WO2001023933A1 - Systeme optique de projection - Google Patents

Systeme optique de projection Download PDF

Info

Publication number
WO2001023933A1
WO2001023933A1 PCT/JP1999/005329 JP9905329W WO0123933A1 WO 2001023933 A1 WO2001023933 A1 WO 2001023933A1 JP 9905329 W JP9905329 W JP 9905329W WO 0123933 A1 WO0123933 A1 WO 0123933A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection optical
light
lens group
projection
Prior art date
Application number
PCT/JP1999/005329
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Omura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to PCT/JP1999/005329 priority Critical patent/WO2001023933A1/ja
Priority to PCT/JP1999/006387 priority patent/WO2001023934A1/ja
Priority to EP00962924A priority patent/EP1139138A4/en
Priority to EP08004980A priority patent/EP1936419A3/en
Priority to EP08004979A priority patent/EP1936420A3/en
Priority to KR1020017006668A priority patent/KR100687035B1/ko
Priority to PCT/JP2000/006706 priority patent/WO2001023935A1/ja
Publication of WO2001023933A1 publication Critical patent/WO2001023933A1/ja
Priority to US10/252,427 priority patent/US6674513B2/en
Priority to US10/252,426 priority patent/US6606144B1/en
Priority to US10/406,223 priority patent/US6864961B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Definitions

  • the present invention relates to an image pickup device such as a semiconductor integrated circuit, a CCD, and a liquid crystal display.
  • the present invention relates to a projection exposure apparatus and method used for manufacturing a micro device such as a play or a thin-film magnetic head using a lithography technique, and a projection optical system suitable for such a projection exposure apparatus.
  • the present invention also relates to a method for manufacturing the projection exposure apparatus and the projection optical system.
  • the wavelength of exposure illumination light (exposure light) used in an exposure apparatus such as a stepper has become shorter year by year.
  • KrF excimer laser light (wavelength: 248 nm) has become the mainstream of exposure light, instead of the i-line (wavelength: 365 nm) of mercury lamps that have been mainly used in the past.
  • ArF excimer laser light (wavelength: 19.3 ⁇ m) is being put to practical use.
  • F 2 laser wavelength: 1 5 7 nm
  • a halogen molecular laser has also been attempted, such as.
  • the light source in the vacuum ultraviolet region having a wavelength of 200 nm or less there are the above-described excimer laser and halogen molecule laser, but there is a limit in their practical narrowing.
  • the material that transmits this vacuum ultraviolet radiation is limited, only limited materials can be used for the lens elements constituting the projection optical system.
  • the transmittance of this limited material is not very high.
  • the performance of the anti-reflection coating provided on the surface of the lens element is not as high as that of long-wavelength coatings.
  • a first object of the present invention is to suppress chromatic aberration of a projection optical system and reduce a load on a light source.
  • a second object of the present invention is to perform chromatic aberration correction on exposure light having a certain spectral width by adding a single type of glass material or a small number of color correction glass materials.
  • a third object of the present invention is to obtain a very miniaturized circuit pattern of a micro device while simplifying the configuration of a projection optical system.
  • a fourth object of the present invention is to obtain a circuit pattern of a microdevice which is extremely miniaturized without lowering the throughput. Disclosure of the invention
  • a first projection optical system forms an image of a pattern on a first surface on a second surface by the action of a light-transmitting refraction member.
  • a refraction type projection optical system for imaging which is disposed in an optical path between the first surface and the second surface, and has a front lens group having a positive refractive power;
  • a second projection optical system is a projection optical system that forms a reduced image of a pattern on a first surface on a second surface.
  • the composite lateral magnification of the first lens group and the second lens group is 31 and the second lens group from the first surface.
  • a third projection optical system is a projection optical system that forms a reduced image of a pattern on a first surface on a second surface. And at least one light-transmissive refraction member arranged in the optical path of the projection optical system, wherein the sum of the thicknesses along the optical axis of the light-transmissive refraction members arranged in the optical path of the projection optical system is defined as Assuming that C is the distance from the first surface to the second surface is L, the following condition is satisfied.
  • a fourth projection optical system is a projection optical system that forms a reduced image of a pattern on a first surface on a second surface.
  • At least three or more aspheric lens surfaces, and the sum of the number of members having a refractive power among the light-transmitting refraction members in the projection optical system is ⁇ , and the aspheric lens surface is
  • E a the sum of the number of members provided with
  • the first projection exposure apparatus includes a projection exposure apparatus provided with a projection exposure apparatus.
  • a projection exposure apparatus for projecting and exposing a reduced image of a turn onto a workpiece comprising: a light source for supplying exposure light; an illumination optical system for guiding exposure light from the light source to the pattern on the projection master;
  • the projection optical system according to any of the above, wherein the projection original can be arranged on the first surface of the projection optical system, and the work can be arranged on the second surface.
  • a second projection exposure apparatus is a projection exposure apparatus that performs projection exposure while scanning a reduced image of a pattern provided on a projection original on a work, and a light source that supplies exposure light;
  • An illumination optical system that guides exposure light from a light source to the pattern on the projection master;
  • a projection optical system according to any of the above; and the projection master can be arranged on the first surface of the projection optical system.
  • a third projection exposure apparatus is a projection exposure apparatus that projects and exposes a reduced image of a pattern provided on a projection original onto a work, and A light source that supplies exposure light in a wavelength range of 80 nm or less, an illumination optical system that guides the exposure light from the light source to the pattern on the projection master, and an optical path between the projection master and the workpiece. And a projection optical system for guiding a light amount of 25% or more of the exposure light amount through the projection master to the work and forming a reduced image of the pattern on the work. is there.
  • a projection exposure method is a projection exposure method for projecting and exposing a pattern formed on a projection original onto a work, and using the projection exposure apparatus according to any of the above, The work is arranged on the first surface and the work is arranged on the second surface, and an image of the pattern is formed on the work via the projection optical system.
  • a method of manufacturing a micro device is a method of manufacturing a micro device having a predetermined circuit pattern, wherein a step of projecting and exposing an image of the pattern on the work using the above-described exposure method. And a step of developing the projection-exposed work.
  • the first method of manufacturing a projection optical system according to the present invention is a refraction-type projection optical system that forms an image of a pattern on a first surface on a second surface by the action of a light-transmitting refraction member.
  • the front lens group, the subsequent lens group, and the aperture stop include the first surface and the second surface.
  • a second method for manufacturing a projection optical system according to the present invention is a method for manufacturing a projection optical system for forming a reduced image of a pattern on a first surface on a second surface. Preparing a first lens group having a positive power, preparing a second lens group having a positive refractive power, preparing a third lens group having a negative refractive power, and positive refraction.
  • a step of preparing a fourth lens group having a power, a step of preparing an aperture stop, a step of preparing a fifth lens group having a positive refractive power, and the first lens in order from the first surface side A step of arranging the first lens group, the second lens group, the third lens group, the fourth lens group, the aperture stop, and the fifth lens group in this order.
  • the combined lateral magnification of the two lens units is set to / 3 1, and the first lens unit from the first surface to the second lens unit
  • the distance to the lens surface is L1, from the first surface When the distance to the second surface is L, the first and second lens groups are prepared so as to satisfy the following conditions.
  • the first and second lens groups are arranged so as to satisfy the following condition.
  • a third method for manufacturing a projection optical system according to the present invention is a method for manufacturing a projection optical system for forming a reduced image of a pattern on a first surface on a second surface, the method comprising: Preparing a first lens group having a positive power, preparing a second lens group having a positive refractive power, preparing a third lens group having a negative refractive power, and positive refraction.
  • the total sum of the thickness of the light transmitting refraction member along the optical axis is C, and from the first surface to the second surface.
  • a fourth method for manufacturing a projection optical system according to the present invention is a method for manufacturing a projection optical system for forming a reduced image of a pattern on a first surface on a second surface, the method comprising: A lens having an aspherical shape such that at least three or more of the lens surfaces of the refractive member have an aspherical surface shape, and the sum of the number of members having a refractive power among the light-transmitting refractive members is E. Assuming that the total number of members provided with surfaces is Ea, a projection including a step of preparing the light transmitting member so as to satisfy the following condition, and a step of assembling the light transmitting member This is a method for manufacturing an optical system.
  • FIG. 1 is an optical path diagram of a projection optical system according to a first numerical example.
  • FIG. 2 is an optical path diagram of a projection optical system according to a second numerical example.
  • FIG. 3 is a lateral aberration diagram of the projection optical system according to the first numerical example.
  • FIG. 4 is a lateral aberration diagram of the projection optical system according to the second numerical example.
  • FIG. 5 is a diagram showing a schematic configuration of a projection exposure apparatus according to the embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an example of the microdevice manufacturing method of the present invention.
  • FIG. 7 is a flowchart showing another example of the method for manufacturing a micro device of the present invention.
  • 1 and 2 are optical path diagrams of a projection optical system according to an embodiment of the present invention.
  • a projection optical system PL of the present invention is a refraction type projection optical system that forms a reduced image of a pattern on a first surface A on a second surface B.
  • the projection optical system PL has a front lens group GF having a positive refractive power and a rear lens group GR having a positive refractive power.
  • An aperture stop AS is arranged near the rear focal point of the front lens group GF. Note that the position of the aperture stop AS is not necessarily limited to the paraxial rear focal position of the front lens group GF.
  • the position of the aperture stop AS is set near the front lens group GF. In some cases, it may be set to a position deviated from the rear focal position on the axis (the rear lens group side from the rear focal position on the paraxial axis). The vicinity of the rear focal position is a concept including such a deviated position. In such a case, the rear lens group GR (fifth lens group) indicates a group of lenses located from the paraxial pupil position of the projection optical system PL to the second surface.
  • the aperture stop AS is disposed between the front lens group GF and the rear lens group GR.
  • the front lens group GF includes, in order from the first surface side, a first lens group Gl having a negative refractive power, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and It has a fourth lens group with positive refractive power. Therefore, the projection optical system PL of the present invention is also a five-group projection optical system including the first lens group G1 to the fifth lens group G5 having negative, positive, negative, positive, and positive refractive power.
  • the projection optical system PL according to the embodiment shown in FIGS. 1 and 2 is a substantially telecentric optical system on the first surface A side and the second surface B side.
  • the term “substantially telecentric on the first surface side and the second surface side” means that a ray parallel to the optical axis AX of the projection optical system is incident on the projection optical system PL from the second surface B side.
  • the angle formed with the optical axis when this light ray is emitted to the first surface side is 50 minutes or less.
  • the focal length of the rear lens group GR (or the fifth lens group G 5) is f 2
  • the distance from the first surface A to the second surface B (object-image distance) is L It is preferable that the following condition be satisfied. 0. 0 7 5 ⁇ f 2 / L ⁇ 0.125
  • conditional expression (1) is an expression defined to reduce chromatic aberration of the projection optical system, particularly, axial chromatic aberration. If the lower limit of conditional expression (1) is not reached, the focal length of the rear lens group GR (or the fifth lens group G5) will be too short. For this reason, although the amount of axial chromatic aberration generated from the rear lens group GR (or the fifth lens group G5) is extremely small, it is not preferable because monochromatic aberration becomes too large and it becomes difficult to correct them. Here, it is preferable to set the lower limit of conditional expression (1) to 0.09 in order to better correct the monochromatic aberration excluding the color difference.
  • the focal length of the rear lens group GR (or the fifth lens group G5) will be too long. In this case, the monochromatic aberration can be corrected well, but the axial chromatic aberration generated from the rear lens group GR (or the fifth lens group G5) is undesirably large.
  • the type of the light-transmitting refraction member that transmits the exposure light in this wavelength range is limited. In some cases, the projection optical system PL itself may not be realized.
  • the projection optical system PL preferably has at least one or more aspheric surfaces ASP1 to ASP6.
  • the projection optical system PL of each embodiment has a negative * positive * negative • positive ⁇ positive refractive power arrangement. This has the advantage that the number of lenses can be greatly reduced compared to a six-unit projection optical system having a refractive power arrangement.
  • a composite optical system of the negative first lens group G1 and the positive second lens group G2 is considered, and the lateral magnification (first and second magnifications) of this composite optical system is considered.
  • the combined lateral magnification of the lens groups G 1 and G 2) is set to 31, the distance from the first surface A to the lens surface of the second lens group G 2 closest to the second surface B is L l, When the distance to the second surface B is L, it is preferable to satisfy the following conditional expressions (2) and (3).
  • conditional expression (2) is a conditional expression defined to achieve good aberration correction over the entire screen (the entire image field) of the projection optical system PL.
  • the combined optical system of the first and second lens groups G 1 and G 2 in the projection optical system PL of each embodiment converts the divergent light beam from the first surface A into a slightly convergent light beam. Has been converted to.
  • the upper limit of conditional expression (2) is set to -0.42. Is preferred.
  • Conditional expression (3) is a prerequisite for conditional expression (2), and defines the positions of the combined optical systems G 1 and G 2 of the first and second lens groups.
  • the lower limit of conditional expression (3) is preferably set to 0.1
  • the upper limit of conditional expression (3) is preferably set to 0.15.
  • the combined optical systems G 1 and G 2 of the first and second lens groups have at least two aspherical lens surfaces ASP 1 to ASP 3.
  • the aspherical surfaces ASP1 to ASP3 in the combined optical systems Gl and G2 it is possible to satisfactorily correct field curvature, distortion, pupil spherical aberration, and the like.
  • the combined optical systems G1 and G2 of the first and second lens groups include 10 or less lenses.
  • the sum of the thicknesses along the optical axis of the light-transmitting refraction members (lenses, parallel plane plates) arranged in the optical path of the projection optical system PL is expressed by C
  • the distance from the first surface A to the second surface B is L, it is preferable that the following condition is satisfied.
  • the above conditional expression (4) is an expression defined to achieve both the securing of the transmittance as the projection optical system PL and the stabilization of the imaging performance of the projection optical system PL. If the lower limit of the above conditional expression (4) is not reached, the gas gap between the light-transmitting refraction members constituting the projection optical system PL will be too long, and the characteristics of this gas will fluctuate (for example, temperature fluctuations and atmospheric pressure fluctuations). Fluctuations in the refractive index, fluctuations, and the like) are not preferable because the imaging performance tends to fluctuate. It should be noted that the stability of imaging performance against environmental fluctuations was further improved. For this purpose, it is preferable to set the lower limit of conditional expression (4) to 0.52.
  • the value exceeds the upper limit of the conditional expression (4) the resistance of the projection optical system PL to environmental changes is improved, but it is not preferable because it is difficult to obtain a sufficient transmittance.
  • the projection optical system PL has at least one aspherical surface AS P1 to ASP 6. As a result, it is possible to secure stability against environmental fluctuations and sufficient transmittance while sufficiently improving the initial imaging performance.
  • the projection optical system PL of each embodiment preferably has at least three or more aspheric lens surfaces ASP1 to ASP6. With this configuration, excellent aberration correction over the entire screen (the entire image field) can be realized with a configuration in which the number of lenses (that is, the amount of glass material) is relatively reduced.
  • the above conditional expression (5) is an expression that specifies the optimal range of the number of aspherical lens surfaces ASP 1 to ASP 6 in consideration of the production of the projection optical system PL.
  • Aspheric lenses are more difficult to manufacture than spherical lenses, and eccentricity errors and surface accuracy errors between the front and back surfaces of the aspheric lens tend to be large. Therefore, when manufacturing the projection optical system PL, the error of the aspherical lens must be adjusted by adjusting the position and orientation of the spherical lens and adjusting the surface shape of the spherical lens. Therefore, it is preferable to optimize the imaging performance of the projection optical system PL.
  • conditional expression (5) When the value exceeds the upper limit of the conditional expression (5), not only the aberrations due to the errors of the aspheric lens surfaces ASP 1 to ASP 6 become too large, but also the number of the spherical lenses decreases, so that the aspheric surface is obtained. It becomes difficult to correct aberrations caused by errors in ASP 1 to ASP 6 by adjusting the position, attitude, and shape of the spherical lens.
  • the value is below the lower limit of the conditional expression (5), the number of aspherical lens surfaces decreases and the production of the projection optical system PL becomes easy, but the entire screen (the entire image field) is reduced. It is not preferable because it becomes difficult to satisfactorily correct aberrations, and the amount of glass material required for manufacturing the projection optical system PL is increased. In order to achieve further aberration correction and reduce the amount of glass material, it is preferable to set the lower limit of conditional expression (5) to 0.2.
  • the sum of the members (lens elements) having a refractive power among the light-transmitting refraction members constituting the projection optical system PL is preferably 16 or more. Accordingly, it is possible to increase the numerical aperture on the image side (the second surface B side) of the projection optical system PL, and it is possible to project and expose a finer pattern. If the above conditional expression (5) is satisfied, if the total number of lens elements is 16 or more, a sufficient number of spherical lenses for correcting aberrations caused by errors of the aspherical lenses must be secured. There are advantages that can be.
  • the sum of the members (lens elements) having a refractive power among the light-transmitting refraction members constituting the projection optical system PL is 26 or less.
  • the transmittance can be improved by reducing the thickness of the light-transmitting refraction member constituting the projection optical system PL.
  • the number of optical interfaces (lens surfaces) is reduced, and the loss of light quantity at this optical interface is reduced, so that the transmittance as a whole can be improved.
  • the light-transmitting refraction member in the projection optical system PL is formed of a single type of material. For this reason, the manufacturing cost of the projection optical system PL can be reduced. In particular, when optimizing the projection optical system PL for exposure light having a wavelength of 180 nm or less, glass materials having a good transmittance for exposure light in this wavelength range are limited. It is.
  • the light-transmitting refraction member in the projection optical system PL includes a first light-transmitting refraction member formed of the first material and a second light-transmission refraction member formed of the second material. And a light-transmitting refraction member.
  • the number of the second light-transmitting refraction members with respect to the number of the light-transmitting refraction members having the refractive power is preferably 32% or less.
  • the types of glass materials having favorable transmittance for exposure light in this wavelength region are limited to some types.
  • the manufacturing cost is high and the processing cost for making a lens is also included. It is difficult to increase the accuracy of the glass material having a high cost when processing it into a lens, which is a difficulty in improving the accuracy of the projection optical system PL, that is, in improving the imaging performance.
  • the manufacturing cost can be reduced and the imaging performance can be improved by suppressing the above percentage to 32% or less.
  • the above percentage is preferably 16% or less, and more preferably 11% or less.
  • FIG. 1 is an optical path diagram of the projection optical system PL according to the first embodiment.
  • Projection optical system PL of the first embodiment supplies F 2 laser which is narrowed
  • the wavelength is 15.7.62 nm, and the chromatic aberration is corrected within a range of ⁇ 0.2 pm of the reference wavelength.
  • all of the light transmissive refractive members in the projection optical system PL (lenses L 1 1 ⁇ : L 57) is formed of fluorite (calcium fluoride, C a F 2) ing.
  • the projection optical system PL of the first embodiment includes, in order from the first surface A side, a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power.
  • the projection optical system PL of the first embodiment includes, in order from the first surface A side, a negative first lens group Gl, a positive second lens group G2, and a negative first lens group G2. It has a third lens group G3, a positive fourth lens group G4, an aperture stop AS, and a positive fifth lens group G5.
  • the first lens group G 1 includes, in order from the first surface A side, a biconcave negative lens L 11, and a meniscus-shaped negative lens L 12 having a concave surface facing the first surface A side.
  • These negative lenses L11 and L12 form a biconvex gas lens.
  • the lens surface on the first surface A side of the negative lens L11 and the lens surface on the second surface B side of the negative lens L12 are aspherical.
  • the second lens group G2 has four biconvex positive lenses L21 to L24.
  • the lens surface on the first surface A side of the positive lens L24 on the second surface B side is formed in an aspherical shape.
  • the third lens group G3 has three biconcave negative lenses L31 to L33.
  • the negative lenses L31 to L33 form two biconvex gas lenses. ing.
  • the lens surface on the second surface B side of the negative lens L33 closest to the second surface B is formed in an aspherical shape.
  • the fourth lens group G4 includes, in order from the first surface A side, two meniscus-shaped positive lenses L41 and L42 having concave surfaces facing the first surface A side, and a biconvex positive lens. With L43.
  • the fifth lens group G5 includes, in order from the first surface A side, a biconcave negative lens L51, two biconvex positive lenses L52 and L53, and a convex surface on the first surface A side. It has three meniscus-shaped positive lenses L54 to L56 with their surfaces turned, and a plano-convex positive lens L57.
  • the lens surface on the second surface B side of the positive lens L56 is formed in an aspherical shape.
  • FIG. 2 is an optical path diagram of the projection optical system PL according to the second embodiment.
  • the projection optical system PL of the second embodiment uses a reference wavelength of 193.306 nm supplied by the narrowed A / F laser, and has a wavelength width of ⁇ 0.3 with respect to the reference wavelength.
  • the chromatic aberration is corrected in the range of 4 pm.
  • the light-transmitting refraction member in the projection optical system PL is formed of quartz glass (synthetic quartz) and fluorite.
  • the projection optical system PL of the second embodiment includes, in order from the first surface A, a front lens group GF having a positive refractive power, an aperture stop AS, and a rear lens group GR having a positive refractive power.
  • the projection optical system PL of the first embodiment includes, in order from the first surface A side, a negative first lens group Gl, a positive second lens group G2, and a negative third lens group G1. It has a lens group G3, a positive fourth lens group G4, an aperture stop AS, and a positive fifth lens group G5.
  • the first lens group G 1 includes, in order from the first surface A side, a biconcave negative lens L 11, and a meniscus-shaped negative lens L 12 having a concave surface facing the first surface A side.
  • a biconvex gas lens is formed by these negative lenses L11 and L12.
  • the lens surface on the second surface B side of the negative lens L11 and the lens surface on the second surface B side of the negative lens L12 are formed in aspherical shapes. Note that these two negative lenses L 11 and L 12 are both formed of quartz glass.
  • the second lens G2 has three biconvex positive lenses in order from the first surface A side.
  • the lens surface on the second surface side of the positive lens L 21 closest to the first surface A is formed in an aspherical shape.
  • three biconvex positive lenses L21 to L23 are formed from quartz glass, and the meniscus-shaped positive lens L24 is formed from fluorite.
  • the third lens group G3 has three biconcave negative lenses L31 to L33, and these negative lenses L31 to L33 form two biconvex gas lenses. are doing.
  • the lens surface on the first surface A side of the negative lens L33 closest to the second surface B is formed in an aspherical shape. All the negative lenses L31 to L33 in the third lens group G3 are formed of quartz glass.
  • the fourth lens group G 4 has, in order from the first surface A side, a meniscus-shaped positive lens L 41 having a concave surface facing the first surface A side, and a plano-convex shape having a convex surface facing the second surface B side. It has a positive lens L42 and a meniscus-shaped positive lens L43 with the convex surface facing the first surface A side.
  • all three positive lenses L41 to L43 are formed of quartz glass.
  • the fifth lens group G5 includes, in order from the first surface A side, a meniscus-shaped negative lens L51 having a convex surface facing the first surface A side, a biconvex positive lens L52, and a first surface It has four meniscus-shaped positive lenses L53 to L56 with the convex surface facing the A side, and a plano-concave negative lens L57 with the concave surface facing the first surface A side.
  • the lens surface on the second surface B side of the meniscus-shaped negative lens L51 and the lens surface on the second surface side of the meniscus-shaped positive lens L56 are formed in an aspheric shape.
  • the biconvex positive lens L52 is formed of fluorite, and the remaining lenses L51, L53 to L57 are formed of quartz glass. I have.
  • quartz glass synthetic quartz
  • fluorite fluorite
  • an aspherical lens is used.
  • the lens surface is preferably formed on a lens made of quartz glass.
  • Tables 1 and 2 below show the specifications of the projection optical system PL of the first and second embodiments.
  • the leftmost column is the number of each lens surface from the first surface A
  • the second column is the radius of curvature of each lens surface
  • the third column is from each lens surface to the next lens surface. spacing of the lens material in the fourth column, the fifth column of aspherical codes, codes of the sixth column the lens, also c the sixth column indicates the sign of the lens group, an aspherical lens surface
  • the radius of curvature in the second column for indicates the vertex radius of curvature.
  • the projection optical system of the first embodiment uses fluorite as a lens material (glass material), and the second embodiment uses quartz glass (synthetic quartz) and fluorite.
  • the refractive index of the fluorite at the reference wavelength (155.62 nm) in the first embodiment is 1.5593067, and the amount of change (dispersion) in the refractive index per wavelength + 1 pm is 1.2.6 X 1 it is 0-6.
  • the refractive index of quartz glass (synthetic quartz) at the reference wavelength (193.306 nm) of the second embodiment is 1.5603261, which is equivalent to the wavelength + 1 pm.
  • Variation of Rino refractive index (variance) is an 1. 59 X 1 0- 6.
  • the fluorite has a refractive index of 1.5 at the reference wavelength (193.306 nm).
  • d0 is the distance from the first surface A to the surface closest to the first surface A
  • WD is the distance from the surface closest to the second surface B to the second surface B.
  • 3 is the projection magnification
  • NA is the numerical aperture on the second surface B side
  • is the diameter of the image circle on the second surface B.
  • Table 3 shows numerical values corresponding to the conditions of each embodiment.
  • FIGS. 3 and 4 show lateral aberration diagrams on the second surface B of the projection optical system PL according to the first and second examples, respectively.
  • Is the lateral aberration diagram in the meridional direction when the image height ⁇ 0 (on the optical axis)
  • Fig. 4 ( ⁇ ) is the image height.
  • the projection optical system PL of the first embodiment has ⁇ 0.2 pm in the wavelength range of 180 ⁇ m or less, even though only a single type of glass material is used. Chromatic aberration correction has been achieved satisfactorily over this wavelength range.
  • the projection optical system PL of the second embodiment has a small number of chromatic aberration correcting lens elements (about 10% of all lens elements) in the vacuum ultraviolet wavelength range of 200 nm or less. ), Chromatic aberration correction was successfully achieved over a wavelength range of ⁇ 0.4 pm.
  • the projection optical system PL of the first embodiment has a circular image field having a diameter of 23 mm, and within the image field, a rectangle having a width of 6.6 mm in the scanning direction and a width of 22 mm in the scanning orthogonal direction.
  • the exposure area can be secured.
  • the projection optical system PL of the second embodiment has a circular image field having a diameter of 26.6 mm, and has a width of 8.8 mm in the scanning direction and a width of 2 mm in the scanning orthogonal direction within the image field.
  • a 5 mm rectangular exposure area can be secured.
  • the rectangular exposure area is used in consideration of applying the projection optical system PL of each embodiment to the scanning exposure apparatus.
  • the shape of the exposure area is included in the circular image field. As long as the area is defined, the shape can be various shapes such as a hexagonal shape, a trapezoidal shape, an unequal leg shape, a rhombus shape, a square shape, and an arc shape.
  • the projection optical systems PL of the first and second examples can be applied to the projection exposure apparatus of the embodiment shown in FIG.
  • FIG. 5 has been described an example using the first embodiment with a F 2 laser light source projection optical system has been described an example using the PL as a light source, the A r F excimer laser
  • the basic configuration of the exposure apparatus excluding the source is the same as that shown in FIG.
  • FIG. 5 is a diagram illustrating a schematic configuration of a projection exposure apparatus according to the embodiment.
  • the XYZ coordinate system is adopted.
  • Exposure apparatus using the F 2 laser light source as the exposure light source, it is obtained by applying the present invention to a projection exposure apparatus using a refractive optical system as the projection optical system.
  • the reticle and the substrate run synchronously in a predetermined direction relative to an illumination area of a predetermined shape on the reticle, so that one shot area on the substrate is obtained.
  • It adopts a step-and-scan method in which pattern images of the reticle are sequentially transferred.
  • a reticle pattern can be exposed to an area on a substrate which is wider than the exposure field of the projection optical system.
  • the laser light source 2 has, for example, a combination of a fluorine dimer laser (F 2 laser) having an oscillation wavelength of 157 nm and a band narrowing device.
  • the F 2 laser has a full width at half maximum of about 1.5 pm in spontaneous oscillation.
  • a laser beam having a full width at half maximum of about 0.2 pm to 0.25 pm Have gained.
  • the laser light source 2 in the present embodiment is a light source that emits light belonging to the vacuum ultraviolet region with a wavelength of about 120 nm to about 180 nm, such as a krypton dimer laser (Kr 2 laser) having an oscillation wavelength of 146 nm, Alternatively, an argon dimer laser (Ar 2 laser) having an oscillation wavelength of 126 nm can be used.
  • Kr 2 laser krypton dimer laser
  • Ar 2 laser argon dimer laser
  • the pulsed laser light (illumination light) from the laser light source 2 is deflected by the deflecting mirror 13 and travels to the optical path delay optical system 41, where The illumination light is temporally split into multiple light beams with an optical path length difference greater than the temporal coherence distance (coherence length).
  • Such an optical path delay optical system is disclosed in, for example, Japanese Patent Application Laid-Open No. 1-198759 and Japanese Patent Application Laid-Open No. 11-174365.
  • the illumination light emitted from the optical path delay optical system 41 is deflected by the optical path deflection mirror 42, and then passes through the first fly-eye lens 43, the zoom lens 44, and the vibration mirror 45 in this order. Reach second fly-eye lens 46.
  • a switching reporter 5 for the aperture stop of the illumination optical system for setting the size and shape of the effective light source as desired is arranged.
  • the size of the light beam to the second fly-eye lens 46 by the zoom lens 44 is variable in order to reduce the light amount loss at the aperture stop of the illumination optical system.
  • the light beam emitted from the aperture of the illumination optical system aperture stop illuminates the illumination field stop (reticle blind) 11 via the condenser lens group 10.
  • the illumination field stop 11 is disclosed in Japanese Patent Application Laid-Open No. Hei 4-19613 and US Patent No. 5,473,410 corresponding thereto.
  • an illumination field stop imaging optical system (reticle-plunged imaging system) consisting of a deflection mirror 151,154, and a lens group 152,153,155.
  • the reticle R is guided through the reticle R, and on the reticle R, an illumination area which is an image of the opening of the illumination field stop 10 is formed.
  • Light from the illumination area on the reticle R is guided to the wafer W via the projection optical system PL, and a reduced image of the pattern in the illumination area of the reticle R is formed on the wafer W.
  • the illumination light path (the light path from the laser light source 2 to the reticle R) and the projection light path (the light path from the reticle R to the light source W) are cut off from the outside atmosphere, and these light paths are evacuated.
  • the optical path from the laser light source 2 to the optical delay optical system 41 is cut off from the external atmosphere by a casing 30, and the optical path from the optical delay optical system 41 to the illumination field stop 11 is provided by a casing 40.
  • the illumination optical field stop imaging optical system is shielded from the external atmosphere by casing 150, and the above-mentioned specific gas is filled in the optical paths.
  • the projection optical system P L itself has a casing that is a casing, and the internal optical path is filled with the specific gas.
  • helium is preferably used as the specific gas filled in each optical path.
  • nitrogen may be used as the specific gas for the optical path (casing 30, 40, 150) of the illumination optical system from the laser light source 2 to the reticle R.
  • the casing 170 shields the space between the casing 150 containing the illumination field stop imaging optical system and the projection optical system PL from the external atmosphere, and a reticle R is provided inside the casing.
  • the reticle stage RS to be held is housed.
  • the casing 170 is provided with a door 173 for loading and unloading the reticle R, and outside the door 173, the reticle R is loaded.
  • a gas replacement chamber 174 is provided to prevent the atmosphere in the 170 from being contaminated.
  • the gas replacement chamber 1 7 4 also has a door 1 7 7
  • the reticle is transferred to and from a reticle stocking force 210 storing a plurality of types of reticles through a door 177.
  • the casing 200 shields the space between the projection optical system PL and the wafer W from the outside atmosphere, and includes therein a wafer stage 22 for holding the wafer W and a surface of the wafer W as a substrate.
  • An oblique incidence type autofocus sensor 26 for detecting the position (focus position) and tilt angle in the Z direction, an off-axis alignment sensor 28, and a wafer stage 22 are mounted. It holds the surface plate 23.
  • the casing 200 is provided with a door 203 for loading and unloading the wafer W. Outside the door 203, the atmosphere inside the casing 200 is contaminated.
  • a gas replacement chamber 204 is provided to prevent gas leakage.
  • the gas replacement chamber 204 is provided with a door 207 through which the wafer W is loaded into the apparatus and unloaded from the apparatus.
  • each of the casings 40, 150, 170, and 200 has an air supply valve 147, 156, 171, and 201, respectively.
  • the air supply valves 147, 156, 171 and 201 are connected to an air supply line connected to a gas supply device (not shown).
  • the casings 40, 150, 170, and 200 are provided with exhaust valves 148, 157, 172, and 202, respectively. 48, 157, 172, 202 are respectively connected to the above gas supply device via an exhaust pipe (not shown).
  • the specific gas from the gas supply device is supplied by a temperature control device (not shown). It is controlled to a predetermined target temperature.
  • the temperature adjusting device is disposed near each casing.
  • the gas replacement chambers 174 and 204 are also provided with air supply valves 175 and 205 and exhaust valves 176 and 206, respectively. Is the air supply pipe
  • the exhaust valves 176 and 206 are respectively connected to the above gas supply devices via exhaust pipes.
  • an air supply valve 18 1 and an exhaust valve 18 2 are provided also in the joint of the projection optical system PL, and the air supply valve 18 1 is connected via an air supply pipe (not shown), and the exhaust valve 18 2 It is connected to the gas supply device via an exhaust pipe not shown.
  • the exhaust pipe provided with 182, 202 and 206 has a filter for removing dust (particles) such as a HEPA fill or a UL PA fill, and oxygen and the like.
  • a filter for removing dust (particles) such as a HEPA fill or a UL PA fill, and oxygen and the like.
  • the door 207 When replacing the wafer, the door 207 is opened, the wafer is carried into the gas replacement chamber 204, and the door 207 is closed to fill the gas replacement chamber 204 with the specific gas. After that, the door 203 is opened and the wafer is placed on the wafer holder 20. The procedure is the reverse for reticle unloading and wafer unloading.
  • the specific gas may be supplied from the air supply valve after reducing the atmosphere in the gas replacement chamber.
  • the gas which has been subjected to gas replacement by the gas replacement chambers 174 and 204 may be mixed.
  • a considerable amount of absorbing gas such as oxygen is mixed in the gas of 04. Since it is highly possible that the gas has been inserted, it is desirable to perform gas replacement at the same timing as the gas replacement in the gas replacement chambers 174 and 204. Further, it is preferable to fill the casing and the gas replacement chamber with a specific gas having a pressure higher than the pressure of the external atmosphere.
  • At least one of the plurality of lens elements constituting the projection optical system PL can be changed in at least one of its position and orientation. It is held in. Thereby, the imaging characteristics of the projection optical system PL can be changed.
  • Such adjusting means is disclosed in, for example, Japanese Patent Application Laid-Open Nos. HEI 4-192,1717 and HEI-11-219,514 (and corresponding U.S. Pat. Nos. 5,117,255). Official Gazette), Japanese Unexamined Patent Application Publication No. Hei 5-4-1343, and Japanese Unexamined Patent Application Publication No. Hei 6-84527 (and corresponding US Pat. No. 5,424,552). ing.
  • At least one of the lens elements whose at least one of the position and the posture can be changed is a spherical lens.
  • a light source for supplying exposure light in a wavelength range of 180 nm or less, an illumination optical system for guiding exposure light from the light source to the pattern on the projection original, and It is placed in the optical path between the projection master and the work, and guides the work at least 25% of the light intensity of the exposure light through the projection master to the work to reduce the reduced image of the pattern.
  • a projection optical system formed on the work is placed in the optical path between the projection master and the work, and guides the work at least 25% of the light intensity of the exposure light through the projection master to the work to reduce the reduced image of the pattern.
  • the projection exposure apparatus employs the projection optical system PL according to the embodiment shown in FIG. 5 according to the embodiment shown in FIG.
  • the glass material constituting the projection optical system PL is fluorite as described above, and the transmittance per cm for the exposure light of 157 nm is 99 to 99.5%.
  • the anti-reflection film for the exposure light of 157 nm has a loss of light amount of 1% per lens surface c .
  • a projection exposure method for projecting and exposing a reduced image of a pattern provided on a projection original onto a work, and supplying exposure light in a wavelength range of 200 nm or less. Guiding the exposure light from the light source to the pattern on the projection master through the illumination optical system; and guiding the exposure light from the projection master to the work via the projection optical system to form the pattern.
  • the light amount of the exposure amount incident on the projection optical system is E n 3 and the light amount of the exposure light emitted from the projection optical system toward the night is En 4
  • the following conditions are satisfied. Is preferably satisfied.
  • the step of guiding the exposure light to the pattern includes an auxiliary step of passing the exposure light through a space filled with a gas atmosphere having a characteristic of little absorption of light in the wavelength range.
  • the step of forming a reduced image of the pattern on the work preferably includes an auxiliary step of passing the exposure light through a space filled with a gas atmosphere having a characteristic of little absorption of light in the wavelength range. It is preferred to include.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the one-lot wafer.
  • the image of the pattern on the reticle R is projected onto the projection light using the projection exposure apparatus of FIG. 5 including the projection optical system PL of any of the first and second embodiments. Exposure transfer is performed sequentially to each shot area on that one-lot wafer via the science PL.
  • the photoresist on the wafer of the lot is developed, and in step 304, etching is performed on the wafer of the lot using the resist pattern as a mask.
  • a circuit pattern corresponding to the pattern on the reticle R is formed in each shot area on each wafer. Thereafter, devices such as semiconductor elements are manufactured by forming a circuit pattern of the upper layer. According to the semiconductor device manufacturing method described above, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput.
  • a liquid crystal display element as a micro device can be obtained by forming a predetermined circuit pattern on a plate (glass substrate).
  • a so-called optical lithography step of transferring and exposing a reticle pattern onto a photosensitive substrate (a glass substrate coated with a resist) using the exposure apparatus of the present embodiment is described. Be executed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to various steps such as a developing step, an etching step, and a reticle peeling step, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 202.
  • a set of three dots corresponding to R (Red), G (Green), and B (Blue) is arranged in a matrix in a large number. Form a filter. Then, after the color filter forming step 402, a cell assembling step 403 is performed.
  • a liquid crystal panel (liquid crystal) is formed using the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. (Cell).
  • Cell the color filter obtained in the color filter forming step 402.
  • a liquid crystal is interposed between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Is injected to produce a liquid crystal panel (liquid crystal cell).
  • components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • liquid crystal display element manufacturing method a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
  • the fly-eye lenses 43 and 46 are used as the optical integrator (uniformizer, homogenizer) in the illumination optical system, but a plurality of lens surfaces are provided on one substrate.
  • a micro-lens array formed by a method such as etching may be used instead of a fly-eye lens.
  • the incident light is diverged by a diffraction action to form a circular, orbicular, or multipole illumination field in the far field (Fraunhofer diffraction region).
  • a diffractive optical element may be used. Incidentally, as such a diffractive optical element, for example, the one disclosed in US Pat. No. 5,850,300 can be used.
  • the optical path delay optical system 41 may be omitted.
  • an internal reflection type integrator (rod integrator, light pipe, light tunnel, etc.) can be used.
  • the exit surface of the internal reflection type integer and the pattern surface of the reticle are almost shared. Therefore, when applied to the above-described embodiment, for example, the illumination field stop (reticle blind) 11 is arranged close to the exit surface of the inner reflection type integret, and the emission of the first fly-eye lens 43 is performed.
  • the zoom lens 44 is configured so that the surface and the entrance surface of the internal reflection type integer gray are approximately conjugate.
  • At least one of the micro, lens array, diffractive optical element, internal reflection type integrated lens, and lens element in the bright optical system is made of fluorite, quartz glass doped with fluorine, doped with fluorine and hydrogen.
  • the quartz glass having a structure determination temperature of 1200 K or less and an OH group concentration of 1 000 ppm or more is disclosed in Japanese Patent No. 277 0224 by the present applicant, and has a structure determination temperature of 1200 K
  • a quartz glass having a hydrogen molecule concentration of 1 ⁇ 10 17 molecules / cm 3 or more, a structure determination temperature of 1,200 K or less and a chlorine concentration of 50 ppm or less, and structure determination Japanese Patent No. 2936138 by the applicant of the present invention discloses a glass having a temperature of 1200 K or less, a hydrogen molecule concentration of 1 ⁇ 10 17 molecules / cm 3 or more, and a chlorine concentration of 50 ppm or less. It is disclosed.
  • each lens element constituting the projection optical system is formed of fluorite.
  • each lens element constituting the projection optical system is composed of calcium fluoride (C). a F 2 , fluorite), barium fluoride (B a F 2 ), lithium fluoride (L i F), magnesium fluoride (MgF 2 ), lithium'calcium aluminum. F 6), and at least one material selected from the group consisting of lithium 'strontium' aluminum Furorai de (L i S r a 1 F 6) Preferably, there is.
  • a laser light source having a narrow band of a fluorine dimer laser (F 2 laser) having an oscillation wavelength of 157 nm is used.
  • F 2 laser fluorine dimer laser
  • the present invention is not limited to the F 2 laser.
  • a narrow band of an ArF excimer laser having an oscillation wavelength of 193 nm or a KrF excimer laser having an oscillation wavelength of 248 nm can be used.
  • the degree of narrowing of the laser light source can be reduced. This has the advantage that the burden of achromatization can be reduced.
  • harmonics of solid laser such as YAG laser having an oscillation scan Bae spectrum to 1 57 nm.
  • a single-wavelength laser beam in the infrared or visible range emitted from a DFB semiconductor laser or fiber laser for example, doped with erbium (Er) (or both erbium and ytterbium (Yb))
  • Er erbium
  • Yb ytterbium
  • a harmonic that is amplified by a fiber amplifier and wavelength-converted to ultraviolet light using a nonlinear optical crystal may be used.
  • the oscillation wavelength of a single-wavelength laser beam is in the range of 1.51-1.59 / im
  • a 10-fold harmonic with a generated wavelength in the range of 151-159 nm will be output. Is done.
  • the oscillation wavelength 1.57 to 1.58 and in the range of im
  • 1 0 harmonic in the range of 1 5. 7 to 1 58 nm is generated wavelength, substantially the same wavelength as ie the F 2 laser beam Is obtained.
  • the oscillation wavelength is in the range of 1.03 to: L.12 m, a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output. 0 99 to 1.
  • the harmonic when a harmonic from a laser light source is used, the harmonic itself has a sufficiently narrow spectral width (for example, 0.3 pm or less), and thus can be used instead of the light source 2 described above. .
  • the projection optical system is configured using a single type of material, but the type of material is not limited to a single type.
  • synthetic quartz and fluorite can be used as materials, assuming that exposure light in the vacuum ultraviolet region or the far ultraviolet region close to the deep ultraviolet region can be used.
  • calcium fluoride (C a F 2, fluorite), fluoride Roh potassium (B a F 2), lithium fluoride (L i F), magnesium fluoride (Mg F 2), lithium, calcium, aluminum Furorai de (L i C a A 1 F e), and lithium strontium aluminum 'off port - is selected from the group consisting of Lai-de (L i S r A 1 F 6) At least two materials can be used. Further, a diffractive optical element may be added to the projection optical system, and the effect of correcting chromatic aberration by the diffractive optical element may be used together.
  • a prism made of a birefringent material for preventing speckles may be arranged on the incident side of the first fly-eye lens 43.
  • a prism for preventing speckle is disclosed in, for example, US Pat. No. 5,253,110.
  • magnesium fluoride MgF
  • a prism made of a crystal can be used.
  • the wedge-shaped prism made of the magnesium fluoride crystal is arranged so that its thickness gradually changes in a direction intersecting the optical axis of the illumination optical system.
  • the wedge prism for optical path correction is arranged so as to face the wedge prism made of the magnesium fluoride crystal so that their apical angles are opposite to each other.
  • This wedge prism for optical path correction has the same apex angle as the prism made of the magnesium fluoride crystal, and is made of a light-transmitting material having no birefringence.
  • the material for the optical path correcting prism include quartz glass doped with fluorite, fluorine, quartz glass doped with fluorine and hydrogen, a structure determination temperature of 1200 K or less, and an OH group concentration of 100 K or less.
  • the exposure apparatus of the embodiment may be a stitching and slit-scan exposure apparatus.
  • the stitching and slit scan methods are used, the reticle and the substrate are synchronously scanned in a predetermined first direction relative to an illumination area of a predetermined shape on the reticle, so that the Exposure is performed on the region in the column. Thereafter, the reticle is replaced, or the reticle is moved by a predetermined amount along a second direction orthogonal to the first direction of the illumination area, and the substrate is conjugated with the second direction of the illumination area. Sideways. And again, the illumination of the predetermined shape on the reticle The reticle and the substrate are synchronously scanned in the first direction relative to the region, thereby exposing the second column region on the substrate.
  • a reticle pattern can be exposed to a region on a substrate which is wider than the exposure field of the projection optical system.
  • Such stitching and slit scan type exposure apparatuses are disclosed in U.S. Pat. No. 5,477,304, JP-A-8-330022, JP-A-10-320. — It is disclosed in Japanese Patent Publication No.
  • a collective exposure method in which a pattern image on a reticle is collectively transferred to a predetermined shot area on a substrate can be adopted.
  • one wafer stage for holding a wafer as a work is provided.
  • Japanese Patent Application Laid-Open Nos. 5-175980, 10-1 JP-A-63-9797, JP-A-10-16398, JP-A-10-169309, or JP-A-210-47883 For example, a configuration in which two sets of wafer stages are provided may be used.
  • the exposure apparatus used for manufacturing semiconductor elements is used not only for the exposure apparatus used for manufacturing semiconductor elements, but also for the manufacture of displays including liquid crystal display elements, etc., used in the manufacture of exposure apparatuses that transfer device patterns onto glass plates, and used in the manufacture of thin-film magnetic heads.
  • the present invention can also be applied to an exposure apparatus that transfers a device pattern onto a ceramic wafer, an exposure apparatus used for manufacturing an imaging device (such as a CCD), and the like.
  • the present invention can be applied to an exposure apparatus that transfers a circuit pattern onto a glass substrate, a silicon wafer, or the like in order to manufacture a reticle or a mask.
  • the present invention is not limited to the above-described embodiment, and may take various configurations. obtain. Industrial applicability
  • the chromatic aberration of the projection optical system can be suppressed, and the burden on the light source can be reduced. Further, by adding a single type of glass material or a small number of color correction glass materials, it is possible to perform chromatic aberration correction on exposure light having a certain spectral width.
  • the projection exposure apparatus and method of the present invention it is possible to obtain a very fine circuit pattern of a micro device while simplifying the configuration of a projection optical system.
  • an extremely fine circuit pattern of a micro device can be obtained without lowering the throughput.

Description

投影光学系
技術分野
本発明は、 例えば半導体集積回路、 C C D等の撮像素子、 液晶ディス 明
プレイ、 または薄膜磁気へッ ド等のマイクロデバイスをリソグラフィ技 術を用いて製造する際に用いられる田投影露光装置及び方法、 並びにその ような投影露光装置に好適な投影光学系に関する。 また、 本発明は、 上 記投影露光装置及び投影光学系を製造する方法に関する。
背景技術
近年、 半導体集積回路等のマイク口デバイスの回路パターンの微細化 に伴い、 ステツパ等の露光装置で使用される露光用の照明光 (露光光) の波長は年々短波長化してきている。 すなわち、 露光光としては、 従来 主に使用されていた水銀ランプの i線 (波長: 3 6 5 n m) に代わって K r Fエキシマレーザ光 (波長: 2 4 8 n m) が主流となってきており、 さらに、 それよりも短波長の A r Fエキシマレ一ザ光 (波長: 1 9 3 η m) も実用化されつつある。 また、 さらなる露光光の短波長化を目的と して、 F 2 レーザ (波長 : 1 5 7 n m) のようなハロゲン分子レーザ等 の使用も試みられている。
さて、 波長 2 0 0 n m以下の真空紫外域の光源としては、 上述したェ キシマレーザやハロゲン分子レーザ等があるが、 それらの実用的な狭帯 化には限界がある。
また、 この真空紫外域の放射光を透過させる材料が限定されるため、 投影光学系を構成するレンズ素子の材料は限られたものしか使用できず, この限られた材料の透過率もそれほど高いものではない。 そして、 現状 では、 レンズ素子の表面に設けられる反射防止コートの性能も、 長波長 用のものと比べるとあまり高性能なものが得られていない。
本発明は、 投影光学系の色収差を抑え、 光源への負担を低減させるこ とを第 1の目的とする。
また、 本発明は、 単一種類の硝材、 或いは少数の色補正用硝材の追加 により、 ある程度のスぺク トル幅を有する露光光に対する色収差補正を 行うことを第 2の目的とする。
また、 本発明は、 投影光学系の構成の簡素化を図りつつも、 極めて微 細化されたマイクロデバイスの回路パターンを得ることを第 3の目的と する。
また、 本発明は、 極めて微細化されたマイクロデバイスの回路パター ンを、 スループッ トを低下させずに得ることを第 4の目的とする。 発明の開示
上述の第 1又は第 2の目的を達成するために、 本発明による第 1の投 影光学系は、 第 1面上のパターンの像を光透過性屈折部材の作用により 第 2面上に結像させる屈折型の投影光学系であって、 その第 1面とその 第 2面との間の光路中に配置されて、 正の屈折力を有する前レンズ群と、 その前レンズ群とその第 2面との間の光路中に配置されて、 正の屈折力 を有する後レンズ群と、 その前レンズ群の後側焦点位置近傍に配置され た開口絞りとを有し、 その投影光学系は、 その第 1面及びその第 2面側 がテレセントリックであり、 その後レンズ群の焦点距離を ί 2とし、 そ の第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足す るものである。
0 . 0 7 5く f 2 Z Lく 0 . 1 2 5 また、 上述の第 3の目的を達成するために、 本発明による第 2の投影 光学系は、 第 1面上のパターンの縮小像を第 2面上に結像させる投影光 学系であって、 第 1面側より順に、 負の屈折力を有する第 1レンズ群、 正の屈折力を有する第 2レンズ群、 負の屈折力を有する第 3レンズ群、 正の屈折力を有する第 4レンズ群、 開口絞り、 及び正の屈折力を有する 第 5レンズ群を有し、 その第 1 レンズ群及びその第 2レンズ群の合成横 倍率を 3 1とし、 その第 1面からその第 2レンズ群の最もその第 2面側 のレンズ面までの距離を L 1、 その第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足するものである。
一 1 . 3 < 1 / β 1 < 0
0 . 0 8く L 1 Z Lく 0 . 1 7
また、 上述の第 3の目的を達成するために、 本発明による第 3の投影 光学系は、 第 1面上のパターンの縮小像を第 2面上に結像させる投影光 学系であって、 その投影光学系の光路中に配置される少なくとも 1つの 光透過性屈折部材を含み、 その投影光学系の光路中に配置される光透過 性屈折部材の光軸に沿った厚さの総和を Cとし、 その第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足するものである。
0 . 4 6く C Z Lく 0 . 6 4
また、 上述の第 3の目的を達成するために、 本発明による第 4の投影 光学系は、 第 1面上のパターンの縮小像を第 2面上に結像させる投影光 学系であって、 少なくとも 3面以上の非球面形状のレンズ面を有し、 そ の投影光学系中の光透過性屈折部材のうち屈折力を有する部材の数の総 和を Εとし、 非球面形状のレンズ面が設けられた部材の数の総和を E a とするとき、 を満足するものである。
0 . 1 5く E a Z Eく 0 . 7
また、 本発明による第 1の投影露光装置は、 投影原版に設けられたパ ターンの縮小像をワーク上へ投影露光する投影露光装置であって、 露光 光を供給する光源と、 この光源からの露光光をその投影原版上のそのパ 夕一ンへ導く照明光学系と、 上述の何れかにかかる投影光学系とを備え、 その投影光学系のその第 1面にその投影原版を配置可能とし、 その第 2 面にそのワークを配置可能としたものである。
また、 本発明による第 2の投影露光装置は、 投影原版に設けられたパ ターンの縮小像をワーク上で走査させつつ投影露光する投影露光装置で あって、 露光光を供給する光源と、 この光源からの露光光をその投影原 版上のそのパターンへ導く照明光学系と、 上述の何れかにかかる投影光 学系と、 その投影光学系のその第 1面にその投影原版を配置可能とする ための第 1ステージと、 その第 2面にそのワークを配置可能とするため の第 2ステージと、 を備え、 その第 1及び第 2ステージは、 その投影光 学系の投影倍率に対応した速度比で移動可能であるものである。
また、 上述の第 4の目的を達成するために、 本発明による第 3の投影 露光装置は、 投影原版に設けられたパターンの縮小像をワーク上へ投影 露光する投影露光装置であって、 1 8 0 n m以下の波長域の露光光を供 給する光源と、 この光源からの露光光をその投影原版上のそのパターン へ導く照明光学系と、 その投影原版とそのワークとの間の光路中に配置 されて、 その投影原版を介したその露光光の光量の 2 5 %以上の光量を そのワークへ導いてそのパターンの縮小像をそのワーク上に形成する投 影光学系とを備えるものである。
また、 本発明による投影露光方法は、 投影原版上に形成されるパター ンをワーク上へ投影露光する投影露光方法であって、 上述の何れかにか かる投影露光装置を用い、 その投影原版をその第 1面に配置すると共に、 そのワークをその第 2面に配置し、 その投影光学系を介してそのパ夕一 ンの像をそのワーク上に形成するものである。 また、 本発明によるマイクロデバイスの製造方法は、 所定の回路パ夕 —ンを有するマイクロデバイスの製造方法であって、 上述の露光方法を 用いてそのワーク上にそのパターンの像を投影露光する工程と、 この投 影露光されたそのワークを現像処理する工程とを含むものである。
また、 本発明による第 1の投影光学系の製造方法は、 第 1面上のパ夕 一ンの像を光透過性屈折部材の作用により第 2面上に結像させる屈折型 の投影光学系の製造方法であって、 正の屈折力を有する前レンズ群を配 置する工程と、 この前レンズ群とその第 2面との間に、 正の屈折力を有 する後レンズ群を配置する工程と、 その前レンズ群とその後レンズ群と の間に、 開口絞りを配置する工程を含み、 その前レンズ群、 その後レン ズ群、 及びその開口絞りは、 その第 1面及びその第 2面側がテレセント リックであるように配置し、 その後レンズ群の焦点距離を f 2とし、 そ の第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足す るものを用いるものである。
0 . 0 7 5 < f 2 / L < 0 . 1 2 5
また、 本発明による第 2の投影光学系の製造方法は、 第 1面上のパ夕 —ンの縮小像を第 2面上に結像させる投影光学系の製造方法であって、 負の屈折力を有する第 1 レンズ群を準備する工程と、 正の屈折力を有す る第 2レンズ群を準備する工程と、 負の屈折力を有する第 3レンズ群を 準備する工程と、 正の屈折力を有する第 4レンズ群を準備する工程と、 開口絞りを準備する工程と、 正の屈折力を有する第 5レンズ群を準備す る工程と、 その第 1面側より順に、 その第 1 レンズ群、 その第 2レンズ 群、 その第 3レンズ群、 その第 4レンズ群、 その開口絞り、 及びその第 5レンズ群の順に配置する工程とを含み、 その第 1第 1 レンズ群及びそ の第 2レンズ群の合成横倍率を /3 1 とし、 その第 1面からその第 2レン ズ群の最もその第 2面側のレンズ面までの距離を L 1、 その第 1面から その第 2面までの距離を Lとするとき、 次の条件を満足するようにその 第 1及び第 2レンズ群を準備するものである。
― 1 . 3 < 1 / β 1く 0
そして、 次の条件を満足するようにその第 1及び第 2レンズ群を配置 するものである。
0 . 0 8く L 1 Z Lく 0 . 1 7
また、 本発明による第 3の投影光学系の製造方法は、 第 1面上のパ夕 ーンの縮小像を第 2面上に結像させる投影光学系の製造方法であって、 負の屈折力を有する第 1 レンズ群を準備する工程と、 正の屈折力を有す る第 2レンズ群を準備する工程と、 負の屈折力を有する第 3レンズ群を 準備する工程と、 正の屈折力を有する第 4レンズ群を準備する工程と、 開口絞りを準備する工程と、 正の屈折力を有する第 5レンズ群を準備す る工程と、 その第 1面側より順に、 その第 1 レンズ群、 その第 2レンズ 群、 その第 3レンズ群、 その第 4レンズ群、 その開口絞り、 及びその第 5レンズ群の順に配置する工程と、 を含み、 その投影光学系の光路中に 配置される光透過性屈折部材の光軸に沿った厚さの総和を Cとし、 その 第 1面からその第 2面までの距離を Lとするとき、 次の条件を満足する ようにその第 1 レンズ群〜第 5レンズ群を準備するものである。
0 . 4 6 < C / L < 0 . 6 4
また、 本発明による第 4の投影光学系の製造方法は、 第 1面上のパ夕 ーンの縮小像を第 2面上に結像させる投影光学系の製造方法であって、 光透過性屈折部材が有するレンズ面のうち、 少なくとも 3面以上が非球 面形状となるように、 且つその光透過性屈折部材のうち屈折力を有する 部材の数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数 の総和を E aとするとき、 次の条件を満足するようにその光透過性部材 を準備する工程と、 この光透過性部材を組み上げる工程とを有する投影 光学系の製造方法である。
0 . 1 5く E a Eく 0 . 7 図面の簡単な説明
図 1は、 第 1の数値実施例にかかる投影光学系の光路図である。 図 2 は、 第 2の数値実施例にかかる投影光学系の光路図である。 図 3は、 第 1の数値実施例の投影光学系の横収差図である。 図 4は、 第 2の数値実 施例にかかる投影光学系の横収差図である。 図 5は、 本発明の実施形態 にかかる投影露光装置の概略的な構成を示す図である。 図 6は、 本発明 のマイクロデバイス製造方法の一例を示すフローチャートである。 図 7 は、 本発明のマイクロデバイス製造方法の別の一例を示すフローチヤ一 トである。 発明を実施するための最良の形態
本発明の好適な実施の形態を図面によって説明する。 図 1及び図 2は、 本発明の実施例にかかる投影光学系の光路図である。
図 1及び図 2において、 本発明の投影光学系 P Lは、 第 1面 A上のパ ターンの縮小像を第 2面 B上に結像させる屈折型の投影光学系である。 そして、 投影光学系 P Lは、 正屈折力の前レンズ群 G Fと、 正屈折力の 後レンズ群 G Rとを有する。 そして、 前レンズ群 G Fの後側焦点位置近 傍に開口絞り A Sが配置される。 なお、 開口絞り A Sの位置は、 必ずし も前レンズ群 G Fの近軸上の後側焦点位置には限定されない。 例えば投 影光学系 P Lの瞳の像面湾曲が存在する場合には、 開口絞り A Sの開口 径を変化させた際に生じるイメージフィ一ルド内でのビクネッティング (口径触) 差が起こることがあり、 このようなビクネッティング差を防 止或いは低減させるために、 開口絞り A Sの位置を前レンズ群 G Fの近 軸上の後側焦点位置から外れた位置 (近軸上の後側焦点位置よりも後レ ンズ群側) に設定する場合もある。 上記後側焦点位置の近傍とは、 この ような外れた位置も含む概念である。 このような場合、 後レンズ群 G R (第 5レンズ群) は、 投影光学系 P Lの近軸瞳位置から第 2面までに位 置する一群のレンズの集合を指す。
なお、 図 1及び図 2の例では、 開口絞り A Sは前レンズ群 G Fと後レ ンズ群 G Rとの間に配置される。
そして、 前レンズ群 G Fは、 第 1面側より順に、 負屈折力の第 1レン ズ群 G l、 正屈折力の第 2レンズ群 G 2、 負屈折力の第 3レンズ群 G 3 、 及び正屈折力の第 4レンズ群を有する。 従って、 本発明の投影光学系 P Lは、 負 ·正 ·負 ·正 ·正の屈折力の第 1 レンズ群 G 1〜第 5レンズ群 G 5を有する 5群構成の投影光学系でもある。
さて、 図 1及び図 2の実施例にかかる投影光学系 P Lは、 第 1面 A側 及び第 2面 B側において実質的にテレセントリックな光学系である。 こ こで、 第 1面側及び第 2面側で実質的にテレセントリックとは、 投影光 学系 P Lに対して第 2面 B側から投影光学系の光軸 A Xと平行な光線を 入射させた場合、 この光線が第 1面側へ射出されるときのときの光軸と のなす角度が 5 0分以下であることを指す。
このように、 各実施例の投影光学系では、 投影原版としてのレチクル (マスク) やワークとしての感光性基板 (ウェハ、 プレート等) の光軸 方向における位置ずれや、 これら投影原版及びワークのたわみ等による 形状変化が発生したとしても、 それによる像の倍率誤差や歪みを小さく することできる。
各実施例の投影光学系では、 後レンズ群 G R (または第 5レンズ群 G 5 ) の焦点距離を f 2とし、 第 1面 Aから第 2面 Bまでの距離 (物像間 距離) を Lとするとき、 次の条件を満足することが好ましい。 0. 0 7 5< f 2/L<0. 125 ·'· (1)
上記条件式 (1) は、 投影光学系の色収差、 特に軸上色収差を低減さ せるために規定された式である。 ここで、 条件式 ( 1) の下限を下回る 場合、 後レンズ群 GR (または第 5レンズ群 G 5) の焦点距離が短くな り過ぎる。 このため、 後レンズ群 GR (または第 5レンズ群 G 5) から 発生する軸上色収差量は極めて少なくなるが、 単色収差の発生が大きく なり過ぎ、 それらの補正が困難になるため好ましくない。 ここで、 色収 差の除く単色収差をさらに良好に補正するためには条件式 ( 1) の下限 を 0.09に設定することが好ましい。
また、 条件式 (1) の上限を上回る場合、 後レンズ群 GR (または第 5レンズ群 G 5) の焦点距離が長く成り過ぎる。 この場合、 単色収差の 補正を良好とすることができるが、 後レンズ群 GR (または第 5レンズ 群 G 5) から発生する軸上色収差が大きく発生してしまうため好ましく ない。 この場合には、 光源からの露光光の波長幅を狭くするか、 投影光 学系 PLに色収差補正用の屈折光学部材を付加する必要があり、 光源へ の負担が増す、 または投影光学系 P Lのコストアップを招く恐れがある c ここで、 投影光学系の軸上色収差の発生をさらに抑えるためには、 条件 式 (1) の上限を 0. 1 2に設定することが好ましい。
なお、 露光光として 1 80 nm以下の露光光を用いる場合には、 この 波長域の露光光を透過する光透過性屈折部材の種類が限られるため、 条 件式 ( 1) の上限を上回る場合には投影光学系 PLそのものが成立しな い恐れがある。
なお、 上記構成において、 投影光学系 PLは、 少なくとも 1面以上の 非球面 A S P 1〜A S P 6を有することが好ましい。
さて、 前述したように、 各実施例の投影光学系 P Lでは、 負 *正 *負 •正 ·正の屈折力配置を有しており、 従来の正 ·負 ·正 '負 ·正 ·正の 屈折力配置を有する 6群構成の投影光学系に比べて、 レンズ枚数を大幅 に削減できる利点がある。
そして、 各実施例の投影光学系 P Lにおいては、 負の第 1 レンズ群 G 1及び正の第 2レンズ群 G 2の合成光学系を考え、 この合成光学系の横 倍率 (第 1及び第 2レンズ群 G 1, G 2の合成横倍率) を 3 1とし、 第 1面 Aから第 2レンズ群 G 2の最も第 2面 B側のレンズ面までの距離を L l、 第 1面 Aから第 2面 Bまでの距離を Lとするとき、 以下の条件式 (2) 及び ( 3) を満足することが好ましい。
— 1. 3 < 1 /β 1 < 0 … (2)
0. 0 8く L 1 ZLく 0. 1 7 ··· ( 3)
上記条件式 (2) は、 投影光学系 P Lの画面全域 (イメージフィール ド全域) において良好なる収差補正を達成するために規定した条件式で ある。 条件式 (2) より明らかな通り、 各実施形態の投影光学系 P Lに おける第 1及び第 2レンズ群 G 1, G 2の合成光学系は、 第 1面 Aから の発散光束をやや収斂光束に変換している。
条件式 (2 ) の下限を下回るときには、 この合成光学系 G l, G 2で の光束の収斂作用が強くなり過ぎて、 収差、 特に画角に関する収差の発 生が大きくなり、 投影光学系 P Lのイメージフィールドを十分に確保で きなくなるため好ましくない。 なお、 画角に関する収差の発生をさらに 抑えるためには、 条件式 (2) の下限を一 1. 1 0に設定することが好 ましい。
一方、 条件式 (2 ) の上限を上回るときには、 第 1 レンズ群 G 1の負 屈折力が弱くなり過ぎるため、 投影光学系 P Lのぺッッバール和の悪化 を招き、 投影光学系 P Lのイメージフィ一ルドを十分に確保できなくな るため好ましくない。 なお、 投影光学系 P Lのペッツバール和をさらに 良好に補正するためには、 条件式 (2 ) の上限を— 0. 4 2に設定する ことが好ましい。
条件式 (3) は、 上記条件式 (2) の前提となる式であって、 第 1及 び第 2レンズ群の合成光学系 G 1 , G 2の位置を規定するものである。 ここで、 条件式 (3) の下限値を 0. 1とすることが好ましく、 条件式 (3) の上限値を 0. 1 5とすることが好ましい。
さて、 第 1及び第 2レンズ群の合成光学系 G 1 , G 2は、 少なくとも 2つの非球面形状のレンズ面 A S P 1〜AS P 3を有することが好まし レ 。 この合成光学系 G l , G 2中の非球面 AS P 1〜AS P 3の作用に より、 像面湾曲、 歪曲収差、 及び瞳の球面収差等を良好に補正すること が可能である。
また、 第 1及び第 2レンズ群の合成光学系 G 1, G2は、 1 0枚以下 のレンズで構成されることが好ましい。 この構成により、 投影光学系 P Lの透過率の確保、 フレア発生の低減、 及び製造時のコストダウンを達 成することが可能となる。
さて、 各実施例の投影光学系 PLにおいては、 投影光学系 PLの光路 中に配置される光透過性屈折部材 (レンズ、 平行平面板) の光軸に沿沿つ た厚さの総和を Cとし、 第 1面 Aから第 2面 Bまでの距離を Lとすると き、 次の条件を満足することが好ましい。
0. 46く CZLく 0. 64 ·■■ (4)
上記条件式 (4) は、 投影光学系 PLとしての透過率確保と、 投影光 学系 P Lの結像性能の安定化とを両立させるために規定した式である。 上記条件式 (4) の下限を下回る場合、 投影光学系 PLを構成する光 透過性屈折部材間の気体間隔が長くなりすぎ、 この気体の特性が変動す ること (例えば温度変動や気圧変動などに起因する屈折率の変動の発生、 ゆらきの発生等) による結像性能の変動を招きやすくなるため好ましく ない。 なお、 環境変動に対する結像性能の安定性をさらに向上させるた めには、 条件式 (4) の下限値を 0. 5 2に設定することが好ましい。 また、 上記条件式 (4) の上限を上回る場合、 投影光学系 P Lの環境 変動への耐性は向上するが、 十分なる透過率を得ることが困難になるた め好ましくない。 なお、 さらなる透過率の確保を達成するためには、 条 件式 (4) の上限値を 0. 6 2 5に設定することが好ましい。
上記条件式 (4) を満足する構成においては、 投影光学系 P Lは少な くとも 1つの非球面 AS P 1〜AS P 6を有することが好ましい。 これ により、 初期の結像性能を十分に高めつつ、 環境変動に対する安定性と 十分なる透過率とを確保することが可能である。
さて、 各実施例の投影光学系 P Lにおいては、 少なくとも 3面以上の 非球面形状のレンズ面 A S P 1〜A S P 6を有することが好ましい。 こ の構成により、 比較的にレンズ枚数 (すなわち硝材量) を抑えた構成の もとで、 画面全域 (イメージフィールド全域) での良好なる収差補正を 実現することができる。
但し、 非球面形状のレンズ面 AS P 1〜AS P 6の数は増やし過ぎて も好ましくなく、 投影光学系 P L中の光透過性屈折部材のうち屈折力を 有する部材 (レンズ素子) の数の総和を Eとし、 非球面形状のレンズ面 AS P 1〜A S P 6が設けられた部材の数の総和を E aとするとき、 次 の条件を満足することが好ましい。
0. 1 5 <E a/E< 0. 7 … ( 5)
上記条件式 ( 5) は、 投影光学系 P Lの製造を考慮した上での非球面 形状のレンズ面 AS P 1〜AS P 6の数の最適な範囲を規定した式であ る。 球面レンズに比べて、 非球面レンズの製造難易度は高く、 また非球 面レンズの表面と裏面との偏心誤差や面精度誤差は大きくなりがちであ る。 従って、 投影光学系 P Lの製造にあたっては、 非球面レンズの誤差 を球面レンズの位置 ·姿勢の調整や球面レンズの面形状を調整すること により、 投影光学系 PLの結像性能を最適化することが好ましい。
上記条件式 (5) の上限を上回る場合には、 非球面形状のレンズ面 A S P 1〜AS P 6の誤差による収差発生が大きくなり過ぎるばかりでは なく、 球面レンズの数も少なくなるため、 非球面 A S P 1〜A S P 6の 誤差による収差発生を球面レンズの位置,姿勢調整、 形状調整により補 正することが困難になる。 ここで、 投影光学系 PLの製造をさらに容易 にするためには、 条件式 (5) の上限を 0. 42に設定することが好ま しい。
一方、 上記条件式 (5) の下限を下回る場合には、 非球面形状のレン ズ面の数が少なくなり、 投影光学系 P Lの製造は容易となるが、 画面全 域 (イメージフィールド全域) での良好な収差補正が困難になり、 かつ 投影光学系 P Lを製造するために必要な硝材量の増加を招くため好まし くない。 なお、 さらなる収差補正の達成及び硝材量の削減を図るために は、 条件式 (5) の下限を 0. 2に設定することが好ましい。
さて、 各実施例の投影光学系 PLにおいては、 投影光学系 PLを構成 する光透過性屈折部材のうちの屈折力を有する部材 (レンズ素子) の総 和は、 1 6以上であることが好ましい。 これにより、 投影光学系 PLの 像側 (第 2面 B側) 開口数の増大を図ることができ、 さらに微細なパ夕 ーンを投影露光することが可能となる。 なお、 上記条件式 (5) を満足 する場合には、 レンズ素子の総和が 1 6以上であると、 非球面レンズの 誤差による収差発生を補正するための球面レンズの数を十分に確保する ことができる利点がある。
また、 各実施例の投影光学系 PLにおいては、 投影光学系 PLを構成 する光透過性屈折部材のうちの屈折力を有する部材 (レンズ素子) の総 和は、 26以下であることが好ましい。 これにより、 投影光学系 PLを 構成する光透過性屈折部材の厚みが削減できることによる透過率の向上 のみならず、 光学界面 (レンズ面) の数が削減され、 この光学界面での 光量損失を低減させて、 全体としての透過率向上を図ることができる。
さて、 図 1の実施例では、 投影光学系 P L中の光透過性屈折部材は、 単一種類の材料から形成されている。 このため、 投影光学系 P Lの製造 コストの削減を図ることができる。 特に、 1 8 0 n m以下の露光光に対 して投影光学系 P Lを最適化する場合には、 この波長域の露光光に対し て良好なる透過率を有する硝材が限定されるため、 効果的である。
また、 図 2の実施例では、 投影光学系 P L中の光透過性屈折部材は、 第 1の材料から形成された第 1の光透過性屈折部材と、 第 2の材料から 形成された第 2の光透過性屈折部材とを有している。 ここで、 光透過性 屈折部材のうちの屈折力を有する部材の数に対するその第 2の光透過性 屈折部材の数は、 3 2 %以下であることが好ましい。
特に、 2 0 0 n m以下の真空紫外域の露光光を用いる場合、 この波長 域の露光光に対して良好なる透過率を有する硝材の種類が幾つかに限定 される。 この幾つかの硝材の中には、 製造コストが高くかつレンズにす るための加工コス卜が硝材も含まれている。 上記コス卜の高い硝材に関 しては、 レンズに加工する際の精度を高めることが困難であり、 投影光 学系 P Lの精度向上、 すなわち結像性能の向上を図る際の難点となる。 この観点に立つと、 複数種類の硝材を用いて投影光学系 P Lを製造する 場合には、 上記のパーセンテージを 3 2 %以下に抑えることで、 製造コ ストの低減と結像性能の向上とを両立させることができる。 なお、 上記 のパーセンテージは、 1 6 %以下であることが好ましく、 1 1 %以下で あるとさらに好ましい。
次に、 数値実施例について説明する。
図 1は、 第 1実施例による投影光学系 P Lの光路図である。
第 1実施例の投影光学系 P Lは、 狭帯化された F 2 レーザが供給する 波長 1 57. 62 nmを基準波長としたものであり、 基準波長に対して 波長幅 ± 0. 2 pmの範囲で色収差補正を行っているものである。 なお、 第 1実施例において、 投影光学系 P L中の全ての光透過性屈折部材 (レ ンズ L 1 1〜: L 57) は、 螢石 (フッ化カルシウム, C a F2)で形成さ れている。
図 1に示す通り、 第 1実施例の投影光学系 P Lは、 第 1面 A側から順 に、 正屈折力の前レンズ群 GF、 開口絞り AS、 及び正屈折力の後レン ズ群 GRを有する。 また、 別の群分けによると、 第 1実施例の投影光学 系 PLは、 第 1面 A側から順に、 負の第 1レンズ群 G l、 正の第 2レン ズ群 G 2、 負の第 3レンズ群 G 3、 正の第 4レンズ群 G4、 開口絞り A S、 及び正の第 5レンズ群 G 5を有する。
第 1レンズ群 G 1は、 第 1面 A側から順に、 両凹形状の負レンズ L 1 1と、 凹面を第 1面 A側に向けたメニスカス形状の負レンズ L 1 2とを 有し、 これらの負レンズ L 1 1 , L 1 2によって、 両凸形状の気体レン ズを形成している。 ここで、 負レンズ L 1 1の第 1面 A側のレンズ面と 負レンズ L 1 2の第 2面 B側のレンズ面とは非球面形状に形成されてい る。
第 2レンズ群 G 2は、 両凸形状の 4つの正レンズ L 2 1〜: L 24を有 する。 ここで、 最も第 2面 B側の正レンズ L 24の第 1面 A側のレンズ 面は非球面形状に形成されている。
第 3レンズ群 G 3は、 両凹形状の 3つの負レンズ L 3 1〜L 33を有 し、 これら負レンズ L 3 1〜: L 33によって、 両凸形状の 2つの気体レ ンズを形成している。 ここで、 最も第 2面 B側の負レンズ L 33の第 2 面 B側のレンズ面は非球面形状に形成されている。
第 4レンズ群 G 4は、 第 1面 A側より順に、 第 1面 A側に凹面を向け たメニスカス形状の 2つの正レンズ L 4 1, L 42と、 両凸形状の正レ ンズ L 43とを有する。
第 5レンズ群 G 5は、 第 1面 A側かから順に、 両凹形状の負レンズ L 5 1と、 両凸形状の 2つの正レンズ L 52, L 53と、 第 1面 A側に凸 面を向けたメニスカス形状の 3つの正レンズ L 54〜L 56と、 平凸形 状の正レンズ L 57とを有する。 ここで、 正レンズ L 56の第 2面 B側 のレンズ面は非球面形状に形成されている。
図 2は、 第 2実施例による投影光学系 P Lの光路図である。
第 2実施例の投影光学系 PLは、 狭帯化された A r Fレーザが供給す る波長 1 93. 306 nmを基準波長としたものであり、 基準波長に対 して波長幅 ± 0. 4 pmの範囲で色収差補正を行っているものである。 なお、 第 2実施例において、 投影光学系 P L中の光透過性屈折部材は、 石英ガラス (合成石英) と螢石とから形成される。
図 2に示す通り、 第 2実施例の投影光学系 PLは、 第 1面 A側から順 に、 正屈折力の前レンズ群 GF、 開口絞り AS、 及び正屈折力の後レン ズ群 GRを有する。 また、 別の群分けによると、 第 1実施例の投影光学 系 PLは、 第 1面 A側から順に、 負の第 1レンズ群 G l、 正の第 2レン ズ群 G2、 負の第 3レンズ群 G 3、 正の第 4レンズ群 G4、 開口絞り A S、 及び正の第 5レンズ群 G 5を有する。
第 1レンズ群 G 1は、 第 1面 A側から順に、 両凹形状の負レンズ L 1 1と、 凹面を第 1面 A側に向けたメニスカス形状の負レンズ L 1 2とを 有し、 これらの負レンズ L 1 1, L 12によって、 両凸形状の気体レン ズを形成している。 ここで、 負レンズ L 1 1の第 2面 B側のレンズ面と 負レンズ L 1 2の第 2面 B側のレンズ面とは、 非球面形状に形成されて いる。 なお、 これら 2つの負レンズ L 1 1, L 1 2は共に石英ガラスか ら形成されている。
第 2レンズ G2は、 第 1面 A側から順に、 両凸形状の 3つの正レンズ L 2 1〜: L 2 3と、 凸面を第 1面 A側に向けたメニスカス形状の正レン ズ L 2 4とを有する。 ここで、 最も第 1面 A側の正レンズ L 2 1の第 2 面側のレンズ面は非球面形状に形成されている。 第 2レンズ群 G 2にお いては、 3つの両凸正レンズ L 2 1〜: L 2 3が石英ガラスから形成され ており、 メニスカス形状の正レンズ L 2 4が螢石から形成されている。 第 3レンズ群 G 3は、 両凹形状の 3つの負レンズ L 3 1〜L 3 3を有 し、 これら負レンズ L 3 1〜L 3 3によって、 両凸形状の 2つの気体レ ンズを形成している。 ここで、 最も第 2面 B側の負レンズ L 3 3の第 1 面 A側のレンズ面は非球面形状に形成されている。 第 3レンズ群 G 3中 の全ての負レンズ L 3 1〜L 3 3は石英ガラスで形成されている。
第 4レンズ群 G 4は、 第 1面 A側より順に、 第 1面 A側に凹面を向け たメニスカス形状の正レンズ L 4 1と、 第 2面 B側に凸面を向けた平凸 形状の正レンズ L 4 2と、 第 1面 A側に凸面を向けたメニスカス形状の 正レンズ L 4 3とを有する。 ここで、 3つの正レンズ L 4 1〜L 4 3は 共に石英ガラスから形成されている。
第 5レンズ群 G 5は、 第 1面 A側から順に、 第 1面 A側に凸面を向け たメニスカス形状の負レンズ L 5 1 と、 両凸形状の正レンズ L 5 2と、 第 1面 A側に凸面を向けた 4つのメニスカス形状の正レンズ L 5 3〜L 5 6と、 第 1面 A側に凹面を向けた平凹形状の負レンズ L 5 7とを有す る。 ここで、 メニスカス形状の負レンズ L 5 1の第 2面 B側のレンズ面 とメニスカス形状の正レンズ L 5 6の第 2面側のレンズ面とは非球面形 状に形成されている。 なお、 第 5レンズ群 G 5においては、 両凸形状の 正レンズ L 5 2が螢石で形成されており、 残りのレンズ L 5 1 , L 5 3 〜L 5 7が石英ガラスで形成されている。
第 2実施例の投影対物レンズ P Lのように、 石英ガラス (合成石英) と螢石とをレンズ材料 (硝材) として用いる場合には、 非球面形状のレ ンズ面は石英ガラスからなるレンズに形成することが好ましい。
以下の表 1及び表 2に第 1及び第 2実施例の投影光学系 P Lの諸元を 示す。 表 1及び表 2において、 左端の列には第 1面 Aからの各レンズ面 の番号、 第 2列には各レンズ面の曲率半径、 第 3列には各レンズ面から 次のレンズ面までの面間隔、 第 4列にはレンズ材料、 第 5列には非球面 の符号、 第 6列には各レンズの符号、 第 6列にはレンズ群の符号を示す c また、 非球面レンズ面についての第 2列の曲率半径は頂点曲率半径を示 す。
非球面形状は以下の式 (a) で示される。 z(y) =
Figure imgf000020_0001
y :光軸からの高さ
z :非球面頂点における接平面から非球面までの光軸方向の距離 r :頂点曲率半径
κ : 円錐係数
A, B, C, D, E, F :非球面係数
表 1及び表 2の最後に [非球面データ] として各非球面についての円 錐係数 κ、 非球面係数 A, B, C, D, E, Fを示した。
第 1実施例の投影光学系ではレンズ材料 (硝材) として螢石を用い、 第 2実施例では石英ガラス (合成石英) 及び螢石を用いている。
第 1実施例の基準波長 ( 1 57. 62 nm) での螢石の屈折率は 1. 559306 7であり、 波長 + 1 p m当たりの屈折率の変化量 (分散) は一 2. 6 X 1 0— 6である。
また、 第 2実施例の基準波長 ( 1 93. 306 nm) での石英ガラス (合成石英) の屈折率は 1. 560326 1であり、 波長 + 1 pm当た りの屈折率の変化量 (分散) は一 1. 59 X 1 0— 6である。 そして、 上 記基準波長基準波長 (1 93. 306 nm) での螢石の屈折率は 1. 5
0 14548であり、 波長 + 1 pm当たりの屈折率の変化量 (分散) は - 0. 98 X 1 0—6である。
なお、 以下の表 1及び表 2において、 d 0は第 1面 Aから最も第 1面 A側の面までの距離、 WDは最も第 2面 B側の面から第 2面 Bまでの距 離 (作動距離) 、 3は投影倍率、 N Aは第 2面 B側の開口数、 φは第 2 面 B上でのイメージサークルの直径を示す。
《表 1》
第 1実施例 (図 1)
d O = 40.6446 (腿)
WD = 10.8134 (mm)
\ β \ = 1
N A = 0. 75
Φ = 23 (mm)
曲率半径 面間隔 ガラス 非球面
(mm) (mm)
1: -446.6132 12.0000 螢石 ASP1 L11
2: 554.7232 22.5800
3: -92.3259 46.8618 螢石 L12
4: -6695.3973 1.1105 ASP2
5: 3832.9930 50.0000 螢石 L21
6: -179.0867 2.1599
7: 552.3099 44.4615 螢石 L22
8: -337.8904 72.3130
9: 416.2197 34.5857 'k'k
L23 9 Ί 620C ·Ζ8Ι : SC
SSI 0000 OS 08ΖΙ "001 : s
99PI SI 9 6Ι "C66 :
2暴 061P Ή S •' ^
^C9 '81 619 "Z6 - :1£
3暴 C69Z -8C ^619 'Z6C :0C
0000 -019- :6Z
3暴 966S ·οε •"82
5dSV 9ZZ ·9 6UZ 'ZiC '■LI
m USZ ·0Ζ 02Z9 '89Z- ■9Z sv oo :
0000 Ί 06S0 S - ■ n 5Ϊ m 3暴 0000 'SW
D
ιεζ 9 6C0n9 '002 - ■ '11
zn 3暴 9191 'U 9 '961S- ■ u
0000 Ί 6οε ΌΖΖ- ■ oz
\n S慕 0000 Ό5 :61 01
1209 'Π Ό61 :81
C9I8 \ 9^66 "96- ■LI
6888 'S8 6C8Z ·9 ΐ :91
in 0000 'ΖΙ 998 ' IS- :51
C8S · 89S9 Ό9ί ■ n
0000 'Ζΐ 8 ·960 - : CI
9HC '6S \ "95^- ■Zl
CdSV C6C8 "6ZI ■11
0000 Ί '588- ■01
02 ZeSO/66df/I3d ££6£Z/I0 OA\ z t - o I xm ^ 'o- : o
21- 0 1 xss^ Ό- : a
8- 0 T XZ9009C Ό- : V
000000 "0 ·'
CdSV ο ε-O T X^9S9CZ "0 ·" Λ s z - 0 T X9^8IC "0 : a 0Z
0 z o T n6m Ό- : a
0 T X90C 96 Ό : 0 o T x 'o— : a
0 T X 8068 "0 : V
•0 : SI
9Z- 0 T XCZ816I '0
z z- 0 I X0SI8 Ό- Ή
0 T X898C91 '0- a
0 T X08Z06C ·0 0 01 o T m Ό- g
0 T Ό V
000000 '0
usv
(a丛) co :6C
9dSV ZCZ6 '9 66W99I : ZC
8^1 -0Z 9^1 '001 :9S Z€S0/66dT/lDd εε6 /lo O C
Figure imgf000024_0001
F 0.443761 X 1 0一2 6
《表 2》
第 2実施例 (図 2)
d 0 = 50.2691 (mm)
WD = 12.7196 (mm)
1 /3 1 = 1/4
N A = 0. 7 5
Φ =26.6(匪)
曲tB— f—半卞径 Ί土 IflJ 1曰 J PP3 ブ卜 、 LM] n U U11111ノ vmiu
1丄 - · 1 τ 1 1
L丄 丄
9 · 0 RQQfi 1 · S d71i 1 AυSΓ 1丄
· -100 7999 43 Q802 石 ノガラノ ス 1 Τ< 1丄乙
4: -223.9596 9.5226 ASP25 5: 723.6127 40.8525 石英ガラス L21
6: -326.4452 1.4173 ASP3
7: 1771.0971 46.9449 石英ガラス L22
8: -289.4624 104.4363
9: 315.8237 54.1717 石英ガラス L230 10: -982.0234 5.9069
11: 177.1899 46.2445 螢石 L24
12: 2145.8394 52.0242
13: -383.7553 14.4116 石英ガラス L31
14: 103.2214 24.7417
5 15: -406.0024 33.8665 石英ガラス L32
16: 264.3030 20.2564 17: -130.6551 36.7937 石英ガラス ASP4 L33
18: 243.2466 22.7571
19: -214.9802 30.3809 石英ガラス L41
20: - 138.6461 1.6720
21: oo 21.7611 石英ガラス L42
22: -503.4971 3.2133
23: 300.0000 39.0994 石英ガラス L43
24: 1276.4893 64.3575
25: oo 17.6348 AS
26: 634.9754 23.4375 石英ガラス L51
27: 428.5036 1.0000 ASP5
28: 374.4189 48.2150 螢石 L52
29: -377.2840 5.8246
30: 312.6914 30.9155 石英ガラス L53
31: 1319.1903 24.0395
32: 272.3437 35.8174 石英ガラス L54
33: 2421.5392 21.5533
34: 111.2389 35.3044 石英ガラス L55
35: 217.9576 8.7809
36: 117.8762 24.0827 石英ガラス L56
37: 206.3743 8.3992 ASP 6
38: -4906.7588 47.4235 石英ガラス L57
39: oo (WD)
[非球面データ]
ASP1
κ 0.000000
Figure imgf000027_0001
c - Π 1 S4R7Q X 1 0— 1 5
n · Π . lQ7Qfi8X 1 0
1 ,\
F · 0
1 1 00
F - 0
π ηηηηηπ
A · 0
R · U - u u u u u u 0 _ 12
r · -n Ή n no x 1
Γ) · 0
F ■
F - . 0
ASP6
'. n 000謹
A . -n 14122ΠΧ 1 0
R - -Π 7 ififl?fifiX 1 0— ] 1
- 0.429061 X 1 0— 1 5
D 0. 179175 X 1 0—2°
E 0. 705845 X 1 0— 23
F - 0. 321978X 1 0— 27
さて、 以下の表 3に各実施例の条件対応数値を掲げる。
《表 3》
f 2/L 1 / β 1 L 1 /L C/L E a/E
( 1 ) ( 2 ) ( 3 ) ( 4) ( 5 ) 第 1実施例 0. 108 0. 316 第 2実施例 0. 111 0. 316 上記表 3に示す通り、 第 1及び第 2実施例とも上記条件式を満足して いる。
次に、 図 3及び図 4にそれぞれ第 1及び第 2実施例にかかる投影光学 系 P Lの第 2面 B上での横収差図を示す。
ここで、 図 3 (A) は像高 Y= l l . 5におけるメリジォナル方向の 横収差図、 図 3 (Β) は像高 Υ= 5. 7 5におけるメリジォナル方向の 横収差図、 図 3 (C) は像高 Υ= 0 (光軸上) におけるメリジォナル方 向の横収差図、 図 3 (D) は像高 Y= l l . 5におけるサジタル方向の 横収差図、 図 3 (Ε) は像高 Υ= 5. 7 5におけるサジタル方向の横収 差図、 図 3 (F) は像高 Υ= 0 (光軸上) におけるサジタル方向の横収 差図である。 また、 図 3 (Α) 〜図 3 (F) の各横収差図において、 実 線は波長 λ二 1 5 7. 6 2 nm (基準波長) による収差曲線、 破線は波 長 λ = 1 5 7. 6 2 nm+ 0 - 2 pm (基準波長十 0. 2 pm) による 収差曲線、 一点鎖線は波長 λ = 1 5 7. 6 2 nm- 0. 2 pm (基準波 長— 0. 2 pm) による収差曲線を表している。
また、 図 4 (A) は像高 Y= 1 3. 3におけるメリジォナル方向の横 収差図、 図 4 (Β) は像高 Υ= 6. 6 5におけるメリジォナル方向の横 収差図、 図 4 (C) は像高 Υ= 0 (光軸上) におけるメリジォナル方向 の横収差図、 図 4 (D) は像高 Υ= 1 3. 3におけるサジタル方向の横 収差図、 図 4 (Ε) は像高 Υ= 6. 6 5におけるサジタル方向の横収差 図、 図 4 (F) は像高 Υ= 0 (光軸上) におけるサジタル方向の横収差 図である。 また、 図 4 (Α) 〜図 4 (F) の各横収差図において、 実線 は波長; = 1 9 3. 3 0 6 nm (基準波長) による収差曲線、 破線は波 長 λ = 1 9 3. 3 0 6 + 0. 4 pm (基準波長 + 0. 4 pm) による収 差曲線、 一点鎖線は波長 λ = 1 9 3. 3 0 6 nm- 0. 4 pm (基準波 長一 0. 4 pm) による収差曲線を表している。 図 3から明らかな通り、 第 1実施例の投影光学系 P Lでは、 1 8 0 η m以下の波長域において、 単一種類の硝材しか用いていないのにも関わ らず、 ± 0 . 2 p mという波長域にわたり良好に色収差補正が達成され ている。
また、 図 4から明らかな通り、 第 2実施例の投影光学系 P Lでは、 2 0 0 n m以下の真空紫外の波長域において、 色収差補正用のレンズ素子 を少数 (全レンズ素子の 1 0 %程度) しか用いていないにも関わらず、 ± 0 . 4 p mという波長域にわたり、 良好に色収差補正が達成されてい る。
さて、 第 1実施例の投影光学系 P Lは、 直径 2 3 mmの円形イメージ フィールドを有し、 そのイメージフィールド内で、 走査方向の幅 6 . 6 mm、 走査直交方向の幅 2 2 mmの長方形状の露光領域を確保すること ができる。 また、 第 2実施例の投影光学系 P Lは、 直径 2 6 . 6 mmの 円形イメージフィールドを有し、 そのイメージフィールド内で、 走査方 向の幅 8 . 8 mm、 走查直交方向の幅 2 5 mmの長方形状の露光領域を 確保することができる。
なお、 上述の例では、 走査型露光装置に各実施例の投影光学系 P Lを 適用することを考えて長方形状の露光領域としたが、 露光領域の形状と しては、 円形イメージフィールドに包含される領域であれば、 六角形状、 等脚台形状、 不等脚台形状、 菱形形状、 正方形状、 円弧形状など様々な 形状とすることができる。
上記第 1及び第 2の実施例の投影光学系 P Lは、 図 5に示す実施形態 の投影露光装置に適用することができる。 なお、 図 5の説明では、 光源 として F 2 レーザ光源を使用した例を説明しており投影光学系 P Lとし て第 1実施例を用いた例を説明しているが、 A r Fエキシマレーザに最 適化された第 2実施例の投影光学系 P Lを適用する場合についても、 光 源を除く露光装置の基本的な構成は図 5のものと同様である。
図 5を参照して、 本発明にかかる露光装置の実施の形態について説明 する。
図 5は、 実施形態にかかる投影露光装置の概略構成を示す図である。 図 5においては XY Z座標系を採用している。
実施形態にかかる露光装置は、 露光光源として F2 レーザ光源を使用 し、 投影光学系として屈折型光学系を使用する投影露光装置に本発明を 適用したものである。 本実施形態の投影露光装置では、 レチクル上の所 定形状の照明領域に対して相対的に所定の方向へレチクル及び基板を同 期して走查することにより、 基板上の 1つのショッ ト領域にレチクルの パターン像を逐次的に転写するステップ, アンド ' スキャン方式を採用 している。 このようなステップ · アンド · スキャン型の露光装置では、 投影光学系の露光フィ一ルドよりも広い基板上の領域にレチクルのパ夕 —ンを露光することができる。
図 5において、 レーザ光源 2は、 例えば発振波長 1 57 nmのフッ素 ダイマーレーザ (F2 レーザ) に狭帯化装置を組み合わせたものを有す る。 F2 レーザは、 自然発振で 1. 5 pm程度の半値全幅であり、 当該 F2 レーザに狭帯化装置を組み合わせることによって、 0. 2 pm〜0. 2 5 pm程度の半値全幅のレーザ光を得ている。
なお、 本実施形態におけるレーザ光源 2としては、 波長約 1 20 nm 〜約 1 80 nmの真空紫外域に属する光を発する光源、 例えば発振波長 146 nmのクリプトンダイマ一レーザ (K r 2 レーザ) や、 発振波長 1 26 nmのアルゴンダイマーレ一ザ (A r 2 レーザ) などを用いるこ とができる。
さて、 レーザ光源 2からのパルスレーザ光 (照明光) は、 偏向ミラ一 3にて偏向されて、 光路遅延光学系 41へ向かい、 レーザ光源 2からの 照明光の時間的可干渉距離 (コヒーレンス長) 以上の光路長差が付けら れた時間的に複数の光束に分割される。 なお、 このような光路遅延光学 系は例えば特開平 1— 1 9 8 7 5 9号公報ゃ特開平 1 1 一 1 7 4 3 6 5 号公報に開示されている。
光路遅延光学系 4 1から射出される照明光は、 光路偏向ミラ一 4 2に て偏向された後に、 第 1フライアイレンズ 4 3、 ズームレンズ 4 4、 振 動ミラ一 4 5を順に介して第 2フライアイレンズ 4 6に達する。 第 2フ ライアイレンズ 4 6の射出側には、 有効光源のサイズ ·形状を所望に設 定するための照明光学系開口絞り用の切り替えレポルバ 5が配置されて いる。 本例では、 照明光学系開口絞りでの光量損失を低減させるために、 ズームレンズ 4 4による第 2フライアイレンズ 4 6への光束の大きさを 可変としている。
照明光学系開口絞りの開口から射出した光束は、 コンデンサレンズ群 1 0を介して照明視野絞り (レチクルブラインド) 1 1を照明する。 な お、 照明視野絞り 1 1については、 特開平 4一 1 9 6 5 1 3号公報、 及 びこれに対応する米国特許第 5 , 4 7 3 , 4 1 0号公報に開示されてい る。
照明視野絞り 1 1からの光は、 偏向ミラ一 1 5 1, 1 5 4、 レンズ群 1 5 2 , 1 5 3, 1 5 5からなる照明視野絞り結像光学系 (レチクルプ ラインド結像系) を介してレチクル R上へ導かれ、 レチクル R上には、 照明視野絞り 1 0の開口部の像である照明領域が形成される。 レチクル R上の照明領域からの光は、 投影光学系 P Lを介してウェハ W上へ導か れ、 ウェハ W上には、 レチクル Rの照明領域内のパターンの縮小像が形 成される。
さて、 真空紫外域の波長の光を露光光とする場合には、 その光路から 酸素、 水蒸気、 炭化水素系のガス等の、 かかる波長帯域の光に対し強い 吸収特性を有するガス (以下、 適宜 「吸収性ガス」 と呼ぶ) を排除する 必要がある。
従って、 本実施形態では、 照明光路 (レーザ光源 2〜レチクル Rへ至 る光路) 及び投影光路 (レチクル R〜ゥェ八 Wへ至る光路) を外部雰囲 気から遮断し、 それらの光路を真空紫外域の光に対する吸収の少ない特 性を有する特定ガスとしての窒素、 ヘリウム、 アルゴン、 ネオン、 クリ プトンなどのガス、 またはそれらの混合ガス (以下、 適宜 「低吸収性ガ ス」 あるいは 「特定ガス」 と呼ぶ) で満たしている。
具体的には、 レーザ光源 2から光遅延光学系 4 1までの光路をケーシ ング 3 0により外部雰囲気より遮断し、 光遅延光学系 4 1から照明視野 絞り 1 1までの光路をケーシング 4 0により外部雰囲気より遮断し、 照 明視野絞り結像光学系をケ一シング 1 5 0により外部雰囲気から遮断し、 それらの光路内に上記特定ガスを充填している。 また、 投影光学系 P L 自体もその鏡筒がケ一シングとなっており、 その内部光路に上記特定ガ スを充填している。
なお、 各光路に充填される特定ガスとしては、 ヘリウムを用いること が好ましい。 但し、 レーザ光源 2〜レチクル Rまでの照明光学系の光路 (ケ一シング 3 0 , 4 0 , 1 5 0 ) については特定ガスとして窒素を用 いても良い。
ケ一シング 1 7 0は、 照明視野絞り結像光学系を納めたケ一シング 1 5 0と投影光学系 P Lとの間の空間を外部雰囲気から遮断しており、 そ の内部にレチクル Rを保持するレチクルステージ R Sを収納している。 このケ一シング 1 7 0には、 レチクル Rを搬入 ·搬出するための扉 1 7 3が設けられており、 この扉 1 7 3の外側には、 レチクル Rを搬入 '搬 出時にケ一シング 1 7 0内の雰囲気が汚染されるのを防ぐためのガス置 換室 1 7 4が設けられている。 このガス置換室 1 7 4にも扉 1 7 7が設 けられており、 複数種のレチクルを保管しているレチクルストツ力 2 1 0との間でレチクルの受け渡しは扉 1 7 7を介して行う。
ケーシング 2 0 0は、 投影光学系 P Lとウェハ Wとの間の空間を外部 雰囲気から遮断しており、 その内部に、 ウェハ Wを保持するウェハステ —ジ 2 2、 基板としてのウェハ Wの表面の Z方向の位置 (フォーカス位 置) や傾斜角を検出するための斜入射形式のォ一トフォ一カスセンサ 2 6、 オフ ' ァクシス方式のァライメントセンサ 2 8、 ウェハステージ 2 2を載置している定盤 2 3を収納している。 このケーシング 2 0 0には、 ウェハ Wを搬入 ·搬出するための扉 2 0 3が設けられており、 この扉 2 0 3の外側にはケ一シング 2 0 0内部の雰囲気が汚染されるのを防ぐた めのガス置換室 2 04が設けられている。 このガス置換室 2 04には扉 2 0 7が設けられており、 装置内部へのウェハ Wの搬入、 装置外部への ウェハ Wの搬出はこの扉 2 0 7を介して行う。
ここで、 ケ一シング 40 , 1 5 0 , 1 7 0 , 2 0 0のそれぞれには、 給気弁 1 4 7 , 1 5 6 , 1 7 1 , 2 0 1が設けられており、 これらの給 気弁 1 4 7 , 1 5 6, 1 7 1 , 2 0 1は図示なきガス供給装置に接続さ れた給気管路に接続されている。 また、 ケ一シング 40, 1 5 0, 1 7 0, 2 0 0のそれぞれには、 排気弁 1 48 , 1 5 7 , 1 7 2 , 2 0 2が 設けられており、 これらの排気弁 1 48, 1 5 7 , 1 7 2, 2 0 2は、 それぞれ図示なき排気管路を介して上記ガス供給装置に接続されている なお、 ガス供給装置からの特定ガスは不図示の温度調整装置により所定 の目標温度に制御されている。 ここで、 特定ガスとしてヘリウムを用い る場合には、 温度調整装置は各ケ一シングの近傍に配置されることが好 ましい。
同様に、 ガス置換室 1 74, 2 04にも給気弁 1 7 5, 2 0 5と排気 弁 1 7 6, 2 0 6とが設けられており、 給気弁 1 7 5, 2 0 5は給気管 路を介して、 排気弁 1 7 6, 2 0 6は排気管路を介してそれぞれ上記ガ ス供給装置に接続されている。 さらに、 投影光学系 P Lの共同にも給気 弁 1 8 1及び排気弁 1 8 2が設けられており、 給気弁 1 8 1は図示なき 給気管路を介して、 排気弁 1 8 2は図示なき排気管路を介して上記ガス 供給装置に接続されている。
なお、 給気弁 1 4 7 , 1 5 6 , 1 7 1 , 1 7 5, 1 8 1 , 2 0 1 , 2
0 5が設けられた給気管路と、 排気弁 1 48, 1 5 7 , 1 7 2 , 1 7 6 ,
1 8 2 , 2 0 2 , 2 0 6が設けられた排気管路とには、 HE P Aフィル 夕あるいは UL PAフィル夕等の塵 (パーティクル) を除去するための フィル夕と、 酸素等の吸収性ガスを除去するケミカルフィル夕とが設け なお、 ガス置換室 1 7 4, 2 0 4においては、 レチクル交換又はゥェ ハ交換毎にガス置換を行う必要がある。 例えば、 レチクル交換の際には、 扉 1 7 4を開いてレチクルストツ力 2 1 0からレチクルをガス置換室 1 7 4内に搬入し、 扉 1 7 4を閉めてガス置換室 1 7 4内を特定ガスで満 たし、 その後、 扉 1 7 3を開いて、 レチクルをレチクルステージ R S上 に載置する。 また、 ウェハ交換の際には、 扉 2 0 7を開いてウェハをガ ス置換室 2 04内に搬入し、 この扉 2 0 7を締めてガス置換室 2 04内 を特定ガスで満たす。 その後、 扉 2 0 3を開いてウェハをウェハホルダ 2 0上に載置する。 なお、 レチクル搬出、 ウェハ搬出の場合はこの逆の 手順である。 なお、 ガス置換室 1 74, 2 04へのガス置換の際には、 ガス置換室内の雰囲気を減圧した後に、 給気弁から特定ガスを供給して も良い。
また、 ケ一シング 1 7 0, 2 0 0においては、 ガス置換室 1 7 4, 2 0 4によるガス置換を行った気体が混入する可能性があり、 このガス置 換室 1 7 4, 2 04のガス中にはかなりの量の酸素などの吸収ガスが混 入している可能性が高いため、 ガス置換室 1 7 4 , 2 0 4のガス置換と 同じタイミングでガス置換を行うことが望ましい。 また、 ケーシング及 びガス置換室においては、 外部雰囲気の圧力よりも高い圧力の特定ガス を充填しておくことが好ましい。
また、 図 5では不図示ではあるが、 本実施形態では、 投影光学系 P L を構成する複数のレンズ素子のうちの少なくとも 1つのレンズ素子は、 その位置及び姿勢の少なくとも一方が変更可能であるように保持されて いる。 これにより、 投影光学系 P Lの結像特性を変更可能である。 この ような調整手段は、 例えば特開平 4一 1 9 2 3 1 7号公報、 特開平 4一 1 2 7 5 1 4号公報 (及び対応する米国特許第 5, 1 1 7 , 2 5 5号公 報) 、 特開平 5 - 4 1 3 4 4号公報、 及び特開平 6 - 8 4 5 2 7号公報 (及び対応する米国特許第 5, 4 2 4 , 5 5 2号公報) に開示されてい る。
本実施形態においては、 位置及び姿勢の少なくとも一方が変更可能な レンズ素子のうちの少なくとも 1つは、 球面レンズであることが好まし い。
さて、 本発明の投影露光装置においては、 1 8 0 n m以下の波長域の 露光光を供給する光源と、 この光源からの露光光をその投影原版上のそ のパターンへ導く照明光学系と、 その投影原版とそのワークとの間の光 路中に配置されて、 その投影原版を介したその露光光の光量の 2 5 %以 上の光量をそのワークへ導いてそのパターンの縮小像をそのワーク上に 形成する投影光学系と、 を備えることが好ましい。
1 8 0 n m以下の波長域に対応した感光性樹脂 (レジスト) 材料とし ては、 長波長のものに比べて感度を高めることが困難であり、 投影光学 系が投影原版からの露光光の 2 5 %以下の光量しかワークへ導かない場 合、 レジストへの必要露光量を確保するためには、 露光時間の増大を図 る必要があり、 スループッ トの低下を招くため好ましくない。 また、 こ の場合、 投影光学系に蓄積される熱が増大し、 投影光学系の熱収差、 す なわち投影光学系を熱を蓄積することによるレンズまたは気体の屈折率 変動や屈折率分布の変動による収差が発生し、 安定した結像性能のもと で投影露光を実現できなくなるため好ましくない。
図 5の実施形態にかかる投影露光装置では、 図 1の実施例にかかる投 影光学系 P Lを採用している。 この投影光学系 P Lを構成する硝材は前 述の通り螢石であり、 1 5 7 n mの露光光に対する 1 c m当たりの透過 率は 9 9〜9 9 . 5 %である。 そして、 1 5 7 n mの露光光に対する反 射防止膜は、 レンズ面 1面当たりの光量損失が 1 %のものを用いている c 図 1の実施例の投影光学系を備えた図 5の投影露光装置では、 以上の値 より、 透過率が 3 7 %であり、 上記条件を満足している。
さて、 本発明による投影露光方法においては、 投影原版に設けられた パターンの縮小像をワーク上へ投影露光する投影露光方法であって、 2 0 0 n m以下の波長域の露光光を供給する工程と ;照明光学系を介して この光源からの露光光をその投影原版上のそのパターンへ導く工程と、 その投影光学系を介してその投影原版からのその露光光をそのワークへ 導きそのパターンの縮小像をそのワーク上に形成する工程と、 その照明 光学系へ入射するその露光光の光量を E n 1とし、 その照明光学系から その投影原版へ向かうその露光光の光量を E n 2とし、 その投影光学系 へ入射するその露光量の光量を E n 3とし、 その投影光学系からそのヮ 一夕へ向かって射出するその露光光の光量を E n 4とするとき、 次の条 件を満足することが好ましい。
E n 4 E n 2
> … (6 )
E n 3 E n 1
上記条件式 (6 ) を満足しない場合には、 照明光学系として必要な機 能、 例えばワーク上における均一照明など、 を達成することが不可能に なり、 結果として微細な回路パターンをワーク上に転写できなくなるた め好ましくない。
また、 上述の投影露光方法において、 その露光光をそのパターンへ導 く工程は、 その波長域の光に対する吸収の少ない特性を有するガス雰囲 気で満たされた空間にその露光光を通す補助工程を含むことが好ましく、 そのパターンの縮小像をそのワーク上に形成する工程は、 その波長域の 光に対する吸収の少ない特性を有するガス雰囲気で満たされた空間にそ の露光光を通す補助工程を含むことが好ましい。
次に、 上記の実施の形態の投影露光装置を用いてウェハ上に所定の回 路パターンを形成することによって、 マイクロデバイスとしての半導体 デバイスを得る際の動作の一例につき図 6のフローチャートを参照して 説明する。
先ず、 図 6のステップ 3 0 1において、 1ロットのウェハ上に金属膜 が蒸着される。 次のステップ 3 0 2において、 その 1ロッ トのウェハ上 の金属膜上にフォトレジストが塗布される。 その後、 ステップ 3 0 3に おいて、 第 1又は第 2実施例のうち何れかの投影光学系 P Lを備えた図 5の投影露光装置を用いて、 レチクル R上のパターンの像がその投影光 学系 P Lを介して、 その 1ロッ 卜のウェハ上の各ショット領域に順次露 光転写される。 その後、 ステップ 3 0 4において、 その 1ロットのゥェ ハ上のフォトレジストの現像が行われた後、 ステップ 3 0 5において、 その 1ロッ 卜のウェハ上でレジス卜パターンをマスクとしてエッチング を行うことによって、 レチクル R上のパターンに対応する回路パターン 力 各ウェハ上の各ショット領域に形成される。 その後、 更に上のレイ ャの回路パターンの形成等を行うことによって、 半導体素子等のデバィ スが製造される。 上述の半導体デバイス製造方法によれば、 極めて微細な回路パターン を有する半導体デバイスをスループッ ト良く得ることができる。
また、 上記の実施の形態の投影露光装置では、 プレート (ガラス基板) 上に所定の回路パターンを形成することによって、 マイクロデバイスと しての液晶表示素子を得ることもできる。 以下、 図 7のフローチャート を参照して、 このときの動作の一例につき図 7のフローチャートを参照 して説明する。
図 7において、 パターン形成工程 4 0 1では、 本実施形態の露光装置 を用いてレチクルのパターンを感光性基板 (レジストが塗布されたガラ ス基板等) に転写露光する、 所謂光リソグラフィ一工程が実行される。 この光リソグラフィー工程によって、 感光性基板上には多数の電極等を 含む所定パターンが形成される。 その後、 露光された基板は、 現像工程、 エッチング工程、 レチクル剥離工程等の各工程を経ることによって、 基 板上に所定のパターンが形成され、 次のカラーフィルター形成工程 2 0 2へ移行する。
次に、 カラ一フィル夕一形成工程 4 0 2では、 R (Red) , G (Green)、 B (B l ue) に対応した 3つのドットの組がマトリックス状に多数配列さ れたカラ一フィルターを形成する。 そして、 カラーフィルタ一形成工程 4 0 2の後に、 セル組み立て工程 4 0 3が実行される。
セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた 所定パターンを有する基板、 およびカラーフィルター形成工程 4 0 2に て得られたカラ一フィルタ一等を用いて液晶パネル (液晶セル) を組み 立てる。 セル組み立て工程 4 0 3では、 例えば、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板とカラ一フィルタ一形成工程 4 0 2にて得られたカラーフィル夕一との間に液晶を注入して、 液晶パ ネル (液晶セル) を製造する。 その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パ ネル (液晶セル) の表示動作を行わせる電気回路、 バックライ ト等の各 部品を取り付けて液晶表示素子として完成させる。
上述の液晶表示素子製造方法によれば、 極めて微細な回路パターンを 有する液晶表示素子をスループット良く得ることができる。
さて、 上記図 5の実施形態では、 照明光学系中のオプティカルインテ グレー夕 (ュニフォマイザ、 ホモジナイザ) としてフライアイレンズ 4 3 , 4 6を用いているが、 1枚の基板の上に複数のレンズ面をエツチン グ等の手法により形成したマイクロ · レンズ · アレイをフライアイレン ズの代わりに用いても良い。 また、 第 1フライアイレンズ 4 3の代わり に、 回折作用により入射光を発散させてそのファーフィ一ルド (フラウ ンホーファー回折領域) において円形状、 輪帯状、 多重極状の照野を形 成する回折光学素子を用いても良い。 なお、 このような回折光学素子と しては例えば米国特許第 5, 8 5 0, 3 0 0号公報に開示されているも のを用いることができる。 ここで、 回折光学素子を用いる場合には、 光 路遅延光学系 4 1を省略しても良い。
また、 オプティカルインテグレー夕としては、 内面反射型インテグレ 一夕 (ロッド ·インテグレー夕、 光パイプ、 光トンネルなど) を用いる こともできる。 このような内面反射型ィンテグレー夕を用いる場合には、 内面反射型ィンテグレー夕の射出面とレチクルのパターン面とがほぼ共 役となる。 従って、 上述の実施形態に適用する場合には、 例えば内面反 射型ィンテグレ一夕の射出面に近接させて照明視野絞り (レチクルブラ インド) 1 1を配置し、 第 1フライアイレンズ 4 3の射出面と内面反射 型ィンテグレー夕の入射面とをほぼ共役とするように、 ズームレンズ 4 4を構成する。
また、 露光光の波長として 1 8 0 n m以下のものを用いる際には、 照 明光学系中のマイクロ , レンズ · アレイ、 回折光学素子、 内面反射型ィ ンテグレー夕、 及びレンズ素子の少なくとも何れかを螢石、 フッ素がド —プされた石英ガラス、 フッ素及び水素がド一プされた石英ガラス、 構 造決定温度が 1 200 K以下で且つ OH基濃度が 1 000 p pm以上で ある石英ガラス、 構造決定温度が 1 200 K以下で且つ水素分子濃度が 1 X 1 017molecules/cm3 以上である石英ガラス、 構造決定温度が 1 2 00 K以下でかつ塩素濃度が 50 p pm以下である石英ガラス、 及び構 造決定温度が 1 200 K以下で且つ水素分子濃度が 1 X 1 017molecule s/cm3 以上で且つ塩素濃度が 50 p pm以下である石英ガラスのグルー プから選択される材料で形成することが好ましい。
なお、 構造決定温度が 1200 K以下で且つ OH基濃度が 1 000 p pm以上である石英ガラスについては、 本願出願人による特許第 277 0224号公報に開示されており、 構造決定温度が 1 200 K以下で且 つ水素分子濃度が 1 X 1 017molecules/cm3 以上である石英ガラス、 構 造決定温度が 1 200 K以下でかつ塩素濃度が 50 p pm以下である石 英ガラス、 及び構造決定温度が 1 200 K以下で且つ水素分子濃度が 1 X 1 017molecules/cm3 以上で且つ塩素濃度が 50 p pm以下である石 英ガラスについては本願出願人による特許第 2936 1 38号公報に開 示されている。
また、 上記第 1実施例にかかる投影光学系 PLでは、 投影光学系を構 成する各レンズ素子を螢石で形成したが、 投影光学系を構成する各レン ズ素子は、 フッ化カルシウム (C a F2,螢石) 、 フッ化バリウム (B a F2)、 フッ化リチウム (L i F) 、 フッ化マグネシウム (MgF2)、 リ チウム ' カルシウム · アルミニウム . フローライ ド (L i C aA l F6)、 及びリチウム ' ストロンチウム ' アルミニウム · フローライ ド (L i S r A 1 F6)からなるグループから選択された少なくとも 1種類の材料で あることが好ましい。
また、 上記図 5の実施形態では第 1実施例の投影光学系 P Lの適用を 考えて、 レーザ光源として発振波長 1 57 nmのフッ素ダイマーレ一ザ (F2 レーザ) を狭帯化したものを用いたが、 本発明は F2 レーザには 限定されない。 例えば、 発振波長 1 93 nmの A r Fエキシマレーザを 狭帯化したものや発振波長 248 nmの K r Fエキシマレ一ザを用いる こともできる。
なお、 波長 200 nm以下の波長域では、 レーザ光源の狭帯化を行う ことが困難ではある力 本発明を適用することによりレーザ光源の狭帯 化の程度を緩和することができ、 投影光学系の色消しの負担を削減する ことができる利点がある。
さらに、 上述の実施形態では、 光源として F2 レーザを用いているが、 その代わりに、 1 57 nmに発振スぺクトルを持つ Y A Gレーザなどの 固体レーザの高調波を用いるようにしても良い。 また、 DFB半導体レ —ザまたはファイバーレーザから発振される赤外域または可視域の単一 波長レーザ光を、 例えばエルビウム (E r) (またはエルビウムとイツ テルビウム (Yb) との両方) がドープされたファイバ一アンプで増幅 し、 非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良 い。
例えば、 単一波長レーザ光の発振波長を 1. 5 1〜 1. 59 /imの範 囲内とすると、 発生波長が 1 5 1〜1 59 nmの範囲内である 1 0倍高 調波が出力される。 特に発振波長を 1. 57〜1. 58 imの範囲内と すると、 発生波長が 1 5 7〜 1 58 nmの範囲内の 1 0倍高調波、 すな わち F2 レーザ光とほぼ同一波長となる紫外光が得られる。 また、 発振 波長を 1. 03〜: L . 1 2 mの範囲内とすると、 発生波長が 147〜 1 60 nmの範囲内である 7倍高調波が出力され、 特に発振波長を 1. 0 99〜 1. 1 06 mの範囲内とすると、 発生波長が 1 57〜 1 58 xmの範囲内の 7倍高調波、 すなわち F2 レーザ光とほぼ同一波長とな る紫外光が得られる。 なお、 単一波長発振レーザとしては、 イットリビ ゥム ' ドープ ' ファイバ一レーザを用いる。
このように、 レーザ光源からの高調波を使用する場合には、 この高調 波自体が十分に狭いスペクトル幅 (例えば 0. 3 pm以下) であるので、 上述の光源 2の代わりに用いることができる。
また、 第 1実施例では、 単一の種類の材料を用いて投影光学系を構成 したが、 材料の種類は単一には限られない。 第 2実施例に示すように、 遠紫外域に近い真空紫外域や遠紫外域の露光光を前提にすれば、 材料と して合成石英及び螢石を用いることができ、 真空紫外域の露光光を前提 にすれば、 材料として、 、 フッ化カルシウム (C a F2,螢石) 、 フッ化 ノ リウム (B a F2)、 フッ化リチウム (L i F) 、 フッ化マグネシウム (Mg F2)、 リチウム · カルシウム · アルミニウム · フローライ ド (L i C a A 1 F e) , 及びリチウム · ストロンチウム · アルミニウム ' フ口 —ライ ド (L i S r A 1 F6)からなるグループから選択された少なくと も 2種類の材料を用いることができる。 また、 投影光学系に回折光学素 子を加えて、 回折光学素子による色収差補正効果も併せて利用しても良 い。
また、 図 5の実施形態において、 第 1フライアイレンズ 43の入射側 に、 スペックル防止のための複屈折性材料からなるプリズムを配置して も良い。 このようなスペックル防止用のプリズムとしては、 例えば米国 特許第 5, 2 53, 1 1 0号公報に開示されている。 なお、 露光波長と して 1 80 nm以下の波長の光を用いる場合、 米国特許第 5, 253, 1 1 0号公報に開示されている水晶プリズムに代えて、 フッ化マグネシ ゥム (Mg F2)の結晶からなるプリズムを用いることができる。 このフッ化マグネシゥムの結晶からなるくさび型プリズムは、 照明光 学系の光軸に交差する方向で厚さが次第に変化するように配置される。 そして、 このフッ化マグネシウムの結晶からなるくさび型プリズムに対 向して、 それらの頂角が互いに反対側を向くように光路補正用くさび型 プリズムを配置する。 この光路補正用くさび型プリズムは、 当該フッ化 マグネシウムの結晶からなるプリズムと同じ頂角を有し、 複屈折性を有 しない光透過性材料からなる。 これにより、 プリズムの対に入射した光 と、 そこから射出する光とを同一進行方向にそろえることができる。 光路補正用プリズムの材料としては、 例えば螢石、 フッ素をドープし た石英ガラス、 フッ素及び水素がドープされた石英ガラス、 構造決定温 度が 1 2 0 0 K以下で且つ O H基濃度が 1 0 0 0 p p m以上である石英 ガラス、 構造決定温度が 1 2 0 0 K以下で且つ水素分子濃度が 1 X 1 0 1 7mo l ecul es/cm3 以上である石英ガラス、 構造決定温度が 1 2 0 0 K以 下でかつ塩素濃度が 5 0 p p m以下である石英ガラス、 及び構造決定温 度が 1 2 0 0 K以下で且つ水素分子濃度が 1 X 1 0 1 7fflo l ecu l es/cm3 以 上で且つ塩素濃度が 5 0 p p m以下である石英ガラスのグループから選 択される材料で形成することが好ましい。
また、 図 5の実施形態では、 ステップ · アンド ·スキャン方式を採用 したが、 実施形態の露光装置をスティツチング及びスリッ トスキヤン型 の露光装置としても良い。 ステイッチング及びスリッ トスキャン方式を 採用する場合、 レチクル上の所定形状の照明領域に対して相対的に所定 の第 1の方向にレチクル及び基板を同期して走査することにより、 基板 上の第 1列目の領域への露光が行われる。 その後、 そのレチクルを交換 するか、 又はそのレチクルを上記照明領域の第 1の方向と直交する第 2 の方向に沿って所定量だけ移動させて、 基板を照明領域の第 2の方向と 共役な方向に横ずれさせる。 そして、 再びレチクル上の所定形状の照明 領域に対して相対的に第 1の方向にレチクル及び基板を同期して走査す ることにより、 基板上の第 2列目の領域への露光を行う。
このようなスティツチング及びスリッ トスキヤン型の露光装置では、 投影光学系の露光フィールドよりも広い基板上の領域にレチクルのパ夕 ーンを露光することができる。 なお、 このようなステイッチング及びス リッ トスキャン型の露光装置は、 米国特許第 5 , 4 7 7 , 3 0 4号公報、 特開平 8 - 3 3 0 2 2 0号公報、 特開平 1 0— 2 8 4 4 0 8号公報など に開示されている。
なお、 上記実施形態では、 基板上の所定のショッ ト領域に対してレチ クル上のパターン像を一括転写する一括露光方式も採用することができ る。
また、 図 5の実施形態では、 ワーク (感光性基板) としてのウェハを 保持するウェハステージを 1つ設けたが、 例えば特開平 5— 1 7 5 0 9 8号公報、 特開平 1 0— 1 6 3 0 9 7号公報、 特開平 1 0 - 1 6 3 0 9 8号公報、 特開平 1 0— 1 6 3 0 9 9号公報、 または特開平 1 0— 2 1 4 7 8 3号公報などに開示されるように、 2組のウェハステージを設け る構成であっても良い。
さらに、 半導体素子の製造に用いられる露光装置だけでなく、 液晶表 示素子などを含むディスプレイの製造に用いられる、 デバイスパターン をガラスプレート上に転写する露光装置、 薄膜磁気ヘッドの製造に用い られる、 デバイスパターンをセラミックウェハ上に転写する露光装置、 撮像素子 (C C Dなど) の製造に用いられる露光装置などにも本発明を 適用することができる。 また、 レチクルまたはマスクを製造するために ガラス基板またはシリコンウェハなどに回路パターンを転写する露光装 置にも、 本発明を適用することができる。
以上の通り、 本発明は前述した実施形態に限られず種々の構成をとり 得る。 産業上の利用の可能性
以上説明したように、 本発明の投影光学系によれば、 投影光学系の色 収差を抑え、 光源への負担を低減させることができる。 また、 単一種類 の硝材、 或いは少数の色補正用硝材の追加により、 ある程度のスぺクト ル幅を有する露光光に対する色収差補正を行うことができる。
また、 本発明による投影露光装置及び方法によれば、 投影光学系の構 成の簡素化を図りつつも、 極めて微細化されたマイクロデバイスの回路 パターンを得ることができる。
また、 本発明によるデバイス製造方法によれば、 極めて微細化された マイクロデバイスの回路パターンを、 スループットを低下させずに得る ことができる。

Claims

請 求 の 範 囲
1. 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面上 に結像させる屈折型の投影光学系において、
前記第 1面と前記第 2面との間の光路中に配置されて、 正の屈折力を 有する刖レンズ群と ;
前記前レンズ群と前記第 2面との間の光路中に配置されて、 正の屈折 力を有する後レンズ群と ;
前記前レンズ群の後側焦点位置近傍に配置された開口絞りと ; を有し、
前記投影光学系は、 前記第 1面及び前記第 2面側がテレセントリック であり、
前記後レンズ群の焦点距離を ί 2とし、 前記第 1面から前記第 2面ま での距離を Lとするとき、 次の条件を満足することを特徴とする投影光 学系。
0. 0 7 5< f 2/L<0. 1 25
2. 前記投影光学系は、 少なくとも 1つの非球面形状のレンズ面を有す ることを特徴とする請求の範囲 1記載の投影光学系。
3. 前記前レンズ群は、 第 1面側より順に、 負屈折力の第 1レンズ群、 正屈折力の第 2レンズ群、 負屈折力の第 3レンズ群、 及び正屈折力の第
4レンズ群を有し、
前記第 1レンズ群及び前記第 2レンズ群の合成横倍率を /3 1とし、 前 記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの距 離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の 条件を満足することを特徴とする請求の範囲 1又は 2記載の投影光学系。
- 1. 3< 1//3 1く 0
0. 0 8く 1 1/ 1く 0. 1 7
4. 前記第 1及び第 2レンズ群は、 少なくとも 2つの非球面形状のレン ズ面を含み、 かつ 1 0枚以下のレンズを有することを特徴とする請求の 範囲 3記載の投影光学系。
5. 前記前レンズ群は、 第 1面側より順に、 負屈折力の第 1レンズ群、 正屈折力の第 2レンズ群、 負屈折力の第 3レンズ群、 及び正屈折力の第 4レンズ群を有することを特徴とする請求の範囲 1〜4の何れか一項記 載の投影光学系。
6. 前記投影光学系の光路中に配置される光透過性屈折部材の光軸に沿 つた厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離をしと するとき、 次の条件を満足することを特徴とする請求の範囲 3〜 5の何 れか一項記載の投影光学系。
0. 46く CZLく 0. 64
7. 前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材の 数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総和 を E aとするとき、 次の条件を満足することを特徴とする請求の範囲 1 〜 6の何れか一項記載の投影光学系。
0. 1 5く E a/Eく 0. 7
8. 前記屈折力を有する部材の総和は 1 6以上であることを特徴とする 請求の範囲 7記載の投影光学系。
9. 前記屈折力を有する部材の総和は 26以下であることを特徴とする 請求の範囲 7又は 8記載の投影光学系。
1 0. 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 7〜 9の何れか一項記載の投影光 学系。
1 1. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 3 2 %以下であることを特徴とする請 求の範囲 7〜 1 0の何れか一項記載の投影光学系。
1 2 . 前記投影光学系は、 前記第 1面上の前記パターンの縮小像を前記 第 2面上に形成することを特徴とする請求の範囲 1〜 1 1の何れか一項 記載の投影光学系。
1 3 . 前記開口絞りは、 前記前レンズ群と前記後レンズ群との間の光路 中に配置されることを特徴とする請求の範囲 1〜 1 2の何れか一項記載 の投影光学系。
1 4 . 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 において、
第 1面側より順に、
負の屈折力を有する第 1 レンズ群
正の屈折力を有する第 2レンズ群
負の屈折力を有する第 3レンズ群
正の屈折力を有する第 4レンズ群
開口絞り ;
及び正の屈折力を有する第 5レンズ群 ;
を有し、
前記第 1 レンズ群及び前記第 2レンズ群の合成横倍率を 3 1とし、 前 記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの距 離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の 条件を満足することを特徴とする投影光学系。
— 1 . 3く 1 / /3 1く 0
0. 08 <L 1 /L< 0. 1 7
1 5. 前記第 1及び第 2レンズ群は、 少なくとも 2つの非球面形状のレ ンズ面を含み、 かつ 1 0枚以下のレンズを有することを特徴とする請求 の範囲 14記載の投影光学系。
1 6. 前記投影光学系の光路中に配置される光透過性屈折部材の光軸に 沿った厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を L とするとき、 次の条件を満足することを特徴とする請求の範囲 14又は 1 5記載の投影光学系。
0 · 46 <C/L< 0. 64
1 7. 前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材 の数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総 和を E aとするとき、 次の条件を満足することを特徴とする請求の範囲 14〜 1 6の何れか一項記載の投影光学系。
0. 1 5く E a/E< 0. 7
1 8. 前記屈折力を有する部材の総和は 1 6以上であることを特徴とす る請求の範囲 1 7記載の投影光学系。
1 9. 前記屈折力を有する部材の総和は 26以下であることを特徴とす る請求の範囲 1 7又は 1 8記載の投影光学系。
20. 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 1 7〜1 9の何れか一項記載の投 影光学系。
2 1. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 32 %以下であることを特徴とする請 求の範囲 1 7〜 1 9の何れか一項記載の投影光学系。
22. 前記投影光学系に対して前記第 2面側から前記投影光学系の光軸 と平行な光線を入射させた場合、 該光線が前記第 1面側へ射出されると きの前記光軸となす角度は、 50分以下であることを特徴とする請求の 範囲 14〜 2 1の何れか一項記載の投影光学系。
23. 前記第 5レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の条件を満足することを特徴とする 請求の範囲 14〜2 1の何れか一項記載の投影光学系。
0. 0 7 5く f 2ZLく 0. 1 25
24. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 において、
前記投影光学系の光路中に配置される少なくとも 1つの光透過性屈折 部材を含み、
前記投影光学系の光路中に配置される光透過性屈折部材の光軸に沿つ た厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を Lとす るとき、 次の条件を満足することを特徴とする投影光学系。
0. 46く CZLく 0. 64
25. 前記光透過性部材のうちの屈折力を有する部材の総和は 1 6以上 であることを特徴とする請求の範囲 24記載の投影光学系。
26. 前記光透過性部材のうちの屈折力を有する部材の総和は 26以下 であることを特徴とする請求の範囲 24又は 25記載の投影光学系。
27. 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 24〜26の何れか一項記載の投 影光学系。
28. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 3 2 %以下であることを特徴とする請 求の範囲 24〜 2 6の何れか一項記載の投影光学系。
2 9. 前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材 の数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総 和を E aとするとき、 次の条件を満足することを特徴とする請求の範囲
24〜 2 8の何れか一項記載の投影光学系。
0. 1 5く E a/E< 0. 7
3 0. 前記投影光学系は、 第 1面側から順に、
負屈折力を有する第 1 レンズ群と
正屈折力を有する第 2レンズ群と
負屈折力を有する第 3レンズ群と
正屈折力を有する第 4レンズ群と
開口絞りと ;
正屈折力を有する第 5レンズ群と ;
を備えることを特徴とする請求の範囲 24〜2 9の何れか一項記載の投 影光学系。
3 1. 前記第 5レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面までの距離を Lとするとき、 次の条件を満足することを特徴とする 請求の範囲 3 0記載の投影光学系。
0. 0 7 5 < f 2/L<0. 1 2 5
3 2. 前記第 1 レンズ群及び前記第 2レンズ群の合成横倍率を 3 1 とし、 前記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの 距離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次 の条件を満足することを特徴とする請求の範囲 3 0又は 3 1記載の投影 光学系。
— 1. 3く 1 Z 3 1く 0
0. 08く L 1ZLく 0. 1 7
33. 前記投影光学系に対して前記第 2面側から前記投影光学系の光軸 と平行な光線を入射させた場合、 該光線が前記第 1面側へ射出されると きの前記光軸となす角度は、 50分以下であることを特徴とする請求の 範囲 24〜 29の何れか一項記載の投影光学系。
34. 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 において、
少なくとも 3面以上の非球面形状のレンズ面を有し、
前記投影光学系中の光透過性屈折部材のうち屈折力を有する部材の数 の総和を Eとし、 非球面形状のレンズ面が設けられた部材の数の総和を E aとするとき、 次の条件を満足することを特徴とする投影光学系。
0. 1 5く E aZEく 0. 7
35. 前記屈折力を有する部材の総和は 1 6以上であることを特徴とす る請の範囲 34記載の投影光学系。
36. 前記屈折力を有する部材の総和は 26以下であることを特徴とす る請求の範囲 34又は 35記載の投影光学系。
37. 前記投影光学系中の光透過性屈折部材は、 単一種類の材料から形 成されることを特徴とする請求の範囲 34〜36の何れか一項記載の投 影光学系。
38. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 32 %以下であることを特徴とする請 求の範囲 34〜36の何れか一項記載の投影光学系。
39. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 1 6 %以下であることを特徴とする請 求の範囲 34〜 36の何れか一項記載の投影光学系。
40. 前記投影光学系中の光透過性屈折部材は、 第 1の材料から形成さ れた第 1の光透過性屈折部材と、 第 2の材料から形成された第 2の光透 過性屈折部材とを有し、
前記光透過性屈折部材のうちの屈折力を有する部材の数に対する前記 第 2の光透過性屈折部材の数は、 1 1 %以下であることを特徴とする請 求の範囲 34〜 36の何れか一項記載の投影光学系。
41. 前記投影光学系の光路中に配置される光透過性屈折部材の光軸に 沿った厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を L とするとき、 次の条件を満足することを特徴とする請求の範囲 34〜4 0の何れか一項記載の投影光学系。
0. 46く CZLく 0. 64
42. 前記投影光学系は、 開口絞りと、 該開口絞りと前記第 2面との間 に配置されたレンズ群とを含み、
該レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面までの 距離を Lとするとき、 次の条件を満足することを特徴とする請求の範囲 34〜4 1の何れか一項記載の投影光学系。
0. 0 7 5く f 2ZLく 0. 1 25
43. 前記投影光学系は、
負屈折力を有する第 1レンズ群と ; 該第 1 レンズ群と前記第 2面との間に配置されて正の屈折力を有する 第 2レンズ群と ;
該第 2レンズ群と前記第 2面との間に配置されて負の屈折力を有する 第 3レンズ群と ;
該第 3レンズ群と前記第 2面との間に配置されて正の屈折力を有する 第 4レンズ群と ;
該第 4レンズ群と前記第 2面との間に配置された開口絞りと ; 該開口絞りと前記第 2面との間に配置されて正の屈折力を有する第 5 レンズ群と ;
を備えることを特徴とする請求項 3 4〜4 2の何れか一項記載の投影光 学系。
4 4 . 前記第 1 レンズ群及び前記第 2レンズ群の合成横倍率を) 3 1とし、 前記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの 距離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次 の条件を満足することを特徴とする請求の範囲 4 3記載の投影光学系。 一 1 . 3 < 1 / β 1く 0
0 . 0 8く L 1 Z Lく 0 . 1 7
4 5 . 前記投影光学系に対して前記第 2面側から前記投影光学系の光軸 と平行な光線を入射させた場合、 該光線が前記第 1面側へ射出されると きの前記光軸となす角度は、 5 0分以下であることを特徴とする請求の 範囲 3 4〜 4 1の何れか一項記載の投影光学系。
4 6 . 前記投影光学系中の前記光透過性屈折部材のうち、 前記非球面形 状のレンズ面が設けられていない部材のうちの少なくとも一つは、 位置 及び姿勢のうちの少なくとも一方が変更可能に配置されることを特徴と する請求の範囲 3 4〜4 5の何れか一項記載の投影光学系。
4 7 . 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光装置において、
露光光を供給する光源と ;
該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ;
請求の範囲 1〜4 6の何れか一項記載の投影光学系と ;
を備え、
前記投影光学系の前記第 1面に前記投影原版を配置可能とし、 前記第 2面に前記ワークを配置可能としたことを特徴とする投影露光装置。
4 8 . 投影原版に設けられたパターンの縮小像をワーク上で走査させつ つ投影露光する投影露光装置において、
露光光を供給する光源と ;
該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ;
請求の範囲 1〜4 6の何れか一項記載の投影光学系と ;
前記投影光学系の前記第 1面に前記投影原版を配置可能とするための 第 1ステージと ;
前記第 2面に前記ワークを配置可能とするための第 2ステージと ; を備え、
前記第 1及び第 2ステージは、 前記投影光学系の投影倍率に対応した 速度比で移動可能であることを特徴とする投影露光装置。
4 9 . 前記光源は 1 8 0 n m以下の波長域の露光光を供給し、 前記投影 光学系は、 前記投影原版からの露光光の光量の 2 5 %以上の光量を前記 ワークへ導くことを特徴とする請求の範囲 4 7又は 4 8記載の投影露光
5 0 . 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光装置において、 1 8 0 n m以下の波長域の露光光を供給する光源と ; 該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ;
前記投影原版と前記ワークとの間の光路中に配置されて、 前記投影原 版を介した前記露光光の光量の 2 5 %以上の光量を前記ワークへ導いて 前記パターンの縮小像を前記ワーク上に形成する投影光学系と ; を備えることを特徴とする投影露光装置。
5 1 . 前記投影原版を保持する第 1ステージと、 前記ワークを保持する 第 2ステージとをさらに含み、
前記第 1及び第 2ステージは、 前記投影光学系の投影倍率に対応した 速度比で移動可能であることを特徴とする請求の範囲 5 0記載の投影露
5 2 . 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光装置において、
2 0 0 n m以下の波長域の露光光を供給する光源と ;
該光源からの露光光を前記投影原版上の前記パターンへ導く照明光学 系と ;
前記投影原版と前記ワークとの間の光路中に配置されて、 前記投影原 版を介した前記露光光を前記ワークへ導いて前記パターンの縮小像を前 記ワーク上に形成する投影光学系と ;
を備え、
前記光源から前記照明光学系へ向かう前記露光光の光量を E n 1 とし、 前記照明光学系から前記投影原版へ向かう前記露光光の光量を E n 2と し、 前記投影光学系へ入射する前記露光量の光量を E n 3とし、 前記投 影光学系から前記ワークへ向かって射出する前記露光光の光量を E n 4 とするとき、 次の条件を満足することを特徴とする投影露光装置。 E n 4 E n 2
>
E n 3 E n 1
5 3 . 投影原版上に形成されるパターンをワーク上へ投影露光する投影 露光方法において、
請求の範囲 4 7〜 5 1の何れか一項記載の投影露光装置を用い、 前記投影原版を前記第 1面に配置すると共に、 前記ワークを前記第 2 面に配置し、
前記投影光学系を介して前記パターンの像を前記ワーク上に形成する ことを特徴とする露光方法。
5 4 . 投影原版に設けられたパターンの縮小像をワーク上へ投影露光す る投影露光方法において、
2 0 0 n m以下の波長域の露光光を供給する工程と ;
照明光学系を介して該光源からの露光光を前記投影原版上の前記パ夕 ーンへ導く工程と ;
前記投影光学系を介して前記投影原版からの前記露光光を前記ワーク へ導き前記パターンの縮小像を前記ワーク上に形成する工程と ; 前記照明光学系へ入射する前記露光光の光量を E n 1とし、 前記照明 光学系から前記投影原版へ向かう前記露光光の光量を E n 2とし、 前記 投影光学系へ入射する前記露光量の光量を E n 3とし、 前記投影光学系 から前記ワークへ向かって射出する前記露光光の光量を E n 4とすると き、 次の条件を満足することを特徴とする投影露光方法。
E n 4 E n 2
>
E n 3 E n 1
5 5 . 前記露光光を前記パターンへ導く工程は、 前記波長域の光に対す る吸収の少ない特性を有するガス雰囲気で満たされた空間に前記露光光 を通す補助工程を含み、 前記パターンの縮小像を前記ワーク上に形成する工程は、 前記波長域 の光に対する吸収の少ない特性を有するガス雰囲気で満たされた空間に 前記露光光を通す補助工程を含むことを特徴とする請求の範囲 5 4記載 の投影露光方法。
5 6 . 所定の回路パターンを有するマイクロデバイスの製造方法におい て、
請求の範囲 5 3〜 5 5の何れか一項記載の露光方法を用いて前記ヮー ク上に前記パターンの像を投影露光する工程と ;
該投影露光された前記ワークを現像処理する工程と ;
を含むことを特徴とするマイクロデバイスの製造方法。
5 7 . 第 1面上のパターンの像を光透過性屈折部材の作用により第 2面 上に結像させる屈折型の投影光学系の製造方法において、
正の屈折力を有する前レンズ群を配置する工程と ;
該前レンズ群と前記第 2面との間に、 正の屈折力を有する後レンズ群 を配置する工程と ;
前記前レンズ群と前記後レンズ群との間に、 開口絞りを配置する工程 と ;
を含み、
前記前レンズ群、 前記後レンズ群、 及び前記開口絞りは、 前記第 1面 及び前記第 2面側がテレセントリックであるように配置し、
前記後レンズ群の焦点距離を f 2とし、 前記第 1面から前記第 2面ま での距離を Lとするとき、 次の条件を満足するものを用いることを特徴 とする投影光学系の製造方法。
0 . 0 7 5く f 2 / Lく 0 . 1 2 5
5 8 . 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 の製造方法において、 負の屈折力を有する第 1 レンズ群を準備する工程と
正の屈折力を有する第 2レンズ群を準備する工程と
負の屈折力を有する第 3レンズ群を準備する工程と
正の屈折力を有する第 4レンズ群を準備する工程と
開口絞りを準備する工程と ;
正の屈折力を有する第 5レンズ群を準備する工程と ;
前記第 1面側より順に、 前記第 1 レンズ群、 前記第 2レンズ群、 前記 第 3レンズ群、 前記第 4レンズ群、 前記開口絞り、 及び前記第 5レンズ 群の順に配置する工程と ;
を含み、
前記第 1第 1レンズ群及び前記第 2レンズ群の合成横倍率を /3 1とし、 前記第 1面から前記第 2レンズ群の最も前記第 2面側のレンズ面までの 距離を L l、 前記第 1面から前記第 2面までの距離を Lとするとき、 次 の条件を満足するように前記第 1及び第 2レンズ群を準備し、
— 1 . 3く 1 Z 3 1く 0
次の条件を満足するように前記第 1及び第 2レンズ群を配置すること を特徴とする投影光学系の製造方法。
0 . 0 8 < L 1 / L < 0 . 1 7
5 9 . 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 の製造方法において、
少なくとも 1つの光透過性部材を準備する工程と ;
前記投影光学系の光路中に沿って少なくとも 1つの前記光透過性部材 を配置する工程と ;
を含み、
前記投影光学系の光路中に配置される光透過性屈折部材の光軸に沿つ た厚さの総和を Cとし、 前記第 1面から前記第 2面までの距離を Lとす るとき、 次の条件を満足するように前記光透過性部材を準備することを 特徴とする投影光学系の製造方法。
0 . 4 6く C Z Lく 0 . 6 4
6 0 . 第 1面上のパターンの縮小像を第 2面上に結像させる投影光学系 の製造方法において、
光透過性屈折部材が有するレンズ面のうち、 少なくとも 3面以上が非 球面形状となるように、 且つ前記光透過性屈折部材のうち屈折力を有す る部材の数の総和を Eとし、 非球面形状のレンズ面が設けられた部材の 数の総和を E aとするとき、 次の条件を満足するように前記光透過性部 材を準備する工程と ;
0 . 1 5く E a / E < 0 . 7
該光透過性部材を組み上げる工程と ;
を有することを特徴とする投影光学系の製造方法。
PCT/JP1999/005329 1999-09-29 1999-09-29 Systeme optique de projection WO2001023933A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP1999/005329 WO2001023933A1 (fr) 1999-09-29 1999-09-29 Systeme optique de projection
PCT/JP1999/006387 WO2001023934A1 (fr) 1999-09-29 1999-11-16 Procede et appareil d'exposition par projection et systeme optique de projection
EP00962924A EP1139138A4 (en) 1999-09-29 2000-09-28 PROJECTION EXPOSURE PROCESS, DEVICE AND OPTICAL PROJECTION SYSTEM
EP08004980A EP1936419A3 (en) 1999-09-29 2000-09-28 Projection exposure methods and apparatus, and projection optical systems
EP08004979A EP1936420A3 (en) 1999-09-29 2000-09-28 Projection exposure methods and apparatus, and projection optical system
KR1020017006668A KR100687035B1 (ko) 1999-09-29 2000-09-28 투영 광학계, 투영 광학계의 제조 방법, 투영 노광 장치, 투영 노광 방법, 마이크로 장치의 제조 방법 및 투영 노광 장치의 제조 방법
PCT/JP2000/006706 WO2001023935A1 (fr) 1999-09-29 2000-09-28 Procede et dispositif d'exposition par projection, et systeme optique de projection
US10/252,427 US6674513B2 (en) 1999-09-29 2002-09-24 Projection exposure methods and apparatus, and projection optical systems
US10/252,426 US6606144B1 (en) 1999-09-29 2002-09-24 Projection exposure methods and apparatus, and projection optical systems
US10/406,223 US6864961B2 (en) 1999-09-29 2003-04-04 Projection exposure methods and apparatus, and projection optical systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005329 WO2001023933A1 (fr) 1999-09-29 1999-09-29 Systeme optique de projection

Publications (1)

Publication Number Publication Date
WO2001023933A1 true WO2001023933A1 (fr) 2001-04-05

Family

ID=14236833

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1999/005329 WO2001023933A1 (fr) 1999-09-29 1999-09-29 Systeme optique de projection
PCT/JP1999/006387 WO2001023934A1 (fr) 1999-09-29 1999-11-16 Procede et appareil d'exposition par projection et systeme optique de projection

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006387 WO2001023934A1 (fr) 1999-09-29 1999-11-16 Procede et appareil d'exposition par projection et systeme optique de projection

Country Status (4)

Country Link
US (2) US6674513B2 (ja)
EP (2) EP1936419A3 (ja)
KR (1) KR100687035B1 (ja)
WO (2) WO2001023933A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942281A1 (de) * 1999-05-14 2000-11-16 Zeiss Carl Fa Projektionsobjektiv
EP1094350A3 (en) 1999-10-21 2001-08-16 Carl Zeiss Optical projection lens system
KR100866818B1 (ko) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
DE10064685A1 (de) * 2000-12-22 2002-07-04 Zeiss Carl Lithographieobjektiv mit einer ersten Linsengruppe, bestehend ausschließlich aus Linsen positiver Brechkraft
JP2002244034A (ja) * 2001-02-21 2002-08-28 Nikon Corp 投影光学系および該投影光学系を備えた露光装置
US6683710B2 (en) 2001-06-01 2004-01-27 Optical Research Associates Correction of birefringence in cubic crystalline optical systems
US6970232B2 (en) * 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US6995908B2 (en) * 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US7453641B2 (en) * 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US7092069B2 (en) * 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10210899A1 (de) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
JP2004086128A (ja) * 2002-07-04 2004-03-18 Nikon Corp 投影光学系、露光装置、およびデバイス製造方法
US6958864B2 (en) * 2002-08-22 2005-10-25 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in integrated circuit fabrication systems
US7768648B2 (en) * 2002-12-13 2010-08-03 Smith Bruce W Method for aberration evaluation in a projection system
WO2004055472A2 (en) * 2002-12-13 2004-07-01 Smith Bruce W Method for aberration detection and measurement
EP2270597B1 (en) * 2003-04-09 2017-11-01 Nikon Corporation Exposure method and apparatus and device manufacturing method
TWI237307B (en) * 2003-05-01 2005-08-01 Nikon Corp Optical projection system, light exposing apparatus and light exposing method
EP1639817A4 (en) * 2003-07-01 2010-03-31 Samsung Electronics Co Ltd OPTICAL PROJECTION SYSTEM, TELEPROJECTOR, AND METHOD FOR MANUFACTURING LENSES INCLUDED IN AN OPTICAL PROJECTION SYSTEM
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
AU2003304557A1 (en) * 2003-10-22 2005-06-08 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
TWI569308B (zh) 2003-10-28 2017-02-01 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造 方法
EP1678559A1 (en) * 2003-10-29 2006-07-12 Carl Zeiss SMT AG Optical assembly for photolithography
TWI385414B (zh) 2003-11-20 2013-02-11 尼康股份有限公司 光學照明裝置、照明方法、曝光裝置、曝光方法以及元件製造方法
EP2040123B9 (en) * 2003-12-02 2012-11-14 Carl Zeiss SMT GmbH Projection optical system
US20080151365A1 (en) 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
TWI609410B (zh) * 2004-02-06 2017-12-21 尼康股份有限公司 光學照明裝置、曝光裝置、曝光方法以及元件製造方法
JP5201435B2 (ja) * 2004-03-30 2013-06-05 株式会社ニコン 光学系
US7492357B2 (en) 2004-05-05 2009-02-17 Smart Technologies Ulc Apparatus and method for detecting a pointer relative to a touch surface
KR101639964B1 (ko) 2004-05-17 2016-07-14 칼 짜이스 에스엠티 게엠베하 중간이미지를 갖는 카타디옵트릭 투사 대물렌즈를 포함하는 투사 노광 시스템
JP2006113533A (ja) * 2004-08-03 2006-04-27 Nikon Corp 投影光学系、露光装置、および露光方法
EP1839092A2 (en) * 2004-12-30 2007-10-03 Carl Zeiss SMT AG Projection optical system
TW200923418A (en) * 2005-01-21 2009-06-01 Nikon Corp Exposure device, exposure method, fabricating method of device, exposure system, information collecting device, and measuring device
KR100764057B1 (ko) * 2006-09-14 2007-10-08 삼성전자주식회사 애퍼쳐 유닛 및 이를 구비하는 노광 시스템, 그리고 애퍼쳐유닛의 애퍼쳐를 교체하는 방법
RU2436038C1 (ru) * 2010-07-02 2011-12-10 Общество с ограниченной ответственностью "ВИНТЕЛ" Статический фурье-спектрометр
CN204065540U (zh) * 2012-02-09 2014-12-31 富士胶片株式会社 投影用光学系统和投影型显示装置
WO2017026945A1 (en) * 2015-08-13 2017-02-16 Heptagon Micro Optics Pte. Ltd. Illumination assembly for 3d data acquisition
KR102011262B1 (ko) * 2017-09-26 2019-08-16 허철 반도체 소자 가공용 렌즈의 반사광 차단 필터 및 이를 이용한 노광용 광학계
TWI650544B (zh) * 2017-11-16 2019-02-11 致茂電子股份有限公司 表面量測系統
US11726304B2 (en) 2020-05-26 2023-08-15 Apple Inc. Folded optical systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803755A2 (en) * 1996-04-25 1997-10-29 Nikon Corporation Projection optical system and exposure apparatus with the same
JPH10142501A (ja) * 1996-11-06 1998-05-29 Nikon Corp 投影露光装置および該投影露光装置を用いた半導体デバイスの製造方法
JPH11219999A (ja) * 1998-01-30 1999-08-10 Nikon Corp 基板の受け渡し方法、及び該方法を使用する露光装置

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590510B2 (ja) 1988-02-03 1997-03-12 株式会社ニコン 照明装置
US5253110A (en) 1988-12-22 1993-10-12 Nikon Corporation Illumination optical arrangement
US5117225A (en) 1989-05-01 1992-05-26 Summit Micro Design Computer display screen monitoring system
JP3064366B2 (ja) 1990-09-19 2000-07-12 株式会社ニコン 投影露光装置、および該装置を用いる回路パターン製造方法
US5117255A (en) 1990-09-19 1992-05-26 Nikon Corporation Projection exposure apparatus
JP3047461B2 (ja) 1990-11-26 2000-05-29 株式会社ニコン 投影露光装置、投影露光方法、及び半導体集積回路製造方法
JP2691319B2 (ja) 1990-11-28 1997-12-17 株式会社ニコン 投影露光装置および走査露光方法
US5473410A (en) 1990-11-28 1995-12-05 Nikon Corporation Projection exposure apparatus
JPH0534593A (ja) 1991-05-22 1993-02-12 Olympus Optical Co Ltd 縮小投影レンズ
US5424552A (en) 1991-07-09 1995-06-13 Nikon Corporation Projection exposing apparatus
JP3218478B2 (ja) 1992-09-04 2001-10-15 株式会社ニコン 投影露光装置及び方法
JPH0541344A (ja) 1991-08-05 1993-02-19 Nikon Corp 投影露光装置
JP3203719B2 (ja) 1991-12-26 2001-08-27 株式会社ニコン 露光装置、その露光装置により製造されるデバイス、露光方法、およびその露光方法を用いたデバイス製造方法
JPH0684527A (ja) 1992-09-03 1994-03-25 Fuji Electric Co Ltd 燃料電池
US5477304A (en) 1992-10-22 1995-12-19 Nikon Corporation Projection exposure apparatus
US5559584A (en) 1993-03-08 1996-09-24 Nikon Corporation Exposure apparatus
JP3306962B2 (ja) 1993-03-08 2002-07-24 株式会社ニコン 露光装置
JP3747958B2 (ja) * 1995-04-07 2006-02-22 株式会社ニコン 反射屈折光学系
JP3429525B2 (ja) 1993-05-19 2003-07-22 オリンパス光学工業株式会社 投影レンズ系
JPH06331941A (ja) 1993-05-19 1994-12-02 Olympus Optical Co Ltd 投影レンズ系
JPH07128590A (ja) * 1993-10-29 1995-05-19 Olympus Optical Co Ltd 縮小投影レンズ
JPH07128592A (ja) 1993-11-04 1995-05-19 Olympus Optical Co Ltd 縮小投影レンズ
US5850300A (en) 1994-02-28 1998-12-15 Digital Optics Corporation Diffractive beam homogenizer having free-form fringes
JPH0817719A (ja) 1994-06-30 1996-01-19 Nikon Corp 投影露光装置
JP2936138B2 (ja) 1995-01-06 1999-08-23 株式会社ニコン 石英ガラス、それを含む光学部材、並びにその製造方法
US6087283A (en) 1995-01-06 2000-07-11 Nikon Corporation Silica glass for photolithography
JP2770224B2 (ja) 1995-01-06 1998-06-25 株式会社ニコン 光リソグラフィ−用石英ガラス、それを含む光学部材、それを用いた露光装置、並びにその製造方法
US5707908A (en) 1995-01-06 1998-01-13 Nikon Corporation Silica glass
JP3454390B2 (ja) * 1995-01-06 2003-10-06 株式会社ニコン 投影光学系、投影露光装置及び投影露光方法
JPH11233437A (ja) 1997-12-08 1999-08-27 Nikon Corp 露光装置用光学系および露光装置
JP3711586B2 (ja) 1995-06-02 2005-11-02 株式会社ニコン 走査露光装置
KR970067591A (ko) 1996-03-04 1997-10-13 오노 시게오 투영노광장치
JPH09329742A (ja) 1996-06-10 1997-12-22 Nikon Corp 光学系の収差補正方法および収差補正光学系を備えた投影露光装置
US5808814A (en) * 1996-07-18 1998-09-15 Nikon Corporation Short wavelength projection optical system
JPH1079345A (ja) 1996-09-04 1998-03-24 Nikon Corp 投影光学系及び露光装置
JP4029181B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置
CN1244021C (zh) 1996-11-28 2006-03-01 株式会社尼康 光刻装置和曝光方法
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4029180B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JPH10197791A (ja) 1997-01-13 1998-07-31 Canon Inc 投影レンズ
US6219154B1 (en) 1997-02-13 2001-04-17 David J. Romano Exposure control technique for imagesetting applications
JP3065017B2 (ja) * 1997-02-28 2000-07-12 キヤノン株式会社 投影露光装置及びデバイスの製造方法
JP3823436B2 (ja) 1997-04-03 2006-09-20 株式会社ニコン 投影光学系
JPH10284408A (ja) 1997-04-08 1998-10-23 Nikon Corp 露光方法
JPH116957A (ja) 1997-04-25 1999-01-12 Nikon Corp 投影光学系および投影露光装置並びに投影露光方法
DE19818444A1 (de) * 1997-04-25 1998-10-29 Nikon Corp Abbildungsoptik, Projektionsoptikvorrichtung und Projektionsbelichtungsverfahren
JPH10325922A (ja) 1997-05-26 1998-12-08 Nikon Corp 投影光学系
JPH10333030A (ja) 1997-06-04 1998-12-18 Nikon Corp 精密複写レンズ
IL133422A0 (en) 1997-06-10 2001-04-30 Nikon Corp Optical device, method of cleaning the same, projection aligner, and method of producing the same
JP3073463B2 (ja) 1997-06-13 2000-08-07 川崎重工業株式会社 二段式シールド掘進機
US5990926A (en) 1997-07-16 1999-11-23 Nikon Corporation Projection lens systems for excimer laser exposure lithography
JP3925576B2 (ja) * 1997-07-24 2007-06-06 株式会社ニコン 投影光学系、該光学系を備えた露光装置、及び該装置を用いたデバイスの製造方法
EP1020897A4 (en) 1997-08-26 2004-10-27 Nikon Corp ALIGNMENT DEVICE, LIGHTING METHOD, METHOD FOR PRINTING AN OPTICAL PROJECTION SYSTEM, AND METHOD FOR COMPOSING THIS ALIGNMENT DEVICE
JPH11133301A (ja) 1997-08-29 1999-05-21 Nikon Corp 投影光学系、露光装置及び半導体デバイスの製造方法
JPH1195095A (ja) 1997-09-22 1999-04-09 Nikon Corp 投影光学系
KR20010031779A (ko) 1997-11-07 2001-04-16 오노 시게오 투영 노광 장치, 투영 노광 방법 및 그 장치의 제조 방법
JPH11174365A (ja) 1997-12-15 1999-07-02 Nikon Corp 照明光学装置及び該照明光学装置を備えた露光装置並びに露光方法
US6285509B1 (en) * 1997-12-25 2001-09-04 Canon Kabushiki Kaisha Zoom lens and display apparatus having the same
JPH11214293A (ja) * 1998-01-22 1999-08-06 Nikon Corp 投影光学系及び該光学系を備えた露光装置並びにデバイス製造方法
JPH11233447A (ja) 1998-02-10 1999-08-27 Rohm Co Ltd 半導体基板に対する縦型表面処理装置の構造
JP3278407B2 (ja) 1998-02-12 2002-04-30 キヤノン株式会社 投影露光装置及びデバイス製造方法
US6198577B1 (en) 1998-03-10 2001-03-06 Glaxo Wellcome, Inc. Doubly telecentric lens and imaging system for multiwell plates
EP1075017A4 (en) 1998-03-31 2005-04-20 Nikon Corp OPTICAL DEVICE AND EXPOSURE SYSTEM EQUIPPED WITH THE OPTICAL DEVICE
JPH11307443A (ja) 1998-04-24 1999-11-05 Canon Inc 投影露光装置及びそれを用いたデバイスの製造方法
US6198576B1 (en) * 1998-07-16 2001-03-06 Nikon Corporation Projection optical system and exposure apparatus
US6451507B1 (en) * 1998-08-18 2002-09-17 Nikon Corporation Exposure apparatus and method
JP2000121934A (ja) 1998-10-16 2000-04-28 Nikon Corp 投影光学系
FR2785996B1 (fr) 1998-11-18 2001-02-23 Thomson Csf Adaptateur optique d'objectifs cinema sur camera video
KR20000034896A (ko) 1998-11-27 2000-06-26 오노 시게오 노광 장치용 광학계와 노광 장치 및 그 조립 방법
DE19855157A1 (de) 1998-11-30 2000-05-31 Zeiss Carl Fa Projektionsobjektiv
DE19855108A1 (de) 1998-11-30 2000-05-31 Zeiss Carl Fa Mikrolithographisches Reduktionsobjektiv, Projektionsbelichtungsanlage und -Verfahren
WO2000033138A1 (de) 1998-11-30 2000-06-08 Carl Zeiss Hochaperturiges projektionsobjektiv mit minimalem blendenfehler
DE19942281A1 (de) 1999-05-14 2000-11-16 Zeiss Carl Fa Projektionsobjektiv
EP1006388A3 (de) 1998-11-30 2002-05-02 Carl Zeiss Reduktions-Projektionsobjektiv der Mikrolithographie
KR20000034967A (ko) 1998-11-30 2000-06-26 헨켈 카르스텐 수정-렌즈를 갖는 오브젝티브 및 투사 조명 장치
JP4658275B2 (ja) 1999-04-08 2011-03-23 富士フイルム株式会社 ズームレンズ
US6867922B1 (en) 1999-06-14 2005-03-15 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus using the same
JP2000356741A (ja) 1999-06-14 2000-12-26 Canon Inc 投影光学系
JP3359302B2 (ja) 1999-06-14 2002-12-24 キヤノン株式会社 投影露光装置
EP1094350A3 (en) * 1999-10-21 2001-08-16 Carl Zeiss Optical projection lens system
US6590715B2 (en) 1999-12-21 2003-07-08 Carl-Zeiss-Stiftung Optical projection system
TW448307B (en) 1999-12-21 2001-08-01 Zeiss Stiftung Optical projection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803755A2 (en) * 1996-04-25 1997-10-29 Nikon Corporation Projection optical system and exposure apparatus with the same
JPH10142501A (ja) * 1996-11-06 1998-05-29 Nikon Corp 投影露光装置および該投影露光装置を用いた半導体デバイスの製造方法
JPH11219999A (ja) * 1998-01-30 1999-08-10 Nikon Corp 基板の受け渡し方法、及び該方法を使用する露光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
US7382540B2 (en) 2002-03-01 2008-06-03 Carl Zeiss Smt Ag Refractive projection objective

Also Published As

Publication number Publication date
KR100687035B1 (ko) 2007-02-28
EP1936420A2 (en) 2008-06-25
US6864961B2 (en) 2005-03-08
WO2001023934A1 (fr) 2001-04-05
EP1936420A3 (en) 2008-09-10
US20030147061A1 (en) 2003-08-07
US6674513B2 (en) 2004-01-06
KR20010086059A (ko) 2001-09-07
EP1936419A3 (en) 2008-09-10
EP1936419A2 (en) 2008-06-25
US20030206282A1 (en) 2003-11-06

Similar Documents

Publication Publication Date Title
WO2001023933A1 (fr) Systeme optique de projection
US6606144B1 (en) Projection exposure methods and apparatus, and projection optical systems
US6912094B2 (en) Projection optical system, a projection exposure apparatus, and a projection exposure method
KR101647934B1 (ko) 투영 광학계, 노광 장치 및 노광 방법
JP4826695B2 (ja) 反射屈折光学系および該光学系を備えた投影露光装置
JP4345232B2 (ja) 反射屈折結像光学系および該光学系を備えた投影露光装置
JP2002323652A (ja) 投影光学系,該投影光学系を備えた投影露光装置および投影露光方法
JP2002323653A (ja) 投影光学系,投影露光装置および投影露光方法
WO2005001544A1 (ja) 光学ユニット、結像光学系、結像光学系の収差調整方法、投影光学系、投影光学系の製造方法、露光装置、および露光方法
JP4239212B2 (ja) 投影光学系、露光装置および露光方法
TW418343B (en) The method of projection exposure and device thereof and projection optics system
JP5786919B2 (ja) 投影光学系、露光装置及び露光方法
JP2000284178A (ja) 投影光学系及び該投影光学系を備える投影露光装置
JP2016136273A (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2015132843A (ja) 投影光学系、露光装置、露光方法、およびデバイス製造方法
JP2012073632A (ja) 反射屈折投影光学系、露光装置及び露光方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09856959

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10252427

Country of ref document: US

Ref document number: 10252426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWE Wipo information: entry into national phase

Ref document number: 10406223

Country of ref document: US