WO2000078253A1 - Expandable fusion device and method - Google Patents

Expandable fusion device and method Download PDF

Info

Publication number
WO2000078253A1
WO2000078253A1 PCT/US2000/017114 US0017114W WO0078253A1 WO 2000078253 A1 WO2000078253 A1 WO 2000078253A1 US 0017114 W US0017114 W US 0017114W WO 0078253 A1 WO0078253 A1 WO 0078253A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal
external
base
aperture
walls
Prior art date
Application number
PCT/US2000/017114
Other languages
French (fr)
Inventor
Richard A. Erickson
Original Assignee
Sulzer Spine-Tech Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Spine-Tech Inc. filed Critical Sulzer Spine-Tech Inc.
Priority to AU57564/00A priority Critical patent/AU773345B2/en
Priority to EP00943028A priority patent/EP1189557B1/en
Priority to DE60030282T priority patent/DE60030282T2/en
Priority to JP2001504322A priority patent/JP2003502110A/en
Priority to KR1020017015939A priority patent/KR20020035005A/en
Publication of WO2000078253A1 publication Critical patent/WO2000078253A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/446Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or elliptical cross-section substantially parallel to the axis of the spine, e.g. cylinders or frustocones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/4465Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or kidney shaped cross-section substantially perpendicular to the axis of the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30154Convex polygonal shapes square
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • A61F2002/30266Three-dimensional shapes parallelepipedal wedge-shaped parallelepipeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/3037Translation along the common longitudinal axis, e.g. piston
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30331Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
    • A61F2002/30362Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
    • A61F2002/3037Translation along the common longitudinal axis, e.g. piston
    • A61F2002/30372Translation along the common longitudinal axis, e.g. piston with additional means for limiting said translation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/305Snap connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/3055Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30787Plurality of holes inclined obliquely with respect to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30789Plurality of holes perpendicular with respect to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0021Angular shapes square
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0082Three-dimensional shapes parallelepipedal

Definitions

  • the present invention pertains to devices and methods for facilitating bone fusion.
  • the devices and methods disclosed can be used for fusion of joints.
  • the invention is particularly advantageous for fusion of intervertebral joints.
  • Surgical techniques have been developed to remove the diseased disc material and fuse the joint between opposing vertebral bodies. Stabilization and/or arthrodesis of the intervertebral joint can reduce the pain associated with movement of an intervertebral joint having diseased disc material.
  • fusion techniques involve removal of the diseased disc and packing the void area with a suitable matrix for facilitating a bony union between the opposing vertebral bodies.
  • Surgical devices for facilitating interbody fusion have also been developed. These devices typically provide for maintaining appropriate intervertebral spacing and stabilization of the vertebrae during the fusion process. Examples of such devices are disclosed in, for example, U.S. Patent Nos. 5,458,638, 5,489,307, 5,055,104, 5,026,373, 5,015,247, 4,961,740, 4,743,256 and 4,501,269, the entire disclosures of which are incorporated herein by reference.
  • Present methods for implanting a fusion device often require that the vertebrae be distracted to restore a diseased disc space to its normal height prior to implanting a fusion device
  • the disc space is typically prepared for receiving an implant by drilling and tapping a bore of appropriate size for receiving the implant.
  • current methods used for inserting presently available fusion implants require several steps and specialized instrumentation to prepare the implant site.
  • the time required to perform the steps for preparing the implant site prolongs the duration of the surgical procedure and thus, increases the duration of time that the patient is under general anesthesia. Also, the instrumentation used may require making a substantial skin incision. Furthermore, the steps used to distract and prepare the implant site increase the chance for trauma to neural, vascular and other tissues in the vicinity of the implant site. Accordingly, there is a continuing need for improved intervertebral stabilizing devices and methods. The present invention is directed to addressing these needs.
  • the present invention is directed to an implant and methods for facilitating fusion of bone.
  • the invention can be advantageously used in the stabilization and fusion of a joint, particularly an intervertebral joint.
  • the invention helps to reduce the steps necessary for preparing the implant site and the time required for performing the overall implantation procedure.
  • the invention also reduces the chance of injury to tissues near the surgical site.
  • An intervertebral fusion device can have an expanded and a non-expanded configuration.
  • the fusion devices have an internal surface, an external surface, a leading end and a trailing end. A portion of the external surfaces include an engagement arrangement to reduce the likelihood of movement or expulsion of the fusion device once implanted within the intervertebral space.
  • the interior of the fusion devices can be packed with a bone support matrix to facilitate fusion between opposing bone surfaces.
  • the fusion devices each include an external member and an internal member.
  • a portion of both the external and internal members can have a U-shaped configuration.
  • the external member includes an external base and a first and second external side wall spaced apart by a width of the external base.
  • the internal member also includes an internal base and a first and second internal wall spaced at an appropriate distance to permit the first and second internal walls to fit within the first and second external walls.
  • the fusion devices also include a locking arrangement.
  • a locking arrangement includes a pair of pins which interdigitate with a pair of apertures.
  • a first pin can project from the first internal wall and a second pin can project from the second internal wall.
  • the first and second pins lock by interdigitating with a first and second aperture located on the first and second external walls respectively.
  • a first pin can project from the first external wall and the second pin can project from the second external wall.
  • the first pin when locked in the deployed position, the first pin interdigitates with a first aperture located on the first internal wall and the second pin interdigitates with a second aperture located on the second internal wall.
  • the invention describes various permutations of the relative positioning of the pins and the apertures to permit locking the fusion device in various expanded configurations.
  • the walls in which the apertures are located also include a groove to guide the pins into the aperture.
  • the invention also provides methods for implanting the fusion devices disclosed.
  • the leading end of the fusion device is inserted into the joint space and deployed into the expanded configuration.
  • the method disclosed can provide for reduced surgery time and reduced chance of trauma to tissues surrounding the joint space being fused.
  • FIG. 1 is a perspective view of a fusion device according to the invention in an expanded configuration
  • FIG. 2 is a transverse cross-section through line 2-2 of the fusion device of FIG. 1;
  • FIG. 3 is a perspective view of an alternative embodiment of a fusion device according to the invention in an expanded configuration
  • FIG. 4 is an end-on view of an alternative embodiment of a fusion device according to the invention
  • FIG. 5 is a lateral view of the fusion device of FIG. 1 positioned between adjacent vertebrae;
  • FIG. 6 is a perspective view of an alternative embodiment of a fusion device according to the invention.
  • FIG. 7 is a transverse section view through line 7-7 of the fusion device of FIG. 1 in a non-expanded configuration
  • FIG. 8 is a section view through line 7-7 of the fusion device of FIG. 1 in an expanded configuration
  • FIG. 9 is a section view through line 9-9 of the external member of
  • FIG. 6 is a diagrammatic representation of FIG. 6
  • FIG. 10 is a section view through line 10-10 of FIG. 9;
  • FIG. 11 is a section view taken from the same position as FIG. 10 in an alternative embodiment of a locking arrangement according to the invention
  • FIG. 12 is a side view of one embodiment of a lordotic fusion device according to the invention.
  • FIG. 13 is a side view of an alternative embodiment of a lordotic fusion device of the invention in a non-expanded configuration
  • FIG. 14 is a side view of the lordotic fusion device of FIG. 13 in an expanded configuration
  • FIG. 15 is an anterior view of adjacent vertebrae with two fusion devices according to the invention inserted therebetween; and FIG. 16 is an anterior view of adjacent vertebrae with a single fusion device according to the invention inserted therebetween.
  • the present invention is directed to an implant and methods for facilitating stabilization or fusion of bones.
  • the invention can be advantageously used in the stabilization and fusion of a joint, particularly an intervertebral joint.
  • the invention will be described with reference to stabilization and fusion of adjacent lumbar vertebrae.
  • the devices and methods disclosed are applicable for use with all types of joints (e.g., ankle, intervertebral, interdigital, etc.) and in all regions (e.g., arms, legs, spine, etc.) of a human or animal body.
  • the devices and methods disclosed can be used at all intervertebral joints, including those in the cervical, thoracic and lumbar region.
  • a fusion device of the invention can be inserted into a joint space in a close packed configuration and then deployed into an expanded configuration and locked in the expanded configuration to stabilize the joint space.
  • the devices can include openings for bone growth through the device to fuse the joint.
  • a fusion device (implant) includes a body having an exterior region and an interior region. Generally portions of the exterior region engage the bones adjacent the joint space to be fused. When inserted between the bones and deployed, the device stabilizes the joint by exerting an outward force against the bones which counters the contracting (inward) force of the soft tissue structures surrounding the joint.
  • the interior region of the fusion device defines an interior space or chamber which can be filled with a bone growth matrix to facilitate bone growth across the fusion site.
  • the body of a fusion device comprises, at least, a first and second member, one of which nests inside the other in a close packed configuration when the fusion device is in the non-deployed state.
  • a portion of each member includes a generally U-shaped configuration in cross-section, regardless if the member is open or closed (i.e., tubular). The U shape can be in the form of a rectangle, circular, oval, etc.
  • Each member includes opposing side walls spaced apart by a base. The width of the bases of each member determines the overall width of the device. The height of the walls and position of the locking arrangement determines the overall height and angulation of the device when in the deployed configuration. Once inserted into a joint space, the implant can be deployed and the members locked into an expanded configuration.
  • a locking arrangement for locking the device preferably includes a locking pin and locking pin hole for receiving the locking pin.
  • the transverse cross sectional configuration of the locking pin can be any shape, including, circular, square, rectangular, polygonal, etc.
  • the longitudinal cross-sectional configuration of the pin can be parallel, conical, etc.
  • the cross sectional configuration of the locking pin hole is selected to cooperatively receive the locking pin.
  • the implants are typically inserted into a disc space in a compact (non-expanded) configuration between adjacent vertebrae.
  • the implant can be deployed and locked into an expanded configuration to form a desired disc space height between the vertebrae.
  • a "desired" disc space height refers to the distance between the vertebrae which is determined to be appropriate for the particular condition of the patient.
  • the desired height may be that of the normal disc space when in a non-diseased condition or the disc space may be greater than the normal disc space height or less than normal.
  • An example of the range of the overall height dimension of an implant of the invention for intervertebral use when in the contracted configuration can be about 2 to 10 mm.
  • An example of the range of the overall height dimension of the same implant when in the expanded configuration is about 4 to 20 mm.
  • the overall height of the fusion devices can be varied by varying the height of each member of the body.
  • a device of the invention can include a taper to provide a desired degree of angulation between the adjacent bones. In the case of an intervertebral joint, the angle provided can be about 0° to 25°.
  • One or more fusion devices can be implanted in a single joint space.
  • the number of devices and the length and width dimensions of the devices can preferably be selected such that the device or devices fit and operate within the margins of the adjacent vertebral bodies. Examples of ranges of lengths and widths of devices of the invention are about 20 to 50 mm long and 5 to 50 mm wide.
  • the fusion devices have a "leading end” and a “trailing end.”
  • the terms “leading end” and “trailing end” are relative terms indicating that in typical use, the leading end of the implant is inserted into the joint space followed by the trailing end.
  • the device can also be referred to in terms of a “distal end” and a “proximal end” based on the orientation of the implant relative to the surgeon.
  • the fusion devices can be inserted into an intervertebral disc space through most known approaches including, anterior, posterior, lateral, etc.
  • a portion of the exterior region of each of the members can include a biological surface or a biocompatible material having surfaces which coaptate with the surfaces of bone or bone end plates surrounding the joint space.
  • Suitable coaptating surfaces are typically contoured and include, for example, a porous bone ingrowth surface, spikes, knurls, ridges, threads, or other similar arrangement to facilitate stabilization of the implant in the joint space.
  • helical threads can be provided for inserting the implant into a tapped or non-tapped disc space.
  • Suitable materials for manufacturing a fusion device of the invention include metals such as titanium, stainless steel, cobalt-chromium, etc.; alloys including titanium alloys and non-titanium alloys; superelastic materials such as nitinol; plastics and plastic composites; carbon graphite; ceramic; etc.
  • the first and/or second member may be deflected when in the close packed position or the member may be deflected when being deployed into the expanded configuration.
  • the member deflected preferably has elastic properties permitting deflection of the member within its material limits without significantly affecting the structural integrity of the member.
  • a discectomy prior to insertion, can be performed, and, preferably, the annular ligament preserved.
  • the endplates of the bone can be scraped, curretted or similar procedure performed to create an exposed end surface for facilitating bone growth across the fusion site.
  • the leading end can be inserted into the disc space followed by the trailing end.
  • each implant can be positioned within the joint space prior to deployment.
  • individual implants can be inserted and deployed prior to insertion of a subsequent implant at the same joint space.
  • a cylindrical fusion device it may be advantageous to first drill a bore into the disc space of a size sufficient for receiving the device prior to insertion.
  • the bore may also be tapped for guiding threads which may be present on the surface of the device.
  • the fusion devices can be deployed into the expanded configuration and locked in this configuration using, for example, a reverse plier, spreader, retractor, etc.
  • a "bone support matrix” is a material that facilitates new bone growth between the opposing vertebral bodies.
  • Suitable bone support matrices can be resorbable or nonresorbable and osteoconductive or osteoinductive.
  • suitable matrices according to the invention include synthetic materials, such as HealousTM, available from Orquest, Mountain View, California; NeOsteoTM, available from Sulzer Orthopedic Biologies, Denver, Colorado; or any of a variety of bone morphogenic proteins (BMPs).
  • Suitable bone support matrices also include heterologous (xenograft), homologous (allograft), or autologous (autograft) bone and derivatives thereof.
  • the bone support matrix is radiolucent on x-rays.
  • kits can include instrumentation for performing an implant procedure with or without a plurality of incrementally sized implants.
  • FIG. 1 is a perspective view of one embodiment of a fusion device 10 according to the invention in an expanded configuration.
  • Fusion device 10 includes a first member 1 and a second member 2.
  • first member 1 includes a first side wall 3 and a second side wall 4 spaced apart by a base 5.
  • Second member 2 also includes a first side wall 6 and a second side wall 7 spaced apart by base 8.
  • the exterior surface 9a of first side wall 3 and the exterior surface 9b of second side wall 4 of first member 1 fit within the interior surfaces 11a and 1 lb of first side wall 6 and second side wall 7, respectively, of second member 2.
  • first side wall 6 and second side wall 7 of second member 2 are "external" to first side wall 3 and second side wall 4 of first member 1
  • second member 2 can also be referred to as external member 14 and first member 1 can be referred to as internal member 13 of fusion device 10.
  • the leading end 30 of fusion device 10 is identical to trailing end 31.
  • FIG 2 is a transverse cross-section view through line 2-2 of FIG. 1.
  • the cross-section of internal member 13 and external member 14 have a "U"-shaped appearance.
  • the U-shape of fusion device 10 in FIG. 1 is substantially rectangular. That is, for example, side walls 3 and 4 each form a right angle with base 5.
  • the shape of a fusion device 10 is not limited to a rectangular cross section, other shape fusion devices are included within the scope of the invention.
  • fusion device 100 illustrated in FIG. 3, has a substantially circular transverse cross section appearance.
  • first member 101 includes side walls 103 and 104 which meet at apex 105.
  • Second member 102 includes side walls 106 and 107 which meet at apex 108.
  • Fusion device 100 can be implanted within a cylindrical bore prepared between adjacent vertebrae as will be described below. When implanted, fusion device 100 will contact the end plates of opposing vertebrae at the apexes (105, 108) and along a portion of each of the side walls (103, 104, 106 and 107).
  • FIG. 4 is an end-on view of another embodiment of a fusion device 150 which comprises an internal member 151 and an external member 152.
  • internal member 151 is closed, or has a tubular configuration 153.
  • FIG. 5 is a lateral view of a fusion device 10 inserted between opposing vertebrae.
  • fusion device 10 is inserted in the disc space 20 between the end plates 21 and 22 of opposing vertebrae 23 and 24.
  • fusion device 10 is inserted into disc space 20 in the orientation illustrated in FIG. 1.
  • base 5 of internal member 13 is positioned to contact end plate 21 and base 8 of external member 14 is positioned to contact end plate 22.
  • fusion device 10 could also be inserted into a disc space 20 rotated 180° around long axis A L , regardless of the approach used for insertion.
  • the bases 5 and 8 which contact the end plates of the adjacent vertebrae can include openings 15 as illustrated for base 5 or no openings as illustrated for base 8. Providing openings 15 in base 5 and 8 advantageously promotes greater continuity of new bone growth within fusion device 10.
  • the leading end 30 and trailing end 31 of fusion device 10 are identical.
  • the height (H of side walls 6 and 7 of external member 14 measured from the exterior base 32 of base 8 to either of external edges 33a or 33b is identical at the leading end and trailing end 31 of the device.
  • the height (H 2 ) of the side walls of internal member 13, measured from the exterior base 35 of base 5 to either internal edge 36a or 36b, is the same at the leading and trailing end.
  • the overall height (H 0 ) measured from the exterior 35 of base 5 to the exterior 32 of base 8, can be different due to: a difference in the height (H,) of internal side wall (3, 4) at the leading end and trailing end, a difference in the height (H 2 ) of external side wall (6, 7) at the leading and trailing end; or a difference in the position of the components of the locking arrangement (discussed below).
  • FIG. 6 illustrates an alternative embodiment of a fusion device 200 including internal member 201 and external member 202.
  • base 203 of internal member 201 includes a plurality of openings 204.
  • base 205 of external member 202 also includes openings 206.
  • the bases can include none, one, two, three or more openings.
  • the exterior surfaces 210 and 211 of bases 203 and 205 respectively, include an engagement arrangement 212 to facilitate engagement of fusion device 200 with the end plates of the vertebrae. Use of an engagement arrangement 212 reduces the likelihood of migration or expulsion of the device after implantation.
  • engagement arrangement 212 includes a plurality of spikes 215 along the exterior base surfaces 210 and 211.
  • Alternative engagement arrangements 212 can also be used including, for example, porous coated exterior ingrowth surfaces, knurls, ridges, threads, etc.
  • FIG. 7 is a transverse cross-section view through fusion device 10 at line 7-7 of FIG. 1 in a non-expanded configuration.
  • apertures 50a and 50b extend through side walls 6 and 7, near the external edges 33a and 33b of external member 14.
  • Apertures 50a and 50b are sized for receiving pins 51a and 51b positioned near the internal ends 36a and 36b, respectively, of side walls 3 and 4 of internal member 13.
  • pins 51a and 51b positioned near the internal ends 36a and 36b, respectively, of side walls 3 and 4 of internal member 13.
  • fusion device 10 can be deployed into the expanded position using a reverse plier (e.g., Inge Retractor, KMedic), spreader or retractor to force bases 5 and 8 away from one another into the deployed configuration in FIG. 8.
  • a reverse plier e.g., Inge Retractor, KMedic
  • spreader or retractor to force bases 5 and 8 away from one another into the deployed configuration in FIG. 8.
  • pins 51a and 51b interdigitate with apertures 50a and 50b, respectively, to lock fusion device 10 in the expanded position.
  • fusion device 200 includes an alternative embodiment of a locking arrangement 220 for locking fusion device 200 in the deployed configuration.
  • external member 202 includes grooves 221a (not visible) and 221b along the interior surface of side walls
  • FIG. 9 is a longitudinal section view through line 9-9 of external member 202.
  • a locking arrangement 220 is present at the leading end 230 and trailing end 231 of fusion device 200. Focusing on the leading end 230, aperture 223b is positioned near the external edge 232b of external member 202. Groove 221b extends from near base 205 to aperture 223b.
  • FIG. 10 is a section view through line 10-10 of FIG. 9 showing that groove 221b extends from near base 205 to aperture 223b.
  • side walls 233 and 234 of internal member 201 are deflected towards the longitudinal axis A L of fusion device 200.
  • the depth of apertures such as 223b need not traverse the entire wall thickness, but need only be sufficiently deep to provide the locking function of the locking arrangement.
  • FIG. 11 is a view from the same location of a fusion device as that of FIG. 10.
  • side wall 301 of internal member 302 of fusion device 300 includes a pin 304 near the internal edge 305 of side wall 301.
  • Side wall 310 of external member 311 includes a groove 312 leading to aperture 313 near the external edge 314.
  • groove 312 is ramped 315. That is, groove 312 extends deeper into the thickness of wall 310 (from the interior surface 310a to the exterior surface 310b) near base 314 than it does near aperture 313.
  • side wall 301 is only deflected inwardly towards the opposing internal wall during deployment as external member 311 and internal member 302 are being separated and pin 304 is moving from a position near base 311 to aperture 313.
  • fusion devices having pins projecting from the internal wall and apertures (and grooves) in the external wall
  • the pins could also project inwardly from the external walls to interdigitate with apertures in the internal walls.
  • fusion devices describes deflection of internal walls, depending on the material of the device, some elastic deflection of the walls of both the internal and external members can occur without substantially affecting the function of the devices of the invention.
  • a fusion device can be configured for creating and maintaining a desired degree of lordosis between the adjacent vertebrae.
  • FIG. 12 is a side view of one embodiment of such a lordotic fusion device.
  • device 400 includes a divergent angle ⁇ tapering from leading end 401 to trailing end 402.
  • external member 403 is positioned above internal member 404.
  • Side wall 405 of external member 403 includes parallel surfaces along external edge 406 and base 407.
  • base 408 of internal member 404 is not parallel with internal edge 409.
  • Locking arrangements 410 can be in the form of any of the embodiments described above.
  • FIG. 13 illustrates a side view of an alternative embodiment of a lordotic fusion device 500.
  • apertures 503 and 504 of external member 505 are not positioned an equal distance from base 506. Rather, aperture 503 is positioned closer to base 506 than is aperture 504. Pins 507 and 508 (hatches) of internal member 510 are located the same distance from base 511.
  • fusion device 500 can be locked into position to a configuration providing a lordotic taper of angle ⁇ .
  • Various relative positions of apertures 503 and 504 can be used to create different devices having different degrees of angulation.
  • the aperture positions can remain fixed and the position of pins 507 and 508 can be varied to provide a lordotic fusion device similar to that described for fusion device 500.
  • a single fusion device may be inserted into the disc space between opposing vertebrae.
  • two fusion devices may be implanted parallel to one another as described for non-expandable fusion devices as disclosed in, for example, U.S. Patent No. 5,489,307, the entire disclosure of which is incorporated herein by reference.
  • the disc space to be fused can be identified, and a surgical approach to the disc made, using methods known in the art. Once the disc space is exposed, a discectomy can be performed.
  • a portion of the end plates can be removed to create bleeding edges to facilitate fusion.
  • a first fusion device is inserted between the adjacent vertebrae on a first side of the mid-line of the disc space.
  • the first fusion device can be deployed once in position.
  • the second fusion device can then be placed on the second side of the midline and subsequently deployed.
  • the first and second fusion devices may first be placed into the intervertebral disc space and subsequently deployed. If the tissues surrounding the joint prevent full deployment of a selected fusion device for the locking arrangement to lock, an alternative fusion device having a shorter overall height H 0 may need to be used. Alternatively, a greater depth of the bone ends may be removed to accommodate the overall height (H 0 ) of the originally selected fusion device.
  • FIG. 15 is a diagrammatic illustration of an anterior view two fusion devices 10 according to the invention in an expanded configuration between adjacent vertebrae 23 and 24.
  • the width (W) of each fusion device 10 is selected such that when in the disc space, the fusion devices are completely within the margins of vertebrae 23 and 24.
  • FIG. 16 is a diagrammatic illustration of an anterior view of a single fusion device 10 in the disc space between adjacent vertebrae 23 and 24.
  • the width (W) of fusion device 10 is of sufficient size to provide stability across a major portion of the articular surfaces of vertebrae 23 and 24, preferably without extending beyond the margins of the vertebrae.
  • the fusion devices disclosed herein can be implanted through approaches known in the art, including, anterior, posterior, lateral, etc.
  • Various size implants will be available ranging in size from 5 to 50 mm in width.
  • the devices of the invention require a smaller skin incision and reduce the likelihood of trauma to neural and/or vascular structures during surgical implantation.
  • the time required for performing an implant procedure can be reduced because distraction procedures prior to implementation are optional.
  • a cylindrical bore will likely need to be created between adjacent vertebrae at the affected disc space.
  • Methods for creating cylindrical bores are known. However, in contrast to some methods for creating a cylindrical bore between opposing vertebrae such as disclosed in U.S. Patent No. 5,489,307, no distraction is required prior to preparing the bore according to the methods of the present invention.
  • the intervertebral space not occupied by the fusion devices and the interior of the body of the fusion devices may be filled with a bone support matrix as described above.

Abstract

The present invention is directed to expandable bone fusion devices and methods of use. In general, a fusion device according to the invention includes a first member and a second member which can be deployed and locked into an expanded configuration to stabilize the adjacent bone during fusion of the bone.

Description

EXPANDABLE FUSION DEVICE AND METHOD
Field of the Invention
The present invention pertains to devices and methods for facilitating bone fusion. The devices and methods disclosed can be used for fusion of joints. The invention is particularly advantageous for fusion of intervertebral joints.
Background of the Invention
Chronic back problems cause pain and disability for a large segment of the population. Frequently, the cause of back pain is traceable to diseased disc material between opposing vertebrae. When the disc material is diseased, the opposing vertebrae may be inadequately supported, resulting in persistent pain.
Surgical techniques have been developed to remove the diseased disc material and fuse the joint between opposing vertebral bodies. Stabilization and/or arthrodesis of the intervertebral joint can reduce the pain associated with movement of an intervertebral joint having diseased disc material. Generally, fusion techniques involve removal of the diseased disc and packing the void area with a suitable matrix for facilitating a bony union between the opposing vertebral bodies.
Surgical devices for facilitating interbody fusion have also been developed. These devices typically provide for maintaining appropriate intervertebral spacing and stabilization of the vertebrae during the fusion process. Examples of such devices are disclosed in, for example, U.S. Patent Nos. 5,458,638, 5,489,307, 5,055,104, 5,026,373, 5,015,247, 4,961,740, 4,743,256 and 4,501,269, the entire disclosures of which are incorporated herein by reference. Present methods for implanting a fusion device often require that the vertebrae be distracted to restore a diseased disc space to its normal height prior to implanting a fusion device In addition, the disc space is typically prepared for receiving an implant by drilling and tapping a bore of appropriate size for receiving the implant. Hence, current methods used for inserting presently available fusion implants require several steps and specialized instrumentation to prepare the implant site.
The time required to perform the steps for preparing the implant site prolongs the duration of the surgical procedure and thus, increases the duration of time that the patient is under general anesthesia. Also, the instrumentation used may require making a substantial skin incision. Furthermore, the steps used to distract and prepare the implant site increase the chance for trauma to neural, vascular and other tissues in the vicinity of the implant site. Accordingly, there is a continuing need for improved intervertebral stabilizing devices and methods. The present invention is directed to addressing these needs.
Summary of the Invention
The present invention is directed to an implant and methods for facilitating fusion of bone. The invention can be advantageously used in the stabilization and fusion of a joint, particularly an intervertebral joint. The invention helps to reduce the steps necessary for preparing the implant site and the time required for performing the overall implantation procedure. The invention also reduces the chance of injury to tissues near the surgical site.
It will be appreciated that throughout the specification, guidance may be provided through lists of examples. In each instance, the recited list serves only as a representative group. It is not meant, however, that the lists are exclusive. An intervertebral fusion device according to the invention can have an expanded and a non-expanded configuration. The fusion devices have an internal surface, an external surface, a leading end and a trailing end. A portion of the external surfaces include an engagement arrangement to reduce the likelihood of movement or expulsion of the fusion device once implanted within the intervertebral space. The interior of the fusion devices can be packed with a bone support matrix to facilitate fusion between opposing bone surfaces.
The fusion devices each include an external member and an internal member. A portion of both the external and internal members can have a U-shaped configuration. The external member includes an external base and a first and second external side wall spaced apart by a width of the external base. The internal member also includes an internal base and a first and second internal wall spaced at an appropriate distance to permit the first and second internal walls to fit within the first and second external walls.
The fusion devices also include a locking arrangement. In general, a locking arrangement includes a pair of pins which interdigitate with a pair of apertures. In one embodiment, a first pin can project from the first internal wall and a second pin can project from the second internal wall. The first and second pins lock by interdigitating with a first and second aperture located on the first and second external walls respectively. In an alternative embodiment, a first pin can project from the first external wall and the second pin can project from the second external wall. According to this embodiment, when locked in the deployed position, the first pin interdigitates with a first aperture located on the first internal wall and the second pin interdigitates with a second aperture located on the second internal wall. The invention describes various permutations of the relative positioning of the pins and the apertures to permit locking the fusion device in various expanded configurations. In some embodiments, the walls in which the apertures are located also include a groove to guide the pins into the aperture.
The invention also provides methods for implanting the fusion devices disclosed. In general, after preparation of the joint space, the leading end of the fusion device is inserted into the joint space and deployed into the expanded configuration. In addition to other advantages, the method disclosed can provide for reduced surgery time and reduced chance of trauma to tissues surrounding the joint space being fused.
Brief Description of the Drawings
FIG. 1 is a perspective view of a fusion device according to the invention in an expanded configuration;
FIG. 2 is a transverse cross-section through line 2-2 of the fusion device of FIG. 1;
FIG. 3 is a perspective view of an alternative embodiment of a fusion device according to the invention in an expanded configuration; FIG. 4 is an end-on view of an alternative embodiment of a fusion device according to the invention;
FIG. 5 is a lateral view of the fusion device of FIG. 1 positioned between adjacent vertebrae;
FIG. 6 is a perspective view of an alternative embodiment of a fusion device according to the invention;
FIG. 7 is a transverse section view through line 7-7 of the fusion device of FIG. 1 in a non-expanded configuration;
FIG. 8 is a section view through line 7-7 of the fusion device of FIG. 1 in an expanded configuration; FIG. 9 is a section view through line 9-9 of the external member of
FIG. 6;
FIG. 10 is a section view through line 10-10 of FIG. 9;
FIG. 11 is a section view taken from the same position as FIG. 10 in an alternative embodiment of a locking arrangement according to the invention; FIG. 12 is a side view of one embodiment of a lordotic fusion device according to the invention;
FIG. 13 is a side view of an alternative embodiment of a lordotic fusion device of the invention in a non-expanded configuration; FIG. 14 is a side view of the lordotic fusion device of FIG. 13 in an expanded configuration;
FIG. 15 is an anterior view of adjacent vertebrae with two fusion devices according to the invention inserted therebetween; and FIG. 16 is an anterior view of adjacent vertebrae with a single fusion device according to the invention inserted therebetween.
Detailed Description of the Invention
The present invention is directed to an implant and methods for facilitating stabilization or fusion of bones. The invention can be advantageously used in the stabilization and fusion of a joint, particularly an intervertebral joint. Thus, the invention will be described with reference to stabilization and fusion of adjacent lumbar vertebrae. It will be appreciated, however, that the devices and methods disclosed are applicable for use with all types of joints (e.g., ankle, intervertebral, interdigital, etc.) and in all regions (e.g., arms, legs, spine, etc.) of a human or animal body. In the spinal column, the devices and methods disclosed can be used at all intervertebral joints, including those in the cervical, thoracic and lumbar region.
In use, a fusion device of the invention can be inserted into a joint space in a close packed configuration and then deployed into an expanded configuration and locked in the expanded configuration to stabilize the joint space. In preferred embodiments, the devices can include openings for bone growth through the device to fuse the joint.
According to the invention a fusion device (implant) includes a body having an exterior region and an interior region. Generally portions of the exterior region engage the bones adjacent the joint space to be fused. When inserted between the bones and deployed, the device stabilizes the joint by exerting an outward force against the bones which counters the contracting (inward) force of the soft tissue structures surrounding the joint. The interior region of the fusion device defines an interior space or chamber which can be filled with a bone growth matrix to facilitate bone growth across the fusion site.
The body of a fusion device comprises, at least, a first and second member, one of which nests inside the other in a close packed configuration when the fusion device is in the non-deployed state. A portion of each member includes a generally U-shaped configuration in cross-section, regardless if the member is open or closed (i.e., tubular). The U shape can be in the form of a rectangle, circular, oval, etc. Each member includes opposing side walls spaced apart by a base. The width of the bases of each member determines the overall width of the device. The height of the walls and position of the locking arrangement determines the overall height and angulation of the device when in the deployed configuration. Once inserted into a joint space, the implant can be deployed and the members locked into an expanded configuration. A locking arrangement for locking the device preferably includes a locking pin and locking pin hole for receiving the locking pin. The transverse cross sectional configuration of the locking pin can be any shape, including, circular, square, rectangular, polygonal, etc. The longitudinal cross-sectional configuration of the pin can be parallel, conical, etc. The cross sectional configuration of the locking pin hole is selected to cooperatively receive the locking pin.
In use, the implants are typically inserted into a disc space in a compact (non-expanded) configuration between adjacent vertebrae. Once inserted into the joint space the implant can be deployed and locked into an expanded configuration to form a desired disc space height between the vertebrae. As used herein, a "desired" disc space height refers to the distance between the vertebrae which is determined to be appropriate for the particular condition of the patient. Thus, depending on the condition, the desired height may be that of the normal disc space when in a non-diseased condition or the disc space may be greater than the normal disc space height or less than normal. An example of the range of the overall height dimension of an implant of the invention for intervertebral use when in the contracted configuration can be about 2 to 10 mm. An example of the range of the overall height dimension of the same implant when in the expanded configuration is about 4 to 20 mm.
In general, the overall height of the fusion devices can be varied by varying the height of each member of the body. In addition, in some embodiments, a device of the invention can include a taper to provide a desired degree of angulation between the adjacent bones. In the case of an intervertebral joint, the angle provided can be about 0° to 25°.
One or more fusion devices can be implanted in a single joint space. In the case of an intervertebral joint, the number of devices and the length and width dimensions of the devices can preferably be selected such that the device or devices fit and operate within the margins of the adjacent vertebral bodies. Examples of ranges of lengths and widths of devices of the invention are about 20 to 50 mm long and 5 to 50 mm wide.
The fusion devices have a "leading end" and a "trailing end." The terms "leading end" and "trailing end" are relative terms indicating that in typical use, the leading end of the implant is inserted into the joint space followed by the trailing end. The device can also be referred to in terms of a "distal end" and a "proximal end" based on the orientation of the implant relative to the surgeon. The fusion devices can be inserted into an intervertebral disc space through most known approaches including, anterior, posterior, lateral, etc.
A portion of the exterior region of each of the members can include a biological surface or a biocompatible material having surfaces which coaptate with the surfaces of bone or bone end plates surrounding the joint space. Suitable coaptating surfaces are typically contoured and include, for example, a porous bone ingrowth surface, spikes, knurls, ridges, threads, or other similar arrangement to facilitate stabilization of the implant in the joint space. In the case of a device having a circular cross section, helical threads can be provided for inserting the implant into a tapped or non-tapped disc space.
Suitable materials for manufacturing a fusion device of the invention include metals such as titanium, stainless steel, cobalt-chromium, etc.; alloys including titanium alloys and non-titanium alloys; superelastic materials such as nitinol; plastics and plastic composites; carbon graphite; ceramic; etc. In some embodiments, the first and/or second member may be deflected when in the close packed position or the member may be deflected when being deployed into the expanded configuration. In these embodiments, the member deflected preferably has elastic properties permitting deflection of the member within its material limits without significantly affecting the structural integrity of the member.
According to the method of the invention, in one embodiment, prior to insertion, a discectomy can be performed, and, preferably, the annular ligament preserved. The endplates of the bone can be scraped, curretted or similar procedure performed to create an exposed end surface for facilitating bone growth across the fusion site. Then, with the device in the close packed configuration, the leading end can be inserted into the disc space followed by the trailing end. In some circumstances, it may be advantageous to distract the adjacent vertebrae prior to insertion of a fusion device. Such distraction can provide for easier removal of disc material and/or greater exposure to facilitate preparation of the end plates. Distraction can also provide greater accuracy in determining the appropriate size fusion device to implanted.
Once inserted at the appropriate location the device can be deployed. If more than one implant is used at a particular joint space, each implant can be positioned within the joint space prior to deployment. Alternatively, individual implants can be inserted and deployed prior to insertion of a subsequent implant at the same joint space. When a cylindrical fusion device is used, it may be advantageous to first drill a bore into the disc space of a size sufficient for receiving the device prior to insertion. In some embodiments, the bore may also be tapped for guiding threads which may be present on the surface of the device. The fusion devices can be deployed into the expanded configuration and locked in this configuration using, for example, a reverse plier, spreader, retractor, etc. Once deployed, the interior chamber of the fusion device and/or void areas surrounding the device(s) can be packed with a bone support matrix to facilitate bone growth into the joint space. As used herein, a "bone support matrix" is a material that facilitates new bone growth between the opposing vertebral bodies. Suitable bone support matrices can be resorbable or nonresorbable and osteoconductive or osteoinductive. Examples of suitable matrices according to the invention include synthetic materials, such as Healous™, available from Orquest, Mountain View, California; NeOsteo™, available from Sulzer Orthopedic Biologies, Denver, Colorado; or any of a variety of bone morphogenic proteins (BMPs).
Suitable bone support matrices also include heterologous (xenograft), homologous (allograft), or autologous (autograft) bone and derivatives thereof. Preferably, the bone support matrix is radiolucent on x-rays.
The fusion devices of the invention can be included in a kit comprising a plurality of incrementally sized implants which can be selected by the clinician based on the size needed for a particular patient. In other embodiments kits can include instrumentation for performing an implant procedure with or without a plurality of incrementally sized implants.
The fusion devices of the invention will now be further described by reference to the following illustrated embodiments. The illustrated embodiments are not intended to limit the scope of the invention, but rather, are provided to facilitate understanding of the devices and methods within the principles of the invention.
Detailed Description of the Illustrated Embodiments With reference to the several drawing figures, a description of embodiments of an expandable fusion device according to the present invention will now be provided. The following discussion describes a fusion device of the invention with reference to implanting the device between adjacent lumbar vertebrae. However, this description is for explanatory purposes only. As stated above, the devices disclosed herein can be used at other joints or other spinal locations to facilitate bone fusion.
FIG. 1 is a perspective view of one embodiment of a fusion device 10 according to the invention in an expanded configuration. Fusion device 10 includes a first member 1 and a second member 2. As illustrated, first member 1 includes a first side wall 3 and a second side wall 4 spaced apart by a base 5. Second member 2 also includes a first side wall 6 and a second side wall 7 spaced apart by base 8. In the illustrated embodiment, the exterior surface 9a of first side wall 3 and the exterior surface 9b of second side wall 4 of first member 1 fit within the interior surfaces 11a and 1 lb of first side wall 6 and second side wall 7, respectively, of second member 2. Thus, because first side wall 6 and second side wall 7 of second member 2 are "external" to first side wall 3 and second side wall 4 of first member 1, second member 2 can also be referred to as external member 14 and first member 1 can be referred to as internal member 13 of fusion device 10. In this embodiment, the leading end 30 of fusion device 10 is identical to trailing end 31.
FIG 2 is a transverse cross-section view through line 2-2 of FIG. 1. As illustrated, the cross-section of internal member 13 and external member 14 have a "U"-shaped appearance. The U-shape of fusion device 10 in FIG. 1 is substantially rectangular. That is, for example, side walls 3 and 4 each form a right angle with base 5. However, the shape of a fusion device 10 is not limited to a rectangular cross section, other shape fusion devices are included within the scope of the invention. For example, fusion device 100, illustrated in FIG. 3, has a substantially circular transverse cross section appearance. According to the embodiment of FIG. 3, first member 101 includes side walls 103 and 104 which meet at apex 105. Second member 102 includes side walls 106 and 107 which meet at apex 108. Fusion device 100 can be implanted within a cylindrical bore prepared between adjacent vertebrae as will be described below. When implanted, fusion device 100 will contact the end plates of opposing vertebrae at the apexes (105, 108) and along a portion of each of the side walls (103, 104, 106 and 107).
FIG. 4 is an end-on view of another embodiment of a fusion device 150 which comprises an internal member 151 and an external member 152. In this embodiment, internal member 151 is closed, or has a tubular configuration 153. FIG. 5 is a lateral view of a fusion device 10 inserted between opposing vertebrae. In use, fusion device 10 is inserted in the disc space 20 between the end plates 21 and 22 of opposing vertebrae 23 and 24. In FIG. 5, fusion device 10 is inserted into disc space 20 in the orientation illustrated in FIG. 1. Thus, base 5 of internal member 13 is positioned to contact end plate 21 and base 8 of external member 14 is positioned to contact end plate 22. However, it will be appreciated that fusion device 10 could also be inserted into a disc space 20 rotated 180° around long axis AL, regardless of the approach used for insertion.
As illustrated in FIG. 1, the bases 5 and 8 which contact the end plates of the adjacent vertebrae can include openings 15 as illustrated for base 5 or no openings as illustrated for base 8. Providing openings 15 in base 5 and 8 advantageously promotes greater continuity of new bone growth within fusion device 10.
Referring again to FIGS. 1 and 2, the leading end 30 and trailing end 31 of fusion device 10 are identical. Thus, the height (H of side walls 6 and 7 of external member 14 measured from the exterior base 32 of base 8 to either of external edges 33a or 33b, is identical at the leading end and trailing end 31 of the device. Likewise, the height (H2) of the side walls of internal member 13, measured from the exterior base 35 of base 5 to either internal edge 36a or 36b, is the same at the leading and trailing end. In some embodiments, the overall height (H0) measured from the exterior 35 of base 5 to the exterior 32 of base 8, can be different due to: a difference in the height (H,) of internal side wall (3, 4) at the leading end and trailing end, a difference in the height (H2) of external side wall (6, 7) at the leading and trailing end; or a difference in the position of the components of the locking arrangement (discussed below).
FIG. 6 illustrates an alternative embodiment of a fusion device 200 including internal member 201 and external member 202. In this embodiment, base 203 of internal member 201 includes a plurality of openings 204. In addition, base 205 of external member 202 also includes openings 206. In alternative embodiments, the bases can include none, one, two, three or more openings. In addition, the exterior surfaces 210 and 211 of bases 203 and 205, respectively, include an engagement arrangement 212 to facilitate engagement of fusion device 200 with the end plates of the vertebrae. Use of an engagement arrangement 212 reduces the likelihood of migration or expulsion of the device after implantation. In FIG. 6, engagement arrangement 212 includes a plurality of spikes 215 along the exterior base surfaces 210 and 211. Alternative engagement arrangements 212 can also be used including, for example, porous coated exterior ingrowth surfaces, knurls, ridges, threads, etc.
The operation of a fusion device according to the invention will now be described. FIG. 7 is a transverse cross-section view through fusion device 10 at line 7-7 of FIG. 1 in a non-expanded configuration. As illustrated, apertures 50a and 50b extend through side walls 6 and 7, near the external edges 33a and 33b of external member 14. Apertures 50a and 50b are sized for receiving pins 51a and 51b positioned near the internal ends 36a and 36b, respectively, of side walls 3 and 4 of internal member 13. Thus, when in the non-expanded position, internal ends 36a and 36b are positioned near or against base 8. Also, when fusion device 10 is in the non-deployed configuration, side walls 3 and 4 of internal member 13 are deflected towards one another within the elastic limits of the material of the internal member 13.
After insertion into the intervertebral space, fusion device 10 can be deployed into the expanded position using a reverse plier (e.g., Inge Retractor, KMedic), spreader or retractor to force bases 5 and 8 away from one another into the deployed configuration in FIG. 8. As illustrated, pins 51a and 51b interdigitate with apertures 50a and 50b, respectively, to lock fusion device 10 in the expanded position.
Referring to FIGs. 6, 9 and 10, fusion device 200 includes an alternative embodiment of a locking arrangement 220 for locking fusion device 200 in the deployed configuration. According to this embodiment, external member 202 includes grooves 221a (not visible) and 221b along the interior surface of side walls
208 and 209, respectively, for guiding pins 222a (not visible) and 222b into apertures 223 a and 223b respectively. FIG. 9 is a longitudinal section view through line 9-9 of external member 202. As illustrated, a locking arrangement 220 is present at the leading end 230 and trailing end 231 of fusion device 200. Focusing on the leading end 230, aperture 223b is positioned near the external edge 232b of external member 202. Groove 221b extends from near base 205 to aperture 223b. FIG. 10 is a section view through line 10-10 of FIG. 9 showing that groove 221b extends from near base 205 to aperture 223b. In this embodiment, when in the non-deployed state, side walls 233 and 234 of internal member 201 are deflected towards the longitudinal axis AL of fusion device 200.
It will be appreciated that while the embodiment of fusion device 200 of FIGS. 6, 9 and 10 illustrate that the aperture 223b traverses the thickness of wall
209 from interior 209a to exterior 209b, the depth of apertures such as 223b need not traverse the entire wall thickness, but need only be sufficiently deep to provide the locking function of the locking arrangement.
Referring now to FIG. 11, an alternative embodiment of a locking arrangement 320 is illustrated for fusion device 300. FIG. 11 is a view from the same location of a fusion device as that of FIG. 10. In this embodiment, side wall 301 of internal member 302 of fusion device 300 includes a pin 304 near the internal edge 305 of side wall 301. Side wall 310 of external member 311 includes a groove 312 leading to aperture 313 near the external edge 314. However, according to this embodiment, groove 312 is ramped 315. That is, groove 312 extends deeper into the thickness of wall 310 (from the interior surface 310a to the exterior surface 310b) near base 314 than it does near aperture 313. Thus, in one preferred form of this embodiment, side wall 301 is only deflected inwardly towards the opposing internal wall during deployment as external member 311 and internal member 302 are being separated and pin 304 is moving from a position near base 311 to aperture 313.
While the foregoing embodiments describe a fusion device having pins projecting from the internal wall and apertures (and grooves) in the external wall, the pins could also project inwardly from the external walls to interdigitate with apertures in the internal walls. Also, while the foregoing discussion of fusion devices describes deflection of internal walls, depending on the material of the device, some elastic deflection of the walls of both the internal and external members can occur without substantially affecting the function of the devices of the invention.
In another embodiment, a fusion device according to the invention can be configured for creating and maintaining a desired degree of lordosis between the adjacent vertebrae. FIG. 12 is a side view of one embodiment of such a lordotic fusion device. As illustrated, device 400 includes a divergent angle α tapering from leading end 401 to trailing end 402. In this embodiment, external member 403 is positioned above internal member 404. Side wall 405 of external member 403 includes parallel surfaces along external edge 406 and base 407. In contrast, base 408 of internal member 404 is not parallel with internal edge 409. Locking arrangements 410 can be in the form of any of the embodiments described above. FIG. 13 illustrates a side view of an alternative embodiment of a lordotic fusion device 500. According to this embodiment, when in the non- expanded configuration, there is no taper from leading end 501 to trailing end 502 when fusion device 500 is in non-expanded configuration. However, as shown in FIG. 13, apertures 503 and 504 of external member 505 are not positioned an equal distance from base 506. Rather, aperture 503 is positioned closer to base 506 than is aperture 504. Pins 507 and 508 (hatches) of internal member 510 are located the same distance from base 511. Thus, when deployed, as illustrated in FIG. 14, fusion device 500 can be locked into position to a configuration providing a lordotic taper of angle α. Various relative positions of apertures 503 and 504 can be used to create different devices having different degrees of angulation. Alternatively, the aperture positions can remain fixed and the position of pins 507 and 508 can be varied to provide a lordotic fusion device similar to that described for fusion device 500. In use, a single fusion device may be inserted into the disc space between opposing vertebrae. Alternatively, two fusion devices may be implanted parallel to one another as described for non-expandable fusion devices as disclosed in, for example, U.S. Patent No. 5,489,307, the entire disclosure of which is incorporated herein by reference. According to the method of the invention, the disc space to be fused can be identified, and a surgical approach to the disc made, using methods known in the art. Once the disc space is exposed, a discectomy can be performed. A portion of the end plates can be removed to create bleeding edges to facilitate fusion. If an anterior approach is used for implanting two fusion devices, a first fusion device is inserted between the adjacent vertebrae on a first side of the mid-line of the disc space. The first fusion device can be deployed once in position. The second fusion device can then be placed on the second side of the midline and subsequently deployed. Alternatively, the first and second fusion devices may first be placed into the intervertebral disc space and subsequently deployed. If the tissues surrounding the joint prevent full deployment of a selected fusion device for the locking arrangement to lock, an alternative fusion device having a shorter overall height H0 may need to be used. Alternatively, a greater depth of the bone ends may be removed to accommodate the overall height (H0) of the originally selected fusion device.
FIG. 15 is a diagrammatic illustration of an anterior view two fusion devices 10 according to the invention in an expanded configuration between adjacent vertebrae 23 and 24. According to this embodiment, preferably, the width (W) of each fusion device 10 is selected such that when in the disc space, the fusion devices are completely within the margins of vertebrae 23 and 24.
FIG. 16 is a diagrammatic illustration of an anterior view of a single fusion device 10 in the disc space between adjacent vertebrae 23 and 24. According to this embodiment, the width (W) of fusion device 10 is of sufficient size to provide stability across a major portion of the articular surfaces of vertebrae 23 and 24, preferably without extending beyond the margins of the vertebrae.
As stated previously, the fusion devices disclosed herein can be implanted through approaches known in the art, including, anterior, posterior, lateral, etc. Various size implants will be available ranging in size from 5 to 50 mm in width. Because a fusion device(s) of the invention can assume a close packed configuration, the devices of the invention require a smaller skin incision and reduce the likelihood of trauma to neural and/or vascular structures during surgical implantation. In addition, the time required for performing an implant procedure can be reduced because distraction procedures prior to implementation are optional.
If a fusion device having a circular cross-section as illustrated in FIG. 3 is used, a cylindrical bore will likely need to be created between adjacent vertebrae at the affected disc space. Methods for creating cylindrical bores are known. However, in contrast to some methods for creating a cylindrical bore between opposing vertebrae such as disclosed in U.S. Patent No. 5,489,307, no distraction is required prior to preparing the bore according to the methods of the present invention.
After the fusion devices are inserted, the intervertebral space not occupied by the fusion devices and the interior of the body of the fusion devices may be filled with a bone support matrix as described above.
From the foregoing detailed description and examples, it will be evident that modifications and variations can be made in the devices and methods of the invention without departing from the spirit or scope of the invention. Therefore, it is intended that all modifications and verifications not departing from the spirit of the invention come within the scope of the claims and their equivalents.

Claims

WHAT I CLAIM IS:
1. An intervertebral implant having an expanded and non-expanded configuration and comprising: - an external member including: a leading end and a trailing end, an external base; a first external wall and a second external wall spaced apart by a width of the external base, each of the first and second external walls having an external base end nearest the external base and an external edge away from the external base; an internal member including: a leading end and a trailing end, an internal base; - a first internal wall and a second internal wall having a spacing therebetween for the first and second internal walls to fit within the first and second external walls, each of the first and second internal walls having an internal base end nearest the internal base and an internal edge away from the internal base; a first pin and a second pin projecting from a selected one of the walls of the external member and the walls of the internal member; a first aperture and a second aperture each positioned in a selected one of the walls of the external members and the walls of the internal members such that the first pin is receivable by the first aperture and the second pin is receivable by the second aperture.
2. An intervertebral implant according to claim 1 wherein: the first pin projects from the first internal wall and the second pin projects from the second internal wall; and the first aperture is in the first external wall and the second pin is in the second external wall.
3. An intervertebral implant according to claim 1 wherein the first external member is U-shaped.
4. An intervertebral implant according to claim 1 wherein the internal member is U-shaped.
5. An intervertebral implant according to claim 1 wherein the internal member is tubular.
6. An intervertebral implant according to claim 1 wherein the first and second pins project from the leading end of the internal member and the first and second apertures are at the leading end of the external member.
7. An expandable intervertebral fusion device according to claim 1 wherein when in the expanded configuration, the first pin interdigitates with the first apertures and the second pin interdigitates with the second aperture.
8. An intervertebral implant according to claim 2 wherein when in the non- expanded configuration the first and second internal walls are deflected towards one another.
9. An intervertebral implant according to claim 8 wherein a trailing height of the first and second internal walls, measured from the internal base to the internal edge at the trailing end of the first and second internal walls, is greater than a leading height of the first and second internal walls, measured from the internal base to the internal edge at the leading end of the first and second internal walls.
10. An intervertebral implant according to claim 2 wherein: the external member includes a third aperture at the trailing end of the first external wall and a fourth aperture at the trailing end of the second external wall; and the internal member includes a third pin projecting externally from the trailing end of the first internal wall and positioned to be received by the third aperture and a fourth pin projecting externally from the trailing end of the second internal wall and positioned to be received by the fourth aperture.
11. An intervertebral implant according to claim 10 wherein the first aperture is positioned at the leading end and a distance between the external base and the first aperture is less than a distance between the external base and the third aperture.
12. An intervertebral implant according to claim 10 wherein the first pin is positioned at the leading end and a distance between the internal base and the first pin is less than a distance between the internal base and the third pin.
13. An intervertebral implant according to claim 1 wherein the first and second members each have a circular cross section.
14. An intervertebral implant according to claim 1 wherein the internal and external members each have a rectangular cross section.
15. An intervertebral implant according to claim 2 wherein the first aperture is positioned near the first external edge and the second aperture is positioned near the second external edge; and the first external wall includes a first groove extending from the first external base end of the first external wall to the first aperture and the second external wall includes a second groove extending from the second external base end to the second aperture.
16. An intervertebral implant according to claim 14 wherein the first and second grooves are ramped from the first and second external base ends to the first and second apertures, respectively.
17. An intervertebral implant according to claim 1 wherein the internal base and external base each include at least one opening.
18. An intervertebral implant according to claim 1 wherein an exterior surface of the external base and an exterior surface of the internal base each include an engagement arrangement for engaging end plates of adjacent vertebrae.
19. An intervertebral implant according to claim 18 wherein the engagement arrangement comprises a plurality of spikes.
20. A method for stabilizing an intervertebral disc space between adjacent vertebrae, the method comprising a step of: - removing disc material from the disc space; inserting an expandable fusion implant into the disc space, wherein the fusion implant comprises:
(a) an external member including: (i) a leading end and a trailing end,
(ii) an external base;
(iii) a first external wall and a second external wall spaced apart by a width of the external base, each of the first and second external walls having an external base end nearest the external base and an external edge away from the external base;
(b) an internal member including:
(i) a leading end and a trailing end, (ii) a first internal base;
(iii) a first internal wall and a second internal wall having a spacing therebetween for the first and second internal walls to fit within the first and second external walls, each of the first and second internal walls having an internal base end nearest the internal base and an internal edge away from the internal base;
(c) a first pin and a second pin projecting from a selected one of the walls of the external member and the walls of the internal member; (d) a first aperture and a second aperture each positioned in a selected one of the walls of the external members and the walls of the internal members such that the first pin is receivable by the first aperture and the second pin is receivable by the second aperture. - expanding the fusion device into an expanded configuration.
21. A method according to claim 20 wherein two expandable fusion implants are inserted into the disc space.
22. A method according to claim 20 wherein the expandable fusion implant is packed with a bone support matrix after inserting the fusion implant into the disc space.
23. A method according to claim 20 including a step of forming a bore between adjacent vertebrae before inserting the expandable fusion implant into the disc space.
24. A method according to claim 23 wherein the bore is circular.
PCT/US2000/017114 1999-06-23 2000-06-22 Expandable fusion device and method WO2000078253A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU57564/00A AU773345B2 (en) 1999-06-23 2000-06-22 Expandable fusion device and method
EP00943028A EP1189557B1 (en) 1999-06-23 2000-06-22 Expandable fusion device
DE60030282T DE60030282T2 (en) 1999-06-23 2000-06-22 EXPANDABLE FUSION DEVICE
JP2001504322A JP2003502110A (en) 1999-06-23 2000-06-22 Extendable fusion device and method
KR1020017015939A KR20020035005A (en) 1999-06-23 2000-06-22 Expandable fusion device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/338,688 US6419705B1 (en) 1999-06-23 1999-06-23 Expandable fusion device and method
US09/338,688 1999-06-23

Publications (1)

Publication Number Publication Date
WO2000078253A1 true WO2000078253A1 (en) 2000-12-28

Family

ID=23325745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/017114 WO2000078253A1 (en) 1999-06-23 2000-06-22 Expandable fusion device and method

Country Status (8)

Country Link
US (2) US6419705B1 (en)
EP (1) EP1189557B1 (en)
JP (1) JP2003502110A (en)
KR (1) KR20020035005A (en)
AT (1) ATE336971T1 (en)
AU (1) AU773345B2 (en)
DE (1) DE60030282T2 (en)
WO (1) WO2000078253A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652584B2 (en) 2000-02-04 2003-11-25 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
EP1350489A3 (en) * 2002-04-05 2003-12-17 Howmedica Osteonics Corp. Apparatus for fusing adjacent bone structures
US6793679B2 (en) 2000-02-04 2004-09-21 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
US6808537B2 (en) 2000-07-07 2004-10-26 Gary Karlin Michelson Expandable implant with interlocking walls
US6972035B2 (en) 2000-04-19 2005-12-06 Michelson Gary K Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
US7128760B2 (en) 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
WO2009114381A1 (en) * 2008-03-07 2009-09-17 Synthes Usa, Llc Expandable interbody spacer device
US7740658B2 (en) * 2002-01-17 2010-06-22 Concept Matrix, Llc Intervertebral disk prosthesis methods of use
EP2231073A1 (en) * 2007-12-12 2010-09-29 Intelligent Implant Systems Load sharing interbody fusion device
WO2014091030A1 (en) * 2012-12-14 2014-06-19 Facet-Link Inc. Intervertebral cage expandable step-by-step
US10098751B2 (en) 2004-06-09 2018-10-16 Vexim Methods and apparatuses for bone restoration
US10603080B2 (en) 2013-12-23 2020-03-31 Vexim Expansible intravertebral implant system with posterior pedicle fixation

Families Citing this family (349)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879095B2 (en) * 1994-03-18 2011-02-01 Madhavan Pisharodi Method of inserting, rotating and releasing a spring-loaded artificial disk
FR2782632B1 (en) * 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg EXPANSIBLE INTERSOMATIC FUSION CAGE
US6419705B1 (en) * 1999-06-23 2002-07-16 Sulzer Spine-Tech Inc. Expandable fusion device and method
US6716247B2 (en) 2000-02-04 2004-04-06 Gary K. Michelson Expandable push-in interbody spinal fusion implant
EP1645248B8 (en) * 2000-02-04 2010-06-16 Warsaw Orthopedic, Inc. Expandable interbody spinal fusion implant having pivotally attached blocker
ES2262637T3 (en) * 2000-03-31 2006-12-01 Konigsee Implantate Und Instrumente Zur Ostheosynthese Gmbh IMPLANT FOR ADJUSTABLE VERTEBRAL BODY IN HEIGHT AND INSTRUMENT KIT TO MANIPULATE IT.
US6666891B2 (en) * 2000-11-13 2003-12-23 Frank H. Boehm, Jr. Device and method for lumbar interbody fusion
JP2004522469A (en) 2000-11-13 2004-07-29 ボエム・フランク・エイッチ・ジュニア Lumbar interbody fusion device and method
DE10060815A1 (en) * 2000-12-07 2002-06-20 Henkel Kgaa Stone composite panels
JP4133331B2 (en) * 2001-02-04 2008-08-13 ウォーソー・オーソペディック・インコーポレーテッド Apparatus and method for inserting and deploying an expandable interbody spinal fusion implant
US6595998B2 (en) * 2001-03-08 2003-07-22 Spinewave, Inc. Tissue distraction device
EP1429693B1 (en) * 2001-09-27 2006-01-04 Zimmer Spine, Inc. Modular spinal fusion device and manufacturing method therefor
DE60232893D1 (en) * 2001-10-02 2009-08-20 Rex Medical Lp EDDY IMPLANT
US6648917B2 (en) 2001-10-17 2003-11-18 Medicinelodge, Inc. Adjustable bone fusion implant and method
US8137402B2 (en) * 2002-01-17 2012-03-20 Concept Matrix Llc Vertebral defect device
US7105023B2 (en) * 2002-01-17 2006-09-12 Concept Matrix, L.L.C. Vertebral defect device
US20040030387A1 (en) * 2002-03-11 2004-02-12 Landry Michael E. Instrumentation and procedure for implanting spinal implant devices
US20040010315A1 (en) * 2002-03-29 2004-01-15 Song John K. Self-expanding intervertebral device
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
WO2004016217A2 (en) 2002-08-15 2004-02-26 David Gerber Controlled artificial intervertebral disc implant
US6712852B1 (en) * 2002-09-30 2004-03-30 Depuy Spine, Inc. Laminoplasty cage
US20040068320A1 (en) * 2002-10-04 2004-04-08 Robie Bruce H. Prosthetic disc and vertebral body replacement device having pyrolytic carbon bearing members
US7232463B2 (en) * 2002-10-23 2007-06-19 U.S. Spinal Technologies, Llc Intervertebral cage designs
US6723126B1 (en) 2002-11-01 2004-04-20 Sdgi Holdings, Inc. Laterally expandable cage
US7320708B1 (en) 2002-11-13 2008-01-22 Sdgi Holdings, Inc. Cervical interbody device
JP2006507090A (en) * 2002-11-21 2006-03-02 エスディージーアイ・ホールディングス・インコーポレーテッド System for intravertebral reduction
WO2004047689A1 (en) * 2002-11-21 2004-06-10 Sdgi Holdings, Inc. Systems and techniques for intravertebral spinal stablization with expandable devices
US7828849B2 (en) * 2003-02-03 2010-11-09 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
US20040158254A1 (en) * 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
US7094257B2 (en) * 2003-02-14 2006-08-22 Zimmer Spine, Inc. Expandable intervertebral implant cage
CN1774220A (en) * 2003-02-14 2006-05-17 德普伊斯派尔公司 In-situ formed intervertebral fusion device and method
WO2004084742A1 (en) * 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
EP1501453B2 (en) 2003-05-14 2010-06-30 Kilian Kraus Height-adjustable implant to be inserted between vertebral bodies and corresponding handling tool
WO2004103152A2 (en) * 2003-05-16 2004-12-02 Spine Wave, Inc. Tissue distraction device
DE10324319A1 (en) * 2003-05-27 2004-12-16 Ulrich Gmbh & Co. Kg Implant and instrument for placement and distraction of the implant
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
FR2858546B1 (en) * 2003-08-04 2006-04-28 Spine Next Sa INTERVERTEBRAL DISC PROSTHESIS
US20050080422A1 (en) * 2003-10-14 2005-04-14 Centerpulse Spine-Tech, Inc. Instruments for use with implants, and methods
DE20320974U1 (en) 2003-12-11 2005-08-25 Deltacor Gmbh Surgical backbone implant is positioned between adjacent vertebrae and consists of two concentric cylinders with interlocking fingers in cruciform array, where the cylinder inner faces bear a thread
US20050154467A1 (en) * 2004-01-09 2005-07-14 Sdgi Holdings, Inc. Interconnected spinal device and method
US20050171608A1 (en) * 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Centrally articulating spinal device and method
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
US8480742B2 (en) * 2005-08-02 2013-07-09 Perumala Corporation Total artificial disc
US20050242101A1 (en) * 2004-04-29 2005-11-03 Skalitzky Michael J Seal-coated plastic container for dispensing a pressurized product
US7297162B2 (en) * 2004-06-09 2007-11-20 Zimmer Spine, Inc. Expandable helical cage
US7678148B2 (en) * 2004-07-23 2010-03-16 Warsaw Orthopedic, Inc. Expandable spinal implant having interlocking geometry for structural support
US8236029B2 (en) 2004-08-11 2012-08-07 Nlt Spine Ltd. Devices for introduction into a body via a substantially straight conduit to for a predefined curved configuration, and methods employing such devices
US7931688B2 (en) 2004-08-25 2011-04-26 Spine Wave, Inc. Expandable interbody fusion device
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US7883543B2 (en) * 2004-10-01 2011-02-08 Spinal Generations, Llc Vertebral prosthesis and spinal fixation system
AU2005299397A1 (en) * 2004-10-25 2006-05-04 Alphaspine, Inc. Expandable intervertebral spacer method and apparatus
US20060089646A1 (en) 2004-10-26 2006-04-27 Bonutti Peter M Devices and methods for stabilizing tissue and implants
US9173647B2 (en) 2004-10-26 2015-11-03 P Tech, Llc Tissue fixation system
US9463012B2 (en) 2004-10-26 2016-10-11 P Tech, Llc Apparatus for guiding and positioning an implant
US9271766B2 (en) 2004-10-26 2016-03-01 P Tech, Llc Devices and methods for stabilizing tissue and implants
US8597360B2 (en) 2004-11-03 2013-12-03 Neuropro Technologies, Inc. Bone fusion device
US20060122701A1 (en) * 2004-11-23 2006-06-08 Kiester P D Posterior lumbar interbody fusion expandable cage with lordosis and method of deploying the same
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
CH697330B1 (en) 2004-12-28 2008-08-29 Synthes Gmbh Intervertebral prosthesis.
PE20060861A1 (en) * 2005-01-07 2006-10-25 Celonova Biosciences Inc IMPLANTABLE THREE-DIMENSIONAL BONE SUPPORT
US7267690B2 (en) 2005-03-09 2007-09-11 Vertebral Technologies, Inc. Interlocked modular disc nucleus prosthesis
US9456907B1 (en) * 2005-03-24 2016-10-04 Igip, Llc Extendable spinal implant
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7674296B2 (en) 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
US7442210B2 (en) 2005-06-15 2008-10-28 Jerome Segal Mechanical apparatus and method for artificial disc replacement
US7547319B2 (en) 2005-06-15 2009-06-16 Ouroboros Medical Mechanical apparatus and method for artificial disc replacement
US7601172B2 (en) 2005-06-15 2009-10-13 Ouroboros Medical, Inc. Mechanical apparatus and method for artificial disc replacement
US8021426B2 (en) * 2005-06-15 2011-09-20 Ouroboros Medical, Inc. Mechanical apparatus and method for artificial disc replacement
US20070162135A1 (en) * 2005-06-15 2007-07-12 Jerome Segal Mechanical apparatus and method for artificial disc replacement
WO2007009107A2 (en) 2005-07-14 2007-01-18 Stout Medical Group, P.L. Expandable support device and method of use
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
US8591583B2 (en) 2005-08-16 2013-11-26 Benvenue Medical, Inc. Devices for treating the spine
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
AU2006279558B2 (en) 2005-08-16 2012-05-17 Izi Medical Products, Llc Spinal tissue distraction devices
US7635389B2 (en) * 2006-01-30 2009-12-22 Warsaw Orthopedic, Inc. Posterior joint replacement device
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
US8366776B2 (en) * 2006-04-13 2013-02-05 Warsaw Orthopedic, Inc. Vertebral implants having predetermined angular correction and method of use
EP1849437B1 (en) * 2006-04-28 2009-09-30 Concept Matrix, LLC Dual composition vertebral fixation device
EP2023864B1 (en) 2006-05-01 2019-07-10 Stout Medical Group, L.P. Expandable support device
US20080288071A1 (en) * 2006-05-16 2008-11-20 Ashok Biyani Expandable corpectomy device
WO2007131287A1 (en) * 2006-05-17 2007-11-22 Gordon Slater Ankle fusion plate
US20080021559A1 (en) * 2006-07-06 2008-01-24 Lanx, Llc Expandable spinal fusion cage
US7771473B2 (en) * 2006-07-06 2010-08-10 Lanx, Inc. Expandable spinal fusion cage
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US20080058931A1 (en) * 2006-07-21 2008-03-06 John White Expandable vertebral implant and methods of use
US7731752B2 (en) * 2006-07-21 2010-06-08 Warsaw Orthopedic, Inc. Implant with nested members and methods of use
US20080027547A1 (en) * 2006-07-27 2008-01-31 Warsaw Orthopedic Inc. Prosthetic device for spinal joint reconstruction
US20080045968A1 (en) * 2006-08-18 2008-02-21 Warsaw Orthopedic, Inc. Instruments and Methods for Spinal Surgery
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
WO2008033457A2 (en) * 2006-09-14 2008-03-20 The University Of Toledo Variable height vertebral body replacement implant
US8092533B2 (en) * 2006-10-03 2012-01-10 Warsaw Orthopedic, Inc. Dynamic devices and methods for stabilizing vertebral members
US20080161920A1 (en) * 2006-10-03 2008-07-03 Warsaw Orthopedic, Inc. Dynamizing Interbody Implant and Methods for Stabilizing Vertebral Members
US8066750B2 (en) 2006-10-06 2011-11-29 Warsaw Orthopedic, Inc Port structures for non-rigid bone plates
US8920502B1 (en) * 2006-11-08 2014-12-30 Spinal Usa, Inc. Vertebral body replacement
US9023107B2 (en) * 2006-11-08 2015-05-05 Spinal Usa, Inc. Vertebral body replacement
CA2668655A1 (en) 2006-11-16 2008-05-29 Rex Medical, L.P. Spinal implant and method of use
US9737414B2 (en) 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US11395626B2 (en) 2006-12-07 2022-07-26 DePuy Synthes Products, Inc. Sensor for intervertebral fusion indicia
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US7972382B2 (en) 2006-12-26 2011-07-05 Warsaw Orthopedic, Inc. Minimally invasive spinal distraction devices and methods
US8617185B2 (en) 2007-02-13 2013-12-31 P Tech, Llc. Fixation device
CA2678006C (en) 2007-02-21 2014-10-14 Benvenue Medical, Inc. Devices for treating the spine
JP2010521242A (en) 2007-03-13 2010-06-24 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Adjustable intervertebral implant
US8273124B2 (en) * 2007-05-17 2012-09-25 Depuy Spine, Inc. Self-distracting cage
US8480715B2 (en) 2007-05-22 2013-07-09 Zimmer Spine, Inc. Spinal implant system and method
US7967867B2 (en) 2007-05-31 2011-06-28 Spine Wave, Inc. Expandable interbody fusion device
US8864832B2 (en) * 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
US10821003B2 (en) 2007-06-20 2020-11-03 3Spline Sezc Spinal osteotomy
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US8864829B1 (en) 2007-07-02 2014-10-21 Theken Spine, Llc Spinal cage having deployable member
US8292958B1 (en) 2007-07-02 2012-10-23 Theken Spine, Llc Spinal cage having deployable member
US8545562B1 (en) 2007-07-02 2013-10-01 Theken Spine, Llc Deployable member for use with an intervertebral cage
US10342674B2 (en) 2007-07-02 2019-07-09 Theken Spine, Llc Spinal cage having deployable member
US8142508B1 (en) 2007-07-02 2012-03-27 Theken Spine, Llc Spinal cage having deployable member which is removable
US8328818B1 (en) 2007-08-31 2012-12-11 Globus Medical, Inc. Devices and methods for treating bone
US20090093882A1 (en) * 2007-10-09 2009-04-09 Oh Younghoon Sliding interbody device
US7850734B2 (en) * 2007-10-10 2010-12-14 Custom Spine, Inc. Sliding intervertebral implant
US8182538B2 (en) * 2007-10-31 2012-05-22 Depuy Spine, Inc. Expandable fusion cage
US8267997B2 (en) 2007-11-12 2012-09-18 Theken Spine, Llc Vertebral interbody compression implant
US8197546B2 (en) * 2007-11-27 2012-06-12 Ortho Innovations, Llc Corpectomy implant
US8241363B2 (en) 2007-12-19 2012-08-14 Depuy Spine, Inc. Expandable corpectomy spinal fusion cage
US8241294B2 (en) 2007-12-19 2012-08-14 Depuy Spine, Inc. Instruments for expandable corpectomy spinal fusion cage
US7799056B2 (en) * 2007-12-31 2010-09-21 Warsaw Orthopedic, Inc. Bone fusion device and methods
US7985231B2 (en) 2007-12-31 2011-07-26 Kyphon Sarl Bone fusion device and methods
EP2471493A1 (en) 2008-01-17 2012-07-04 Synthes GmbH An expandable intervertebral implant and associated method of manufacturing the same
US8795365B2 (en) * 2008-03-24 2014-08-05 Warsaw Orthopedic, Inc Expandable devices for emplacement in body parts and methods associated therewith
US20090248084A1 (en) * 2008-03-27 2009-10-01 Beat Hintermann Systems and methods for performing ankle arthrodesis in a human patient
EP2271289A4 (en) * 2008-03-28 2013-01-09 K2M Inc Expandable cage with locking device
US8673011B2 (en) * 2008-03-28 2014-03-18 K2M, Inc. Expandable cage
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US10159475B2 (en) 2008-05-07 2018-12-25 Mighty Oak Medical, Inc. Configurable intervertebral implant
ES2361099B1 (en) * 2008-05-26 2012-05-08 Rudolf Morgenstern Lopez "INTERVERTEBRAL PROSTHESIS"
US8110004B2 (en) * 2008-08-21 2012-02-07 The Trustees Of The Stevens Institute Of Technology Expandable interbody fusion cage with rotational insert
US8545566B2 (en) 2008-10-13 2013-10-01 Globus Medical, Inc. Articulating spacer
US8147554B2 (en) 2008-10-13 2012-04-03 Globus Medical, Inc. Intervertebral spacer
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
US9408708B2 (en) 2008-11-12 2016-08-09 Stout Medical Group, L.P. Fixation device and method
US10137000B1 (en) * 2008-12-05 2018-11-27 Robert E Simonson Method and apparatus for placement into iatrogenically created skeletal voids
US8535327B2 (en) 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8876905B2 (en) 2009-04-29 2014-11-04 DePuy Synthes Products, LLC Minimally invasive corpectomy cage and instrument
US9050194B2 (en) 2009-05-06 2015-06-09 Stryker Spine Expandable spinal implant apparatus and method of use
CA2767403C (en) 2009-07-06 2017-08-29 Synthes Usa, Llc Expandable fixation assemblies
US20110029085A1 (en) * 2009-07-31 2011-02-03 Warsaw Orthopedic, Inc. Flexible spinal implant
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US9155628B2 (en) 2009-10-15 2015-10-13 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8709086B2 (en) 2009-10-15 2014-04-29 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11344430B2 (en) * 2009-10-15 2022-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11103366B2 (en) 2009-10-15 2021-08-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10098758B2 (en) 2009-10-15 2018-10-16 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10327917B2 (en) 2009-10-15 2019-06-25 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8679183B2 (en) 2010-06-25 2014-03-25 Globus Medical Expandable fusion device and method of installation thereof
US8685098B2 (en) 2010-06-25 2014-04-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9216095B2 (en) 2009-10-15 2015-12-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8062375B2 (en) 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8556979B2 (en) 2009-10-15 2013-10-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10806596B2 (en) 2009-10-15 2020-10-20 Globus Medical, Inc. Expandable fusion device and method installation thereof
US11564807B2 (en) 2009-10-15 2023-01-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20110098751A1 (en) * 2009-10-26 2011-04-28 Nasser Ani Apparatus for compressing or decompressing a spinal disc and method of use thereof
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9168138B2 (en) 2009-12-09 2015-10-27 DePuy Synthes Products, Inc. Aspirating implants and method of bony regeneration
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US20110190776A1 (en) * 2009-12-18 2011-08-04 Palmaz Scientific, Inc. Interosteal and intramedullary implants and method of implanting same
US8353963B2 (en) 2010-01-12 2013-01-15 Globus Medical Expandable spacer and method for use thereof
US20120310048A1 (en) * 2010-02-15 2012-12-06 Nlt-Spine Ltd Expanding conduits
US9913726B2 (en) 2010-02-24 2018-03-13 Globus Medical, Inc. Expandable intervertebral spacer and method of posterior insertion thereof
CA2793185C (en) 2010-03-16 2019-02-12 Pinnacle Spine Group, Llc Intervertebral implants and graft delivery systems and methods
US9301850B2 (en) 2010-04-12 2016-04-05 Globus Medical, Inc. Expandable vertebral implant
US8870880B2 (en) 2010-04-12 2014-10-28 Globus Medical, Inc. Angling inserter tool for expandable vertebral implant
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US9592063B2 (en) 2010-06-24 2017-03-14 DePuy Synthes Products, Inc. Universal trial for lateral cages
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9597200B2 (en) 2010-06-25 2017-03-21 Globus Medical, Inc Expandable fusion device and method of installation thereof
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
CA2804723A1 (en) 2010-07-15 2012-01-19 Nlt Spine Ltd. Surgical systems and methods for implanting deflectable implants
US9144501B1 (en) * 2010-07-16 2015-09-29 Nuvasive, Inc. Fracture reduction device and methods
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US8491659B2 (en) 2010-09-03 2013-07-23 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10842644B2 (en) 2010-09-03 2020-11-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8852279B2 (en) 2010-09-03 2014-10-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10085849B2 (en) 2010-09-03 2018-10-02 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9855151B2 (en) 2010-09-03 2018-01-02 Globus Medical, Inc Expandable fusion device and method of installation thereof
US11793654B2 (en) 2010-09-03 2023-10-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10779957B2 (en) 2010-09-03 2020-09-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9566168B2 (en) 2010-09-03 2017-02-14 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10709573B2 (en) 2010-09-03 2020-07-14 Globus Medical Inc. Expandable fusion device and method of installation thereof
US8632595B2 (en) 2010-09-03 2014-01-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845734B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8398713B2 (en) 2010-09-03 2013-03-19 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9907673B2 (en) 2010-09-03 2018-03-06 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10512550B2 (en) 2010-09-03 2019-12-24 Globus Medical, Inc. Expandable interspinous process fixation device
US10945858B2 (en) 2010-09-03 2021-03-16 Globus Medical, Inc. Expandable interspinous process fixation device
US8435298B2 (en) 2010-09-03 2013-05-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9351848B2 (en) 2010-09-03 2016-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10835387B2 (en) 2010-09-03 2020-11-17 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9474625B2 (en) 2010-09-03 2016-10-25 Globus Medical, Inc Expandable fusion device and method of installation thereof
US8845731B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845732B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10758367B2 (en) 2010-09-03 2020-09-01 Globus Medical Inc. Expandable fusion device and method of installation thereof
US11446162B2 (en) 2010-09-03 2022-09-20 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10869768B2 (en) 2010-09-03 2020-12-22 Globus Medical Inc. Expandable fusion device and method of installation thereof
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
DE102010047901B4 (en) * 2010-10-11 2019-01-10 Heinrich Böhm Implant for the spine and operating instrument
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8425611B2 (en) 2010-10-26 2013-04-23 Warsaw Orthopedic, Inc. Expandable orthopedic implant system and method
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US8876866B2 (en) 2010-12-13 2014-11-04 Globus Medical, Inc. Spinous process fusion devices and methods thereof
US9308099B2 (en) 2011-02-14 2016-04-12 Imds Llc Expandable intervertebral implants and instruments
US8454694B2 (en) 2011-03-03 2013-06-04 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
WO2012178018A2 (en) 2011-06-24 2012-12-27 Benvenue Medical, Inc. Devices and methods for treating bone tissue
US9358123B2 (en) 2011-08-09 2016-06-07 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
US10292830B2 (en) 2011-08-09 2019-05-21 Neuropro Technologies, Inc. Bone fusion device, system and method
US10420654B2 (en) 2011-08-09 2019-09-24 Neuropro Technologies, Inc. Bone fusion device, system and method
EP2729092B1 (en) 2011-08-16 2016-09-21 Stryker European Holdings I, LLC Expandable implant
US9050112B2 (en) 2011-08-23 2015-06-09 Flexmedex, LLC Tissue removal device and method
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US8864833B2 (en) 2011-09-30 2014-10-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US9445919B2 (en) * 2011-12-19 2016-09-20 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US9233007B2 (en) * 2012-02-13 2016-01-12 Blue Tip Biologics, Llc Expandable self-anchoring interbody cage for orthopedic applications
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US10159583B2 (en) 2012-04-13 2018-12-25 Neuropro Technologies, Inc. Bone fusion device
US9532883B2 (en) 2012-04-13 2017-01-03 Neuropro Technologies, Inc. Bone fusion device
US9622876B1 (en) 2012-04-25 2017-04-18 Theken Spine, Llc Expandable support device and method of use
US8771277B2 (en) 2012-05-08 2014-07-08 Globus Medical, Inc Device and a method for implanting a spinous process fixation device
JP2015522316A (en) 2012-05-28 2015-08-06 エヌエルティー スパイン エルティーディー. Surgical insertion member
RU2014146705A (en) 2012-05-29 2016-07-20 ЭнЭлТи-СПАЙН ЛТД. Laterally variable implant
CN107582220B (en) * 2012-05-29 2021-11-30 神经保护科技有限公司 Bone fusion device
US10154913B2 (en) * 2012-06-21 2018-12-18 Renovis Surgical Technologies, Inc. Surgical implant devices incorporating porous surfaces and a locking plate
US8940052B2 (en) 2012-07-26 2015-01-27 DePuy Synthes Products, LLC Expandable implant
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US20140067069A1 (en) 2012-08-30 2014-03-06 Interventional Spine, Inc. Artificial disc
US9757247B2 (en) 2012-10-01 2017-09-12 DePuy Synthes Products, Inc. Interbody fusion implant
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9839527B2 (en) * 2012-10-24 2017-12-12 Spectrum Spine Ip Holdings, Llc Expandable inter-body fusion devices and methods
US8715351B1 (en) 2012-11-29 2014-05-06 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
US10299934B2 (en) 2012-12-11 2019-05-28 Globus Medical, Inc Expandable vertebral implant
US8663332B1 (en) 2012-12-13 2014-03-04 Ouroboros Medical, Inc. Bone graft distribution system
US9011493B2 (en) 2012-12-31 2015-04-21 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9486251B2 (en) 2012-12-31 2016-11-08 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9198697B2 (en) 2013-03-13 2015-12-01 Globus Medical, Inc. Spinous process fixation system and methods thereof
US10076377B2 (en) 2013-01-05 2018-09-18 P Tech, Llc Fixation systems and methods
US10105239B2 (en) 2013-02-14 2018-10-23 Globus Medical, Inc. Devices and methods for correcting vertebral misalignment
US9585765B2 (en) 2013-02-14 2017-03-07 Globus Medical, Inc Devices and methods for correcting vertebral misalignment
US9402738B2 (en) 2013-02-14 2016-08-02 Globus Medical, Inc. Devices and methods for correcting vertebral misalignment
US9782265B2 (en) 2013-02-15 2017-10-10 Globus Medical, Inc Articulating and expandable vertebral implant
US10117754B2 (en) 2013-02-25 2018-11-06 Globus Medical, Inc. Expandable intervertebral implant
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9198772B2 (en) 2013-03-01 2015-12-01 Globus Medical, Inc. Articulating expandable intervertebral implant
US9554918B2 (en) 2013-03-01 2017-01-31 Globus Medical, Inc. Articulating expandable intervertebral implant
US9204972B2 (en) 2013-03-01 2015-12-08 Globus Medical, Inc. Articulating expandable intervertebral implant
US10004607B2 (en) 2013-03-01 2018-06-26 Globus Medical, Inc. Articulating expandable intervertebral implant
US9770343B2 (en) 2013-03-01 2017-09-26 Globus Medical Inc. Articulating expandable intervertebral implant
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10342675B2 (en) 2013-03-11 2019-07-09 Stryker European Holdings I, Llc Expandable implant
US8900312B2 (en) 2013-03-12 2014-12-02 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
US8828019B1 (en) 2013-03-13 2014-09-09 Spine Wave, Inc. Inserter for expanding an expandable interbody fusion device
US10292832B2 (en) 2013-03-14 2019-05-21 Ohio State Innovation Foundation Spinal fixation device
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US20140277501A1 (en) * 2013-03-14 2014-09-18 Aurora Spine, Inc. Expanding interbody vertebral implant
WO2014159739A1 (en) 2013-03-14 2014-10-02 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
US9707096B2 (en) 2013-03-14 2017-07-18 K2M, Inc. Spinal fixation device
US9211197B2 (en) 2013-03-14 2015-12-15 Atlas Spine, Inc. Expandable corpectomy device
US9925061B2 (en) 2013-03-14 2018-03-27 Atlas Spine, Inc. Expandable corpectomy device
US9034045B2 (en) 2013-03-15 2015-05-19 Globus Medical, Inc Expandable intervertebral implant
US9456906B2 (en) 2013-03-15 2016-10-04 Globus Medical, Inc. Expandable intervertebral implant
US9149367B2 (en) 2013-03-15 2015-10-06 Globus Medical Inc Expandable intervertebral implant
MX366061B (en) 2013-03-15 2019-06-26 Neuropro Tech Inc Bodiless bone fusion device, apparatus and method.
US9233009B2 (en) 2013-03-15 2016-01-12 Globus Medical, Inc. Expandable intervertebral implant
US20140277496A1 (en) * 2013-03-15 2014-09-18 Joshua Ammerman Expandable device for implantation in body space
US9186258B2 (en) 2013-03-15 2015-11-17 Globus Medical, Inc. Expandable intervertebral implant
US20140296984A1 (en) * 2013-04-01 2014-10-02 Mohammad Etminan Cage system
DE112014002311A5 (en) * 2013-05-07 2016-07-21 Ceramtec Gmbh Implants with anchoring elements
US10149770B2 (en) 2013-07-09 2018-12-11 Seaspine, Inc. Orthopedic implant with adjustable angle between tissue contact surfaces
US9566167B2 (en) 2013-08-22 2017-02-14 K2M, Inc. Expandable spinal implant
US9186259B2 (en) 2013-09-09 2015-11-17 Ouroboros Medical, Inc. Expandable trials
US9820865B2 (en) 2013-10-31 2017-11-21 Nlt Spine Ltd. Adjustable implant
WO2015087285A1 (en) 2013-12-11 2015-06-18 Nlt Spine Ltd. Worm-gear actuated orthopedic implants & methods
US9402739B2 (en) 2014-02-07 2016-08-02 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9662224B2 (en) 2014-02-07 2017-05-30 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9839528B2 (en) 2014-02-07 2017-12-12 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9439783B2 (en) 2014-03-06 2016-09-13 Spine Wave, Inc. Inserter for expanding body tissue
US9445921B2 (en) 2014-03-06 2016-09-20 Spine Wave, Inc. Device for expanding and supporting body tissue
US11065132B2 (en) 2014-03-06 2021-07-20 Spine Wave, Inc. Method of expanding a space between opposing tissue surfaces
US9265623B2 (en) 2014-03-06 2016-02-23 Spine Wave, Inc. Method of expanding a spinal interbody fusion device
US9216094B2 (en) 2014-03-06 2015-12-22 Spine Wave, Inc. Expandable spinal interbody fusion device and inserter
WO2015198335A1 (en) 2014-06-25 2015-12-30 Nlt Spine Ltd. Expanding implant with hinged arms
US9498347B2 (en) 2014-06-25 2016-11-22 Spine Wave, Inc. Expandable interbody fusion device with nested correction surface
US9901457B2 (en) 2014-10-16 2018-02-27 Jmea Corporation Coiling implantable prostheses
US10363142B2 (en) 2014-12-11 2019-07-30 K2M, Inc. Expandable spinal implants
US9901459B2 (en) 2014-12-16 2018-02-27 Globus Medical, Inc. Expandable fusion devices and methods of installation thereof
US9060876B1 (en) 2015-01-20 2015-06-23 Ouroboros Medical, Inc. Stabilized intervertebral scaffolding systems
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10433975B2 (en) 2015-05-21 2019-10-08 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US10376378B2 (en) 2015-05-21 2019-08-13 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US10765532B2 (en) 2015-05-21 2020-09-08 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US9848996B2 (en) 2015-06-17 2017-12-26 Globus Medical, Inc. Variable lordotic interbody spacer
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US10016282B2 (en) 2015-07-17 2018-07-10 Globus Medical, Inc. Intervertebral spacer and plate
US10105238B2 (en) 2015-08-25 2018-10-23 Imds Llc Expandable intervertebral implants
US10034768B2 (en) 2015-09-02 2018-07-31 Globus Medical, Inc. Implantable systems, devices and related methods
EP3349695B1 (en) 2015-09-18 2020-11-18 K2M, Inc. Corpectomy device
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10219914B2 (en) 2015-11-10 2019-03-05 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US10369004B2 (en) 2015-12-16 2019-08-06 Globus Medical, Inc. Expandable intervertebralspacer
CN109688981A (en) 2016-06-28 2019-04-26 Eit 新兴移植技术股份有限公司 Distensible, adjustable angle intervertebral cage
JP7023877B2 (en) 2016-06-28 2022-02-22 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle-adjustable range-of-motion intervertebral cage
US10052215B2 (en) 2016-06-29 2018-08-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9974662B2 (en) 2016-06-29 2018-05-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9883953B1 (en) 2016-09-21 2018-02-06 Integrity Implants Inc. Stabilized laterovertically-expanding fusion cage systems with tensioner
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
WO2018081322A1 (en) 2016-10-25 2018-05-03 Imds Llc Methods and instrumentation for intervertebral cage expansion
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
WO2018132502A1 (en) 2017-01-10 2018-07-19 Anza Innovations Inc. Expandable intervertebral fusion device
US10729560B2 (en) 2017-01-18 2020-08-04 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
US10973657B2 (en) 2017-01-18 2021-04-13 Neuropro Technologies, Inc. Bone fusion surgical system and method
US10213321B2 (en) 2017-01-18 2019-02-26 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
US10111760B2 (en) 2017-01-18 2018-10-30 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US10111755B2 (en) 2017-02-24 2018-10-30 Warsaw, Orthopedic, Inc. Expanding interbody implant and articulating inserter and methods of use
US10470894B2 (en) 2017-04-06 2019-11-12 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and methods of use
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10441430B2 (en) 2017-07-24 2019-10-15 K2M, Inc. Expandable spinal implants
WO2019023251A1 (en) 2017-07-24 2019-01-31 Integrity Implants, Inc. Surgical implant and related methods
US10709578B2 (en) 2017-08-25 2020-07-14 Integrity Implants Inc. Surgical biologics delivery system and related methods
US11013610B2 (en) 2017-10-18 2021-05-25 Spine Wave, Inc. Expandable anterior lumbar interbody fusion device
US10322005B1 (en) 2017-12-18 2019-06-18 Loubert S. Suddaby Expandable intervertebral implant
US10945859B2 (en) 2018-01-29 2021-03-16 Amplify Surgical, Inc. Expanding fusion cages
JP2021514760A (en) 2018-03-01 2021-06-17 インテグリティ インプランツ インコーポレイテッドIntegrity Implants Inc. Deployable fusion device with independent deployment system
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11259933B2 (en) 2019-09-06 2022-03-01 Globus Medical Inc. Expandable motion preservation spacer
US11191650B2 (en) 2020-02-03 2021-12-07 Globus Medical Inc. Expandable fusions devices, instruments, and methods thereof
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11298240B2 (en) 2020-06-16 2022-04-12 Globus Medical, Inc. Expanding intervertebral implants
US11357640B2 (en) 2020-07-08 2022-06-14 Globus Medical Inc. Expandable interbody fusions devices
US11491020B2 (en) 2020-07-09 2022-11-08 Globus Medical, Inc. Articulating and expandable interbody fusions devices
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
US11712346B2 (en) 2021-12-02 2023-08-01 Globus Medical, Inc. Expandable fusion device with integrated deployable retention spikes
US11883080B1 (en) 2022-07-13 2024-01-30 Globus Medical, Inc Reverse dynamization implants
US11857431B1 (en) 2023-02-01 2024-01-02 Robert E. Simonson Method and apparatus for placement of vertebral body replacement device into a transcorporeal void during a surgical operation on the cervical portion of the spine
US11766338B1 (en) 2023-02-06 2023-09-26 Robert E. Simonson Method and apparatus for placement of a reduced vertebral body replacement device during a surgical operation on the cervical portion of the spine including into a transcorporeal void

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4501269A (en) 1981-12-11 1985-02-26 Washington State University Research Foundation, Inc. Process for fusing bone joints
US4743256A (en) 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
US4961740A (en) 1988-10-17 1990-10-09 Surgical Dynamics, Inc. V-thread fusion cage and method of fusing a bone joint
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5055104A (en) 1989-11-06 1991-10-08 Surgical Dynamics, Inc. Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
US5290312A (en) * 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
US5458638A (en) 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant
US5489307A (en) 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
FR2734148A1 (en) * 1995-05-15 1996-11-22 Biomat Spinal intervertebral disc replacement prosthesis
US5723013A (en) * 1995-02-06 1998-03-03 Jbs S.A. Spacer implant for substituting missing vertebrae
EP0832622A2 (en) * 1996-09-26 1998-04-01 Howmedica GmbH A spinal cage assembly
DE29806830U1 (en) * 1998-04-16 1998-07-02 Aesculap Ag & Co Kg Intervertebral fusion implant
WO1998046173A1 (en) * 1997-04-15 1998-10-22 Synthes Ag Chur Telescopic vertebral prosthesis

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2083754B (en) 1980-09-15 1984-04-26 Rezaian Seyed Mahmoud Spinal fixator
US4554914A (en) 1983-10-04 1985-11-26 Kapp John P Prosthetic vertebral body
FR2575059B1 (en) 1984-12-21 1988-11-10 Daher Youssef SHORING DEVICE FOR USE IN A VERTEBRAL PROSTHESIS
GB8620937D0 (en) 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5059193A (en) 1989-11-20 1991-10-22 Spine-Tech, Inc. Expandable spinal implant and surgical method
EP0571555B1 (en) 1991-02-22 1996-03-27 PISHARODI, Madhavan Middle expandable intervertebral disk implant
US5390683A (en) 1991-02-22 1995-02-21 Pisharodi; Madhavan Spinal implantation methods utilizing a middle expandable implant
US5192327A (en) 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5405391A (en) * 1993-02-16 1995-04-11 Hednerson; Fraser C. Fusion stabilization chamber
US5425772A (en) 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
FR2715293B1 (en) 1994-01-26 1996-03-22 Biomat Vertebral interbody fusion cage.
US5653762A (en) 1994-03-18 1997-08-05 Pisharodi; Madhavan Method of stabilizing adjacent vertebrae with rotating, lockable, middle-expanded intervertebral disk stabilizer
US5658336A (en) 1994-03-18 1997-08-19 Pisharodi; Madhavan Rotating, locking, middle-expanded intervertebral disk stabilizer
FR2719763B1 (en) 1994-05-11 1996-09-27 Jean Taylor Vertebral implant.
US5980522A (en) 1994-07-22 1999-11-09 Koros; Tibor Expandable spinal implants
US5665122A (en) 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US5653763A (en) * 1996-03-29 1997-08-05 Fastenetix, L.L.C. Intervertebral space shape conforming cage device
FR2753368B1 (en) 1996-09-13 1999-01-08 Chauvin Jean Luc EXPANSIONAL OSTEOSYNTHESIS CAGE
US6190414B1 (en) 1996-10-31 2001-02-20 Surgical Dynamics Inc. Apparatus for fusion of adjacent bone structures
US5749916A (en) 1997-01-21 1998-05-12 Spinal Innovations Fusion implant
US6120506A (en) 1997-03-06 2000-09-19 Sulzer Spine-Tech Inc. Lordotic spinal implant
US20010031254A1 (en) 1998-11-13 2001-10-18 Bianchi John R. Assembled implant
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
US6224631B1 (en) 1998-03-20 2001-05-01 Sulzer Spine-Tech Inc. Intervertebral implant with reduced contact area and method
FR2782632B1 (en) 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg EXPANSIBLE INTERSOMATIC FUSION CAGE
US6159244A (en) 1999-07-30 2000-12-12 Suddaby; Loubert Expandable variable angle intervertebral fusion implant
US6183517B1 (en) 1998-12-16 2001-02-06 Loubert Suddaby Expandable intervertebral fusion implant and applicator
US6224807B1 (en) 1999-03-25 2001-05-01 Velcro Industries B.V. Methods of molding fasteners and of forming fastener molds
US6419705B1 (en) * 1999-06-23 2002-07-16 Sulzer Spine-Tech Inc. Expandable fusion device and method
WO2001078798A1 (en) 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
US6332895B1 (en) 2000-03-08 2001-12-25 Loubert Suddaby Expandable intervertebral fusion implant having improved stability
EP1296620B8 (en) 2000-03-22 2006-12-27 Synthes (U.S.A.) Multipiece implants formed of bone material
US6468311B2 (en) 2001-01-22 2002-10-22 Sdgi Holdings, Inc. Modular interbody fusion implant

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309777A (en) * 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4501269A (en) 1981-12-11 1985-02-26 Washington State University Research Foundation, Inc. Process for fusing bone joints
US4743256A (en) 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US4961740A (en) 1988-10-17 1990-10-09 Surgical Dynamics, Inc. V-thread fusion cage and method of fusing a bone joint
US5026373A (en) 1988-10-17 1991-06-25 Surgical Dynamics, Inc. Surgical method and apparatus for fusing adjacent bone structures
US4961740B1 (en) 1988-10-17 1997-01-14 Surgical Dynamics Inc V-thread fusion cage and method of fusing a bone joint
US5458638A (en) 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant
US5055104A (en) 1989-11-06 1991-10-08 Surgical Dynamics, Inc. Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
US5290312A (en) * 1991-09-03 1994-03-01 Alphatec Artificial vertebral body
US5489307A (en) 1993-02-10 1996-02-06 Spine-Tech, Inc. Spinal stabilization surgical method
US5723013A (en) * 1995-02-06 1998-03-03 Jbs S.A. Spacer implant for substituting missing vertebrae
FR2734148A1 (en) * 1995-05-15 1996-11-22 Biomat Spinal intervertebral disc replacement prosthesis
EP0832622A2 (en) * 1996-09-26 1998-04-01 Howmedica GmbH A spinal cage assembly
WO1998046173A1 (en) * 1997-04-15 1998-10-22 Synthes Ag Chur Telescopic vertebral prosthesis
DE29806830U1 (en) * 1998-04-16 1998-07-02 Aesculap Ag & Co Kg Intervertebral fusion implant

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814756B1 (en) 2000-02-04 2004-11-09 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
US6652584B2 (en) 2000-02-04 2003-11-25 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
US7008453B1 (en) 2000-02-04 2006-03-07 Sdgi Holdings, Inc. Expandable push-in arcuate interbody spinal fusion implant with cylindrical configuration during insertion
US6793679B2 (en) 2000-02-04 2004-09-21 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
US6972035B2 (en) 2000-04-19 2005-12-06 Michelson Gary K Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
US7608107B2 (en) 2000-07-07 2009-10-27 Warsaw Orthopedic, Inc. Expandable implant with interlocking walls and method for use thereof
US6808537B2 (en) 2000-07-07 2004-10-26 Gary Karlin Michelson Expandable implant with interlocking walls
US8262736B2 (en) 2001-03-27 2012-09-11 Warsaw Orthopedic, Inc. Radially expanding implants
US7128760B2 (en) 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
US7410501B2 (en) 2001-03-27 2008-08-12 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and method of insertion
US7445636B2 (en) 2001-03-27 2008-11-04 Warsaw Orthopedic, Inc. Instrumentation for use with radially expanding interbody spinal fusion implant
US7740658B2 (en) * 2002-01-17 2010-06-22 Concept Matrix, Llc Intervertebral disk prosthesis methods of use
US6783547B2 (en) 2002-04-05 2004-08-31 Howmedica Corp. Apparatus for fusing adjacent bone structures
EP1350489A3 (en) * 2002-04-05 2003-12-17 Howmedica Osteonics Corp. Apparatus for fusing adjacent bone structures
US10098751B2 (en) 2004-06-09 2018-10-16 Vexim Methods and apparatuses for bone restoration
US10813771B2 (en) 2004-06-09 2020-10-27 Vexim Methods and apparatuses for bone restoration
US11752004B2 (en) 2004-06-09 2023-09-12 Stryker European Operations Limited Systems and implants for bone restoration
EP2231073A1 (en) * 2007-12-12 2010-09-29 Intelligent Implant Systems Load sharing interbody fusion device
EP2231073A4 (en) * 2007-12-12 2013-07-17 Intelligent Implant Systems Load sharing interbody fusion device
CN102014801A (en) * 2008-03-07 2011-04-13 新特斯有限责任公司 Expandable interbody spacer device
KR101547321B1 (en) 2008-03-07 2015-08-25 신세스 게엠바하 Expandable interbody spacer device
WO2009114381A1 (en) * 2008-03-07 2009-09-17 Synthes Usa, Llc Expandable interbody spacer device
WO2014091030A1 (en) * 2012-12-14 2014-06-19 Facet-Link Inc. Intervertebral cage expandable step-by-step
CN105188613A (en) * 2012-12-14 2015-12-23 费瑟特-链接公司 Intervertebral cage expandable step-by-step
US10603080B2 (en) 2013-12-23 2020-03-31 Vexim Expansible intravertebral implant system with posterior pedicle fixation
US11344335B2 (en) 2013-12-23 2022-05-31 Stryker European Operations Limited Methods of deploying an intravertebral implant having a pedicle fixation element

Also Published As

Publication number Publication date
AU773345B2 (en) 2004-05-20
US20030004575A1 (en) 2003-01-02
JP2003502110A (en) 2003-01-21
EP1189557B1 (en) 2006-08-23
DE60030282T2 (en) 2007-08-30
US6419705B1 (en) 2002-07-16
KR20020035005A (en) 2002-05-09
US6830589B2 (en) 2004-12-14
AU5756400A (en) 2001-01-09
EP1189557A1 (en) 2002-03-27
DE60030282D1 (en) 2006-10-05
ATE336971T1 (en) 2006-09-15

Similar Documents

Publication Publication Date Title
EP1189557B1 (en) Expandable fusion device
US7985231B2 (en) Bone fusion device and methods
US11382761B2 (en) Expandable interbody spacer
US8187334B2 (en) System and methods for spinal fusion
US7575601B2 (en) Locking expandable implant and method
US8366779B2 (en) Expandable implant, instrument, and method
US7879096B2 (en) Centrally driven expandable implant
US8268004B2 (en) Stabilized, adjustable expandable implant and method
US20140148902A1 (en) Expandable implant, instrument, and method
EP3017793A2 (en) A plastically deformable inter-osseous device
AU2001292826B2 (en) Osteogenic fusion devices
AU1814799A (en) Osteogenic fusion device
AU2005206157A1 (en) Universal interference cleat for vertebral prosthesis
KR20010075238A (en) Box cage for intervertebral body fusion
WO2002071986A2 (en) Vertebral body replacement device
US20220125596A1 (en) Expandable interbody spacer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 57564/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020017015939

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 504322

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000943028

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000943028

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000943028

Country of ref document: EP