WO2001037643A1 - Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen - Google Patents

Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen Download PDF

Info

Publication number
WO2001037643A1
WO2001037643A1 PCT/JP1999/006467 JP9906467W WO0137643A1 WO 2001037643 A1 WO2001037643 A1 WO 2001037643A1 JP 9906467 W JP9906467 W JP 9906467W WO 0137643 A1 WO0137643 A1 WO 0137643A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
dna
transcription factor
promoter
expression cassette
Prior art date
Application number
PCT/JP1999/006467
Other languages
English (en)
French (fr)
Other versions
WO2001037643A9 (fr
Inventor
Sanjay Kapoor
Akira Kobayashi
Hiroshi Takatsuji
Original Assignee
National Institute Of Agrobiologicalsciences
Bio-Oriented Technology Research Advancement Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Agrobiologicalsciences, Bio-Oriented Technology Research Advancement Institution filed Critical National Institute Of Agrobiologicalsciences
Priority to AU11835/00A priority Critical patent/AU779284B2/en
Priority to US10/130,731 priority patent/US6989473B1/en
Priority to PCT/JP1999/006467 priority patent/WO2001037643A1/ja
Priority to CN99817080A priority patent/CN1461187A/zh
Priority to EP99974206A priority patent/EP1230843A4/en
Priority to KR10-2002-7006420A priority patent/KR100455621B1/ko
Priority to CA002391991A priority patent/CA2391991A1/en
Publication of WO2001037643A1 publication Critical patent/WO2001037643A1/ja
Publication of WO2001037643A9 publication Critical patent/WO2001037643A9/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/022Genic fertility modification, e.g. apomixis
    • A01H1/023Male sterility
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8231Male-specific, e.g. anther, tapetum, pollen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility

Definitions

  • the present invention relates to a gene specifically expressed in pollen-forming tissue of stamens and use thereof.
  • the present invention particularly relates to a gene of a zinc finger-type transcription factor group (ZPT2-5, ZPT3-1 and ZPT4-1) derived from petunia, which is specifically expressed in microspores.
  • ZPT2-5, ZPT3-1 and ZPT4-1 zinc finger-type transcription factor group
  • Pollen fertility is a problem in various aspects of agriculture and horticulture. For example, during crossbreeding in crossbreeding, a lot of effort is needed to remove stamens to avoid self-pollination. In the seed and seedling industry, traits without pollen fertility are required from the standpoint of commercial protection of varieties obtained by crossbreeding. Due to such demands, a technology (pollination control) for controlling pollen fertility has been strongly demanded. Traditionally, for certain crops, cytoplasmic male sterility lines have been used for cross breeding with some success. However, cytoplasmic sterility traits often have undesired side effects such as reduced disease resistance, and are further problematic in that the traits are unstable and mass production of seeds is difficult. 'A method of reducing fertility by chemical treatment has been studied, but its safety evaluation and elucidation of the mechanism of action have been delayed, and it has not yet been put to practical use. Therefore, excellent male sterilization technology using genetic engineering is required.
  • Pollen is a male gametophyte in seed plants. Pollen development that progresses in a state surrounded by anthers as a supportive tissue is caused by meiosis of microspore-forming cells (pollen mother cells) Immediately after the tetrad phase, the release phase of microspores from the tetrad, the mononuclear phase characterized by pollen cell expansion and vacuole formation, and the mitotic cells that undergo mitosis to differentiate into vegetative and germ cells. It is divided into mitotic and subsequent binuclear phases. After these steps, the anthers eventually cleave and mature pollen grains are released. Therefore, microspores can be said to be one of the most suitable target tissues for artificial control to inhibit pollen development and lose pollen fertility.
  • the present inventors recently included PEThyZPT2-5, PEThyZPT3-K and EThyZPT4-l (hereinafter abbreviated as ZPT2-5, ZPT3-1 and ZPT4-1, respectively) as novel transcription factors derived from petunia.
  • the cDNA sequences of seven zinc finger (ZF) transcription factors were identified.
  • Northern blot analysis showed that each transcription factor exhibited an anther-specific, transient expression at different stages of anther development (Kobayashi et al., Plant J. 13: 571, 1998).
  • the physiological function and action of these transcription factors in plants, the exact expression site of the gene encoding the transcription factor, and its expression regulation mechanism were unknown. Disclosure of the invention
  • An object of the present invention is to provide a pollen-specific compound useful for modifying plant traits represented by male sterility.
  • An object of the present invention is to provide a genetic engineering technique using a specific gene.
  • the present inventors have re-introduced the genes encoding anther-specific transcription factors (ZPT2-5, ZPT3-1 and ZPT4-1) previously isolated from petunia into petunia. As a result, it was found that the normal development of pollen was inhibited, and the fertility of the pollen was significantly reduced (ZPT2-5 and ZPT4-1) or almost completely lost (ZPT3-1). Furthermore, the present inventors isolated the upstream regions from the genomic genes of ZPT3-1 and ZPT4-1, respectively, and examined the tissue specificity of their promoter activities. As a result, they found that promoter activity was expressed in tissue and stage-specific manner in microspores from the mononuclear stage to the dinuclear stage. The present invention has been completed based on these findings.
  • the present invention relates to a method for producing a male-sterile plant, comprising the following steps: (i) No. 1 in the base sequence represented by SEQ ID NO: 1 (Ii) DNA that hybridizes under stringent conditions to DNA having the nucleotide sequence of (i) and encodes a transcription factor that controls pollen development; or (iii) providing a plant expression cassette comprising a nucleic acid that is either DNA that is a fragment of (i) or (ii) and a promoter operably linked to the nucleic acid; controlling pollen development Providing a plant cell having an endogenous transcription factor, wherein the gene encoding the endogenous transcription factor hybridizes with the nucleic acid under stringent conditions.
  • the present invention relates to a method for producing a male-sterile plant, comprising the following steps: ( ⁇ ) from the first position of the base sequence represented by SEQ ID NO: 3 Hybridization with DNA having a sequence up to position 1640 and DNA having the base sequence of (ii ') () under stringent conditions, and the development of pollen A nucleic acid that is either a DNA encoding a transcription factor that regulates or a DNA that is a fragment of (iii ′) ()) or (i), and a motor operably linked to the nucleic acid.
  • a step of providing a plant expression cassette a step of providing a plant cell having an endogenous transcription factor that controls pollen development, wherein the gene encoding the endogenous transcription factor is the nucleic acid
  • a step of introducing the expression cassette into plant cells a step of regenerating a plant cell into which the expression cassette has been introduced into a plant; and a step of regenerating the plant. Selecting a plant in which expression of an endogenous transcription factor is suppressed by expressing the nucleic acid.
  • the present invention relates to a method for producing a male-sterile plant, comprising the following steps: (i ") No. 1 in the nucleotide sequence represented by SEQ ID NO: 5 A DNA having the sequence from position to position 1948, a DNA having a nucleotide sequence of (ii ") (i"), a DNA that hybridizes under stringent conditions and encodes a transcription factor that controls pollen development, or ni ") providing a plant expression cassette comprising a nucleic acid which is either DNA which is a fragment of (i") or (ii "), and a mouth motor operably linked to the nucleic acid; A step of providing a plant cell having an endogenous transcription factor that controls pollen development, wherein the gene encoding the endogenous transcription factor is high under stringent conditions with the nucleic acid.
  • Bridging, process expression A step of introducing a cassette into a plant cell; a step of regenerating a plant cell into which the expression cassette has been introduced into a plant; and an expression of the nucleic acid in the regenerated plant, resulting in endogenous transcription. A step of selecting a plant in which expression of the factor is suppressed.
  • the DNAs of the above (ii), (ii ') and (ii ") are, respectively, (iv) a DNA having a sequence from position 1 to position 1886 of the nucleotide sequence represented by SEQ ID NO: 13 and a string It hybridizes under mild conditions and does not contain DNA encoding a transcription factor that controls pollen development.
  • the method according to the first to third aspects of the present invention can be used as a method for imparting male sterility to a plant.
  • the nucleic acid can be ligated in a forward direction to the promoter and transcribed in a sense direction in cells of the plant.
  • the nucleic acid is ligated in the reverse direction to the promoter, and can be transcribed in an antisense direction in cells of the plant.
  • the plant is a dicotyledon.
  • the dicotyledonous plant is preferably a solanaceous plant, and more preferably a petunia plant.
  • the expression cassette is incorporated into a plant expression vector.
  • the present invention relates to a method for producing a plant with a modified trait, comprising the following steps: (a ′) No. 1 of the base sequence represented by SEQ ID NO: 7 A promoter having any of DNAs having a sequence from position to position 2624 or a DNA having a partial sequence of () (a ′) and having promoter activity specific to microspores; Providing a plant expression cassette comprising a heterologous gene operably linked to the plant overnight; introducing the expression cassette into a plant cell; and transforming the plant cell into which the expression cassette has been introduced into a plant body. The process of playing back to
  • the present invention provides a method for producing a plant having a modified trait.
  • the present invention relates to a method comprising the following steps: (a ") DNA having a sequence from the 1st position to the 3631th position of the nucleotide sequence represented by SEQ ID NO: 8, or (b") (a ") And a heterologous gene operably linked to the promoter, the promoter comprising any of the DNAs exhibiting a specific promoter activity, which is contained in the microspores and optionally in the anther cleavage tissue.
  • the trait is fertile and the plant with the altered trait is a male sterile plant. Therefore, the above method of the present invention can be used as a method for imparting male sterility to a plant.
  • the trait is compatible and the plant with the altered trait is a self-incompatible plant. Therefore, the above method of the present invention can also be used as a method for imparting self-incompatibility to plants.
  • the plant is a dicotyledon.
  • the dicotyledonous plant is preferably a Solanaceae plant, and more preferably a Vetunia plant.
  • the expression cassette is incorporated into a plant expression vector.
  • the present invention relates to a promoter containing the following DNA ( ⁇ ) or ( ⁇ ⁇ '): ( ⁇ ) from position 1 to position 2624 of the nucleotide sequence represented by SEQ ID NO: 7 Or a DNA having a partial sequence of ( ⁇ ⁇ ) or (I ') and showing promoter activity specific to microspores.
  • the present invention in a seventh aspect thereof, relates to a promoter containing the following DNA (1 ") or (1d): (I") the first sequence of the base sequence represented by SEQ ID NO: 8. DNA having a sequence from position to position 3631, or DNA having a partial sequence of ( ⁇ ") (I") and showing promoter activity specific to microspores and optionally to anther cleavage tissue .
  • the present invention provides, in an eighth aspect thereof, a method for imparting male sterility to a plant, comprising any one of the above microspore-specific promoters and a heterologous gene operably linked to the promoter.
  • a useful plant expression cassette BRIEF DESCRIPTION OF THE FIGURES
  • Fig. 1 shows the cDNA sequence of the gene encoding ZPT2-5 (hereinafter, also simply referred to as the TZPT2-5 gene) and the corresponding amino acid sequence.
  • the two zinc finger motifs and the DLNL sequence Amino acids 145 to 155) are underlined
  • Figure 2 shows the cDNA sequence of the gene encoding ZPT3-1 (hereinafter simply referred to as the "ZPT3-1 gene") and the corresponding amino acid sequence.
  • the three zinc finger motifs and the DLNL sequence (amino acids 408 to 417) are underlined
  • Figure 3 shows the gene encoding ZPT4-1 (hereinafter simply referred to as the “PT4-1 gene”).
  • FIG. 1 is a schematic diagram showing the structure of a plant expression vector (pB IN-35S-ZPT2-5, pB [N-35S- ⁇ 3-1 and pBIN-35S- ⁇ 4-1]) for expressing a DNA sequence.
  • FIG. 5 is a diagram showing the upstream sequence of the coding region of the ZPT3-1 gene.
  • the transcription start point (position 2567) is indicated by a bold arrow, and the translation initiation codon (ATG) is indicated by a bold underline.
  • FIG. 6 is a diagram showing the upstream sequence of the coding region of the ZPT4-1 gene.
  • the transcription start point position 3503 is indicated by a bold arrow, and the translation initiation codon (ATG) is indicated by a bold underline.
  • FIG. 7 is a schematic diagram showing the structure of plant expression vectors (PBIN-ZPT3-1-GUS and ⁇ - ⁇ 3-GUS) for analyzing promoters of ⁇ 3-1 and ZPT4-1 genes.
  • Fig. 8 is a photograph showing the morphology of living organisms obtained by photographing the pollen of wild-type petunia and the pollen of a petunia (transformant that has undergone a corossion) into which PBIN-35S-ZPT2-5 has been introduced. Magnification is 400 times).
  • Figures 8 (a) to 8 () show wild-type petunia
  • Figs. 8 (e) to (! 1) show pollen at different growth stages for corssection-transformed petunia.
  • the cells were stained with DAP I (4 ', 6-diamidino-2-phenylindoledi hydrochloride n-hydrate) by the method.
  • FIG. 9 is a photograph showing the morphology of the organism (magnification: 700 ⁇ ) taken of wild-type petunia pollen and petunia pollen into which PB IN-35S-ZPT3-1 has been introduced.
  • Figures 9 (a) and (c) show the pollen of wild-type petunia
  • Figures 9 (b) and () show the pollen at the tetrad and microspore stages, respectively, of the transformed petunia.
  • the pollen at the microspore stage was stained with safranin in the same manner as that of the petunia introduced with PB IN-35S-ZPT4-1, in exactly the same manner as in Fig. 9 (b) and (d).
  • Fig. 9 (b) and (d) was observed.
  • FIG. 10 is a photograph showing the morphology of living organisms obtained by photographing a GUS-stained flower organ of petunia into which pBIN-ZPT3-GUS and PBIN-ZPT4-1-GUS were introduced. In all cases, flowers with anthers in the mononuclear stage (buds) were targeted.
  • Figures 10 (a) and (d) show the buds in full scale
  • Figures 10 (b) and (e) show the cross section of the anther at low magnification (40x).
  • c) and (f) are high-power cross-sections of microspores (Fig. 6 (c); magnification of 700x) or anther cleaved tissue (Fig. 6 (f); magnification of 200x), respectively. Show. BEST MODE FOR CARRYING OUT THE INVENTION
  • the nucleic acid useful in the method for producing a male-sterile plant which is the first to third aspects of the present invention, is any of the following:
  • DNA that encodes a transcription factor that controls pollen development by hybridizing under stringent conditions with DNA having any one of the nucleotide sequences of (i) to (i ") (ie, (ii), (ii) ⁇ ') or (ii ")), or
  • a DNA which is a fragment of any of the above D (ie, (iii), ( ⁇ ') or (iii ")).
  • the nucleic acid according to the present invention is preferably a DNA encoding (i), ( ⁇ ′) or ( ⁇ ), that is, DNA encoding ⁇ 2-5, ⁇ 3-1 or ⁇ 4-1, or a fragment thereof.
  • it is the DNA of (i), (i ') or (i ").
  • transcription factor refers to a protein that binds to DNA in a regulatory region of a gene and controls mRNA synthesis.
  • Certain transcription factors are known to have highly conserved amino acid sequences called zinc finger motifs (ZF) motifs in their DNA binding domains.
  • ZPT2-5 is a zinc finger (ZF) protein of the Cys2ZHis2 type (EPF family), which contains two ZF motifs within a full-length amino acid sequence consisting of 176 amino acids, and a hydrophobic region called DLNL sequence. Is a transcription factor.
  • ZPT3-1 is a ZF protein of the EPF family, a transcription factor containing three ZF motifs within a full-length amino acid sequence consisting of 439 amino acids, and further containing a DLNL sequence.
  • ZPT4-1 is also a ZF protein of the EPF family, a transcription factor containing four ZF motifs within a full-length amino acid sequence consisting of 474 amino acids, and further containing a DLNL sequence.
  • the cDNA sequences encoding ZPT2-5, ⁇ 3-1 and ⁇ 4-1 (SEQ ID NOs: 1, 3, and 5) were replaced with the corresponding deduced amino acid sequences (SEQ ID NOs: 2, 4, and 5, respectively). 6) is shown in Figures 1, 2 and 3.
  • fragment of a nucleic acid or a DNA refers to a fragment that, when introduced into a plant and expressed in an appropriate manner, can suppress the expression of an endogenous transcription factor of the plant.
  • This fragment is selected from the DNA (i), (i '), (i "), (ii), ( ⁇ ') or (ii") other than the region encoding the zinc finger motif, It has a length of at least about 40 base pairs or more, preferably about 50 base pairs or more, more preferably about 70 base pairs or more, and still more preferably about 100 base pairs or more.
  • stringent condition J for hybridization refers to a specific nucleotide sequence (for example, DNA encoding ZPT2-5, ZPT3-I or ZPT4-1 derived from petunia). ) And another nucleotide sequence highly homologous thereto (for example, DNA encoding a homolog of ZPT2-5, ZPT3-1 or ZPT4-1 present in plants other than petunia).
  • stringent conditions include the following conditions: 1 M NaC and 1% SDS, 10% dextran sulfate, After hybridization in a solution containing 32 P-labeled probe DNA (lxl0 cpm) and 50 ⁇ g Zml salmon sperm DNA at 60 for 16 hours, washing with 2 ⁇ SSCZ1% SDS at 60 ° C. for 30 minutes is repeated twice.
  • ZPT2-5, ZPT3-1 and ZPT4-1 in the present invention are to encode DNA that encodes a transcription factor that regulates pollen development, as well as DNA that encodes a transcription factor that regulates pollen development.
  • a pair of digienelate primers corresponding to the conserved region of the amino acid sequence can be used PCR is performed using the primer pair as a type III plant cDNA or genomic DNA, and then the obtained amplified DNA fragment is used as a probe.
  • 5′-CARGCNYTNGGNGGNCAY-3 ′ SEQ ID NO: 9
  • 3′- can be used to screen a cDNA library or a genomic library of the same plant.
  • RTGNCCNCCNARNGCYTG-5 ′ (SEQ ID NO: 10), where N is inosine, R is G or A, and Y is C or T. ).
  • the above-mentioned primer sequences respectively correspond to the amino acid sequence QALGGH contained in the zinc finger motif of the above ZPT transcription factor group.
  • the stringent hybridization conditions applied to the present invention can also be defined as PCR conditions, and in a typical example, the above-described digienelate primers (SEQ ID NOS: 9 and 10) can be used.
  • the PCR reaction conditions were: denaturation at 94 for 5 minutes, 30 cycles of 94 ° C for 30 seconds, 50 at 30 seconds, and 72 ° C for 1 minute for 30 cycles, and finally incubation at 72 for 7 minutes.
  • PCR can be performed according to the manufacturer's guidelines for commercially available kits and devices, or by techniques well known to those skilled in the art. Methods for preparing a gene library, and methods for cloning genes are well known to those skilled in the art. See, e.g., Sambrook et al., "Moleculal Clearing: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratories, 1989. Nucleotide sequence of the gene obtained. Can be determined using a nucleotide sequence analysis method known in the art or a commercially available automatic sequencer.
  • a transcription factor "controls pollen development” typically means that when the expression of this transcription factor is inhibited, a significant change in pollen morphology or function is observed.
  • the transcription factor of the present invention is preferably at least about 75%, more preferably at least about 90%, and still more preferably at least about 90% by inhibiting the expression of the gene encoding it. Kill more than 5% of pollen cells before they mature.
  • the expression of the transcription factor is inhibited means that the amount of mRNA is about 1/10 or less as compared with a wild-type control plant as measured by the Northern blot method.
  • the transcription factors (ie, ZPT2-5, ⁇ 3-1 and ⁇ 4-1, and homologs thereof) encoded by the genes isolated and identified by the screening described above regulate pollen development. This can be confirmed by creating a transformed plant in accordance with the disclosure herein and observing the pollen characteristics.
  • the expression of an endogenous gene containing the same or homologous nucleotide sequence as the DNA is suppressed in plant cells by using DNA encoding a transcription factor that controls pollen development. obtain.
  • Targeted endogenous genes are also transcription factors that control pollen development. According to the method of the present invention, it is preferable to selectively suppress only the expression of an endogenous transcription factor without substantially suppressing the expression of an element other than an endogenous transcription factor that controls the development of pollen. Is given male sterility.
  • a plant cell to which the expression suppression technique of the present invention is applied is a plant cell having an endogenous transcription factor that controls pollen development, and the gene encoding this endogenous transcription factor is It is defined as hybridizing with the above ZPT2-5, ZPT3-1 or ⁇ 4-1, or DNA of these homologs under stringent conditions, where the definition of “stringent end conditions” is ⁇ 2 -Same as the conditions described above in connection with the identification of homologues of 5, ⁇ 3-1 and T4-1.
  • a plant capable of imparting male sterility by the above method is a petunia from which the ⁇ ⁇ gene group has been isolated or a gene encoding the ⁇ homolog.
  • the isolated plant be a plant closely related to evolutionary phylogeny.
  • a closely related in evolutionary phylogeny is a plant that is typically classified into the same order, preferably classified into the same family, more preferably classified into the same genus, and more preferably classified into the same species. is there.
  • transcription factors that perform the same or similar functions as ⁇ 2-5, 13-1, and ⁇ 4-1 are widely present in other plants. It is easy to get.
  • cosuppression and antisense technology can be used as a technique for suppressing the expression of an endogenous gene.
  • Cosuppression means that when a recombinant gene is introduced into a plant cell, the expression of both the gene itself and an endogenous gene containing a sequence homologous to a part of the gene is suppressed.
  • the expression cassette of the present invention contains a DNA encoding a transcription factor or a fragment thereof in a form linked to a promoter in a forward direction. Turn DNA encoding a transcription factor or a fragment thereof can be transcribed in the sense direction under the control of a promoter after being introduced into a plant cell as an expression cassette.
  • the desired gene expression can be suppressed. Cosuppression is found in some individuals of transformed plants and often does not occur sufficiently in other individuals. Thus, usually, individuals in which gene expression has been suppressed as intended are selected according to conventional procedures.
  • the transcript (mRNA) of the transgene forms a hybrid with the complementary sequence of the transcript (mRNA) of the endogenous gene. It means that the translation of the protein encoded by the gene is inhibited.
  • the expression cassette of the present invention contains a DNA encoding a transcription factor or a fragment thereof in a form linked in a reverse direction to a promoter. A DNA encoding a transcription factor or a fragment thereof can be transcribed in an antisense direction under the control of a promoter after being introduced into a plant cell as an expression cassette. By the action of the antisense transcript, desired gene expression can be suppressed.
  • the promoter useful in the method for producing a plant whose trait has been modified includes: (a ') the first to second positions 2624 of the nucleotide sequence represented by SEQ ID NO: 7 DNA having the sequence of (a ") DNA having the sequence from position 1 to position 3631 of the nucleotide sequence represented by SEQ ID NO: 8, or a portion of (a ') or (a")
  • a promoter comprising any DNA having a sequence and exhibiting promoter activity specific to microspores.
  • the promoter in the present invention is preferably the promoter (a ') or (a "), that is, the promoter of the ZPT3-1 or ZPT4-1 gene.
  • tissue-specific expression activity of promoter region of ZPT3-1 and ZPT4-1 gene Sequences having microspore-specific promoter overnight activity, obtained by removing non-reactive sequences, are within the scope of the present invention. Such a sequence can be obtained by performing a promoter-based delivery experiment according to a conventional method. Briefly, various deletion mutants of the promoter region of the ZPT3-1 or ZPT4-1 gene (for example, the promoter region of the ZPT3-1 or ZPT4-1 By measuring the tissue-specific promoter activity of the deletion mutant using a plasmid fused with an appropriate reporter gene (eg, GUS gene), Essential areas can be identified.
  • an appropriate reporter gene eg, GUS gene
  • “showing a promoter activity specific to microspores” means that the promoter is introduced into a plant in a natural plant or as an expression cassette linked to an arbitrary structural gene. This means that the ability to specifically direct gene expression by initiating DNA transcription is specifically demonstrated in microspores.
  • “specific” includes all other tissues of the flower of the same plant (evening pate layer, thread, style, flower head, petal, calyx, etc.) Excluding), which means that the expression activity of the promoter is higher.
  • the specific promoter preferably has a higher expression activity at the promoter than all other tissues and parts other than flowers (roots, leaves, stems, etc.) of the same plant, and more preferably, It has virtually no activity in all other tissues and parts other than the flowers of the same plant. “Showing promoter activity specific to anther cleavage tissue” is also defined as above.
  • the degree of expression activity can be evaluated by comparing the expression level of the promoter in microspores with the expression level of the same promoter in other tissues of flowers according to a conventional method.
  • the expression level of a promoter is usually under the control of that promoter. It is determined by the amount of gene product expressed.
  • the method of the present invention utilizing the above-described specific promoter is intended to modify a trait related to plant reproduction.
  • alteration means that at least a part of the reproductive organs in the transformed plant loses the function that was present in the plant (wild or horticultural species) before transformation, or Acquires a function that was not present in the plant, or enhances or reduces the degree of a particular function as compared to a plant before transformation.
  • modification of the trait is that any heterologous gene operably linked to the promoter of the present invention is specifically expressed in microspores under the control of the promoter in a transformed plant into which this gene has been introduced. As a result.
  • tissue specificity of many tissue-specific promoters is conserved across species, so it is easily understood that the promoter of the present invention can also be applied to a wide variety of plant species. .
  • the degree of modification of the trait can be assessed by comparing the trait of the plant after transformation with the trait of the plant before transformation.
  • Preferred traits to be altered include, but are not limited to, female sterility and self-incompatibility. '.
  • the promoter of the present invention can be obtained, for example, by screening a plant genomic library using a known cDNA as a probe, and isolating the upstream sequence of the coding region from the corresponding genomic clone.
  • cDNA include cDNAs of the above-mentioned ZPT3-1 and ZPT4-1 transcription factors derived from petunia.
  • the promoter in the present invention is not limited to those isolated from nature, and may also include synthetic polynucleotides. Synthetic polynucleotides can be obtained, for example, by synthesizing or modifying the sequence of the promoter sequenced as described above or an active region thereof by a method well known to those skilled in the art.
  • the DNA encoding the transcription factor of the present invention is introduced into plant cells using a method well known to those skilled in the art as an expression cassette operably linked to an appropriate promoter, using a known gene recombination technique. Can be done.
  • the microspore-specific promoter of the present invention can be introduced into plant cells as an expression cassette operably linked to a desired heterologous gene.
  • Promoter that can be linked to the transcription factor refers to any promoter that is expressed in plants, and can include any of a constitutive promoter, a tissue-specific promoter, and an inducible promoter.
  • Constant promoter refers to a promoter that allows expression of a structural gene at a certain level regardless of stimuli inside and outside a plant cell. The use of a constitutive promoter is convenient and preferred if the heterologous gene is expressed in other tissues or organs of the plant but does not impart undesired traits to the plant. Examples of constitutive promoters include, but are not limited to, the 35S promoter (P35S) of potato flower mosaic virus (CaMV) and the promoter of nopaline synthase (Tnos).
  • P35S 35S promoter
  • CaMV potato flower mosaic virus
  • Tnos nopaline synthase
  • tissue-specific promoter refers to a promoter that causes a structural gene to be specifically expressed at least in microspores.
  • tissue-specific promoter includes, in addition to the promoters derived from the ZPT3-1 and ZPT4-1 genes in the present invention, other known promoters that exhibit anther-specific expression activity.
  • the native ZPT3-1 and ZPT4-1 gene expression cassettes including microspore-specific promoters and sequences encoding transcription factors, may be used in combination with other regulatory elements, if necessary. It is within the scope of the present invention.
  • inducible promoter refers to a motor that causes a structural gene to be expressed when given a specific stimulus such as a chemical agent or physical stress, and does not exhibit expression activity in the absence of the stimulus.
  • inducible promoters include glutathione S-transferase (GST) promoter over night, inducible with auxin (van der Kop, DA et al., Plant Mol. Biol., 39: 979, 1999). Not limited to this No.
  • expression cassette or “plant expression cassette” refers to a DNA encoding the transcription factor of the present invention and a DNA operably linked thereto (ie, so that the expression of the DNA can be controlled) A nucleic acid sequence comprising a linked plant expression promoter; and a nucleic acid sequence comprising a microspore-specific promoter of the present invention and a heterologous gene operably linked (ie, in-frame) to the promoter.
  • a “heterologous gene” that can be linked to the microspore-specific promoter described above is an endogenous gene in petunia other than the ZPT3-1 and ZPT4-1 genes, or an endogenous gene in a plant other than petunia, or A foreign gene (eg, a gene derived from an animal, insect, bacterium, and fungus), which is any gene whose expression of a gene product is desired in microspores.
  • a preferred example of the heterologous gene in the present invention is a gene whose encoded gene product is cytotoxic and whose expression inhibits pollen development.
  • Barnase genetic bovine Examples of such genes (Beal s, ⁇ ⁇ P. and Goldberg, RB, Plant Cel l t 9: 1527, 1997) include, but are not limited thereto.
  • Plant expression vector J refers to a nucleic acid sequence in which, in addition to an expression cassette, various regulatory elements are operably linked in the cells of the host plant. It is well known to those skilled in the art that the type of plant expression vector and the type of regulatory element used can vary depending on the host cell.
  • the plant expression vector may further comprise a T-DNA region, which enhances the efficiency of gene transfer, particularly when transforming plants with Agrobacterium.
  • Terminator 1 is a sequence that is located downstream of the region encoding the protein of a gene and is involved in terminating transcription when DM is transcribed into mRNA and adding a Bori A sequence.
  • the terminator contributes to the stability of the mRNA, and It is known to have an effect.
  • Examples of terminators include, but are not limited to, the nopaline synthase cold gene terminator (Tnos) and the cauliflower mosaic virus (CaMV) 35S terminator.
  • neomycin phosphotransferase II ( ⁇ ) gene for imparting kanamycin resistance a hygromycin phosphotransferase gene for imparting hygromycin resistance, and the like can be suitably used, but are not limited thereto.
  • the plant expression vector of the present invention is prepared using a gene recombination technique well known to those skilled in the art; In the construction of a plant expression vector, for example, a pBI-based vector or a PUC-based vector is preferably used.
  • the expression cassette constructed as described above, or the expression vector containing the same, can be introduced into a desired plant cell using a known gene recombination technique.
  • the introduced expression cassette is integrated into DNA in plant cells.
  • the DNA in plant cells includes not only chromosomes but also DNAs contained in various organelles (eg, mitochondria, chloroplasts) contained in plant cells.
  • the term "plant” includes both monocots and dicots. Preferred plants are dicots. Dicotyledonous plants include both isolated and sub-classes. A preferred subclass is the joint flower subclass. The joint flower subclass includes all of the Genus Genus, Eggplants, Lamies, Aguagoke, Obaco, Kikiyo, Sesamegrass, Kakane, Matsumushi, and Asteraceae. Preferred eyes are eggplants.
  • the solanaceae includes any of the Solanaceae, Hazelinae, Hanashinobu, Pomegrass, and Convolvulaceae. A preferred family is the Solanaceae family.
  • Solanaceae include Petunia, Datura, Tobacco, Eggplant, Tomato, Includes ⁇ garashi ⁇ , physalis, and wolfberry.
  • Preferred genera are Petunia, Datura and Tobacco, more preferably Petunia.
  • Petunias include P. hybrida, P. axi 1 laris, P. inflata, and P. violacea species.
  • Preferred species are P. hybrida species. “Plant” means, unless otherwise indicated, a plant having flowers and seeds obtained from the plant.
  • Examples of plant cells J include cells of each tissue, callus, and suspension cultured cells in plant organs such as flowers, leaves, and roots.
  • a method well known to those skilled in the art for example, a method via an agrobacterium and a method for directly introducing the cell can be used.
  • a method via the agrobacterium for example, the method of Nagel et al. (FEMS Microbiol. Lett., 67: 325 (1990)) can be used.
  • This method involves first transforming the agrobacterium in a plant expression vector (eg, by electoporation) and then transforming the transformed agrobacterium into a well-known method such as the leaf disk method. This is a method of introducing into plant cells by a method.
  • Methods for introducing the plant expression vector directly into the gun include the electoral port method, the particle gun, the calcium phosphate method, and the polyethylene glycol method. These methods are well known in the art, and those skilled in the art can appropriately select a method suitable for a plant to be transformed.
  • Cells into which the plant expression vector has been introduced are selected based on, for example, drug resistance such as kanamycin resistance.
  • the selected cells can be regenerated into a plant by a conventional method.
  • the function of the introduced plant expression vector in the regenerated plant can be confirmed using a method well known to those skilled in the art.
  • the purpose when the purpose is to suppress the expression of an endogenous gene, this can be confirmed by measuring the transcription level using Northern blot analysis.
  • the desired expression of the endogenous transcription factor is suppressed. Can be selected.
  • the suppression of endogenous transcription factor expression and the reduction in pollen fertility according to the method of the present invention indicate that, for example, the pollen of a plant obtained by transformation with an expression vector containing DNA encoding the transcription factor is reduced.
  • the morphology can be confirmed by performing tissue chemical staining as necessary and then observing with a microscope.
  • the fact that the promoter was specifically expressed in microspores according to the method of the present invention means that, for example, an anther in a plant obtained by transformation with an expression vector in which a promoter and a GUS gene are operably linked is used.
  • the distribution of GUS activity in the flower tissues, including the cells, can be confirmed by performing tissue chemical staining according to a conventional method.
  • Example 1 Construction of a plant expression vector containing a polynucleotide encoding a group of ZPT transcription factors
  • a plant expression vector was constructed by ligating downstream of the 35S promoter of the mosquito reflex mosaic virus. Specifically, it is as follows.
  • Example 1 A DNA fragment containing the cauliflower mosaic virus 35S promoter (Hindi I-Xbal fragment) and a DNA fragment containing the NOS terminator (SacI-EcoRI fragment) in plasmid PBI221 (purchased from CLONTECH Laboratories inc.) Were sequentially transferred to plasmid pUCAP (van Engelen, FA, et al., Transgenic Res., 4: 288, 1995) to produce PUCAP35S.
  • the pBluescript vector containing the cDNA of ZPT2-5 was cut at the Kpnl site and Sacl site (both sites in the vector), and inserted between the Kpnl and Sacl sites of PUCAP35S.
  • the constructed ⁇ -5 gene is a polynucleotide encoding the 35S promoter region of cauliflower mosaic virus (CaMV) (P35S; 0.9 kb) and the ZPT2-5 of the present invention.
  • ZPT2-5 approx. 0.8 kb
  • Tnos the evening motif region of the nopaline synthase
  • NPTI indicates the neomycin phosphotransferase II gene.
  • the constructed ⁇ 3-1 gene comprises a 35S promoter region (P35S; 0.9 kb) of the rifle mosaic virus (CaMV) and a plasmid encoding ZPT3-1 of the present invention. It is composed of nucleotides (ZPT3-1; about 1.7 kb) and the terminator region of nopaline synthase (Tnos: 0.3 kb). (Example 3)
  • the pBluescript vector containing the cDNA for ZPT4-1 was cut at the ⁇ site and the Sacl site (both in the Yuichi center), and inserted between the Kpnl and Sacl sites of PUCAP35S. Further, this recombinant plasmid was digested with EcoRI and Hindlll, and a DNA fragment encoding ZPT4-1 was introduced into the EcoR and Hindll sites of the binary vector PBINPLUS. As is apparent from FIG. 4 (c), the constructed ZPT4-1 gene is a polynucleotide encoding the 35S promoter of the cauliflower mosaic virus (CaMV) (P35S; 0.9 kb) and the ZPT4-1 of the present invention.
  • CaMV cauliflower mosaic virus
  • ZPT4-1 about 2.0 kb
  • Tnos nopaline synthase
  • the corresponding genomic clones were isolated from the genomic DNA library of Petunia, and the DNA fragment upstream of the transcription start site (promoting region: about 2.7 kb and about 2.7 kb) 3.6) was sub-processed. Each DM fragment was ligated upstream of the GUS repo overnight gene and cloned into a binary vector. Specifically, it is as follows.
  • the ZPT3-1 cDNA was labeled with O-32i »] dCTP using the conventional random prime method (Sambrook et al., Supra) to prepare a radiolabeled probe, which was used to construct an EMBL3 vector.
  • a genomic library of Petunia (Petunia hybrida var. Mit'chel 1) prepared in (Stratagene) was screened. From the obtained clone, a genomic DNA fragment (Pstl-Sac [) of about 2.7 kb including the upstream region of the gene was subcloned into the Pstl-Sacl site of the pBluescriptSK vector (PBS- ⁇ 3-1-PS), and the nucleotide sequence was determined. It was decided (Fig.
  • this plasmid was designated as type II, and a primer containing a Sail recognition sequence was prepared. PCR was performed using the primer (3'-TATGGAGCTCGTCGACAG TTGATGGTTCATTTTTCTGGCTATTGTC-5 '; SEQ ID NO: 11) and the commercially available M13-20 primer, and a Sail site was added immediately downstream of the ZPT3-1 protein translation start point (base number 2661). Was introduced. Then, a DNA fragment obtained by digestion with Pstl and Sa1 [was inserted upstream of the GUS coding region of pUCAPGUSNT (pUCAP-ZPT3-tri GUSNT).
  • a region near the N-terminus of the ZPT3-1 gene coding region was connected in frame with the GUS coding region. Furthermore, a DNA fragment (containing the ZPT3-1 promoter, GUS coding region and N0S promoter) obtained by digesting pUCAP_ZPT3-GUSNT with AscI and tpacI was inserted into the pBINPLUS vector, and ZPT3-1-GUS was obtained (Fig. 7 (a)).
  • genomic DM was isolated, and a DNA fragment (EcoRI-EcoRI) of about 3.6 kb including the upstream region of the ZPT4-1 gene was subcloned into the EcoRI-EcoRI site of the pBluescr iptSK vector (pBS-ZPT4- 1-EE), the nucleotide sequence was determined (Fig. 6).
  • This plasmid was transformed into type III, and PCR was performed using a primer containing the BamHI recognition sequence (3'-CATGGATATAGGATCCTATATC-5 '; SEQ ID NO: 12) and the M13-20 primer to determine the ZPT4-1 protein translation initiation site.
  • a BamH [site was introduced immediately downstream (base number 3641).
  • Each of the above-mentioned expression vectors was introduced into Petunia (Petunia hybrida var. Mitchell) via an agrobacterium by the following procedure.
  • a cell suspension was prepared according to the method of Nagel et al. (1990) (supra), and the plasmid vectors constructed in Examples 1 and 2 were introduced into the above strains by electorifice poration.
  • the transformants described above also showed abnormal female gametophyte formation, with reduced female fertility to 25-35% of normal individuals.
  • ovules female gametes
  • the majority of ovules could not be fertilized, and those that were fertilized also showed abnormal development thereafter, and many died ( abor t).
  • normal female gametophyte formation was observed in the transformant that did not show cosuppression, as in the case of the wild-type control plant.
  • Example 5 Tissue specificity of ZPT3-1 and ZPT4-1 promoter activity
  • the tissue-specific promoter activity of the DNA fragment was detected by performing tissue chemical staining using GUS activity. Specifically, it is as follows.
  • the distribution of GDS activity was examined in the same manner as described above.
  • GUS activity was specifically observed in the dissected tissue of microspores and anthers from the mononuclear stage to the dinuclear stage (FIGS. 10 (d) to (f); (e) and (indicated by an arrow at 0)
  • the promoters of the ZPT3-1 and ZPT4-1 genes are mononuclear microspores.
  • the promoter of the ZPT4-1 gene also shows specific activity in anther cleavage tissues from the mononuclear phase to the dinuclear phase.
  • Microspores are precursor cells that later mature to produce pollen grains. Therefore, these promoters are useful as tools for detailed studies related to pollen development. Furthermore, by using these promoters or their active fragments to specifically express cytotoxic genes and the like in microspores and killing or losing the function of pollen cells, the development of pollen directly and directly. It can be controlled efficiently. Industrial applicability
  • the method of the present invention using DNA encoding a transcription factor derived from the ZPT2-5, ZPT3-1 and ZPT4-1 genes, and promoters derived from the ZPT3-1 and ZPT4-1 genes can be performed by genetic engineering. It is useful as a technique for selectively modifying plant traits, particularly as a technique for imparting male sterility traits.

Description

明 細 書
花粉特異的ジンクフィンガ一転写因子の遺伝子を用いて
花粉稔性を低下させる方法 技術分野
本発明は、 雄しベの花粉形成組織に特異的に発現する遣伝子およびその利用 に関する。 本発明は、 特に、 小胞子に特異的に発現する、 ペチュニア由来のジン クフィンガー型転写因子群 (ZPT2- 5、 ZPT3- 1および ZPT4- 1) の遺伝子およびその 利用に関する。 背景技術
花粉の稔性は、 農業 '園芸における様々な局面で問題になる。 たとえば、 交雑 育種における交配の際、 自家受粉を避けるために、 多くの劳力がかかる除雄 (雄 しべの除去) の作業が行われる。 種苗産業においては、 交'雑育種によって得られ た れた品種を商業的に保護したいという立場から、 花粉稔性の無い形質が求め られている。 このような要請から、 花粉の稔性を制御する技術 (pol l ina t ion co nt rol) が強く求められてきた。 従来、 特定の作物では、 細胞質雄性不稔性の系 統が交雑育種に用いられ、 一定の成功を収めてきた。 しかし、 細胞質不稔形質は 多くの場合、 耐病性の低下などの好ましくない副次効果を伴い、 さらに形質が不 安定であること、 種子の大量生産が困難なことなどの問題がある。'化学薬品処理 によって稔性を低下させる方法も研究されているが、 安全性評価および作用機作 解明が遅れており、 実用化には至っていない。 そこで、 遺伝子工学を用いた優れ た雄性不稔化技術が求められている。
花粉は種子植物における雄性の配偶体である。 支持体組織としての葯に取り囲 まれた状態で進行する花粉の発達は、 小胞子形成細胞 (花粉母細胞) の減数分裂 直後にあたる四分子期、 四分子からの小胞子の放出期、 花粉細胞の拡大および空 胞形成に特徵付けられる一核期、 有糸分裂により栄養細胞および生殖細胞への分 化が生じる有糸細胞分裂期、 その後の二核期という、 各段階に区分される。 これ らの段階を経て、 最終的に葯が開裂し、 成熟した花粉粒が放出される。 従って、 小胞子は、 花粉の発達を阻害し、 花粉稔性を失わせるための人為的な制御に最も 適した対象組織の一つといえる。
上記のように、 遺伝子工学による雄性不稔ィヒ技術には大きな期待が寄せられて いる。 特に、 小胞子のような花粉細胞の直接の前駆体において特異的に発現する 遺伝子を利用できれば、 植物に好ましくない形質を付与することなく、 雄性不稔 化を達成し得る可能性が高いと考えられる。 雄しベの種々の組織に特異的なプロ モータ一、 および、 それを含む雄生不稔化のための遺伝子構築物の例は、 いくつ か報告されている (Shivannaおよび Sawhney編, Po l l en bio t echnol ogy for crop produc t ion and improvement (Cambri dge Univers i ty Press; pp. 237-257, 199 7) 。 しかし、 発現の組織特異性および時期特異性が高い、 花粉稔性の制御のた めに有用な新たな遺伝子に対する要望が継続的に存在している。
本発明者らは、 最近、 ペチュニア由来の新規な転写因子として、 PEThyZPT2- 5、 PEThyZPT3-K および EThyZPT4-l (以下、 それぞれ、 ZPT2- 5、 ZPT3- 1および ZPT 4 - 1と略す) を含む 7つのジンクフィンガー (ZF) 型転写因子の cDNA配列を特定 した。 そして、 ノーザンプロット分析から、 それぞれの転写因子が葯特異的に、 葯の発達の異なる段階において一過性の発現を示すことを報告した (Kobayash i ら, P l ant J. 13 : 571 , 1998) 。 しかし、 これらの転写因子の植物における生理 的な機能および作用、 ならびに転写因子をコードする遺伝子の正確な発現部位お よびその発現調節機構は不明であった。 発明の開示
本発明の目的は、 雄性不稔に代表される植物形質の改変に有用な、 花粉に特異 的な遺伝子を利用する遺伝子工学的手法を提供することにある。
本発明者らは、 以前にペチュニアから単離した、 葯特異的な転写因子群 (ZPT2 -5、 ZPT3-1および ZPT4- 1) をコードする遺伝子をペチュニアに再導入した。 その 結果、 花粉の正常な発達が阻害され、 花粉の稔性が著しく低下するか (ZPT2- 5お よび ZPT4- 1) 、 または、 ほぼ完全に失われる (ZPT3- 1) ことを見出した。 さらに 本発明者らは、 ZPT3 - 1および ZPT4- 1のゲノム遺伝子からそれぞれ上流領域を単離 し、 そのプロモーター活性の組織特異性を調べた。 その結果、 一核期から二核期 にかけての小胞子において、 プロモーター活性が組織および時期特異的に発現さ れることを見出した。 本発明は、 これらの知見に基づいて完成された。
本発明は、 その第 1の局面において、 雄性不稔性の植物を作出する方法であつ て、 以下の工程を包含する方法に関する: ( i ) 配列番号 1によって示される塩 基配列の第 1位から第 777位までの配列を有する DNA、 ( i i) ( i ) の塩基配列を 有する DNAとストリンジェントな条件下でハイブリダィズし、 花粉の発達を制御 する転写因子をコードする DNA、 または (i i i ) ( i ) もしくは (i i ) の断片であ る DNAのいずれかである核酸と、 上記核酸に作動可能に連結されたプロモータ一 とを含む、 植物発現カセットを提供する工程;花粉の発達を制御する内因性の転 写因子を有する植物の細胞を提供する工程であって、 ここで、 内因性の転写因子 をコードする遺伝子は、 上記核酸とストリンジェントな条件下でハイプリダイズ する、 工程:発現カセットを植物細胞に導入する工程;発現カセッ卜が導入され た植物細胞を植物体に再生する工程;および、 再生された植物体であって、 上記 核酸が発現されることによって、 内因性の転写因子の発現が抑制された植物体を 選択する工程。
本発明は、 その第 2の局面において、 雄性不稔性の植物を作出する方法であつ て、 以下の工程を包含する方法に関する: ( Γ ) 配列番号 3によって示される 塩基配列の第 1位から第 1640位までの配列を有する DNA、 (i i ' ) ( ) の塩基 配列を有する DNAとストリンジェントな条件下でハイブリダイズし、 花粉の発達 を制御する転写因子をコードする DNA、 または (iii') ( Γ) もしくは (i ) の断片である DNAのいずれかである核酸と、 上記核酸に作動可能に連結されたプ 口モーターとを含む、 植物発現カセッ卜を提供する工程:花粉の発達を制御する 内因性の転写因子を有する植物の細胞を提供する工程であって、 ここで、 内因性 の転写因子をコードする遺伝子は、 上記核酸とストリンジェン卜な条件下でハイ ブリダィズする、 工程;発現カセットを植物細胞に導入する工程;発現カセット が導入された植物細胞を植物体に再生する工程;および、 再生された植物体であ つて、 上記核酸が発現されることによって、 内因性の転写因子の発現が抑制され た植物体を選択する工程。
本発明は、 その第 3の局面において、 雄性不稔性の植物を作出する方法であつ て、 以下の工程を包含する方法に関する: ( i") 配列番号 5によって示される 塩基配列の第 1位から第 1948位までの配列を有する DNA、 (ii") ( i") の塩基 配列を有する DNAとストリンジェントな条件下でハイブリダィズし、 花粉の発達 を制御する転写因子をコードする DNA、 または (ni") ( i") もしくは (ii") の断片である DNAのいずれかである核酸と、 上記核酸に作動可能に連結されたプ 口モーターとを含む、 植物発現カセッ卜を提供する工程;花粉の発達を制御する 内因性の転写因子を有—する植物の細胞を提供する工程であって、 ここで、 内因性 の転写因子をコードする遺伝子は、 上記核酸とストリンジェントな条件下でハイ ブリダィズする、 工程;発現カセットを植物細胞に導入する工程;発現カセッ卜 が導入された植物細胞を植物体に再生する工程;および、 再生された植物体であ つて、 上記核酸が発現されることによって、 内因性の転写因子の発現が抑制され た植物体を選択する工程。
ただし、 上記 (ii) 、 (ii') および (ii") の DNAは、 それぞれ、 (iv) 配列 番号 13によって示される塩基配列の第 1位から第 1886位までの配列を有する DN Aとストリンジェン卜な条件下でハイブリダィズし、 花粉の発達を制御する転写 因子をコードする DNAを含まない。 配列番号 13によって示される塩基配列は、 ペチュニアから単離された別の転写因子 ZPT3- 2をコードする cDNA配列である (Ko bayash iら、 前出) 0
本発明の上記第 1力 ^ら第 3までの局面における方法は、 植物に雄性不稔性を付 与する方法として、 利用され得る。
上記第 1力 ら第 3までの局面における 1つの実施態様において、 上記核酸は上 記プロモータ一に対して順方向で連結され、 上記植物体の細胞内でセンス方向に 転写され得る。
上記第 1から第 3までの局面における 1つの実施態様において、 上記核酸は上 記プロモーターに対して逆方向で連結され、 上記植物体の細胞内でアンチセンス 方向に転写され得る。
上記第 1から第 3までの局面における 1つの実施態様において、 上記植物は双 子葉植物である。 双子葉植物は、 好ましくはナス科植物であり、 より好ましくは ペチュニア属植物である。
上記第 1力 ^ら第 3までの局面における 1つの実施態様において、 上記発現カセ ットは植物発現ベクターに組み込まれている。 、
本発明の第 1から第 3までの局面によれぱまた、 上記いずれかに記載の方法に より作出された、 雄性不稔性の植物が提供される。
本発明は、 その第 4の局面において、 形質が改変された植物を作出する方法で あって、 以下の工程を包含する方法に関する : (a ' ) 配列番号 7によって示さ れる塩基配列の第 1位から第 2624位までの配列を有する DNA、 または ( ) ( a ' ) の一部の配列を有し、 小胞子に特異的なプロモーター活性を示す DNAのいず れかを含むプロモーターと、 上記プロモ一夕一に作動可能に連結された異種遺伝 子とを含む、 植物発現カセットを提供する工程;発現カセットを植物細胞に導入 する工程;および、 発現カセッ卜が導入された植物細胞を、 植物体に再生するェ 程。
本発明は、 その第 5の局面において、 形質が改変された植物を作出する方法で あって、 以下の工程を包含する方法に関する: (a " ) 配列番号 8によって示さ れる塩基配列の第 1位から第 3631位までの配列を有する DNA、 または (b" ) ( a " ) の一部の配列を有し、 小胞子に、 および任意に葯の開裂組織に、 特異的 なプロモーター活性を示す DNAのいずれかを含むプロモーターと、 上記プロモー ターに作動可能に連結された異種遺伝子とを含む、 植物発現カセットを提供する 工程;発現カセットを植物細胞に導入する工程;および、 発現カセットが導入さ れた植物細胞を、 植物体に再生する工程。
上記第 4および第 5の局面における 1つの実施態様において、 上記形質は稔性 であり、 形質が改変された植物は、 雄性不稔植物である。 従って、 本発明の上記 方法は、 植物に雄性不稔性を付与する方法として、 利用され得る。
上記第 4および第 5の局面における 1つの実施態様において、 上記形質は和合 性であり、 形質が改変された植物は自家不和合性植物である。 従って、 本発明の 上記方法は、 植物に自家不和合性を付与する方法としても、 利用され得る。 上記第 4および第 5の局面における 1つの実施態様において、 上記植物は双子 葉植物である。 双子葉植物は、 好ましくはナス科植物であり、 より好ましくはべ チュニァ属植物である。
上記第 4および第 5の局面における 1つの実施態様において、 上記発現カセッ トは植物発現べクタ一に組み込まれている。
本発明の第 4および第 5の局面によればまた、 上記いずれかに記載の方法によ り作出された、 形質が改変された植物が提供される。
本発明は、 その第 6の局面において、 以下の (Γ ) または (Ι ί ' ) の DNAを含 むプロモーターに関する: (Γ ) 配列番号 7によって示される塩基配列の第 1 位から第 2624位までの配列を有する DNA、 または (Ι Ι ' ) ( I ' ) の一部の配列 を有し、 小胞子に特異的なプロモーター活性を示す DNA。
. 本発明は、 その第 7の局面において、 以下の (1 " ) または (1ド) の DNAを含 むプロモーターに関する: ( I " ) 配列番号 8によって示される塩基配列の第 1 位から第 3631位までの配列を有する DNA、 または (Π " ) ( I " ) の一部の配列 を有し、 小胞子に、 および任意に葯の開裂組織に特異的なプロモーター活性 を示す DNA。
本発明は、 その第 8の局面において上記の小胞子に特異的なプロモーターの いずれかと、 上記プロモーターに作動可能に連結された異種遺伝子とを含む、 植 物に雄性不稔性を付与するために有用な植物発現カセットに関する。 図面の簡単な説明
図 1は、 ZPT2- 5をコードする遺伝子 (以下、 単に TZPT2- 5遺伝子」 ともい う〉 の cDNA配列、 および対応するアミノ酸配列を示す図である。 2つのジンクフ インガーモチーフ、 およひ DLNL配列 (アミノ酸 145位〜 155位) を下線で示す。 図 2は、 ZPT3- 1をコードする遺伝子 (以下、 単に 「ZPT3- 1遺伝子」 ともい う) の cDNA配列、 および対応するアミノ酸配列を示す図である。 3つのジンクフ インガーモチーフ、 およひ DLNL配列 (アミノ酸 408位〜 417位) を下線で示す。 図 3は、 ZPT4- 1をコードする遺伝子 (以下、 単に 「 PT4- 1遺伝子」 ともい う) の cDNA配列、 および対応するアミノ酸配列を示す図である。 4つのジンクフ インガーモチーフ、 および DLNL配列 (アミノ酸 438位〜 449位) を下線で示す。 図 4は、 ZPT2- 5、 ZPT3-1および ZPT4- 1の各 cDNA配列を発現するための植物発現 ベクタ一 (pB IN- 35S- ZPT2-5、 pB【N- 35S- ΖΡΤ3- 1および pBIN- 35S- ΖΡΤ4- 1 ) の構成 を示す概略図である。
図 5は、 ZPT3-1遺伝子のコード領域の上流配列を示す図である。 転写開始点 (2567位) を太矢印で、 翻訳開始コドン (ATG) を下線太字で示す。
図 6は、 ZPT4-1遺伝子のコード領域の上流配列を示す図である。 転写開始点 (3503位) を太矢印で、 翻訳開始コドン (ATG) を下線太字で示す。
図 7は、 ΖΡΤ3- 1および ZPT4-1遺伝子のプロモータ を解析するための植物発現 ベクタ一 (PBIN-ZPT3-1- GUSおよび ΡΒΙΝ-ΖΡΤ3-卜 GUS) の構成を示す概略図である。 図 8は、 野生型のペチュニアの花粉と、 PBI N-35S-ZPT2- 5を導入したペチュニ ァ (コサブレッシヨンを起こした形質転換体) の花粉とを撮影した、 生物の形態 を示す写真である (倍率は 400倍) 。 図 8 (a)〜( は野生型ペチュニア、 そして 図 8 (e)〜(! 1)はコサブレッシヨン形質転換ペチュニアについての、 それぞれっぽ みの異なる成長段階における花粉を示す。 花粉はいずれも、 常法により DAP I (4' , 6-diamidino-2-pheny l indo l e d i hydroch lor ide n - hydra te) で染色した。
図 9は、 野生型のペチュニアの花粉と、 PB IN-35S-ZPT3- 1を導入したペチュニ ァの花粉とを撮影した、 生物の形態を示す写真である (倍率は 700倍) 。 図 9 (a) および (c)は野生型ペチュニア、 図 9 (b)および ( は形質転換ペチュニアについ ての、 それぞれ四分子期および小胞子期における花粉を示す。 四分子期の花粉は DAPIで、 小胞子期の花粉はサフラニンで、 それぞれ常法により染色した。 なお、 PB IN-35S- ZPT4-1を導入したペチュニアの花粉でも、 図 9 (b)および(d)と全く同 様の形態が観察された。
図 1 0は、 pBIN- ZPT3-卜 GUSおよび PBIN-ZPT4-1- GUSを導入したペチュニアの GU S染色した花の器官を撮影した、 生物の形態を示す写真である。 いずれも、 葯が 一核期にある花 (つぼみ) を撮影対象とした。 図 1 0 (a)および (d)は、 つぼみの 外観を実寸大で、 図 1 0 (b)および (e)は、 葯の低倍率 (40倍) での'断面図を、 図 6 (c)および(f)は、 小胞子 (図 6 (c) ;倍率は 700倍) または葯の開裂組織周辺 (図 6 (f) ;倍率は 200倍) の高倍率での断面図を、 それぞれ示す。 発明を実施するための最良の形態
本発明について、 以下に、 より詳細に説明する。
(ZPT3-2、 ZPT3-1および ZPT4-1遺伝子由来の転写因子)
本発明の第 1から第 3までの局面である、 雄性不稔性の植物を作出する方法 において有用な核酸は、 以下のいずれかである:
( i ) 配列番号 1によって示される塩基配列の第 1位から第 777位までの配列 を有する DNA、
( i ') 配列番号 3によって示される塩基配列の第 1位から第 1640位までの配 列を有する DNA、
( Γ) 配列番号 5によって示される塩基配列の第 1位から第 1948位までの配 列を有する DNA、 または、
(i) 〜 (i") のいずれかの塩基配列を有する DNAとストリンジェントな条件 下でハイブリダィズし、 花粉の発達を制御する転写因子をコードする DNA (すな わち、 (ii) 、 (ϋ') または (ii") ) 、 または、
上記いずれかの D の断片 (すなわち、 (iii) 、 (ίϋ') または (iii") ) で ある DNA。
本発明における上記核酸は、 好ましくは (i) 、 (ϊ') または (Γ) の丽、 すなわち、 ΖΡΤ2-5、 ΖΡΤ3- 1または ΖΡΤ4- 1をコードする DNA、 または、 その断片で あり、 より好ましくは (i) 、 ( i ') または ( i") の DNAである。
本明細書において 「転写因子」 とは、 遺伝子の調節領域の DNAに結合して mRNA の合成を制御するタンパク質をいう。 ある種の転写因子は、 その DNA結合ドメィ ンにジンクフィンガ一 (ZF) モチーフと呼ばれる保存性の高いアミノ酸配列を有 することが知られている。 ZPT2- 5は、 Cys2ZHis2型 (EPFファミリー) のジン クフィンガー (ZF) タンパク質であって、 176アミノ酸からなる全長のアミノ酸 配列内に 2つの ZFモチーフを含み、 さらに DLNL配列と称される疎水性領域を含む 転写因子である。 ZPT3- 1は、 同様に、 EPFファミリーの ZFタンパク質であって、 4 37アミノ酸からなる全長のアミノ酸配列内に 3つの ZFモチーフを含み、 さらに DL NL配列を含む転写因子である。 ZPT4-1は、 同様に、 EPFファミリーの ZFタンパク 質であって、 474アミノ酸からなる全長のアミノ酸配列内に 4つの ZFモチーフを 含み、 さらに DLNL配列を含む転写因子である。 いずれも、 Kobayashiら (前出) を参照のこと。 ZPT2-5、 ΖΡΤ3- 1および ΖΡΤ4- 1をコードする cDNA配列 (配列番号 1、 3および 5) を、 それぞれ、 対応する推定アミノ酸配列 (配列番号 2、 4および 6) と共に図 1、 2および 3に示す。
本明細書において、 核酸または DNAの 「断片」 とは、 植物体に導入され、 適切 な様式で発現されたときに、 当該植物の内因性の転写因子の発現を抑制し得る断 片をいう。 この断片は、 上記 ( i) 、 ( i ') 、 ( i") 、 (ii) 、 (ϋ') また は (ii") の DNAの、 ジンクフィンガーモチーフをコードする領域以外から選択さ れ、 少なくとも約 40塩基対以上、 好ましくは約 50塩基対以上、 より好ましくは約 70塩基対以上、 さらに好ましくは約 100塩基対以上の長さを有する。
本明細書において、 ハイブリダィゼーシヨンのための 「ストリンジェン卜な条 件 J とは、 特定の塩基配列 (例えば、 ペチュニア由来の ZPT2- 5、 ZPT3-Iまたは ZP T4- 1をコードする DNA) と、 これと相同性の高い他の塩基配列 (例えば、 ペチュ ニァ以外の植物に存在する、 ZPT2- 5、 ZPT3- 1または ZPT4-1のホモログをコードす る DNA) とのオリゴヌクレオチド二本鎖を形成させるのに十分な条件を意図する。 本発明に適用されるストリンジェントな条件の代表的な例として、 次の条件が挙 げられる: lM NaCし 1 %SDS, 10%デキストラン硫酸、 32P標識プローブ DNA (lxl0 cpm) および 50 μ gZmlサケ精子 DNAを含む溶液中で、 60でで 16時間ハイ ブリダィズさせた後、 2xSSCZl %SDSで 60°C、 30分間の洗浄を 2回繰り返す。 本発明における、 ZPT2- 5、 ZPT3- 1および ZPT4-1をコードする DNA、 およびこれ らとストリンジェン卜な条件下で八ィプリダイズし、 花粉の発達を制御する転写 因子をコードする DNAを単離するためには、 公知の 写因子の遺伝子によりコー ドされるアミソ酸配列の保存領域に対応するデジエネレートブライマー対を用い 得る。 このプライマー対を用いて、 植物の cDNAまたはゲノミック DNAを錶型とし て PCRを行い、 その後、 得られた増幅 DNA断片をプローブとして用いて、 同じ植物 の cDNAライブラリ一またはゲノミックライブラリーをスクリ一二ングすることが できる。 そのようなプライマ一対の例として、 5' -CARGCNYTNGGNGGNCAY-3' (配列 番号 9) と、 3' -RTGNCCNCCNARNGCYTG - 5' (配列番号 10 ) との組合せが挙げられ る (ここで、 Nはイノシンであり、 Rは Gまたは Aであり、 そして Yは Cまたは Tであ る) 。 上記ブライマー配列は、 それぞれ、 上記 ZPT転写因子群のジンクフィンガ 一モチーフに含まれるァミノ酸配列 QALGGHに対応する。
従って、 本発明に適用されるストリンジェントなハイプリダイゼ一ション条件 はまた、 PCRの条件としても規定され得、 代表的な例においては、 上記デジエネ レートプライマー (配列番号 9および 1 0 ) が用いられ得る。 この際の PCR反応 条件は、 94でで 5分間の変性の後、 94°Cで 30秒間、 50 で 30秒間、 そして 72°Cで 1分間を 30サイクル繰り返し、 最後に、 72 で 7分間インキュベーションを行う 条件であり得る。
PCRは、 市販のキットおよび装置の製造者の指針に基づいて行うか、 当業者に 周知の手法で行い得る。 遺伝子ライブラリ一の作製法、 および遺伝子のクロー二 ング法なども当業者に周知である。 例えば、 Sambrookら, 「Mo l ecu l ar Cl on ing: A Labora t ory Manua l , 第 2版 (Co l d Spr i ng Harbor Labora tory, 1989) を参 照のこと。 得られた遺伝子の塩基配列は、 当該分野で公知のヌクレオチド配列解 析法または市販されている自動シーケンサーを利用して決定し得る。
本明細書において、 転写因子が 「花粉の発達を制御する」 とは、 代表的には、 この転写因子の発現が阻害されるとき、 花粉の形態または機能において有意な変 化が観察されることをいう。 本発明における転写因子は、 代表的には、 それをコ ードする遺伝子の発現が阻害されることにより、 好ましくは約 7 5 %以上、 より 好ましくは約 9 0 %以上、 さらに好ましくは約 9 5 %以上の花粉細胞を、 成熟す る前に死滅せしめる。 ここで、 転写因子の発現が阻害されるとは、 ノーザンブロ ット法により測定したとき、 mRNAの量が、 野生型のコントロール植物と比較して 約 10分の 1以下になることをいう。
上記のようなスクリーニングによって単離、 同定された遺伝子によってコード される転写因子 (すなわち、 ZPT2-5、 ΖΡΤ3- 1および ΖΡΤ4-1、 およびこれらのホモ ログ) が花粉の発達を制御することは、 本明細書の開示に従って形質転換植物を 作出し、 その花粉の特性を観察することによって、 確認し得る。 本発明においては、 花粉の発達を制御する転写因子をコ一ドする DNAを利用し て、 植物細胞において、 当該 DNAと同一のまたは相同な塩基配列を含む内因性遺 伝子の発現を抑制し得る。 標的となる内因性遺伝子もまた、 花粉の発達を制御す る転写因子である。 本発明の方法によれば、 好ましくは、 花粉の発達を制御する 内因性転写因子以外の発現を実質的に抑制することなぐ、 内因性転写因子の発現 のみを選択的に抑制することによって、 植物に雄性不稔性が付与される。
すなわち、 本発明における発現抑制技術が適用される植物細胞は、 花粉の発達 を制御する内因性の転写因子を有する植物の細胞であって、 この内因性の転写因 子をコード" Tる遺伝子は、 上記 ZPT2-5、 ZPT3-1または ΖΡΤ4- 1、 またはこれらのホ モログの DNAとストリンジェン卜な条件下でハイブリダィズするものとして規定 される。 ここで 「ストリンジエンドな条件」 の定義は、 ΖΡΤ2- 5、 ΖΡΤ3- 1および T4-1のホモログの特定に関連して上述した条件と同じである。 本発明の範囲を限 定する意図ではないが、 上記方法によって雄性不稔性を付与し得る植物は、 上記 ΖΡΤ遺伝子群が単離されたペチュニア、 または上記 ΖΡΤホモログをコ一ドする遺伝 子が単離された植物と、 進化系統学上近縁の植物であるこ,.とが望ましい。 ここで、 進化系統学上近縁とは、 代表的には同じ目に分類され、 好ましくは同じ科に分類 され、 より好ましくは同じ属に分類され、 さらに好ましくは同じ種に分類される 植物である。 もっとも、 花粉の発達が種子植物の生殖に不可欠である事実を考慮 すれば、 ΖΡΤ2- 5、 ΖΡΤ3- 1および ΖΡΤ4- 1と同一または類似の機能を果たす転写因子 が他の植物にも広く存在し得ることは容易に理解される。
内因性遺伝子の発現を抑制するための手法として、 代表的にはコサプレツショ ンおよびアンチセンス技術を利用し得る。 コサプレツシヨンは、 植物細胞に組み 換え遺伝子を導入したとき、 その遺伝子自体、 およびその遺伝子の一部と相同な 配列を含む内因性遺伝子の両者の発現が抑制されることをいう。 コサブレッショ ンが利用される場合、 本発明における発現カセットは、 転写因子をコードする DN Αまたはその断片を、 プロモーターに対して順方向で連結された形態で含む。 転 写因子をコードする DNAまたはその断片は、 発現カセットとして植物細胞に導入 された後、 プロモーターの制御下でセンス方向に転写され得る。 この導入 DMの 作用により、 所望とする遺伝子発現の抑制が可能となる。 コサプレツシヨンは、 形質転換植物の一部の個体で認められ、 他の個体では十分に起こらない場合が多 い。 そのため、 通常、 遺伝子発現が意図されたように抑制された個体が、 慣用的 な手順に従って選択される。
アンチセンスは、 植物細胞に組み換え遺伝子を導入したとき、 導入遺伝子の転 写産物 (mRNA) が、 内因性遺伝子の転写産物 (mRNA) の相補的な配列とハイプリ ッドを形成して、 内因性遺伝子がコードするタンパク質の翻訳が阻害されること をいう。 アンチセンスが利用される場合、 本発明における発現カセットは、 転写 因子をコ一ドする DNAまたはその断片を、 プロモーターに対して逆方向で連結さ れた形態で含む。 転写因子をコードする DNAまたはその断片は、 発現カセットと して植物細胞に導入された後、 プロモーターの制御下でアンチセンス方向に転写 され得る。 このアンチセンス転写物の作用により、 所望とする遺伝子発現の抑制 が可能となる。
( ZPT3- 1および ZPT4-1遺伝子由来のプロモータ一)
本発明の第 4および第 5の局面である、 形質が改変された植物を作出する方法 において有用なプロモーターは、 (a ' ) 配列番号 7によって示される塩基配列 の第 1位から第 2624位までの配列を有する DNA、 (a " ) 配列番号 8によって示さ れる塩基配列の第 1位から第 3631位までの配列を有する DNA、 または、 (a ' ) ま たは (a " ) の一部の配列を有し、 小胞子に特異的なプロモーター活性を示す DNAのいずれかを含むプロモータ一である。 本発明における上記プロモ一夕一は、 好ましくは (a ' ) または (a " ) のプロモ一ター、 すなわち、 ZPT3- 1または ZPT4 -1遺伝子のプロモーターである。
ZPT3-1および ZPT4- 1遣伝子のプロモー夕 ^領域の、 組識特異的な発現活性に必 須でない配列を除去して得られる、 小胞子に特異的なプロモ一夕一活性を有する 配列は、 本発明の範囲内にある。 このような配列は、 常法に従ってプロモータ一 のデリ一シヨン実験を行うことによって、 得ることができる。 簡潔には、 ZPT3-1 または ZPT4-1遺伝子のプロモーター領域の様々な欠失変異体 (例えば、 ZPT3- 1ま たは ZPT4- 1遺伝子のプロモーター領域を、 5 ' 上流側から種々の長さに欠失させ た変異体) と、 適切なレポーター遺伝子 (例えば、 GUS遺伝子) とを融合したプ ラスミドを用いて、 欠失変異体の組識特異的プロモーター活性を測定することに よって、 その活性に必須な領域を特定し得る。
いったんプロモーター活性に必須の領域が特定されると、 さらにその領域内の 配列または隣接配列を改変して、 プロモーターの発現活性の程度を高めることも 可能である。 このようにして られる改変体もまた、 小胞子に特異的なプロモー 夕一活性を示す限り、 本発明の範囲内にある。
本発明において、 「小胞子に特異的なプロモータ一活性を示す」 とは、 プロモ 一ターが、 天然の植物中で、 または任意の構造遺伝子に連結させた発現カセット として植物に導入されたときに、 DNAの転写を開始させることにより遺伝子の発 現を指示する能力を、 小胞子において特異的に示すことを意味する。 ここで 「特 異的」 とは、 同じ植物体の花の、 他のすべての組織 (夕ペート層、 花糸、 花柱、 花頭、 花弁、 萼 (がく) などを含む:ただし葯の開裂組織を除く) よりも、 プロ モーターの発現活性が高いことをいう。 上記特異的なプロモーターは、 好ましく は、 同じ植物体の花の他のすべての組織および花以外の部分 (根、 葉、 茎など) よりも、 プロモー夕一の発現活性が高く、 より好ましくは、 同じ植物体の花の他 のすベての組織および花以外の部分において実質的に活性を示さない。 「葯の開 裂組織に特異的なプロモーター活性を示す」 も、 上記と同様に定義される。 発現 活性の程度は、 常法に従って、 小胞子におけるプロモーターの発現レベルと、 花 の他の組識における同じプロモー夕の発現レベルとを比較することによって、 評 価され得る。 プロモーターの発現レベルは、 通常、 そのプロモーターの制御下で 発現される遺伝子産物の産生量によって決定される。
上記の特異的プロモーターを利用する本発明の方法は、 植物の生殖に関連す る形質を改変することが意図される。 ここで 「改変」 とは、 形質転換後の植物に おける生殖器官の少なくとも一部が、 形質転換前の植物 (野生種または園芸品 種) に存在していた機能を失うか、 形質転換前の植物に存在しなかった機能を獲 得するか、 または形質転換前の植物と比べて特定の機能の程度が増強もしくは低 減されることをいう。 このような形質の改変は、 本発明におけるプロモーターに 作動可能に連結された任意の異種遺伝子が、 この遺伝子を導入された形質転換植 物において、 プロモーターの制御下で小胞子に特異的に発現される結果として生 じ得る。 多くの組織特異的プロモーターにおいて、 その組織特異性が種間を越え て保存されていることは周知であるので、 本発明のプロモータ一もまた幅広い植 物種に適用し得ることが容易に理解される。 形質の改変の程度は、 形質転換後の 植物の形質を、 形質転換前の植物の形質と比較することにより評価され得る。 改 変される好ましい形質としては、 雌性不稔および自家不和合性が挙げられるが、 これらに限定されない。 '.
本発明のプロモーターは、 例えば、 公知の cDNAをプローブとして用いて、 植物 のゲノミックライブラリ一をスクリーニングし、 そして対応のゲノミッククロー ンからコード領域の上流配列を単離することにより得ることができる。 cDNAの例 として、 上述したペチュニア由来の転写因子である ZPT3- 1および ZPT4-1の cDNAが 挙げられる。
本発明におけるプロモーターは、 天然から単離されたものに限定されず、 合成 ボリヌクレオチドも含み得る。 合成ボリヌクレオチドは、 例えば、 上記のように して配列決定されたプロモーターの配列またはその活性領域を、 当業者に周知の 手法によって合成または改変することにより入手し得る。
(発現カセットおよび発現ベクターの構築) 本発明における転写因子をコードする DNAは、 当業者に周知の方法を用いて、 適切なプロモーターに作動可能に連結された発現カセッ卜として、 公知の遺伝子 組換え技術を用いて、 植物細胞に導入され得る。 同様に、 本発明における小胞子 特異的プロモーターは、 所望の異種遺伝子に作動可能に連結された発現カセット として、 植物細胞に導入され得る。
上記転写因子に連結され得る 「プロモーター」 は、 植物で発現する任意のプロ モ一ターを意味し、 構成的プロモーター、 組織特異的プロモータ一、 および誘導 性プロモーターのいずれをも含み得る。
「構成的プロモーター」 は、 植物細胞内外の刺激と関係なく一定のレベルで構 造遺伝子を発現せしめるプロモーターをいう。 異種遺伝子が植物の他の組織また は器官で発現しても、 植物に望ましくない形質を与えない場合には、 構成的プロ モーターの使用が簡便であり、 好ましい。 構成的プロモーターの例としては、 力 リフラワーモザイクウィルス (CaMV) の 35Sプロモーター (P35S) 、 およびノパ リン合成酵素のプロモーター (Tnos) が挙げられるが、 これらに限定されない。
「組織特異的プロモーター」 は、 本発明においては、 少なくとも小胞子におい て特異的に構造遺伝子を発現せしめるプロモーターをいう。 このような組織特異 的プロモ一夕一には、 本発明における ZPT3-1および ZPT4-1遺伝子由来のプロモー 夕一に加えて、 葯特異的に発現活性を示す他の公知のプロモーターが含まれる。 したがって、 小胞子特異的プロモーターと転写因子をコードする配列とを含む、 天然の ZPT3- 1および ZPT4- 1遺伝子の発現カセット自体を、 必要に応じて他の調節 エレメントと組み合わせて、 使用することも本発明の範囲に含まれる。
「誘導性プロモーター」 は、 化学薬剤、 物理的ストレスなどの特定の刺激を与 えたときに構造遺伝子を発現せしめ、 刺激の非存在下では発現活性を示さないプ 口モーターをいう。 誘導性プロモーターの例としては、 オーキシンで誘導可能な、 グルタチオン S—トランスフェラーゼ (G S T) プロモ一夕一 (van der Kop, D. A.ら、 Plant Mol . Biol. , 39 : 979, 1999) が挙げられるが、 これに限定されな い。
本明細書において、 用語 「発現カセット」 または 「植物発現カセット」 とは、 本発明における転写因子をコードする DNAと、 これに作動可能に (すなわち、 当 該 DNAの発現を制御し得るように) 連結された植物発現プロモーターとを含む核 酸配列、 ならびに、 本発明における小胞子特異的プロモーターと、 これに作動可 能に (すなわち、 インフレームに) 連結された異種遺伝子とを含む核酸配列をい ラ。
上記の小胞子特異的プロモーターに連結され得る 「異種遺伝子」 とは、 ZPT3 - 1 および ZPT4-1遺伝子以外のペチュニアにおける内因性遺伝子、 もしくはペチュニ ァ以外の植物における内因性遺伝子、 または植物に対して外来の遺伝子 (例えば、 動物、 昆虫、 細菌、 および真菌に由来する遺伝子) であって、 その遺伝子産物の 発現が小胞子において所望される任意の遺伝子をいう。 本発明における異種遺伝 子の好ましい例は、 コードする遺伝子産物が細胞毒性を示し、 その発現によって 花粉の発達を阻害する遺伝子である。 このような遺伝子の具体例として barnase 遺伝牛 (Beal s, Τ· P.および Goldberg, R. B. , Plant Cel l t9 : 1527, 1997) が挙げ られるが、 これに限定されない。
「植物発現ベクター J は、 発現カセットに加えて、 さらに種々の調節エレメン トが、 宿主植物の細胞中で作動し得る状態で連結されている核酸配列をいう。 好 適には、 ターミネ一夕一、 薬剤耐性遺伝子、 およびェンハンサーを含み得る。 植 物発現ベクターのタイプおよび使用される調節エレメントの種類が、 宿主細胞に 応じて変わり得ることは、 当業者に周知の事項である。 本発明に用いる植物発現 ベクタ一は、 さらに T- DNA領域を有し得る。 T- DNA領域は、 特にァグロバクテリウ ムを用いて植物を形質転換する場合に遺伝子の導入の効率を高める。
「ターミネータ一」 は、 遺伝子のタンパク質をコードする領域の下流に位置し、 DMが mRNAに転写される際の転写の終結、 およびボリ A配列の付加に関与する配 列である。 ターミネータ一は、 mRNAの安定性に寄与し、 そして遺伝子の発現量に 影響を及ぼすことが知られている。 ターミネ一ターの例としては、 ノパリン合成 酵寒遺伝子のターミネータ一 (Tnos) 、 およびカリフラワーモザイクウィルス (CaMV) 35Sターミネータ一が挙げられるが、 これらに限定されない。
「薬剤耐性遺伝子」 は、 形質転換植物の選抜を容易にするものであることが望 ましい。 カナマイシン耐性を付与するためのネオマイシンホスホトランスフェラ ーゼ I I (ΝΡΤΠ)遺伝子、 およびハイグロマイシン耐性を付与するためのハイグロ マイシンホスホトランスフェラーゼ遺伝子などが好適に用いられ得るが、 これら に限定されない。
本発明における植物発現ベクターは、 当業者に周知の遺伝子組換え技術を用い て作製さ; H得る。 植物発現ベクターの構築には、 例えば、 pB I系のベクターまた は PUC系のベクターが好適に用いられる力 これらに限定されない。
(形質転換植物の作出)
上述のように構築された発現カセット、 またはこれを含む発現べクタ一は、 公 知の遺伝子組換え技術を用いて、 所望の植物細胞に導入され得る。 導入された発 現カセットは、 植物細胞中の DNAに組み込まれて存在する。 なお、 植物細胞中の D NAとは、 染色体のみならず、 植物細胞中に含まれる各種オルガネラ (例えば、 ミ トコンドリア、 葉緑体) に含まれる DNAをも含む。
本明細書において、 用語 「植物」 は、 単子葉植物および双子葉植物のいずれも 含む。 好ましい植物は、 双子葉植物である。 双子葉植物は、 離弁花亜綱および合 弁花亜綱のいずれも含む。 好ましい亜綱は、 合弁花亜綱である。 合弁花亜綱は、 リンドウ目、 ナス目、 シソ目、 ァヮゴケ目、 ォォバコ目、 キキヨウ目、 ゴマノハ グサ目、 ァカネ目、 マツムシソゥ目、 およびキク目のいずれも含む。 好ましい目 は、 ナス目である。 ナス目は、 ナス科、 ハゼリソゥ科、 ハナシノブ科、 ネナシ力 ズラ科、 およびヒルガオ科のいずれも含む。 好ましい科は、 ナス科である。 ナス 科は、 ペチュニア属、 チョウセンアサガオ属、 タバコ属、 ナス属、 トマト属、 ト ゥガラシ厲、 ホオズキ属、 およびクコ属などを含む。 好ましい属は、 ペチュニア 属、 チョウセンアサガオ属、 およびタバコ属であり、 より好ましくは、 ペチュニ ァ属である。 ペチュニア属は、 P.hybrida種、 P. axi 1 laris種、 P. inflata種、 お よび P.violacea種などを含む。 好ましい種は、 P. hybrida種である。 「植物」 は、 特に他で示さない限り、 花を有する植物体および植物体から得られる種子を意味 する。
「植物細胞 J の例としては、 花、 葉、 および根などの植物器官における各組織 の細胞、 カルスならびに懸濁培養細胞が挙げられる。
植物細胞への植物発現べクタ一の導入には、 当業者に周知の方法、 例えば、 ァ グロパクテリゥムを介する方法、 および直接細胞に導入する方法が用いられ得る。 ァグロパクテリゥムを介する方法としては、 例えば、 Nagelらの方法 (FEMS Micr obiol. Lett., 67:325 (1990)) が用いられ得る。 この方法は、 まず、 植物発現べ クタ一で (例えば、 エレクト口ポレーシヨンによって) ァグロパクテリゥムを形 質転換し、 次いで、 形質転換されたァグロバクテリゥムをリーフディスク法など の周知の方法により植物細胞に導入する方法である。 植物発現ベクターを直接細 砲に導入する方法としては、 エレクト口ポレーシヨン法、 パーティクルガン、 リ ン酸カルシウム法、 お'よびポリエチレングリコール法などがある。 これらの方法 は、 当該分野において周知であり、 形質転換する植物に適した方法が、 当業者に より適宜選択され得る。
植物発現ベクターを導入された細胞は、 例えば、 カナマイシン耐性などの薬剤 耐性を基準として選択される。 選択された細胞は、 常法により植物体に再生され 得る。
再生した植物体において、 導入した植物発現べクタ一が機能的であることは、 当業者に周知の手法を用いて確認し得る。 例えば、 内因性遺伝子の発現の抑制を 目的とする場合、 この確認は、 ノーザンプロット解析を用いた転写レベルの測定 によって行い得る。 このようにして、 内因性の転写因子の発現が抑制された所望 とする形質転換植物体を選択することができる。 組織特異的プロモ一夕一を用い た異種遺伝子の発現を目的とする場合も、 異種遺伝子の発現の確認は、 通常、 対 象組織から抽出された RNAを試料とするノーザンプロット解析を用いて行い得る。 この解析法の手順は当業者に周知である。
本発明の方法に従って内因性の転写因子の発現が抑制され、 花粉の稔性が低下 したことは、 例えば、 転写因子をコードする DNAを含む発現ベクターで形質転換 して得られた植物の花粉の形態を、 必要に応じて組識化学的染色を行ったうえ、 顕微鏡観察することで確認できる。
また、 本発明の方法に従ってプロモーターが小胞子に特異的に発現されたこと は、 例えば、 プロモータと GUS遺伝子とが作動可能に連結された発現ベクターで 形質転換して得られた植物における、 葯を含む花の組織での GUS活性の分布を、 常法により組識化学的染色を行うことで確認できる。
(実施例)
以下に、 実施例に基づいて本発明を説明する。 本発明の範囲は、 実施例のみに 限定されるものではない。 実施例で使用される制限酵素、 プラスミドなどは、 商 業的な供給源から入手可能である。 実施例 1: ZPT転写因子群をコードするポリヌクレオチドを含む植物発現ベクター の構築
以前に報告した葯特異的 ZF遺伝子 (Kobayashiら、 前出) のうち、 PEThyZPT2 - 5 (ZPT2- 5)、 PEThyZPT3-l (ZPT3-1)、 および PEThyZPT4- 1 (ZPT4-1)の cDNAを、 そ れぞれ、 力リフラヮ ""モザイクウィルスの 35 Sプロモーターの下流につないで、 植物発現ベクターを作成した。 具体的には、 下記の通りである。
(実施例卜 1) プラスミド PBI221 (CLONTECH Laboratories inc.から購入) 中のカリフラワー モザイクウィルス 35Sプロモーターを含む DNA断片 (Hindi Π-Xbal断片) および N OSターミネータ一を含む DNA断片 (SacI-EcoRI断片) を順次プラスミド pUCAP (va n Engelen, F.A.ら、 Transgenic Res. , 4:288, 1995) のマルチクローニングサ イトに挿入し、 PUCAP35Sを作製した。 一方、 ZPT2- 5の cDNAを含む pBluescript ベ クタ一を Kpnlサイトおよび Saclサイト (いずれもベクター中のサイト) で切断し、 上記 PUCAP35Sの Kpnlおよび Saclサイトの間に挿入した。 さらにこの組み替えブラ スミドを EcoRIおよび Hindlllで切断し、 ZPT2-5をコードする DNA断片をバイナリ 一ベクター pBINPLUS (van Engelen, F.A.ら、 前出) の EcoRIおよび ¾indl 11サイ 卜に導入した。 構築された ΖΡΠ-5遺伝子は、 図 4 (a)から明らかなように、 カリ フラワーモザイクウィルス (CaMV)の 35Sプロモータ一領域 (P35S; 0.9 kb) , 本 発明の ZPT2-5をコードするポリヌクレオチド (ZPT2- 5: 約 0.8 kb)、 およびノパ リン合成酵素の夕一ミネ一ター領域 (Tnos; 0.3 kb)から構成されている。 図 4 中の Pnosは、 ノパリン合成酵素のプロモータ一領域、 NPTI【はネオマイシンホス ホトランスフェラーゼ II遺伝子を示す。 ¾
(実施例 1-2)
ZPT3-1の cDNAを含む pBluescript ベクターを Kpnlサイトおよび Saclサイト (い ずれもべクタ一中のサイト) で切断し、 PUCAP35Sの Kpnlおよび Saclサイ卜の間に 挿入した。 さらにこの組み換えプラスミドを EcoRiおよび HintUiiで切断し、 ZPT3 - 1をコードする DNA断片をバイナリ一ベクター pBINPLUSの EcoRIおよび Hind II ίサ イトに導入した。 構築された ΖΡΤ3- 1遺伝子は、 図 4 (b)から明らかなように、 力 リフラヮ一モザイクウィルス (CaMV)の 35 Sプロモーター領域 (P35S; 0.9 kb)、 本発明の ZPT3-1をコードするボリヌクレオチド (ZPT3-1; 約 1.7 kb)、 およびノ パリン合成酵素のターミネ一ター領域 (Tnos: 0.3 kb)から構成されている。 (実施例い 3)
ZPT4- 1の cDNAを含む pBluescript ベクターを ΚρπΙサイトおよび Saclサイト (い ずれもべク夕一中のサイト) で切断し、 上記 PUCAP35Sの Kpnlおよび Saclサイトの 間に挿入した。 さらにこの組み換えプラスミドを EcoRIおよび Hindlllで切断し、 ZPT4- 1をコ一ドする DNA断片をバイナリーベクター PBINPLUSの EcoR【および Hindll 【サイトに導入した。 構築された ZPT4-1遺伝子は、 図 4(c)から明らかなように、 カリフラワーモザイクウィルス (CaMV)の 35Sプロモー夕一領域 (P35S; 0.9 kb)、 本発明の ZPT4-1をコードするボリヌクレオチド (ZPT4- 1: 約 2.0 kb),およびノパ リン合成酵素のターミネータ一領域 (Tnos; 0.3 kb)から構成されている。 実施例 2 : ZPT3-1および ZPT4- 1プロモ一ター領域の単離ならびに GUSレポーター 遺伝子との連結
ZPT3- 1および ZPT4- 1の cDNAをプローブにして、 ペチュニアのゲノム DNAライブ ラリーから、 対応するゲノミック 'クローンを単離し、 転写開始点上流の DNA断 片 (プロモー夕一領域;約 2.7kbおよび約 3.6 ) をサブ ロ一二ングした。 それ ぞれの DM断片を GUSレポ一夕一遺伝子の上流につないでバイナリー ·ベクタ一に クローニングした。 具体的には、 以下の通りである。
(実施例 2-1)
ZPT3- 1の cDNAを、 通常のランダムプライム法 (Sambrookら、 前出) を用いて O— 32i»]dCTPで標識して放射性標識プ ΰーブを作製し、 これを用いて EMBL3べク ター (Stratagene製) 中に作製したペチュニア (Petunia hybrida var. Mit'chel 1 )のゲノミックライブラリ一をスクリーニングした。 得られたクローンから遺伝 子上流領域を含む約 2.7 kbのゲノム DNA断片 (Pstl- Sac[) を pBluescriptSKべク ターの Pstl- Saclサイトにサブクローニングし (PBS- ΖΠ3- 1- PS) 、 塩基配列を決 定した (図 5) 。 次に、 このプラスミドを銬型とし、 Sail認識配列を含むプライ マー (3' -TATGGAGCTCGTCGACAG TTGATGGTTCATTTTTCTGGCTATTGTC-5' ;配列番号 1 1 ) および巿販の M13- 20プライマーを用いて PCRを行い、 ZPT3-1タンパク質翻訳 開始点のすぐ下流 (塩基番号 2661) に Sai lサイトを導入した。 そして、 Ps t lおよ び Sa 1 [で切断して得られた DNA断片を pUCAPGUSNTの GUSコード領域の上流に挿入し た (pUCAP- ZPT3-卜 GUSNT) 。 これによつて ZPT3- 1遺伝子コード領域の N末端近傍 の領域で in frameで GUSコード領域と接続された。 さらに pUCAP_ZPT3-卜 GUSNTを A sc lおよ t pacIで切断して得られる DNA断片 (ZPT3-1プロモーター、 GUSコード領 域および N0S夕一ミネ一ターを含む) を pBINPLUSベクターに挿入し、 pBIN- ZPT3-1 -GUSを得た (図 7 (a) ) 。
(実施例 2-2)
ΖΡΤ4- 1についても同様にゲノム DMを単離し、 ZPT4-1遺伝子上流領域を含む約 3. 6kbの DNA断片 (EcoRI- EcoRI) を pBluescr iptSKベクターの EcoRI-EcoRIサイトに サブクローニングし (pBS- ZPT4- 1-EE) 、 塩基配列を決定した (図 6 ) 。 このプ ラスミドを铸型にし、 BamHI認識配列 (3' -CATGGATATAGGATCCTATATC-5' ;配列番 号 1 2 ) を含むプライマ一および M13-20ブライマーを用いて PCRを行い、 ZPT4-1 タンパク質翻訳開始点のすぐ下流 (塩基番号 3641 ) に BamH【サイトを導入した。 そして、 EcoRIおよび BamHIで切断して得られた DNA断片を pUCAPGUSNTの GUSコード 領域の上流に挿入した (pUCAP- ZPT4-卜 GUSNT) 。 これによつて ZPT4-1遺伝子コー ド領域の N末端近傍の領域で ΐη frameで GUSコード領域と接続された。 さらに、 上 記と同様にして DNA断片 (Asc【- Pac l) を pB[NPLUSベクターに挿入し、 pBIN-ZPT4- 1 - GUSを作製した (図 7 (b) ) 。 実施例 3 :各融合遺伝子のペチュニア細胞への導入
上記の各発現べクタ一を、 以下の手順で、 ァグロパクテリゥムを介して、 ペチ ュニァ (Petunia hybr ida var. Mi tchel l) に導入した。 ( 1 ) ァグロパクテリゥム 'チュメファシエンス LBA4404株 (CLONTECH Labora lor ies I n から購入) を 250 mg/mlのストレプトマイシンと 50 mg/mlのリファン ピシンを含む L培地中、 28でで培養しだ。 Nagelら (1990) (前出) の方法に従つ て、 細胞懸濁液を調製し、.実施例 1および 2で構築したプラスミドベクターをェ レクト口ポレーシヨンにより、 上記菌株に導入した。
( 2 ) 各融合遺伝子をコードするポリヌクレオチドを、 以下の方法によって、 ペチュニア細胞へ導入した:上記 (1 ) で得られたァグロパクテリゥム ·チュメ ファシエンス LBA4404株を YEB培地 (DNA C loning第 2巻、 78頁、 Glover D. M.編、 IRL Press, 1985) で振とう培養 (28で、 200rpin)した。 得られた培養液を、 滅菌 水で 20倍に希釈し、 ペチュニア (Pe tuni a hybrida var. Mi tchel I)の葉片と共存 培養した。 2〜3日後、 抗生物質を含む培地で上記細菌を除去し、 2週間ごとに 選択培地で継代し、 上記 5種類の融合遺伝子と共に導入された、 pBINPLUS由来の NPT 1 1遺伝子発現によるカナマイシン抵抗性の有無に基づいて、 形質転換された ペチュニア細胞を選抜した。 選抜した細胞を、 常法によりカルスを誘導した後、 植物体に再分化した (Jorgensen R. A.ら, P l ant Mo l . Bi i. , 31 : 957, 1996) 。 実施例 4 : ZPT遺伝子群を導入した形質転換ペチュニアの表現型
実施例 1のべクタ一を導入して得られた形質転換体を用い、 ZPT2- 5、 ZPT3-1お よび ZPT4-1の発現の制御に伴う花粉の形態変化を観察することによって、 これら ZPT遺伝子群の cDNA導入による植物への影響を検討した。 具体的には、 以下の通 りである。
(実施例 4-1)
ZPT2-5の cDNAを 35Sプロモーターの制御下に導入した形質転換体 (14個体) か. ら、 ノーザンプロット解析によって、 コサブレッシヨンによる遺伝子発現の抑制 が起こった個体 (3個体) を選抜した。 (なお、 14個体のうち他の 4個体では、 導入した ZPT2-5遺伝子の過剰発現が観察された。 ) ノーザンプロット解析の条件 は、 次の通り : 7 %SDS、 50%ホルムアミド、 5 xSS (:、 2 %ブロッキング試薬 (B oehringer Mannheim製) 、 50mMリン酸ナトリウム 'バッファ一 (pH7. 0) 、 0. 1 % ラウリルサルコシン ·ナトリウム、 50 g ml酵母 tRNA、 および3 2 P標識ブロー ブ DNA ( l xl07 cpm) を含む溶液中で、 68でで 16時間ハイブリダィズさせた後、 2 xSSC 0. 1 %SDSで 68°C、 30分間の洗浄。
上記のコサブレッシヨン形質転換体 3個体において、 以下のような表現型が観 察された (図 8 ) 。
四分子期の直前に起こる減数分裂の過程において、 正常な (野生型の) ペチュ ニァでは、 クロマチンの凝縮による細糸状構造の形成に続き (前期 Iの細糸期) 、 相同染色体が対合する (前期 Iの接合糸期) 。 次に、 中期 I (me taphasel) に入 ると、 4分染色体が細胞赤道面にならび、 その後、 紡錘装置によって相同染色体 が均等に細胞の両極に分離する。 他方、 ZPT2-5遺伝子のコサブレッシヨンを起こ した形質転換体では、 中期 Iにおいて 4分染色体が細胞赤道面に正しく並ぶこと のないまま、 染色体の極分離が進行した。 このとき、 染色体の両極への分配が著 しく不均等であった。
正常な減数分裂の過程では、 上記 1回目の染色体分 Ϊの後、 2回目の染色体分 離によって、 4つのハプロイドのグループが形成され、 その後に細胞質分離が起 こる。 他方、 上記のコサプレツシヨンを起こした形質転換体では、 一回目の染色 体分離の直後に細胞質分離および細胞分裂が起こった。 また、 この不均等な細胞 分裂は一回でとどまらず、 少なくともさらに二回繰り返されて、 最高 8個の小胞 子細胞が形成された。 不均等な染色体分離のために、 これらの小胞子細胞に含ま れる染色体数は不均一であり、 それに伴って、 細胞の大きさも著しく不均等であ つた。 結果として、 正常なペチュニアにおいて四分子期にあたる時期に、 これら の形質転換体では、 正常より多い数の小胞子 (最高 8個) が形成されていた (図 8 ( f) ;つぼみのサイズ 6删における ZPT2-5コサプレツシヨン形質転換体の花粉 細胞の写真。 また、 図 9 (b) ;四分子期における形質転換体の花粉細胞の写真も 参照) 。
コサブレッシヨン形質転換体において、 小胞子の一部 (1 0-20 % ) はその後も 発達を続けたが、 大部分の小胞子細胞は、 これらを包む力ロース層が分解される 前に、 破裂した。 この段階で破裂せずに生き残った小胞子は、 六面体に近い異常 形態を示し、 正常な小胞子の 4面体形態とは明らかに異なっていた。 異常形態の 小胞子は、 その後、 一見正常な有糸分裂によって二核となって、 花粉粒を形成し た。 しかし、 これらの花粉粒は稔性をほとんど失っていた。 すなわち、 正常なぺ チュニァの雌ずいにこれらの形質転換体の花粉粒をかけると、 コサプレツション を示した 3系統からの花粉では、 種子形成が全く無いか、 または、 わずかに種子 が形成されるのみ (最高でも 1 0 %、 つまり、 ペチュニア 1株あたりで産生され る種子の数が、 約 10個の花の平均として、 コントロールの 1割) であった。 コサ ブレッションを示さない形質転換体 3系統からの花粉では、 野生型のコント口一 ル植物の場合と同様の、 正常な種子形成が確認された。
上記のコサプレツシヨン形質転換体はまた、 雌性配偶体形成にも異常を示し、 雌性稔性が正常個体の 25-35 %に低下していた。 すなわち、 胚珠 (雌性配偶体) の発達は外観上正常であったものの、 野生型の花粉で受粉したとき過半数の胚珠 が受精できず、 受精したものも以後の発達 異常を示し、 多くが死滅 (abor t ) した。 この場合も、 コサプレツシヨンを示さない形質転換体では、 野生型のコン 卜ロール植物の場合と同様の、 正常な雌性配偶体形成が観察された。
(実施例 4- 2)
ZPT3-1の cDNAを 35Sプロモーターの支配下に導入すると、 ZPT2- 5遺伝子を導入 した場合と同様の形質変化が、 1 5個体中、 3個体に表れた (図 9 ) 。 すなわち、 これらの形質転換体では、 減数分裂の過程で ΖΡΠ- 5の場合と全く同様の異常が見 られた。 そして、 小胞子期まで発達する細胞数は非常に少なく、 生き残った小胞 子は形態異常 (6面体) を示した。 さらに、 成熟した花粉粒は稔性を失っていた。 しかし、 ZPT2- 5の場合とは異なり、 これらの個体では雌性稔性には影響がなかつ た。
実施例 4-1と同じ条件でのノーザンブロット法による遺伝子発現解析の結果、 Z PT3-1遺伝子を導入した個体においては、 ZPT3-1と ZPT4-1との両方の遺伝子の発 現抑制が観察された。 両遺伝子は、 構造的類似性が高い。 すなわち、 コード領域 全体の塩基配列の相同性は 37%であり、 ZPT3- 1の 2番目の ZF領域と ZPT4- 1の 3番 目の ZF領域、 および ZPT3- 1の 3番目の ZF領域と ZPT4- 1の 4番目の ZF領域とを、 相 同性値が最大化されるように近傍の配列を含めて、 塩基配列レベルで、 それぞれ 比較したときの相同性の平均値は 86 %である (配列比較は Cl us tal Vプログラム による) 。 従って、 上記の発現抑制事象は、 一つの遺伝子の導入によって二つの 遺伝子の発現抑制 (コサブレッシヨン) が起こったことによる可能性が高い。 こ のことは、 これら二つの遺伝子の機能が重複していることを示唆し、 両遺伝子の 各々の導入によって共通した表現型の変化が見られることとも符合する。
(実施例 4 - 3)
ZPT4- 1の cDNAを 35Sプロモータ一の支配下に導入すると、 ZPT2-5遺伝子を導入 した場合と同様の形質変化が、 13個体中、 2個体に表れた。 すなわち、 これらの 形質転換体では、 減数分裂の過程で ZPT2- 5の場合と全く同様の異常が見られた。 そして、 小胞子期まで発達する細胞数は非常に少なく、 生き残った小胞子は形態 異常 (6面体) を示した。 さらに、 成熟した花粉粒は稔性をほとんど失っていた。 しかし、 ZPT3-1の場合と同様に、 これらの個体では雌性稔性には影響がなかった。 上述した理由から、 本実施例においても、 ZPT3-1と ZPT4-1との両方の遺伝子の 発現抑制 (コサブレッシヨン) が起こった可能性が高い。 以上のように、 ZPT2- 5、 ZPT3- 1または ZPT4- 1をコードする遺伝子の導入によつ て、 きわめて高い効率で、 花粉の発達を阻害し、 稔性を喪失させることができる
(ZPT3-1で 99%以上、 ZPT2- 5および ZPT4-1で 90%以上) 。 また、 これらの遺伝子 群の導入は、 その効果が花粉 (ZPT2- 5の場合、 花粉および雌性配偶体) に特異的 であり、 植物の他の形質に影響を与えない点で、 選択的な形質改変技術として有 用であり得る。 実施例 5 : ZPT3-1および ZPT4-1プロモーター活性の組織特異性
実施例 2のベクターを導入して得られた形質転換体を用い、 GUS活性による組 織化学的染色を行うことによって、 上記 DNA断片が有する組織特異的プロモータ 一活性を検出した。 具体的には、 以下の通りである。
(実施例 5-1)
ZPT3-1遺伝子の上流領域と GUSとの融合遺伝子を導入して得られた形質転換体 の花を用い、 X- GUSを基質にして GUS活性の分布を調べた (Gal lagher, S. R.編、 G US protocols: us ing the GUS gene as a reporter of gene express in Academ ic Press, Inc. , pp. 103-114, 1992) 。 その結果、 GUS活性は 1核期の小胞子に おいて特異的に検出された (図 1 0 (a)〜(c) ) 。
(実施例 5-2)
ZPT4-1遺伝子の上流領域と GUSとの融合遺伝子を導入して得られた形質転換体 の花を用い、 上記と同様に GDS活性の分布を調べた。 その結果、 GUS活性は、 一核 期から二核期にかけての小胞子および葯の開裂組織において特異的に観察された (図 1 0 (d)〜(f) ;葯の開裂組織を図 1 0 (e)および(0に矢印で示す) 。 以上のように、 ZPT3-1および ZPT4-1遺伝子のプロモーターは、 一核期の小胞子
(ZPT3-1) および一核期から二核期にかけての小胞子 (ZPT4- 1) にそれぞれ特異
o■
的な活性を示す。 ZPT4-1遺伝子のプロモーターは、 一核期から二核期にかけての 葯の開裂組織にも特異的な活性を示す。
小胞子は、 のちに成熟して花粉粒を生成する前駆細胞である。 従って、 これら のプロモーターは、 花粉の発達に関連する詳細な研究のためのツールとして有用 である。 さらに、 これらのプロモータ一またはその活性断片を用いて、 細胞毒性 のある遺伝子などを小胞子に特異的に発現させ、 花粉細胞を死滅させまたは機能 を失わせることによって、 花粉の発達を直接的かつ効率的に制御し得る。 産業上の利用可能性
ZPT2-5, ZPT3- 1および ZPT4- 1遺伝子由来の転写因子をコードする DNA、 ならび に、 ZPT3-1および ZPT4- 1遺伝子由来のプロモ一夕一を利用する本件発明の方法は、 遺伝子工学的に植物の形質を選択的に改変する技術、 特に、 雄性不稔形質を 付与する技術として有用である。

Claims

請求の範囲
1. 雄性不稔性の植物を作出する方法であって:
( i) 配列番号 1によって示される塩基配列の第 1位から第 777位までの配列 を有する DNA、 (ii) ( i) の塩基配列を有する DNAとストリンジェントな条件ァ でハイブリダィズし、 花粉の発達を制御する転写因子をコードする DNA、 または (iii) (i) もしくは (ii) の断片である DNAのいずれかである核酸と、 該核酸 に作動可能に連結されたプロモーターとを含む、 植物発現カセットを提供するェ 程、
花粉の発達を制御する内因性の転写因子を有する植物の細胞を提供する工程で あって、 ここで、 該内因性の転写因子をコードする遺伝子は、 該核酸とストリン ジェン卜な条件下でハイブリダィズする、 工程、
該発現カセッ卜を該植物細胞に導入する工程、
該発現カセットが導入された植物細胞を植物体に再生する工程、 および 該再生された植物体であって、 該核酸が発現されることによって、 該内因性の 転写因子の発現が抑制された植物体を選択する工程を包含し、
ただし、 上記 (ii) の DNAは、 (iv) 配 番号 13によって示される塩基配列 の第 1位から第 1886位までの配列を有する DNAとストリンジェントな条件下でハ イブリダィズし、 花粉の発達を制御する転写因子をコードする DNAを含まない、 方法。
2. 雄性不稔性の植物を作出する方法であって:
( i ') 配列番号 3によって示される塩基配列の第 1位から第 1640位までの配 列を有する DNA、 (ii') (Γ) の塩基配列を有する DNAとストリンジェントな条 件下でハイブリダィズし、 花粉の発達を制御する転写因子をコードする DNA、 ま たは (iii') ( ) もしくは (ii') の断片である DNAのいずれかである核酸と、 該核酸に作動可能に連結されたプロモーターとを含む、 植物発現カセットを提供 する工程、
花粉の発達を制御する内因性の転写因子を有する植物の細胞を提供する工程で あって、 ここで、 該内因性の転写因子をコードする遺伝子は、 該核酸とストリン ジェン卜な条件下でハイブリダィズする、 工程、
該発現カセットを該植物細胞に導入する工程、
該発現カセットが導入された植物細胞を植物体に再生する工程、 および 該再生された植物体であって、 該核酸が発現されることによって、 該内因性の 転写因子の発現が抑制された植物体を選択する工程を包含し、
ただし、 上記 ( ' ) の DNAは、 (iv) 配列番号 1 3によって示される塩基配列 の第 1位から第 1886位までの配列を有する DNAとストリンジェン卜な条件下でハ イブリダィズし、 花粉の発達を制御する転写因子をコードする DNAを含まない、 方法。
3 . 雄性不稔性の植物を作出する方法であって:
( i " ) 配列番号 5によって示される塩基配列の第 1位から第 1948位までの配 列を有する DNA、 (i i" ) ( i " ) の塩基配列を有する DMとストリンジェントな条 件下でハイブリダィズし、 花粉の発達を制御する転写因子をコードする DNA、 ま たは (i i i" ) ( i ") もしくは (i i" ) の断片である DNAのいずれかである核酸と、 該核酸に作動可能に連結されたプロモーターとを含む、 植物発現カセットを提供 する工程、
花粉の発達を制御する内因性の転写因子を有する植物の細胞を提供する工程で あって、 ここで、 該内因性の転写因子をコードする遺伝子は、 該核酸とストリン ジェン卜な条件下でハイプリダイズする、 工程、
該発現カセットを該植物細胞に導入する工程、
該発現力セットが導入された植物細胞を植物体に再生する工程、 および 該再生された植物体であって、 該核酸が発現されることによって、 該内因性の 転写因子の発現が抑制された植物体を選択する工程 包含し、
ただし、 上記 (i i" ) の DNAは、 (iv) 配列番号 1 3によって示される塩基配列 の第 1位から第 1886位までの配列を有する DNAとストリンジェントな条件下でハ イブリダィズし、 花粉の発達を制御する転写因子をコードする DNAを含まない、 方法。
4. 前記核酸が前記プロモーターに対して順方向で連結され、 前記植物体の細胞 内でセンス方向に転写され得る、 請求項 1から 3のいずれかに記載の方法。
5 . 前記核酸が前記プロモーターに対して逆方向で連結され、 前記植物体の細胞 内でアンチセンス方向に転写され得る、 請求項 1から 3のいずれかに記載の方法。
6 . 前記植物が双子葉植物である、 請求項 1から 3のいずれかに記載の方法。
7 . 前記植物がナス科植物である、 請求項 6に記載の方法。
8 . 前記植物がペチュニア属植物である、 請求項 7に記載の方法。
9 . 前記発現カセットが植物発現ベクターに組み込まれている、 請求項 1から 3 のいずれかに記載の方法。
1 0 . 請求項 1から 9のいずれかに記載の方法により作出された、 雄性不稔植物。
1 1 . 植物に雄性不稔性を付与する方法であって:
( i ) 配列番号 1によって示される塩基配列の第 1位から第 777位までの配列 を有する DNA、 (i i) ( i ) の塩基配列を有する DNAとストリンジェントな条件下 でハイブリダィズし、 花粉の発達を制御する転写因子をコードする DNA、 または (i i i) ( i ) もしくは (i i) の断片である DNAのいずれかである核酸と、 該核酸 に作動可能に連結されたプロモーターとを含む、 植物発現カセットを提供するェ 程、
粉の発達を制御する内因性の転写因子を有する植物の細胞を提供する工程で あって、 ここで、 該内因性の転写因子をコードする遺伝子は、 該核酸とストリン ジェントな条件下で八イブリダィズする、 工程、
該発現カセットを該植物細胞に導入する工程、
該発現カセッ卜が導入された植物細胞を植物体に再生する工程、 および 該再生された植物体であって、 該核酸が発現されることによって、 該内因性の 転写因子の発現が抑制された植物体を選択する工程を包含し、
ただし、 上記 (i i) の DNAは、 (iv) 配列番号 1 3によって示される塩基配列 の第 1位から第 1.886位までの配列を有する DNAとストリンジェントな条件下でハ イブリダィズし、 花粉の発達を制御する転写因子をコードする DNAを含まない、 方法。
1 2 . 植物に雄性不稔性を付与する方法であって:
( i ' ) 配列番号 3によって示される塩基配列の第 1位から第 1640位までの配 列を有する DNA、 (Π' ) ( Γ ) の塩基配列を有する DNAとストリンジェントな条 件下でハイブリダィズし、 花粉の発達を制御する転写因子をコードする DNA、 ま たは (i i i' ) ( i ' ) もしくは (i f ) の断片である DNAのいずれかである核酸と、 該核酸に作動可能に連結されたプロモーターとを含む、 植物発現力セッ小を提供 する工程、
花粉の発達を制御する内因性の転写因子を有する植物の細胞を提供する工程で あって、 ここで、 該内因性の転写因子をコードする遺伝子は、 該核酸とストリン ジェン卜な条件下でハイブリダィズする、 工程、
該発現カセッ卜を該植物細胞に導入する工程、
該発現カセッ卜が導入された植物細胞を植物体に再生する工程、 および 該再生された植物体であって、 該核酸が発現されることによって、 該内因性の 転写因子の発現が抑制された植物体を選択する工程を包含し、
ただし、 上記 (i f ) の DNAは、 (iv) 配列番号 1 3によって示される塩基配列 の第 1位から第 1886位までの配列を有する DMとストリンジェン卜な条件下でハ イブリダイズし、 花粉の発達を制御する転写因子をコードする DNAを含まない、 方法。 .
1 3 . 植物に雄性不稔性を付与する方法であって:
( i " ) 配列番号 5によって示される塩基配列の第 1位から第 1948位までの配 列を有する DNA、 ( i i" ) ( i " ) の塩基配列を有する DNAとストリンジェン卜な条 件下で八イブリダィズし、 花粉の発達を制御する転写因子をコードする DNA 、 ま たは ("i i i" ) ( i " ) もしくは (i i") の断片である DNAのいずれかである核酸と、 該核酸に作動可能に連結されたプロモーターとを含む、 植物発現カセットを提供 する工程、
花粉の発達を制御する内因性の転写因子を有する植物の細胞を提供する工程で あって、 ここで、 該内因性の転写因子をコードする遺伝子は、 該核酸とストリン ジェン卜な条件下でハイプリダイズする、 工程、
該発現カセッ卜を該植物細胞に導入する工程、
該発現カセットが導入された植物細胞を植物体に再生する工程、 および 該再生された植物体であって、 該核酸が発現されることによって、 該内因性の 転写因子の発現が抑制された植物体を選択する工程を包含し、
ただし、 上記 (i i" ) の DNAは、 (iv) 配列番号 1 3にょって示される塩基配列 の第 1位から第 1886位までの配列を有する DNAとストリンジェントな条件下でハ イブリダィズし、 花粉の発達を制御する転写因子をコードする DNAを含まない、 方法。
14. 形質が改変された植物を作出する方法であって:
(a') 配列番号 7によって示される塩基配列の第 1位から第 2624位までの配 列を有する DNA、 または ( ) (a') の一部の配列を有し、 小胞子に特異的 なプロモ一夕一活性を示す DMのいずれかを含むプロモーターと、 該プロモー夕 一に作動可能に連結された異種遺伝子とを含む、 植物発現カセットを提供するェ 程、
該発現カセットを植物細胞に導入する工程、 および
該発現カセッ卜が導入された植物細胞を、 植物体に再生する工程を包含する、 方法。
15. 形質が改変された植物を作出する方法であって:
(a") 配列番号 8によって示される塩基配列の第 1位から第 363】位までの配 列を有する DNA、 または (bn) (a") の一部の配列を有し、 小胞子に、 およ び任意に葯の開裂組織に、 特異的なプロモーター活性を示す DNAのいずれかを含 むプロモーターと、 該プロモーターに作動可能に連結された異種遺伝子とを含む、 植物発現カセットを提供する工程、
該発現カセットを植物細胞に導入する工程、 および
該発現カセッ卜が導入された植物細胞を、 植物体に再生する工程を包含する、 方法。
16. 前記形質は稔性であり、 形質が改変された植物は、 雄性不稔植物である、 請求項 14または 15に記載の方法。
17. 前記形質は和合性であり、 形質が改変された植物は自家不和合性植物であ る、 請求項 14または 15に記載の方法。
18. 前記植物が双子葉植物である、 請求項 14または 15に記載の方法。
19. 前記植物がナス科植物である、 請求項 18に記載の方法。
20. 前記植物がペチュニア属植物である、 請求項 19に記載の方法。
21. 前記発現カセットが植物発現ベクターに組み込まれている、 請求項 14ま たは 15に記載の方法。
22. 請求項 14から 21のいずれかに記載の方法により作出された、 形質が改 変された植物。
¾
23. 植物に雄性不稔性を付与する方法であって:.
(a') 配列番号 7によって示される塩基配列の第 1位から第 2624位までの配列 を有する DNA、 または (b') (a') の一部の配列を有し、 小胞子に特異的な プロモーター活性を示す DNAのいずれかを含むプロモーターと、 該プロモーター に作動可能に連結された異種遺伝子とを含む、 植物発現カセットを提供する工程、 該発現力セッドを植物細胞に導入する工程、 および
該発現カセッ卜が導入された植物細胞を、 植物体に再生する工程を包含する、 方法、
24. 植物に雄性不稔性を付与する方法であって:
(a") 配列番号 8によって示される塩基配列の第 1位から第 3631位までの配 列を有する DNA、 または (b") (a") の一部の配列を有し、 小胞子に、 およ び任意に葯の開裂組織に、 特異的なプロモーター活性を示す DNAのいずれかを含 むプロモーターと、 該プロモーターに作動可能に連結された異種遺伝子とを含む、 植物発現カセッ ^を提供する工程、
該発現カセットを植物細胞に導入する工程、 および
該発現カセッ卜が導入された植物細胞を、 植物体に再生する工程を包含する、 方法。
25. 以下の (Γ) または (ΙΓ) の DNAを含むプロモーター:
( Γ) 配列番号 7によって示される塩基配列の第 1位から第 2624位までの配列 を有する DNA、 または (ΙΓ) ( I ') の一部の配列を有し、 小胞子に特異的な プロモーター活性を示す DNA。
26. 以下の (Γ) または (Π") の DNAを含むプロモ一夕一:
( I ") 配列番号 8によって示される塩基配列の第 1位かち第 3631位までの配列 を有する DNA、 または (1【") (1") の一部の配列を有し、 小胞子に、 および 任意に葯の開裂組織に、 異的なプロモーター活性を示す DM。
27. 請求項 25または 26に記載のプロモーターと、 該プロモーターに作動可 能に連結された異種遺伝子とを含む、 植物に雄性不稔性を付与するために有用な 植物発現カセット。
PCT/JP1999/006467 1999-11-19 1999-11-19 Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen WO2001037643A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU11835/00A AU779284B2 (en) 1999-11-19 1999-11-19 Method for lowering pollen fertility by using pollen-specific zinc finger transcriptional factor genes
US10/130,731 US6989473B1 (en) 1999-11-19 1999-11-19 Method of making male sterile petunia plants by transformation with a nucleic acid encoding a zinc finger transcriptional factor
PCT/JP1999/006467 WO2001037643A1 (fr) 1999-11-19 1999-11-19 Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen
CN99817080A CN1461187A (zh) 1999-11-19 1999-11-19 使用花粉特异性的锌指转录因子基因降低花粉受育性的方法
EP99974206A EP1230843A4 (en) 1999-11-19 1999-11-19 METHOD FOR REDUCING POLLEN FERTILITY USING POLLEN SPECIFIC ZINC FINGER TRANSCRIPTION FACTOR GENES
KR10-2002-7006420A KR100455621B1 (ko) 1999-11-19 1999-11-19 화분 특이적 징크 핑거 전사 인자 유전자의 사용에 의한화분 임성의 저하방법
CA002391991A CA2391991A1 (en) 1999-11-19 1999-11-19 Method for lowering pollen fertility by using pollen-specific zinc finger transcriptional factor genes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006467 WO2001037643A1 (fr) 1999-11-19 1999-11-19 Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen

Publications (2)

Publication Number Publication Date
WO2001037643A1 true WO2001037643A1 (fr) 2001-05-31
WO2001037643A9 WO2001037643A9 (fr) 2002-07-04

Family

ID=14237334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006467 WO2001037643A1 (fr) 1999-11-19 1999-11-19 Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen

Country Status (7)

Country Link
US (1) US6989473B1 (ja)
EP (1) EP1230843A4 (ja)
KR (1) KR100455621B1 (ja)
CN (1) CN1461187A (ja)
AU (1) AU779284B2 (ja)
CA (1) CA2391991A1 (ja)
WO (1) WO2001037643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354766B2 (en) 2004-10-15 2008-04-08 National Institute Of Agrobiological Sciences Modification of plant crossing properties via gene transfer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003298095A1 (en) 2002-10-18 2004-05-04 Cropdesign N.V. Identification of e2f target genes and uses thereof
CN101928712A (zh) * 2002-12-24 2010-12-29 作物培植股份有限公司 具有改变的生长特性的植物及其生产方法
CN116589549A (zh) * 2023-06-12 2023-08-15 华中农业大学 枳转录因子PtrZAT12及其在植物抗寒遗传改良中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025787A1 (en) * 1994-03-24 1995-09-28 Rutgers University Methods for producing cytoplasmic male sterility in plants and use thereof in production of hybrid seed

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK111693A3 (en) * 1991-04-16 1994-02-02 Mogen Int Male-sterile plants, methods for obtaining male-sterile plants and recombinant dna for use therein
US6559357B1 (en) * 1999-01-08 2003-05-06 The Regents Of The University Of California Methods for altering mass and fertility in plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025787A1 (en) * 1994-03-24 1995-09-28 Rutgers University Methods for producing cytoplasmic male sterility in plants and use thereof in production of hybrid seed

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GENES AND DEVELOPMENT, vol. 5, no. 3, 1991, pages 496 - 507, XP002928394 *
PLANT MOLECULAR BIOLOGY, vol. 39, 1999, pages 1073 - 1078, XP002928415 *
See also references of EP1230843A4 *
SHIVANNA AND SAWHNEY: "Pollen biotechnology for crop production and improvement", 1997, CAMBRIDGE UNIVERSITY PRESS, XP002928416 *
THE PLANT JOURNAL, vol. 13, no. 4, 1998, pages 571 - 576, XP002928393 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354766B2 (en) 2004-10-15 2008-04-08 National Institute Of Agrobiological Sciences Modification of plant crossing properties via gene transfer

Also Published As

Publication number Publication date
EP1230843A4 (en) 2004-09-29
AU779284B2 (en) 2005-01-13
CN1461187A (zh) 2003-12-10
KR20020068541A (ko) 2002-08-27
AU1183500A (en) 2001-06-04
KR100455621B1 (ko) 2004-11-06
CA2391991A1 (en) 2001-05-31
US6989473B1 (en) 2006-01-24
WO2001037643A9 (fr) 2002-07-04
EP1230843A1 (en) 2002-08-14

Similar Documents

Publication Publication Date Title
AU2005203861B2 (en) Method of producing sterile plant, plant obtained by using the same and use thereof
JP2000116258A (ja) 二元性潜在性細胞毒性法によるハイブリッド種子の産生方法
EP1054970A1 (en) Pollen specific promoter
JP2002354954A (ja) トランスジェニック植物における雄性不稔のための可逆的核遺伝システム
EP0698098B1 (en) Method for obtaining male-sterile plants
JPH05276951A (ja) 新規植物プロモーター
CA2224407A1 (en) Genes controlling floral development and apical dominance in plants
WO2000071704A1 (fr) Promoteur exerçant une activite specifique sur les tissus du pistil
WO2001037643A1 (fr) Procede de reduction de la fertilite du pollen au moyen des genes du facteur de transcription a doigt de zinc specifiques du pollen
JP3952246B2 (ja) 花粉特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
JP3943321B2 (ja) Madsボックス遺伝子を標的とした植物の花型の改良
US20060123514A1 (en) Self-fertile apple resulting from S-RNAase gene silencing
US20040045053A1 (en) Pollen specific promoter
JP2001517450A (ja) 花弁特異的プロモーターおよび花弁のない花を有する植物を作出する方法
JP2000513218A (ja) 植物におけるオーキシンの極性輸送の遺伝学的制御ならびに植物の成長、構造及び形態形成の操作
WO1997030581A1 (en) Male-sterile plants
KR100455620B1 (ko) 벽판-특이적 아연 핑거 전사 인자 유전자를 이용한 화분수정률의 감소 방법
JP2003092937A (ja) 花粉特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
JP2007202561A (ja) 花粉特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
JP2003092936A (ja) タペート層特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
JP2001145429A (ja) タペート層特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
JP2003319780A (ja) 花粉特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
JP2004000197A (ja) タペート層特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
JP2006158402A (ja) タペート層特異的ジンクフィンガー転写因子の遺伝子を用いて花粉稔性を低下させる方法
KR20060087960A (ko) 사과 유래 약 특이적 유전자, 그의 프로모터 및 그를이용한 형질전환 식물체의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11835/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2391991

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999974206

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027006420

Country of ref document: KR

AK Designated states

Kind code of ref document: C2

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGE 15/18, DRAWINGS, ADDED

WWE Wipo information: entry into national phase

Ref document number: 998170801

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10130731

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999974206

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027006420

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027006420

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 11835/00

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999974206

Country of ref document: EP