WO2000071774A1 - Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken - Google Patents

Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken Download PDF

Info

Publication number
WO2000071774A1
WO2000071774A1 PCT/CH2000/000286 CH0000286W WO0071774A1 WO 2000071774 A1 WO2000071774 A1 WO 2000071774A1 CH 0000286 W CH0000286 W CH 0000286W WO 0071774 A1 WO0071774 A1 WO 0071774A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
modulation
workpieces
source
sputter source
Prior art date
Application number
PCT/CH2000/000286
Other languages
English (en)
French (fr)
Inventor
Othmar Zueger
Original Assignee
Unaxis Balzers Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unaxis Balzers Aktiengesellschaft filed Critical Unaxis Balzers Aktiengesellschaft
Priority to DE50009129T priority Critical patent/DE50009129D1/de
Priority to AT00929190T priority patent/ATE286153T1/de
Priority to EP00929190A priority patent/EP1198607B1/de
Priority to JP2000620147A priority patent/JP5108177B2/ja
Publication of WO2000071774A1 publication Critical patent/WO2000071774A1/de
Priority to HK02106952.1A priority patent/HK1047142B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering

Definitions

  • the present invention relates to a vacuum treatment system with a vacuum treatment chamber, with organs for creating a treatment atmosphere in the chamber, a sensor arrangement for detecting the treatment atmosphere currently prevailing in a treatment area in the chamber, the sensor arrangement ACTUAL value sensor, at least one of the organs, actuator of a control circuit for the treatment atmosphere is further with a workpiece carrier driven through the treatment area.
  • the present invention relates to methods for producing workpieces, in which the workpieces are moved in a treatment atmosphere guided by a control system.
  • a TARGET value is specified for the measured controlled variable and, according to the control deviations, for example the flow of reactive gas, in the example given above the oxygen flow, or - if not recorded as a controlled variable - the target voltage as a manipulated variable in the control loop mentioned.
  • FIGS. Typical vacuum treatment systems of the last-mentioned type are shown schematically in FIGS. Such systems or workpieces realized with systems of this type are
  • Substrates 1 are moved past at least one sputter source 5 on a workpiece carrier drum 3 rotating in a treatment chamber, as represented by ⁇ .
  • the sputter source 5 with a metallic, that is to say highly electrically conductive target is usually DC-operated as a magnetron source, often additionally with a chopper unit interposed between a DC feed generator and the sputter source 5, as described in detail in EP-A-0 564,789 by the same applicant. With such a chopper unit, a current path located above the sputter source connections is switched intermittently with high and low resistance.
  • the DC generator and the optionally provided chopper unit are each shown in the blocks 7 of the sputter source supply.
  • a working gas G A for example argon
  • a reactive gas G R for example oxygen 0 2
  • G A for example argon
  • a reactive plasma 9 is formed over the sputter sources 5, in which the substrates or workpieces 1 moved through the drum 3 over the sputter surfaces are sputter-coated. Because not only the substrates 1 are coated with the electrically poorly conductive reaction products formed in the reactive plasma 9, but also the metallic sputtering surfaces of the sputtering sources 5, the coating process described hitherto, particularly in order to achieve the highest possible coating rates, is unstable. For this reason, the treatment process, and in this case actually the one on the workpieces 1, is carried out in particular in these treatment processes or systems acting treatment atmosphere, stabilized in the treatment area BB by a control.
  • the intensities of one or more of the spectral line (s) characterizing the light emission from the reactive plasma 9 and measured as a measured control variable X a are measured using a plasma emission monitor 12 Regulator 14 a supplied.
  • the target voltage at the sputter source 5 is measured with a voltage measuring device 16 and fed to a controller 14b.
  • Figures 1 and 3 or 2 and 4 correspond with respect to the detection of the measured controlled variable X.
  • the respective measured controlled variables X a and X b are preferably used on the controllers 14a and 14b to form respective control differences with the measured controlled variables adjustable reference values W a or W b compared.
  • Control signals S are generated on the output side of the controller 14 in accordance with the control differences formed on the controllers 14a and 14b and their amplification on transmission links dimensioned with respect to frequency behavior in accordance with the rules of control technology (not shown separately).
  • the control signals correspondingly designated S aa and S ta , are routed to the flow control valves 10 for the reactive gas as actuators, which are set so that the respectively measured control variables X a and X b are based on the of the guide values W a or W b given values or are kept there.
  • 1 to 4 are, for example, vacuum treatment plants with a vacuum treatment chamber, with organs for creating a treatment atmosphere - namely in particular sputter source and reactive gas feeds, a sensor arrangement for detecting the treatment atmosphere currently prevailing in the chamber - the ones described, for example Plasma emission monitors or voltage measuring devices, the sensor arrangements being an actual value sensor, at least one of the organs mentioned constituting a control circuit for the treatment atmosphere.
  • the present invention relates to treatment plants or production methods based on FIGS. 1 to 4 explained type. This was used to recognize that, in particular in the case of wide substrates, with a width B greater than the extent A in the same direction, preferably five times larger, and / or with a small diameter of the substrate drum 3, it extends above the substrate width B due to the non-linear movement of the substrates in the Area BB and relative to sputter source 5 results in a pronounced, approximately parabolic layer thickness distribution, as shown in FIG. 11a. This layer thickness distribution is known as the so-called "chord effect".
  • the effective width of a substrate is understood to be its linearly measured extent, in the direction of its movement relative to the sputtering source 5; the corresponding effective sputter source extension A is considered its linearly measured extension in the same direction.
  • the “substrate width B” mentioned can certainly be taken up by a plurality of smaller substrates lying next to one another, the substrate 21 mentioned is then actually a batch substrate.
  • the substrates can certainly be arranged on the inside of a revolving carousel which revolves around a sputter source arrangement, on a path which is then concave with respect to the sputter source arrangement.
  • the object of the present invention is independent of the movement path and orientation of the workpieces to achieve a desired layer thickness distribution.
  • control e.g. for the stabilization of the treatment process, which keeps the treatment atmosphere in a target state or working point.
  • an adjustable TARGET value specification unit is provided on the control circuit, as was explained with reference to FIGS. 1 to 4, and the modulation provided according to the invention becomes synchronous with the substrate movement via modulation of the TARGET - Realized value.
  • the regulation provided is carried out more slowly than the treatment atmosphere modulation carried out according to the invention. Accordingly, the regulation of the "disturbance variable" modulation cannot follow at all.
  • the modules introduced according to the invention are therefore tion, control engineering, around the conscious introduction of a disturbance variable that should not be corrected.
  • the vacuum chamber comprises a sputter source with an electrically conductive target and a reactive gas tank arrangement is connected to the chamber with a reactive gas which, with the material released by the sputter source, forms one electrically less conductive material reacts as a coating material, the modulation is preferably carried out on the electrical source for supplying the sputtering source - its current or power - be it with preferred DC supply on the DC generator itself and / or on an intermediate one DC generator and sputter source switched chopper, whose duty cycle is created.
  • the system according to the invention as a moving workpiece carrier, has a rotatingly driven carrier drum with workpiece receptacles distributed on its periphery.
  • the modulation is then synchronized with the drum rotation and applied at a repetition frequency that corresponds to the workpiece carrier throughput frequency.
  • a modulation form storage unit is preferably provided on the system according to the invention, with at least one, preferably more pre-stored modulation curves and with a selection unit for selectively connecting the respectively desired modulation curves to the actuator mentioned.
  • the inventive method for the production of workpieces is characterized in that the Treatment atmosphere in a treatment area of the workpiece movement path, as a function of the workpiece position, is modulated with a given profile.
  • Preferred embodiments of the method according to the invention are specified in claims 7 to 13.
  • the system according to the invention and the method according to the invention are particularly suitable for creating a homogeneous layer thickness distribution on planar substrates with diameters B greater than the effective extent A of the sputtering source or for generating predetermined layer thickness distributions on substrates, in particular also on non-planar substrates.
  • the present invention further relates fundamentally to methods for producing substrates, the tendon effect on the substrates being moved past the sputter source in a circular path that is convex or concave with respect to a sputter source is compensated for.
  • the working gas flow i.e. the flow of an inert gas.
  • the sputtering power is preferably modulated to a maximum in the case of workpieces located centrally with respect to the sputtering source.
  • the reactive gas flow is modulated in such a way that this flow passes through a maximum in the case of workpieces located centrally with respect to the sputter source, whereas the substrate movement path is concave, a minimum.
  • the working gas flow is modulated according to the invention, alone or in combination with the other specified modulation variables, it is preferred in such a way that it runs through a minimum when the substrates are convex in relation to the sputter source with workpieces located centrally with respect to the sputter source, but in the case of concave movement a maximum.
  • FIG. 12 qualitatively shows the modulation signal, according to the invention applied to the systems according to FIGS. 7 to 10, in order to achieve layer thickness distributions on the substrates according to FIG. 11 (b) or, shown in dashed lines, (c).
  • FIG 5 shows schematically, designated x, the movement path for a workpiece 20 to be treated within a vacuum treatment chamber (not shown).
  • the current position of the workpiece 20 along the movement path x is designated x s .
  • the workpiece 20 is treated in a treatment area BB in a treatment atmosphere U within the treatment chamber.
  • organs are provided in the treatment chamber or are operatively connected to it, generally shown in FIG. 5 with block 22.
  • Such organs can be formed, for example, by controllable valve arrangements for gas inlets into the treatment chamber, in particular reactive gas inlets and / or working gas inlets, electrical supply voltages for plasma discharge paths, heating or cooling elements, magnet arrangements for generating magnetic fields in the chamber.
  • a sensor arrangement 24 is provided, by means of which one or more characteristic size (s) of the treatment atmosphere U in the treatment area BB is / are measured. On the output side, the sensor arrangement 24 is operatively connected to a differential formation unit 26, which supplies it with a measured control variable signal X.
  • the difference formation unit 26 is further supplied with the SET value signal W by a preferably adjustable SET value setting unit 28.
  • the control difference resulting at the difference formation unit 26 is conducted via a controller 30 or amplifier to at least one of the organs influencing the treatment atmosphere U, as an actuator.
  • the arrangement described in FIG. 5 corresponds to the explanations for FIGS. 1 to 4.
  • the current position x s of a workpiece 20 to be treated is now detected, as shown schematically by the position detector 34 in FIG and pursued.
  • the output signal of the detector arrangement 34 triggers on a modulation unit 32 a modulation signal M which varies with the position X s and which is supplied to at least one of the above-mentioned organs which also determine the treatment atmosphere U in block 22 according to FIG. 5.
  • the treatment atmosphere U in the treatment area BB is thus changed in a targeted manner in accordance with the modulation signal M, so that the workpiece 20 during the passage through the treatment area BB in accordance with the selected mode.
  • dulation M is treated with a desired treatment profile along its surface to be treated.
  • a first form of realization of the modulation according to the invention results from the fact that the modulation, as shown in FIG. 6, is applied to the guide variable W of the control loop and thus the control loop actuator is also used to apply the targeted modulation to the treatment environment U.
  • FIGS. 7 to 10 show the preferred system configurations according to FIGS. 1 to 4 already described, but are now further developed according to the invention.
  • a rotation angle receiver 36 is used as the position detector 34, which - with the rotation position signal ⁇ s - outputs the modulation signal M ( ⁇ s ) at a modulation unit 38 with the drum movement and thus synchronized the substrate movement.
  • the modulation signal M ( ⁇ s ) is used to guide an organ for setting the treatment atmosphere U, which is not used as an actuator of the control loop. This is shown so consistently in FIGS. 7 to 10.
  • the process stability and on the other hand the penetration of the intended modulation M ( ⁇ s ) the process atmosphere is ensured by preferably the frequency response of the control loop by providing filters 44, preferably of low-pass filters or band-pass filters, more preferably in the path of the measured controlled variable.
  • the modulation is carried out cyclically, corresponding to the substrates 1 passing by the sputtering source 5, the repetition frequency of the periodic modulation signal usually being higher than the upper limit frequency of the closed control loop.
  • Typical reaction times of the process control shown are in the range from a few hundred milliseconds to a few seconds, while due to the drum rotation speed ⁇ and the number of substrates 1 provided, the periodic modulation synchronized with the drum movement has a higher repetition frequency.
  • a position detector 40 can detect the reaching of predefined substrate positions on the drum periphery.
  • one, preferably two or more modulation curve shapes are preferably stored beforehand on the modulation unit 38 and selectively activated for the respective machining process by means of a selection unit 42. With the pre-stored, different modulation curve shapes, different substrate treatments on the same system can be taken into account.
  • the modulation used according to the invention can be carried out by modulating the inert gas or working gas flow GA, alone or optionally in combination with corresponding modulations.
  • suitable process variables such as reactive gas flow, sputtering performance.
  • the modulation used according to the invention can also be implemented via the actuator used for the control - according to the figures mentioned, the sputtering power 7. This modulation is slower than the response time of the closed control loop.
  • the procedure according to the invention is used particularly preferably for reactive coating processes, in particular in the production of optical components. It is surprising that the use of the modulation according to the invention even achieves high layer qualities and layer profiles that are suitable for optical components.
  • the procedure according to the invention is used when the initially defined width B of the substrates or a substrate batch is larger than the assigned sputter source extension A, preferably substantially larger, in particular at least five times larger.
  • the curve (a) qualitatively shows the layer thickness distribution applied to a flat substrate 1 according to FIGS. 1 to 4 by sputtering from the source 5, regardless of whether the target material layers are deposited in the metal Mode or the deposition of layer materials reacted as in the intramode or transition mode to electrically non-conductive layers.
  • Treatment atmosphere a minimum intensity, there are the respective substrates 1 centered opposite the sputtering source.
  • the layer thickness over the substrate width B which is essential, for example, for substrate widths of at least 12 cm.
  • the adaptation of the modulation curve shapes makes it possible to achieve specifically desired treatment distributions, in the preferred case coating distributions.
  • Mechanical inaccuracies in the system configuration, for example of substrate carriers, can also be compensated for by appropriately designed modulation forms. If desired, it is also possible to achieve this by applying different modulation waveforms, for example by means of counters, to workpieces provided simultaneously on drum 3 but which are to be coated with different layer thickness distributions It is then detected (not shown) which of the substrates currently enter the treatment area BB of the sputtering source, and the corresponding associated modulation curve shape is activated with the selection unit 42.
  • the layer thickness distribution on the substrates moving past can be set in a targeted manner, makes it possible to reduce the precision requirements for the treatment system, in particular with regard to its workpiece carrier and exact positioning of the sputtering source.
  • the undesirable layer thickness distributions that primarily arise are compensated for with the modulation used according to the invention.
  • An essential aspect of the present invention is also to coat non-planar substrates, for example lens bodies, with a uniform layer thickness distribution.

Abstract

In der Vakuumbehandlungskammer einer Vakuumbehandlungsanlage sind Organe (22) vorgesehen, welche die Behandlungsatmosphäre (U) in der erwähnten Kammer und in einem Behandlungsbereich (BB) erstellen. Eine Sensoranordnung (24) erfasst die im Behandlungsbereich momentan vorherrschende Behandlungsatmosphäre. Die Sensoranordnung (24) wirkt in einem Regelkreis als IST-Wertaufnehmer, eines der Organe (22) als Stellglied. Die Werkstücke werden in der Kammer durch den Behandlungsbereich (BB) durchbewegt. Die Behandlungsatmosphäre (U) im Behandlungsbereich (BB) wird nach einem gegebenen Profil (M) in der Zeit moduliert mit Hilfe eines der Organe.

Description

Vakuumbehandlungsanlage und Verfahren zur Herstellung von Werkstücken
Die vorliegende Erfindung betrifft eine Vakuumbehandlungsanlage mit einer Vakuumbehandlungskammer, mit Organen zum Erstellen einer Behandlungsatmosphäre in der Kammer, einer Sensoranordnung zur Erfassung der in einem Behandlungsbereich in der Kammer momentan vorherrschenden Behandlungsatmosphäre, wobei die Sensoranordnung IST-Wertaufnehmer, mindestens eines der Organe Stellglied eines Regelkreises für die Behandlungsatmosphäre ist, weiter mit einem durch den Behandlungsbereich getrieben bewegten Werkstückträger.
Im weiteren betrifft die vorliegende Erfindung Verfahren zum Herstellen von Werkstücken, bei welchen die Werkstücke in einer durch eine Regelung geführten Behandlungsatmosphäre bewegt wer- den.
Bei der Vakuumbehandlung von Werkstücken ist es bekannt, die Behandlungsatmosphäre durch eine oder mehrere Regelungen auf den Einhalt vorgegebener Eigenschaften zu regeln. Dies ist insbesondere dann notwendig, wenn die zur Realisation einer er- wünschten Behandlungsatmosphäre in einer Vakuumbehandlungskammer ablaufenden Prozesse in erwünschten Arbeitspunkten an sich instabil sind und erst mittels einer Regelung stabilisiert werden können. Ein hierfür typisches Beispiel sind reaktive Sput- terprozesse zur Beschichtung von Substraten mit nicht-leiten- den, so typischerweise oxidischen Schichten, bei denen ein metallisches, DC-betriebenes Target, typischerweise eine Magnetronanordnung, in einer Reaktivgasatmosphäre eingesetzt wird. Nebst einem inerten Arbeitsgas, beispielsweise Argon, wird der Behandlungsatmosphäre das Reaktivgas, beispielsweise Sauerstoff oder Stickstoff, zugeführt. Einerseits führt dies zu einer - gewollten - Beschichtung der Werkstücke mit einer oft elektrisch schlecht leitendenden Schicht, beispielsweise einer Oxidbeschichtung, aber auch zu einer Störbeschichtung des me- tallischen Targets. Ein solcher reaktiver Sputterprozess ist ohne Arbeitspunkt-Regelung im sogenannten Übergangsmode bzw. Intramode nicht stabil zu betreiben. Bezüglich der detaillierten Beschreibung von reaktiven Sputterprozessen im genannten Übergangsmode wird auf die US-A-5 423 970 derselben Anmelderin verwiesen, welche Schrift diesbezüglich zum integrierten Bestandteil der vorliegenden Beschreibung erklärt wird. In derartigen Regelungen wird die Regelgrösse (IST-Wertmessung) durch Messung der Plasmalichtemission, beispielsweise bei einer spezifischen Spekrallinie, durch Messung der Targetspannung er- fasst . Es wird für die gemessene Regelgrösse ein SOLL-Wert vorgegeben und entsprechend den Regelabweichungen beispielsweise der Fluss von Reaktivgas, im oben gegebenen Beispiel der Sauer- stofffluss, oder - falls nicht als Regelgrösse erfasst - die TargetSpannung als Stellgrösse im erwähnten Regelkreis ge~ stellt. Hierdurch wird der Betrieb, insbesondere eine Stabilisierung des Prozesses im erwünschten Arbeitspunkt, beispielsweise im erwähnten Übergangsmode, erreicht.
In den Figuren 1 bis 4 sind schematisch typische Vakuumbehandlungsanlagen letztgenannter Art dargestellt. Es sind solche An- lagen bzw. mit Anlagen dieser Art realisierte Werkstück-
Herstellverf hren, an denen die noch zu beschreibenden Probleme erkannt und erfindungsgemäss gelöst wurden. Die erfindungsge- mässen Lösungen können aber grundsätzlich an Anlagen und Verfahren eingangs genannter Art eingesetzt werden, woran der Be- handlungsprozess bzw. die Behandlungsatmosphare geregelt wird. Substrate 1 werden auf einer - wie mit ω dargestellt - in einer Behandlungskammer drehenden Werkstückträgertrommel 3 an mindestens einer Sputterquelle 5 vorbeibewegt. Die Sputterquel- le 5 mit metallischem, also elektrisch hoch leitendem Target, wird, üblicherweise als Magnetronquelle ausgebildet, DC- betrieben, oft zusätzlich mit zwischen einem DC-Speisegenerator und der Sputterquelle 5 zwischengeschalteter Choppereinheit , wie dies ausführlich in der EP-A-0 564 789 derselben Anmelderin beschrieben ist. Mit einer solchen Choppereinheit wird ein über den Sputterquellen-Anschlüssen liegender Strompfad intermittierend hoch- und niederohmig geschaltet .
In den Fig. 1 bis 4 sind der DC-Generator und die gegebenenfalls vorgesehene Choppereinheit jeweils in den Blöcken 7 der Sputterquellenspeisung dargestellt. In die Behandlungsatmosphä- re U der Vakuumkammer wird, nebst einem Arbeitsgas GA, beispielsweise Argon, ein Reaktivgas GR, beispielsweise Sauerstoff 02, eingelassen, insbesondere letzteres über Gasfluss-Stellven- tile 10.
Es bildet sich über den Sputterquellen 5 ein reaktives Plasma 9, in welchem die mit der Trommel 3 über den Sputterflachen durchbewegten Substrate bzw. Werkstücke 1 sputterbeschichtet werden. Weil nicht nur die Substrate 1 mit den im reaktiven Plasma 9 gebildeten, elektrisch schlecht leitenden Reaktionsprodukten beschichtet werden, sondern auch die metallischen Sputterflachen der Sputterquellen 5, ist der bis dahin beschriebene Beschichtungsprozess , insbesondere zum Erzielen möglichst hoher Beschichtungsraten, instabil. Deshalb wird insbesondere bei diesen Behandlungsverfahren bzw. -anlagen der Be- handlungsprozess, dabei eigentlich die auf die Werkstücke 1 wirkende Behandlungsatmosphäre, im Behandlungsbereich BB durch eine Regelung stabilisiert.
Gemäss Fig. 1, als eine mögliche Realisationsvariante eines solchen Regelkreises, werden mittels eines Plasmae issionsmoni- tors 12 die Intensitäten einer oder mehrerer der für die Licht - emission aus dem reaktiven Plasma 9 kennzeichnenden Spektrallinie (n) gemessenen und als gemessene Regelgrösse Xa einem Regler 14a zugeführt.
Gemäss Fig. 2 wird, als gemessene IST-Grösse Xb des Regelkrei- ses, mit einer Spannungsmesseinrichtung 16 die Targetspannung an der Sputterquelle 5 gemessen und einem Regler 14b zugeführt.
Bezüglich Erfassung der gemessenen Regelgrösse X entsprechen sich die Figuren 1 und 3 bzw. 2 und 4. An den Reglern 14a bzw. 14b werden die jeweils gemessenen Regelgrössen Xa bzw. Xb, zur Bildung jeweiliger Regeldifferenzen, mit den gemessenen Regelgrössen entsprechenden, vorzugsweise einstellbaren Führungswerten Wa bzw. Wb verglichen.
Nach Massgabe der gebildeten Regeldifferenzen an den Reglern 14a bzw. 14b und deren Verstärkung an bezüglich Frequenzverhai- ten gemäss den Regeln der Regelungstechnik bemessenen Übertragungsstrecken (nicht separat dargestellt) werden, ausgangsseits der Regler 14, Stellsignale S generiert. Gemäss den Fig. 1 und 2 werden die Stellsignale, entsprechend mit Saa und Sta bezeichnet, auf die Flusssteuerventile 10 für das Reaktivgas als Stellglieder geführt, welche so gestellt werden, dass die jeweilig gemessenen Regelgrössen Xa bzw. Xb auf die mittels der Führungsgrδssen Wa bzw. Wb vorgegebenen Werte geführt bzw. dort gehalten werden. Gemäss den Fig. 3 und 4 wird das ausgangsseitig der Regler 14a bzw. 14b generierte Stellsignal, entsprechend mit S-^ und Sbb bezeichnet, an die nun ihrerseits als Regelungsstellglieder wirkende Sputterquellen-Speisungen 7 geführt, sei dies an deren DC-Generatoren und/oder an deren gegebenenfalls vorgesehenen Choppereinheiten, wo der Chopper-duty-cycle gestellt wird.
Es handelt sich also bei den anhand von Fig. 1 bis 4 beispielsweise dargestellten Anlagen um Vakuumbehandlungsanlagen mit einer Vakuumbehandlungskammer, mit Organen zum Erstellen einer Behandlungsatmosphäre - nämlich insbesondere Sputterquelle und Reaktivgaszuführungen, einer Sensoranordnung zur Erfassung der in der Kammer momentan vorherrschenden Behandlungsatmosphäre - den beispielsweise beschriebenen Plasmaemissionsmonitoren bzw. Spannungsmessgeräten, wobei die Sensoranordnungen IST- Wertaufnehmer, mindestens eines der erwähnten Organe Stellglied jeweils eines Regelkreises für die Behandlungsatmosphäre bilden .
Für das Ablegen elektrisch schlecht oder nicht leitender Schichten mit Hilfe Freisetzens der einen Schichtmaterial- Komponente von elektrisch leitenden Targets besteht ein aus der US-A-5 225 057 bekanntes Vorgehen darin, in räumlich getrennten Behandlungsstufen erst die metallische Beschichtung vorzunehmen und diese darnach in einer Reaktivgasstufe, einer Oxidations- stufe, zu oxidieren. Bei diesem bekannten Vorgehen besteht ein Stabilitätsproblem bezüglich des Beschichtungsprozesses nicht, hingegen wird die hierzu eingesetzte Anlagekonfiguration - mehrstufig - relativ kompliziert.
Wie erwähnt, geht die vorliegende Erfindung von Behandlungsan- lagen bzw. Herstellungsverfahren der anhand der Figuren 1 bis 4 erläuterten Art aus. Daran wurde erkannt, dass insbesondere bei breiten Substraten, mit einer Breite B grösser als die Ausdehnung A in gleicher Richtung, vorzugsweise fünfmal grösser, und/oder bei kleinem Durchmesser der Substrattrommel 3 sich über der Substratbreite B, aufgrund der nicht geradlinigen Bewegung der Substrate im Bereich BB und relativ zur Sputterquelle 5 eine ausgeprägte, angenähert parabolische Schichtdickenverteilung ergibt, wie dies in Fig. 11a dargestellt ist. Diese Schichtdicken-Verteilung ist als sogenannter "Sehneneffekt" be- kannt .
Als wirksame Breite eines Substrates wird dessen linear gemessene Ausdehnung verstanden, in Richtung seiner Relativbewegung zur Sputterquelle 5; die entsprechende wirksame Sputterquellen- ausdehnung A ist deren linear gemessene Ausdehnung in derselben Richtung betrachtet .
Im weiteren kann die erwähnte "Substratbreite B" durchaus von mehreren nebeneinander liegenden, kleineren Substraten eingenommen werden, das angesprochene Substrat 21 ist dann eigentlich ein Batch-Substrat .
Im weiteren sei an dieser Stelle betont, dass beispielsweise mit Blick auf Fig. 1 die Substrate durchaus auf der Innenseite eines umlaufenden Karussells angeordnet werden können, welches eine Sputterquellenanordnung umläuft, auf einer bezüglich der Sputterquellenanordnung dann konkaven Bahn. Alle bisherigen und nachfolgenden Ausführungen, ausgehend von den Trommelanordnungen gemäss den Fig. 1 bis 4, gelten, analog, vollumf nglich für konkave Werkstückbewegungen bezüglich der Sputterquelle.
Die vorliegende Erfindung stellt sich zur Aufgabe, unabhängig von der Bewegungsbahn und -ausrichtung der in der Behand- lungsatmosphäre bewegten Werkstücke, gezielt eine erwünschte Schichtdicken-Verteilung zu realisieren.
Dies wird an einer Vakuumbehandlungsanlage eingangs genannter Art dadurch erreicht, dass mindestens eines der Organe zum Er- stellen der Behandlungsatmosphäre, in Funktion der Werkstückträger-Position, die Behandlungsatmosphäre im Behandlungsbereich nach einem gegebenen Profil moduliert.
Dabei ist nun zu berücksichtigen, dass bei der Anlage bzw. dem Verfahren eingangs genannter Art die Regelung, z.B. für die Stabilisierung des Behandlungsprozesses, die Behandlungsatmosphäre in einem SOLL-Zustand bzw. Arbeitspunkt hält.
Anders als aus der US 5 225 057 bekannt, wonach durch Variation der Sputterleistung beim Ablegen metallischer Schichten dem Sehneneffekt gegengewirkt wird, liegt vorliegendenfalls eine Regelung vor, welche sich einer Veränderung der Behandlungsatmosphäre widersetzt .
In einer ersten bevorzugten Ausführungsform der erfindungsge- mässen Vakuumbehandlungsanlage ist am Regelkreis eine einstellbare SOLL-Wert-Vorgabeeinheit vorgesehen, wie dies anhand der Fig. 1 bis 4 erläutert wurde, und es wird die erfindungsge äss vorgesehene Modulation synchron mit der Substratbewegung über Modulation des SOLL-Wertes realisiert.
In einer weiter bevorzugten Ausführungsform der erfindungsge- mässen Anlagen wird die vorgesehene Regelung langsamer ausge- führt als die erfindungsgemäss vorgenommene Behandlungsatmosphären-Modulation. Demnach kann die Regelung der "Störgrδssen" -Modulation gar nicht ausregelnd folgen. Es handelt sich mithin bei der erfindungsgemäss eingeführten Modula- tion, regelungstechnisch, um das bewusste Einführen einer Stör- grösse, die nicht ausgeregelt werden soll.
Umfasst, wie in der bevorzugten, bereits anhand der Fig. 1 bis 4 erläuterten Anlage, die Vakuumkammer eine Sputterquelle mit elektrisch leitendem Target und ist an die Kammer eine Reaktivgas-Tankanordnung angeschlossen mit einem Reaktivgas, welches mit dem durch die Sputterquelle freigesetzten Material zu einem elektrisch schlechter leitenden Material als Beschichtungsmate- rial reagiert, so wird bevorzugterweise die Modulation an der elektrischen Quelle für die Speisung der Sputterquelle vorgenommen - dessen Strom oder Leistung -, sei dies bei bevorzugter DC-Speisung am DC-Generator selber und/oder an einem zwischen DC-Generator und Sputterquelle geschalteten Chopper, dessen duty-cycle erstellt wird.
In einer weiteren bevorzugten Ausführungsform weist die erfin- dungsgemässe Anlage, als bewegter Werkstückträger, eine rotierend getriebene Trägertrommel auf mit an seiner Peripherie verteilten Werkstückaufnahmen. Die Modulation wird dann mit der Trommel -Drehbewegung synchronisiert und mit einer Repetitions- frequenz angelegt, die der Werkstückträger-Durchlauffrequenz entspricht .
Im weiteren wird bevorzugterweise an der erfindungsgemässen Anlage eine Modulationsformen-Speichereinheit vorgesehen, mit mindestens einem, vorzugsweise mehr vorabgespeicherten Modula- tionsverläufen sowie mit einer Selektionseinheit zur selektiven Aufschaltung der jeweils erwünschten Modulationskurven auf das erwähnte Stellorgan.
Das erfindungsgemässe Verfahren eingangs genannter Art zur Herstellung von Werkstücken zeichnet sich dadurch aus, dass die Behandlungsatmosphäre in einem Behandlungsbereich der Werkstück-Bewegungsbahn, in Funktion der Werkstück-Position, mit einem gegebenen Profil moduliert wird. Bevorzugte Ausführungs- formen des erfindungsgemässen Verfahrens sind in den Ansprüchen 7 bis 13 spezifiziert . Die erfindungsgemässe Anlage wie auch das erfindungsgemässe Verfahren eignen sich insbesondere zum Erstellen einer homogenen Schichtdickenverteilung an planen Substraten mit Durchmessern B grösser als die wirksame Ausdehnung A der Sputterquelle oder zur Erzeugung von vorgegebenen Schichtdicken-Verteilungen an Substraten, so insbesondere auch an nicht planen Substraten.
Die vorliegende Erfindung betrifft im weiteren grundsätzlich Verfahren zur Herstellung von Substraten, wobei der Sehneneffekt an den Substraten, die auf einer bezüglich einer Sputter- quelle konvexen oder konkaven Kreisbahn an der Sputterquelle vorbeibewegt werden, kompensiert wird.
Aus der US-A-5 225 057 ist es bekannt, die Sputterleistung metallischer Targets zur Kompensation des vorerwähnten Sehneneffektes zu modulieren, und zwar so, dass bei zentrisch gegenüber der Sputterquelle liegenden Substraten die Sputterleistung ein Maximum durchläuft. Genauere Untersuchungen haben aber gezeigt, dass diese Modulationsart den angesprochenen Sehneneffekt nicht zu kompensieren vermag. Erstaunlicherweise muss nämlich, wie gezeigt werden wird, die Sputterleistung der Quelle in Funktion der Substratposition so moduliert werden, dass bei zentral gegenüber der Sputterquelle liegenden Substraten die Sputterleistung ein Minimum durchläuft .
Im weiteren werden erfindungsgemässe Herstellverfahren vorgeschlagen, bei denen insbesondere Auswirkungen des erwähnten Sehneneffektes, bei bezüglich Sputterquelle konvexer oder konkaver Substratbewegung, durch Modulation des Reaktivgasflusses
- bei den bevorzugt eingesetzten Reaktivbeschichtungsprozessen
- und/oder der Arbeitsgasfluss, d.h. der Fluss eines Inertga- ses, behoben werden.
Bei Modulation der Sputterleistung und konkaver Bewegungsbahn der Substrate bezüglich der Sputterquelle wird bevorzugt die Sputterleistung bei zentrisch gegenüber der Sputterquelle liegenden Werkstücken auf ein Maximum moduliert .
Entsprechend wird bei konvexer Bewegungsbahn der Substrate bezüglich der Sputterquelle der Reaktivgasfluss so moduliert, dass bei zentrisch gegenüber der Sputterquelle liegenden Werkstücken dieser Fluss ein Maximum durchläuft, ist die Substrat- bewegungsbahn hingegen konkav, ein Minimum.
Wird allein oder in Kombination mit den übrigen angegebenen Mo- dulationsgrössen der Arbeitsgasfluss erfindungsgemäss moduliert, so bevorzugt in einer Art und Weise, dass er bei konvexer Bewegungsbahn der Substrate bezüglich der Sputterquelle bei zentrisch gegenüber der Sputterquelle liegenden Werkstücken ein Minimum durchläuft, hingegen bei konkaver Bewegungsbahn ein Maximum .
Die Erfindung wird anschliessend beispielsweise anhand von Figuren erläutert. Diese zeigen:
Fig. 5 anhand einer Prinzipdarstellung, eine erfindungsgemäs- se Behandlungsanlage bzw. ein erfindungsgemässes Verfahren, Fig. 6 schematisch, in Darstellung analog zu Fig. 5, eine erste Realisationsform der erfindungsgemässen Modulation,
Fig. 7 bis 10 in Darstellungen analog zu den Fig. 1 bis 4, die er- findungsgemässen Weiterbildungen der Anlagen gemäss den Figuren 1 bis 4 bzw. der entsprechenden Herstellungsverfahren,
Fig. 11 qualitativ (a) eine Schichtdickenverteilung an Substraten, bei deren Fertigung nach Verfahren bzw. mittels Anlagen gemäss den Fig. 1 bis 4; (b) bei für optimale Schichtdicken-Homogenität gewählter, erfin- dungsgemässer Modulation; (c) bei Überkompensation mit erfindungsgemässer Modulation, und
Fig. 12 qualitativ das Modulationssignal, erfindungsgemäss an den Anlagen gemäss den Fig. 7 bis 10 angelegt, um an den Substraten Schichtdickenverteilungen gemäss Fig. 11 (b) bzw., gestrichelt dargestellt, (c) zu erzielen.
In Fig. 5 ist schematisch, mit x bezeichnet, die Bewegungsbahn für ein innerhalb einer nicht dargestellten Vakuumbehandlungs- kammer zu behandelndes Werkstück 20 dargestellt. Die momentane Position des Werkstückes 20 entlang der Bewegungsbahn x ist mit xs bezeichnet. Innerhalb der Behandlungskammer wird das Werkstück 20 in einem Behandlungsbereich BB in einer Behandlungsa - mosphäre U behandelt.
Zur Erzeugung der Behandlungsatmosphare U sind Organe in der Behandlungskammer vorgesehen bzw. mit ihr wirkverbunden, in Fig. 5 generell mit Block 22 dargestellt. Solche Organe können gebildet sein z.B. durch steuerbare Ventilanordnungen für Gas- einlässe in die Behandlungskammer, insbesondere Reaktivgasein- lässe und/oder Arbeitsgaseinlässe , elektrische Speisespannungen für Plasmaentladungsstrecken, Heiz- oder Kühlorgane, Magnetan- Ordnungen für die Erzeugung von Magnetfeldern in der Kammer. Es ist eine Sensoranordnung 24 vorgesehen, mittels welcher eine oder mehrere charakteristische Grosse (n) der Behandlungsatmosphäre U im Behandlungsbereich BB gemessen wird/werden. Aus- gangsseitig ist die Sensoranordnung 24 mit einer Differenzbil- dungseinheit 26 wirkverbunden, welcher sie ein gemessenes Re- gelgrössensignal X zuführt. Der Differenzbildungseinheit 26 wird weiter, von einer vorzugsweise einstellbaren SOLL-Wert- Vorgabeeinheit 28, das SOLL-Wertsignal W zugeführt. Die an der Differenzbildungseinheit 26 resultierende Regeldifferenz wird über einen Regler 30 bzw. Verstärker auf mindestens eines der die Behandlungsatmosphäre U beeinflussenden Organe, als Stellglied, geführt.
Soweit entspricht, generalisiert, die in Fig. 5 beschriebene Anordnung den Ausführungen zu den Fig. 1 bis 4. Erfindungsge- mäss wird nun, wie mit dem Positionsdetektor 34 in Fig. 5 schematisch dargestellt, die Momentanposition xs eines zu behandelnden Werkstückes 20 erfasst und verfolgt. Das Ausgangssignal der Detektoranordnung 34 löst an einer Modulationseinheit 32 ein mit der Position Xs variierendes Modulationssignal M aus, welches mindestens einem der erwähnten, die Behandlungsatmosphäre U mitfestlegenden Organe im Block 22 gemäss Fig. 5 zugeführt wird. Damit wird die Behandlungsatmosphare U im Behandlungsbereich BB entsprechend dem Modulationssignal M gezielt verändert, so dass das Werkstück 20, während des Durchlaufs durch den Behandlungsbereich BB, entsprechend der gewählten Mo- dulation M mit einem erwünschten Behandlungsprofil entlang seiner zu behandelnden Oberfläche behandelt wird.
Eine erste Realisationsform der erfindungsgemässen Modulation ergibt sich dadurch, dass die Modulation wie in Fig. 6 darge- stellt der Fuhrungsgrösse W des Regelkreises aufgebracht wird und damit das Regelkreis-Stellglied auch zum Aufbringen der gezielten Modulation an die Behandlungsumgebung U eingesetzt wird.
In den Fig. 7 bis 10 sind die bereits beschriebenen, bevorzug- ten Anlagekonfigurationen gemäss den Fig. 1 bis 4 dargestellt, nun aber erfindungsgemäss weitergebildet. An der Trommel 3 wird als Positionsdetektor 34 gemäss Fig. 5 beispielsweise und bevorzugterweise ein Drehwinkel-Nehmer 36 eingesetzt, welcher - mit dem Drehpositionssignal ωs - die Ausgabe des Modulations- signales M(ωs) an einer Modulationseinheit 38 mit der Trommelbewegung und damit der Substratbewegung synchronisiert . Bevorzugterweise wird mit dem Modulationssignal M(ωs) ein Organ für die Einstellung der Behandlungsatmosphäre U geführt, welches nicht als Stellglied des Regelkreises eingesetzt ist . Dies ist in den Fig. 7 bis 10 durchwegs so dargestellt.
In der in der bevorzugten Ausführungsform realisierten Stabilisierungsregelung des Prozesses, notwendig, um - wie eingangs erläutert - im Übergangsmode ab leitenden Targets mittels Reaktivgas schlecht oder nicht leitende Beschichtungen abzulegen, wird einerseits die Prozessstabilität , anderseits der Durchgriff der vorgesehenen Modulation M(ωs) auf die Prozessatmo- sphäre gewährleistet, indem vorzugsweise das Frequenzverhalten des Regelkreises durch Vorsehen von Filtern 44, vorzugsweise von Tiefpassfiltern oder Bandpassfiltern, weiter bevorzugt im Pfad der gemessenen Regelgrösse, angepasst wird.
In der bevorzugten Ausführungsform gemäss den Fig. 7 bis 10 erfolgt die Modulation zyklisch, entsprechend den jeweils an der Sputterquelle 5 vorbeilaufenden Substraten 1, wobei üblicherweise die Repetitionsfrequenz des periodischen Modulationssignals höher ist als die obere Grenzfrequenz des geschlossenen Regelkreises. So liegen typische Reaktionszeiten der dargestellten Prozessregelung im Bereich einiger hundert Millisekun- den bis hin zu einigen Sekunden, während aufgrund der Trommel- Drehgeschwindigkeit ω und der Anzahl vorgesehener Substrate 1 die mit der Trommelbewegung synchronisierte, periodische Modulation eine höhere Repetitionsfrequenz aufweist.
Wie als Beispiel in Fig. 9 dargestellt, kann durchaus anstelle eines Drehwinkel-Nehmers 36, wie in den Fig. 7, 8 und 10 dargestellt, ein Positionsdetektor 40 das Erreichen vordefinierter Substratpositionen an der Trommelperipherie detektieren.
Wie im weiteren in den Fig. 9 und 10 dargestellt, werden bevorzugterweise an der Modulationseinheit 38 eine, vorzugsweise zwei oder mehr Modulationskurvenformen vorabgespeichert und mittels einer Selektionseinheit 42 für den jeweiligen Bearbei- tunsprozess selektiv aktiviert. Mit den vorabgelegten, verschiedenen Modulationskurvenformen können unterschiedliche Substratbehandlungen an derselben Anlage berücksichtigt werden.
Wie in den Figuren 7 und 8 zusätzlich dargestellt, kann die er- findungsgemäss eingesetzte Modulation durch Modulation des Inertgas- bzw. Arbeitsgasflusses GA erfolgen, für sich allein oder gegebenenfalls in Kombination mit entsprechender Modulati- on anderer hierzu geeigneter Prozessgrössen, wie Reaktivgas- fluss, Sputterleistung.
Im weiteren ist gestrichelt in den Fig. 9 und 10 dargestellt, dass die erfindungsgemäss eingesetzte Modulation auch über das für die Regelung eingesetzte Stellglied - gemäss den erwähnten Figuren die Sputterleistung 7 - realisiert werden kann. Dabei erfolgt diese Modulation langsamer, als durch die Reaktionszeit des geschlossenen Regelkreises gegeben.
Das erfindungsgemässe Vorgehen wird insbesondere bevorzugt für reaktive Beschichtungsverfahren eingesetzt, insbesondere bei der Herstellung optischer Bauelemente. Es erstaunt, dass durch Einsatz der erfindungsgemässen Modulation sich gar für optische Bauelemente eignende, hohe Schichtqualitäten und Schichtprofile erzielt werden.
Insbesondere wird das erfindungsgemässe Vorgehen dann eingesetzt, wenn die eingangs definierte Breite B der Substrate bzw. eines Substrat-Batches grösser ist als die zugeordnete Sputter- quellenausdehnung A, vorzugsweise wesentlich grösser, insbesondere mindestens fünfmal grösser.
In Fig. 11 zeigt qualitativ die Kurve (a) die auf einem planen Substrat 1 gemäss den Fig. 1 bis 4 durch Sputtern ab der Quelle 5 aufgebrachte Schichtdickenverteilung, und zwar unabhängig davon, ob es sich um das Ablegen von Targetmaterial-Schichten im metallischen Mode oder um das Ablegen von wie im Intramode bzw. Übergangsmode zu elektrisch nicht leitenden Schichten reagierten Schichtmaterialien handelt. Durch Aufbringen einer Modulation M(ωs) gemäss den Fig. 7 bis 10 und wie in Fig. 12 dargestellt, kann der Verlauf (a) von Fig. 11 exakt kompensiert werden, es ergibt sich eine Schichtdickenverteilung an den Substraten, wie mit (b) in Fig. 11 dargestellt. Bei Überkompensation mit der eingesetzten Modulation, wie beispielsweise in Fig. 12 gestrichelt dargestellt, ergibt sich eine Schichtdik- kenverteilung, wie sie in Fig. 11 bei (c) wiedergegeben ist. An den Stellen P. , P2 ... von Fig. 12 durchläuft die modulierte
Behandlungsatmosphäre ein Intensitäts-Minimum, dort liegen die jeweiligen Substrate 1 zentriert der Sputterquelle gegenüber.
Es versteht sich von selber, dass bei Übergang von konvexer Bewegungsbahn auf konkave, bezüglich der Sputterquelle, die be- vorzugt eingesetzten Minimum/Maximum-Zuordnungen der Modulationen invertiert werden.
Demnach wurde erkannt, dass bei Anlagen der in den Fig. 1 bis 4 dargestellten Art auch bei Sputterbeschichten im Metallmode, d.h. ohne Reaktivgas, durch Minimalisierung der Sputterleistung dann, wenn die Substrate zentriert über der Sputterquelle liegen, der Sehneneffekt kompensiert werden kann.
Es ergibt sich dadurch eine optimale Gleichförmigkeit der Schichtdicke über der Substratbreite B, was z.B. bei Substratbreiten von mindestens 12 cm von wesentlicher Bedeutung ist . Die Anpassung der Modulationskurvenformen erlaubt dabei, gezielt erwünschte Behandlungs- , im bevorzugten Fall Beschich- tungsverteilungen, zu erzielen. Auch mechanische Ungenauigkei- ten der Anlagenkonfiguration, wie beispielsweise von Substratträgern, können durch entsprechend ausgelegte Modulationsformen kompensiert werden. Erwünschtenfalls ist es auch möglich, bei gleichzeitig auf der Trommel 3 vorgesehenen Werkstücken, die aber mit unterschiedlichen Schichtdicken-Verteilungen zu beschichten sind, dies durch Aufschalten jeweils unterschiedlicher Modulationskurvenformen zu realisieren, z.B. durch Zähler (nicht dargestellt) wird dann detektiert, welche der Substrate momentan in den Behandlungsbereich BB der Sputterquelle einfahren, und es wird die entsprechend zugehörige Modulationskurvenform mit der Selektionseinheit 42 aktiviert.
Die Möglichkeit, dass erfindungsgemäss die Schichtdickenverteilung an den vorbeibewegten Substraten gezielt eingestellt wird, ermöglicht es, die Präzisionsanforderungen an die Behandlungsanlage - insbesondere, was deren Werkstückträger und exakte Positionierung der Sputterquelle anbelangt - zu verringern. Da- durch primär entstehende, unerwünschte Schichtdickenverteilungen werden mit der erfindungsgemäss eingesetzten Modulation kompensiert .
Im weiteren können auch gezielt bestimmte erwünschte Schichtdicken-Verteilungen bzw. -Profile, z.B. für Gradientenfilter, realisiert werden. Ein wesentlicher Aspekt der vorliegenden Erfindung ist es auch, nichtebene Substrate, beispielsweise Linsenkörper, mit einer gleichförmigen Schichtdickenverteilung zu beschichten.

Claims

Patentansprüche :
1. Vakuumbehandlungsanlage mit einer Vakuumbehandlungskammer, mit Organen (22) zum Erstellen einer Behandlungsatmosphäre (U) in einem Behandlungsbereich (BB) , einer Sensoranordnung (24) zur Erfassung der im Behandlungsbereich momentan vorherrschenden Behandlungsatmosphäre (U) , wobei die Sensoranordnung IST- Wertaufnehmer, mindestens eines der Organe Stellglied eines Regelkreises für die Behandlungsatmosphäre im Behandlungsbereich ist, weiter mit einem in der Kammer durch den Behandlungsbe- reich bewegten Werkstückträger, dadurch gekennzeichnet, dass mindestens eines der Organe (22) in Funktion der Werkstückträgerposition (Xs) die Behandlungsatmosphäre (U) im Behandlungs- bereich (BB) nach einem gegebenen Profil (M) moduliert.
2. Behandlungsanlage nach Anspruch 1, dadurch gekennzeichnet, dass am Regelkreis eine einstellbare SOLL-Wertvorgabeeinheit
(28a) vorgesehen ist und die Modulation (M) über Modulation des SOLL-Wertes (W(M)) erfolgt.
3. Anlage nach Anspruch 1, dadurch gekennzeichnet, dass die Modulation (M) in einem Frequenzbereich erfolgt, welcher über der oberen Grenzfrequenz des geschlossenen Regelkreises der Regelung liegt.
4. Anlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in der Vakuumkammer mindestens eine Sputterquelle (5) mit elektrisch leitendem Target vorgesehen ist, weiter die Kammer an eine Reaktivgas-Tankanordnung mit einem Reaktivgas (GR) angeschlossen ist, welches mit dem durch die Sputterquelle freigesetzten Material zu einem elektrisch schlechter leitenden Material als Beschichtungs aterial reagiert und dass die Modulation an der elektrischen Quelle (7) für die Sputter- quelle (5) vorgenommen wird, dabei vorzugsweise an einem DC- Speisegenerator für die Sputterquelle und/oder an einer zwischen einem DC-Speisegenerator und der Sputterquelle geschalteten Choppereinheit .
5. Anlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der bewegte Werktstückträger durch eine in der Kammer getrieben rotierende Trägertrommel (3) oder ein Trägerkarussell gebildet ist mit daran verteilten Werkstückaufnahmen, und dass die Modulation mit der Trommel -/Karussel-Drehbewegung (ω) synchronisiert ist und mit einer Repetitionsfrequenz vorgenommen wird, die der Werkstückträger-Durchlauffrequenz an einem kammerfesten Ort im Bereich der Trommel bzw. des Karussells (3) entspricht.
6. Anlage nach einem der Ansprüche 1 bis 5, dadurch gekenn- zeichnet, dass eine Modulationsformen-Speichereinheit (38) vorgesehen ist mit mindestens einem, vorzugsweise mehr als einem vorab gespeicherten Modulationsverlauf und eine Selektionseinheit (42) vorgesehen ist zum selektiven Aufschalten des erwünschten Modulationsverlaufes auf das mindestens eine Organ.
7. Verfahren zur Herstellung von Werkstücken, bei dem die
Werkstücke einer Vakuumbehandlung zugeführt werden, worin sie durch eine durch eine Regelung geführte Behandlungsatmosphare (U) in einem Behandlungsbereich (BB) durchgebewegt werden, dadurch gekennzeichnet, dass die Behandlungsatmosphäre (U) im Be- handlungsbereich in Funktion der Werkstückposition (Xs) mit einem vorgegebenen Profil (M) moduliert wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Modulation durch Modulation des SOLL-Wertes (W(M)) an der Regelung vorgenommen wird.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Modulation mit einem Frequenzspektrum vorgenommen wird, welches über der oberen Grenzfrequenz der geschlossenen Regelung liegt.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Werkstücke in der Vakuumkammer an einer Sputterquelle (5) mit elektrisch leitendem Target vorbeibewegt werden, in die Kammer ein Reaktivgas (GR) eingelassen wird, womit das von der Sputterquelle (5) freigesetzte Material eine elektrisch schlechter leitende Verbindung als Beschichtungsma- terial für die Werkstücke eingeht, und dass die Modulation an der elektrischen Sputterquellenspeisung (7) vorgenommen wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Sputterquelle (5) von einem DC-Generator gespiesen wird und vorzugsweise zwischen Generator und Sputterquelle ein gesteuert hoch- und niederohmig geschalteter Strompfad die Sputterquel- len-Speisungsanschlüsse überbrückt .
12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass Werkstücke periodisch an einer Behandlungs- quelle (5) in der Kammer vorbeibewegt werden und die Modulation synchronisiert mit der periodischen Werkstück-Durchbewegung vorgenommen wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Werkstücke auf einer bezüglich der Behandlungsquelle konve- xen oder konkaven Kreisbahn (3) an der Quelle (5) vorbeibewegt werden .
14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass verschiedene Modulationskurven-Verläufe vor- abgespeichert werden und selektiv für die Modulation der Behandlungsatmosphäre aktiviert werden.
15. Verwendung der Anlage nach einem der Ansprüche 1 bis 6 bzw. des Verfahrens nach einem der Ansprüche 7 bis 14 für das Behandeln planer Substrate mit einer Ausdehnung grösser als diejenige der Sputterquelle, insbesondere zu deren Beschichtung, insbesondere zu deren reaktivem Sputterbeschichten.
16. Verwendung der Anlage nach einem der Ansprüche 1 bis 6 bzw. des Verfahrens nach einem der Ansprüche 7 bis 14 für das Ablegen von vorgegebenen Schichtdicken-Verteilungsprofilen an Substraten, insbesondere bei reaktiver Beschichtung.
17. Verfahren zur Herstellung von Werkstücken, bei dem die Werkstücke einer Vakuumbehandlung zugeführt werden, bei der sie an einer Sputterquelle (5) vorbeibewegt werden, auf einer be- züglich Sputterquelle konvexen oder konkaven Kreisbahn (3), dadurch gekennzeichnet, dass man die Sputterquellenleistung in Funktion der Substratposition so moduliert, dass bei zentrisch gegenüber der Sputterquelle (5) liegenden Werkstücken (1) die Sputterleistung bei konvexer Kreisbahn ein Minimum durchläuft, bei konkaver ein Maximum.
18. Verfahren zur Herstellung von Werkstücken, bei dem die Werkstücke einer reaktiven Vakuumbehandlung zugeführt werden und bei dem sie an einer Sputterquelle (5) vorbeigewegt werden, auf einer bezüglich Sputterquelle konvexen oder konkaven Kreis - bahn (3), dadurch gekennzeichnet, dass man den Reaktivgasfluss in Funktion der Substratposition moduliert, vorzugsweise so, dass bei zentrisch gegenüber der Sputterquelle liegendem Werkstück der Fluss des Reaktivgases bei konvexer Kreisbahn ein Maximum durchläuft, bei konkaver hingegen ein Minimum.
19. Verfahren zur Herstellung von Werkstücken, bei dem die Werkstücke einer Vakuumbehandlung zugeführt werden, bei der sie an einer Sputterquelle (5) vorbeibewegt werden, auf einer bezüglich Sputterquelle konvexen oder konkaven Kreisbahn (3), da- durch gekennzeichnet, dass man den Arbeitsgasfluss in Funktion der Substratposition moduliert, vorzugsweise, dass bei zentrisch gegenüber der Sputterquelle liegendem Werkstück der Fluss bei konvexer Bahn ein Minimum durchläuft, bei konkaver ein Maximum.
20. Verfahren zur Herstellung von Werkstücken nach mindestens zwei der Ansprüche 17 bis 19.
21. Verwendung der Anlage nach einem der Ansprüche 1 bis 6 bzw. des Verfahrens nach einem der Ansprüche 7 bis 14 bzw. nach mindestens einem der Ansprüche 17 bis 19 für die Beschichtung optischer Bauteile, vorzugsweise für deren reaktive Beschichtung.
PCT/CH2000/000286 1999-05-25 2000-05-22 Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken WO2000071774A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50009129T DE50009129D1 (de) 1999-05-25 2000-05-22 Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken
AT00929190T ATE286153T1 (de) 1999-05-25 2000-05-22 Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken
EP00929190A EP1198607B1 (de) 1999-05-25 2000-05-22 Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken
JP2000620147A JP5108177B2 (ja) 1999-05-25 2000-05-22 真空処理装置および工作物の製造方法
HK02106952.1A HK1047142B (zh) 1999-05-25 2002-09-24 真空處理設備和生產工件的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH96499 1999-05-25
CH964/99 1999-05-25

Publications (1)

Publication Number Publication Date
WO2000071774A1 true WO2000071774A1 (de) 2000-11-30

Family

ID=4199293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2000/000286 WO2000071774A1 (de) 1999-05-25 2000-05-22 Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken

Country Status (8)

Country Link
US (3) US6572738B1 (de)
EP (1) EP1198607B1 (de)
JP (1) JP5108177B2 (de)
KR (1) KR100700254B1 (de)
AT (1) ATE286153T1 (de)
DE (1) DE50009129D1 (de)
HK (1) HK1047142B (de)
WO (1) WO2000071774A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036616A1 (de) * 2002-10-15 2004-04-29 Unaxis Balzers Ag Verfahren zur herstellung magnetron-sputterbeschichteter substrate und anlage hierfür
US8430961B2 (en) 2007-09-07 2013-04-30 Applied Materials, Inc. Source gas flow path control in PECVD system to control a by-product film deposition on inside chamber

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572738B1 (en) * 1999-05-25 2003-06-03 Unaxis Balzers Aktiengesellschaft Vacuum treatment system and process for manufacturing workpieces
WO2004076705A2 (en) 2003-02-24 2004-09-10 University Of South Florida Reactive physical vapor deposition with sequential reactive gas injection
DE102004020466A1 (de) * 2004-04-26 2005-11-17 Applied Films Gmbh & Co. Kg Verfahren zum Beschichten von Substraten in Inline-Anlagen
US7104054B1 (en) 2005-04-05 2006-09-12 Cnh America Llc Hydraulic cylinder cushioning
DE102005015587B4 (de) * 2005-04-05 2009-12-24 Von Ardenne Anlagentechnik Gmbh Verfahren und Anordnung zur Stabilisierung eines Arbeitspunktes von reaktiven, plasmagestützten Vakuumbeschichtungsprozessen
US20080003377A1 (en) * 2006-06-30 2008-01-03 The Board Of Regents Of The Nevada System Of Higher Ed. On Behalf Of The Unlv Transparent vacuum system
BE1017852A3 (fr) * 2007-11-19 2009-09-01 Ind Plasma Services & Technologies Ipst Gmbh Procede et installation de galvanisation par evaporation plasma.
US20140102888A1 (en) * 2010-12-17 2014-04-17 Intevac, Inc. Method and apparatus to produce high density overcoats
US10014163B2 (en) 2011-06-07 2018-07-03 Vision Ease, Lp Application of coating materials
KR102292497B1 (ko) 2012-07-05 2021-08-20 인테벡, 인코포레이티드 투명한 기판들을 위한 고도로 투명한 수소화된 탄소 보호 코팅을 생산하는 방법
JP6707559B2 (ja) 2015-03-31 2020-06-10 ビューラー アルツェナウ ゲゼルシャフト ミット ベシュレンクテル ハフツングBuehler Alzenau GmbH 被覆された基板の製造方法
CN108368604A (zh) * 2015-12-24 2018-08-03 柯尼卡美能达株式会社 成膜装置以及成膜方法
DE202017100512U1 (de) 2017-01-31 2017-02-09 Optics Balzers Ag Optische Filter und/oder Spiegel
DE102017004828B4 (de) 2017-05-20 2019-03-14 Optics Balzers Ag Optischer Filter und Verfahren zur Herstellung eines optischen Filters
CN110819963B (zh) * 2019-12-16 2022-05-17 凯盛光伏材料有限公司 一种提高薄膜太阳能电池薄膜均匀性的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813251A (en) * 1956-06-11 1959-05-13 Standard Telephones Cables Ltd Improvements in or relating to vacuum deposition equipment
JPH03264667A (ja) * 1990-03-12 1991-11-25 Shin Meiwa Ind Co Ltd カルーセル型スパッタリング装置
US5225057A (en) * 1988-02-08 1993-07-06 Optical Coating Laboratory, Inc. Process for depositing optical films on both planar and non-planar substrates
JPH0641732A (ja) * 1992-07-23 1994-02-15 Mitsubishi Kasei Corp スパッタリング方法
US5423970A (en) * 1991-04-12 1995-06-13 Balzers Aktiengesellschaft Apparatus for reactive sputter coating at least one article
JPH1150239A (ja) * 1997-08-05 1999-02-23 Kobe Steel Ltd Pvd装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2821119C2 (de) * 1978-05-13 1983-08-25 Leybold-Heraeus GmbH, 5000 Köln Verfahren und Anordnung zur Regelung des Entladungsvorganges in einer Katodenzerstäubungsanlage
US4851095A (en) * 1988-02-08 1989-07-25 Optical Coating Laboratory, Inc. Magnetron sputtering apparatus and process
JP2673725B2 (ja) * 1989-01-30 1997-11-05 新明和工業株式会社 成膜装置
JPH0768614B2 (ja) * 1990-03-05 1995-07-26 宇部興産株式会社 カルーセル形スパツタリング装置およびそのスパツタリング方法
US5154810A (en) * 1991-01-29 1992-10-13 Optical Coating Laboratory, Inc. Thin film coating and method
JPH05255845A (ja) * 1992-03-09 1993-10-05 Shin Meiwa Ind Co Ltd スパッタリング装置
US5403475A (en) * 1993-01-22 1995-04-04 Allen; Judith L. Liquid decontamination method
US6572738B1 (en) * 1999-05-25 2003-06-03 Unaxis Balzers Aktiengesellschaft Vacuum treatment system and process for manufacturing workpieces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813251A (en) * 1956-06-11 1959-05-13 Standard Telephones Cables Ltd Improvements in or relating to vacuum deposition equipment
US5225057A (en) * 1988-02-08 1993-07-06 Optical Coating Laboratory, Inc. Process for depositing optical films on both planar and non-planar substrates
JPH03264667A (ja) * 1990-03-12 1991-11-25 Shin Meiwa Ind Co Ltd カルーセル型スパッタリング装置
US5423970A (en) * 1991-04-12 1995-06-13 Balzers Aktiengesellschaft Apparatus for reactive sputter coating at least one article
JPH0641732A (ja) * 1992-07-23 1994-02-15 Mitsubishi Kasei Corp スパッタリング方法
JPH1150239A (ja) * 1997-08-05 1999-02-23 Kobe Steel Ltd Pvd装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 071 (C - 0913) 21 February 1992 (1992-02-21) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 271 (C - 1203) 24 May 1994 (1994-05-24) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05 31 May 1999 (1999-05-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036616A1 (de) * 2002-10-15 2004-04-29 Unaxis Balzers Ag Verfahren zur herstellung magnetron-sputterbeschichteter substrate und anlage hierfür
US7381661B2 (en) 2002-10-15 2008-06-03 Oc Oerlikon Balzers Ag Method for the production of a substrate with a magnetron sputter coating and unit for the same
US8430961B2 (en) 2007-09-07 2013-04-30 Applied Materials, Inc. Source gas flow path control in PECVD system to control a by-product film deposition on inside chamber

Also Published As

Publication number Publication date
HK1047142B (zh) 2005-07-22
US6572738B1 (en) 2003-06-03
ATE286153T1 (de) 2005-01-15
KR100700254B1 (ko) 2007-03-26
HK1047142A1 (en) 2003-02-07
JP5108177B2 (ja) 2012-12-26
EP1198607A1 (de) 2002-04-24
US6783641B2 (en) 2004-08-31
JP2003500533A (ja) 2003-01-07
KR20020008409A (ko) 2002-01-30
DE50009129D1 (de) 2005-02-03
US7179352B2 (en) 2007-02-20
US20030141184A1 (en) 2003-07-31
EP1198607B1 (de) 2004-12-29
US20050023135A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
EP1198607B1 (de) Vakuumbehandlungsanlage und verfahren zur herstellung von werkstücken
EP0508359B1 (de) Verfahren und Anlage zur Beschichtung mindestens eines Gegenstandes
DE19506515C1 (de) Verfahren zur reaktiven Beschichtung
DE3815006A1 (de) Vorrichtung zum herstellen von beschichtungen mit abgestufter zusammensetzung
DE60104026T2 (de) Verfahren zum Aufbringen einer Beschichtung durch physikalische Dampfabscheidung
WO2011128226A1 (de) Vorrichtung und verfahren zum gleichzeitigen abscheiden mehrerer halbleiterschichten in mehreren prozesskammern
EP0888463B1 (de) Einrichtung zum vakuumbeschichten von schüttgut
DE19606463C2 (de) Mehrkammer-Kathodenzerstäubungsvorrichtung
DE102010030933A1 (de) Verfahren und Anordnung zur Gasführung an rotierenden Magnetrons in Vakuumbeschichtungsanlagen
EP1552544B1 (de) Verfahren zur Herstellung magnetron-sputterbeschichteter Substrate und Anlage hierfür
DE102009053756B4 (de) Verfahren zur Beschichtung eines Substrates in einer Vakuumkammer mit mindestens einem rotierenden Magnetron
EP1488023A1 (de) Verfahren zum beschichten eines substrates und vorrichtung zur durchf hrung des verfahrens
EP1565929A2 (de) Verfahren und anlage zur plasmabehandlung von oberflächen im vakuum
DE3426145A1 (de) Verfahren zur regelung der plasmaparameter in vakuumbeschichtungseinrichtungen mit bogenentladungen
DE10143145C1 (de) Verfahren und Einrichtung zur Herstellung von Schichtsystemen für optische Präzisionselemente
DE102005015587B4 (de) Verfahren und Anordnung zur Stabilisierung eines Arbeitspunktes von reaktiven, plasmagestützten Vakuumbeschichtungsprozessen
EP1462538B1 (de) Verfahren zum reaktiven Magnetron-sputtern
DE102006036403B4 (de) Verfahren zur Beschichtung eines Substrats mit einer definierten Schichtdickenverteilung
DE19715647A1 (de) Verfahren und Vorrichtung zur Regelung der reaktiven Schichtabscheidung auf Substraten mittels längserstreckten Magnetrons
EP1293586A2 (de) Einrichtung zum Beschichten von Substraten mit gekrümmter Oberfläche durch Pulsmagnetron-Zerstäuben
DE102009017888A1 (de) Verfahren und Vorrichtung zum Steuern einer Plasmadichteverteilung in einem Vakuumprozess
DE19830206A1 (de) Verfahren zur Beschichtung von Substraten mit Aluminiumoxid (Al¶2¶O¶3¶) und damit beschichtetes Werkstück
WO1997030468A1 (de) Verfahren zur steuerung der leistungsverteilung bei bipolaren niederdruck-glimmprozessen
EP1015654A1 (de) VERFAHREN ZUR BESCHICHTUNG VON SUBSTRATEN MIT ALUMINIUMOXID (Al 2?O 3?) UND DAMIT BESCHICHTETES WERKSTÜCK
DE102021106665A1 (de) Transportvorrichtung und Verfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200106679

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2000929190

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 620147

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017014921

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017014921

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000929190

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000929190

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017014921

Country of ref document: KR