WO2001022030A1 - Device for geometric determination of poorly accessible hollows in one workpiece - Google Patents

Device for geometric determination of poorly accessible hollows in one workpiece Download PDF

Info

Publication number
WO2001022030A1
WO2001022030A1 PCT/EP2000/009299 EP0009299W WO0122030A1 WO 2001022030 A1 WO2001022030 A1 WO 2001022030A1 EP 0009299 W EP0009299 W EP 0009299W WO 0122030 A1 WO0122030 A1 WO 0122030A1
Authority
WO
WIPO (PCT)
Prior art keywords
bore
deflecting mirror
workpiece
sleeve
detection device
Prior art date
Application number
PCT/EP2000/009299
Other languages
German (de)
French (fr)
Inventor
Frank Brosette
Mario Schroeder
Original Assignee
Mycrona Gesellschaft Für Innovative Messtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE29916577U external-priority patent/DE29916577U1/en
Application filed by Mycrona Gesellschaft Für Innovative Messtechnik Gmbh filed Critical Mycrona Gesellschaft Für Innovative Messtechnik Gmbh
Priority to AU75221/00A priority Critical patent/AU7522100A/en
Priority to EP00964226A priority patent/EP1221018A1/en
Publication of WO2001022030A1 publication Critical patent/WO2001022030A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters

Definitions

  • the invention relates to a device for optoelectronic geometry measurement of difficult-to-access cutouts, cavities or bores in a workpiece, in particular for the internal measurement of bores in the wall of a hollow body, such as injection bores in the interior of a fuel injection valve for internal combustion engines.
  • DE 196 11 613 AI discloses a method and a device for measuring bores, in particular injection bores on fuel injection valves for internal combustion engines, in which the object to be measured is clamped in a holding device and measured with a measuring device.
  • the position and geometry of the bore to be measured is determined using an optoelectronic measuring method.
  • the object to be measured is adjusted in a geometrically defined position by means of the recording device before the measuring process, the leading edges and the trailing edges of the bore to be measured being successively measured using an optoelectronic measuring device, such as a CCD camera, during the measuring process.
  • an illumination source such as a light source, is introduced into the interior of the injection valve.
  • the geometric position of the object is converted in the recording device and the measurement results of the optoelectronic measurement method in a connected evaluation unit by means of a corresponding evaluation program into geometric data of the bore to be measured.
  • a camera is provided, the optical axis of which is coaxial with the axis of the bore to be measured.
  • the receiving device for holding the object to be measured is formed by a chuck that can be freely moved in three planes and pivoted about three axes. Light guides are used for lighting, which are inserted into an axial bore of the valve body of the fuel injection valve, from which the injection bore to be measured leads away.
  • this measurement method has
  • the invention has for its object to provide a device of the type mentioned, with the difficult to access holes in workpieces, especially holes in hollow bodies, such as sleeve-like or tubular hollow bodies, in particular small holes located therein with a very small diameter of the inlet bore, exactly and completely can be measured.
  • a device for optoelectronic geometry measurement of recesses, cavities or bores in a workpiece that are difficult to access in particular for the internal measurement of bores in the wall of a hollow body, such as injection bores in the interior of a fuel injection valve for internal combustion engines, with an optoelectronic detection device, if appropriate with a lens, such as a CCD camera, with an illumination source that is located inside or outside the workpiece, for illuminating a location to be imaged inside the recess or the cavity or the bore, and with an evaluation device, with a deflecting mirror that goes into the Recess or the cavity can be placed, which deflects the optical axis of the optoelectronic detection device, a beam of rays emanating from the illumination source being introduced into the optical axis of the detection device and onto the deflecting mirror l is directed from where the beam of rays falls on the location to be imaged inside the recess or the cavity or the bore, such as the inlet
  • a prism is used instead of the deflection mirror.
  • the beam is reflected into the optical axis of the detection device by means of a beam splitter and directed onto the deflection mirror, from where it falls on the location to be imaged or the injection hole, and the reflected beam or diffusely reflected light via the deflection mirror through the beam splitter is steerable into the detection device. Both specular and diffusely reflecting points or locations can be depicted sharply.
  • both the illumination source and the beam splitter which is located away from the lower end of the holder, are arranged on the holder in addition to the deflecting mirror or prism.
  • the deflection mirror and / or the beam splitter can be changed in their geometric position with respect to the holder.
  • the holder is a sleeve which has the deflecting mirror at its lower end facing the workpiece or retractable into the recess or the cavity or the hollow body, above which the beam splitter is located in the area of the other end in the sleeve is located and the sleeve in the area of the deflecting mirror and optionally in the area of the beam splitter has openings for the passage of the beam.
  • the holder can be arranged in at least one of the three spatial directions and, if necessary, rotatable by at least one angle.
  • the workpiece for determining its coordinates is also in a geometrically measurable position and is arranged to be movable and rotatable through at least one angle in at least one of the three spatial directions.
  • both the workpiece and - preferably independently of it - the sleeve are in a geometrically defined position, so that the coordinates of the workpiece and or sleeve can be specified with the measurement. In this way, any location within the workpiece can be measured or mapped.
  • the sleeve is fixedly connected to the optoelectronic detection device, which is located outside the workpiece or the hollow body, by means of a support arm.
  • the sleeve can have a single or multiple kink, with a beam deflection or beam deflection device being located in the area of each kink.
  • This design has the advantage that it can be used for measuring undercuts or can be seen "around the corner" with it.
  • At least one optical system such as a lens, is arranged within the beam path between the deflection mirror and the beam splitter.
  • the bore is irradiated from outside the workpiece or the hollow body at its end opposite the deflecting mirror or the sleeve by means of an illumination source, so that radiation falls through the bore from the outside.
  • the deflecting mirror has at least two deflecting surfaces, which converge in an inverted V-shape, namely ⁇ -shaped, at an angle; this deflecting mirror thus represents a double mirror.
  • a distance can be determined which arises between the two focal points of the two mirror halves.
  • This distance can be changed by moving the optoelectronic detection device, such as a CCD camera, or the lens, so that a cone can be scanned from the inside.
  • the movable units namely camera, lens and workpiece, must be equipped with a measuring device for geometric measurement. The inside of a cone of a workpiece can then be measured by evaluating the measuring positions.
  • the bore can be from outside the workpiece or the
  • Hollow body are irradiated at their end opposite the deflecting mirror or the sleeve by means of an illumination source, so that radiation, in particular visible light, falls through the bore from the outside.
  • Figure 1 is a schematic diagram of the device for displaying the optical
  • FIG. 2 shows a technical embodiment of the device
  • FIG. 3 shows another example of a device for measuring any location within a workpiece with an inner cone, the workpiece, optoelectronic detection device and objective and optionally deflecting mirror being movable relative to one another,
  • Figure 4 shows an example of the device of Figure 3, wherein the deflecting mirror is a double mirror for measuring the inner cone and
  • FIG. 5 shows the example of the device according to Figure 4 to illustrate the
  • a hollow body is shown in section, which here is a fuel injection valve 3, which has bore channels 2, 2 'as injection bores of the fuel injection valve 3, the central axes 19, 19' of which are inclined differently.
  • the bore channel 2 has a lower edge 1 of the bore, also called an inlet bore, which is arranged deep in the region of the lower end of the fuel injection valve 3 due to the position of the injection bore 2.
  • the workpiece 3 can be adjusted in a geometrically defined position by means of a holding device (not shown), wherein the geometric position of the workpiece 3 can be changed in a predeterminable manner that can be evaluated by measurement technology.
  • a deflection mirror 4 is inserted into the lower end thereof, which is used to measure the inlet bore 1 of the injection channel 2 the inlet hole 1 is positioned.
  • the deflecting mirror 4 can be a surface deflecting mirror or a prism.
  • Light from an illumination source 10 outside the fuel injection valve 3 is directed onto the deflection mirror 4 via an arranged beam splitter 11, which is preferably located outside the fuel injection valve 3 and is located between an optoelectronic detection device 5 and the deflection mirror 4, so that the beam from the illumination source 10, delimited by edge rays 6 of the beam path, onto which deflecting mirror 4 falls.
  • the deflecting mirror 4 is aligned such that the beam path preferably falls perpendicularly onto the wall 7 of the fuel injection valve 3 and thus onto the inlet bore 1.
  • the radiation preferably light from the illumination source 10
  • the detection device 5 is located behind the beam splitter 11. The light reflected or diffusely scattered back from the measurement point or from the surface of the measurement point is fed to the detection device 5 via the deflection mirror 4.
  • Figure 2 shows a technical embodiment of the device, consisting of a tubular, elongated-narrow sleeve 13 or tube, which dips with its tip into the inner bore 20 of the fuel injector 3.
  • the deflection mirror 4 is located within the lower, immersed end of the sleeve 13 or the tube 13, the sleeve 13 having an opening 15 at the lower end for the passage of the beam 6 from the light source 10.
  • the jet is expensive 11 inclined, which is installed in the tube 13.
  • the wall of the sleeve 13 has a further opening 14 for the passage of light from the light source 10.
  • the sleeve 13 is fixedly connected to the optoelectronic detection device 5 by means of a support arm 16, so that the detection device 5, the support arm 16 and the Sleeve 13, and thus the beam splitter 11 and the deflecting mirror 4, form a unit, which can move in the three spatial axes and can also be swiveled if necessary.
  • a further optical system can be arranged inside the sleeve 13 or the tube 13, consisting, for example, of lenses 17, 18.
  • the workpiece 3 is correspondingly rotated about its central axis 8, which in the example of FIG. 2 coincides with the optical axis 12 of the detection device 5 until the respective inlet bore is detected by the beam path 6.
  • the different spatial position of the inlet bores 1 of the bore channels 2, 2 'in FIG. 2 and thus their different geometric representation in the image plane of the detection device 5 can be converted using a computer program in order to determine the exact cross sections of the inlet bores in this way.
  • FIGS. 3 to 5 show further examples of the device for measuring any location within a workpiece 21 and for measuring inner cones 22 of a workpiece 21.
  • the workpiece 21 has an inner cone 22, into which the mirror 4, which is attached to a holder, not shown, is inserted.
  • the measuring arrangement also includes the optoelectronic detection device, such as a CCD camera 5, the beam splitter 11 and a lens 17, which focuses a selected point 23 or location 23 on the inner surface 22 of the inner cone.
  • the workpiece 21, the lens 17 and the CCD camera 5 are each equipped with a measuring device 24, 24 ', 24 "for determining coordinates, so that when moving the workpiece 21, lens 17 and possibly the CCD camera 5 further locations or Points can be imaged sharply on the inner conical surface 22.
  • the double arrows indicate the main direction of movement in the z-axis direction, although it is possible to move and pivot in all coordinate directions and solid angles.
  • a double mirror 26 is used, as shown in FIGS. 4 and 5, a distance s and s' can be determined.
  • the distance s is the mutual distance between the two focus points 25, 25 'on the inner surface 22 of the inner cone of the workpiece 21.
  • the double mirror 26 has the two mirror surfaces 27, 27', which are reversely V-shaped at an angle with respect to the Lens 17 converge inclined, the upper common edge facing lens 17, as can be seen from FIGS. 4 and 5.
  • the distance between the two focus points can be changed by moving either the CCD camera 5 or the lens 17 or, if appropriate, the workpiece 21, which can be seen from FIG. 5.
  • the movable units such as workpiece, lens and CCD camera, have measuring devices 24, 24 ', 24 "(FIG. 3).
  • the inner cone 22 can be measured by evaluating the measuring positions, so that the cone opening angle ⁇ can also be determined ,
  • the invention can be used, for example, for the geometry measurement of recesses, cavities or bores in a workpiece that are difficult to access, in particular for the internal measurement of bores in a hollow body, such as injection bores in the interior of a fuel injection valve for internal combustion engines.

Abstract

The invention relates to a device for optoelectronic geometric measurement of poorly accessible hollows, cavities or cores (2, 2') in one work piece (3), especially for measuring the inside of bores (2, 2') in a hollow body (3) such as an injection bore (2, 2') on the inside of a fuel injection valve (3) for internal combustion engines. Said inventive device comprises an optoelectronic detection unit (5), optionally provided with an objective, such as a CCD-camera, with an illuminating source (10), which is located on the inside or outside of the work piece (3), for illuminating sites on the inside of said hollow or of said cavity or the cavity and also comprises an evaluation unit. A deflection mirror (4, 26) which can be placed in said recess or in a cavity (1), controls the optical axis (12) of said optoelectronic detection unit (5), whereby a beam of light (6) emanating from an illuminating source (10) can be brought into the optical axis (12) of said detection unit (5) and directed to said deflection mirror (4) wherefrom the beam of light (6) shines on the site on the inside of said recess or of said cavity or of said bore i.e. an inlet bore (1) or injection bore (2, 2'), and said reflected beam of light can be directed by said deflection mirror (4) to the detection unit (5). Said deflection mirror (4) is located at the lower end of a holder (13) which at least can be elevated.

Description

Vorrichtung zur Geometrievermessung von schwer zugänglichen Aussparungen in einem Werkstück Device for measuring the geometry of recesses difficult to access in a workpiece
Technisches Gebiet: Die Erfindung betrifft eine Vorrichtung zur optoelektronischen Geometrievermessung von schwer zuganghchen Aussparungen, Hohlräumen oder Bohrungen in einem Werkstück, insbesondere zur Innenvermessung von Bohrungen in der Wandung eines Hohlkörpers, wie Einspritzbohrungen im Innern eines Kraftstoffeinspritzventils für Brennkraftmaschinen.TECHNICAL FIELD: The invention relates to a device for optoelectronic geometry measurement of difficult-to-access cutouts, cavities or bores in a workpiece, in particular for the internal measurement of bores in the wall of a hollow body, such as injection bores in the interior of a fuel injection valve for internal combustion engines.
Stand der Technik:State of the art:
Durch die DE 196 11 613 AI ist ein Verfahren sowie eine Vorrichtung zum Vermessen von Bohrungen bekannt geworden, insbesondere von Einspritzbohrungen an Kraftstoffeinspritzventilen für Brennkraftmaschinen, bei dem das zu vermessende Objekt in eine Aufnahmevorrichtung eingespannt und mit einer Messeinrichtung vermessen wird. Die Lage- und Geometrieermittlung der zu vermessenden Bohrung erfolgt mittels eines optoelektronischen Messverfahrens. Dazu wird das zu vermessende Objekt mittels der Aufnahmevorrichtung vor dem Messvorgang in einer geometrisch festgelegten Position justiert, wobei während des Messvorganges die Einlaufkanten und die Auslaufkanten der zu vermessenden Bohrung nacheinander mittels einer optoelektronischen Messeinrichtung, wie CCD- Kamera, vermessen werden. Vor dem Messvorgang wird in das Innere des Einspritzventils eine Beleuchtungsquelle, wie Lichtquelle, eingebracht. Die geometrische Lage des Objekts wird in der Aufnahmevorrichtung und die Messergebnisse des optoelektronischen Messverfahrens in einer angeschlossenen Auswerteeinheit mittels eines entsprechenden Auswerteprogramms in geometrische Daten der zu vermessenden Bohrung umgewandelt. Es ist eine Kamera vorgesehen, deren optische Achse zur Achse der zu vermessenden Bohrung koaxial verläuft. Die Aufnahmevorrichtung zur Halterung des zu vermessenden Objekts wird dabei durch ein in drei Ebenen frei verschiebbares und um drei Achsen schwenkbares Spannfutter gebildet. Zur Beleuchtung dienen Lichtleiter, die in eine axiale Bohrung des Ventilkörpers des Kraftstoffeinspritzventils eingesetzt sind, von der die zu vermessende Einspritzbohrung abführt. Dieses Messverfahren hat jedochDE 196 11 613 AI discloses a method and a device for measuring bores, in particular injection bores on fuel injection valves for internal combustion engines, in which the object to be measured is clamped in a holding device and measured with a measuring device. The position and geometry of the bore to be measured is determined using an optoelectronic measuring method. For this purpose, the object to be measured is adjusted in a geometrically defined position by means of the recording device before the measuring process, the leading edges and the trailing edges of the bore to be measured being successively measured using an optoelectronic measuring device, such as a CCD camera, during the measuring process. Before the measuring process, an illumination source, such as a light source, is introduced into the interior of the injection valve. The geometric position of the object is converted in the recording device and the measurement results of the optoelectronic measurement method in a connected evaluation unit by means of a corresponding evaluation program into geometric data of the bore to be measured. A camera is provided, the optical axis of which is coaxial with the axis of the bore to be measured. The receiving device for holding the object to be measured is formed by a chuck that can be freely moved in three planes and pivoted about three axes. Light guides are used for lighting, which are inserted into an axial bore of the valve body of the fuel injection valve, from which the injection bore to be measured leads away. However, this measurement method has
Figure imgf000003_0001
den Nachteil, dass die Messung der Unterkante der Bohrung, das ist die Einlaufbohrung, welche sich im Inneren des Ventils befindet, durch das Bohrloch selbst erfolgt. Durch die Bohrung entsteht eine optische Blende, welche die Messung mittels der optoelektronischen Messeinrichtung verfälscht. Sind die Bohrungen sehr klein, kann deshalb eine solche Einlaufbohrung bzw. die Unterkante des Bohrkanals mit dem vorgenannten Verfahren nicht mehr gemessen werden.
Figure imgf000003_0001
the disadvantage that the measurement of the lower edge of the bore, that is the inlet bore, which is located inside the valve, takes place through the borehole itself. An optical aperture is created through the hole, which falsifies the measurement by means of the optoelectronic measuring device. If the bores are very small, such an inlet bore or the lower edge of the bore channel can therefore no longer be measured using the aforementioned method.
Technische Aufgabe:Technical task:
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Gattung zu schaffen, mit der schwer zugängliche Bohrungen in Werkstücken, insbesondere Bohrungen in Hohlkörpern, wie hülsenartige oder rohrförmige Hohlkörper, insbesondere darin befindliche kleine Bohrungen mit sehr kleinem Durchmesser der Einlaufbohrung, exakt und vollständig vermessen werden können.The invention has for its object to provide a device of the type mentioned, with the difficult to access holes in workpieces, especially holes in hollow bodies, such as sleeve-like or tubular hollow bodies, in particular small holes located therein with a very small diameter of the inlet bore, exactly and completely can be measured.
Offenbarung der Erfindung sowie deren Vorteile:Disclosure of the invention and its advantages:
Gelöst wird die Aufgabe durch eine Vorrichtung zur optoelektronischen Geometrievermessung von schwer zugänglichen Aussparungen, Hohlräumen oder Bohrungen in einem Werkstück, insbesondere zur Innenvermessung von Bohrungen in der Wandung eines Hohlkörpers, wie Einspritzbohrungen im Innern eines Kraftstoffein- spritzventils für Brennkraftmaschinen, mit einer optoelektronischen Erfassungseinrichtung, gegebenenfalls mit Objektiv, wie CCD-Kamera, mit einer Beleuchtungsquelle, welche sich innerhalb oder außerhalb des Werkstücks befindet, zur Beleuchtung eines abzubildenden Ortes im Inneren der Aussparung oder des Hohlraumes oder der Bohrung sowie mit einer Auswerteeinrichtung, mit einem Ablenk- spiegel, der in die Aussparung oder den Hohlraum plazierbar ist, welcher die optische Achse der optoelektronischen Erfassungseinrichtung umlenkt, wobei ein von der Beleuchtungsquelle ausgehendes Strahlenbündel in die optische Achse der Erfassungseinrichtung eingebracht und auf den Ablenkspiegel gelenkt wird, von wo das Strahlenbündel auf den abzubildenden Ort im Inneren der Aussparung oder des Hohlraumes oder der Bohrung, wie Einlaufbohrung oder Einspritzbohrung, fällt, und das reflektierte Licht über den Ablenkspiegel in die Erfassungseinrichtung umlenkbar ist, wobei der Ablenkspiegel am unteren Ende einer wenigstens in der Höhe verfahrbaren Halterung angeordnet ist. In einer weiteren Ausgestaltung der Vorrichtung findet statt des Ablenkspiegels ein Prisma Verwendung. In weiterer vorteilhafter Ausgestaltung wird das Strahlenbündel mittels eines Strahlteilers in die optische Achse der Erfassungseinrichtung eingespiegelt und auf den Ablenkspiegel gelenkt, von wo es auf den abzubildenden Ort oder die Einspritzbohrung fällt, und das reflektierte Strahlenbündel bzw. diffus reflektierte Licht über den Ablenkspiegel durch den Strahlteiler in die Erfassungseinrichtung lenkbar ist. Es können sowohl spiegelnd wie auch diffus reflektierende Punkte oder Orte scharf abgebildet werden.The object is achieved by a device for optoelectronic geometry measurement of recesses, cavities or bores in a workpiece that are difficult to access, in particular for the internal measurement of bores in the wall of a hollow body, such as injection bores in the interior of a fuel injection valve for internal combustion engines, with an optoelectronic detection device, if appropriate with a lens, such as a CCD camera, with an illumination source that is located inside or outside the workpiece, for illuminating a location to be imaged inside the recess or the cavity or the bore, and with an evaluation device, with a deflecting mirror that goes into the Recess or the cavity can be placed, which deflects the optical axis of the optoelectronic detection device, a beam of rays emanating from the illumination source being introduced into the optical axis of the detection device and onto the deflecting mirror l is directed from where the beam of rays falls on the location to be imaged inside the recess or the cavity or the bore, such as the inlet bore or injection bore, and the reflected light can be deflected via the deflection mirror into the detection device, the deflection mirror at the lower end of one at least in height movable bracket is arranged. In a further embodiment of the device, a prism is used instead of the deflection mirror. In a further advantageous embodiment, the beam is reflected into the optical axis of the detection device by means of a beam splitter and directed onto the deflection mirror, from where it falls on the location to be imaged or the injection hole, and the reflected beam or diffusely reflected light via the deflection mirror through the beam splitter is steerable into the detection device. Both specular and diffusely reflecting points or locations can be depicted sharply.
In einer weiteren Ausgestaltung der Vorrichtung sind an der Halterung neben dem Ablenkspiegel oder Prisma sowohl die Beleuchtungsquelle als auch der Strahlteiler angeordnet, der sich vom unteren Ende der Halterung entfernt befindet. In einer weiteren Ausgestaltung können der Ablenkspiegel und/oder der Strahlteiler in ihrer geometrischen Lage bezüglich der Halterung veränderbar sein.In a further embodiment of the device, both the illumination source and the beam splitter, which is located away from the lower end of the holder, are arranged on the holder in addition to the deflecting mirror or prism. In a further embodiment, the deflection mirror and / or the beam splitter can be changed in their geometric position with respect to the holder.
In einer weiteren bevorzugten Ausgestaltung der Vorrichtung ist die Halterung eine Hülse, die an ihrem unteren, dem Werkstück zugewandten oder in die Aussparung oder den Hohlraum oder den Hohlkörper einfahrbaren Ende den Ablenkspiegel aufweist, oberhalb desselben im Bereich des anderen Endes in der Hülse sich der Strahlteiler befindet und die Hülse im Bereich des Ablenkspiegels und gegebenenfalls im Bereich des Strahlteilers Öffnungen für den Durchtritt des Strahlenbündels aufweist. Die Halterung kann zur Bestimmung der Koordinaten des abzubildenden Ortes in wenigstens einer der drei Raumrichtungen verfahrbar und gegebenenfalls drehbar um wenigstens einen Winkel angeordnet sein.In a further preferred embodiment of the device, the holder is a sleeve which has the deflecting mirror at its lower end facing the workpiece or retractable into the recess or the cavity or the hollow body, above which the beam splitter is located in the area of the other end in the sleeve is located and the sleeve in the area of the deflecting mirror and optionally in the area of the beam splitter has openings for the passage of the beam. In order to determine the coordinates of the location to be imaged, the holder can be arranged in at least one of the three spatial directions and, if necessary, rotatable by at least one angle.
In einer weiteren bevorzugten Ausgestaltung der Vorrichtung befindet sich auch das Werkstück zur Bestimmung seiner Koordinaten in einer geometrisch messbaren Position und ist in wenigstens einer der drei Raumrichtungen verfahrbahr sowie drehbar um wenigstens einen Winkel angeordnet. Damit befindet sich sowohl das Werkstück als auch - vorzugsweise unabhängig davon - die Hülse in einer geometrisch festgelegten Position, so dass mit der Vermessung die Koordinaten von Werkstück und oder Hülse angegeben werden können. Auf diese Weise kann jeder Ort innerhalb des Werkstücks vermessen oder abgebildet werden. In weiterer Ausgestaltung ist die Hülse mittels eines Tragarmes fest mit der optoelektronischen Erfassungseinrichtung verbunden, die sich außerhalb des Werkstücks bzw. des Hohlkörpers befindet.In a further preferred embodiment of the device, the workpiece for determining its coordinates is also in a geometrically measurable position and is arranged to be movable and rotatable through at least one angle in at least one of the three spatial directions. This means that both the workpiece and - preferably independently of it - the sleeve are in a geometrically defined position, so that the coordinates of the workpiece and or sleeve can be specified with the measurement. In this way, any location within the workpiece can be measured or mapped. In a further embodiment, the sleeve is fixedly connected to the optoelectronic detection device, which is located outside the workpiece or the hollow body, by means of a support arm.
Des Weiteren kann die Hülse einfach oder mehrfach geknickt ausgeführt sein, wobei sich im Bereich jedes Knicks je eine Strahlablenkungs- oder Strahlumlenkungs- einrichtung befindet. Diese Gestaltung hat den Vorteil, dass sie für die Vermessung von Hinterschneidungen eingesetzt oder mit ihr quasi "um die Ecke" gesehen werden kann.Furthermore, the sleeve can have a single or multiple kink, with a beam deflection or beam deflection device being located in the area of each kink. This design has the advantage that it can be used for measuring undercuts or can be seen "around the corner" with it.
Bei einer weiteren Ausgestaltung der Vorrichtung ist innerhalb des Strahlenganges zwischen Ablenkspiegel und Strahlteiler mindestens ein optisches System, wie Linse, angeordnet.In a further embodiment of the device, at least one optical system, such as a lens, is arranged within the beam path between the deflection mirror and the beam splitter.
In einer weiteren Ausgestaltung der Vorrichtung wird die Bohrung von außerhalb des Werkstücks bzw. des Hohlkörpers an ihrem dem Ablenkspiegel bzw. der Hülse entgegengesetzten Ende mittels einer Beleuchtungsquelle bestrahlt, so dass Strahlung von außen durch die Bohrung fällt.In a further embodiment of the device, the bore is irradiated from outside the workpiece or the hollow body at its end opposite the deflecting mirror or the sleeve by means of an illumination source, so that radiation falls through the bore from the outside.
In einer weiteren Ausgestaltung der Vorrichtung weist der Ablenkspiegel wenigstens zwei ablenkende Oberflächen auf, welche umgekehrt V-förmig, nämlich Λ-fbrmig, unter einem Winkel zusammenlaufen; somit stellt dieser Ablenkspiegel einen Doppelspiegel dar. Auf diese Weise kann ein Abstand ermittelt werden, welcher zwischen den beiden Fokuspunkten der beiden Spiegelhälften entsteht. Dieser Abstand kann durch Verfahren der optoelektronischen Erfassungseinrichtung, wie CCD-Kamera, oder des Objektivs verändert werden, so dass ein Kegel von innen abgetastet werden kann. Dazu müssen die verfahrbaren Einheiten, nämlich Kamera, Objektiv und Werkstück, mit einer Meßeinrichtung zur geometrischen Vermessung ausgestattet sein. Durch Auswerten der Meßpositionen kann dann das Innere eines Kegels eines Werkstücks vermessen werden. Des Weiteren kann die Bohrung von außerhalb des Werkstücks bzw. desIn a further embodiment of the device, the deflecting mirror has at least two deflecting surfaces, which converge in an inverted V-shape, namely Λ-shaped, at an angle; this deflecting mirror thus represents a double mirror. In this way, a distance can be determined which arises between the two focal points of the two mirror halves. This distance can be changed by moving the optoelectronic detection device, such as a CCD camera, or the lens, so that a cone can be scanned from the inside. For this purpose, the movable units, namely camera, lens and workpiece, must be equipped with a measuring device for geometric measurement. The inside of a cone of a workpiece can then be measured by evaluating the measuring positions. Furthermore, the bore can be from outside the workpiece or the
Hohlkörpers an ihrem dem Ablenkspiegel bzw. der Hülse entgegengesetzten Ende mittels einer Beleuchtungsquelle bestrahlt werden, so dass Strahlung, insbesondere sichtbares Licht, von außen durch die Bohrung fällt.Hollow body are irradiated at their end opposite the deflecting mirror or the sleeve by means of an illumination source, so that radiation, in particular visible light, falls through the bore from the outside.
Kurzbeschreibung der Zeichnung, in der zeigen:Brief description of the drawing, in which:
Figur 1 eine Prinzipskizze der Vorrichtung zur Darstellung der optischenFigure 1 is a schematic diagram of the device for displaying the optical
Elemente zur Vermessung einer sehr kleinen Bohrung,Elements for measuring a very small hole,
Figur 2 eine technische Ausführung der Vorrichtung, Figur 3 ein weiteres Beispiel einer Vorrichtung zur Vermessung eines beliebigen Ortes innerhalb eines Werkstücks mit Innenkegel, wobei Werkstück, optoelektronische Erfassungseinrichtung und Objektiv sowie gegebenenfalls Ablenkspiegel relativ zueinander verfahrbar sind,2 shows a technical embodiment of the device, FIG. 3 shows another example of a device for measuring any location within a workpiece with an inner cone, the workpiece, optoelectronic detection device and objective and optionally deflecting mirror being movable relative to one another,
Figur 4 ein Beispiel der Vorrichtung von Figur 3, wobei der Ablenkspiegel ein Doppelspiegel ist zur Vermessung des Innenkegels undFigure 4 shows an example of the device of Figure 3, wherein the deflecting mirror is a double mirror for measuring the inner cone and
Figur 5 das Beispiel der Vorrichtung gemäß der Figur 4 zur Darstellung derFigure 5 shows the example of the device according to Figure 4 to illustrate the
Abstandsänderung beim Verfahren der CCD-Kamera oder des Objektives.Distance change when moving the CCD camera or the lens.
Wege zur Ausführung der Erfindung:WAYS OF CARRYING OUT THE INVENTION:
In den Figuren 1 und 2 ist ein Hohlkörper im Schnitt dargestellt, der hier ein Kraftstoffeinspritzventil 3 ist, welches Bohrungskanäle 2, 2' als Einspritzbohrungen des Kraftstoffeinspritzventils 3 aufweist, deren Mittelachsen 19, 19' unterschiedlich geneigt sind. Der Bohrungskanal 2 besitzt eine Bohrungs unterkante 1, auch Einlaufbohrung genannt, die aufgrund der Lage der Einspritzbohrung 2 tief direkt im Bereich des unteren Endes des Kraftstoffeinspritzventils 3 angeordnet ist. Das Werkstück 3 ist mittels einer nichtgezeigten Aufnahmevorrichtung in einer geometrisch festgelegten Position justierbar, wobei die geometrische Lage des Werkstücks 3 in vorgebbarer, messtechnisch auswertbarer Weise verändert werden kann.1 and 2, a hollow body is shown in section, which here is a fuel injection valve 3, which has bore channels 2, 2 'as injection bores of the fuel injection valve 3, the central axes 19, 19' of which are inclined differently. The bore channel 2 has a lower edge 1 of the bore, also called an inlet bore, which is arranged deep in the region of the lower end of the fuel injection valve 3 due to the position of the injection bore 2. The workpiece 3 can be adjusted in a geometrically defined position by means of a holding device (not shown), wherein the geometric position of the workpiece 3 can be changed in a predeterminable manner that can be evaluated by measurement technology.
In das Kraftstoffeinspritzventil 3 ist in das untere Ende desselben ein Ablenkspiegel 4 eingeführt, der zur Vermessung der Einlaufbohrung 1 des Einspritzkanals 2 vor der Einlaufbohrung 1 positioniert wird. Der Ablenkspiegel 4 kann ein Oberflä- chenablenkspiegel oder auch ein Prisma sein. Auf den Ablenkspiegel 4 wird Licht aus einer Beleuchtungsquelle 10 außerhalb des Kraftstoff einspritzventils 3 über einen vorzugsweise außerhalb des Kraftstoffeinspritzventils 3 befindlichen angeord- neten Strahlteiler 11 gelenkt, der sich zwischen einer optoelektronischen Erfassungseinrichtung 5 und dem Ablenkspiegel 4 befindet, so dass das Strahlenbündel aus der Beleuchtungsquelle 10, begrenzt durch Randstrahlen 6 des Strahlengangs, auf den Ablenkspiegel 4 fällt. Der Ablenkspiegel 4 wird so ausgerichtet, dass der Strahlengang vorzugsweise senkrecht auf die Wandung 7 des Kraftstoffein- spritzventils 3 und somit auf die Einlaufbohrung 1 fallt.In the fuel injection valve 3, a deflection mirror 4 is inserted into the lower end thereof, which is used to measure the inlet bore 1 of the injection channel 2 the inlet hole 1 is positioned. The deflecting mirror 4 can be a surface deflecting mirror or a prism. Light from an illumination source 10 outside the fuel injection valve 3 is directed onto the deflection mirror 4 via an arranged beam splitter 11, which is preferably located outside the fuel injection valve 3 and is located between an optoelectronic detection device 5 and the deflection mirror 4, so that the beam from the illumination source 10, delimited by edge rays 6 of the beam path, onto which deflecting mirror 4 falls. The deflecting mirror 4 is aligned such that the beam path preferably falls perpendicularly onto the wall 7 of the fuel injection valve 3 and thus onto the inlet bore 1.
Um das Kraftstoffeinspritzventil 3 in seinem Inneren beleuchten zu können, wird die Strahlung, vorzugsweise Licht aus der Beleuchtungsquelle 10, in die optische Achse 12 einer optoelektronischen Erfassungseinrichtung, welche beispielsweise eine CCD-Kamera ist, eingespiegelt. Die Erfassungseinrichtung 5 befindet sich im gezeigten Beispiel hinter dem Strahlteiler 11. Das vom Meßpunkt bzw. von der Oberfläche des Meßpunktes reflektierte oder diffus zurückgestreutes Licht wird über den Ablenkspiegel 4 der Erfassungseinrichtung 5 zugeführt.In order to be able to illuminate the fuel injection valve 3 in its interior, the radiation, preferably light from the illumination source 10, is reflected in the optical axis 12 of an optoelectronic detection device, which is, for example, a CCD camera. In the example shown, the detection device 5 is located behind the beam splitter 11. The light reflected or diffusely scattered back from the measurement point or from the surface of the measurement point is fed to the detection device 5 via the deflection mirror 4.
Figur 2 zeigt eine technische Ausgestaltung der Vorrichtung, bestehend aus einer rohrförmigen, länglich-schmalen Hülse 13 oder Rohr, welche mit ihrer Spitze in die Innenbohrung 20 des Kraftstoffeinspritzventils 3 eintaucht. Innerhalb des unteren, eingetauchten Endes der Hülse 13 oder des Rohres 13 befindet sich der Ablenkspiegel 4, wobei die Hülse 13 am unteren Ende eine Öffnung 15 aufweist zum Durchlass des Strahlenbündels 6 aus der Lichtquelle 10. Im Bereich des oberen Endes der Hülse 13, welches aus dem Kraftstoff einspritzventil 3 herausragt, befindet sich der Strahl teuer 11 geneigt angeordnet, der in das Rohr 13 eingebaut ist. Seitlich des Strahlteilers 11 besitzt die Wandung der Hülse 13 eine weitere Öffnung 14 zum Durchtritt des Lichts aus der Lichtquelle 10. Die Hülse 13 ist mittels eines Tragarmes 16 fest mit der optoelektronischen Erfassungseinrichtung 5 verbunden, so dass die Erfassungseinrichtung 5, der Tragarm 16 sowie die Hülse 13, und damit der Strahlteiler 11 sowie der Ablenkspiegel 4, eine Einheit bilden, welche in den drei Raumachsen verfahren und gegebenenfalls auch verschwenkt werden kann.Figure 2 shows a technical embodiment of the device, consisting of a tubular, elongated-narrow sleeve 13 or tube, which dips with its tip into the inner bore 20 of the fuel injector 3. The deflection mirror 4 is located within the lower, immersed end of the sleeve 13 or the tube 13, the sleeve 13 having an opening 15 at the lower end for the passage of the beam 6 from the light source 10. In the region of the upper end of the sleeve 13, which protrudes from the fuel injector 3, the jet is expensive 11 inclined, which is installed in the tube 13. To the side of the beam splitter 11, the wall of the sleeve 13 has a further opening 14 for the passage of light from the light source 10. The sleeve 13 is fixedly connected to the optoelectronic detection device 5 by means of a support arm 16, so that the detection device 5, the support arm 16 and the Sleeve 13, and thus the beam splitter 11 and the deflecting mirror 4, form a unit, which can move in the three spatial axes and can also be swiveled if necessary.
Innerhalb der Hülse 13 oder des Rohres 13 kann ein weiteres optisches System angeordnet sein, bestehend beispielsweise aus Linsen 17, 18.A further optical system can be arranged inside the sleeve 13 or the tube 13, consisting, for example, of lenses 17, 18.
Zum Vermessen von unterschiedlichen Bohrungen 2, 2', deren Mittelachsen 19, 19' geneigt zueinander sein können, wird das Werkstück 3 entsprechend um seine Mittelachse 8 gedreht, die im Beispiel der Figur 2 mit der optischen Achse 12 der Erfassungseinrichtung 5 zusammenfällt, bis die jeweilige Einlaufbohrung vom Strahlengang 6 erfasst wird. Die unterschiedliche räumliche Lage der Einlauf- bohrungen 1 der Bohrkanäle 2, 2' in Figur 2 und damit ihre unterschiedliche geometrische Darstellung in der Bildebene der Erfassungseinrichtung 5 kann mittels eines Rechenprogramms umgerechnet werden, um auf diese Weise die exakten Querschnitte der Einlaufbohrungen zu ermitteln.To measure different bores 2, 2 ', the central axes 19, 19' of which may be inclined to one another, the workpiece 3 is correspondingly rotated about its central axis 8, which in the example of FIG. 2 coincides with the optical axis 12 of the detection device 5 until the respective inlet bore is detected by the beam path 6. The different spatial position of the inlet bores 1 of the bore channels 2, 2 'in FIG. 2 and thus their different geometric representation in the image plane of the detection device 5 can be converted using a computer program in order to determine the exact cross sections of the inlet bores in this way.
In den Figuren 3 bis 5 sind weitere Beispiele der Vorrichtung zur Vermessung eines beliebigen Ortes innerhalb eines Werkstücks 21 sowie zur Vermessung von Innenkegeln 22 eines Werkstücks 21 gezeigt. Das Werkstück 21 weist einen Innenkegel 22 auf, in den der Spiegel 4, welcher an einer nichtgezeigten Halterung befestigt ist, eingefahren ist. Zur Meßanordnung gehört des Weiteren die optoelektronische Erfassungseinrichtung, wie CCD-Kamera 5, der Strahlteiler 11 sowie ein Objektiv 17, welches auf der Innenfläche 22 des Innenkegels einen ausgewählten Punkt 23 bzw. Ort 23 fokussiert. Das Werkstück 21, das Objektiv 17 sowie die CCD-Kamera 5 sind mit je einer Meßeinrichtung 24, 24', 24" zur Koordinatenbestimmung ausgestattet, so dass bei Verfahren von Werkstück 21, Objektiv 17 und gegebenenfalls CCD-Kamera 5 durch Nachfokussieren weitere Orte bzw. Punkte auf der inneren kegelförmigen Oberfläche 22 scharf abgebildet werden können. Die Doppelpfeile geben dabei die Hauptbewegungsrichtung in z-Achsenrichtung an, wobei allerdings Verfahr- und Schwenkmöglichkeiten in sämtlichen Koordinatenrichtungen und Raumwinkeln möglich sind. Wird anstelle eines einfachen Ablenkspiegels 4 ein Doppelspiegel 26 verwendet, wie es in den Figuren 4 und 5 gezeigt ist, so kann ein Abstand s sowie s' ermittelt werden. Der Abstand s ist dabei der gegenseitige Abstand der beiden Fokuspunkte 25, 25' auf der inneren Oberfläche 22 des Innenkegels des Werkstücks 21. Der Doppelspiegel 26 besitzt die beiden Spiegeloberflächen 27, 27', welche unter einem Winkel umgekehrt V-förmig in Bezug auf das Objektiv 17 geneigt zusammenlaufen, wobei die obere gemeinsame Kante dem Objektiv 17 zugewandt ist, wie es aus den Figuren 4 und 5 ersichtlich ist.FIGS. 3 to 5 show further examples of the device for measuring any location within a workpiece 21 and for measuring inner cones 22 of a workpiece 21. The workpiece 21 has an inner cone 22, into which the mirror 4, which is attached to a holder, not shown, is inserted. The measuring arrangement also includes the optoelectronic detection device, such as a CCD camera 5, the beam splitter 11 and a lens 17, which focuses a selected point 23 or location 23 on the inner surface 22 of the inner cone. The workpiece 21, the lens 17 and the CCD camera 5 are each equipped with a measuring device 24, 24 ', 24 "for determining coordinates, so that when moving the workpiece 21, lens 17 and possibly the CCD camera 5 further locations or Points can be imaged sharply on the inner conical surface 22. The double arrows indicate the main direction of movement in the z-axis direction, although it is possible to move and pivot in all coordinate directions and solid angles. If, instead of a simple deflecting mirror 4, a double mirror 26 is used, as shown in FIGS. 4 and 5, a distance s and s' can be determined. The distance s is the mutual distance between the two focus points 25, 25 'on the inner surface 22 of the inner cone of the workpiece 21. The double mirror 26 has the two mirror surfaces 27, 27', which are reversely V-shaped at an angle with respect to the Lens 17 converge inclined, the upper common edge facing lens 17, as can be seen from FIGS. 4 and 5.
Der Abstand der beiden Fokuspunkte kann durch Verfahren entweder der CCD- Kamera 5 oder des Objektivs 17 oder gegebenenfalls des Werkstücks 21 verändert werden, was aus der Figur 5 ersichtlich ist. Bei jeder Relativbewegung des Werkstücks 21 in Bezug auf den Doppelspiegel 26 und Nachfokussieren mittels des Objektivs 17 sowie gegebenenfalls der CCD-Kamera 5 können andere Paare von Punkte 28, 28' scharf abgebildet werden, so dass der Innenkegel 22 des Werkstücks 21 abgetastet werden kann. Hierzu weisen die verfahrbaren Einheiten, wie Werkstück, Objektiv und CCD-Kamera, Meßeinrichtungen 24, 24', 24" (Figur 3) auf. Durch die Auswertung der Meßpositionen kann der Innenkegel 22 vermessen werden, so dass auch der Kegelöffnungswinkel α bestimmt werden kann.The distance between the two focus points can be changed by moving either the CCD camera 5 or the lens 17 or, if appropriate, the workpiece 21, which can be seen from FIG. 5. With each relative movement of the workpiece 21 with respect to the double mirror 26 and refocusing by means of the objective 17 and possibly the CCD camera 5, other pairs of points 28, 28 ′ can be imaged sharply, so that the inner cone 22 of the workpiece 21 can be scanned. For this purpose, the movable units, such as workpiece, lens and CCD camera, have measuring devices 24, 24 ', 24 "(FIG. 3). The inner cone 22 can be measured by evaluating the measuring positions, so that the cone opening angle α can also be determined ,
Gewerbliche Anwendbarkeit:Industrial applicability:
Die Erfindung ist zum Beispiel zur Geometrievermessung von schwer zugänglichen Aussparungen, Hohlräumen oder Bohrungen in einem Werkstück gewerblich anwendbar, insbesondere zur Innenvermessung von Bohrungen in einem Hohl- körper, wie Einspritzbohrungen im Innern eines Kraftstoffeinspritzventils für Brennkraftmaschinen. Liste der Bezugszeichen:The invention can be used, for example, for the geometry measurement of recesses, cavities or bores in a workpiece that are difficult to access, in particular for the internal measurement of bores in a hollow body, such as injection bores in the interior of a fuel injection valve for internal combustion engines. List of reference numerals:
I Einlaufbohrung 2, 2' BohrkanalI Inlet hole 2, 2 'drill channel
3 Kraftstoffeinspritzventil 4 Ablenkspiegel3 fuel injector 4 deflection mirror
5 optoelektronische Erfassungseinrichtung, CCD-Kamera5 optoelectronic detection device, CCD camera
6 Strahlengang6 beam path
7 Wandung7 wall
8 Längsachse 9 Fokusebene8 longitudinal axis 9 focal plane
10, 10' Lichtquelle10, 10 'light source
I I StrahlteilerI I beam splitter
12 optische Achse von 512 optical axis of 5
13 Rohr 14,15 Öffnung13 tube 14.15 opening
17,18 optische Systeme. Linsen17.18 optical systems. lenses
19 Mittelachse der Bohrung19 central axis of the bore
20 Innenraum von 320 interior of 3
21 Hohlkegel 22 innere Oberfläche des Hohlkegels21 hollow cone 22 inner surface of the hollow cone
23, 25, 25', 28, 28' scharf abgebildete Punkte auf der inneren Oberfläche von 2123, 25, 25 ', 28, 28' sharp points on the inner surface of 21
24, 24', 24" Bewegungspfeile mit Meßeinrichtungen 26 Doppelspiegel 27, 27' Spiegeloberflächenhälften des Doppelspiegels 24, 24 ', 24 "movement arrows with measuring devices 26 double mirrors 27, 27' mirror surface halves of the double mirror

Claims

Patentansprüche: claims:
1. Vorrichtung zur optoelektronischen Geometrievermessung von schwer zugänglichen Aussparungen, Hohlräumen oder Bohrungen (2,2') in einem Werkstück (3), insbesondere zur Innenvermessung von Bohrungen (2,2') in der Wandung eines Hohlkörpers (3), wie Einspritzbohrungen (2,2') im Innern eines Kraftstoffeinspritzventils (3) für Brennkraftmaschinen, mit einer optoelektronischen Erfassungseinrichtung (5), gegebenenfalls mit Objektiv, wie CCD-Kamera, mit einer Beleuchtungsquelle (10), welche sich innerhalb oder außerhalb des Werkstücks (3) befindet, zur Beleuchtung eines abzubildenden Ortes im Inneren der Aussparung oder des Hohlraumes oder der Bohrung sowie mit einer Auswerteeinrichtung, mit einem Ablenkspiegel (4,26), der in die Aussparung oder den Hohlraum (1) plazierbar ist, welcher die optische Achse (12) der optoelektronischen Erfassungseinrichtung (5) umlenkt, wobei ein von der Beleuchtungsquelle (10) ausgehendes Strahlenbündel (6) in die optische Achse (12) der Erfassungseinrichtung (5) eingebracht und auf den Ablenkspiegel (4) gelenkt wird, von wo das Strahlenbündel (6) auf den abzubildenden Ort im Inneren der Aussparung oder des Hohlraumes oder der Bohrung, wie Einlaufbohrung (1) oder Einspritzbohrung (2,2'), fällt, und das reflektierte Licht über den Ablenkspiegel (4) in die Erfassungseinrichtung (5) umlenkbar ist, wobei der Ablenkspiegel (4j am unteren Ende einer wenigstens in der Höhe verfahrbaren Halterung (13) angeordnet ist.1. Device for optoelectronic geometry measurement of recesses, cavities or bores (2,2 ') which are difficult to access in a workpiece (3), in particular for the internal measurement of bores (2,2') in the wall of a hollow body (3), such as injection bores ( 2,2 ') inside a fuel injection valve (3) for internal combustion engines, with an optoelectronic detection device (5), optionally with an objective such as a CCD camera, with an illumination source (10) which is located inside or outside the workpiece (3) , for illuminating a location to be imaged inside the recess or the cavity or the bore as well as with an evaluation device, with a deflecting mirror (4,26) which can be placed in the recess or the cavity (1) which defines the optical axis (12) deflects the optoelectronic detection device (5), a beam (6) emanating from the illumination source (10) into the optical axis (12) of the detection device Attention (5) is introduced and directed to the deflecting mirror (4), from where the beam (6) to the location to be imaged inside the recess or cavity or bore, such as inlet bore (1) or injection bore (2,2 ') , falls, and the reflected light can be deflected via the deflecting mirror (4) into the detection device (5), the deflecting mirror (4j being arranged at the lower end of a holder (13) which can be moved at least in height.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Strahlenbündel (6) mittels eines Strahlteilers (11) in die optische Achse (12) der Erfassungseinrichtung (5) eingespiegelt und auf den Ablenkspiegel (4,26) gelenkt wird, von wo es auf den abzubildenden Ort oder die Einspritzbohrung (2,2') fällt, und das reflektierte Strahlenbündel über den Ablenkspiegel (4) durch den Strahlteiler (11) in die Erfassungseinrichtung (5) lenkbar ist.2. Device according to claim 1, characterized in that the beam (6) is reflected by means of a beam splitter (11) in the optical axis (12) of the detection device (5) and directed onto the deflecting mirror (4,26), from where it is falls on the location to be imaged or the injection bore (2,2 '), and the reflected beam can be directed via the deflecting mirror (4) through the beam splitter (11) into the detection device (5).
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass an der Halterung (13) sowohl die Beleuchtungsquelle (10) als auch der Strahl teuer (11) angeordnet sind, der sich vom unteren Ende der Halterung ( 13) entfernt befindet. 3. Device according to claim 1 or 2, characterized in that on the bracket (13) both the lighting source (10) and the beam expensive (11) are arranged, which is located from the lower end of the bracket (13).
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Ablenkspiegel (4) und/oder der Strahlteiler (11) in ihrer geometrischen Lage bezüglich der Halterung (13) veränderbar sind.4. The device according to claim 2 or 3, characterized in that the deflecting mirror (4) and / or the beam splitter (11) can be changed in their geometric position with respect to the holder (13).
5. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Halterung eine Hülse (13) ist, die an ihrem unteren, dem Werkstück (3) zugewandten oder in die Aussparung oder den Hohlraum oder den Hohlkörper (3) einfahrbaren Ende den Ablenkspiegel (4) aufweist, oberhalb desselben im Bereich des anderen Endes in der Hülse (13) sich der Strahlteiler (11) befindet und die Hülse (13) im Bereich des Ablenkspiegels (4) und gegebenenfalls im Bereich des Strahlteilers (11) Öffnungen (14,15) für den Durchtritt des Strahlenbündels (6) aufweist.5. The device according to claim 2 or 3, characterized in that the holder is a sleeve (13) which on its lower, the workpiece (3) facing or in the recess or the cavity or the hollow body (3) retractable end of the deflecting mirror (4), above it in the area of the other end in the sleeve (13) there is the beam splitter (11) and the sleeve (13) in the area of the deflecting mirror (4) and optionally in the area of the beam splitter (11) openings (14 , 15) for the passage of the beam (6).
6. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Halterung (13) zur Bestimmung der Koordinaten des abzubildenden Ortes (1,23, 25,25', 28,28') in die drei Raumrichtungen verfahrbar und gegebenenfalls drehbar um wenigstens einen Winkel angeordnet ist.6. Device according to one of the preceding claims, characterized in that the holder (13) for determining the coordinates of the location to be imaged (1,23, 25,25 ', 28,28') can be moved in the three spatial directions and, if necessary, rotated by at least an angle is arranged.
7. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Werkstück (3) zur Bestimmung seiner Koordinaten sich in einer geometrisch messbaren Position befindet und in die drei Raumrichtungen verfahrbahr sowie drehbar um wenigstens einen Raumwinkel angeordnet ist.7. Device according to one of the preceding claims, characterized in that the workpiece (3) for determining its coordinates is in a geometrically measurable position and is arranged to be movable and rotatable in the three spatial directions by at least one solid angle.
8. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, das die Hülse (13) mittels eines Tragarmes (16) fest mit der optoelektronischen Erfassungseinrichtung (5) verbunden ist, die sich außerhalb des Werkstücks (3) bzw. des Hohlkörpers (3) befindet.8. Device according to one of the preceding claims, characterized in that the sleeve (13) by means of a support arm (16) is fixedly connected to the optoelectronic detection device (5), which is outside the workpiece (3) or the hollow body (3) located.
9. Vorrichtung nach Anspruch 6 oder 8, dadurch gekennzeichnet, dass die Hülse (13) geknickt ausgeführt ist, wobei sich im Bereich jedes Knicks eine Strahlablenkungs- oder Strahlumlenkungseinrichtung befindet. 9. The device according to claim 6 or 8, characterized in that the sleeve (13) is designed kinked, with a beam deflection or beam deflection device being located in the region of each kink.
10. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass statt des Ablenkspiegels (4,26) bzw. des10. Device according to one of the preceding claims, characterized in that instead of the deflecting mirror (4,26) or the
Doppelspiegels (26) ein Prisma Verwendung findet.Double mirror (26) a prism is used.
11. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass sich innerhalb des Strahlenganges (6) zwischen Ablenkspiegel (4) und Strahlteiler (11) mindestens ein optisches System (17,18), wie Linse (17,18), befinden.11. Device according to one of the preceding claims, characterized in that there are at least one optical system (17, 18), such as lens (17, 18), within the beam path (6) between the deflecting mirror (4) and the beam splitter (11).
12. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Bohrung (2,2') von außerhalb des Werkstücks bzw. des Hohlkörpers (3) an ihrem dem Ablenkspiegel (4) bzw. der Hülse entgegengesetzten Ende mittels einer Beleuchtungsquelle (10') bestrahlt wird, so dass Strahlung von außen durch die Bohrung (2,2') fallt.12. Device according to one of the preceding claims, characterized in that the bore (2, 2 ') from outside the workpiece or the hollow body (3) at its end opposite the deflecting mirror (4) or the sleeve by means of an illumination source (10 ') is irradiated so that radiation falls through the bore (2, 2') from the outside.
13. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Ablenkspiegel (26) wenigstens zwei ablenkende Oberflächen (27,27') aufweist, welche unter einem Winkel zusammenlaufen. 13. The apparatus according to claim 1, characterized in that the deflecting mirror (26) has at least two deflecting surfaces (27, 27 ') which converge at an angle.
PCT/EP2000/009299 1999-09-22 2000-09-22 Device for geometric determination of poorly accessible hollows in one workpiece WO2001022030A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU75221/00A AU7522100A (en) 1999-09-22 2000-09-22 Device for geometric determination of poorly accessible hollows in one workpiece
EP00964226A EP1221018A1 (en) 1999-09-22 2000-09-22 Device for geometric determination of poorly accessible hollows in one workpiece

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE29916577U DE29916577U1 (en) 1999-09-22 1999-09-22 Device for measuring injection bores on fuel injection valves for internal combustion engines
DE29916577.9 1999-09-22
DE10009946A DE10009946A1 (en) 1999-09-22 2000-03-02 Device for measuring bores
DE10009946.7 2000-03-02

Publications (1)

Publication Number Publication Date
WO2001022030A1 true WO2001022030A1 (en) 2001-03-29

Family

ID=26004617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009299 WO2001022030A1 (en) 1999-09-22 2000-09-22 Device for geometric determination of poorly accessible hollows in one workpiece

Country Status (3)

Country Link
EP (1) EP1221018A1 (en)
AU (1) AU7522100A (en)
WO (1) WO2001022030A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
US8032337B2 (en) 2001-03-02 2011-10-04 3Shape A/S Method for modeling customized earpieces
CN109612397A (en) * 2018-12-04 2019-04-12 四川凌峰航空液压机械有限公司 The survey detecting method of shaft sleeve arrangement inclined hole back gauge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2301837A1 (en) * 1975-02-21 1976-09-17 Matra Engins Optical system for measuring cavity dimensions - uses intersecting light beams deflected from cavity walls
DE3903000A1 (en) * 1989-02-02 1990-08-09 Mainz Gmbh Feinmech Werke Method for measuring the inside diameter and the form error (deviation from the true shape) of small bores, and device for carrying it out
DE4415582A1 (en) * 1994-05-04 1995-11-09 Autec Gmbh Optical distance measurement of inner walls for e.g. measuring pipe wall strength
WO1997032182A1 (en) * 1996-02-27 1997-09-04 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2301837A1 (en) * 1975-02-21 1976-09-17 Matra Engins Optical system for measuring cavity dimensions - uses intersecting light beams deflected from cavity walls
DE3903000A1 (en) * 1989-02-02 1990-08-09 Mainz Gmbh Feinmech Werke Method for measuring the inside diameter and the form error (deviation from the true shape) of small bores, and device for carrying it out
DE4415582A1 (en) * 1994-05-04 1995-11-09 Autec Gmbh Optical distance measurement of inner walls for e.g. measuring pipe wall strength
WO1997032182A1 (en) * 1996-02-27 1997-09-04 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
US8032337B2 (en) 2001-03-02 2011-10-04 3Shape A/S Method for modeling customized earpieces
CN109612397A (en) * 2018-12-04 2019-04-12 四川凌峰航空液压机械有限公司 The survey detecting method of shaft sleeve arrangement inclined hole back gauge

Also Published As

Publication number Publication date
EP1221018A1 (en) 2002-07-10
AU7522100A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
DE112006001423B4 (en) Coordinate measuring machine and method for measuring an object with a coordinate measuring machine
EP2458363B1 (en) Measurement of the positions of curvature midpoints of optical areas of a multi-lens optical system
EP2122300A1 (en) Measuring instrument and method for determining geometric properties of profiled elements
DE102014117978A1 (en) Apparatus and method for measuring workpieces
WO2009124767A1 (en) Device and method for measuring the topography of surfaces of articles
DE102010049401A1 (en) Device for acquiring measurement information from an inner surface of a hollow body, in particular a bore of a single- or twin-screw extruder cylinder
DE3322714A1 (en) Method for contactless optical measurement of distances, and appropriate device
WO2001022030A1 (en) Device for geometric determination of poorly accessible hollows in one workpiece
DE102007020860A1 (en) XY and angle measurement using combined white light interferometry
DE102016121659A1 (en) Device and method for detecting and / or investigating a Abtrag on a surface of a cylindrical member
DE20023783U1 (en) Optoelectronic device for measuring internal dimensions e.g. of injection holes in fuel injection valve for internal combustion engine, has deflection mirror for directing light from source onto detector
DE10319711B4 (en) Method for high-precision dimensional measurement of measurement objects
DE10009946A1 (en) Device for measuring bores
DE102017111819B4 (en) Bore inspection device
EP1391691B1 (en) Methods and apparatus for determining the diameter of a through hole in a workpiece.
DE102007017664A1 (en) Measuring device, particularly for measuring shape and roughness of object surfaces, has movable supported base, and controlling device that is connected with interferometric space measuring device and driving device
DE102006001329B4 (en) Method and device for high-precision measurement of the surface of a test object
DE102006005874A1 (en) Contactless cylinder measurement unit has lamps generating lines on surface and orthogonal shadows for multiple line triangulation
DE3903000A1 (en) Method for measuring the inside diameter and the form error (deviation from the true shape) of small bores, and device for carrying it out
DE102020118319B4 (en) Method and device for measuring an object to be measured
DE102006009809A1 (en) Measuring device for determination of topography and profiles of sample, has sensor, which has linear movement relative to curved surface on half line starting from center of curvature or curvature axle center
DE19906272A1 (en) Method for measuring angles on edge cutting tool by registering brightness of reflected light spot using video camera and passing image to processing machine for evaluation and determination of measured angle
DE10254104B4 (en) Method and apparatus for determining the diameter of a hole in a workpiece and the orientation and position of the axis of the hole
WO2009074462A1 (en) Probe and device for optically testing measured objects
DE10349946B4 (en) Arrangement for measuring surface properties

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA CN CZ DE DZ EE HU ID IL IN JP KR LT LV MX NO PL RO RU SG SI SK TR UA US YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000964226

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000964226

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWR Wipo information: refused in national office

Ref document number: 2000964226

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000964226

Country of ref document: EP