WO2001045251A1 - Varactor folding technique for phase noise reduction in electronic oscillators - Google Patents

Varactor folding technique for phase noise reduction in electronic oscillators Download PDF

Info

Publication number
WO2001045251A1
WO2001045251A1 PCT/US2000/034095 US0034095W WO0145251A1 WO 2001045251 A1 WO2001045251 A1 WO 2001045251A1 US 0034095 W US0034095 W US 0034095W WO 0145251 A1 WO0145251 A1 WO 0145251A1
Authority
WO
WIPO (PCT)
Prior art keywords
varactor
oscillator
varactors
control signal
circuit
Prior art date
Application number
PCT/US2000/034095
Other languages
French (fr)
Inventor
Ramon Alejandro Gomez
Lawrence M. Burns
Alexandre Kral
Original Assignee
Broadcom Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corporation filed Critical Broadcom Corporation
Priority to EP00989277A priority Critical patent/EP1247331B1/en
Priority to AU25806/01A priority patent/AU2580601A/en
Priority to DE60030589T priority patent/DE60030589T2/en
Publication of WO2001045251A1 publication Critical patent/WO2001045251A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1262Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising switched elements
    • H03B5/1265Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising switched elements switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1293Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator having means for achieving a desired tuning characteristic, e.g. linearising the frequency characteristic across the tuning voltage range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/10Tuning of a resonator by means of digitally controlled capacitor bank

Definitions

  • Communication systems use oscillators to process various signals used in the communication process.
  • an information signal e.g., a television program
  • a high frequency carrier signal to facilitate transmission of the signal.
  • modulation may be accomplished, for example, by varying the phase of the carrier signal according to the information in the signal.
  • a receiver in the communication system typically uses an oscillator to separate the information signal from the carrier signal.
  • the oscillator may be controllable so that the frequency of the signal generated by the oscillator may be varied as necessary.
  • oscillators do not generate a perfect signal; that is, a signal with precisely fixed frequency, amplitude and phase characteristics. Rather, due to a variety of factors including internal noise generated by the electronic components of the oscillator, the frequency, amplitude and phase of an oscillator will vary over a fairly narrow range over time .
  • Low-noise electronic oscillators are crucial to the effective operation of communication receivers and transmitters that use superheterodyne techniques and modulation formats that involve the phase of signal. As indicated above, amplitude and phase modulation are present in all real oscillators; however the nature of oscillators is such that for frequencies approaching the center frequency of the oscillation, the noise is dominated by phase fluctuations. Fluctuations in the phase of the transmitter or receiver oscillators corrupt the intended phase modulation of the signal in systems which use phase or frequency modulation. Phase noise may also reduce the ability of a radio system to reject or discern unwanted channels close in frequency to the desired channel.
  • phase noise such as phase locking to a less-noisy reference signal and the use of tracking phase-locked loops in the receiver.
  • system performance is often limited by the quality of available oscillators at practical levels of cost, size, and power dissipation.
  • Oscillators also may suffer from a significant level of noise due to up-conversion of flicker (1/f) noise from low frequencies to near the center frequency of the oscillator. Flicker noise occurs at low frequencies in nearly all electronic components.
  • the invention is directed to techniques for reducing noise in electronic oscillators.
  • a folding technique is described for controlling circuit parameters in an electronic oscillator by separately controlling a plurality of circuit elements that affect those parameters. Through the use of a plurality of circuit elements, substantial noise reduction can be achieved.
  • the use of a folding technique facilitates making smooth transitions when sequentially activating circuit elements.
  • the folding technique described herein ensures that the combined effect of the adjustable circuit elements results in a relatively smooth adjustment of the circuit parameters.
  • the oscillator includes a plurality of varactors in the oscillator's tank circuit.
  • the frequency of the oscillator is controlled, in part, by varying the voltage across the varactors.
  • flicker noise can be substantially reduced in the oscillator.
  • a folding circuit is utilized to control the varactors so that each varactor is activated in a substantially sequential manner, relative to one another, such that the overall change in capacitance in the tank circuit occurs in a relatively smooth manner, without substantial transient effects.
  • the folding technique takes advantage of a sigmoidal response characteristic of the varactor components.
  • This sigmoidal response characteristic has the effect that the capacitance of the varactor changes in a substantially linear manner when a particular range of voltages are applied across the varactor. Outside that voltage range, however, the capacitance of the varactor remains relatively constant.
  • a folding circuit sequentially activates varactors in the circuit such that when the circuit is ready to fold a new varactor into the circuit, the folding circuit couples a fixed capacitance to the tank circuit to replace a varactor that is then isolated from the circuit.
  • the folding circuit facilitates smooth transitions in the total capacitance of the oscillator tank circuit .
  • an oscillator constructed according to the invention includes at least one folding circuit responsive to at least one control signal, the folding circuit generating a plurality of varactor control signals; and at least one oscillator circuit comprising a plurality of varactors responsive to the plurality of control signals.
  • FIGURE 1 is a block diagram illustrating an integrated circuit incorporating an oscillator with a varactor folding circuit according to one embodiment of the invention
  • FIGURE 2 is a schematic diagram illustrating one embodiment of an oscillator incorporating several varactors and associated control lines;
  • FIGURE 3 is a graph illustrating transfer functions for an input control voltage and varactor control voltages according to one embodiment of the invention
  • FIGURE 4 is a schematic diagram of a folding circuit according to one embodiment of the invention.
  • FIGURE 5 is a graph of a C gs vs. V gs curve for a CMOS FET varactor that illustrates that the curve defines a sigmoidal function
  • FIGURE 6 is a graph illustrating transfer functions for an input control voltage and varactor control voltages according to one embodiment of the invention.
  • FIGURE 7 is a schematic diagram of one embodiment of a folding circuit implementing transfer functions as described by Figure 6.
  • a circuit constructed according to the invention is implemented in a tuner synthesizer chip (i.e., an integrated circuit) 10.
  • the tuner synthesizer 10 incorporates a voltage-controlled oscillator ("VCO") 12 that generates a signal within a particular range of frequencies.
  • VCO voltage-controlled oscillator
  • the oscillator signal may be used for a variety of operations such as mixing with various input and/or output signals for the purpose of up-converting or down-converting signals between carrier frequencies (e.g., f c ) and intermediate frequencies (e.g. , f L0 ) .
  • the voltage-controlled oscillator 12 includes a folding circuit 14 that operates in conjunction with an oscillator circuit 16 to produce an output signal 18 of a desired frequency, as specified by a tuning control signal 20 or other system requirements.
  • the oscillator circuit 16 includes several varactors 22 in its reactive tank circuit. The voltage across these varactors 22 is individually controlled by the folding circuit 14.
  • the folding circuit 14, in turn, is controlled by a control signal from an oscillator control circuit 24.
  • CMOS differential LC oscillator with varactor tuning uses several relatively small varactors 26A-B, 28A-B and 30A-B rather than a single varactor (or a differential pair of varactors) as is commonly used for frequency tuning.
  • a conventional circuit used a single varactor having capacitance C
  • an equivalent circuit according to the invention might have N smaller varactors, each with a capacitance of approximately C/N.
  • a conventional varactor-tuned voltage-controlled oscillator normally receives one control voltage, a variable DC voltage which alters the capacitance of the varactor (and therefore the oscillation frequency) by exploiting the nonlinear capacitance vs . voltage characteristic of the varactor element.
  • the nonlinear capacitance of the varactor is also modulated by the low- frequency flicker noise fluctuations, causing unwanted phase noise. This is described in the following equation:
  • C.._ r the value of C.._ r , ⁇ nr relative to the fixed capacitance of the circuit to reduce the impact that its fluctuations will have on the center frequency and thereby the phase.
  • One approach has been to reduce C varactor to the minimum value necessary to cover thermal drift of the center frequency (so that the center frequency can be maintained constant as the transmitter or receiver changes temperature), and the remaining capacitance tuning is accomplished with switched fixed (constant) capacitors, which do not vary and therefore do not up-convert flicker noise.
  • the original single capacitor is, in effect, split into multiple smaller varactors. Each small varactor is then driven by its own control voltage.
  • the multiple control voltages are derived from the original single control voltage in such a way that only one of the small capacitors is susceptible to modulation of its nonlinear capacitance by flicker noise fluctuations. Tests have shown that this technique may reduce the flicker noise up-conversion by 201og 10 N dB .
  • Figure 2 depicts a simplified circuit schematic in order to facilitate the discussion of the invention.
  • the varactors e.g., 26A and 26B associated with a given control signal (e.g., 34A) may be embodied in separate circuits. Such a design would reduce potential interference of one varactor with another varactor.
  • Figure 2 describes a CMOS circuit, the invention is applicable to virtually all electronic oscillators using varactors which suffer from flicker noise up-conversion to the center frequency via modulation of the nonlinear varactor capacitance.
  • the number of varactors and associated control signals used in a given folding circuit and oscillator may depend on the range of control that is desired over the frequency of the oscillator. If a wide frequency range is desired, the effective size of the varactor (i.e., the sum of capacitance of the individual varactors) may need to be larger. This may necessitate using more individual varactors in order to maintain desired noise characteristics .
  • the teachings of the invention may be implemented in many ways.
  • the sigmoidal shape of the Cgs vs. Vgs curve of a MOSFET varactor is exploited. This approach is described in conjunction with Figures 3, 4 and 5. If the varactors do not have a sigmoidal C-V characteristic, another approach as described in conjunction with Figures 6 and 7 may be used.
  • the three graphs represent transfer functions that describe the relationship between the input control voltage V ln 32 and the varactor control voltages 34A-C.
  • Each of the N MOSFET varactor pairs e.g., varactors 26A-B, 28A-B and 30A-B depicted in Figure 2 is driven through its full linear range sequentially by a folding circuit with one input and N outputs.
  • N is equal to three.
  • the folding circuit effectively converts a relatively large input signal to multiple transfer functions with reduced output range .
  • FIG. 4 depicts one embodiment of a CMOS implementation of the transfer functions of Figure 3 that exploits the sigmoidal characteristics of certain MOSFET varactors.
  • the folding circuit F of Figure 4 includes three field-effect transistors ("FETs") 36A-C connected with their gates 38A-C in parallel and driven by a control signal 32 (e.g., a phase- locked loop control signal) .
  • the sources 42A-C of each FET 36A-C are connected to ground via resistors 44A-C, each of which has the same value of resistance, designated R.
  • Current sources 46A-C are injected into the source points 42A-C of each FET 36A-C so that the DC voltage at each source 42A-C is progressively higher.
  • the current sources 46A-C have successively higher constant current output as represented, for example, by the designations 01, II and 21, respectively.
  • the voltage at the first source 42A will be biased at a desired DC level such as 1 V.
  • the voltage at the second source 42B is higher by a defined unit such as 0.5 V.
  • the voltage at the third source 42C is yet another unit higher than the voltage at the second source.
  • the second and third sources 42B-C are biased at 1.5 V and 2 V, respectively, in this example.
  • the folding circuit F of Figure 4 will produce three output signals (V controll 34A, V control2 34B and V control3 34C) staggered in their respective DC level.
  • V controll 34A V controll 34A
  • V control2 34B V control3 34C
  • V control3 34C V control3 34C
  • the output signals drive the varactors 26A-B, 28A-B and 30A-B in Figure 2.
  • the Cgs vs. Vgs curve 48 for the varactors 26A-B, 28A-B and 30A-B defines a sigmoidal shape as illustrated, for example, in Figure 5.
  • the capacitance of the varactors 26A-B, 28A-B and 30A-B varies in response to a control voltage (V gs ) in a relatively linear manner.
  • the two ends E of the curve are, in effect, clipped.
  • the capacitance of a varactor does not change appreciably in response to changes in the control voltage (V gs ) .
  • the sigmoidal characteristic of the varactors 26A-B, 28A- B and 30A-B facilitates use of a circuit whereby all of the varactors 26A-B, 28A-B and 30A-B are electrically coupled to the oscillator tank circuit T at all times.
  • a control voltage 32 is, in effect, successively applied to the varactors 26A-B, 28A-B and 30A-B such that, for a given range of the control voltage 32 only one of the varactors 26A-B, 28A-B and 30A-B is within its substantially linear range.
  • the varactors 26A-B, 28A-B and 30A-B change capacitance only slightly when operating outside of their substantially linear range (due to the clipping effect described above), the varactors 26A-B, 28A-B and 30A-B do not substantially change the center frequency of the tank circuit T when their control voltage (V gs ) is outside of the varactor' s substantially linear range.
  • V gs control voltage
  • the capacitance of the tank circuit T is, for the most part, altered by controlling one varactor at a time.
  • the invention provides smooth transitions when folding from one varactor to the next by incorporating some overlap between the capacitive effect of each varactor on the tank circuit T.
  • the circuit parameters of Figure 4 e.g., values of the resistors, magnitude of the current flow from the current sources
  • V control2 34B starts to change from its steady state (at which time it starts changing the capacitance of varactors 28A and 28B) before V controll 34A goes to its steady state (at which time it stops changing the capacitance of varactors 26A and 26B) .
  • both V controll 34A and V control2 34B correspond to points on the sloped part of their respective curves, rather than the horizontal sections of the curves.
  • VCO circuit In accordance with the invention, certain constraints should be considered when designing a VCO circuit in accordance with the invention. It is important that variations that may occur in df VC0 /dV control as the VCO is tuned are properly considered during the stability and noise analysis stage of the design process for any feedback control loops, i.e., phase-locked loops containing the VCO.
  • the VCO should have sufficient stability margin. And, in some embodiments, it may be preferable to ensure that the slope of the df/dv curve not change excessively.
  • the invention provides significant advantages over designs that merely switch fixed capacitors in and out of the tank circuit.
  • the invention provides smooth transitions as the circuit folds in each successive varactor/capacitor .
  • phase synchronization loops in a receiver utilizing the VCO will not be forced to have to re-lock every time a circuit element is folded into or out of the circuit. This is in marked contrast to a hard switching device where such re- locking could occur every time a capacitor was switched into or out of the circuit.
  • the circuit of Figure 4 will have smooth transitions in the Cgs vs. Vgs and Vout vs. V ⁇ n curves. Moreover, by allowing some overlap, a smooth f OSc ⁇ ii ator vs • V in tuning characteristic may be achieved.
  • the invention may utilize a folding circuit designed to have the transfer functions as illustrated in Figure 6. In the high-impedance regions 50A-C and 52A-C of each transfer function, the corresponding control signal (e.g., V controll 34A) is effectively an open-circuit.
  • the varactors e.g., varactors 26A-B
  • the varactors controlled by that control signal are effectively electrically isolated from the tank circuit T. Consequently, a varactor only contributes to a significant degree to oscillator operations such as up- conversion when the varactor' s control signal is operating in the low impedance region of the transfer function.
  • an additional path is provided which smoothly switches into the tank circuit T a fixed capacitor having a capacitance equal to the maximum varactor capacitance at the upper limit of a corresponding varactor' s tuning range.
  • Figure 7 depicts one embodiment of a CMOS folding circuit implementing the transfer functions of Figure 6.
  • the circuit of Figure 7 includes three FETs 54A-C connected with their gates 56A-C in parallel and driven by a control signal 32. Connected to the source 58A-C of each FET 54A-C is a resistor 60A-C.
  • the resistors 60A-C for the three FETs 54A-C have different resistance values.
  • the resistance of the resistors 60A-C is, for the first FET 56A designated as R, for the second FET 54B, 2R (i.e., twice the resistance of the first resistor 60A) , and for the third FET 56C, 3R, respectively.
  • the resistors 60A-C connect to current sources 62A-C which, in this embodiment, each provide the same amount of drive current, designated I.
  • Current flow through the resistors 60A-C produces different voltage levels at each of the FET sources 58A-C.
  • the values for the current sources 62A-C and the resistors are selected to provide voltage levels that enable the circuit to successively control the varactors 26A-B, 28A-B and 30A-B.
  • each output signal (V controll 34A, V control2 34B and V control3 34C) is supplied via an nFET and pFET pair.
  • V n and V p are bias signals that are applied to the gates of the nFETs 64A-C and the pFETs 66A-C. These bias signals are selected, in conjunction with the voltage levels set for the FETs 54A-B and other circuit components, so that the nFET and pFET pair for each output signal 34A-C conduct at the appropriate time to produce the desired transfer functions (i.e., as shown in Figure 6) .
  • each of the output lines 34A-C will present a high impedance to the varactors 26A-B, 28A-B and 30 A-B, as represented by the high impedance lines 50A-C in Figure 6.
  • V ⁇ n 32 increases (traversing left to right on the graph in Figure 6) , the first FET 54A will begin conducting once V ⁇ n 32 approaches a magnitude (designated V A in Figure 6) where it provides a sufficient voltage across the gate to source junction of the FET 54A. Note, however, due to the use of larger resistors 60B-C for the second and third FETs 54B-C that the FETs 54B-C will not be turned on when the first FET 54A is initially turned on. Once the first FET 54A turns on, the voltage at the source 68A will increase.
  • each output control signal 34A-C is sequentially activated over a defined range.
  • a given control signal 34A-C is not activated it presents a high impedance to its varactor 26A-B, 28A-B and 30A-B.
  • FETs 72A-C are used to electrically couple (e.g., switch) capacitors 74A-C into the tank circuit T.
  • a FET 72A-C is turned off (due to too low of a voltage at its gate), the FET 72A-C provides a high impedance that effectively isolates the associated capacitor 74A-C from the tank circuit T.
  • the bias signals V f for the FETs 72A-C are set so that when an nFET (e.g., 64A) turns off, the corresponding FET (e.g., 72A) turns on.
  • the FET 72A turns on it provides a relatively low impedance path to alternating current ground that effectively couples the capacitor 74A to the tank circuit T.
  • a circuit constructed according to this embodiment of the invention provides smooth transitions as it sequentially folds each varactor 26A-B, 28A-B or 30A-B into or out of the tank circuit T.
  • the invention limits the amount of noise that might otherwise be introduced into the system by the addition and or subtraction of circuit elements to the oscillator by hard switching techniques .
  • this embodiment of the invention can achieve staggered sigmoidal characteristics similar to the circuit of Figure 4.
  • This selection depends, among other factors, on the number of FETs in the circuit. When more FETs are used to provide a larger number of steps, each of the offsets and DC offsets will need to be specified so that the stages are activated in a substantially sequential order.
  • the folding circuits described herein provide smooth transitions when V ⁇ n decreases as well. In this case, as V ⁇ n decreases the stages sequentially fold in and out in an order opposite that described above.
  • the invention uses folding techniques, rather than hard switching, to sequentially and smoothly insert multiple small varactors into the frequency- determining circuit of a VCO.
  • the techniques described herein allow the VCO to maintain a desired frequency in the face of temperature and other environmental and electrical fluctuations without undesired phase and amplitude transients.
  • This folding technique applied to varactor control is capable of significantly reducing phase noise in VCO' s in which flicker noise up-converted by the nonlinear varactor capacitance is the dominant noise mechanism. Because the frequency sensitivity of each varactor control line is reduced by approximately N over the single-varactor circuit, the noise requirements placed on the folding circuit are modest, and large power dissipation and area is not required. Thus, in general, it is desirable to use very small (i.e., low capacitance) varactors to reduce the signal noise as much as possible. This design choice must, of course, be made taking into consideration other constraints on the circuit design.
  • the small varactors are successively replaced by fixed capacitors.
  • the effective Q of the oscillator's tank circuit may be improved. This is because fixed capacitors, generally realized with metal electrodes and a low-loss dielectric such as silicon dioxide on an integrated circuit, will have less series resistance than a varactor realized with a semiconductor structure. The lower series resistance leads to lower losses and higher Q. This, in turn, reduces phase noise as is well-known in the art.
  • the improved performance of the VCO may be exploited for improved system performance, or alternatively, the VCO power may be scaled down to reduce system power dissipation at the same current.
  • the invention provides effective techniques for reducing flicker noise up-conversion in oscillators in which the center frequency is tuned using variable-capacitance elements (varactors) .
  • the invention provides a technique for reducing flicker noise generated by internal components of the oscillator. While certain exemplary structures and operations have been described, the invention is not so limited. For example a variety of switching circuits may be employed to provide the functions of the FETs described herein.
  • An oscillator may be designed with one or more folding circuits or it may incorporate one or more VCO control signals. Thus the scope of the invention is to be determined according to the claims set forth below.

Abstract

A varactor folding technique reduces noise in controllable electronic oscillators through the use of a series of varactors having relatively small capacitance. A folding circuit provides control signals to the varactors in a sequential manner to provide a relatively smooth change in the total capacitance of the oscillator. Consequently, effective control of the oscillator is achieved with accompanying reductions in oscillator noise such as flicker noise.

Description

VARACTOR FOLDING TECHNIQUE FOR PHASE NOISE REDUCTION IN ELECTRONIC OSCILLATORS
BACKGROUND OF THE INVENTION
Communication systems use oscillators to process various signals used in the communication process. In a typical communication system, an information signal (e.g., a television program) is modulated onto a high frequency carrier signal to facilitate transmission of the signal. Such modulation may be accomplished, for example, by varying the phase of the carrier signal according to the information in the signal. Through the use of different carrier signals of different frequencies, many information signals may be simultaneously broadcast in a communication system. A receiver in the communication system typically uses an oscillator to separate the information signal from the carrier signal. Moreover, to accommodate the various carrier frequencies, the oscillator may be controllable so that the frequency of the signal generated by the oscillator may be varied as necessary.
In practice, oscillators do not generate a perfect signal; that is, a signal with precisely fixed frequency, amplitude and phase characteristics. Rather, due to a variety of factors including internal noise generated by the electronic components of the oscillator, the frequency, amplitude and phase of an oscillator will vary over a fairly narrow range over time .
Low-noise electronic oscillators are crucial to the effective operation of communication receivers and transmitters that use superheterodyne techniques and modulation formats that involve the phase of signal. As indicated above, amplitude and phase modulation are present in all real oscillators; however the nature of oscillators is such that for frequencies approaching the center frequency of the oscillation, the noise is dominated by phase fluctuations. Fluctuations in the phase of the transmitter or receiver oscillators corrupt the intended phase modulation of the signal in systems which use phase or frequency modulation. Phase noise may also reduce the ability of a radio system to reject or discern unwanted channels close in frequency to the desired channel.
Various techniques exist in the art to reduce phase noise such as phase locking to a less-noisy reference signal and the use of tracking phase-locked loops in the receiver. Nevertheless, system performance is often limited by the quality of available oscillators at practical levels of cost, size, and power dissipation.
Oscillators also may suffer from a significant level of noise due to up-conversion of flicker (1/f) noise from low frequencies to near the center frequency of the oscillator. Flicker noise occurs at low frequencies in nearly all electronic components.
SUMMARY OF THE INVENTION
The invention is directed to techniques for reducing noise in electronic oscillators. A folding technique is described for controlling circuit parameters in an electronic oscillator by separately controlling a plurality of circuit elements that affect those parameters. Through the use of a plurality of circuit elements, substantial noise reduction can be achieved. In addition, the use of a folding technique facilitates making smooth transitions when sequentially activating circuit elements. Thus, the folding technique described herein ensures that the combined effect of the adjustable circuit elements results in a relatively smooth adjustment of the circuit parameters.
In one embodiment the oscillator includes a plurality of varactors in the oscillator's tank circuit. The frequency of the oscillator is controlled, in part, by varying the voltage across the varactors. By using several varactors having relatively small capacitance instead of one varactor having a relatively large capacitance, flicker noise can be substantially reduced in the oscillator. In addition, a folding circuit is utilized to control the varactors so that each varactor is activated in a substantially sequential manner, relative to one another, such that the overall change in capacitance in the tank circuit occurs in a relatively smooth manner, without substantial transient effects.
In one embodiment, the folding technique takes advantage of a sigmoidal response characteristic of the varactor components. This sigmoidal response characteristic has the effect that the capacitance of the varactor changes in a substantially linear manner when a particular range of voltages are applied across the varactor. Outside that voltage range, however, the capacitance of the varactor remains relatively constant. By properly folding the variable capacitance of each of these varactors into the tank circuit of the oscillator, the invention achieves very low noise characteristics in a controllable oscillator.
In another embodiment of the invention, a folding circuit sequentially activates varactors in the circuit such that when the circuit is ready to fold a new varactor into the circuit, the folding circuit couples a fixed capacitance to the tank circuit to replace a varactor that is then isolated from the circuit. Again, the folding circuit facilitates smooth transitions in the total capacitance of the oscillator tank circuit .
Accordingly, an oscillator constructed according to the invention includes at least one folding circuit responsive to at least one control signal, the folding circuit generating a plurality of varactor control signals; and at least one oscillator circuit comprising a plurality of varactors responsive to the plurality of control signals.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings which constitute a part of this specification, an exemplary embodiment exhibiting various objectives and features hereof is set forth, specifically: FIGURE 1 is a block diagram illustrating an integrated circuit incorporating an oscillator with a varactor folding circuit according to one embodiment of the invention;
FIGURE 2 is a schematic diagram illustrating one embodiment of an oscillator incorporating several varactors and associated control lines;
FIGURE 3 is a graph illustrating transfer functions for an input control voltage and varactor control voltages according to one embodiment of the invention;
FIGURE 4 is a schematic diagram of a folding circuit according to one embodiment of the invention;
FIGURE 5 is a graph of a Cgs vs. Vgs curve for a CMOS FET varactor that illustrates that the curve defines a sigmoidal function;
FIGURE 6 is a graph illustrating transfer functions for an input control voltage and varactor control voltages according to one embodiment of the invention; and
FIGURE 7 is a schematic diagram of one embodiment of a folding circuit implementing transfer functions as described by Figure 6.
DESCRIPTION OF THE INVENTION
The invention is described below, with reference to detailed illustrative embodiments. It will be apparent that the invention can be embodied in a wide variety of forms, some of which may be quite different from those of the disclosed embodiments. Consequently, the specific structural and functional details disclosed herein are merely representative and do not limit the scope of the invention.
Referring initially to Figure 1, in one embodiment a circuit constructed according to the invention is implemented in a tuner synthesizer chip (i.e., an integrated circuit) 10. The tuner synthesizer 10 incorporates a voltage-controlled oscillator ("VCO") 12 that generates a signal within a particular range of frequencies. As is known in the art, the oscillator signal may be used for a variety of operations such as mixing with various input and/or output signals for the purpose of up-converting or down-converting signals between carrier frequencies (e.g., fc) and intermediate frequencies (e.g. , fL0) .
In accordance with the invention, the voltage-controlled oscillator 12 includes a folding circuit 14 that operates in conjunction with an oscillator circuit 16 to produce an output signal 18 of a desired frequency, as specified by a tuning control signal 20 or other system requirements. The oscillator circuit 16 includes several varactors 22 in its reactive tank circuit. The voltage across these varactors 22 is individually controlled by the folding circuit 14. The folding circuit 14, in turn, is controlled by a control signal from an oscillator control circuit 24.
Referring now to Figure 2, a simplified schematic of one embodiment of a CMOS differential LC oscillator with varactor tuning is described. As depicted in Figure 2, the invention uses several relatively small varactors 26A-B, 28A-B and 30A-B rather than a single varactor (or a differential pair of varactors) as is commonly used for frequency tuning. As an example, if a conventional circuit used a single varactor having capacitance C, an equivalent circuit according to the invention might have N smaller varactors, each with a capacitance of approximately C/N.
A conventional varactor-tuned voltage-controlled oscillator normally receives one control voltage, a variable DC voltage which alters the capacitance of the varactor (and therefore the oscillation frequency) by exploiting the nonlinear capacitance vs . voltage characteristic of the varactor element. In practice, however, the nonlinear capacitance of the varactor is also modulated by the low- frequency flicker noise fluctuations, causing unwanted phase noise. This is described in the following equation:
Figure imgf000007_0001
C
'„nnoii„ „ se Vvffllirc.koerr- d varact.or dfcent.er -1, dVflicker dCvaractor ~Eoffset where foffset is the frequency of the flicker noise component being considered. This equation follows from well-known FM modulation theory.
To achieve optimum oscillator operation, it is desirable to reduce the value of C.._r,^nr relative to the fixed capacitance of the circuit to reduce the impact that its fluctuations will have on the center frequency and thereby the phase. One approach has been to reduce Cvaractor to the minimum value necessary to cover thermal drift of the center frequency (so that the center frequency can be maintained constant as the transmitter or receiver changes temperature), and the remaining capacitance tuning is accomplished with switched fixed (constant) capacitors, which do not vary and therefore do not up-convert flicker noise.
This invention makes it possible to reduce the varactor capacitance further still. In one embodiment, the original single capacitor is, in effect, split into multiple smaller varactors. Each small varactor is then driven by its own control voltage. The multiple control voltages are derived from the original single control voltage in such a way that only one of the small capacitors is susceptible to modulation of its nonlinear capacitance by flicker noise fluctuations. Tests have shown that this technique may reduce the flicker noise up-conversion by 201og10N dB . it should be appreciated that Figure 2 depicts a simplified circuit schematic in order to facilitate the discussion of the invention. In practice, the varactors (e.g., 26A and 26B) associated with a given control signal (e.g., 34A) may be embodied in separate circuits. Such a design would reduce potential interference of one varactor with another varactor. Moreover, although Figure 2 describes a CMOS circuit, the invention is applicable to virtually all electronic oscillators using varactors which suffer from flicker noise up-conversion to the center frequency via modulation of the nonlinear varactor capacitance.
It should also be appreciated that the number of varactors and associated control signals used in a given folding circuit and oscillator may depend on the range of control that is desired over the frequency of the oscillator. If a wide frequency range is desired, the effective size of the varactor (i.e., the sum of capacitance of the individual varactors) may need to be larger. This may necessitate using more individual varactors in order to maintain desired noise characteristics .
The teachings of the invention may be implemented in many ways. In one approach, the sigmoidal shape of the Cgs vs. Vgs curve of a MOSFET varactor is exploited. This approach is described in conjunction with Figures 3, 4 and 5. If the varactors do not have a sigmoidal C-V characteristic, another approach as described in conjunction with Figures 6 and 7 may be used.
Referring now to Figure 3, the three graphs represent transfer functions that describe the relationship between the input control voltage Vln 32 and the varactor control voltages 34A-C. Each of the N MOSFET varactor pairs (e.g., varactors 26A-B, 28A-B and 30A-B depicted in Figure 2) is driven through its full linear range sequentially by a folding circuit with one input and N outputs. In this example N is equal to three. Thus, the folding circuit effectively converts a relatively large input signal to multiple transfer functions with reduced output range .
Figure 4 depicts one embodiment of a CMOS implementation of the transfer functions of Figure 3 that exploits the sigmoidal characteristics of certain MOSFET varactors. The folding circuit F of Figure 4 includes three field-effect transistors ("FETs") 36A-C connected with their gates 38A-C in parallel and driven by a control signal 32 (e.g., a phase- locked loop control signal) . The sources 42A-C of each FET 36A-C are connected to ground via resistors 44A-C, each of which has the same value of resistance, designated R. Current sources 46A-C are injected into the source points 42A-C of each FET 36A-C so that the DC voltage at each source 42A-C is progressively higher. That is, the current sources 46A-C have successively higher constant current output as represented, for example, by the designations 01, II and 21, respectively. Thus, the voltage at the first source 42A will be biased at a desired DC level such as 1 V. The voltage at the second source 42B is higher by a defined unit such as 0.5 V. The voltage at the third source 42C is yet another unit higher than the voltage at the second source. Hence the second and third sources 42B-C are biased at 1.5 V and 2 V, respectively, in this example.
Referring again to the transfer functions depicted in Figure 3, as the control signal 32 increases in value (Vιn increasing from left to right) , the folding circuit F of Figure 4 will produce three output signals (Vcontroll 34A, Vcontrol2 34B and Vcontrol3 34C) staggered in their respective DC level. For example, assuming that a potential of 1 V across the gate to source junction (Vgs) is required to activate the FETs 36A- C; when the control signal 32 is below 2 V the voltage at the output signals 34A-C will be approximately equal to VDD. When the level of the control signal 32 is above 2 V (designated VI in Figure 3), the voltage level of the first output 34A will go down. When the control signal 32 is above 2.5 V (designated V2 in Figure 3), the second output 34B will go down. When the control signal 32 is above 3 V (designated V3 in Figure 3), the third output 34C will go down.
The output signals (Vcontroll 34A, Vcontrol2 34B and Vcontrol3 34C) drive the varactors 26A-B, 28A-B and 30A-B in Figure 2. Significantly, in some embodiments the Cgs vs. Vgs curve 48 for the varactors 26A-B, 28A-B and 30A-B defines a sigmoidal shape as illustrated, for example, in Figure 5. As Figure 5 shows, near the center C of the curve 48 the capacitance of the varactors 26A-B, 28A-B and 30A-B varies in response to a control voltage (Vgs) in a relatively linear manner. However, the two ends E of the curve are, in effect, clipped. Thus, in the end regions E the capacitance of a varactor does not change appreciably in response to changes in the control voltage (Vgs) .
The sigmoidal characteristic of the varactors 26A-B, 28A- B and 30A-B facilitates use of a circuit whereby all of the varactors 26A-B, 28A-B and 30A-B are electrically coupled to the oscillator tank circuit T at all times. In this case, a control voltage 32 is, in effect, successively applied to the varactors 26A-B, 28A-B and 30A-B such that, for a given range of the control voltage 32 only one of the varactors 26A-B, 28A-B and 30A-B is within its substantially linear range. Given that the varactors 26A-B, 28A-B and 30A-B change capacitance only slightly when operating outside of their substantially linear range (due to the clipping effect described above), the varactors 26A-B, 28A-B and 30A-B do not substantially change the center frequency of the tank circuit T when their control voltage (Vgs) is outside of the varactor' s substantially linear range. Thus, the capacitance of the tank circuit T is, for the most part, altered by controlling one varactor at a time.
Typically, the invention provides smooth transitions when folding from one varactor to the next by incorporating some overlap between the capacitive effect of each varactor on the tank circuit T. For example, the circuit parameters of Figure 4 (e.g., values of the resistors, magnitude of the current flow from the current sources) may be selected so that Vcontrol2 34B starts to change from its steady state (at which time it starts changing the capacitance of varactors 28A and 28B) before Vcontroll 34A goes to its steady state (at which time it stops changing the capacitance of varactors 26A and 26B) . Hence, in Figure 3, when Vιn 32 is equal to V2, both Vcontroll 34A and Vcontrol2 34B correspond to points on the sloped part of their respective curves, rather than the horizontal sections of the curves. By providing sufficient overlap, the folding circuit reduces the likelihood that there will be dead-bands that will adversely affect the operation of the VCO.
To achieve sufficiently smooth transitions, certain constraints should be considered when designing a VCO circuit in accordance with the invention. It is important that variations that may occur in dfVC0/dVcontrol as the VCO is tuned are properly considered during the stability and noise analysis stage of the design process for any feedback control loops, i.e., phase-locked loops containing the VCO. The VCO should have sufficient stability margin. And, in some embodiments, it may be preferable to ensure that the slope of the df/dv curve not change excessively. The invention provides significant advantages over designs that merely switch fixed capacitors in and out of the tank circuit. The invention provides smooth transitions as the circuit folds in each successive varactor/capacitor . Therefore, phase synchronization loops in a receiver utilizing the VCO will not be forced to have to re-lock every time a circuit element is folded into or out of the circuit. This is in marked contrast to a hard switching device where such re- locking could occur every time a capacitor was switched into or out of the circuit.
In sum, the circuit of Figure 4 will have smooth transitions in the Cgs vs. Vgs and Vout vs. Vιn curves. Moreover, by allowing some overlap, a smooth fOScιiiator vs • Vin tuning characteristic may be achieved. in the case where the varactors 26A-B, 28A-B and 30A-B do not have a sigmoidal C-V (capacitance vs. voltage) characteristic, the invention may utilize a folding circuit designed to have the transfer functions as illustrated in Figure 6. In the high-impedance regions 50A-C and 52A-C of each transfer function, the corresponding control signal (e.g., Vcontroll 34A) is effectively an open-circuit. As a result, the varactors (e.g., varactors 26A-B) controlled by that control signal are effectively electrically isolated from the tank circuit T. Consequently, a varactor only contributes to a significant degree to oscillator operations such as up- conversion when the varactor' s control signal is operating in the low impedance region of the transfer function.
In this embodiment, an additional path is provided which smoothly switches into the tank circuit T a fixed capacitor having a capacitance equal to the maximum varactor capacitance at the upper limit of a corresponding varactor' s tuning range. Thus, even though the varactor in this embodiment does not have a clipping capacitance characteristic that naturally takes the varactor out of the circuit, switches in the folding circuit accomplish the same effect, and do so in a relatively smooth manner .
Figure 7 depicts one embodiment of a CMOS folding circuit implementing the transfer functions of Figure 6. The circuit of Figure 7 includes three FETs 54A-C connected with their gates 56A-C in parallel and driven by a control signal 32. Connected to the source 58A-C of each FET 54A-C is a resistor 60A-C. In this embodiment, the resistors 60A-C for the three FETs 54A-C have different resistance values. The resistance of the resistors 60A-C is, for the first FET 56A designated as R, for the second FET 54B, 2R (i.e., twice the resistance of the first resistor 60A) , and for the third FET 56C, 3R, respectively. The resistors 60A-C, in turn, connect to current sources 62A-C which, in this embodiment, each provide the same amount of drive current, designated I. Current flow through the resistors 60A-C produces different voltage levels at each of the FET sources 58A-C. In a manner similar to that discussed in conjunction with the embodiment of Figure 4, the values for the current sources 62A-C and the resistors are selected to provide voltage levels that enable the circuit to successively control the varactors 26A-B, 28A-B and 30A-B.
In the embodiment of Figure 7, each output signal (Vcontroll 34A, Vcontrol2 34B and Vcontrol3 34C) is supplied via an nFET and pFET pair. Vn and Vp are bias signals that are applied to the gates of the nFETs 64A-C and the pFETs 66A-C. These bias signals are selected, in conjunction with the voltage levels set for the FETs 54A-B and other circuit components, so that the nFET and pFET pair for each output signal 34A-C conduct at the appropriate time to produce the desired transfer functions (i.e., as shown in Figure 6) .
For convenience, both the embodiment of Figure 4 and the embodiment of Figure 7 are described as controlling the varactors in Figure 2. It should be appreciated, however, that typically the two embodiments would be used to control different types of varactors as discussed herein.
Referring to Figures 6 and 7, with Vin 32 at or near 0 V, none of the FETs 54A-C will be turned on. As a result, the voltage at the sources 68A-C of the nFETs 64A-C will be approximately 0 V. Under these circumstances, the nFETs 64A-C will be on because there will be sufficient bias across their gate to source junction; Vn for each nFET 64A-C being specified as greater than the threshold voltage of a gate to source junction. However, the pFETs 66A-C will not be on because there will not be sufficient bias across their gate to source junction. This is because the voltage at the source of the pFETs 66A-C will not be higher than Vp . Thus, each of the output lines 34A-C will present a high impedance to the varactors 26A-B, 28A-B and 30 A-B, as represented by the high impedance lines 50A-C in Figure 6.
As Vιn 32 increases (traversing left to right on the graph in Figure 6) , the first FET 54A will begin conducting once Vιn 32 approaches a magnitude (designated VA in Figure 6) where it provides a sufficient voltage across the gate to source junction of the FET 54A. Note, however, due to the use of larger resistors 60B-C for the second and third FETs 54B-C that the FETs 54B-C will not be turned on when the first FET 54A is initially turned on. Once the first FET 54A turns on, the voltage at the source 68A will increase. Once this source voltage increases to a level above Vp plus the appropriate junction voltages for pFET 66A and nFET 64A, the pFET 66A will turn on. At that point the Vcontroll 34A signal will become active and will increase in a substantially linear manner as Vιn increases (see the low impedance section 70A of the transfer function depicted Figure 6) . As Vιn 32 continues to increase, the voltage at the source 68A of nFET 64A will eventually reach a level where it is higher than Vn minus the threshold voltage for the nFET 64A. At this point, the nFET 64A will turn off and the Vcontroll line 34A will once again present a high impedance 52A as depicted in Figure 6.
As Vιn 32 continues to increase, eventually the second FET 54B will turn on and a similar sequence of events as was just described for Vcontroll 34A will transpire to activate Vcontrol2 34B. As Vιn 32 increases further still, the third FET 54C will be turned on and the circuit will generate the Vcontrol3 signal 34C. Thus, each output control signal 34A-C is sequentially activated over a defined range. When a given control signal 34A-C is not activated it presents a high impedance to its varactor 26A-B, 28A-B and 30A-B.
When a control signal goes to a high impedance state, the associated varactors are effectively isolated from the oscillator tank circuit T. To compensate for the corresponding reduction in the capacitance in the tank circuit T, FETs 72A-C are used to electrically couple (e.g., switch) capacitors 74A-C into the tank circuit T. When a FET 72A-C is turned off (due to too low of a voltage at its gate), the FET 72A-C provides a high impedance that effectively isolates the associated capacitor 74A-C from the tank circuit T.
The bias signals Vf for the FETs 72A-C are set so that when an nFET (e.g., 64A) turns off, the corresponding FET (e.g., 72A) turns on. When the FET 72A turns on it provides a relatively low impedance path to alternating current ground that effectively couples the capacitor 74A to the tank circuit T. The values for the capacitors 74A-C are chosen so that the capacitance coupled into the tank circuit T when a FET 72A-C turns on is the same value of capacitance provided by the varactor 26A-B, 28A-B or 30A-B, just before the control signal 34A-C for the varactor 26A-B, 28A-B or 30A-B went back to the high impedance state 52A-C (Figure 6) . Thus, a circuit constructed according to this embodiment of the invention provides smooth transitions as it sequentially folds each varactor 26A-B, 28A-B or 30A-B into or out of the tank circuit T. Significantly, due to the smoothness of this process, the invention limits the amount of noise that might otherwise be introduced into the system by the addition and or subtraction of circuit elements to the oscillator by hard switching techniques .
From the above it will be appreciated that by proper selection of the bias signals (e.g., Vp, Vn and Vf) and the DC offsets (e.g., the voltage defined at the source of the FETs to enable the corresponding FET to turn on at a particular level of Vin) that this embodiment of the invention can achieve staggered sigmoidal characteristics similar to the circuit of Figure 4. This selection depends, among other factors, on the number of FETs in the circuit. When more FETs are used to provide a larger number of steps, each of the offsets and DC offsets will need to be specified so that the stages are activated in a substantially sequential order. It should also be appreciated that the folding circuits described herein provide smooth transitions when Vιn decreases as well. In this case, as Vιn decreases the stages sequentially fold in and out in an order opposite that described above.
As discussed herein, the invention uses folding techniques, rather than hard switching, to sequentially and smoothly insert multiple small varactors into the frequency- determining circuit of a VCO. Compared to hard switching of fixed capacitors, the techniques described herein allow the VCO to maintain a desired frequency in the face of temperature and other environmental and electrical fluctuations without undesired phase and amplitude transients.
This folding technique applied to varactor control is capable of significantly reducing phase noise in VCO' s in which flicker noise up-converted by the nonlinear varactor capacitance is the dominant noise mechanism. Because the frequency sensitivity of each varactor control line is reduced by approximately N over the single-varactor circuit, the noise requirements placed on the folding circuit are modest, and large power dissipation and area is not required. Thus, in general, it is desirable to use very small (i.e., low capacitance) varactors to reduce the signal noise as much as possible. This design choice must, of course, be made taking into consideration other constraints on the circuit design.
In a preferred embodiment of the circuit of Figure 7, the small varactors are successively replaced by fixed capacitors. By using fixed capacitors, the effective Q of the oscillator's tank circuit may be improved. This is because fixed capacitors, generally realized with metal electrodes and a low-loss dielectric such as silicon dioxide on an integrated circuit, will have less series resistance than a varactor realized with a semiconductor structure. The lower series resistance leads to lower losses and higher Q. This, in turn, reduces phase noise as is well-known in the art.
The improved performance of the VCO may be exploited for improved system performance, or alternatively, the VCO power may be scaled down to reduce system power dissipation at the same current.
From the above it may be seen that the invention provides effective techniques for reducing flicker noise up-conversion in oscillators in which the center frequency is tuned using variable-capacitance elements (varactors) . In particular, the invention provides a technique for reducing flicker noise generated by internal components of the oscillator. While certain exemplary structures and operations have been described, the invention is not so limited. For example a variety of switching circuits may be employed to provide the functions of the FETs described herein. An oscillator may be designed with one or more folding circuits or it may incorporate one or more VCO control signals. Thus the scope of the invention is to be determined according to the claims set forth below.

Claims

WHAT IS CLAIMED IS:
1. A controllable oscillator, responsive to at least one control signal, comprising: at least one folding circuit responsive to the at least one control signal, the at least one folding circuit generating a plurality of varactor control signals; and at least one oscillator circuit comprising a plurality of varactors responsive to the plurality of control signals wherein the varactors influence an operating frequency of the oscillator .
2. The controllable oscillator of claim 1 wherein each of the varactor control signals is associated with at least one voltage range and wherein the folding circuit generates a selected varactor control signal when a level of the at least one control signal is within a voltage range associated with the selected varactor control signal.
3. The controllable oscillator of claim 2 wherein each of the varactor control signals is associated with a unique voltage range.
4. The controllable oscillator of claim 1 wherein a Cgs vs . vgs relationship of the varactors defines a sigmoidal function.
5. The controllable oscillator of claim 1 wherein the varactors are always electrically coupled to the oscillator.
6. A controllable oscillator comprising: at least one oscillator circuit comprising a plurality of varactors; a plurality of capacitors; at least one switch for electrically coupling a plurality of varactor control signals to the varactors and for electrically isolating the varactors from the oscillator circuit; and at least one switch for electrically coupling the capacitors to the oscillator circuit.
7. The controllable oscillator of claim 6 wherein the at least one switch for electrically coupling and electrically isolating comprises at least one field-effect transistor circuit .
8. The controllable oscillator of claim 6 wherein the at least one switch for electrically coupling the capacitors comprises at least one field-effect transistor circuit.
9. The controllable oscillator of claim 6 wherein the at least one switch for electrically coupling and electrically isolating isolates a varactor by establishing a high impedance between the varactor and an alternating current ground.
10. A controllable oscillator, responsive to at least one control signal defining a plurality of voltage ranges, comprising : at least one oscillator circuit comprising a plurality of varactors responsive to a plurality of varactor control signals; a first transistor, responsive to a first one of the voltage ranges of the control signal, for generating a first one of the varactor control signals to control a first one of the varactors; and a second transistor, responsive to a second one of the voltage ranges of the control signal, for generating a second one of the varactor control signals to control a second one of the varactors.
11. A method of controlling an operating frequency of an oscillator that comprises a plurality of varactors, the method comprising the steps of: receiving at least one signal relating to a desired change m the operating frequency of the oscillator; providing a plurality of varactor control signals to a plurality of the varactors to alter capacitances of a plurality of the varactors to change the operating frequency of the oscillator.
12. The method of claim 11 where the step of providing a plurality of varactor control signals further comprises the steps of: generating a first varactor control signal when a level of the at least one signal is equal to a first signal level; and generating a second varactor control signal when a level of the at least one signal is equal to a second signal level.
13. A method of controlling an operating frequency of an oscillator that comprises a plurality of varactors, the method comprising the steps of: receiving at least one control signal relating to a desired change in the operating frequency of the oscillator; generating a first varactor control signal when a level of the control signal is equal to a first signal level; providing the first varactor control signal to a first one of the varactors to alter a capacitance of the first varactor to change the operating frequency of the oscillator; generating a second varactor control signal when a level of the control signal is equal to a second signal level; and providing the second varactor control signal to a second one of the varactors to alter a capacitance of the second varactor to effect a change in the operating frequency of the oscillator.
14 The method of claim 13 wherein a Cgs vs Vgs relationship of the varactors defines a sigmoidal function.
15. The method of claim 13 wherein the varactors are always electrically coupled to the oscillator.
16. A method of controlling an operating frequency of an oscillator, the method comprising the steps of: electrically coupling a varactor control signal to the varactor; applying the varactor control signal to the varactor to alter a capacitance of the varactor to change the operating frequency of the oscillator. electrically isolating the varactor from the oscillator; and electrically coupling a capacitor to the oscillator circuit .
17. The method of claim 16 wherein the capacitor has a capacitance value corresponding to a value of capacitance associated with the varactor before the varactor was electrically isolated from the oscillator.
PCT/US2000/034095 1999-12-14 2000-12-14 Varactor folding technique for phase noise reduction in electronic oscillators WO2001045251A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00989277A EP1247331B1 (en) 1999-12-14 2000-12-14 Varactor control voltage supply technique for phase noise reduction in electronic oscillators
AU25806/01A AU2580601A (en) 1999-12-14 2000-12-14 Varactor folding technique for phase noise reduction in electronic oscillators
DE60030589T DE60030589T2 (en) 1999-12-14 2000-12-14 METHOD OF CONTROL VOLTAGE SUPPLY FOR VARACTERORS FOR REDUCING PHASE RUSH IN ELECTRONIC OSCILLATORS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17084099P 1999-12-14 1999-12-14
US60/170,840 1999-12-14

Publications (1)

Publication Number Publication Date
WO2001045251A1 true WO2001045251A1 (en) 2001-06-21

Family

ID=22621479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/034095 WO2001045251A1 (en) 1999-12-14 2000-12-14 Varactor folding technique for phase noise reduction in electronic oscillators

Country Status (6)

Country Link
US (3) US6563392B2 (en)
EP (1) EP1247331B1 (en)
AT (1) ATE339029T1 (en)
AU (1) AU2580601A (en)
DE (1) DE60030589T2 (en)
WO (1) WO2001045251A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103679A1 (en) * 2011-01-31 2012-08-09 硅实验室股份有限公司 Receiver circuit including tuning network
EP2839576B1 (en) * 2012-04-19 2018-09-19 Semtech Corporation Analog loop filter systems, apparatus and methods

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003887A1 (en) * 1998-05-29 2003-01-02 Lysander Lim Radio-frequency communication apparatus and associated methods
US7221921B2 (en) * 1998-05-29 2007-05-22 Silicon Laboratories Partitioning of radio-frequency apparatus
US7035607B2 (en) * 1998-05-29 2006-04-25 Silicon Laboratories Inc. Systems and methods for providing an adjustable reference signal to RF circuitry
US7242912B2 (en) * 1998-05-29 2007-07-10 Silicon Laboratories Inc. Partitioning of radio-frequency apparatus
US7092675B2 (en) * 1998-05-29 2006-08-15 Silicon Laboratories Apparatus and methods for generating radio frequencies in communication circuitry using multiple control signals
WO2001045251A1 (en) * 1999-12-14 2001-06-21 Broadcom Corporation Varactor folding technique for phase noise reduction in electronic oscillators
JP2002043842A (en) * 2000-07-26 2002-02-08 Oki Electric Ind Co Ltd Lc resonance circuit and voltage-controlled oscillator
US7133485B1 (en) * 2001-06-25 2006-11-07 Silicon Laboratories Inc. Feedback system incorporating slow digital switching for glitch-free state changes
US6825785B1 (en) 2002-02-28 2004-11-30 Silicon Laboratories, Inc. Digital expander apparatus and method for generating multiple analog control signals particularly useful for controlling a sub-varactor array of a voltage controlled oscillator
DE10209517A1 (en) * 2002-03-04 2003-06-26 Infineon Technologies Ag Tunable capacitive component for a liquid crystal oscillator connects circuit nodes via gate connections in metal oxide semiconductor transistors to measure a tuned capacitor
EP1406379A1 (en) * 2002-09-26 2004-04-07 Stmicroelectronics SA Voltage controlled oscillator including varactors, with broadened sensitivity
US7263336B2 (en) * 2002-12-31 2007-08-28 Marvell International Ltd. Device, system and method to provide different bias voltages and common tuning voltage
US6882237B2 (en) * 2003-04-30 2005-04-19 Zarlink Semiconductor Inc. Capture range control mechanism for voltage controlled oscillators
US20040246039A1 (en) * 2003-06-03 2004-12-09 Chi-Ming Hsiao Switched capacitor circuit capable of minimizing clock feedthrough effect in a voltage controlled oscillator circuit
EP1564890A1 (en) * 2004-02-13 2005-08-17 Ecole Polytechnique Federale De Lausanne Analogue self-calibration method and apparatus for low noise, fast and wide-locking range phase locked loop
US7170356B2 (en) * 2004-02-23 2007-01-30 Infineon Technologies Ag Circuit with variable capacitance and method for operating a circuit with variable capacitance
DE102004008701B4 (en) * 2004-02-23 2006-04-06 Infineon Technologies Ag Circuit having adjustable capacitance for voltage controlled oscillator as for compact discs, has two parallel capacitor units whose capacitance is governed by two separate applied voltages
DE102004008706A1 (en) * 2004-02-23 2005-09-08 Infineon Technologies Ag Voltage controlled oscillator circuit has an inductance and a serial capacitance arrangement with partial capacitances connected in parallel, with each capacitance being dependent on the value of an applied pre-voltage
US7212076B1 (en) * 2004-09-17 2007-05-01 Cypress Semiconductor Corpoartion Mixed signal method and system for tuning a voltage controlled oscillator
GB0506887D0 (en) * 2005-04-05 2005-05-11 Rokos George H S Improvement to tuning control
US7782151B2 (en) * 2005-05-25 2010-08-24 Integrated Device Technology Inc. VCO digital range selection
US20060267694A1 (en) * 2005-05-25 2006-11-30 Integrated Device Technology, Inc. VCO with large frequency range but low control voltage gain
US7342460B2 (en) * 2006-01-30 2008-03-11 Silicon Laboratories Inc. Expanded pull range for a voltage controlled clock synthesizer
KR100877688B1 (en) * 2006-07-14 2009-01-09 한국전자통신연구원 Linearized Variable-Capacitance Module and LC Resonance Circuit using it
KR100821126B1 (en) * 2006-07-31 2008-04-11 한국전자통신연구원 An apparatus having a variable capacitor circuit with a linear capacitance variation
US20100102859A1 (en) * 2008-10-29 2010-04-29 Texas Instruments Incorporated Lc voltage controlled oscillator tank with linearized frequency control
US8749316B2 (en) * 2009-06-23 2014-06-10 Qualcomm Incorporated Programmable varactor and methods of operation thereof
US8154350B2 (en) * 2010-03-17 2012-04-10 Texas Instruments Incorporated PLL with continuous and bang-bang feedback controls
US8130047B2 (en) 2010-04-30 2012-03-06 Texas Instruments Incorporated Open loop coarse tuning for a PLL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621205A (en) * 1984-01-16 1986-11-04 Hewlett-Packard Company Method and apparatus for reducing varactor noise
US5739730A (en) * 1995-12-22 1998-04-14 Microtune, Inc. Voltage controlled oscillator band switching technique

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1591364B1 (en) * 1967-04-29 1970-08-20 Philips Patentverwaltung Circuit arrangement for tuning
US3538450A (en) * 1968-11-04 1970-11-03 Collins Radio Co Phase locked loop with digital capacitor and varactor tuned oscillator
US4353038A (en) * 1981-03-31 1982-10-05 Motorola, Inc. Wideband, synthesizer switched element voltage controlled oscillator
JPS5843632A (en) * 1981-09-01 1983-03-14 テクトロニツクス・インコ−ポレイテツド Phase fixing circuit
US4503401A (en) * 1982-08-04 1985-03-05 Allied Corporation Wideband phase locked loop tracking oscillator for radio altimeter
US5030926A (en) * 1990-07-10 1991-07-09 At&T Bell Laboratories Voltage controlled balanced crystal oscillator circuit
US5254958A (en) * 1991-02-19 1993-10-19 Pacific Communications, Inc. Phase-lock-loop circuit and method for compensating, data bias in the same
JPH09162730A (en) * 1995-11-29 1997-06-20 Internatl Business Mach Corp <Ibm> Pll circuit
US5648744A (en) * 1995-12-22 1997-07-15 Microtune, Inc. System and method for voltage controlled oscillator automatic band selection
US6091304A (en) * 1998-09-22 2000-07-18 Lg Information & Communications, Ltd. Frequency band select phase lock loop device
WO2001045251A1 (en) * 1999-12-14 2001-06-21 Broadcom Corporation Varactor folding technique for phase noise reduction in electronic oscillators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621205A (en) * 1984-01-16 1986-11-04 Hewlett-Packard Company Method and apparatus for reducing varactor noise
US5739730A (en) * 1995-12-22 1998-04-14 Microtune, Inc. Voltage controlled oscillator band switching technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103679A1 (en) * 2011-01-31 2012-08-09 硅实验室股份有限公司 Receiver circuit including tuning network
EP2839576B1 (en) * 2012-04-19 2018-09-19 Semtech Corporation Analog loop filter systems, apparatus and methods

Also Published As

Publication number Publication date
DE60030589D1 (en) 2006-10-19
US20030164743A1 (en) 2003-09-04
US6985044B2 (en) 2006-01-10
EP1247331A1 (en) 2002-10-09
US6563392B2 (en) 2003-05-13
EP1247331B1 (en) 2006-09-06
US6806787B2 (en) 2004-10-19
ATE339029T1 (en) 2006-09-15
AU2580601A (en) 2001-06-25
DE60030589T2 (en) 2007-09-13
US20050083143A1 (en) 2005-04-21
US20020008593A1 (en) 2002-01-24

Similar Documents

Publication Publication Date Title
EP1247331B1 (en) Varactor control voltage supply technique for phase noise reduction in electronic oscillators
US7239212B2 (en) Apparatus and method for phase lock loop gain control
US6778022B1 (en) VCO with high-Q switching capacitor bank
EP1261126B1 (en) Varactor based differential VCO with switchable frequency bands
US20030227341A1 (en) Voltage-controlled oscillator and frequency synthesizer
JP5036966B2 (en) LC oscillator with wide tuning range and low phase noise
US7564318B2 (en) Switch capacitance and varactor banks applied to voltage controlled oscillator having constant frequency tuning sensitivity
US20070247237A1 (en) Technique for reducing capacitance of a switched capacitor array
US20070103248A1 (en) Oscillator and data processing equipment using the same and voltage control oscillator and data processing equipment using voltage control oscillator
US20040080374A1 (en) Voltage controlled oscillator
US20040169564A1 (en) Voltage-controlled oscillator
US6917248B2 (en) Broadband voltage controlled oscillator supporting improved phase noise
US20020040991A1 (en) Variable capacitor for tuned circuits
EP0270298B1 (en) Wide range oscillator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000989277

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000989277

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000989277

Country of ref document: EP