  • Cross-correlation value calculation means (305,306) for calculating a cross-correlation value between the received signal and each of the N types of reference signals;
  • Frequency offset estimating means for estimating and outputting the frequency offset estimated value of the subcarrier of the received signal based on the cross-correlation value at each of the N peak positions detected by the peak position detecting means. 3 0 8)
  • the frequency offset compensation means compensates for a frequency offset by rotating a phase of a subcarrier of the received signal based on the estimated frequency offset value.
  • Signal receiving device
  • a local oscillator further comprising detection means for detecting the received signal
  • said frequency offset compensating means includes means for variably controlling an oscillation frequency of said local oscillator based on said estimated frequency offset value.
  • a method for compensating for a frequency offset of a subcarrier of the received signal a method for compensating for a frequency offset of a subcarrier of the received signal
  • N is an integer of 2 or more reference signals each corresponding to an arbitrary part of the start symbol
  • Comprising a first control step comprising:
  • N is an integer of 2 or more reference signals, each of which corresponds to an arbitrary part of the start symbol;
  • the method further comprises a second control step, wherein the second control step comprises:
  • the second control step is repeated (N-1) times
  • Compensating for a frequency offset by rotating the phase of a subcarrier of the received signal based on the sum of the N frequency offset estimation values accumulated in the first and second control steps. Further comprising a method. 2 2. Receive and demodulate a signal consisting of a data symbol section in which symbols are allocated to a plurality of subcarriers in parallel and modulated, and a start symbol added prior to the data symbol section. In the signal receiving device, a method for compensating for a frequency offset of a subcarrier of the received signal,
  • N N is an integer of 2 or more
  • various reference signals each corresponding to an arbitrary portion in the start symbol, and two or more types of the reference signals in a situation where a certain frequency offset exists Holding a plurality of reference data based on a phase rotation angle between cross-correlation values corresponding to a plurality of sets of signals;
  • first control step comprises:
  • the method further includes a second control step, wherein the second control step includes:
  • a mutual operation between the held received signal that has been phase-rotated based on the estimated frequency offset estimation value and each of a set of reference signals corresponding to unused minimum reference data among the plurality of reference data Calculating a correlation value; detecting each peak position of the calculated cross-correlation value; cross-correlation value at each of the detected peak positions; and the unused minimum reference data.
  • N is an integer of 2 or more types of optimal reference signals, each of which corresponds to an arbitrary part in the start symbol based on the data table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

明細書
信号受信装置および周波数オフセット補償方法 技術分野
この発明は、 信号受信装置および周波数オフセット補償方法に関し、 特に、 直 交周波数分割多直 (Orthogonal Frequency Division Multiplexing:以下、 O F DM) 方式のようなマルチキヤリァ伝送方式で伝送された信号を受信する信号受 信装置、 およびそのような信号伝送に用いるサブキャリアの周波数オフセットを 補償する方法に関する。 背景技術
近年、 地上系のデジタルテレビ放送、 高速無線 L A N (Local Area Network) などの大容量のデータ伝送に用いられる伝送方式の一例として、 マルチキヤリァ 伝送方式の一種である O F DM方式が注目されている。 この O F DM方式は、 入 力されるデータのシンボル列を並列化した後、 互いに直交関係にある複数のサブ キャリア (副搬送波) に並列化されたシンボルからなるデータを割当てることに より、 データを伝送するものである。
より詳細に説明すると、 O F DM方式で伝送される信号 (以下、 O F DM信 号) は、 直列並列変換された符号化データを、 互い ί'こ直交する周波数関係にある 複数のサブキャリアに変調器を用いて割当て、 それぞれの符号化データを逆フー リエ変換 (周波数領域を時間領域に変換) することによってデジタル変調波に変 換し、 さらに得られたデジタル変調波を並列直列変換することによって生成され る。 なお、 復調器側では、 上述の変調器側における処理とは逆の処理を行なうこ とによって、 元の符号化データを再生することができる。
図 4 3 Αは、 単一搬送波による変調 (シングルキャリア変調) 方式における送 信信号おょぴ受信信号のスぺクトルを示している。 これに対し、 図 4 3 Bは、 O F D M方式における送信信号およぴ受信信号のスペク トルを示している。
図 4 3 Aに示すように、 シングルキャリア変調方式による送信信号は、 伝送路 の周波数特性の変動による周波数選択性フェージングの影響を受け、 受信信号の 品質が著しく劣化している。 一方、 図 4 3 Bに示すように、 O F DM方式による 送信信号は、 伝送路の周波数特性の変動に対する各サブキャリアの帯域幅が小 いため、 周波数選択性フュージングの影響を受けにくく、 受信信号の品質の劣化 を小さくすることができる。 また、 O F DM方式では複数のサブキャリアを用い てデータの伝送を行なつているので、 周波数の利用効率がよいという利点も有し ている。
しかしながら、 O F DM方式では、 伝送信号の周波数帯域が移動するドッブラ —現象が発生したり、 受信装置の同調器が不安定化した場合には、 送信周波数と 受信周波数との同期化が行なわれなくなり、 図 4 4に示すように、 本来のサブキ ャリア周波数からの周波数のずれ (以下、 周波数オフセット) Δ ίが発生する。 このような周波数オフセットは、 受信信号の位相を変化させてしまい、 受信装置 の復号能力を低下させることになる。
複数のサブキヤリアを用いる O F DM方式では、 受信信号にこのような周波数 オフセットが発生すると、 サブキヤリァ間の周波数直交性が崩れてしまうことに なる。 この状態で、 受信した O F DM信号を受信装置のフーリエ変換器に入力す ると、 フーリエ変換器の出力には、 当該サブキャリアに隣接するサブキャリアの 信号成分が相互変調成分として現れてしまい、 元の符号化データを正しく再生す ることが阻害される。 この結果、 再生データの品質が劣化するという問題が生じ る。
特に、 O F DM方式のサブキャリアの数が増加するほど、 それぞれのサブキヤ リアが決められた帯域内に稠密に分布することとなり、 たとえ小さな周波数オフ セットであっても、 隣接するサブキャリア間に干渉が激しく発生してしまう。 し たがって、 周波数オフセットの補償は、 現実のシステムの実施化時に考慮すべき 最大の課題の 1つとなっている。
従来、 このような周波数オフセットの検出および補償の技術に関しては、 さま ざまな提案がなされており、 たとえば、 鬼沢武他による 「高速無線 L A N用 O F DM変調方式の同期系に関する検討 (Synchronization Scheme of OFDM Systems for High Speed Wireless LAN) J 、 信学技報、 TECHNICAL REPORT OF IEICE, DSP97 - 165, SAT97-122, RCS97- 210 (1998-01) に一例が開示されている。
以下に、 図 4 5〜図 5 1を参照して、 従来技術による O F DM信号の送受信シ ステムの一例として、 変調方式として D Q P S K (Differential Quadrature Phase Shift Keying) 方式を用いるとともに、 受信側で遅延検波を行なうシステ ムについて説明する。
まず、 図 4 5を参照して、 従来の O F DM信号の送信装置の構成について説明 する。 なお、 図 4 5中において、 太線で表した信号線は複素数信号 (同相検波軸 信号と直交検波軸信号とからなる信号) を、 細線で表した信号線は実数信号をそ れぞれ示している。
図 4 5に示すように、 従来の O F DM送信装置の前半部分は、 入力情報信号に 対して直列並列変換を行なう直列並列変換器 1と、 並列化されたサブキャリアご とに割当てられた情報信号に対してたとえば D Q P S K等の変調を施す符号化変 調器 2と、 符号化変調器 2の出力信号を逆離散フーリェ変換する逆離散フーリェ 変換器 3と、 逆離散フ一リエ変換器 3の出力信号を直列信号に変換する並列直列 変換器 4と、 並列直列変換器 4の出力信号の先頭にガード区間を付加してデータ シンボルを生成するガード区間挿入回路 5とを備えている。
さらに、 従来の O F DM送信装置の後半部分は、 パケットの先頭に付加される 既知のシンボルを構成する、 プリアンブルおよびスタートシンボルを保持するメ モリ 6と、 プリアンブル、 スタートシンボル、 およびデ一タシンボルを、 後述す るコントローラ 1 0 0 0から供給される切換用クロックに応じて切換えて出力す る切替器 7と、 切替器 7の出力における実成分おょぴ虚成分を 1つの信号成分と して出力するデジタル直交変調器 8と、 デジタル直交変調器 8の出力をアナログ データに変換する D/A変換器 9と、 D/ A変換器 9からのアナ口グデータを周 波数変換して O F DM信号を送信する周波数変換器 1 0とを備えている。 O F D M送信装置はさらに、 O F DM送信装置全体の動作を制御する C P Uなどからな るコントローラ 1 0 0 0を備えている。
上述のように構成された O F DM送信装置によつて生成される O F DM信号の 信号フォーマットは、 図 4 6に示すように、 パケットの先頭に付加された、 プリ アンブルおよび (2つの) スタートシンボルからなる既知のシンボルと、 逆離散 フーリェ変換後のデータにガード区間を付加したデータシンボルとから構成され ている。 より特定的に、 データシンボルは、 逆離散フーリエ変換器 3の出力 (有効シン ボル区間) の後半部分の区間長 T g iの信号を複写して、 有効シンボル区間の前 (ガード区間) に付加することによって生成されている。 このガード区間の付加 により、 ガード区間長 T g i以内の時間遅れで到達する遅延波に対して耐性を持 たせることが可能となる。
また、 既知のシンボルを構成するプリアンブルは、 自動利得制御 (A G C) の ゲイン調整、 シンボル同期などに用いられる信号である。 さらに、 既知のシンポ ルを構成するスタートシンボルは、 差動符号化による変調を行なう場合にその初 期位相を決定するためのものであって、 すべてのサブキャリアを含む信号である。 各スタートシンボル長は、 データシンボルからガード区間を取除いた有効シンポ ルの区間長 T wと等しい。
すなわち、 周波数間隔 d ίの N本のサブキャリアを用いる場合には、 スタート シンボル長 T w (= 1 / d f ) 中で、 信号振幅を N回サンプリングする必要があ る。
次に、 図 4 7を参照して、 従来の O F DM信号の受信装置の構成について説明 する。 なお、 図 4 7中において、 太線で表した信号線は複素数信号、 細線で表し た信号線は実数信号をそれぞれ示している。
図 4 7に示すように、 従来の O F DM受信装置の前半部分は、 受信信号を所定 の帯域に周波数変換する周波数変換器 1 1と、 周波数変換器 1 1の出力をデジタ ルデータに変換する AZD変換器 1 2と、 AZD変換器 1 2の出力を実成分と虚 成分とに分離するデジタル直交検波器 1 3と、 周波数オフセットの補償を行なう とともにシンボルタイミング (位置) の推定を行なう周波数オフセッ ト補償器 1 4と、 周波数オフセット補償器 1 4からのシンボル位置推定値に基づいてシンポ ルクロックを発生するシンボルクロック発生器 1 5とを備えている。
さらに、 従来の O F DM受信装置の後半部分は、 シンボルクロック発生器 1 5 によって発生したシンボルクロックに基づいて後述するコントローラ 2 0◦ 0力 ら供給されるガード区間除去用クロックに従って、 周波数オフセット補償器 1 4 の出力からガード区間を取除くガード区間除去回路 1 6と、 ガード区間除去回路 1 6の出力を直列並列変換する直列並列変換器 1 7と、 直列並列変換器 1 7の出 力を離散フーリエ変換する離散フーリエ変換器 (F F T) 1 8と、 離散フーリエ 変換器 1 8の出力を復調する符号判定回路 1 9と、 符号判定回路 1 9の出力を並 列直列変換する並列直列変換器 2 0とを備えている。 O F DM受信装置はさらに、 O F DM受信装置全体の動作を制御する C P Uなどからなるコントローラ 2 0 0 0を備えている。
図 4 7に示すデジタル直交検波器 1 3は、 図 4 8に示すように、 一定周波数を 発振する局部発振器 2 1と、 局部発振器 2 1の出力信号の位相を π Ζ 2ずらす π / 2位相シフタ 2 2と、 図 4 7の A/D変換器 1 2の出力と局部発振器 2 1の出 力および π / 2位相シフタ 2 2の出力との乗算をそれぞれ行なう乗算器 2 3, 2 4と、 乗算器 2 3 , 2 4のそれぞれの出力から所望の複素数信号を取出すフィル タ 2 5, 2 6とを備えている。
図 4 7に示す周波数オフセット補償器 1 4は、 図 4 9に示すように、 デジタル 直交検波器 1 3 (図 4 7 ) の出力信号を有効シンボル区間長 T wだけ遅延させる 遅延器 3 1と、 遅延器 3 1の出力とデジタル直交検波器 1 3からの受信信号との 相互相関値を計算する相互相関器 3 2と、 デジタル直交検波器 1 3からの受信信 号の自己相関値を計算する自己相関器 3 3とを備えている。
また、 周波数オフセット補償器 1 4は、 相互相関器 3 2の出力を自己相関器 3 3の出力で除算することにより、 受信信号レベルにかかわらず、 相互相関値のピ ーク位置を検出するピーク検出器 3 4と、 ピーク検出器 3 4の出力 (相互相関値 のピーク位置) から、 シンボル位置の推定値を出力するシンボル同期位置推定器 3 5とを備えている。
さらに、 周波数オフセッ ト補償器 1 4は、 相互相関器 3 2の出力とピーク検出 器 3 4の出力 (相互相関値のピーク位置) と力ゝら、 相互相関値の回転角を推定し、 さらには周波数オフセットの推定値を出力する回転角推定器 3 6と、 回転角推定 器 3 6からの周波数オフセットの推定値に基づいて、 デジタル直交検波器 1 3力 らの受信信号の位相を回転させることにより、 周波数オフセットを補償した信号 を出力する位相回転回路 3 7とを備えている。
なお、 図 4 9に示す相関器 3 2, 3 3は、 図 5 0に示すように、 遅延線 4 1と、 タップ 4 2と、 加算器 4 3とから構成されており、 第 2の入力信号から得られる タップ数を用いて第 1の入力信号を積分することにより相関値の計算を行なうも のである。
すなわち、 相互相関器 3 2には、 第 1の入力信号としてデジタル直交検波器 1
3 (図 4 7 ) からの受信信号が入力され、 第 2の入力信号としてデジタル直交検 波器 1 3からの受信信号を遅延器 3 1で T wだけ遅延させた信号が入力され、 第
2の入力信号から得られたタップ数 Mにわたつて第 1の入力信号を積分すること により、 相互相関値を得ることができる。
—方、 自己相関器 3 3には、 第 1および第 2の入力信号としてデジタル直交検 波器 1 3 (図 4 7 ) 力、らの受信信号が共通に入力され、 この受信信号から得られ たタップ数 Mにわたつてこの受信信号を積分することにより、 自己相関値を得る ことができる。 ここで、 タップ数 Mは、 離散フーリエ変換器 (F F T) 1 8 (図
4 7 ) のポイント数 (F F T 1 8の構成に応じて決まるサブキャリアの数の最大 値) に等しい値が用いられる。
次に、 図 4 9を参照して、 周波数オフセット補償器 1 4の動作について説明す る。
図 4 9において、 ピーク検出器 3 4によって、 相互相関器 3 2の出力を自己相 関器 3 3の出力で除算することにより、 相互相関値のピーク位置が求められる。 このピーク検出器 3 4の検出結果に基づき、 シンボル同期位置推定器 3 5は、 シ ンボル同期位置指定値を発生する。
—方、 図 5 1に示すように、 各相関値は複素数で計算されるため、 回転角推定 器 3 6において、 相互相関値のピーク位置から、 相互相関値の実軸に対する回転 角 Δ 0を推定することが可能となる。 この回転角 Δ 0に基づいて、 回転角推定器 3 6は、 次式を用いて周波数オフセット値 Δ f を推定することができる。
Δ f = Δ Θ / ( 2 π T w)
この回転角推定器 3 6によって推定された周波数オフセット値 Δ ίに基づいて、 位相回転回路 3 7は、 デジタル直交検波器 1 3 (図 4 7 ) からの受信信号の位相 を回転させることにより周波数オフセットを補償することが可能となる。 ここで、 相互相関値の実軸に対する回転角 Δ 0は、 一 πから πの間の値を取るので、 一 1 / ( 2 T w) から 1ノ ( 2 T w) の範囲の周波数オフセットを補償することが可 能である。
なお、 上述した従来の周波数オフセット補償器 1 4においては、 位相回転回路 3 7を用いて受信信号の位相回転により周波数オフセットを補償していたが、 位 相回転回路 3 7を用いることなく、 回転角推定器 3 6によって回転角 Δ 0から求 められた周波数オフセット値 Δ ίを、 図 4 8に示すデジタル直交検波器 1 3中の 局部発信器 2 1の図示しない制御入力に入力し、 発振周波数を可変制御すること により、 受信信号の周波数オフセットを補償することもできる。
し力 しながら、 上述の従来技術の周波数オフセット補償器では、 受信信号を遅 延させた信号を参照信号として用いる遅延自己相関方式を採用しており、 サブキ ャリアの周波数間隔で正規化を行なった正規化周波数オフセットに関しては、 一 0 . — 5から + 0 . 5の範囲の周波数オフセットしか検出し補償することができな いという問題があった。 発明の開示
この発明の目的は、 周波数オフセットの補償範囲を拡大した信号受信装置およ び周波数オフセット補償方法を提供することである。
この発明に従うと、 複数のサブキャリアに対してシンボルが並列的に割当てら れて変調されているデータシンボル区間と、 前記データシンボル区間に先行して 付加されたスタートシンボルとからなる信号を受信して復調する信号受信装置は、 第 1のメモリ手段と、 相互相関値算出手段と、 ピーク位置検出手段と、 周波数ォ フセット推定手段と、 周波数オフセット補償手段とを備える。 第 1のメモリ手段 は、 各々がスタートシンボル中の任意の部分に相当する Ν (Νは 2以上の整数) 種類の参照信号を保持する。 相互相関値算出手段は、 受信信号と、 Ν種類の参照 信号のそれぞれとの相互相関値を算出する。 ピーク位置検出手段は、 相互相関値 算出手段によって算出された Ν個の相互相関値のそれぞれのピーク位置を検出す る。 周波数オフセット推定手段は、 ピーク位置検出手段によって検出された Ν個 のピーク位置のそれぞれにおける相互相関値に基づいて、 受信信号のサブキヤリ ァの周波数オフセット推定値を推定して出力する。 周波数オフセット補償手段は、 周波数オフセット推定手段によって推定された周波数オフセット推定値に基づい て、 受信信号のサブキャリアの周波数オフセットを補償する。
この発明の他の局面に従うと、 複数のサブキヤリアに対してシンボルが並列的 に割当てられて変調されているデータシンボル区間と、 データシンボル区間に先 行して付加されたスタートシンポルとからなる信号を受信して復調する信号受信 装置は、 第 1のメモリ手段と、 相互相関値算出手段と、 ピーク位置検出手段と、 周波数オフセット推定手段と、 周波数オフセット補償手段とを備える。 第 1のメ モリ手段は、 各々がスタートシンボル中の任意の部分に相当する N (Nは 3以上 の整数) 種類の参照信号を保持する。 相互相関値算出手段は、 受信信号と、 N種 類の参照信号のそれぞれとの相互相関値を算出する。 ピーク位置検出手段は、 相 互相関値算出手段によって算出された N個の相互相関値のそれぞれのピーク位置 を検出する。 周波数オフセッ ト推定手段は、 ピーク位置検出手段によって検出さ れた N個のピーク位置のそれぞれにおける相互相関値に基づいて、 受信信号のサ ブキャリアの複数の周波数オフセット推定値を推定し平均化して出力する。 周波 数オフセット補償手段は、 周波数オフセット推定手段によって推定され平均化さ れた周波数オフセット推定値に基づいて、 受信信号のサブキヤリァの周波数オフ セットを補償する。
この発明のさらに他の局面に従うと、 複数のサブキヤリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 前記デ一タシンポ ル区間に先行して付加されたスタートシンボルとからなる信号を受信して復調す る信号受信装置は、 第 1のメモリ手段と、 相互相関値算出手段と、 ピーク位置検 出手段と、 周波数オフセッ ト推定手段と、 位相回転手段と、 第 2のメモリ手段と、 制御手段と、 周波数オフセット補償手段とを備える。 第 1のメモリ手段は、 各々 がスタートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の参 照信号を保持する。 相互相関値算出手段は、 与えられた第 1の信号と、 N種類の 参照信号のそれぞれとの相互相関値を算出する。 ピーク位置検出手段は、 相互相 関値算出手段によって算出された N個の相互相関値のそれぞれのピーク位置を検 出する。 周波数オフセット推定手段は、 ピーク位置検出手段によって検出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 相互相関値算出手 段に与えられた第 1の信号のサブキヤリァの周波数オフセット推定値を推定して 出力するとともに蓄積する。
位相回転手段は、 周波 オフセット推定手段によって推定された周波数オフセ ット推定値に基づいて、 与えられた第 2の信号のサブキャリアの位相を回転させ る。 第 2のメモリ手段は、 位相回転手段によって位相回転された第 2の信号を保 持する。 制御手段は、 受信信号を、 第 1の信号として相互相関値算出手段に与え かつ第 2の信号として位相回転手段に与えることにより、 受信信号のサブキヤリ ァの周波数オフセット推定値を蓄積するとともに、 受信信号のサブキャリアの位 相を回転させて第 2のメモリ手段に保持させる第 1の制御動作を 1回実行し、 力 つ第 2のメモリ手段に保持されている信号を、 第 1の信号として相互相関値算出 手段に与えかつ第 2の信号として位相回転手段に与えることにより、 第 2のメモ リに保持されている信号のサブキヤリァの周波数オフセット推定値を蓄積すると ともに、 第 2のメモリに保持されている信号のサブキャリアの位相を回転させて 第 2のメモリ手段に保持させる第 2の制御動作を (N— 1 ) 回繰返す。 周波数ォ フセット補償手段は、 第 1および第 2の制御動作によって蓄積された N個の周波 数オフセット推定値の加算値に基づいて、 受信信号のサブキヤリァの周波数オフ セットを補償する。
この発明のさらに他の局面に従うと、 複数のサブキャリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 データシンボル区 間に先行して付加されたスタートシンボルと力 らなる信号を受信して復調する信 号受信装置は、 第 1のメモリ手段と、 相互相関値算出手段と、 ピーク位置検出手 段と、 第 2のメモリ手段と、 周波数オフセット推定手段と、 加算手段と、 位相回 転手段と、 制御手段と、 周波数オフセット補償手段とを備える。 第 1のメモリ手 段は、 各々がスタートシンボル中の任意の部分に相当する N ( Nは 2以上の整 数) 種類の参照信号と、 ある特定の周波数オフセットが存在する状態における、 各々が 2種類以上の参照信号からなる複数の組に対応する相互相関値間の位相回 転角に基づいた複数の参照データとを保持する。 相互相関値算出手段は、 与えら れた第 1の信号と、 各組の参照信号のそれぞれとの相互相関値を算出する。 ピー ク位置検出手段は、 相互相関値算出手段によって算出された相互相関値のそれぞ れのピーク位置を検出する。 第 2のメモリ手段は、 受信信号の一部分を抽出して 保持する。 周波数オフセット推定手段は、 ピーク位置検出手段によって検出され たピーク位置のそれぞれにおける相互相関値と、 各組の参照信号に対応する参照 データとに基づいて、 相互相関値算出手段に与えられた第 1の信号の周波数オフ セット推定値を推定して出力する。 加算手段は、 周波数オフセット推定手段から 出力される周波数オフセット推定値を累積する。 位相回転手段は、 周波数オフセ ット推定手段によって推定された周波数オフセット推定値に基づいて、 第 2のメ モリ手段に保持されている受信信号の位相を回転させる。 制御手段は、 受信信号 を、 第 1の信号として相互相関値算出手段に与え、 複数の参照データのうち最小 の参照データに対応する組の参照信号のそれぞれとの間で相互相関値を算出し、 算出された相互相関値と最小の参照データとに基づいて、 周波数オフセット推定 手段により受信信号の周波数オフセット推定値を推定する第 1の制御動作を実行 し、 さらに推定された周波数オフセット推定値に基づいて位相回転された第 2の メモリ手段に保持されている受信信号を第 1の信号として相互相関値算出手段に 与え、 複数の参照データのうち未使用の最小の参照データに対応する参照信号の 組との間で相互相関値を算出し、 算出された相互相関値と未使用の最小の参照デ ータとに基づいて、 周波数オフセット推定手段により第 2のメモリに保持されて いる信号の周波数オフセット推定値を推定する第 2の制御動作を繰返す。 周波数 オフセット補償手段は、 加算手段によって累積された第 1および第 2の制御動作 によって算出された周波数オフセット推定値の加算値に基づいて、 受信信号のサ ブキャリアの周波数オフセットを補償する。
この発明のさらに他の局面に従うと、 複数のサブキャリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 前記データシンポ ル区間に先行して付加されたスタートシンボルと力 らなる信号を受信して復調す る信号受信装置は、 CZN検出手段と、 メモリ手段と、 参照信号出力手段と、 相 互相関値計算手段と、 ピーク位置計算手段と、 周波数オフセット推定手段と、 周 波数オフセット補償手段とを備える。 C/N検出手段は、 受信信号の C/Nを検 出する。 メモリ手段は、 受信信号の C/Nに対応する最適の参照信号を特定する データテーブルを保持する。 参照信号出力手段は、 検出された C/Nに応じて、 デ—タテープルに基づいて各々がスタートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の最適の参照信号を出力する。 相互相関値算出手段は、 受信信号と、 N種類の参照信号のそれぞれとの相互相関値を算出する。 ピーク位 置検出手段は、 相互相関値算出手段によって算出された N個の相互相関値のそれ ぞれのピーク位置を検出する。 周波数オフセット推定手段は、 ピーク位置検出手 段によつて検出された N個のピーク位置のそれぞれにおける相互相関値に基づレ、 て、 前記受信信号のサブキャリアの周波数オフセット推定値を推定して出力する。 周波数オフセット補償手段は、 周波数オフセット推定手段によって推定された周 波数オフセット推定値に基づいて、 受信信号のサブキャリアの周波数オフセット を補償する。
この発明のさらに他の局面に従うと、 複数のサブキャリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 データシンボル区 間に先行して付加されたスタートシンボルとからなる信号を受信して復調する信 号受信装置において、 受信信号のサブキャリアの周波数オフセットを補償する方 法は、 受信信号と、 各々がスタートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の参照信号のそれぞれとの相互相関値を算出するステップと、 算出された N個の相互相関値のそれぞれのピーク位置を検出するステップと、 検 出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 受信信号 のサブキャリアの周波数オフセット推定値を推定して出力するステップと、 推定 された周波数オフセット推定値に基づいて、 受信信号のサブキャリアの周波数ォ フセットを補償するステップとを備える。
この発明のさらに他の局面に従うと、 複数のサブキャリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 データシンボル区 間に先行して付加されたスタートシンボルとからなる信号を受信して復調する信 号受信装置において、 受信信号のサブキャリアの周波数オフセットを補償する方 法は、 受信信号と、 各々がスタートシンボル中の任意の部分に相当する N (Nは 3以上の整数) 種類の参照信号のそれぞれとの相互相関値を算出するステップと、 算出された N個の相互相関値のそれぞれのピーク位置を検出するステップと、 検 出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 受信信号 のサブキャリアの複数の周波数オフセット推定値を推定し平均化して出力するス テツプと、 推定され平均化された周波数オフセット推定値に基づいて、 受信信号 のサブキャリアの周波数オフセットを補償するステップとを備える。
この発明のさらに他の局面に従うと、 複数のサブキャリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 データシンボル区 間に先行して付加されたスタートシンボルとからなる信号を受信して復調する信 号受信装置において、 受信信号のサブキャリアの周波数オフセットを補償する方 法は、 第 1の制御ステップを備え、 第 1の制御ステップは、 受信信号と、 各々が スタートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の参照 信号のそれぞれとの相互相関値を算出するステップと、 算出された N個の相互相 関値のそれぞれのピーク位置を検出するステップと、 検出された N個のピーク位 置のそれぞれにおける相互相関値に基づいて、 受信信号のサブキヤリアの周波数 オフセット推定値を推定して出力するとともに蓄積するステップと、 推定された 周波数オフセット推定値に基づいて、 受信信号のサブキャリアの位相を回転させ るステップと、 位相回転された受信信号を保持するステップとを含み、 第 2の制 御ステップをさらに備え、 第 2の制御ステップは、 保持された位相回転された受 信信号と、 N種類の参照信号のそれぞれとの相互相関値を算出するステップと、 算出された N個の相互相関値のそれぞれのピーク位置を検出するステップと、 検 出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 保持され た位相回転された受信信号のサブキヤリァの周波数オフセット推定値を推定して 出力するとともに蓄積するステップと、 推定された周波数オフセット推定値に基 づいて、 保持された位相回転された受信信号のサブキャリアの位相を回転させる ステップと、 位相回転された受信信号を保持するステップとを含み、 第 1の制御 ステップの後、 第 2の制御ステップを (N— 1 ) 回繰返すステップと、 第 1およ び第 2の制御ステップによって蓄積された N個の周波数オフセット推定値の加算 値に基づいて、 受信信号のサブキャリアの位相を回転させることにより、 周波数 オフセットを補償するステップとをさらに備える。
この発明のさらに他の局面に従うと、 複数のサブキャリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 データシンボル区 間に先行して付加されたスタートシンボルとからなる信号を受信して復調する信 号受信装置において、 受信信号のサブキャリアの周波数オフセットを補償する方 法は、 各々がスタートシンボル中の任意の部分に相当する N ( Nは 2以上の整 数) 種類の参照信号と、 ある特定の周波数オフセットが存在する状態における、 各々が 2種類以上の参照信号からなる複数の組に対応する相互相関値間の位相回 転角に基づいた複数の参照データとを保持するステップと、 第 1の制御ステップ とを備え、 第 1の制御ステップは、 受信信号と、 複数の参照データのうち最小の 参照データに対応する組の参照信号のそれぞれとの相互相関値を算出するステッ プと、 算出された相互相関値のそれぞれのピーク位置を検出するステップと、 検 出されたピーク位置のそれぞれにおける相互相関値と、 最小の参照デ一タとに基 づいて、 受信信号のサブキャリアの周波数オフセット推定値を推定して出力する とどもに蓄積するステップと、 受信信号の一部分を抽出して保持するステップと、 推定された周波数オフセット推定値に基づいて、 保持されている受信信号の位相 を回転させるステップとを含み、 第 2の制御ステップをさらに備え、 第 2の制御 ステップは、 推定された周波数オフセット推定値に基づいて位相回転された保持 されている受信信号と、 複数の参照データのうち未使用の最小の参照データに対 する組の参照信号のそれぞれとの相互相関値を算出するステップと、 算出された 相互相関値のそれぞれのピーク位置を検出するステップと、 検出されたピーク位 置のそれぞれにおける相互相関値と、 未使用の最小の参照データとに基づいて、 位相回転された保持されている受信信号の周波数オフセット推定値を推定して出 力するとともに蓄積するステップとを含み、 第 1の制御ステップの後、 第 2の制 御ステツプを操返すステツプと、 第 1および第 2の制御ステップによって蓄積さ れた周波数オフセット推定値の加算値に基づいて、 受信信号のサブキャリアの位 相を回転させることにより、 周波数オフセットを補償するステップとをさらに備 える。
この発明のさらに他の局面に従うと、 複数のサブキャリアに対してシンボルが 並列的に割当てられて変調されているデータシンボル区間と、 データシンボル区 間に先行して付加されたスタートシンボルとからなる信号を受信して復調する信 号受信装置において、 受信信号のサブキャリアの周波数オフセットを補償する方 法は、 受信信号の C/Nを検出するステップと、 受信信号の C/Nに対応する最 適の参照信号を特定するデータテーブルを保持するステップと、 検出された C Nに応じて、 データテーブルに基づいて各々がスタートシンボル中の任意の部分 に相当する N (Nは 2以上の整数) 種類の最適の参照信号を出力するステップと、 受信信号と、 N種類の参照信号のそれぞれとの相互相関値を算出するステップと、 算出された N個の相互相関値のそれぞれのピーク位置を検出するステップと、 検 出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 受信信号 のサブキャリアの周波数オフセット推定値を推定して出力するステップと、 推定 された周波数オフセット推定値に基づいて、 受信信号のサブキャリアの周波数ォ フセットを補償するステップとを備える。 図面の簡単な説明
図 1は、 この発明の第 1の実施形態による O F DM受信装置の周波数オフセッ ト補償器を示すブロック図である。
図 2は、 この発明の第 1の実施形態による O F DM受信装置の周波数オフセッ ト補償器の動作原理を示す説明図である。 Xは位相回転角の等価的な推定位置を 示し、 N g iは T g iに含まれるサンプル数を示し、 N wは T wに含まれるサン プル数を示す。
図 3は、 この発明の第 1の実施形態による O F DM受信装置の周波数オフセッ ト補償器の正規化周波数オフセット対ビット誤り率特性を示す説明図である。 図 4は、 この発明の第 1の実施形態による O F DM受信装置の周波数オフセッ ト補償器のスタートシンボルに対する参照信号の位置を示す説明図である。
図 5は、 この発明の第 1の実施形態による O F DM受信装置の周波数オフセッ ト補償器の高 C N R時において参照データ (等価的な推定時間差) T Eが異なる 参照信号を用いた場合の正規化周波数オフセット対ビット誤り率特性を示す説明 図である。
図 6は、 この発明の第 1の実施形態による O F DM受信装置の周波数オフセッ ト補償器の低 C N R時において参照データ (等価的な推定時間差) T Eが異なる 参照信号を用いた場合の正規化周波数オフセット対ビット^り率特性を示す説明 図である。
14
差替え用紙 (規則 26) 図 7は、 OF DM受信装置の周波数オフセット補償器において、 比較的雑音が 小さく、 TEZTwが小さい場合には、 推定可能な周波数オフセットが大きくな ることを示す説明図である。
図 8は、 OF DM受信装置の周波数オフセット補償器において、 TEZTwが 大きい場合には、 推定可能な周波数オフセットが小さくなることを示す説明図で ある。
図 9は、 OF DM受信装置の周波数オフセット補償器において、 TE/Twが 小さい場合には、 雑音による周波数オフセット推定誤差が大きくなることを示す 説明図である。
図 10は、 OF DM受信装置の周波数オフセット補償器において、 TE/Tw が大きい場合には、 雑音による周波数オフセット推定誤差が小さくなることを示 す説明図である。
図 1 1は、 この発明の第 2の実施形態による OF DM受信装置の周波数オフセ ット補償器を示すブロック図である。
図 12は、 この発明の第 2の実施形態による OFDM受信装置の周波数オフセ ット補償器の動作原理を示す説明図である。 Xは位相回転角の等価的な推定位置 を示す。
図 13は、 OF DM受信装置の周波数オフセット補償器において、 周波数オフ セット値と、 一般的な周波数オフセット推定方法による周波数オフセット推定値 との関係を示すグラフである。 実線の太線は雑音なしの部分を示し、 斜線で示し た領域は雑音ありのときの周波数オフセット推定誤差範囲を示し、 Δ f は周波数 オフセット値を示し、 は周波数オフセット推定値を示す。
図 14は、 OF DM受信装置の周波数オフセット補償器において、 相互相関値 の振幅が小さくなると、 相互相関値の位相角の推定誤差が大きくなることを示す 説明図である。 斜線で示した領域は雑音による相互相関値出力の誤差範囲を示す。 図 15は、 この発明の第 3の実施形態による OF DM受信装置の周波数オフセ ット補償器を示すプロック図である。
図 16は、 この発明の第 3の実施形態による OFDM受信装置の周波数オフセ ット補償器の動作を説明するためのブロック図である。
15 差替え用紙 (規則 26) 図 1 7は、 この発明の第 3の実施形態による O F DM受信装置の周波数オフセ ット補償器の動作を説明するためのブロック図である。
図 1 8は、 この発明の第 3の実施形態による O F DM受信装置の周波数オフセ ット補償器の動作を説明するためのブロック図である。
図 1 9は、 この発明の第 3の実施形態による O F DM受信装置の周波数オフセ ット補償器における処理手順を示すフローチヤ一トである。
図 2 0は、 この発明の第 3の実施形態による O F D M受信装置の周波数オフセ ット補償器から得られる正規化周波数オフセットとビット誤り率との関係を示す グラフである。
図 2 1は、 この発明の第 4の実施形態による O F DM受信装置の周波数オフセ ット補償器を示すプロック図である。
図 2 2は、 この発明の第 5の実施形態による O F DM受信装置の周波数オフセ ット補償器を示すブロック図である。
図 2 3は、 図 2 2に示す周波数オフセット推定器のメモリ 2 1 1に保持される 参照信号間の関係を示す図である。 Xは位相回転角の等価的な推定位置を示す (参照信号の長さは一定) 。
図 2 4は、 この発明の第 5の実施形態による O F DM受信装置の周波数オフセ ット推定器における処理手順を示すフローチヤ一トである。
図 2 5は、 この発明の第 6の実施形態による O F DM受信装置の周波数オフセ ット推定器のメモリ 2 1 1に保持される参照信号間の関係を示す説明図である。 Xは位相回転角の等価的な推定位置を示す (参照信号の長さは一定) 。
図 2 6は、 この発明の第 7の実施形態による O F DM受信装置の周波数オフセ ット補償機能付直交検波部を示すプロック図である。
図 2 7は、 この発明の第 7の実施形態による O F DM受信装置の周波数オフセ ット推定器を示すブロック図である。
図 2 8は、 図 2 6に示す周波数オフセット補償機能付直交検波部のデジタル直 交検波器を示すプロック図である。
図 2 9は、 この発明の第 8の実施形態による O F DM受信装置の周波数オフセ ット推定器とデジタル直交検波器との関係を示すブロック図である。
16 差替え用紙 (規則 26) 図 3 0は、 図 2 9に示す周波数オフセット推定器を示すプロック図である。 図 3 1は、 比較的 C/Nが小さいときにおいて、 参照信号の幅 w i d t hを一 定とし、 参照信号の時間差 s h i f tを変化させた場合の、 正規化周波数オフセ ット対ビット誤り率特性を示すグラフである。
図 3 2は、 比較的 CZNが中程度に大きいときにおいて、 参照信号の幅 w i d t hを一定とし、 参照信号の時間差 s h i f tを変化させた場合の、 正規化周波 数オフセット対ビット誤り率特性を示すグラフである。
図 3 3は、 比較的 C ZNが大きいときにおいて、 参照信号の幅 w i d t hを一 定とし、 参照信号の時間差 s h i f tを変化させた場合の、 正規化周波数オフセ ット対ビット誤り率特性を示すグラフである。
図 3 4は、 参照信号の時間差 s h i f tが小さい方が演算完了時間が短くなる ことを示す説明図である。 Aは widthの値 (一定) を示し、 Bは shiftの値 (B K B 2 ) を示し、 S 1は width= A lである 1対の参照信号のうち最初に相関 を取る参照信号を示し、 S 2 1は S 1から B 1だけシフト後に相関を取る参照信 号を示し、 S 2 2は S 1から B 2だけシフト後に相関を取る参照信号を示す。 図 3 5は、 比較的 C ZNが小さいときにおいて、 参照信号の時間差 s h i f t を一定とし、 参照信号の幅 w i d t hを変化させた場合の、 正規化周波数オフセ ット対ビット誤り率特性を示すグラフである。
図 3 6は、 比較的 CZNが中程度に大きいにおいて、 参照信号の時間差 s h i f tを一定とし、 参照信号の幅 w i d t hを変化させた場合の、 正規化周波数ォ フセット対ビット誤り率特性を示すグラフである。
図 3 7は、 比較的 CZNが大きいときにおいて、 参照信号の時間差 s h i f t を一定とし、 参照信号の幅 w i d t hを変化させた場合の、 正規化周波数オフセ ット対ビット誤り率特性を示すグラフである。
図 3 8は、 参照信号の幅 w i d t hが小さい方が演算完了時間が短くなること を示す説明図である。 Bは widthの値 (一定) を示し、 Aは shiftの値 (A 1く A 2 ) を示し、 S 1 1は width= A lである 1対の参照信号のうち最初に相関を 取る参照信号を示し、 S 1 2は S 1 1から Bだけシフト後に相関を取る参照信号 を示し、 S 2 1は width= A 2である 1対の参照信号のうち最初に相関を取る参
17
差替え用紙 (規則 26) 照信号を示し、 S 2 2は S 2 1から Bだけシフト後に相関を'取る参照信号を示す。 図 3 9は、 比較的 CZNが小さいときにおいて、 参照信号の時間差 s h i f t および参照信号の幅 w i d t hを変化させた場合の、 正規化周波数オフセット対 ビット誤り率特性を示すグラフである。
図 4 0は、 比較的 CZNが中程度に大きいときにおいて、 参照信号の時間差 s h i f tおよび参照信号の幅 w i d t hを変化させた場合の、 正規化周波数オフ セット対ビット誤り率特性を示すグラフである。
図 4 1は、 比較的 CZNが大きいときにおいて、 参照信号の時間差 s h i f t および参照信号の幅 w i d t hを変化させた場合の、 正規化周波数オフセット対 ビット誤り率特性を示すグラフである。
図 4 2は、 この発明の第 9の実施形態による O F DM受信装置において受信信 号の CZN情報を入手する CZN検出器を示す図である。
図 4 3 Aは、 シングルキャリア変調方式のスぺクトルを示す説明図である。 図 4 3 Bは、 O F DM伝送方式のスぺクトルを示す説明図である。
図 4 4は、 O F DM信号における周波数オフセットを示す説明図である。 縦方 向の破線は周波数オフセットがない場合 (他の波の影響を受けない場合) を示し、 縦方向の実線は周波数オフセットがある場合 (他の波の影響を受ける場合) を示 す。
図 4 5は、 従来技術による O F DM送信装置を示すブロック図である。
図 4 6は、 O F DM信号の一般的なパケット構成を示す説明図である。
図 4 7は、 従来技術による O F DM受信装置を示すプロック図である。
図 4 8は、 従来技術による O F DM受信装置におけるデジタル直交検波器の一 例を示すブロック図である。
図 4 9は、 従来技術による O F DM受信装置における周波数オフセット補償器 の一例を示すブロック図である。
図 5 0は、 従来技術による O F DM受信装置における周波数オフセット補償器 の相関器を示すブロック図である。
図 5 1は、 従来技術による O F DM受信装置における周波数オフセット補償器 の動作原理を示す説明図である。
18
差替え用紙 (規則 26> 発明を実施するための最良の形態
[第 1の実施形態]
以下、 図 1〜図 6を参照して、 この発明の第 1の実施形態による O F DM受信 装置について説明する。 なお、 図 4 7に関連して説明した従来技術の O F DM受 信装置と共通する部分については同一符号を付してその説明を省略する。
第 1の実施形態による O F DM受信装置は、 図 4 7に関連して説明した従来技 術の O F DM受信装置における周波数オフセット補償器 1 4を改良したものであ り、 周波数オフセット補償器 1 4を除いた他の部分は従来の O F DM受信装置と 同様の構成を有している。
また、 第 1の実施形態のみならず、 後述する各実施形態の O F DM受信装置は、 図 4 7に示したコントローラ 2 0 0 0により、 その全体的な動作が制御されるも のとする。
まず、 図 1を参照して、 第 1の実施形態による O F DM受信装置における周波 数オフセット補償器の構成について説明する。 なお、 図 1において、 太線で表し た信号線は複素数信号、 細線で表した信号線は実数信号をそれぞれ示している。 図 1において、 メモリ 5 1は、 各々がスタートシンボル中の任意の部分に相当
18/1
差替え用紙 (規則 26) する N (第 1の実施形態では N= 2) 種類の信号を、 それぞれ参照信号として保 持している。 相互相関器 52, 53は、 デジタル直交検波器 1 3 (図 47) の出 力信号と、 メモリ 51に保持された 2つの参照信号のそれぞれとの間で相互相関 値を計算する。
ピーク検出器 54は、 相互相関器 52, 53のそれぞれの出力におけるピーク 位置を検出し、 周波数オフセット推定回路 55は、 ピーク検出器 54で検出され たそれぞれのピーク位置における相互相関値に基づいて、 位相回転角を計算して、 受信した O F DM信号の周波数オフセット値を推定する。
ここで、 周波数オフセット推定回路 55は、 ピーク検出器 54で検出されたそ れぞれのピーク位置における相互相関値に基づいて、 位相回転角を計算する位相 回転角計算回路 56と、 メモリ 51に保持されている 2つの参照信号に対応した 参照データ (等価的な推定時間差) 2 π T Eを保持するメモリ 57と、 位相回転 角計算回路 56の出力を、 メモリ 57に保持された参照データ 2 πΤΕで除算す る除算器 58とを備えている。
ここで、 予め特定の周波数オフセット Δ ί r e ίが存在する状態において、 メ モリ 51に保持されている 2つの参照信号に対応してそれぞれ算出された相互相 関値間の位相回転角 Δ 6 r e ίを算出することによって、 メモリ 57に保持され る参照データを求めることができる。 すなわち、 メモリ 51に保持されている参 照信号の波形および位置に基づく値である参照デ一タ (参照信号の等価的な時間 差) ΤΕを、 次式を用いて求めることができる。
TE = A 0 r e f /2 7c厶 f r e f
次に、 図 2を参照して、 図 1に示した周波数オフセット補償器の動作を説明す る。 連続する 2つのスタートシンボル中の一部分にそれぞれ相当する 2つの参照 信号は、 図 2に示すように、 それぞれ幅 w i d t hを有しており、 互いに s h i f tだけタイミングがずれているものとする。
すなわち、 時間 Tg i, Tw中に含まれるサンプル数をそれぞれ Ng i , Nw とすると、 第 1の参照信号は、 スタートシンボルの先頭から計算して、 Ng i + Nw— ( s h i f t + w i d t h) _ 2力、ら Ng i +Nw— ( s h i f t— w i d t h) /2で表される区間のスタートシンボルに相当する信号であり、 第 2の
19 参照信号は、 スタートシンボルの先頭から計算して、 N g i +Nw— (一 s h i f t +w i d t h) /2から N g i +Nw- (— s h i f t -w i d t h) /2 で表される区間のスタートシンボルに相当する信号である。
そして、 相互相関器 5 2, 5 3は、 デジタル直交検波器 1 3 (図 4 7) からの 受信信号と、 上述の 2つの参照信号のそれぞれとの相互相関値を計算し、 位相回 転角計算回路 5 6は、 計算されたピーク位置におけるそれぞれの相互相関値から 受信信号の位相回転角厶 0を求める。 この位相回転角 Δ Θをメモリ 5 7に保持さ れた参照データ 2 π Τ Εで除算することにより、 周波数オフセット推定値 Δ f = 厶 Θノ (2 π ΤΕ) を推定することができる。
この周波数オフセット推定値 Δ f に基づき、 位相回転回路 3 7は、 デジタル直 行検波器 1 3 (図 4 7) からの受信信号の周波数オフセットを補償することが可 能となる。
上述のように、 2つの参照信号を用いた場合には、 位相回転角の参照データ T Eにより、 周波数オフセット値 Δ f の推定範囲は異なり、 図 3に示すように、 正 規化周波数オフセットの推定範囲は、 一 Tw/ ( 2 TE) から + Tw/ (2 T E) の間とすることができる。
すなわち、 丁£く丁 とすると、 第 1の実施形態の OF DM受信装置において は、 上述の従来例と比較して、 周波数オフセットの補償範囲を拡大することが可 能となる。
なお、 図 3の例は、 サンプリングク口ック同期、 シンボルタイミング同期が完 全であり、 有効シンボル区間長 Twに含まれるサンプル数 Nw (F FT 1 8 (図 4 7) のポイント数) を 6 4、 サブキャリア数 Nを 4 8とした場合の、 正規化周 波数オフセット (横軸) 対ビット誤り率特性 (B E R: Bit Error Rate) (縦 軸) を示している。
また図 4は、 2つの参照信号の幅 (サンプル数) w i d t hを 1 6とし、 TE
/Twをそれぞれ 0. 2 5, 1. 5 (参照信号のずれ (サンプル数) s h i f t をそれぞれ 1 6, 9 6とする) とした場合について、 2つの参照信号がスタート シンボル中で占める位置を示している。
ところで、 位相回転角に誤差 η Θが生じると、 周波数オフセット推定値は、 Δ
20 f +n f = (Δ θ +n Θ) / (2 πΤΕ) となり、 周波数オフセット推定誤差 n f が生じる。 すなわち、 TE値が小さい場合は、 位相回転角の誤差 n 0による影 響 (周波数オフセット推定値△ f に対する周波数オフセット推定誤差 n f ) が大 きくなり、 エラ一フロアが発生することになる。
したがって、 図 5に示すように雑音が小さい場合 (たとえば、 CNR (搬送波 対雑音比) =35 d b) を例にとると、 ある周波数オフセット Δ f が存在する場
Δ f =Δ Θ/ (2 πΤΕ) (ただし一 πく Δ0く π)
の関係より、 図 7に示すように TEノ Tw=0. 25としたときには、 図 8に示 すように TE,Tw= l . 5としたときに比べ、 回転角 Δ Θが小さい値となる (TE/Tw= 1. 5のときの:! ^) 。
ところで、 ΔΘのとり得る範囲は、 一兀<厶 6)く πであるので、 ある周波数ォ フセット Δ f に対する回転角 Δ Θが小さいほど (すなわち TE/Twが小さいほ ど) 、 推定可能な周波数オフセットの範囲は広くなる (TE/Tw=l. 5のと きの 6倍) 。
このため、 図 5に示すように雑音が小さい場合には、 参照データ TE値を小さ くすることによって、 周波数オフセットの推定範囲をより広くすることが可能と なる。
—方、 雑音が存在する場合には、 雑音により相互相関値に誤差が生じ、 その結 果、 図 9および図 10に示すように、 回転角 Δ Θにも誤差 η Θが生じることにな る。
このときの周波数オフセット推定値にも雑音による誤差 n f が生じ、 周波数ォ フセット推定値は、
△ f + n f = (Δθ +η θ) / (2 πΤΕ)
となる。 したがって、 雑音の存在下においては、 周波数オフセットの推定誤差 η f は、 TEを小さくした方が相対的に大きくなる (TEZTw=0. 25のとき、 TE/Tw= 1. 5のときの 6倍) 。
したがって、 図 6に示すように、 TE/Tw=0. 25のときには周波数オフ セットの推定誤差 n f が大きいため、 エラーフロアが発生するのに対し、 TE/
21 T w = 1 . 5のときには周波数オフセットの推定誤差 n f が比較的小さく抑えら れるため、 エラーフロアは発生しない。
したがって、 参照データ T E値を大きくすることによって、 周波数オフセット の推定誤差をより小さくすることが可能になることが理解される。
このように、 参照信号の等価的な時間差参照データ T Eの値の選び方、 すなわ ち参照信号そのものの選び方によって、 周波数オフセット値の推定範囲および精 度を任意に設定することが可能である。
なお、 この第 1の実施形態においては、 データシンボルの前に付加する既知の シンボルとして、 各々が T g i + T.wの長さを持つ連続する 2つのスタートシン ボルを用いているが、 スタートシンボルの長さおよび連続するスタートシンボル の数は、 これらに限られるものではなく、 任意の長さおよび任意の数のスタート シンボルを付加することができる。
この第 iの実施形態では、 2つの参照信号を 1組として (N = 2 ) 、 周波数ォ フセットの推定を行なう周波数オフセット捕償器について説明したが、 より一般 的には、 2つ以上の参照信号を 1組とし (N 2 ) 、 周波数オフセットの推定を 行なうことによって、 雑音による周波数オフセットの推定誤差を抑制することが できる。
[第 2の実施形態]
このように 2つ以上の参照信号を 1組とした、 この発明の第 2の実施形態によ る O F DM受信装置の周波数オフセット補償器について、 図 1 1および図 1 2を 参照して説明する。 なお、 図 1に示した第 1の実施形態による周波数オフセット 補償器と共通する部分については、 同一符号を付してその説明を省略する。 第 2の実施形態による O F DM受信装置は、 図 1 1に示すように、 各々がスタ ートシンボル中の任意の部分に相当する 3種類 (N = 3 ) の参照信号を保持して いるメモリ 5 1と、 デジタル直交検波器 1 3 (図 4 7 ) の出力信号と、 メモリ 5 1に保持された 3つの参照信号のそれぞれとの間で相互相関値を計算する相互相 関器 5 2, 5 3, 6 1と、 相互相関器 5 2, 5 3, 6 1のそれぞれの出力におけ るピーク位置を検出するピーク検出器 5 4と、 ピーク検出器 5 4で検出されたそ れぞれのピーク位置における相互相関値に基づいて、 周波数オフセット値を推定
22 する周波数オフセット推定回路 6 5とを備えている。
周波数オフセット推定回路 6 5は、 第 1および第 2の参照信号に対して求めら れたそれぞれの相互相関値から受信信号の位相回転角を計算する位相回転角計算 回路 5 6と、 この位相回転角計算回路 5 6の出力を、 メモリ 5 7に保持された参 照データ (等価的な推定時間差) 2 π Τ Ε 1で除算する除算器 5 8と、 第 2およ び第 3の参照信号に対して求められたそれぞれの相互相関値から受信信号の位相 回転角を計算する位相回転角計算回路 6 6と、 この位相回転角計算回路 6 6の出 力を、 メモリ 6 7に保持された参照データ (等価的な推定時間差) 2 π Τ Ε 2で 除算する除算器 6 8と、 除算器 5 8の出力と除算器 6 8の出力との平均を求め、 周波数オフセット推定値として出力する平均化回路 6 9とを有している。
次に、 この第 2の実施形態による周波数オフセット補償器の動作を図 1 2を参 照して説明する。 ここで、 連続する 2つのスタートシンボル中の一部分にそれぞ れ相当する 3つの参照信号は、 図 1 2に示すように、 それぞれ幅 w i d t hを有 しており、 それぞれの参照信号は s h i f tずつ順にタイミングがずれているも のとする。 この 3種類の参照信号のそれぞれと、 受信信号との相互相関値を計算 することによって、 それぞれの相互相関値から受信信号の位相回転角を求め、 こ れらの位相回転角同士を比較することにより、 周波数オフセットの推定を行なう。 この第 2の実施形態では、 3個の参照信号を用いているため、 対応するそれぞ れの相互相関値のピーク位置におけるそれぞれの相互相関値、 すなわち 3つの位 相回転角が求まる。 求められた位相回転角に基づき、 位相回転角計算回路 5 6, 6 6においてそれぞれ、 2 (= N— 1 ) 個の位相回転角差を計算することができ る。
そして、 位相回転角計算回路 5 6によって計算された位相回転角差を、 メモリ 5 7に保持されている第 1および第 2の参照信号に対する参照データ (等価的な 推定時間差) 2 π Τ Ε Ιで除算するとともに、 位相回転角計算回路 6 6によって 計算された位相回転角差を、 メモリ 6 7に保持されている第 2および第 3の参照 信号に対する参照データ (等価的な推定時間差) 2 π Τ Ε 2で除算する。 これら の除算結果を平均化し、 周波数オフセット推定値とすることによって、 周波数ォ フセット値を推定する際に、 雑音による推定誤差を抑制することが可能となる。
23 なお、 この第 2の実施形態においても、 第 1の実施形態と同様に、 予めある周 波数オフセットをスタートシンボルにかけたときの、 それぞれの相互相関値の位 相回転角から参照データ (参照信号の等価的な時間差) TEn (n = l〜N— 1) を計算する。 これを用いて各周波数オフセット推定値 Δ ί η = Δ ΘΖ (2 π TEn) (n= l〜N— 1) を求め、
Δ f =ΣΔ f n/ (N- 1)
を周波数オフセット推定値として、 位相回転回路 37に出力する。 この平均化さ れた周波数オフセット推定値に基づき、 位相回転回路 37は、 デジタル直交検波 器 1 3 (図 47) からの受信信号の周波数オフセットを補償することが可能とな る。
上述の第 2の実施形態のように、 参照信号の種類 Nを増加させた場合、 N— 1 個の周波数オフセットの推定値を求め、 これらを平均化して最終的な周波数オフ セット推定値として出力しているので、 雑音に対して耐性のある周波数オフセッ ト推定を行なうことが可能となる。
なお、 上述の第 1および第 2の実施形態の周波数オフセット補償器においては、 位相回転回路 37を用いて受信信号の位相回転により周波数オフセットを補償し ていたが、 位相回転回路 37を用いることなく、 周波数オフセット推定回路 65 で求めた周波数オフセット値 Δ ίを、 デジタル直交検波器 1 3中の局部発振器 2 1 (図 48) の制御入力に入力し、 発振周波数を可変制御することにより、 受信 信号の周波数オフセットを補償することもできる。
[第 3の実施形態]
次に、 図 1 3〜図 20を参照して、 この発明の第 3の実施形態による OFDM 受信装置について説明する。 なお、 図 1に示した第 1の実施形態による周波数ォ フセット補償器と共通する部分には、 同一符号を付してその説明を省略する。 この第 3の実施形態の構成を説明する前に、 周波数オフセットを繰返し推定す ることにより、 推定の精度が向上する理由について説明する。
一般に、 周波数オフセットが大きくなるにつれて周波数オフセット推定の精度 は悪くなる。
図 1 3に示すグラフは、 周波数オフセット値と、 周波数オフセット推定値との
24 一般的な関係を表している。 このグラフから明らかなように、 周波数オフセット 値が大きくなるにつれて周波数オフセット推定誤差が大きくなっていることが理 解される。 この原因としては、 周波数オフセット値を推定する際に、 受信信号中 に含まれるスタートシンボルと参照信号との相互相関値の位相回転角により周波 数オフセットが求められるため、 周波数オフセットが大きいときには相互相関値 の振幅が小さくなり、 雑音の影響を受けやすくなるということが考えられる。 図 1 4に示すグラフは、 相互相関値の振幅が小さくなると相互相関値の振幅に 対して雑音が大きくなるので、 相互相関値の位相角の推定誤差が大きくなってし まうことを示している。
そこで、 この第 3の実施形態では、 周波数オフセット推定を繰返し行なうこと により、 周波数オフセット推定誤差を小さくしょうとするものである。
この第 3の実施形態による O F DM受信装置の周波数オフセット補償器は、 図 1 5に示すように、 参照信号を保持するメモリ 1 0 1, 1 0 2と、 周波数オフセ ットの計算に要する時間だけ受信信号を保持するメモリ 1 0 3と、 位相回転回路 1 0 8からの出力を保持するメモリ 1 0 4と、 デジタル直交検波器 1 3 (図 4 7 ) の出力またはメモリ 1 0 4に保持されている受信されたスタートシンボルと、 メモリ 1 0 1, 1 0 2に保持されているそれぞれの参照信号との間で相互相関値 を計算する相互相関器 1 0 5, 1 0 6と、 相互相関器のそれぞれの出力からピー ク位置を検出しシンボル同期位置を推定するピーク検出器 1 1 4と、 相互相関器 1 0 5 , 1 0 6の出力から位相回転角を計算し周波数オフセット値を推定する周 波数オフセット計算器 1 0 7と、 周波数オフセット計算器 1 0 7からの出力に基 づきメモリ 1 0 3またはメモリ 1◦ 4からの出力の位相を回転させた後、 メモリ 1 0 4に出力する位相回転回路 1 0 8と、 直交検波器 1 3 (図 4 7 ) の出力を、 周波数オフセットを補償するのに要する時間だけ遅延させる遅延器 1 0 9と、 周 波数オフセット計算器 1 0 7からの出力に基づき、 遅延器 1 0 9から出力される 信号の位相を回転させる位相回転回路 1 1 0と、 デジタル直交検波器 1 3 (図 4 7 ) の出力とメモリ 1 0 4の出力とを選択的に切換えて相互相関器 1 0 5, 1 0 6に出力する切替器 1 1 1と、 メモリ 1◦ 3の出力とメモリ 1 0 4の出力とを選 択的に切換えて位相回転回路 1 0 8に出力する切替器 1 1 2と、 メモリ 1 0 4に
25 P 03117 保持されている信号を切替器 1 1 1の一方の入力または切替器 1 1 2の一方の入 力に選択的に切換えて与える切替器 1 1 3とを備えている。
なお、 切替器 1 1 1, 1 1 2および 1 1 3の切換動作は、 コントローラ 2 0 0 0 (図 4 7 ) からの制御信号によって制御されているものとする。
次に、 図 1 6〜図 1 8のブロック図を参照して、 第 3の実施形態による周波数 オフセット補償器の動作について説明する。
最初に、 図 1 6に示すように、 切替器 1 1 1はデジタル直交検波器 1 3 (図 4 7 ) の出力側に、 切替器 1 1 2はメモリ 1 0 3側に、 切替器 1 1 3は切替器 1 1 1側に接続するようにコントローラ 2 0 0 0により切換制御が行なわれる。 デジ タル直交検波器 1 3からの信号は切替器 1 1 1を介して相互層問器 1 0 5 , 1 0 6に共通に与えられ、 相互相関器 1 0 5, 1 0 6によってメモリ 1 0 1, 1 0 2 に保持されているそれぞれの参照信号との間で相互相関値をとられる。 それぞれ の相互相関器で算出された相互相関値は周波数オフセット計算器 1 0 7に与えら れる。 また、 デジタル直交検波器 1 3からの信号は同時にメモリ 1 0 3に保持さ れる。
周波数オフセット計算器 1 0 7は、 与えられた 2つの相互相関値に基づいて周 波数オフセット推定値を計算する。 計算された周波数オフセット推定値に従い、 位相回転回路 1 1 0は遅延器 1 0 9の出力の位相を回転させる。 なお、 遅延器 1 0 9は、 周波数オフセット推定値の計算に要する期間中直交検波器 1 3の出力を 保持しておき、 周波数オフセット推定が完了してから位相回転回路 1 1 0に出力 する。 これにより、 受信データの最初から周波数オフセットが補償されることに なる。 一方、 位相回転回路 1 0 8は、 計算された周波数オフセット推定値に基づ いてメモリ 1◦ 3に保持されている信号の位相を回転させ、 その結果をメモリ 1 0 4に保持する。
次に、 図 1 7に示すように、 切替器 1 1 1を切替器 1 1 3側に、 切替器 1 1 2 を切替器 1 1 3側に接続するようにコントローラ 2 0 0 0により切換制御が行な われる。 相互相関器 1 0 5, 1 0 6は、 メモリ 1 0 4に保持されている信号とメ モリ 1 0 1, 1 0 2に保持されているそれぞれの参照信号との間で相互相関値を 計算し、 計算された相互相関値に基づき、 周波数オフセット計算器 1 0 7は周波
26 数オフセット推定値を計算し、 位相回転回路 1 0 8 , 1 1 0に出力する。
次に、 図 1 8に示すように、 切替器 1 1 3を切替器 1 1 2側に接続するようコ ントロ一ラ 2 0 0 0により切換制御が行なわれる。 位相回転回路 1 0 8は、 周波 数オフセット計算器 1 0 7によって計算された周波数オフセット推定値に基づき、 メモリ 1◦ 4に保持されている信号の位相を回転させ、 メモリ 1 0 4に再度保持 する。 その後、 切替器 1 1 3を切替器 1 1 1側に接続するようにコントローラ 2 0 0◦によって切換制御が行なわれる。 以後、 メモリ 1 0 4に保持されている信 号とそれぞれの参照信号との相互相関値をとり、 算出された相互相関値に基づい て周波数オフセットを推定し、 メモリ 1 0 4に保持されている信号の位相を回転 させて再度メモリ 1 0 4に保持するという動作を繰返す。
この第 3の実施形態による周波数オフセット補償器の上述の処理手順を、 図 1
9のフローチャートを参照して説明する。
この図 1 9に示す例では、 コントローラ 2 0 0 0 (図 4 7 ) の制御下に、 周波 数オフセットの推定を N回行なうものとする。 また周波数オフセット推定器では、 受信信号と参照信号との相互相関値をピーク検出器 1 1 4で監視することにより、 スタートシンボル位置およびデ一タシンボル位置の推定を行なう。
まず、 ステップ S 1において、 切替器 1 1 1をデジタル直交検波器 1 3の出力 側に、 切替器 1 1 2をメモリ 1 0 3側に接続する切換制御を実行する。 次に、 ス テツプ S 2において、 相互相関器 1 0 5, 1 0 6によって、 デジタル直交検波器 1 3からの受信信号とメモリ 1 0 1, 1 0 2に保持されているそれぞれの参照信 号との間の相互相関値を算出する。 次にステップ S 3において、 ピーク検出器 1 1 4により相互相関値のピーク位置を検出したか否かを判定し、 ピーク位置を検 出しない場合には、 上述のステップ S 2の処理を繰返し、 ピーク位置を検出した 場合には、 ステップ S 4において、 相互相関器 1 0 5, 1 0 6で算出された相互 相関値から周波数オフセット推定値 (オフセット値 # 1 ) を算出する。
ステップ S 5において、 メモリ 1 0 3に記憶されている直交検波器 1 3からの 信号が、 切替器 1 1 2を介して位相回転回路 1 0 8に与えられ、 ステップ S 6に おいて、 位相回転回路 1 0 8は、 メモリ 1 0 3から入力された信号の位相を、 上 iポの周波数オフセット推定値 (オフセット値 # 1 ) に従って回転する。 次に、 ス
27 テツプ S 7において、 位相回転回路 1 0 8において位相回転された受信信号がメ モリ 1 0 4に保持される。
次に、 ステップ S 8において、 切替器 1 1 1を切替器 1 1 3側に、 切替器 1 1 2を切替器 1 1 3側に接続するように切換制御が行なわれ、 さらにステップ S 9 からステップ S 1 6の間で、 以下に説明する処理が (N— 1 ) 回繰返される。 まず、 ステップ S 1 0において、 相互相関器 1 0 5, 1 0 6は、 メモリ 1 0 4 から切替器 1 1 3, 1 1 1を介して与えられた信号と、 メモリ 1 0 1, 1 0 2に 記憶されている参照信号のそれぞれとの問で相互相関値を算出し、 ステップ S 1 1において、 周波数オフセット計算器 1 0 7は、 周波数オフセット推定値 (オフ セット値# 11 ) を算出する。 次に、 ステップ S 1 2において、 切替器 1 1 3を切 替器 1 1 2側に接続する切換制御が行なわれ、 ステップ S 1 3において、 位相回 転回路 1 0 8は、 メモリ 1 0 4から切替器 1 1 3, 1 1 2を介して読出された信 号の位相を、 上述の算出された周波数オフセット推定値 (オフセット値# ) に 従って回転する。 ステップ S 1 4において、 位相回転回路 1 0 8によって位相回 転された信号は再度メモリ 1 0 4に記憶される。
次に、 ステップ S 1 5において、 切替器 1 1 3を切替器 1 1 1側に接続する切 換制御が行なわれ、 再びステップ S 1 0から S 1 6に至る処理を (N— 1 ) 回繰 返す。 (N—1 ) 回の繰返しが終了した後、 ステップ S 1 7において、 それまで に算出されたすベてのオフセット値 # 1〜# Nを加算し、 ステップ S 1 8におい て、 この加算値に従って、 位相回転回路 1 1◦は遅延器 1 0 9からの出力信号の 位相を回転する。
図 2 0は、 参照信号の幅を w i d t h = 1 6、 2つの参照信号間のずれを s h i f t = 8としたときの、 この第 3の実施形態の周波数オフセット補償器から得 られる正規化周波数オフセットとビット誤り率との関係を示すグラフである。 図 2 0に示すように、 1回目に、 受信信号中のスタートシンボルと参照信号との間 で相互相関値を算出し、 周波数オフセット推定値を求め、 その値により周波数ォ フセットを補償する。 2回目に、 周波数オフセット補償後のスタートシンボルと 参照シンボルとの間で相互相関値を算出し、 周波数オフセット推定値を求め、 そ の値により周波数オフセットを補償する。 このとき求められる相互相関値は、 1
28 回目に受信信号中のスタートシンボルと参照信号との間で求めた相互相関値より も振幅が大きく位相角は小さくなつている。 したがって、 2回目のオフセット推 定により、 実際の周波数オフセット値により近い周波数オフセット推定値が求ま つていることになる。 さらに 3回目に、 2回目と同様の処理を繰返すことにより オフセット推定回数が増大し、 より大きな周波数オフセットの補償が可能となる ことが理解される。
上述の第 3の実施形態では、 2つの参照信号 (N = 2 ) を 1組として、 周波数 オフセットの推定を行なっていたが、 2つ以上の参照信号 (N 2 ) を 1組とし て周波数オフセットの推定を行なうことによって、 さらに雑音による周波数オフ セット推定誤差を抑制することが可能となる。
[第 4の実施形態]
このような場合に関して、 図 2 1を参照して、 この発明の第 4の実施形態によ る O F DM受信装置について説明する。 なお、 上述の第 3の実施形態と共通する 部分については、 同一符号を付してその説明を省略する。
図 2 1に示すように、 この第 4の実施形態による周波数オフセット補償器は、 スタートシンボル中の任意の部分に相当する 3種類 (N = 3 ) の参照信号を保持 しているメモリ 1 0 1, 1 0 2, 1 1 5と、 デジタル直交検波器 1 3 (図 4 7 ) の出力信号と、 メモリ 1 0 1, 1 0 2, 1 1 5に保持されている 3つの参照信号 のそれぞれとの間で相互相関値を算出する相互相関器 1 0 5, 1 0 6, 1 1 1と を備えている。
図 2 1に示した第 4の実施形態による周波数オフセット補償器によれば、 3つ の相互相関器 1 0 5, 1 0 6, 1 1 6により位相回転角が算出され周波数オフセ ット計算器 1 0 7に与えられる。 周波数オフセット計算器 1 0 7は、 これらの位 相回転角に応じて 2つの周波数オフセット値を推定し、 その平均値を周波数オフ セット推定値として位相回転回路 1 0 8に与えて周波数オフセットの補償を行な つている。 これにより、 周波数オフセット値を推定する際の雑音による推定誤差 を抑制することが可能となる。
[第 5の実施形態]
次に、 図 2 2〜図 2 4を参照して、 この発明の第 5の実施形態による O F DM
29 受信装置について説明する。 なお、 前述の第 1の実施形態と共通する部分には、 同一符号を付して説明を省略する。
この第 5の実施形態の構成について詳細に説明する前に、 この第 5の実施形態 による周波数オフセット推定の方法によって推定精度が改善される理由について 説明する。
上述の各実施形態に関連して説明したように、 基本的に 1対の相互相関値から 周波数オフセット推定値を算出することができる。 すなわち、 周波数オフセット 推定値の導出式である Δ ί = Δ Θ / ( 2 π Τ Ε ) から、 参照データ (等価的な推 定時間差) Τ Εの値を小さくとるほど広範囲に周波数オフセットの推定を行なう ことができ、 逆に参照データ Τ Εの値を大きくとるほど周波数オフセットの推定 範囲が狭くなることが理解される。
ここで、 受信信号に雑音が付加された場合を考えると、 求められる位相回転角 には、 雑音の影響で誤差 η 0が含まれることになる。 この誤差 η 0により、 受信信号に雑音が付加された場合の周波数オフセット推定値は、 Δ f + n f = ( Δ θ + n 6 ) / ( 2 π Τ Ε ) で表わされることになる。 したがって、 周波数ォ フセット推定値は、 参照データ Τ Εの値が小さいほど雑音による誤差 η 0の影響 が大きくなり、 参照データ Τ Ε値が大きいほど雑音による誤差 η Θの影響が小さ くなることが理解される。
したがって、 参照データ Τ Εの値を小さくとった場合には、 広範囲に周波数ォ フセットの推定を行なえる一方で、 雑音による周波数オフセット推定誤差 n f が 大きくなることが理解される。
このことから、 この発明の第 5の実施形態による周波数オフセット補償器では、 広範囲の周波数オフセットを高精度に補償するために、 まず参照データ T Eの値 を小さくとることにより広範囲にわたって周波数オフセット推定値を求めて周波 数オフセット補償を行ない、 次に参照データ T Eの値を大きくとることによって、 先に行なった周波数オフセット補償の誤差が小さくなるように周波数オフセット の推定 ·補償を行なうように構成したものである。
より特定的に、 各々 2つの参照信号からなる複数の参照信号の組と、 複数の参 照信号の組にそれぞれ対応する異なる参照データ T Eとを準備し、 参照データ T
30 Eの小さい方の参照信号の組から順に用いて周波数オフセットの推定および補償 を繰返し行ない、 その都度得られた周波数オフセット推定値を蓄積していく。 そ して、 最終的に求められた周波数オフセット推定値の加算値を位相回転回路に与 えて、 直交検波回路から受信した信号の位相を回転させることにより、 広範囲な 周波数オフセットに対応するものであり、 かつ雑音に対してロバストな周波数ォ フセット推定を行なうことを可能にするものである。
この発明の第 5の実施形態に係る周波数オフセット推定器は、 図 2 2に示すよ うに、 受信信号のスタ一トシンボルの始まり位置から参照信号の終わり位置まで の長さである L e n g t hの値と、 複数の参照信号と、 これらの参照信号で構成 される複数の組にそれぞれ対応する複数の参照データ (等価的な推定時間差) T Eの値とを保持するメモリ 2 1 1、 受信したスタートシンボルを保持するための メモリ 2 1 2、 デジタル直交検波器 1 3 (図 4 7 ) の出力とメモリ 2 1 2の出力 とを選択的に切換えて出力する切替器 2 0 3、 切替器 2 0 3の出力とメモリ 2 1 1に保持されている 2種類 (1組) の参照信号のそれぞれの値との相互相関値を 算出する相互相関器 2 0 4, 2◦ 5、 相互相関器 2 0 4, 2 0 5の出力から相互 相関値のピークを検出し、 シンボル位置推定値を出力するピーク検出器 2 0 9、 相互相関器 2 0 4, 2 0 5の出力と、 ピーク検出器 2 0 9の出力と、 メモリ 2 1 1に保持されている対応の参照データ T Eの値とを用いて周波数オフセット推定 値を計算する周波数オフセット計算器 2 0 6、 周波数オフセット計算器 2 0 6の 出力に応じてメモリ 2 1 2に保持されている受信したスタートシンボルの位相を 回転させる位相回転回路 2 0 7、 周波数オフセット計算器 2 0 6の出力を加算し て出力する周波数オフセット推定値加算器 2 1 4、 直交検波器 1 3からの受信信 、
号を周波数オフセット推定値加算器 2 1 4の加算動作が終了するまで遅延させる 遅延器 2 1 3、 周波数オフセット推定値加算器 2 1 4の出力に応じて遅延器 2 1 3の出力の位相を回転させる位相回転回路 2 0 8、 ピーク検出器 2 0 9からの信 号の出力をオン 'オフ制御するスィッチ 2 1 0、 スィッチ 2 1 0から出力される ピーク値と、 メモリ 2 1 1に保持されている L e n g t hの値とをもとに、 デー タシンボルの位置を推定するシンボル同期位置推定器 2 0 1、 およびスィッチ 2 1 0から出力されるピーク値と、 メモリ 2 1 1に保持されている L e n g t hの
31 値とをもとに、 受信信号のうちスタートシンボル区間の信号をメモリ 21 2に書 込むスタートシンボル抽出器 202を備えている。
メモリ 21 1は、 図 23に示すように、 1対の参照信号 Re f (n, 1) , R e f (n, 2) と、 それぞれの参照信号の 「位相回転角の等価的な推定位置」 間 の距離である参照データ TE (n) とからなる組を N組分 (Nは正の整数) を保 持し、 さらにスタートシンボルの始まりから R e f (n, 1) の終わりまでの距 離を L e n g t hとして保持している。 ここで、 参照信号 Re f (n, 1) , R e f (n, 2) はそれぞれスタートシンボル内に収まっており、 その長さは等し くかつ一定である。
また、 メモリ 21 2に対しては、 まずスタートシンボル抽出器 202が受信信 号うちスタートシンボルを抽出して書込を開始する。 相互相関器 204のピーク 出力があった後、 相互相関器 205のピーク出力があると、 周波数オフセット計 算器 206が周波数オフセットの推定を行ない、 その推定結果に応じて位相回転 回路 207は、 メモリ 21 2に書込まれているスタートシンボルの位相を回転さ せてメモリ 21 2の内容の書換を始めるが、 前述のスタートシンボル抽出器 20 2によって抽出されたスタートシンボルの書込を追い抜いてメモリ 21 2の内容 が書換えられることはない。
メモリ 21 2に保持されているスタートシンボルに対する 1回目の位相回転処 理が終了すると、 スタ—トシンボル抽出器 202からメモリ 21 2へのスタート シンボルの書込は、 次のパケットのスタートシンボルが到達するまでは行なわれ ない。 したがって 2回目以降の位相回転処理に関しては、 メモリ 21 2の内容の 書換を行なうものは位相回転回路 207のみであり、 切替器 203には位相回転 回路 207によって書換えられたメモリ 21 2のデータが出力される。 なお、 ピ ーク検出器 209は、 設定されたしきい値を有しており、 与えられた相互相関値 が当該しきい値を超えた時点でピークと判定するように動作する。
次に、 この第 5の実施形態による周波数オフセット推定器の動作について、 図 22を参照して説明する。
ここで、 メモリ 2 1 2は、 3対の参照信号 Re f (n, 1) , Re f (n, 2) と、 それぞれの対の参照信号間の参照データ (等価的な推定時間差) TE
32 (n) とを保持するものとし、 対応する TE (n) (n=l, 2, 3) の値は、 それぞれ、 TE (1) =TW/50, TE (2) =TW/8, TE (3) =TW /2であり、 かつ L e n g t h = 2◦であるものとする。
まず、 デジタル直交検波器 1 3 (図 47) からの信号がスタートシンボル抽出 器 202に与えられるとともに、 切替器 203を介して相互相関器 204, 20 5に入力される。 相互相関器 204, 205は、 入力された信号と、 メモリ 21 1に保持されている 1対の参照信号 Re f (1, 1) , R e f (1, 2) のそれ ぞれの値との相互相関値を求め、 ピーク検出器 209は、 算出された相互相関値 のピーク位置を検出する。
周波数オフセッ ト計算器 206は、 それぞれのピーク位置における相互相関値 と、 メモリ 21 1に保持されている対応する参照データ TE (1) の値とを用い て、 周波数オフセット値 # 1を推定する。 さらに、 ピーク検出器 209の出力は、 オン状態のスィツチ 210を介してシンボル同期位置推定器 201に与えられ、 シンボル同期位置推定器 201から出力されるシンボル位置推定値は、 図 47に 示すシンボルクロック発生器 1 5に出力される。 また、 ピーク検出器 209の出 力は、 オン状態であるスィツチ 210を介してスタートシンボル抽出器 202に 入力され、 スタートシンボル抽出器 202は、 受信信号のうちスタートシンボル を抽出してメモリ 21 2に記憶させる。 スィッチ 210は、 相互相関器 204に よるピーク検出が行なわれた後にオフにされる。
ここで、 前述のように受信信号に雑音が付加されている場合は、 推定されるォ フセットに誤差が含まれるため、 正確なオフセット推定がなされない。 この実施 形態では、 とりあえずこのオフセット推定値 # 1を用いてメモリ 21 2に保持さ れているスタートシンボルの位相を位相回転回路 207で回転させてメモリ 21 2に書き戻す。 またオフセット推定値 # 1を周波数オフセット推定値加算器 21 4に与えて累積する。
次に、 コントローラ 2000 (図 47) の制御により、 切替器 203を切換え て、 メモリ 21 2に保持されている信号を相互相関器 204, 205に入力する。 相互相関器 204, 205は、 メモリ 21 2から入力された信号と、 メモリ 21 1に保持されている 1対の参照信号 Re ί (2, 1) , Re f (2, 2) のそれ
33 ぞれの値との相互相関値を求め、 ピーク検出器 2 0 9は、 相互相関値のピーク位 置を検出する。
周波数オフセット計算器 2 0 6は、 それぞれのピーク位置における相互相関値 と、 メモリ 2 1 1に保持されている対応する参照データ T E ( 2 ) の値とを用い て周波数オフセット推定値 # 2を推定する。 またオフセット推定値 # 2を周波数 オフセット推定値加算器 2 1 2に与えて蓄積する。 ここでも推定されるオフセッ ト値には誤差が含まれるが、 最初の推定値時よりも小さくなっている。
このオフセット推定値 # 2を用いてメモリ 2 1 2に保持されているスタートシ ンボルの位相を位相回転回路 2 0 7.で回転させてメモリ 2 1 2に書き戻す。 そし て最後にもう一度、 メモリ 2 1 2の信号を相互相関器 2◦ 4, 2 0 5に入力する。 相互相関器 2 0 4, 2 0 5は、 メモリ 2 1 2から入力された信号と、 メモリ 2 1 1に保持されている 1対の参照信号 R e f ( 3, 1 ) , R e f ( 3, 2 ) のそれ ぞれの値との相互相関値を求め、 ピーク検出器 2 0 9は相互相関値のピーク位置 を検出する。
周波数オフセット計算器 2 0 6は、 それぞれピーク位置における相互相関値と、 メモリ 2 1 1に保持されている対応する参照データ T E ( 3 ) の値とを用いて周 波数オフセット推定値 # 3を推定する。 そしてオフセット推定値 # 3を周波数ォ フセット推定値加算器 2 1 4に与えて蓄積する。 ここでも推定されるオフセット 値には誤差は含まれているが 先ほどの推定時よりもさらに小さくなつている。 このようにして計算されたオフセット推定値 # 1, # 2, # 3を加算した結果 が最終的な周波数オフセット推定値であり、 周波数オフセット推定値加算器 2 1 4から位相回転回路 2 0 8に与えられる。 位相回転回路 2 0 8は、 周波数オフセ ット推定値加算器 2 1 4から出力された周波数オフセット推定値に応じて、 遅延 器 2 1 3から出力される受信信号の位相回転を行なって周波数オフセットを補償 する。
さらに、 この第 5の実施形態による周波数オフセット推定器におけるコント口 ーラ 2 0 0 0 (図 4 7 ) の制御下の処理手順を図 2 4に示すフローチャートを参 照して説明する。
初めに ステップ S 2 1において、 n = lにセットし、 ステップ S 2 2におい
34 て、 n =lか否かを判定する。 n= lの場合は、 ステップ S 23において、 切替 器 203の出力をデジタル直交検波器 1 3 (図 47) からの入力に切換え、 n≠ 1の場合は、 ステップ 24において、 切替器 203の出力をメモリ 21 2からの 出力に切換える。
ステップ S 25では、 切替器 203の出力とメモリ 21 1に保持されている参 照信号 Re f (n, 1) との相互相関値を求める。 ステップ S 26では、 相互相 関値のピーク位置を判定し、 判定されない場合は、 ステップ S 25および S 26 の処理を繰返す。 ピーク位置が判定された場合は、 ステップ S 27に移行してス イッチ 210をオフとする。
次にのステップ S 28において、 切替器 203の出力とメモリ 21 1の参照信 号 R e f (n, 2) との相互相関値を求める。 ステップ S 29において、 前述の ステップ S 26と同様にピーク位置を判定し、 判定されない場合は、 ステップ S
28および S 29の処理を繰返す。 ピーク位置が判定された場合は、 ステップ S
30において、 それぞれの相互相関値およびメモリ 21 1に保持されている参照 データ TE (n) に基づいて周波数オフセット (オフセット推定値 n) を推定す る。
次に、 ステップ S 3 1において、 n=Nか、 すなわち所定回数 Nまで周波数ォ フセット推定処理を行なったか否かを判定し、 未だ行なっていない場合は、 ステ ップ S 32において、 メモリ 21 2に保持されている信号の位相をオフセット推 定値 # nに従って回転させてメモリ 21 2に書き戻すとともに、 nをカウントァ ップして、 ステップ S 22から S 30の処理を n=Nとなるまで繰返す。
すなわち、 メモリ 21 2に保持されている信号と、 受信信号との相互相関値算 出に用いた対とは別の対の参照信号 Re f (n, 1) , Re f (n, 2) との間 で相互相関値を計算し、 メモリ 21 1に保持されている参照データ TE (n) (TE (1) く TE (2) く…く TE (N) ) の値を用いて同様に周波数オフセ ット推定値 #nを求める。 そして推定値 #nに基づいてメモリ 21 2に保持され ている受信スタートシンボルに位相回転を施す処理を N— 1回実行する (n = 2, 3, ···, N)。
そして、 ステップ S 31において、 n=Nの場合、 すなわち、 所定回数 Nまで
35 周波数オフセット推定処理を行なったことが判定された場合には、 ステップ S 3 4において、 これまでの処理で算出されオフセット推定値 # l〜#nを周波数ォ フセット推定値加算器 214で加算して、 その結果を周波数オフセット推定値と して位相回転回路 208に出力する。
このようにこの発明の第 5の実施形態によるオフセット補償器によれば、 必要 回数だけ参照データ (等価的な推定時間差) TEの値を順に大きくとっていきな がら、 その都度周波数オフセット推定値を求めてオフセット補償を行ない、 その 都度得られた周波数オフセット推定値を加算して求められた最終の周波数オフセ ット推定値により受信信号に対する周波数オフセット補償を行なうので、 周波数 オフセット補償を高精度に行なうことが可能となる。
[第 6の実施形態]
次に、 図 25を参照して、 この発明の第 6の実施形態による OF DM受信装置 について説明する。
上述の第 5の実施形態では、 図 23に示すように、 1対の参照信号 Re f (n, 1) , Re f (n, 2) と、 それぞれの参照信号の 「位相回転角の等価的な推定 位置」 問の距離である参照データ TE (n) とからなる組を N組分用意したが、 この第 6の実施形態では、 図 25に示すように、 1対の参照信号 Re f (1) , Re f (n, 2) と、 それぞれの参照信号の 「位相回転角の等価的な推定位置」 間の距離である参照データ TE (n) と力、らなる組を N組 (Nは正の整数) 分保 持し、 さらにスタートシンボルの始まりから R e f (1) の終わりまでの距離を L e n g t hとして保持するようにしている。 ここで、 R e ί (l) , Re f (n, 2) はスタートシンボル内に収まっており、 その長さは等しく一定として いる。
このような第 6の実施形態の発明によれば、 1対の参照信号の片側に R e f (1) を共通して用いることにより、 メモリの使用量を減らすことができる。
[第 7の実施形態]
次に、 この発明の第 7の実施形態による O F DM受信装置について図 26〜図 28を参照して説明する。
上述の第 5および第 6の実施形態では、 図 22に示すように、 周波数オフセッ
36 ト補償器は、 周波数オフセット推定値加算器 2 1 4において加算され出力された 最終の周波数オフセット推定値に基づいて、 位相回転回路 2 0 8が受信信号の位 相を回転させることにより周波数オフセットの補償を行なっていた。 これに対し、 以下に説明する第 7の実施形態では、 第 5および第 6の実施形態と同様に、 推定 され加算された最終の周波数オフセット推定値を、 図 4 7に示す O F DM受信装 置のデジタル直交検波器 1 3の局部発振器に入力して発振周波数を可変制御する ことにより受信信号の周波数オフセットを補償しょうとするものである。
図 2 6は、 第 7の実施形態による O F DM受信装置の周波数オフセット補償機 能付きの直交検波部の構成を示すプロック図であり、 図 2 7は図 2 6に示す周波 数オフセット推定器 2 1 8の構成を示すブロック図であり、 図 2 8は図 2 6に示 すデジタル直交検波器 2 1 7の構成を示すブロック図である。 なお、 図 2 7に示 す周波数オフセット推定器 2 1 8の構成およびその動作は、 図 2 2に示す周波数 オフセット推定器の構成および動作とほぼ同一であるのでその説明を省略する。 図 2 6に示すように周波数オフセット補償機能付き直交検波部は、 A/D変換 器 1 2 (図 4 7 ) の出力を一定時間遅延させる遅延器 2 1 5と、 遅延器 2 1 5の 出力および A/D変換器 1 2 (図 4 7 ) の出力のいずれかを選択して出力する切 替器 2 1 6と、 図 2 8に示すように発振周波数を制御することができ、 また切替 器 2 1 6の出力を実成分および虚成分に分離することができるデジタル直交検波 器 2 1 7と、 デジタル直交検波器 2 1 7の出力の周波数オフセット値を推定して 補償する周波数オフセット推定器 2 1 8とを備えている。
図 2 6に示す周波数オフセット補償機能付き直交検波部の動作ついて説明する。 以下に説明する動作も、 コントローラ 2 0 0 0 (図 4 7 ) の制御下に実行される。 まず、 O F DM受信装置の A/D変換器 1 2 (図 4 7 ) からの出力が、 遅延器 2 1 5および切替器 2 1 6に与えられる。 切替器 2 1 6はまず、 A/D変換器 1 2 (図 4 7 ) からの出力を選択してデジタル直交検波器 2 1 7に与え、 デジタル直 交検波器 2 1 7は与えられた信号を実成分と虚成分とに分解し、 周波数オフセッ ト推定器 2 1 8に与える。
図 2 7に示す周波数オフセット推定器 2 1 8では、 図 2 2に示す第 5の実施形 態と同様に、 周波数オフセット推定値加算器 2 1 4から周波数オフセット推定値
37 7 が出力されるが、 その後周波数オフセット推定値はデジタル直交検波器 2 1 7に 与えられる。 そして、 図 2 8に示すように、 切替器 2 1 6で選択された遅延器 2 1 5からの出力の直交検波を行なう際に用いる局部発振器 2 1の可変周波数が周 波数オフセット推定値によって調節される。 この結果、 デジタル直交検波器 2 1 7力 らは、 周波数オフセットが補償された信号が出力されることになる。
なお、 この第 7の実施形態においても、 周波数オフセット推定器 2 1 8内のメ モリ 2 1 1に保持される参照信号を前述の第 6の実施形態のものと同じように構 成することにより、 メモリの使用量を節約することが可能となる。
[第 8の実施形態]
次に、 図 2 9〜図 4 1を参照して、 この発明の第 8の実施形態による O F DM 受信装置について説明する。
この第 8の実施形態による O F DM受信装置の周波数オフセット推定器 3 0 0 は、 図 2 9に示すように、 デジタル直交検波器 3 0 1からの受信信号を受けて周 波数オフセットを推定し、 その周波数オフセット推定値をデジタル直交検波器 3 0 1に与える。 なお、 デジタル直交検波器 3◦ 1は図 2 8に示す構成と同じ構成 を有しており、 また、 図 2 9のその他の部分の構成は図 4 7に示す構成と同様で あるので、 その説明を省略する。
図 2 9の周波数オフセット推定器 3 0 0は、 図 3 0に示すように、 受信信号の C/N (搬送波対雑音比) に対応する最適参照信号のデータテーブルを保持して いるメモリ 3 0 2と、 受信信号の CZNに基づいて、 メモリ 3 0 2に保持されて いる情報から最適参照信号を選定し、 その選定データに基づいてメモリ 3 0 4に 命令を出す参照信号調節器 3 0 3と、 参照信号を予め保持しており参照信号調節 器 3 0 3の命令により参照信号を出力するメモリ 3 0 4と、 デジタル直交検波器 3 0 1 (図 2 9 ) の出力とメモリ 3 0 4から出力される参照信号のそれぞれとの 間で相互相関値を計算する相互相関器 3 0 5, 3 0 6と、 相互相関器の出力から ピーク位置を検出しシンボル同期位置を推定するピーク検出器 3 0 7と、 相互相 関器 3 0 5 , 3 0 6の出力に基づいて位相回転角を計算し、 周波数オフセット推 定値を推定する周波数オフセット計算器 3 0 8とを備えている。
次に、 図 3 0に示す周波数オフセット推定器 3 0 0の動作を説明する。
38 まず、 参照信号調節器 3 0 3は、 図示しない受信信号の CZNに関する情報の 発生源から当該情報を受取る。 一方、 メモリ 3 0 2には、 ある基準に基づいて作 成された、 受信信号の CZNに対応する、 参照信号幅データおよび参照データ (等価的な推定時間差) T Eのデータテ一ブルが保持されている。
参照信号調節器 3 0 3は、 受取った受信信号の CZNに関する情報に基づいて、 メモリ 3 0 2内の上述のテ一ブルから、 対応する参照信号幅データおょぴ参照デ ータ T Eを特定し、 これに対応する参照信号の組を選択する。
次に、 参照信号調節器 3 0 3は、 上述のように選択された参照信号の組を出力 するようにメモリ 3 0 4に命令する.。 メモリ 3 0 4には、 実際にはスタートシン ボルが保持されており、 上述の参照信号調節器 3 0 3からの命令内容を満たすよ うに、 保持されているスタートシンボルの部分を参照信号の組として相互相関器 3 0 5, 3 0 6に出力する。
相互相関器 3 0 5, 3 0 6は、 与えられた参照信号の組のそれぞれと、 デジタ ル直交検波器 3 0 1の出力との問で相互相関値を参照し、 参照されたそれぞれの 相互相関値が周波数オフセット計算器 3 0 8に入力される。 周波数オフセット計 算器 3 0 8は与えられた相互相関値に基づいて周波数オフセット推定値を算出す る。
なお、 周波数オフセット推定器 3 0 0は、 受信信号と参照信号との相互相関値 をピーク検出器 3 0 7で監視することにより、 スタートシンボル位置およびデ一 タシンボル位置の推定を行なうとともに、 ピーク位置における相互相関値により 周波数オフセット推定値を算出する。
次に、 メモリ 3◦ 2に保持されている、 受信信号の CZN情報に対応する最適 参照信号のデータテーブルの例について、 図 3 1ないし図 4 1を参照して説明す る。
ここで、 前述の参照データ T Eは、 複数の参照信号間の時間差 s h i f t (そ れぞれの参照信号の先頭同士の時間差) に対して単調増加の関係にあるため、 s h i f tを増加させることにより、 参照データ T Eを増加させることができる。 したがって、 参照データ T Eの代わりに、 s h i f tをパラメータとして取扱う ことも可能となる。 なお、 本来は、 パラメータとして参照データ T Eを用いるベ
39 P T/JP00/03117 きであるが、 以下の説明では、 簡略化のために、 s h i f tをパラメータとして 用いた場合について説明する。
図 3 1, 図 32, 図 33は、 それぞれ、 比較 C/Nが小さい場合、 中程度の場 合、 大きい場合において、 参照信号の幅 w i d t hを一定とし、 参照信号間の時 間差データ s h i f tを変化させた場合の、 正規化周波数オフセット対ビット誤 り率特性を示すグラフである。
これらの図において、 横軸は正規化周波数オフセット、 縦軸は BER特性を示 す。 また、 サンプリングクロック同期、 シンボルタイミング同期は完全であると 仮定する。 さらに有効シンボル区間を Tw= 64、 F FTのポイント数を 64、 サブキャリア数を 48とし、 変調方式としては DQP SK方式を用い、 復調方式 としては遅延検波方式を用いるものとする。 また、 これらの図に示す括弧内の数 値はそれぞれ順に w i d t h, s h i f tを示すものとする。
これらの図から明らかなように、 受信信号の CZNの大小にかかわらず、 いず れの場合にも s h i f tを大きくすると周波数オフセット推定精度が向上してい ることが理解される。 また、 C/Nが低くなると、 所望の BE R特性を得るため の s h i f tが大きくなることが理解される。
ここで、 所望の BE Rを 1. OE— 3とした場合に、 受信信号の C/Nが、 C /N< 23 d Bのとき、 (w i d t h, s h i f t) = (1 6, 1 9) に設定し、 23 d B≤C/N< 30 d Bのとき、 (w i d t h, s h i f t) = (1 6, 1 6) に設定し、 30 d B≤C//Nのとき、 (w i d t h, s h i f t) = (1 6, 8) に設定する。 上記設定を C/Nに対する (w i d t h, s h i f t) のテー ブルとして、 予めメモリ 302に保持する。
参照信号調整器 303は、 受信信号の CZNに応じて上記テーブルをもとに得 られた (w i d t h, s h i f t) に対する参照信号を選択し、 メモリ 304に 保持されているスタートシンボルから読出す。 相互相関器 305, 306は、 読 出された参照信号に基づいて相互相関値計算を行なう。
ただし、 所望の BE R特性を満たしている s h i ί tの値が 2つ以上存在する 場合には、 小さい方の s h i f tに対応する参照信号を選定する。 s h i f tが 小さい方の参照信号を選定することにより、 図 34から理解されるように、 演算
40 JP 3117 完了時間を短縮することができる。
このようにして設定した C/Nに対応する (w i d t h, s h i f t) のデー タテーブルをメモリ 302に保持し、 受信信号の C/Nに応じてデータテ一プル に基づいて参照信号を設定することにより、 所望の精度で周波数オフセットを推 定することが可能となる。
次に、 図 35、 図 36、 図 37は、 それぞれ、 比較的 C/Nが小さい場合、 中 程度の場合、 大きい場合において、 それぞれの参照信号の s h i f tを一定とし、 w i d t hを変化させた場合の、 正規化周波数オフセット対ビット誤り率特性を 示すグラフである。
これらの図から明らかなように、 w i d t hを大きくすると、 周波数オフセッ ト推定精度が向上していることがわかる。 また、 CZNが低くなると、 ある所望 の BE Rを得るための w i d t hが大きくなつていることが理解される。
ここで、 所望の BE Rに設定して、 受信信号の C/Nが、 CZNく 25 dBの とき、 (w i d t h, s h i f t) = (32, 16) に設定し、 25 d B≤C/ Nく 30 d Bのとき、 (w i d t h, s h i f t) = (16, 16) に設定し、 3◦ d のとき、 (w i d t h, s h i f t) = (8, 16 ) に設定す る。 上記設定を C/Nに対する (w i d t h, s h i f t) のテ一ブルとして、 予めメモリ 302に保持する。
参照信号調整器 303は、 受信信号の C/Nに応じて上記テーブルをもとに得 られた (w i d t h, s h i f t) に対する参照信号を選択し、 メモリ 304力 ら読出す。 相互相関器 305, 306は、 読出された参照信号に基づいて相互相 関値計算を行なう。
ただし、 所望の BE R特性を満たしている w i d t hの値が 2つ以上存在する 場合には、 小さい方の w i d t hに対応する参照信号を選定する。 小さい方の w i d t hに対応する参照信号を選定することにより、 図 38から理解されるよう に、 演算完了時間を短くすることができるとともに、 ハードウェア規模を縮小す ることができる。 このようにして設定された CZNに対する (w i d t h, s h i f t) のデータテーブルをメモリ 302に保持し、 受信信号の C/Nに応じて データテーブルに基づいて参照信号を選定することにより、 所望の精度で周波数
41 オフセットの推定が可能となる。
次に図 3 9、 図 40、 図 4 1は、 それぞれ、 比較的 が小さい場合、 中程 度の場合、 大きい場合において、 それぞれの参照信号の s h i f tおよび w i d t hを変化させた場合の、 正規化周波数オフセット対ビット誤り率特性を示すグ ラフである。
ここで、 所望の BE Rに設定して、 受信信号の C/Nが、 CZN< 23 d Bの とき、 (w i d t h, s h i f t) = (3 2, 1 6) に設定し、 23 d B≤C/ Nく 3 0 d Bのとき、 (w i d t h, s h i f t) = (3 2, 8) に設定し、 3 0 d Bく C/Nのとき、 (w i d t h, s h i f t) = (1 6, 8) に設定する。 上記設定を CZNに対する (w i d t h, s h i f t) のテーブルとして、 予め メモリ 3 0 2に保持する。
参照信号調節器 3 03は、 受信信号の C/Nに応じて上記テーブルをもとに得 られた (w i d t h, s h i f t) に対応する参照信号を選択し、 メモリ 304 から読出す。 相互相関器 3 0 5, 306は、 読出された参照信号に基づいて相互 相関値計算を行なう。 ただし、 所望の BE R特性を満たしている (w i d t h, s h i f t) の値が 2つ以上存在する場合には、 その中で最も演算完了時間を短 縮できるものを選定する。
このようにして設定された CZNに対応する (w i d t h, s h i f t) のデ ータテーブルをメモリ 30 2に保持し、 受信信号の CZNに じてデータテープ ルに基づいて参照信号を選定することにより、 所望の精度での周波数オフセット 推定が可能となる。
[第 9の実施形態]
次に、 図 4 2を参照して、 この発明の第 9の実施形態による OF DM受信装置 について説明する。
図 4 2は、 図 30に示す周波数オフセット推定器 300に受信信号の CZN情 報を供給する C/N情報供給源の一例を示す O F DM受信装置のプロック図であ り、 〇/1^検出器30 9は、 離散フーリエ変換器 1 8からのそれぞれの出力信号 レベルを検出し、 検出された信号レベルに基づいて受信信号の C/Nを検出する。 第 9の実施形態のその他の部分の構成は図 2 9に示す実施形態と同様であるので、
42 その説明を省略する。
図 4 5に関連して先に説明した O F DM信号の生成仮定においては、 サブキヤ リァ数 < F F Tサンプル数の関係が成り立っており、 逆離散フーリェ変換器 3 (図 4 5 ) においては、 情報データを割当てないサブキャリアに対しては振幅 0 を割当てて O F DM信号を生成している。 一方、 図 4 2に示す第 9の実施形態に よる O F DM受信器の離散フーリエ変換器 1 8においては、 上述のような生成仮 定を経て生成された O F DM信号が入力される。 離散フーリエ変換器 1 8の出力 において、 もしも雑音が付加されていいない場合には、 振幅 0が割当てられたサ ブキャリアに対応する出力は振幅 0.となるが、 雑音が付加されている場合には、 振幅 0が割当てられたサブキャリアの出力は、 その振幅が雑音レベルとなる。 し たがって、 振幅 0を割当てたサブキヤリアの出力と情報データが割当てられたサ ブキャリアの出力とに基づいて、 受信信号の C/Nを検出することができる。 こ の発明の第 9の実施形態による O F DM受信装置の C /N検出器 3 0 9は、 上述 のような検出原理に基づき、 受信信号の C/Nを検出し、 検出された C/N情報 を周波数オフセット推定器 3 0 0に供給する。 産業上の利用可能性
以上のように、 この発明は、 信号受信装置および周波数オフセット補償方法に 適用することができ、 より特定的には、 O F DM受信装置のようなマルチキヤリ ァ伝送方式で伝送された信号を受信する信号受信装置、 およびそのような信号伝 送に用いられサブキャリアの周波数オフセットを補償する方法に適用することが できる。
43 請求の範囲
1 . 複数のサブキヤリアに対してシンボルが並列的に割当てられて変調されてい るデータシンボル区間と、 前記データシンボル区間に先行して付加されたスタ一 トシンボルとからなる信号を受信して復調する信号受信装置であって、
各々が前記スタートシンボル中の任意の部分に相当する N (Nは 2以上の整 数) 種類の参照信号を保持する第 1のメモリ手段 (5 1 ) と、
前記受信信号と、 前記 N種類の参照信号のそれぞれとの相互相関値を算出する 相互相関値算出手段 (5 2, 5 3 ) と、
前記相互相関値算出手段によって算出された N個の相互相関値のそれぞれのピ ーク位置を検出するピーク位置検出手段 (5 4 ) と、
前記ピーク位置検出手段によって検出された N個のピーク位置のそれぞれにお ける相互相関値に基づいて、 前記受信信号のサブキャリアの周波数オフセット推 定値を推定して出力する周波数オフセット推定手段 (5 5 ) と、
前記周波数オフセット推定手段によって推定された周波数オフセット推定値に 基づいて、 前記受信信号のサブキャリアの周波数オフセットを補償する周波数ォ フセット補償手段 (3 7 ) とを備えた、 信号受信装置。
2 . 前記周波数オフセット推定手段は、
前記 N個のピーク位置のそれぞれにおける相互相関値の位相差を算出する位相 回転角計算手段 (5 6 ) と、
ある特定の周波数オフセットが存在する状態における、 前記 N種類の参照信号 に対応する相互相関値間の位相回転角に基づいた参照データを保持する第 2のメ モリ手段 (5 7 ) と、
前記回転角計算手段によって算出された相互相関値の位相差を、 前記参照デー タで除算して前記周波数オフセット推定値を算出する除算手段 (5 8 ) とを含む、 請求の範囲第 1項に記載の信号受信装置。
3 . 前記周波数オフセット補償手段は、 前記推定された周波数オフセット推定値 に基づいて、 前記受信信号のサブキヤリァの位相を回転させるさせることにより 周波数オフセットを補償する、 請求の範囲第 1項に記載の信号受信装置。
4 . 局部発振器を有し、 前記受信信号を検波する検波手段をさらに備え、
44 前記周波数オフセット補償手段は、 前記推定された周波数オフセット値に基づ いて、 前記局部発振器の発振周波数を可変制御する手段を含む、 請求の範囲第 1 項に記載の信号受信装置。
5 . 複数のサブキャリアに対してシンボルが並列的に割当てられて変調されてい るデータシンボル区間と、 前記データシンボル区間に先行して付加されたスター トシンボルとからなる信号を受信して復調する信号受信装置であって、
各々が前記スタートシンボル中の任意の部分に相当する N ( Nは 3以上の整 数) 種類の参照信号を保持する第 1のメモリ手段 (5 1 ) と、
前記受信信号と、 前記 N種類の参照信号のそれぞれとの相互相関値を算出する 相互相関値算出手段 (5 2, 5 3, 6 1 ) と、
前記相互相関値算出手段によつて算出された N個の相互相関値のそれぞれのピ —ク位匱を検出するピーク位置検出手段 (5 4 ) と、
前記ピーク位置検出手段によって検出された N個のピーク位置のそれぞれにお ける相互相関値に基づいて、 前記受信信号のサブキャリアの複数の周波数オフセ ット推定値を推定し平均化して出力する周波数オフセット推定手段 (6 5 ) と、 前記周波数オフセット推定手段によって推定され平均化された周波数オフセッ ト推定値に基づいて、 前記受信信号のサブキャリアの周波数オフセットを補償す る周波数オフセット補償手段 (3 7 ) とを備えた、 信号受信装置。
6 . 前記周波数オフセット推定手段は、
前記 N個のピーク位置のそれぞれにおける相互相関値の複数の所定の組合せの 位相差を算出する複数の位相回転角計算手段 (5 6, 6 6 ) と、
ある特定の周波数オフセットが存在する状態における、 前記 N種類の参照信号 の前記複数の所定の組合せに対応する相互相関値間の複数の位相回転角に基づい た複数の参照データを保持する第 2のメモリ手段 (5 7, 6 7 ) と、
前記複数の位相回転角計算手段によって算出された相互相関値の複数の位相差 を、 前記複数の参照データの対応するものでそれぞれ除算して複数の周波数オフ セット推定値を算出する複数の除算手段 (5 8, 6 8 ) と、
前記複数の除算手段から出力された複数の周波数オフセット推定値を平均化し て出力する平均化手段 (6 9 ) とを含む、 請求の範囲第 5項に記載の信号受信装
45 7 . 前記周波数オフセット補償手段は、 前記推定され平均化された周波数オフセ ット推定値に基づいて、 前記受信信号のサブキヤリァの位相を回転させることに より周波数オフセットを補償する、 請求の範囲第 5項に記載の信号受信装置。 8 . 局部発振器を有し、 前記受信信号を検波する検波手段をさらに備え、 前記周波数オフセット補償手段は、 前記推定され平均化された周波数オフセッ ト推定値に基づいて、 前記局部発振器の発振周波数を可変制御する手段を含む、 請求の範囲第 5項に記載の信号受信装置。
9 . 複数のサブキヤリアに対してシンボルが並列的に割当てられて変調されてい るデータシンボル区間と、 前記データシンボル区間に先行して付加されたスター トシンボルとからなる信号を受信して復調する信号受信装置であって、
各々が前記スタートシンボル中の任意の部分に相当する N ( Nは 2以上の整 数) 種類の参照信号を保持する第 1のメモリ手段 (1 0 1, 1 0 2 ) と、 与えられた第 1の信号と、 前記 N種類の参照信号のそれぞれとの相互相関値を 算出する相互相関値算出手段 (1 0 5, 1 0 6 ) と、
前記相互相関値算出手段によって算出された N個の相互相関値のそれぞれのピ —ク位置を検出するピーク位置検出手段 (1 1 4 ) と、
前記ピーク位置検出手段によつて検出された N個のピーク位置のそれぞれにお ける相互相関値に基づいて、 前記相互相関値算出手段に与えられた前記第 1の信 号のサブキャリアの周波数オフセット推定値を推定して出力するとともに蓄積す る周波数オフセット推定手段 (1 0 7 ) と、
前記周波数オフセット推定手段によって推定された周波数オフセット推定値に 基づいて、 与えられた第 2の信号のサブキャリアの位相を回転させる位相回転手 段 (1 0 8 ) と、
前記位相回転手段によって位相回転された前記第 2の信号を保持する第 2のメ モリ手段 (1 0 4 ) と、
前記受信信号を、 前記第 1の信号として前記相互相関値算出手段に与えかつ前 記第 2の信号として前記位相回転手段に与えることにより、 前記受信信号のサブ キヤリァの周波数オフセット推定値を蓄積するとともに、 前記受信信号のサブキ
46 ャリァの位相を回転させて前記第 2のメモリ手段に保持させる第 1の制御動作を 1回実行し、 力つ前記第 2のメモリ手段に保持されている信号を、 前記第 1の信 号として前記相互相関値算出手段に与えかつ前記第 2の信号として前記位相回転 手段に与えることにより、 前記第 2のメモリに保持されている信号のサブキヤリ ァの周波数オフセッ ト推定値を蓄積するとともに、 前記第 2のメモリに保持され ている信号のサブキャリアの位相を回転させて前記第 2のメモリ手段に保持させ る第 2の制御動作を (N— 1 ) 回繰返す制御手段と、
前記第 1および第 2の制御動作によって蓄積された N個の周波数オフセット推 定値の加算値に基づいて、 前記受信信号のサブキャリアの周波数オフセットを補 償する周波数オフセット補償手段 (1 1 0 ) とを備えた、 信号受信装置。
1 0 . 前記周波数オフセッ ト補償手段は、 前記周波数オフセッ ト推定値の加算値 に基づいて、 前記受信信号のサブキヤリァの位相を回転させることにより周波数 オフセットを補償する、 請求の範囲第 9項に記載の信号受信装置。
1 1 . 局部発振器を有し、 前記受信信号を検波する検波手段をさらに備え、 前記周波数オフセット補償手段は、 前記周波数オフセット推定値の加算値に基 づいて、 前記局部発振器の発振周波数を可変制御する手段を含む、 請求の範囲第 9項に記載の信号受信装置。
1 2 . 複数のサブキャリアに対してシンボルが並列的に割当てられて変調されて いるデータシンボル区間と、 前記データシンボル区問に先行して付加されたスタ ートシンボルとからなる信号を受信して復調する信号受信装置であって、 各々が前記スタートシンボル中の任意の部分に相当する N (Nは 2以上の整 数) 種類の参照信号と、 ある特定の周波数オフセットが存在する状態における、 各々が 2種類以上の前記参照信号からなる複数の組に対応する相互相関値間の位 相回転角に基づいた複数の参照データとを保持する第 1のメモリ手段 (2 1 1 ) と、
与えられた第 1の信号と、 各組の前記参照信号のそれぞれとの相互相関値を算 出する相互相関値算出手段 (2 0 4, 2 0 5 ) と、
前記相互相関値算出手段によって算出された相互相関値のそれぞれのピーク位 置を検出するピーク位置検出手段 (2 0 9 ) と、
47 前記受信信号の一部分を抽出して保持する第 2のメモリ手段 (2 1 2 ) と、 前記ピーク位置検出手段によって検出されたピーク位置のそれぞれにおける相 互相関値と、 前記各組の前記参照信号に対応する参照データとに基づいて、 前記 相互相関値算出手段に与えられた前記第 1の信号の周波数オフセット推定値を推 定して出力する周波数オフセット推定手段 (2 0 6 ) と、
前記周波数オフセット推定手段から出力される周波数オフセット推定値を累積 する加算手段 (2 1 4 ) と、
前記周波数オフセット推定手段によって推定された周波数オフセット推定値に 基づいて、 前記第 2のメモリ手段に保持されている前記受信信号の位相を回転さ せる位相回転手段 (2 0 7 ) と、
前記受信信号を、 前記第 1の信号として前記相互相関値算出手段に与え、 前記 複数の参照データのうち最小の参照データに対応する組の参照信号のそれぞれと の間で相互相関値を算出し、 算出された相互相関値と前記最小の参照データとに 基づいて、 前記周波数オフセット推定手段により前記受信信号の周波数オフセッ ト推定値を推定する第 1の制御動作を実行し、 さらに前記推定された周波数オフ セット推定値に基づいて位相回転された前記第 2のメモリ手段に保持されている 前記受信信号を前記第 1の信号として前記相互相関値算出手段に与え、 前記複数 の参照データのうち未使用の最小の参照データに対応する参照信号の組との間で 相互相関値を算出し、 算出された相互相関値と前記未使用の最小の参照データと に基づいて、 前記周波数オフセット推定手段により前記第 2のメモリに保持され ている信号の周波数オフセット推定値を推定する第 2の制御動作を繰返す制御手 段と、
前記加算手段によって累積された前記第 1および第 2の制御動作によって算出 された周波数オフセット推定値の加算値に基づいて、 前記受信信号のサブキヤリ ァの周波数オフセットを補償する周波数オフセット補償手段 (2 0 8 ) とを備え た、 信号受信装置。
1 3 . 前記受信信号から抽出された、 前記第 2のメモリ手段に保持される信号は、 前記スタートシンボルである、 請求の範囲第 1 2項に記載の信号受信装置。
1 4 . 前記周波数オフセット補償手段は、 前記周波数オフセット値の加算値に基
48 17 づいて、 前記受信信号のサブキヤリァの位相を回転させることにより周波数オフ セットを補償する、 請求の範囲第 1 2項に記載の信号受信装置。
1 5 . 局部発振器を有し、 前記受信信号を検波する検波手段をさらに備え、 前記周波数オフセット補償手段は、 前記周波数オフセット推定値の加算値に基 づいて、 前記局部発振器の発振周波数を可変制御する手段を含む、 請求の範囲第 1 2項に記載の信号受信装置。
1 6 . 複数のサブキャリアに対してシンボルが並列的に割当てられて変調されて いるデータシンボル区間と、 前記データシンボル区問に先行して付加されたスタ ートシンボルとからなる信号を受信して復調する信号受信装置であって、 前記受信信号の CZNを検出する CZN検出手段 (3 0 9 ) と、
前記受信信号の C/Nに対応する最適の参照信号を特定するデータテーブルを 保持するメモリ手段 (3 0 2 ) と、
前記検出された C / Nに応じて、 前記データテーブルに基づいて各々が前記ス タートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の最適の 参照信号を出力する参照信号出力手段 (3 0 3, 3 0 4 ) と、
前記受信信号と、 前記 N種類の参照信号のそれぞれとの相互相関値を算出する 相互相関値算出手段 (3 0 5, 3 0 6 ) と、
前記相互相関値算出手段によつて算出された N個の相互相関値のそれぞれのピ ーク位置を検出するピーク位置検出手段 (3 0 7 ) と、
前記ピーク位置検出手段によつて検出された N個のピーク位置のそれぞれにお ける相互相関値に基づいて、 前記受信信号のサブキャリアの周波数オフセット推 定値を推定して出力する周波数オフセット推定手段 (3 0 8 ) と、
前記周波数オフセット推定手段によって推定された周波数オフセット推定値に 基づいて、 前記受信信号のサブキャリアの周波数オフセットを補償する周波数ォ フセット補償手段 (3 0 1 ) とを備えた、 信号受信装置。
1 7 . 前記周波数オフセット補償手段は、 前記推定された周波数オフセット推定 値に基づいて、 前記受信信号のサブキヤリァの位相を回転させることにより周波 数オフセットを補償する、 請求の範囲第 1 6項に記載の信号受信装置。
1 8 . 局部発振器を有し、 前記受信信号を検波する検波手段をさらに備え、
49 前記周波数オフセット補償手段は、 前記推定された周波数オフセット推定値に 基づいて、 前記局部発振器の発振周波数を可変制御する手段を含む、 請求の範囲 第 1 6項に記載の信号受信装置。
1 9 . 複数のサブキャリアに対してシンボルが並列的に割当てられて変調されて いるデータシンボル区間と、 前記データシンボル区間に先行して付加されたスタ ートシンボルとからなる信号を受信して復調する信号受信装置において、 前記受 信信号のサブキヤリアの周波数オフセットを補償する方法であって、
前記受信信号と、 各々が前記スタートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の参照信号のそれぞれとの相互相関値を算出するステ ップと、
前記算出された N個の相互相関値のそれぞれのピーク位置を検出するステップ と、
前記検出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 前記受信信号のサブキャリアの周波数オフセット推定値を推定して出力するステ ップと、
前記推定された周波数オフセット推定値に基づいて、 前記受信信号のサブキヤ リアの周波数オフセットを補償するステップとを備えた、 方法。
2 0 . 複数のサブキヤリァに対してシンボルが並列的に割当てられて変調されて いるデータシンボル区間と、 前記データシンボル区間に先行して付加されたスタ ートシンボルとからなる信号を受信して復調する信号受信装置において、 前記受 信信号のサブキャリアの周波数オフセットを補償する方法であって、
前記受信信号と、 各々が前記スタートシンボル中の任意の部分に相当する N (Nは 3以上の整数) 種類の参照信号のそれぞれとの相互相関値を算出するステ ップと、
前記算出された N個の相互相関値のそれぞれのピーク位置を検出するステップ と、
前記検出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 前記受信信号のサブキヤリアの複数の周波数オフセット推定値を推定し平均化し て出力するステップと、
50 前記推定され平均化された周波数オフセット推定値に基づいて、 前記受信信号 のサブキャリアの周波数オフセットを補償するステップとを備えた、 方法。 2 1 . 複数のサブキャリアに対してシンボルが並列的に割当てられて変調されて いるデータシンボル区間と、 前記デ一タシンボル区間に先行して付加されたスタ ートシンボルとからなる信号を受信して復調する信号受信装置において、 前記受 信信号のサブキャリアの周波数オフセットを補償する方法であって、
第 1の制御ステップを備え、 前記第 1の制御ステップは、
前記受信信号と、 各々が前記スタートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の参照信号のそれぞれとの相互相関値を算出するステ ップと、
前記算出された N個の相互相関値のそれぞれのピーク位置を検出するステップ と、
前記検出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 前記受信信号のサブキヤリァの周波数オフセット推定値を推定して出力するとと もに蓄積するステップと、
前記推定された周波数オフセット推定値に基づいて、 前記受信信号のサブキヤ リアの位相を回転させるステップと、
前記位相回転された前記受信信号を保持するステップとを含み、
第 2の制御ステップをさらに備え、 前記第 2の制御ステッ: は、
前記保持された前記位相回転された前記受信信号と、 前記 N種類の参照信号の それぞれとの相互相関値を算出するステップと、
前記算出された相互相関値のそれぞれのピーク位置を検出するステップと、 前記検出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 前記保持された前記位相回転された前記受信信号のサブキャリアの周波数オフセ ット推定値を推定して出力するとともに蓄積するステップと、
前記推定された周波数オフセット推定値に基づいて、 前記保持された前記位相 回転させられた前記受信信号のサブキャリアの位相を回転させるステップと、 前記位相回転された前記受信信号を保持するステップとを含み、
前記第 1の制御ステップの後、 前記第 2の制御ステップを (N— 1 ) 回繰返す
51 ステップと、
前記第 1およぴ第 2の制御ステップによって蓄積された N個の周波数オフセッ ト推定値の加算値に基づいて、 前記受信信号のサブキヤリァの位相を回転させる ことにより、 周波数オフセットを補償するステップとをさらに備えた、 方法。 2 2 . 複数のサブキャリアに対してシンボルが並列的に割当てられて変調されて いるデータシンボル区間と、 前記データシンボル区間に先行して付加されたスタ ートシンボルとからなる信号を受信して復調する信号受信装置において、 前記受 信信号のサブキャリアの周波数オフセットを補償する方法であって、
各々が前記スタ一トシンボル中の任意の部分に相当する N ( Nは 2以上の整 数) 種額の参照信号と、 ある特定の周波数オフセットが存在する状況における、 各々が 2種類以上の前記参照信号からなる複数の組に対応する相互相関値間の位 相回転角に基づいた複数の参照データとを保持するステップと、
第 1の制御ステップとを備え、 前記第 1の制御ステップは、
前記受信信号と、 前記複数の参照データのうち最小の参照データに対応する組 の参照信号のそれぞれとの相互相関値を算出するステップと、
前記算出された相互相関値のそれぞれのピーク位置を検出するステップと、 前記検出されたピーク位置のそれぞれにおける相互相関値と、 前記最小の参照 データとに基づいて、 前記受信信号のサブキヤリァの周波数オフセット推定値を 推定して出力するとともに蓄積するステップと、
前記受信信号の一部分を抽出して保持するステップと、
前記推定された周波数オフセット推定値に基づいて、 前記保持されている受信 信号の位相を回転させるステップとを含み、
第 2の制御ステップをさらに備え、 前記第 2の制御ステップは、
前記推定された周波数オフセット推定値に基づいて位相回転された保持されて いる前記受信信号と、 前記複数の参照データのうち未使用の最小の参照データに 対応する組の参照信号のそれぞれとの相互相関値を算出するステップと、 前記算出された相互相関値のそれぞれのピーク位置を検出するステップと、 前記検出されたピーク位置のそれぞれにおける相互相関値と、 前記未使用の最 小の参照データとに基づいて、 前記位相回転された保持されている前記受信信号
52 の周波数オフセット推定値を推定して出力するとともに蓄積するステップとを含 み、
前記第 1の制御ステップの後、 前記第 2の制御ステップを繰返すステップと、 前記第 1および第 2の制御ステップによって蓄積された周波数オフセット推定 値の加算値に基づいて、 前記受信信号のサブキヤリァの位相を回転させることに より、 周波数オフセットを補償するステップとをさらに備えた、 方法。
2 3 . 複数のサブキャリアに対してシンボルが並列的に割当てられて変調されて いるデータシンボル区間と、 前記データシンボル区間に先行して付加されたスタ —トシンボルとからなる信号を受信して復調する信号受信装置において、 前記受 信信号のサブキャリアの周波数オフセットを補償する方法であって、
前記受信信号の CZNを検出するステップと、
前記受信信号の C/Nに対応する最適の参照信号を特定するデータテーブルを 保持するステップと、
前記検出された C/Nに応じて、 前記データテーブルに基づいて各々が前記ス タートシンボル中の任意の部分に相当する N (Nは 2以上の整数) 種類の最適の 参照信号を出力するステップと、
前記受信信号と、 前記 N種類の参照信号のそれぞれとの相互相関値を算出する ステップと、
前記算出された N個の相互相関値のそれぞれのピーク位置を検出するステップ と、
前記検出された N個のピーク位置のそれぞれにおける相互相関値に基づいて、 前記受信信号のサブキャリアの周波数オフセット推定値を推定して出力するステ ップと、
前記推定された周波数オフセット推定値に基づいて、 前記受信信号のサブキヤ リアの周波数オフセットを補償するステップとを備えた、 方法。
53
PCT/JP2000/003117 1999-05-18 2000-05-15 Recepteur de signaux et procede de compensation du decalage de frequence WO2000070802A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00925676A EP1179901B1 (en) 1999-05-18 2000-05-15 Signal receiver and method of compensating frequency offset
US09/980,752 US7149266B1 (en) 1999-05-18 2000-05-15 Signal receiver and method of compensating frequency offset
DE60018060T DE60018060T2 (de) 1999-05-18 2000-05-15 Signalempfänger und verfahren zur kompensation der frequenzabweichung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP13663999 1999-05-18
JP11/136639 1999-05-18
JP11/248666 1999-09-02
JP24866699A JP3486576B2 (ja) 1999-05-18 1999-09-02 Ofdm受信装置及びその周波数オフセット補償方法

Publications (1)

Publication Number Publication Date
WO2000070802A1 true WO2000070802A1 (fr) 2000-11-23

Family

ID=26470153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003117 WO2000070802A1 (fr) 1999-05-18 2000-05-15 Recepteur de signaux et procede de compensation du decalage de frequence

Country Status (6)

Country Link
US (1) US7149266B1 (ja)
EP (1) EP1179901B1 (ja)
JP (1) JP3486576B2 (ja)
DE (1) DE60018060T2 (ja)
ES (1) ES2235863T3 (ja)
WO (1) WO2000070802A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055115A1 (fr) * 2001-12-20 2003-07-03 Beijing Lhwt Microelectronics Inc. Procede de detection d'un decalage de frequence dans un systeme de communication sans fil ofdm et dispositif associe
WO2007111431A1 (en) * 2006-03-29 2007-10-04 Posdata Co., Ltd. Apparatus for estimating and compensating carrier frequency offset and data receiving method in receiver of wireless communication system
WO2007117525A2 (en) * 2006-04-03 2007-10-18 Wionics Research Frequency offset correction for an ultrawideband communication system
KR101027564B1 (ko) 2006-06-29 2011-04-06 모토로라 모빌리티, 인크. 직교 주파수 분할 다중 액세스 메시지 처리 방법 및 장치
US8223828B2 (en) 2000-04-28 2012-07-17 Broadcom Corporation Methods and systems for adaptive receiver equalization
KR101197170B1 (ko) 2010-01-14 2012-11-02 도쿄엘렉트론가부시키가이샤 열처리 장치, 열처리 방법 및 기억 매체
US8428198B2 (en) 2006-03-15 2013-04-23 Qualcomm Incorporated Frequency tracking which adapts to timing synchronization

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5978379A (en) 1997-01-23 1999-11-02 Gadzoox Networks, Inc. Fiber channel learning bridge, learning half bridge, and protocol
US7430171B2 (en) 1998-11-19 2008-09-30 Broadcom Corporation Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost
JP3880358B2 (ja) * 2001-10-04 2007-02-14 シャープ株式会社 Ofdm復調回路及びこれを用いたofdm受信装置
GB0124952D0 (en) * 2001-10-17 2001-12-05 Nokia Corp A receiver and a receiving method
US7359314B2 (en) * 2001-12-26 2008-04-15 Hitachi, Ltd. Signal transmission system for transmitting a signal with a guard interval and a demodulation method thereof
CN1309192C (zh) * 2002-08-27 2007-04-04 山东大学 多径衰落信道中正交频分复用系统的载波频率跟踪方法
DE10245039A1 (de) * 2002-09-26 2004-04-08 Infineon Technologies Ag Vorrichtung und Verfahren zur Erkennung eines Nutzsignals in einem Empfänger
US7631029B2 (en) 2002-09-26 2009-12-08 Infineon Technologies Ag Device and method for detecting a useful signal in a receiver
JP4309110B2 (ja) * 2002-09-27 2009-08-05 パナソニック株式会社 適応アンテナ無線通信装置
EP1414208A1 (en) * 2002-10-21 2004-04-28 STMicroelectronics N.V. Synchronization using training sequences with a periodical structure
US20040160922A1 (en) 2003-02-18 2004-08-19 Sanjiv Nanda Method and apparatus for controlling data rate of a reverse link in a communication system
US8081598B2 (en) 2003-02-18 2011-12-20 Qualcomm Incorporated Outer-loop power control for wireless communication systems
US8150407B2 (en) 2003-02-18 2012-04-03 Qualcomm Incorporated System and method for scheduling transmissions in a wireless communication system
US7155236B2 (en) 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8023950B2 (en) 2003-02-18 2011-09-20 Qualcomm Incorporated Systems and methods for using selectable frame durations in a wireless communication system
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US7660282B2 (en) 2003-02-18 2010-02-09 Qualcomm Incorporated Congestion control in a wireless data network
US7684501B2 (en) * 2003-02-19 2010-03-23 Realtek Semiconductor Corp. Apparatus and method for carrier frequency offset and phase compensation in communication system
US7215930B2 (en) 2003-03-06 2007-05-08 Qualcomm, Incorporated Method and apparatus for providing uplink signal-to-noise ratio (SNR) estimation in a wireless communication
US8705588B2 (en) 2003-03-06 2014-04-22 Qualcomm Incorporated Systems and methods for using code space in spread-spectrum communications
TWI252656B (en) * 2003-03-21 2006-04-01 Realtek Semiconductor Corp Sampling clock compensation device of multi-carrier system and method thereof
EP1618696B1 (en) * 2003-03-31 2007-05-09 Matsushita Electric Industrial Co., Ltd. Frequency synchronization apparatus and frequency synchronization method
US8477592B2 (en) * 2003-05-14 2013-07-02 Qualcomm Incorporated Interference and noise estimation in an OFDM system
KR100555722B1 (ko) 2003-05-20 2006-03-03 삼성전자주식회사 다중 반송파 수신 시스템의 정수배 주파수 옵셋 추정 장치및 그의 정수배 주파수 옵셋 추정방법
JP4359176B2 (ja) * 2003-07-30 2009-11-04 パナソニック株式会社 フレーム同期検出回路、フレーム同期検出方法、制御情報検出回路、制御情報復号方法、受信装置
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
US7483368B2 (en) * 2003-09-30 2009-01-27 Hitachi Kokusai Electric Inc. Method and detecting carrier shift amount in digital transmission signal, method of correcting carrier shift amount, and receiver employing these methods
EP1545019A1 (en) * 2003-12-19 2005-06-22 Telefonaktiebolaget LM Ericsson (publ) GPS receiver using differential correlation
JP4746539B2 (ja) * 2004-05-20 2011-08-10 パナソニック株式会社 信号検出装置、信号検出回路、信号検出方法、プログラム
US9025638B2 (en) * 2004-06-16 2015-05-05 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus to compensate for receiver frequency error in noise estimation processing
US7346116B2 (en) * 2004-07-01 2008-03-18 Zarbana Digital Fund Llc Systems and methods for rapid signal detection and identification
DE102004059958B4 (de) * 2004-12-13 2007-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Bestimmen eines Korrelationswertes
CN101133587A (zh) * 2005-01-14 2008-02-27 诺基亚西门子网络公司 基于cqi时期的hsdpa参数调整
US7630428B2 (en) * 2005-07-28 2009-12-08 Itt Manufacturing Enterprises, Inc. Fast digital carrier frequency error estimation algorithm using synchronization sequence
EP1753194B1 (en) * 2005-08-12 2008-10-22 STMicroelectronics Belgium N.V. Receiver with a two-stage frequency offset compensation for an M-state phase modulated signal
US7583764B2 (en) * 2006-05-26 2009-09-01 Texas Instruments Incorporated Versatile system for interference tolerant packet detection in wireless communication systems
TW200803389A (en) * 2006-06-20 2008-01-01 Nxp Bv Method and apparatus for estimating carrier frequency offset
US7929624B2 (en) * 2006-10-26 2011-04-19 Telefonaktiebolaget L M Ericsson (Publ) Cell ID detection in cellular communication systems
CN101529840B (zh) * 2006-10-26 2012-08-29 Lm爱立信电话有限公司 针对ofdm的鲁棒且低复杂度合并信号功率估计
US20080151813A1 (en) * 2006-12-22 2008-06-26 Adaptix, Inc. Method and apparatus for fast system initial acquisition in mobile WiMAX systems
US7830949B2 (en) * 2007-02-14 2010-11-09 Wilinx Corporation Cross correlation circuits and methods
KR100928825B1 (ko) 2007-12-13 2009-11-27 한국전자통신연구원 복수의 상관기들을 이용한 주파수 옵셋 추정 장치 및 그방법
EP2081343A2 (en) 2008-01-17 2009-07-22 Core Logic, Inc. Estimating frequency shift
WO2010021014A1 (ja) * 2008-08-21 2010-02-25 富士通株式会社 周波数偏差推定装置および方法
WO2010040264A1 (en) * 2008-10-10 2010-04-15 Zte Wistron Telecom Ab Apparatus and methods for estimating and correcting frequency offset in lte
KR101485785B1 (ko) 2008-11-27 2015-01-23 삼성전자주식회사 무선 통신 시스템에서 주파수 추정 방법 및 장치
KR101535559B1 (ko) * 2008-12-19 2015-07-09 니폰덴신뎅와 가부시키가이샤 무선 통신 시스템 및 무선 통신 방법
US8867634B2 (en) 2009-03-12 2014-10-21 Thomson Licensing Method and appratus for spectrum sensing for OFDM systems employing pilot tones
JP5169933B2 (ja) * 2009-03-24 2013-03-27 富士通株式会社 周波数制御装置、周波数制御方法及び基地局装置
JP5540733B2 (ja) * 2010-01-29 2014-07-02 富士通セミコンダクター株式会社 信号処理装置,信号処理方法とそれを有する受信装置
CN102263719B (zh) * 2010-05-24 2014-04-09 中兴通讯股份有限公司 正交频分复用系统频偏补偿和均衡的方法和装置
KR20120036018A (ko) * 2010-10-07 2012-04-17 삼성전자주식회사 무선통신 시스템에서 고속 주파수 오프셋 추정 장치 및 방법
JP5642627B2 (ja) * 2011-05-27 2014-12-17 京セラ株式会社 無線通信装置および参照信号の決定方法
US9520910B1 (en) * 2015-09-24 2016-12-13 Nxp B.V. Receiver component and method for enhancing a detection range of a time-tracking process in a receiver
JP6868346B2 (ja) * 2016-04-26 2021-05-12 富士通株式会社 信号検知プログラム、信号検知方法及び信号検知装置
KR102429734B1 (ko) * 2016-08-18 2022-08-05 삼성전자 주식회사 이동 통신 시스템에서 위상을 스위칭해 신호를 전송하는 방법 및 장치
CN110995632B (zh) * 2019-11-29 2023-03-21 深圳市统先科技股份有限公司 卫星通信带宽复用电路
CN111600824B (zh) * 2020-04-22 2023-04-07 中国人民解放军战略支援部队信息工程大学 一种无人机的图传信号识别方法与装置
CN114374500A (zh) * 2020-10-15 2022-04-19 瑞昱半导体股份有限公司 能够准确估计讯号时偏的接收机电路及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143097A (ja) * 1993-11-16 1995-06-02 Toshiba Corp Ofdm同期復調回路
JPH09219692A (ja) * 1996-02-09 1997-08-19 Jisedai Digital Television Hoso Syst Kenkyusho:Kk 直交周波数分割多重伝送方式とその変調装置及び復調装置
JPH09321733A (ja) * 1996-03-29 1997-12-12 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Ofdm復調装置
JPH11145930A (ja) * 1997-11-07 1999-05-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm変復調回路
JPH11145931A (ja) * 1997-11-07 1999-05-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm復調器用シンボルタイミング検出回路
JP2000059329A (ja) * 1998-08-07 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Ofdm変調回路およびofdm復調回路
JP2000068973A (ja) * 1998-08-19 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> Ofdm用プリアンブル生成方法及びofdm用変調回路
JP2000068972A (ja) * 1998-08-17 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> Ofdm変復調方法及びofdm変復調回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525055A1 (fr) * 1982-04-09 1983-10-14 Trt Telecom Radio Electr Procede de correction de frequence de la porteuse locale dans le recepteur d'un systeme de transmission de donnees et recepteur utilisant ce procede
FI102231B (fi) * 1996-09-16 1998-10-30 Nokia Technology Gmbh Symbolitahdistuksen ja näytteenottotaajuuden säätömenetelmä OFDM-modul oituja lähetyksiä vastaanottavassa laitteessa sekä menetelmän toteutta va laite
JPH1155212A (ja) * 1997-07-31 1999-02-26 Sony Corp ディジタル情報信号受信装置
US5991289A (en) 1997-08-05 1999-11-23 Industrial Technology Research Institute Synchronization method and apparatus for guard interval-based OFDM signals
JPH11252038A (ja) * 1998-02-27 1999-09-17 Sony Corp デジタル放送の受信機
JP2933080B1 (ja) * 1998-04-24 1999-08-09 日本電気株式会社 チャープ信号による受信同期装置
US6459745B1 (en) * 1999-09-23 2002-10-01 The United States Of America As Represented By The Secretary Of The Navy Frequency/timing recovery circuit for orthogonal frequency division multiplexed signals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143097A (ja) * 1993-11-16 1995-06-02 Toshiba Corp Ofdm同期復調回路
JPH09219692A (ja) * 1996-02-09 1997-08-19 Jisedai Digital Television Hoso Syst Kenkyusho:Kk 直交周波数分割多重伝送方式とその変調装置及び復調装置
JPH09321733A (ja) * 1996-03-29 1997-12-12 Jisedai Digital Television Hoso Syst Kenkyusho:Kk Ofdm復調装置
JPH11145930A (ja) * 1997-11-07 1999-05-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm変復調回路
JPH11145931A (ja) * 1997-11-07 1999-05-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm復調器用シンボルタイミング検出回路
JP2000059329A (ja) * 1998-08-07 2000-02-25 Nippon Telegr & Teleph Corp <Ntt> Ofdm変調回路およびofdm復調回路
JP2000068972A (ja) * 1998-08-17 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> Ofdm変復調方法及びofdm変復調回路
JP2000068973A (ja) * 1998-08-19 2000-03-03 Nippon Telegr & Teleph Corp <Ntt> Ofdm用プリアンブル生成方法及びofdm用変調回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Kousoku musen LAN you OFDM henchou houshiki no doukikei ni kansuru kentou", TECHNICAL RESEARCH REPORT, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 97, no. 489, 23 January 1998 (1998-01-23), (JAPAN), pages 137 - 142, XP002945878 *
See also references of EP1179901A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8223828B2 (en) 2000-04-28 2012-07-17 Broadcom Corporation Methods and systems for adaptive receiver equalization
US8824538B2 (en) 2000-04-28 2014-09-02 Broadcom Corporation Methods and systems for adaptive receiver equalization
US8798219B2 (en) 2000-04-28 2014-08-05 Broadcom Corporation High-speed serial data transceiver and related methods
US8472512B2 (en) 2000-04-28 2013-06-25 Broadcom Corporation Methods and systems for adaptive receiver equalization
US8433020B2 (en) 2000-04-28 2013-04-30 Broadcom Corporation High-speed serial data transceiver and related methods
WO2003055115A1 (fr) * 2001-12-20 2003-07-03 Beijing Lhwt Microelectronics Inc. Procede de detection d'un decalage de frequence dans un systeme de communication sans fil ofdm et dispositif associe
US8428198B2 (en) 2006-03-15 2013-04-23 Qualcomm Incorporated Frequency tracking which adapts to timing synchronization
CN101406017B (zh) * 2006-03-29 2012-05-23 希尔网络株式会社 用于在正交频分复用系统中估计并补偿载波频率偏移的方法和设备
WO2007111431A1 (en) * 2006-03-29 2007-10-04 Posdata Co., Ltd. Apparatus for estimating and compensating carrier frequency offset and data receiving method in receiver of wireless communication system
US7916799B2 (en) 2006-04-03 2011-03-29 Realtek Semiconductor Corp. Frequency offset correction for an ultrawideband communication system
WO2007117525A3 (en) * 2006-04-03 2008-10-09 Wionics Research Frequency offset correction for an ultrawideband communication system
WO2007117525A2 (en) * 2006-04-03 2007-10-18 Wionics Research Frequency offset correction for an ultrawideband communication system
KR101027564B1 (ko) 2006-06-29 2011-04-06 모토로라 모빌리티, 인크. 직교 주파수 분할 다중 액세스 메시지 처리 방법 및 장치
KR101197170B1 (ko) 2010-01-14 2012-11-02 도쿄엘렉트론가부시키가이샤 열처리 장치, 열처리 방법 및 기억 매체

Also Published As

Publication number Publication date
EP1179901B1 (en) 2005-02-09
EP1179901A4 (en) 2003-03-19
DE60018060D1 (de) 2005-03-17
EP1179901A1 (en) 2002-02-13
JP2001036500A (ja) 2001-02-09
ES2235863T3 (es) 2005-07-16
DE60018060T2 (de) 2005-12-29
US7149266B1 (en) 2006-12-12
JP3486576B2 (ja) 2004-01-13

Similar Documents

Publication Publication Date Title
WO2000070802A1 (fr) Recepteur de signaux et procede de compensation du decalage de frequence
US9780982B2 (en) OFDM-CDMA equipment and method
JP3048563B2 (ja) 直交周波数分割多重通信装置とその方法
JP3965638B2 (ja) Ofdm受信システムの周波数オフセット補正装置
US6487252B1 (en) Wireless communication system and method for synchronization
US7336598B2 (en) Guard interval length control method in OFDM system and OFDM transmitting and receiving apparatuses
CN1846415B (zh) 用于ofdm信号的两信道频偏估计的系统和方法
JP3776716B2 (ja) 直交周波数分割多重伝送信号受信装置
JP4043335B2 (ja) 受信装置
CN100477565C (zh) 正交频分复用系统中补偿频率偏移的设备和方法
JP3079950B2 (ja) 直交周波数分割多重変調信号の受信装置及び伝送方法
JPH0746218A (ja) ディジタル復調装置
JPH10190609A (ja) 直交周波数多重変調信号復調方法
KR20060022687A (ko) 다중 캐리어 통신 시스템 용의 수신기, 다중 캐리어의캐리어 변조 신호 수신 방법, 다중 캐리어 통신 시스템 및무선 다중 캐리어 통신 시스템
KR100347965B1 (ko) 멀티캐리어 시스템내 조주파수 동기화
JP4157159B1 (ja) 受信装置及び受信方法
JP3514811B2 (ja) Ofdm伝送方法、ofdm送信装置及びofdm受信装置
KR20020056986A (ko) 직교 주파수 분할 다중 통신 시스템의 프레임 구조 및분산 파일롯 부채널을 이용한 변조기 및 복조기
JP3558879B2 (ja) ディジタル通信装置
JP3495962B2 (ja) 歪み推定装置
JP2001345780A (ja) 最大比合成ダイバーシティを用いたofdm受信装置
JP2001148681A (ja) 無線通信システム
JP2000196560A (ja) ディジタル通信装置
JP4003386B2 (ja) クロック信号再生装置および受信装置、クロック信号再生方法および受信方法
JP2000138647A (ja) ディジタル伝送装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000925676

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000925676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09980752

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000925676

Country of ref document: EP