WO2001048333A1 - A process for the manufacturing of surface elements - Google Patents

A process for the manufacturing of surface elements Download PDF

Info

Publication number
WO2001048333A1
WO2001048333A1 PCT/SE2000/002341 SE0002341W WO0148333A1 WO 2001048333 A1 WO2001048333 A1 WO 2001048333A1 SE 0002341 W SE0002341 W SE 0002341W WO 0148333 A1 WO0148333 A1 WO 0148333A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
wear layer
decor
dέcor
supporting core
Prior art date
Application number
PCT/SE2000/002341
Other languages
French (fr)
Inventor
Krister Hansson
Johan Lundgren
Håkan WERNERSSON
Original Assignee
Perstorp Flooring Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20418305&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001048333(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Perstorp Flooring Ab filed Critical Perstorp Flooring Ab
Priority to DE60015603T priority Critical patent/DE60015603T3/en
Priority to EP00987870A priority patent/EP1242702B2/en
Priority to AT00987870T priority patent/ATE281576T1/en
Priority to AU24145/01A priority patent/AU2414501A/en
Publication of WO2001048333A1 publication Critical patent/WO2001048333A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • B27N7/005Coating boards, e.g. with a finishing or decorating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/06Embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/14Printing or colouring
    • B32B38/145Printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C3/00Processes, not specifically provided for elsewhere, for producing ornamental structures
    • B44C3/02Superimposing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C3/00Processes, not specifically provided for elsewhere, for producing ornamental structures
    • B44C3/08Stamping or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C3/00Processes, not specifically provided for elsewhere, for producing ornamental structures
    • B44C3/08Stamping or bending
    • B44C3/085Stamping or bending stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0446Ornamental plaques, e.g. decorative panels, decorative veneers bearing graphical information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0469Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0469Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper
    • B44C5/0476Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper with abrasion resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C5/00Processes for producing special ornamental bodies
    • B44C5/04Ornamental plaques, e.g. decorative panels, decorative veneers
    • B44C5/0469Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper
    • B44C5/0492Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper containing wooden elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D2/00Special techniques in artistic painting or drawing, e.g. oil painting, water painting, pastel painting, relief painting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D3/00Accessories or implements for use in connection with painting or artistic drawing, not otherwise provided for; Methods or devices for colour determination, selection, or synthesis, e.g. use of colour tables
    • B44D3/003Methods or devices for colour determination, selection or synthesis, e.g. use of colour tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F1/00Designs or pictures characterised by special or unusual light effects
    • B44F1/06Designs or pictures characterised by special or unusual light effects produced by transmitted light, e.g. transparencies, imitations of glass paintings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F9/00Designs imitating natural patterns
    • B44F9/02Designs imitating natural patterns wood grain effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44FSPECIAL DESIGNS OR PICTURES
    • B44F9/00Designs imitating natural patterns
    • B44F9/04Designs imitating natural patterns of stone surfaces, e.g. marble
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/0435Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like having connection means at the edges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/045Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/32Translucent ceilings, i.e. permitting both the transmission and diffusion of light
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/072Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of specially adapted, structured or shaped covering or lining elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0871Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements having an ornamental or specially shaped visible surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/16Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of fibres or chips, e.g. bonded with synthetic resins, or with an outer layer of fibres or chips
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/18Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of organic plastics with or without reinforcements or filling materials or with an outer layer of organic plastics with or without reinforcements or filling materials; plastic tiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/02038Flooring or floor layers composed of a number of similar elements characterised by tongue and groove connections between neighbouring flooring elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • E04F15/105Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials of organic plastics with or without reinforcements or filling materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • E04F15/107Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials composed of several layers, e.g. sandwich panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2471/00Floor coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • B32B2607/02Wall papers, wall coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/006Patterns of chemical products used for a specific purpose, e.g. pesticides, perfumes, adhesive patterns; use of microencapsulated material; Printing on smoking articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0027After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using protective coatings or layers by lamination or by fusion of the coatings or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0045After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using protective coatings or film forming compositions cured by mechanical wave energy, e.g. ultrasonics, cured by electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams, or cured by magnetic or electric fields, e.g. electric discharge, plasma
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/01Joining sheets, plates or panels with edges in abutting relationship
    • E04F2201/0107Joining sheets, plates or panels with edges in abutting relationship by moving the sheets, plates or panels substantially in their own plane, perpendicular to the abutting edges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2201/00Joining sheets or plates or panels
    • E04F2201/02Non-undercut connections, e.g. tongue and groove connections
    • E04F2201/023Non-undercut connections, e.g. tongue and groove connections with a continuous tongue or groove
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1039Surface deformation only of sandwich or lamina [e.g., embossed panels]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24364Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • Y10T428/24388Silicon containing coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24421Silicon containing
    • Y10T428/2443Sand, clay, or crushed rock or slate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24438Artificial wood or leather grain surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24446Wrinkled, creased, crinkled or creped
    • Y10T428/24455Paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24595Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness and varying density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • Y10T428/2462Composite web or sheet with partial filling of valleys on outer surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24653Differential nonplanarity at margin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/24868Translucent outer layer
    • Y10T428/24876Intermediate layer contains particulate material [e.g., pigment, etc.]

Definitions

  • the present invention relates to a process for the manufacturing of surface elements with a decorative upper surface of which the decorative elements have an considerably improved matching of the decor between adjacent surface elements.
  • thermosetting laminate is common in many areas nowadays. They are mostly used where the demands on abrasion resistance are high, and furthermore where resistance to different chemicals and moisture is desired. As examples of such products floors, floor skirtings, table tops, work tops and wall panels can be mentioned.
  • thermosetting laminate most often consist of a number of base sheets with a decor sheet placed closest to the surface.
  • the decor sheet can be provided with a pattern by desire. Common patterns usually visualise different kinds of wood or mineral such as marble and granite.
  • One common pattern on floor elements is the rod pattern where two or more rows of rods of, for example wood, is simulated in the decor.
  • the traditional thermosetting laminate manufacturing includes a number of steps which will result in a random matching tolerance of up to ⁇ 5mm, which is considered to great.
  • the steps included in the manufacturing of a laminate floor is; printing decor on a paper of ⁇ -cellulose, impregnating the decorative paper with melamine-formaldehyde resin, drying the decorative paper, laminating the decorative paper under heat and pressure together with similarly treated supporting papers, applying the decorative laminate on a carrier and finally sawing and milling the carrier to the desired format. All these steps in the manufacturing will cause a change in format on the decor paper. It will therefore be practically impossible to achieve a desired match of patterns between the elements of a without causing great amounts of wasted laminate.
  • the thermosetting laminate is a rather costly part of a laminate floor.
  • the invention relates to a process for the manufacturing of surface elements which comprises a decorative upper layer and a supporting core
  • the surface elements may be used as floor, wall or ceiling boards
  • the invention is characterised in that, 1) A supporting core with a desired format is manufactured and provided with an upper side and a lower side n) The upper side of the supporting core is then provided with a decor, by for example printing The decor is positioned after a predetermined fixing point on the supporting core in) The upper side of the supporting core is then provided with a protecting, at least partly translucent, wear layer by for example spray coating, roller coating, curtain coating and immersion coating or by being provided with one or more sheets of ⁇ -cellulose impregnated with thermosetting resin or lacquer
  • the decor is suitably achieved by digitisation of an actual archetype or by partly or completely being created in a digital media
  • the digitised decor is stored digitally in order to be used as a control function and original, together with possible control programs, when printing the d ⁇ cor
  • the decor may accordingly be obtained by making a high resolution or selected resolution digital picture of the desired decor This is suitably made by means of a digital camera or scanner.
  • the most common decor will of course be different kinds of wood and minerals like marble, as these probably will continue to be preferred surface decoration in home and public environments. It is, however, possible to depict anything that is visible
  • the digitised version of the decor is then edited to fit the size of the supporting core. It is also possible to rearrange the decor in many different ways, like changing colour tones, contrast, dividing the decor into smaller segments and adding other decorative elements. It is also possible to completely create the decor in a computer equipped for graphic design.
  • the printer may be of an electrostatic type or an ink-jet type printer Most often the colours yellow, magenta, cyan and black will be sufficient for the printing process, but in some cases it might be advantageous to add white Some colours are difficult to achieve using the colours yellow, magenta, cyan, black and white whereby the colours light magenta and light cyan may be added It is also possible to add so called spot colours where specific colour tones are difficult to achieve or where only certain parts of the colour spectrum with intermixing shades is desired.
  • the digitally stored decor can also be used together with support programs when guiding other operations and procedures in the manufacturing process
  • Such steps in the operation may include procedures like identification marking, packaging, lacquering, surface embossing, storing and delivery logistics as well as assembly instructions
  • the main part of the supporting core is suitably constituted by a particle board or a fibre board It is, however, possible to manufacture the core that at least partly consist of a polymer such as for example polyurethane or a polyolefin such as polyethylene, polypropylene or polybutene.
  • a polymer such as for example polyurethane or a polyolefin such as polyethylene, polypropylene or polybutene.
  • a polymer based core can be achieved by being injection moulded or press moulded and can be given its shape by plastic moulding and does therefore not require any abrasive treatment
  • a polymer based core may except polymer also contain a filler in the form of a particle or fibre of organic or inorganic material, which besides the use a cost reducing material also will be used to modify the mechanical characteristics of the core
  • suitable fillers can be mentioned, cellulose or wood particles, straw, starch, glass, lime, talcum, stone powder and sand
  • the mechanical characteristics that may be changed is for example viscosity, thermal coefficient of expansion, elasticity, density, fire resistance, moisture absorption capacity, acoustic properties, thermal conductivity, flexural and shearing strength as well as softening temperature
  • the upper surface, 1 e the surface that is to be provided with decor is suitably surface treated before the printing Such surface treatment will then incorporate at least one of the steps, ground coating and sanding It is also possible to provide the surface with a structure that matches the decor that is to be applied
  • the translucent wear layer is suitably constituted by a UV- or electron beam curing lacquer such as an acrylic, epoxy, or maleimide lacquer
  • the wear layer is suitably applied in several steps with intermediate curing where the last one is a complete curing while the earlier ones are only partial It will hereby be possible to achieve thick and plane layers
  • the wear layer suitably includes hard particles with an average particle size in the range 50 nm - 150 ⁇ m Larger particles, in the range 10 ⁇ m - 1 50 ⁇ m, preferably in the range 30 ⁇ m - 1 50 ⁇ m, is foremost used to achieve abrasion resistance while the smaller particles, in the range 50 nm - 30 ⁇ m, preferably 50 nm - 10 ⁇ m is used for achieving scratch resistance The smaller particles is hereby used closest to the surface while the larger ones are distributed in the wear layer
  • the hard particles are suitably constituted of silicon carbide, silicon oxide, ⁇ -aluminium oxide and the like The abrasion resistance is hereby increased substantially
  • the translucent wear layer is constituted of one or more sheets of ⁇ -cellulose which are impregnated with melamine-formaldehyde resin These sheets are joined with the core under heat and pressure whereby the resin cures. It is, also in this embodiment, possible to add hard particles with an average particle size in the range 50 nm - 150 ⁇ m.
  • the particles in the range 10 ⁇ m - 1 50 ⁇ m, preferably 30 ⁇ m - 1 50 ⁇ m is foremost used to achieve abrasion resistance while the smaller of the particles, in the range 50 nm - 30 ⁇ m, preferably 50 nm - 10 ⁇ m, is used to achieve scratch resistance
  • the smaller particles is hereby used on, or very close to, the top surface while the larger particles may be distributed in the wear layer.
  • the particles advantageously are constituted of silicon carbide, silicon oxide, ⁇ -aluminium oxide, diamond or the like of which diamond, of cost reasons only is used as particles smaller than 1 ⁇ m.
  • the sheets of ⁇ -cellulose is hereby suitably pressed together with the rest of the surface element in a continuos belt press with two steel belts.
  • the pressure in the press is hereby suitably 5 - 100 Bar, preferably 20 - 80 Bar.
  • the temperature is suitably in the range 140 - 200 °C, preferably 160 - 1 80 °C. It is also possible to utilise a discontinuous process where a number of surface elements can be pressed in a so called multiple-opening press at the same time.
  • the pressure is then normally 20 - 150 Bar, preferably 70 - 120 Bar, while the temperature suitably is 120 - 180 °C, preferably 140 - 160 °C.
  • the decor on the surface elements is suitably constituted by a number of decor segments with intermediate borders, which borders, on at least two opposite edges coincides with intended, adjacent surface elements.
  • the surface elements with a surface structure intended to increase the realism of the decor of the surface elements
  • the structure segment are here independent from each other in a structure point of view.
  • the surface structure segments are intended to at least partly but preferably completely match the corresponding decor segments of the decor.
  • the surface structure segments are accurately positioned on the decor side of the surface element in connection to the application of the wear layer, and is pressed onto this whereby the wear layer is provided with a surface structure where the orientation of the structure corresponds to the different directions in the decor.
  • One or more matrixes preferably forms the surface of one or more rollers.
  • the surface element is then passed between the roller or rollers and counter stay rollers, with the d ⁇ cor side facing the structured rollers.
  • the structured rollers are continuously or discontinuously pressed towards the decor surface of the surface element.
  • Rollers containing two or more matrixes is suitably provided with a circumference adapted to the repetition frequency of change of direction in the decor.
  • one or more matrixes form the structure surface of one or more static moulds which momentary is pressed towards the decorative side of the surface element.
  • characteristic decor segments such as borderlines between simulated slabs, bars, blocks or the like and also knots, cracks, flaws and grain which is visually simulated in the decor
  • Said data is used for guiding automated engraving or pressing tools when providing said characteristic decor segments with a suitable surface structure, and that said engraving tool or pressing tool is synchronised via the predetermined fixing point on the surface element.
  • the process described in the present application for manufacturing surface elements is very advantageous from a logistic point of view since the number of steps when achieving a new decor is radically reduced. It is, according to the present invention possible to use digitally created or stored data for directly printing the decor on a surface element by using a ink-jet printer or a photo-static printer. The so-called set up time will thereby be very short, whereby even very special customer requirements may be met at a reasonable cost. It is according to the present invention possible to manufacture, for example, a world map in very large format, stretching over a great number of surface elements without any disrupting deviations in decor matching, to mainly the same cost as bulk produced surface elements.
  • the decor on the surface elements may be processed as follows; i) A segmentation pattern is selected, the segmentation comprising at least two decor segments on each surface element.
  • the shape, as seen from above, of the surface element is hereby selected from the group; triangular, quadratic, rectangular, heptagonal, pentagonal and octagonal while the shape of the segments is selected from the group triangular, quadratic, rectangular, heptagonal, pentagonal, octagonal, circular, elliptical, perturbed and irregular.
  • a segment decor is then selected for each segment.
  • the segment decor is selected from the group; digitised and simulated depiction of different kinds of wood, minerals and stone, different kinds of fabric, art work and fantasy based decor.
  • Each selection is made on a terminal where the selections emanates from a data base and that the selection is visualised via the terminal .
  • the decor is preferably achieved by digitisation of an actual archetype or by partly or completely being created in a digital media.
  • the digitised decor is preferably stored digitally in order to be used as a control function and original, together with control programs and selection parameters, when printing the decor.
  • the dimensions of the surface to be covered by surface elements is suitably entered into the terminal and support programs calculates an installation pattern.
  • the installation pattern calculation is suitably also used for printing an assembly instruction. In order to visualise the selection the installation pattern calculation is possibly used for printing a miniaturised copy of the calculated installation with the selected pattern and decor.
  • the dimensions of the surface to be covered by surface elements is suitably entered into the terminal and that that support programs further calculates decor and segmentation pattern matching between the surface elements.
  • the selections is preferably also used, together with support programs for controlling further steps in the manufacturing procedure selected from the group; identification marking, positioning marking, packaging, lacquering, surface embossing, storing and delivery logistics.
  • An algorithm is suitably used for guiding the positioning of the decor segments and segmentation pattern so that a decor segment from one surface element may continue on an adjoining surface element.
  • the control program is suitably used, together with decor data and selection parameters, for applying matching identification on the surface elements.
  • Surface elements manufactured as described above is suitably used as a floor covering material where the demands on stability and scratch and abrasion resistance is great. It is, according to the present invention, also possible to use the surface elements as wall and ceiling decorative material. It will however not be necessary to apply thick wear layer coatings in the latter cases as direct abrasion seldom occurs on such surfaces.
  • the figure shows parts of a surface element 1 which includes an upper decorative layer 2, edges 3 intended for joining, a lower side 4 and a supporting core 5.
  • the process is initiated by manufacturing a supporting core 5 with a desired format and edges 3 intended for joining.
  • the supporting core 5 is further provided with an upper side 1 ' suited for printing and a lower side 4.
  • the upper side 1 ' of the supporting core 5 is then provided with a decor 2' by printing, utilising an ink-jet printer.
  • the decor 2' is oriented after a predetermined fixing point on the supporting core 5.
  • the upper side 1 ' of the supporting core 5 is then providec ⁇ with a protecting translucent wear layer 2" through curtain coating.
  • the supporting core 5 is constituted by particle board or fibre board.
  • the translucent wear layer 2" is constituted by a UV-curing acrylic lacquer which is applied in several steps with intermediate curing, of which the last one is a complete curing while the earlier ones are only partial curing.
  • the wear layer 2" also includes hard particles of ⁇ -aluminium oxide with an average particle size in the range 0,5 ⁇ m - 150 ⁇ m.
  • a surface structured matrix is positioned and pressed towards the decor side of the surface element 1 before the final curing of the acrylic lacquer whereby the surface of the wear layer 2" receives a surface structure 2'" which enhances the realism of the decor 2'.
  • a supporting polymer and filler based core is manufactured in the desired format and is provided with an upper side, a lower side and edges provided with joining members, such as tongue and groove.
  • the upper side of the supporting core is then sanded smooth after which a primer is applied.
  • a decor is then applied on the upper side by means of a digital photo-static five colour printer.
  • the colours are magenta, yellow, cyan, white and black.
  • the decor is positioned from a predetermined fixing point in form of a corner of the supporting core, while the decor direction is aligned with the long side edge initiating from the same corner.
  • the basis for the decor is stored as digital data. This digital data has been achieved by digitising a number of wood grain patterns with a digital camera.
  • a number of rectangular blocks with a fixed width, but of varying length is selected and parted from the digital wood grain pictures
  • the width of the rectangular blocks is selected so that three block widths equals the width of a supporting core.
  • the digital image of the wood blocks are then classified after wood grain pattern and colour so that a number of groups is achieved.
  • the groups are; fair wood with even grain, dark wood with even grain, fair wood with knots and flaws, dark wood with knots and flaws, fair cross-grained wood and finally dark cross-grained wood.
  • Each group contains five different block simulations.
  • An algorithm is feed into a computer which is used for the guiding of the printing operation so that the simulated wood blocks is digitally placed in three longitudinal rows and mixed so that two similar wood blocks never is placed next to each other.
  • the algorithm will also guide the position of the latitudinal borderlines between the simulated wood blocks so that they are unaligned with more than one block width between adjacent rows. It will also guide the latitudinal position of the borderlines so that it either aligns with the shorter edges of the supporting core or is unaligned with more than one block width.
  • Another printer also guided by the computer, is utilised for printing a running matching number on the lower side short side edges. The decor will hereby continue longitudinally over the surface elements and a perfect matching is obtained when the surface elements are placed in numerical order.
  • a basic layer of UV-cu ⁇ ng acrylic lacquer is then applied by means of a rollers Particles with an average particle size in the range 150 ⁇ m is then sprinkled onto the still wet basic layer, whereby the main layer of UV-cu ⁇ ng acrylic lacquer is applied by spray coating.
  • the two layers of lacquer are then partly cured using UV- ght whereby the viscosity of the lacquer increases.
  • a top layer of UV-cu ⁇ ng acrylic lacquer with an additive in the form of hard particles with an average size of 2 ⁇ m, is then applied by means of a roller.
  • Hard particles with an average size of 100 nm is then sprinkled on top of the wet top layer, whereby the lacquer is partly cured with UV-light so that the viscosity increases.
  • the still soft lacquer is then provided with a structure in the form of narrow, small, elongated recesses, simulating the pores of the wood. This will increase the realism of the decor This is achieved by alternate between two different structured roller per row of simulated wood blocks
  • the structure of the rollers simulates even wood grain and cross-grained wood respectively.
  • the rollers are alternately pressed towards the lacquered surface while it passes. The positioning of the rollers are guided via the digitally stored data used for printing the decor as well as the fixing point used there.
  • characteristic decor segments such as borderlines between slabs, bars, blocks or the like and also knots, cracks, flaws and grain which is . visually simulated in the decor, is suitably stored as digital data.
  • This data is achieved by processing selected parts of the simulated wood blocks so that guiding data is achieved.
  • Said data is then used for guiding an automated robot provided with an engraving tool or a press mould which provides the surface of the lacquer with a structure that matches said characteristic decor segments.
  • the operation is also here synchronised via by the predetermined fixing point on the supporting core.
  • the lacquer is then completely cured with UV-light to desired strength, whereby the finished surface elements may be inspected by the naked eye or by a digital camera supported by a computer.
  • the surface elements are then packed in batches and provided with identification markings.
  • the customer utilises a database via Internet or at a local dealer. It is also possible for another operator utilise a database.
  • the database contains samples and/or reduced resolution copies of a great variety of standard decors which can be combined after predetermined parameters.
  • the parameters may, for example, concern a single surface element where, for example, chevron pattern, diamond pattern and block pattern may be the choices of decor segmentation. It will here be possible to select a set of different simulations to randomly or by selected parameters fill the segments, for example, marble, birch and mahogany.
  • the customer may also add an inlay from a design of his own which is digitised and processed, preferably automatically, to a desired format and resolution.
  • the parameters may alternatively include decor segments that requires the space of several surface elements, for example a map over the world.
  • the parameters may here further include fading of the larger design to a surrounding decor, surrounding frame of other decor etc.
  • the customers enters the measurements of the surface that is to be covered by the surface elements.
  • the customer then makes selections from the database and is able to see his selection as a completed surface, either on screen or by printing.
  • the visualisation program used is suitably also used for calculating installation pattern and presenting installation instructions with identification numbers on surface elements and where to cut the elements in order to make a perfect match.
  • the surface elements may also be provided with removable matching lines on the decorative side making matching of decor between adjacent rows easier.
  • the customer or dealer may then confirm his order via electronic mail where the pattern and decor is reduced to a code sequence and the order can be the direct input to the computer guiding the manufacturing process as described above.
  • the customer and/or dealer data follows the manufacturing process all the way to packaging and a fully customer guided manufacturing process is achieved.
  • a supporting fibre board based core is manufactured in the desired format and is provided with an upper side, a lower side and edges.
  • the upper side of the supporting core is then sanded smooth after which a white primer is applied.
  • a decor is then applied on the upper side by means of a digital ink-jet four colour printer.
  • the colours are magenta, yellow, cyan and black.
  • the decor is positioned from a predetermined fixing point in form of a corner of the supporting core, while the decor direction is aligned with the long side edge initiating from the same corner.
  • the basis for the decor is stored as digital data.
  • This digital data has been achieved by digitising a number of wood grain patterns with a digital camera.
  • a number of rectangular blocks with a fixed width, but of varying length are selected and parted from the digital wood grain pictures.
  • the width of the rectangular blocks is selected so that three block widths equals the width of a finished surface element.
  • the digital image of the wood blocks are then joined digitally to form a rectangular surface of a specified size, for example, 200 x 1200 mm
  • a selected amount of such combinations of different blocks are designed as described abov e so that a number of slightly different rectangular surfaces is achieved
  • the printer, or preferably a set of printers are positioned so that a desired number of rectangular decor surfaces with a specified intermediate distance is printed on the supporting core
  • the intermediate distance between the rectangular surfaces is the distance needed for parting and moulding of edges
  • the decor printer or printers are also used for printing fixing points at predetermined positions
  • Another printer, also guided by the computer, is utilised for printing an identity code on the lower side of each intended finished surface element
  • a basic layer of UV-cu ⁇ ng acrylic lacquer is then applied by means of rollers Particles with an average particle size in the range 75 ⁇ m is then sprinkled onto the still wet basic layer, whereby a top layer of UV-cu ⁇ ng acrylic lacquer with an additive in the form of hard particles with an average size of 2 ⁇ m, is applied by means of a roller Hard particles with an average size of 1 00 nm is then sprinkled on top of the wet top layer, whereby the lacquer is partly cured with UV-light so that the viscosity increases
  • the still soft lacquer is then provided with a structure in the form of narrow, small, elongated recesses, simulating the pores of the wood This will increase the realism of the decor This is achieved by pressing rollers towards the lacquered surface while it passes The positioning of the rollers are guided via the digitally stored data used for printing the decor, as well as the fixing point used there when more complex and completely matching surface structures as described together with process scheme 1 is desired
  • the lacquer is then completely cured with UV-light to desired strength, whereby the finished surface element is cut into the predetermined formats which are provided with edges with joining functionality are moulded by milling
  • the cutting and edge moulding process is positioned from fixing point printed close to the decor
  • the surface elements may then be inspected by the naked eye or by a digital camera supported by a computer
  • the surface elements are then packed in batches and provided with identification markings
  • a supporting core of medium density fibre board were sanded smooth.
  • a layer of primer lacquer were applied on top of the fibre board. The primer were cured after which a decor was printed on top of the primer.
  • the build up of a wear layer was then initiated by applying 30g/m 2 of UV-curing acrylic lacquer by means of roller coating. 20g/m 2 of hard particles made of ⁇ -aluminium oxide with an average particle size of 70 ⁇ m were sprinkled on the still sticky lacquer. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Another 30g/m 2 of UV-curing acrylic lacquer was then roller coated onto the already applied layer after which another 20g/m 2 of ⁇ -aluminium oxide particles with an average particle size of 70 ⁇ m were sprinkled on the still sticky second coating.
  • the lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased.
  • Three layers of UV-curing acrylic lacquer was then applied by roller coating with intermediate partial curing as a above. Each of the three layers had a surface weight of 20g/m 2 . The hard particles were completely embedded in the lacquer after the three layers were applied and a plane upper wear layer surface was achieved.
  • a top coating procedure was then initiated.
  • a first layer of UV-curing acrylic topcoat lacquer was applied by means of a roller coater on top of the previous, partly cured, layers.
  • the topcoat lacquer contained 10% by weight of hard particles of ⁇ -aluminium oxide with an average particle size of l O ⁇ m.
  • the first layer was applied to a surface weight of 10g/m 2 .
  • the topcoat lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased.
  • a second layer of the topcoat lacquer was then applied and partly cured as described above.
  • the wear layer was then provided with a surface structure by means of a surface structured roller.
  • a third layer of the topcoat formulation was then applied on top of the structured wear layer.
  • the third layer of top coat was applied to a surface weight of 10g/m 2 .
  • the wear layer was then exposed to a predetermined energy amount of UV-light so that it cured completely
  • the wear layer was then tested for abrasion resistance according to ISO 4586/2-88, where an IP value of 7100 turns was obtained.
  • An IP value of 7 100 turns is fully sufficient for floor covering materials with medium to heavy traffic like hotel lobbies, hallways and the like.
  • a supporting core of medium density fibre board were sanded smooth.
  • a layer of primer lacquer were applied on top of the fibre board.
  • the primer were cured after which a decor was printed on top of the primer.
  • the build up of a wear layer was then initiated by applying 30g/m 2 of UV-curing acrylic lacquer by means of roller coating.
  • 20g/m 2 of hard particles made of ⁇ -aluminium oxide with an average particle size of 70 ⁇ m were sprinkled on the still sticky lacquer.
  • the lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased.
  • UV-curing acrylic lacquer was then roller coated onto the already applied layer after which another 20g/m 2 of ⁇ -aluminium oxide particles with an average particle size of 70 ⁇ m were sprinkled on the still sticky second coating.
  • the lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased.
  • Three layers of UV-curing acrylic lacquer was then applied by roller coating with intermediate curing as a above. Each of the three layers had a surface weight of 20g/m 2 .
  • the hard particles were completely embedded in the lacquer after the three layers were applied and a plane upper wear layer surface was achieved. Also the uppermost of the three layers of lacquer was cured to a desired viscosity.
  • a second decor layer was then printed on top of the wear layer.
  • the second d ⁇ cor layer which was identical to the first d ⁇ cor closest to the core, was oriented and positioned so that it completely matched the first d ⁇ cor.
  • the build up of an upper wear layer was then initiated by applying 30g/m 2 of UV-curing acrylic lacquer by means of roller coating. 20g/m 2 of hard particles made of ⁇ -aluminium oxide with an average particle size of 70 ⁇ m were sprinkled on the still sticky lacquer. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Another 30g/m 2 of UV-curing acrylic lacquer was then roller coated onto the already applied layer after which another 20g/m 2 of ⁇ -aluminium oxide particles with an average particle size of 70 ⁇ m were sprinkled on the still sticky second coating.
  • the lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased.
  • Three layers of UV-curing acrylic lacquer was then applied by roller coating with intermediate curing as a above. Each of the three layers had a surface weight of 20g/m 2 . The hard particles were completely embedded in the lacquer after the three layers were applied and a plane upper wear layer surface was achieved.
  • a top coating procedure was then initiated.
  • a first layer of UV-curing acrylic topcoat lacquer was applied by means of a roller coater on top of the previous, partly cured, layers.
  • the topcoat lacquer contained 10% by weight of hard particles of ⁇ -aluminium oxide with an average particle size of l O ⁇ m.
  • the first layer was applied to a surface weight of 10g/m 2 .
  • the topcoat lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased.
  • a second layer of the topcoat lacquer was then applied and partly cured as described above.
  • the wear layer was then provided with a surface structure by means of a surface structured roller.
  • a third layer of the topcoat formulation was then applied on top of the structured wear layer.
  • the third layer of top coat was applied to a surface weight of 10g/m 2 .
  • the wear layer was then exposed to a predetermined energy amount of UV-light so that it cured completely.
  • the wear layer was then tested for abrasion resistance according to ISO 4586/2-88, where an IP value of 13500 turns was obtained. An IP value of 13500 turns is fully sufficient for floor covering materials with heavier traffic like airports, railway stations and the like.
  • the second layer of d ⁇ cor and wear layer will add abrasion resistance without having obtained an unwanted hazy effect in the d ⁇ cor.
  • a supporting core of medium density fibre board were sanded smooth.
  • a layer of primer lacquer were applied on top of the fibre board. The primer were cured after which a decor was printed on top of the primer.
  • the build up of a wear layer was then initiated by applying 1 5g/m 2 of UV-curing acrylic lacquer by means of roller coating. 20g/m 2 of hard particles made of ⁇ -aluminium oxide with an average particle size of 70 ⁇ m were sprinkled on the still sticky lacquer. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. One layer of UV-curing acrylic lacquer was then applied by roller coating and was partially cured as above. The layer had a surface weight of 40g/m 2 . The hard particles were embedded in the lacquer after the layer of lacquer was applied and a mainly plane upper wear layer surface was achieved.
  • a top coating procedure was then initiated.
  • a first layer of UV-curing acrylic topcoat lacquer was applied by means of a roller coater on top of the previous, partly cured, layers.
  • the topcoat lacquer contained 10% by weight of hard particles of ⁇ -aluminium oxide with an average particle size of l O ⁇ m.
  • the first layer was applied to a surface weight of 10g/m 2 .
  • the topcoat lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased.
  • the wear layer was then provided with a surface structure by means of a surface structured roller.
  • a second, final layer of the topcoat formulation was then applied on top of the structured wear layer.
  • the second layer of top coat was applied to a surface weight of 10g/m 2 .
  • the wear layer was then exposed to a predetermined energy amount of UV-light so that it cured completely.
  • the wear layer was then tested for abrasion resistance according to ISO 4586/2-88, where an IP value of 3 100 turns was obtained.
  • An IP value of 3 100 turns is ful ly sufficient for floor covering materials with light traffic like bedrooms, living rooms and the like.
  • the invention is not limited to the embodiments shown as these can be varied in different ways within the scope of the invention. It is for example possible to use so-called overlay sheets of ⁇ -cellulose impregnated with thermosetting resin instead of acrylic lacquer in the process described in connection to process scheme 1 and in particular in the process described in connection to process scheme 2. These sheets of a-cellulose which are impregnated with melamine-formaldehyde resin is joined with the supporting core through heat and pressure, whereby the resin cures.
  • the wear resistance may also in this embodiment be improved by adding hard particles in the range 50 nm - 150 ⁇ m to the wear layer.

Abstract

A process for the manufacturing of surface elements (1) which comprises a decorative upper layer (2) and a supporting core (5). A supporting core (5) with a desired format is manufactured and provided with an upper side (1') and a lower side (4). The upper side (1') of the supporting core (5) is provided with a décor, by for example printing, which décor (2') is positioned after a predetermined fixed point on the supporting core (5). The upper side (1') of the supporting core (5) is provided with a protecting, at least partly translucent, wear layer (2'') by for example spray coating, roller coating, curtain coating and immersion coating or by being provided with one or more sheets of α-cellulose impregnated with thermosetting resin or lacquer.

Description

A process for the manufacturing of surface elements.
The present invention relates to a process for the manufacturing of surface elements with a decorative upper surface of which the decorative elements have an considerably improved matching of the decor between adjacent surface elements.
Products clad with thermosetting laminate is common in many areas nowadays. They are mostly used where the demands on abrasion resistance are high, and furthermore where resistance to different chemicals and moisture is desired. As examples of such products floors, floor skirtings, table tops, work tops and wall panels can be mentioned.
The thermosetting laminate most often consist of a number of base sheets with a decor sheet placed closest to the surface. The decor sheet can be provided with a pattern by desire. Common patterns usually visualise different kinds of wood or mineral such as marble and granite.
One common pattern on floor elements is the rod pattern where two or more rows of rods of, for example wood, is simulated in the decor.
The traditional thermosetting laminate manufacturing includes a number of steps which will result in a random matching tolerance of up to ±5mm, which is considered to great. The steps included in the manufacturing of a laminate floor is; printing decor on a paper of α-cellulose, impregnating the decorative paper with melamine-formaldehyde resin, drying the decorative paper, laminating the decorative paper under heat and pressure together with similarly treated supporting papers, applying the decorative laminate on a carrier and finally sawing and milling the carrier to the desired format. All these steps in the manufacturing will cause a change in format on the decor paper. It will therefore be practically impossible to achieve a desired match of patterns between the elements of a without causing great amounts of wasted laminate. The thermosetting laminate is a rather costly part of a laminate floor.
It has, through the present invention, been made possible to overcome the above mentioned problems and a surface element with a decorative surface where the decorative pattern between different surface elements is matching has been obtained The invention relates to a process for the manufacturing of surface elements which comprises a decorative upper layer and a supporting core The surface elements may be used as floor, wall or ceiling boards The invention is characterised in that, 1) A supporting core with a desired format is manufactured and provided with an upper side and a lower side n) The upper side of the supporting core is then provided with a decor, by for example printing The decor is positioned after a predetermined fixing point on the supporting core in) The upper side of the supporting core is then provided with a protecting, at least partly translucent, wear layer by for example spray coating, roller coating, curtain coating and immersion coating or by being provided with one or more sheets of α-cellulose impregnated with thermosetting resin or lacquer
The decor is suitably achieved by digitisation of an actual archetype or by partly or completely being created in a digital media The digitised decor is stored digitally in order to be used as a control function and original, together with possible control programs, when printing the dέcor
The decor may accordingly be obtained by making a high resolution or selected resolution digital picture of the desired decor This is suitably made by means of a digital camera or scanner. The most common decor will of course be different kinds of wood and minerals like marble, as these probably will continue to be preferred surface decoration in home and public environments. It is, however, possible to depict anything that is visible The digitised version of the decor is then edited to fit the size of the supporting core. It is also possible to rearrange the decor in many different ways, like changing colour tones, contrast, dividing the decor into smaller segments and adding other decorative elements. It is also possible to completely create the decor in a computer equipped for graphic design. It is possible to create a simulated decor so realistic that even a professional will have great problems in visually separating it from genuine material This makes it possible to make for example floor boards with an almost perfect illusion of a rare kind of wood, like ebony or rose wood and still preserving trees under threat of extermination The digital decor is used together with guiding programs to control a printer. The printer may be of an electrostatic type or an ink-jet type printer Most often the colours yellow, magenta, cyan and black will be sufficient for the printing process, but in some cases it might be advantageous to add white Some colours are difficult to achieve using the colours yellow, magenta, cyan, black and white whereby the colours light magenta and light cyan may be added It is also possible to add so called spot colours where specific colour tones are difficult to achieve or where only certain parts of the colour spectrum with intermixing shades is desired. The resolution needed is much depending on the decor that is to be simulated, but resolutions of 1 0 - 1500 dots per inch (dpi) is the practical range in which most decors will be printed Under normal conditions a resolution of 300 - 800 dpi is sufficient when creating simulations of even very complex decorative patterns and still achieve a result that visually is very difficult to separate from the archetype without close and thorough inspection
The digitally stored decor can also be used together with support programs when guiding other operations and procedures in the manufacturing process Such steps in the operation may include procedures like identification marking, packaging, lacquering, surface embossing, storing and delivery logistics as well as assembly instructions
It is advantageous to manufacture the supporting core in the desired end user format and to provide it with edges suited for joining before applying the decor and wear layer, since the amount of waste thereby is radically reduced The decor matching tolerances will also be improved further by this procedure
The main part of the supporting core is suitably constituted by a particle board or a fibre board It is, however, possible to manufacture the core that at least partly consist of a polymer such as for example polyurethane or a polyolefin such as polyethylene, polypropylene or polybutene. A polymer based core can be achieved by being injection moulded or press moulded and can be given its shape by plastic moulding and does therefore not require any abrasive treatment A polymer based core may except polymer also contain a filler in the form of a particle or fibre of organic or inorganic material, which besides the use a cost reducing material also will be used to modify the mechanical characteristics of the core As an example of such suitable fillers can be mentioned, cellulose or wood particles, straw, starch, glass, lime, talcum, stone powder and sand The mechanical characteristics that may be changed is for example viscosity, thermal coefficient of expansion, elasticity, density, fire resistance, moisture absorption capacity, acoustic properties, thermal conductivity, flexural and shearing strength as well as softening temperature
The upper surface, 1 e the surface that is to be provided with decor, is suitably surface treated before the printing Such surface treatment will then incorporate at least one of the steps, ground coating and sanding It is also possible to provide the surface with a structure that matches the decor that is to be applied
The translucent wear layer is suitably constituted by a UV- or electron beam curing lacquer such as an acrylic, epoxy, or maleimide lacquer The wear layer is suitably applied in several steps with intermediate curing where the last one is a complete curing while the earlier ones are only partial It will hereby be possible to achieve thick and plane layers The wear layer suitably includes hard particles with an average particle size in the range 50 nm - 150 μm Larger particles, in the range 10 μm - 1 50 μm, preferably in the range 30 μm - 1 50 μm, is foremost used to achieve abrasion resistance while the smaller particles, in the range 50 nm - 30 μm, preferably 50 nm - 10 μm is used for achieving scratch resistance The smaller particles is hereby used closest to the surface while the larger ones are distributed in the wear layer The hard particles are suitably constituted of silicon carbide, silicon oxide, α-aluminium oxide and the like The abrasion resistance is hereby increased substantially Particles in the range 30 mm - 150 mm can for example be sprinkled on still wet lacquer so that they at, least partly, becomes embedded in finished wear layer It is therefore suitable to apply the wear layer in several steps with intermediate sprinkling stations where particles are added to the surface The wear layer can hereafter be cured It is also possible to mix smaller particles, normally particle sizes under 30 μm with a standard lacquer Larger particles may be added if a gelling agent or the like is present A lacquer with smaller particles is suitably used as top layer coatings, closer to the upper surface The scratch resistance can be improved by sprinkling very small particles in the range 50 nm - 1000 nm on the uppermost layer of lacquer Also these, so called nano-particles, can be mixed with lacquer, which with is applied in a thin layer with a high particle content. These nano-particles may besides silicon carbide, silicon oxide and α-aluminium oxide also be constituted of diamond.
According to one embodiment of the invention, the translucent wear layer is constituted of one or more sheets of α-cellulose which are impregnated with melamine-formaldehyde resin These sheets are joined with the core under heat and pressure whereby the resin cures. It is, also in this embodiment, possible to add hard particles with an average particle size in the range 50 nm - 150 μm. Larger particles, in the range 10 μm - 1 50 μm, preferably 30 μm - 1 50 μm is foremost used to achieve abrasion resistance while the smaller of the particles, in the range 50 nm - 30 μm, preferably 50 nm - 10 μm, is used to achieve scratch resistance The smaller particles is hereby used on, or very close to, the top surface while the larger particles may be distributed in the wear layer. Also here the particles advantageously are constituted of silicon carbide, silicon oxide, α-aluminium oxide, diamond or the like of which diamond, of cost reasons only is used as particles smaller than 1 μm. The sheets of α-cellulose is hereby suitably pressed together with the rest of the surface element in a continuos belt press with two steel belts. The pressure in the press is hereby suitably 5 - 100 Bar, preferably 20 - 80 Bar. The temperature is suitably in the range 140 - 200 °C, preferably 160 - 1 80 °C. It is also possible to utilise a discontinuous process where a number of surface elements can be pressed in a so called multiple-opening press at the same time. The pressure is then normally 20 - 150 Bar, preferably 70 - 120 Bar, while the temperature suitably is 120 - 180 °C, preferably 140 - 160 °C.
The decor on the surface elements is suitably constituted by a number of decor segments with intermediate borders, which borders, on at least two opposite edges coincides with intended, adjacent surface elements.
It is also desirable to provide the surface elements with a surface structure intended to increase the realism of the decor of the surface elements This is suitably achieved by positioning at least one surface structured matrix, forming at least one surface structure segment on a corresponding decor segment or number of decor segments on the decorated surface of the surface element in connection to the application of wear layer. This matrix is pressed towards the wear layer whereby this will receive a surface with structure that enhances the realism of the dέcor.
When simulating more complex patterns, like wood block chevron pattern or other decors with two or more divergent and oriented decors, it is suitable to use at least two structured matrixes which forms one structure segment each. The structure segment are here independent from each other in a structure point of view. The surface structure segments are intended to at least partly but preferably completely match the corresponding decor segments of the decor. The surface structure segments are accurately positioned on the decor side of the surface element in connection to the application of the wear layer, and is pressed onto this whereby the wear layer is provided with a surface structure where the orientation of the structure corresponds to the different directions in the decor.
One or more matrixes preferably forms the surface of one or more rollers. The surface element is then passed between the roller or rollers and counter stay rollers, with the dέcor side facing the structured rollers. The structured rollers are continuously or discontinuously pressed towards the decor surface of the surface element.
Rollers containing two or more matrixes, is suitably provided with a circumference adapted to the repetition frequency of change of direction in the decor.
It is also possible to apply the structure matrixes on the surface of a press belt. The surface element is then passed between the press belt and a press belt counter stay under continuous or discontinuous pressure between the structured press belt and the press belt counter stay.
It is, according to one alternative procedure, possible to have one or more matrixes form the structure surface of one or more static moulds which momentary is pressed towards the decorative side of the surface element.
According to one embodiment of the invention, particularly characteristic decor segments such as borderlines between simulated slabs, bars, blocks or the like and also knots, cracks, flaws and grain which is visually simulated in the decor, is stored as digital data. Said data is used for guiding automated engraving or pressing tools when providing said characteristic decor segments with a suitable surface structure, and that said engraving tool or pressing tool is synchronised via the predetermined fixing point on the surface element.
The process described in the present application, for manufacturing surface elements is very advantageous from a logistic point of view since the number of steps when achieving a new decor is radically reduced. It is, according to the present invention possible to use digitally created or stored data for directly printing the decor on a surface element by using a ink-jet printer or a photo-static printer. The so-called set up time will thereby be very short, whereby even very special customer requirements may be met at a reasonable cost. It is according to the present invention possible to manufacture, for example, a world map in very large format, stretching over a great number of surface elements without any disrupting deviations in decor matching, to mainly the same cost as bulk produced surface elements. Since the decor may be handled digitally all the way to the point of being applied to the surface of the core, set up times will be practically non-existent while at the same time a high degree of automation will be practicable. It is also possible to automatically provide the surface elements with identification and orientation marking which would make the installation of complex decors, like world maps in the example above, much easier. This has so far been impossible.
The decor on the surface elements may be processed as follows; i) A segmentation pattern is selected, the segmentation comprising at least two decor segments on each surface element. The shape, as seen from above, of the surface element is hereby selected from the group; triangular, quadratic, rectangular, heptagonal, pentagonal and octagonal while the shape of the segments is selected from the group triangular, quadratic, rectangular, heptagonal, pentagonal, octagonal, circular, elliptical, perturbed and irregular. ii) A segment decor is then selected for each segment. The segment decor is selected from the group; digitised and simulated depiction of different kinds of wood, minerals and stone, different kinds of fabric, art work and fantasy based decor. iii) Each selection is made on a terminal where the selections emanates from a data base and that the selection is visualised via the terminal . The decor is preferably achieved by digitisation of an actual archetype or by partly or completely being created in a digital media. The digitised decor is preferably stored digitally in order to be used as a control function and original, together with control programs and selection parameters, when printing the decor.
The dimensions of the surface to be covered by surface elements is suitably entered into the terminal and support programs calculates an installation pattern. The installation pattern calculation is suitably also used for printing an assembly instruction. In order to visualise the selection the installation pattern calculation is possibly used for printing a miniaturised copy of the calculated installation with the selected pattern and decor. The dimensions of the surface to be covered by surface elements is suitably entered into the terminal and that that support programs further calculates decor and segmentation pattern matching between the surface elements.
The selections is preferably also used, together with support programs for controlling further steps in the manufacturing procedure selected from the group; identification marking, positioning marking, packaging, lacquering, surface embossing, storing and delivery logistics.
An algorithm is suitably used for guiding the positioning of the decor segments and segmentation pattern so that a decor segment from one surface element may continue on an adjoining surface element. The control program is suitably used, together with decor data and selection parameters, for applying matching identification on the surface elements.
Surface elements manufactured as described above is suitably used as a floor covering material where the demands on stability and scratch and abrasion resistance is great. It is, according to the present invention, also possible to use the surface elements as wall and ceiling decorative material. It will however not be necessary to apply thick wear layer coatings in the latter cases as direct abrasion seldom occurs on such surfaces.
The invention is described further in connection to an enclosed figure, embodiment examples and schematic process descriptions showing different embodiments of the invention. Accordingly, the figure shows parts of a surface element 1 which includes an upper decorative layer 2, edges 3 intended for joining, a lower side 4 and a supporting core 5. The process is initiated by manufacturing a supporting core 5 with a desired format and edges 3 intended for joining. The supporting core 5 is further provided with an upper side 1 ' suited for printing and a lower side 4. The upper side 1 ' of the supporting core 5 is then provided with a decor 2' by printing, utilising an ink-jet printer. The decor 2' is oriented after a predetermined fixing point on the supporting core 5. The upper side 1 ' of the supporting core 5 is then providec} with a protecting translucent wear layer 2" through curtain coating. The supporting core 5 is constituted by particle board or fibre board. The translucent wear layer 2" is constituted by a UV-curing acrylic lacquer which is applied in several steps with intermediate curing, of which the last one is a complete curing while the earlier ones are only partial curing. The wear layer 2" also includes hard particles of α-aluminium oxide with an average particle size in the range 0,5 μm - 150μm.
A surface structured matrix is positioned and pressed towards the decor side of the surface element 1 before the final curing of the acrylic lacquer whereby the surface of the wear layer 2" receives a surface structure 2'" which enhances the realism of the decor 2'.
It is also possible to utilise two or more surface structured matrixes, each forming a structure segment, between which the structure is independent, which will make it possible to simulate the surface structure of, for example, wood block chevron pattern decor.
Process scheme 1 .
Manufacturing of a supporting core
Moulding edges with joining functionality
Figure imgf000012_0001
A supporting polymer and filler based core is manufactured in the desired format and is provided with an upper side, a lower side and edges provided with joining members, such as tongue and groove. The upper side of the supporting core is then sanded smooth after which a primer is applied. A decor is then applied on the upper side by means of a digital photo-static five colour printer. The colours are magenta, yellow, cyan, white and black. The decor is positioned from a predetermined fixing point in form of a corner of the supporting core, while the decor direction is aligned with the long side edge initiating from the same corner. The basis for the decor is stored as digital data. This digital data has been achieved by digitising a number of wood grain patterns with a digital camera. A number of rectangular blocks with a fixed width, but of varying length is selected and parted from the digital wood grain pictures The width of the rectangular blocks is selected so that three block widths equals the width of a supporting core. The digital image of the wood blocks are then classified after wood grain pattern and colour so that a number of groups is achieved. The groups are; fair wood with even grain, dark wood with even grain, fair wood with knots and flaws, dark wood with knots and flaws, fair cross-grained wood and finally dark cross-grained wood. Each group contains five different block simulations. An algorithm is feed into a computer which is used for the guiding of the printing operation so that the simulated wood blocks is digitally placed in three longitudinal rows and mixed so that two similar wood blocks never is placed next to each other. The algorithm will also guide the position of the latitudinal borderlines between the simulated wood blocks so that they are unaligned with more than one block width between adjacent rows. It will also guide the latitudinal position of the borderlines so that it either aligns with the shorter edges of the supporting core or is unaligned with more than one block width. Another printer, also guided by the computer, is utilised for printing a running matching number on the lower side short side edges. The decor will hereby continue longitudinally over the surface elements and a perfect matching is obtained when the surface elements are placed in numerical order.
A basic layer of UV-cuπng acrylic lacquer is then applied by means of a rollers Particles with an average particle size in the range 150 μm is then sprinkled onto the still wet basic layer, whereby the main layer of UV-cuπng acrylic lacquer is applied by spray coating. The two layers of lacquer are then partly cured using UV- ght whereby the viscosity of the lacquer increases. A top layer of UV-cuπng acrylic lacquer with an additive in the form of hard particles with an average size of 2 μm, is then applied by means of a roller. Hard particles with an average size of 100 nm is then sprinkled on top of the wet top layer, whereby the lacquer is partly cured with UV-light so that the viscosity increases. The still soft lacquer is then provided with a structure in the form of narrow, small, elongated recesses, simulating the pores of the wood. This will increase the realism of the decor This is achieved by alternate between two different structured roller per row of simulated wood blocks The structure of the rollers simulates even wood grain and cross-grained wood respectively. The rollers are alternately pressed towards the lacquered surface while it passes. The positioning of the rollers are guided via the digitally stored data used for printing the decor as well as the fixing point used there.
It is according to one alternative embodiment possible to utilise one or more static moulds with surface structure which momentary is pressed towards the decor side.
Especially characteristic decor segments such as borderlines between slabs, bars, blocks or the like and also knots, cracks, flaws and grain which is . visually simulated in the decor, is suitably stored as digital data. This data is achieved by processing selected parts of the simulated wood blocks so that guiding data is achieved. Said data is then used for guiding an automated robot provided with an engraving tool or a press mould which provides the surface of the lacquer with a structure that matches said characteristic decor segments. The operation is also here synchronised via by the predetermined fixing point on the supporting core.
The lacquer is then completely cured with UV-light to desired strength, whereby the finished surface elements may be inspected by the naked eye or by a digital camera supported by a computer. The surface elements are then packed in batches and provided with identification markings.
The process above will make it possible to have a completely customer driven manufacturing where even very small quantities may be produced with the same efficiency as bulk manufacturing. Even though only one decor is described in connection to the process scheme above, it becomes clear to anyone skilled in the art, that a decor is changed very easily in the process. All of the important steps of the manufacturing such as printing, structuring, inspection, packaging and identification marking may be controlled and supervised by central processing data. This will make it logistically possible to manufacture customer designed decors. Such a process is exemplified as follows;
The customer utilises a database via Internet or at a local dealer. It is also possible for another operator utilise a database. The database contains samples and/or reduced resolution copies of a great variety of standard decors which can be combined after predetermined parameters. The parameters may, for example, concern a single surface element where, for example, chevron pattern, diamond pattern and block pattern may be the choices of decor segmentation. It will here be possible to select a set of different simulations to randomly or by selected parameters fill the segments, for example, marble, birch and mahogany. The customer may also add an inlay from a design of his own which is digitised and processed, preferably automatically, to a desired format and resolution.
The parameters may alternatively include decor segments that requires the space of several surface elements, for example a map over the world. The parameters may here further include fading of the larger design to a surrounding decor, surrounding frame of other decor etc.
The customers enters the measurements of the surface that is to be covered by the surface elements. The customer then makes selections from the database and is able to see his selection as a completed surface, either on screen or by printing. The visualisation program used, is suitably also used for calculating installation pattern and presenting installation instructions with identification numbers on surface elements and where to cut the elements in order to make a perfect match. The surface elements may also be provided with removable matching lines on the decorative side making matching of decor between adjacent rows easier. The customer or dealer may then confirm his order via electronic mail where the pattern and decor is reduced to a code sequence and the order can be the direct input to the computer guiding the manufacturing process as described above. The customer and/or dealer data follows the manufacturing process all the way to packaging and a fully customer guided manufacturing process is achieved.
Process scheme 2
Manufacturing supporting core
Figure imgf000016_0001
A supporting fibre board based core is manufactured in the desired format and is provided with an upper side, a lower side and edges. The upper side of the supporting core is then sanded smooth after which a white primer is applied. A decor is then applied on the upper side by means of a digital ink-jet four colour printer. The colours are magenta, yellow, cyan and black. The decor is positioned from a predetermined fixing point in form of a corner of the supporting core, while the decor direction is aligned with the long side edge initiating from the same corner.
The basis for the decor is stored as digital data. This digital data has been achieved by digitising a number of wood grain patterns with a digital camera. A number of rectangular blocks with a fixed width, but of varying length are selected and parted from the digital wood grain pictures. The width of the rectangular blocks is selected so that three block widths equals the width of a finished surface element. The digital image of the wood blocks are then joined digitally to form a rectangular surface of a specified size, for example, 200 x 1200 mm A selected amount of such combinations of different blocks are designed as described abov e so that a number of slightly different rectangular surfaces is achieved The printer, or preferably a set of printers are positioned so that a desired number of rectangular decor surfaces with a specified intermediate distance is printed on the supporting core The intermediate distance between the rectangular surfaces is the distance needed for parting and moulding of edges The decor printer or printers are also used for printing fixing points at predetermined positions Another printer, also guided by the computer, is utilised for printing an identity code on the lower side of each intended finished surface element
A basic layer of UV-cuπng acrylic lacquer is then applied by means of rollers Particles with an average particle size in the range 75 μm is then sprinkled onto the still wet basic layer, whereby a top layer of UV-cuπng acrylic lacquer with an additive in the form of hard particles with an average size of 2 μm, is applied by means of a roller Hard particles with an average size of 1 00 nm is then sprinkled on top of the wet top layer, whereby the lacquer is partly cured with UV-light so that the viscosity increases The still soft lacquer is then provided with a structure in the form of narrow, small, elongated recesses, simulating the pores of the wood This will increase the realism of the decor This is achieved by pressing rollers towards the lacquered surface while it passes The positioning of the rollers are guided via the digitally stored data used for printing the decor, as well as the fixing point used there when more complex and completely matching surface structures as described together with process scheme 1 is desired
The lacquer is then completely cured with UV-light to desired strength, whereby the finished surface element is cut into the predetermined formats which are provided with edges with joining functionality are moulded by milling The cutting and edge moulding process is positioned from fixing point printed close to the decor The surface elements may then be inspected by the naked eye or by a digital camera supported by a computer The surface elements are then packed in batches and provided with identification markings
It is, according to an alternative procedure in the process, possible to cut and mould the edges at an earlier stage in the process It is suitable to apply and cure a protecting layer of lacquer on top of the printed decor fol lowed by cutting and moulding of the edges. The remaining and main part of the wear layer is then applied as described in connection to process scheme 1 or 2 above.
The process above will make it possible to have a customer initiated manufacturing where even very small quantities may be produced with the same efficiency as bulk manufacturing. Even though only one decor is described in connection to the process scheme above, it becomes clear anyone skilled in the art, that decors is changed very easily in the process. All of the important steps of the manufacturing such as printing, structuring, inspection, packaging and identification -marking may be controlled and supervised by central processing data.
The invention is also described through embodiment examples.
EXAMPLE 1.
A supporting core of medium density fibre board were sanded smooth. A layer of primer lacquer were applied on top of the fibre board. The primer were cured after which a decor was printed on top of the primer.
The build up of a wear layer was then initiated by applying 30g/m2 of UV-curing acrylic lacquer by means of roller coating. 20g/m2 of hard particles made of α-aluminium oxide with an average particle size of 70μm were sprinkled on the still sticky lacquer. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Another 30g/m2 of UV-curing acrylic lacquer was then roller coated onto the already applied layer after which another 20g/m2 of α-aluminium oxide particles with an average particle size of 70μm were sprinkled on the still sticky second coating. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Three layers of UV-curing acrylic lacquer was then applied by roller coating with intermediate partial curing as a above. Each of the three layers had a surface weight of 20g/m2. The hard particles were completely embedded in the lacquer after the three layers were applied and a plane upper wear layer surface was achieved.
A top coating procedure was then initiated. A first layer of UV-curing acrylic topcoat lacquer was applied by means of a roller coater on top of the previous, partly cured, layers. The topcoat lacquer contained 10% by weight of hard particles of α-aluminium oxide with an average particle size of l Oμm. The first layer was applied to a surface weight of 10g/m2. The topcoat lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. A second layer of the topcoat lacquer was then applied and partly cured as described above. The wear layer was then provided with a surface structure by means of a surface structured roller. A third layer of the topcoat formulation was then applied on top of the structured wear layer. Also the third layer of top coat was applied to a surface weight of 10g/m2. The wear layer was then exposed to a predetermined energy amount of UV-light so that it cured completely.
The wear layer was then tested for abrasion resistance according to ISO 4586/2-88, where an IP value of 7100 turns was obtained. An IP value of 7 100 turns is fully sufficient for floor covering materials with medium to heavy traffic like hotel lobbies, hallways and the like.
EXAMPLE 2.
A supporting core of medium density fibre board were sanded smooth. A layer of primer lacquer were applied on top of the fibre board. The primer were cured after which a decor was printed on top of the primer. The build up of a wear layer was then initiated by applying 30g/m2 of UV-curing acrylic lacquer by means of roller coating. 20g/m2 of hard particles made of α-aluminium oxide with an average particle size of 70μm were sprinkled on the still sticky lacquer. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Another 30g/m2 of UV-curing acrylic lacquer was then roller coated onto the already applied layer after which another 20g/m2 of α-aluminium oxide particles with an average particle size of 70μm were sprinkled on the still sticky second coating. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Three layers of UV-curing acrylic lacquer was then applied by roller coating with intermediate curing as a above. Each of the three layers had a surface weight of 20g/m2. The hard particles were completely embedded in the lacquer after the three layers were applied and a plane upper wear layer surface was achieved. Also the uppermost of the three layers of lacquer was cured to a desired viscosity.
A second decor layer was then printed on top of the wear layer. The second dέcor layer, which was identical to the first dέcor closest to the core, was oriented and positioned so that it completely matched the first dέcor.
The build up of an upper wear layer was then initiated by applying 30g/m2 of UV-curing acrylic lacquer by means of roller coating. 20g/m2 of hard particles made of α-aluminium oxide with an average particle size of 70μm were sprinkled on the still sticky lacquer. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Another 30g/m2 of UV-curing acrylic lacquer was then roller coated onto the already applied layer after which another 20g/m2 of α-aluminium oxide particles with an average particle size of 70μm were sprinkled on the still sticky second coating. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. Three layers of UV-curing acrylic lacquer was then applied by roller coating with intermediate curing as a above. Each of the three layers had a surface weight of 20g/m2. The hard particles were completely embedded in the lacquer after the three layers were applied and a plane upper wear layer surface was achieved.
A top coating procedure was then initiated. A first layer of UV-curing acrylic topcoat lacquer was applied by means of a roller coater on top of the previous, partly cured, layers. The topcoat lacquer contained 10% by weight of hard particles of α-aluminium oxide with an average particle size of l Oμm. The first layer was applied to a surface weight of 10g/m2. The topcoat lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. A second layer of the topcoat lacquer was then applied and partly cured as described above. The wear layer was then provided with a surface structure by means of a surface structured roller. A third layer of the topcoat formulation was then applied on top of the structured wear layer. Also the third layer of top coat was applied to a surface weight of 10g/m2. The wear layer was then exposed to a predetermined energy amount of UV-light so that it cured completely. The wear layer was then tested for abrasion resistance according to ISO 4586/2-88, where an IP value of 13500 turns was obtained. An IP value of 13500 turns is fully sufficient for floor covering materials with heavier traffic like airports, railway stations and the like. The second layer of dέcor and wear layer will add abrasion resistance without having obtained an unwanted hazy effect in the dέcor.
EXAMPLE 3.
A supporting core of medium density fibre board were sanded smooth. A layer of primer lacquer were applied on top of the fibre board. The primer were cured after which a decor was printed on top of the primer.
The build up of a wear layer was then initiated by applying 1 5g/m2 of UV-curing acrylic lacquer by means of roller coating. 20g/m2 of hard particles made of α-aluminium oxide with an average particle size of 70μm were sprinkled on the still sticky lacquer. The lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. One layer of UV-curing acrylic lacquer was then applied by roller coating and was partially cured as above. The layer had a surface weight of 40g/m2. The hard particles were embedded in the lacquer after the layer of lacquer was applied and a mainly plane upper wear layer surface was achieved.
A top coating procedure was then initiated. A first layer of UV-curing acrylic topcoat lacquer was applied by means of a roller coater on top of the previous, partly cured, layers. The topcoat lacquer contained 10% by weight of hard particles of α-aluminium oxide with an average particle size of l Oμm. The first layer was applied to a surface weight of 10g/m2. The topcoat lacquer was then exposed to a predetermined energy amount of UV-light so that it cured only partly and the viscosity was increased. The wear layer was then provided with a surface structure by means of a surface structured roller. A second, final layer of the topcoat formulation was then applied on top of the structured wear layer. Also the second layer of top coat was applied to a surface weight of 10g/m2. The wear layer was then exposed to a predetermined energy amount of UV-light so that it cured completely.
The wear layer was then tested for abrasion resistance according to ISO 4586/2-88, where an IP value of 3 100 turns was obtained. An IP value of 3 100 turns is ful ly sufficient for floor covering materials with light traffic like bedrooms, living rooms and the like.
The invention is not limited to the embodiments shown as these can be varied in different ways within the scope of the invention. It is for example possible to use so-called overlay sheets of α-cellulose impregnated with thermosetting resin instead of acrylic lacquer in the process described in connection to process scheme 1 and in particular in the process described in connection to process scheme 2. These sheets of a-cellulose which are impregnated with melamine-formaldehyde resin is joined with the supporting core through heat and pressure, whereby the resin cures. The wear resistance may also in this embodiment be improved by adding hard particles in the range 50 nm - 150μm to the wear layer.

Claims

1. A process for the manufacturing of surface elements (1) which comprises a decorative upper layer (2) and a supporting core (5), c h a r a c t e r i s e d in that; i) a supporting core (5) with a desired format is manufactured and provided with an upper side (l1) and a lower side (4), whereby ii) the upper side (1') of the supporting core (5) is provided with a dέcor, by for example printing, which dέcor (2') is positioned after a predetermined fixed point on the supporting core (5), whereby iii) the upper side (1') of the supporting core (5) is provided with a protecting, at least partly translucent, wear layer (2") by for example spray coating, roller coating, curtain coating and immersion coating or by being provided with one or more sheets of α-cellulose impregnated with thermosetting resin or lacquer.
2. A process according to claim 1, c h a r a c t e r i s e d in that the dέcor is achieved by digitisation of an actual archetype or by partly or completely being created in a digital media, which digitised dέcor (2') is stored digitally in order to be used as a control function and original, together with possible control programs, when printing the dέcor (2').
3. A process according to claim 2, c harac teri se d in that at least parts of the digital dέcor (2') is used, together with support programs for controlling further steps in the manufacturing procedure such as identification marking, packaging, lacquering, surface embossing, storing and delivery logistics as well as assembly instructions.
4. A process according to any of the claims 1 - 3, c h a rac teri s e d in that the supporting core (5) is manufactured in the desired end user format and provided with edges (3) intended for joining before applying decor and wear layer.
5. A process according to any of the claims 1 -4, c h a rac te r i s e d in that the main part of the supporting core (5) is constituted by a particle board or a fibre board.
A process according to any of the claims 1 - 4, c h a r a c t e r i s e d in that at least parts of the supporting core (5) is constituted of a polymer such as for example polyurethane or a polyolefin such as polyethylene, polypropylene or polybutene
A process according to claim 6, c h aracte r i s e d in that the supporting core (5) except polymer also contains a filler in the form of a particle or fibre of organic or inorganic material
A process according to any of the claims 1 - 7, c h a ra c t e r i s e d in that the translucent wear layer (2") is constituted of a UV curing or electron beam curing resin or lacquer such as for example acrylic, epoxy or maleimide lacquer
A process according to claim 8, c ha rac te r i s e d in that the wear layer (2") is applied in several steps with intermediate curing, of which the last is a a complete curing while the earlier are only partial
A process according to claim 8 or 9, c h ara c t e r i s e d in that the wear layer (2") also comprises hard particles with an average particle size in the range 50nm - 150μm
A process according to claim 10, c harac te r l s e d in that the upper portion of the wear layer (2") is provided with hard particles in the range 50nm - 30μm, preferably 50nm - lOμm while the inner portion of the wear layer (2") is provided with hard particles in the range 10 μm - 150 μm, preferably 30 μm - 150 μm
A process according to claim 10, c harac te r i s e d in that the hard particles is constituted by silicon oxide, silicon carbide, α-aluminium oxide or the like
A process according to claim 11, c h a rac t e r i s e d in that the hard particles is constituted by silicon oxide, silicon carbide, α-aluminium oxide, diamond or
A process according to any of the claims 1 - 7, c h ara c te r i s e d in that the translucent wear layer (2") is constituted by one or more sheets of α-cellulose impregnated with melamine-formaldehyde resin
15. A process according to claim 14, c h a r a c t e r i s e d in that the wear layer (2") is joined with the supporting core (5) through heat and pressure, whereby the resin cures.
16. A process according to claim 14 or 15, characterised in that the wear layer (2") also comprises hard particles with an average particle size in the range 50nm - 150μm.
17. A process according to claim 16, c h ara cter i s e d in that the upper portion of the wear layer (2") is provided with hard particles in the range 50nm - 30μm, preferably 50nm - lOμm while the inner portion of the wear layer (2") is provided with hard particles in the range 10 μm - 150 μm, preferably 30 μm - 150 μm.
18. A process according to claim 10, c h a ra c te r i s e d in that the hard particles is constituted by silicon oxide, silicon carbide, α-aluminium oxide or the like.
19. A process according to claim 11, c h a ra c te r i s e d in that the hard particles is constituted by silicon oxide, silicon carbide, α-aluminium oxide, diamond or the like.
20. A process according to any of the claims 1 - 19, c harac teri sed in that the dέcor on the surface elements (1) is constituted by a number of dέcor segments with intermediate borders, which borders, on at least two opposite edges of a surface element (1) coincides with borders on intended adjoining floor elements (1).
21. A process according to any of the claims 1 - 20, c h a ra c te ri s e d in that at least one surface structured matrix which forms at least one surface structure segment is positioned on the decorative side of the surface element (1) during the step in the process where the wear layer (2") is applied on the surface element (1) and is pressed towards this whereby the wear layer (2") receives a surface with structure that enhances the realistic impression of the dέcor (2').
22. A process according to any of the claims 2 - 21, c h a r a c t e r i s e d in that two or more surface structured matrixes, which each forms one surface structure segment, which segments are independent from each other concerning structure, and that said surface structure segments are intended to mainly, preferably completely coincide with corresponding pattern segments in the dέcor, is thoroughly positioned on the decorative side of the surface element (1) during the steps in the process where the wear layer (2") is provided with a wear layer (2"), and pressed toward this whereby the wear layer (2") receives a surface structure (2'") corresponding to the different pattern segments in the dέcor.
23. A process according to claim 21 or 22, charac teri s e d in that one or more matrixes forms the structured surface of one or more rollers whereby the surface element (1) is passed between the structured roller and matching counter stay under continuos or discontinuous pressure between the rollers and the counter stays.
24. A process according to claim 23, c h a ra c t e r i s e d in that rollers equipped with two or more matrixes has a circumference adapted to repetition distance in the variation of direction in the dέcor.
25. A process according to claim 22, c h a r a c t e r i s e d in that one or more matrixes forms the structured surface on one or more press belts, whereby the surface element (1) is passed between the press belts and counter stays, with the decorative side facing the press belts, during continuous or discontinuous pressure between the press belts and counter stays.
26. A process according to claim 22, c h a r a c t e r i s e d in that one or more matrixes forms the structured surface on one or more static moulds which momentary and static is pressed towards the decorative surface of the surface element (1). A process according to any of the claims 21 - 26, c h a r a c t e r i s e d in that specially characteristic dέcor segments such as borderlines between simulated slabs, bars, blocks or the like and also knots, cracks, flaws and grain which is visually simulated in the decor (2'), is stored as digital data, that said data is used for guiding automated engraving or pressing tools when providing said characteristic decor segments with a suitable surface structure, and that said engraving tool or pressing tool is synchronised via the predetermined fixing point on the surface element (1)
A surface element (1) manufactured according to any of the claims 1 - 27, c h a r a c t e r i s e d in that they form floor elements intended to be joined to become a floor covering material, wall elements intended to be joined to become a wall covering material or ceiling elements intended to be joined to become a ceiling material
PCT/SE2000/002341 1999-12-23 2000-11-27 A process for the manufacturing of surface elements WO2001048333A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60015603T DE60015603T3 (en) 1999-12-23 2000-11-27 METHOD FOR PRODUCING FLOOR ELEMENTS
EP00987870A EP1242702B2 (en) 1999-12-23 2000-11-27 A process for the manufacturing of floor elements
AT00987870T ATE281576T1 (en) 1999-12-23 2000-11-27 METHOD FOR PRODUCING SURFACE ELEMENTS
AU24145/01A AU2414501A (en) 1999-12-23 2000-11-27 A process for the manufacturing of surface elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9904781A SE516696C2 (en) 1999-12-23 1999-12-23 Process for producing surface elements comprising an upper decorative layer as well as surface elements produced according to the method
SE9904781-3 1999-12-23

Publications (1)

Publication Number Publication Date
WO2001048333A1 true WO2001048333A1 (en) 2001-07-05

Family

ID=20418305

Family Applications (6)

Application Number Title Priority Date Filing Date
PCT/SE2000/002341 WO2001048333A1 (en) 1999-12-23 2000-11-27 A process for the manufacturing of surface elements
PCT/SE2000/002336 WO2001047724A1 (en) 1999-12-23 2000-11-27 A process for the manufacturing of surface elements with a structured top surface
PCT/SE2000/002337 WO2001047725A1 (en) 1999-12-23 2000-11-27 A process for the manufacturing of surface elements with a structured upper surface
PCT/SE2000/002339 WO2001047717A1 (en) 1999-12-23 2000-11-27 A process for achieving decor on surface elements
PCT/SE2000/002338 WO2001047726A1 (en) 1999-12-23 2000-11-27 A process for achieving a wear resistant translucent surface on surface elements
PCT/SE2000/002340 WO2001047718A1 (en) 1999-12-23 2000-11-27 A process for achieving decor on a surface element

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/SE2000/002336 WO2001047724A1 (en) 1999-12-23 2000-11-27 A process for the manufacturing of surface elements with a structured top surface
PCT/SE2000/002337 WO2001047725A1 (en) 1999-12-23 2000-11-27 A process for the manufacturing of surface elements with a structured upper surface
PCT/SE2000/002339 WO2001047717A1 (en) 1999-12-23 2000-11-27 A process for achieving decor on surface elements
PCT/SE2000/002338 WO2001047726A1 (en) 1999-12-23 2000-11-27 A process for achieving a wear resistant translucent surface on surface elements
PCT/SE2000/002340 WO2001047718A1 (en) 1999-12-23 2000-11-27 A process for achieving decor on a surface element

Country Status (11)

Country Link
US (17) US6991830B1 (en)
EP (3) EP1242702B2 (en)
CN (1) CN1201059C (en)
AT (3) ATE263031T1 (en)
AU (6) AU2414301A (en)
DE (3) DE60015603T3 (en)
ES (2) ES2217017T3 (en)
PT (1) PT1242702E (en)
RU (1) RU2255189C2 (en)
SE (1) SE516696C2 (en)
WO (6) WO2001048333A1 (en)

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420126A2 (en) 2002-11-12 2004-05-19 Kronotec Ag Wood-fiber-board, in particular flooring panel
WO2004042168A1 (en) * 2002-11-01 2004-05-21 Mannington Mills, Inc. A surface covering panel with printed pattern
EP1539476A1 (en) * 2002-05-03 2005-06-15 Faus Group, Inc. Embossed-in-register panel system
EP1574634A1 (en) * 2004-03-08 2005-09-14 Kronotec Ag Wooden material panel, in particular for floors
EP1681158A2 (en) 2005-01-14 2006-07-19 Giorgio Fedon & Figli S.p.A. Method of forming images or decorations on a support body
WO2006074635A1 (en) * 2005-01-12 2006-07-20 Akzenta Paneele + Profile Gmbh Floor panel
WO2007003804A2 (en) * 2005-05-10 2007-01-11 ESPACE PRODUCTION INTERNATIONAL EPI, Société Anonyme Method of producing floor covering strips, strips thus produced and facility and decorative sheet used to implement said method
EP1757747A1 (en) * 2005-08-24 2007-02-28 USG INTERIORS, Inc. Composite ceiling tile
WO2007054812A2 (en) * 2005-11-09 2007-05-18 Flooring Industries Limited, Sarl Floor covering, transfer film and method for manufacturing floor panels
WO2007079541A1 (en) 2006-01-12 2007-07-19 John Lyndon Garnett Radiation curable system
EP1867488A1 (en) * 2006-06-12 2007-12-19 Homag Holzbearbeitungssysteme AG Device for patterning the surface of workpieces
WO2007144718A2 (en) * 2006-06-13 2007-12-21 Flooring Industries Limited, Sarl Method for manufacturing coated panels and coated panel
WO2007144403A1 (en) * 2006-06-14 2007-12-21 Fritz Egger Gmbh & Co. Component, preferably for covering floors, walls and ceilings, and method of producing it
WO2007148184A2 (en) * 2006-06-21 2007-12-27 Flooring Industries Limited, Sarl Method for manufacturing floor elements and floor element
BE1017168A5 (en) * 2006-06-13 2008-03-04 Flooring Ind Ltd Manufacturing of coated panels e.g. a floor panel or a furniture panel, comprises forming a carrier sheet provided with resin coating, and providing a suspension that includes a portion of hard micro-particles
EP1918336A1 (en) * 2006-10-31 2008-05-07 Akzo Nobel Coatings International B.V. Coating composition comprising gemstone particles
EP1923223A1 (en) * 2006-11-14 2008-05-21 Impress Decor GmbH Method for manufacturing decorative films
WO2008102010A2 (en) 2007-02-23 2008-08-28 Tgc Technologie Beteiligungsgesellschaft Mbh Method and device for grinding and polishing wooden materials, and corresponding wooden parts
WO2008114117A2 (en) * 2007-03-21 2008-09-25 Flooring Industries Limited, Sarl Method for manufacturing floor panels by performing a photographic art
EP1985464A1 (en) * 2007-04-27 2008-10-29 Kronotec Ag Construction plate, in particular floor panel and method for its production
WO2009013580A2 (en) 2007-07-26 2009-01-29 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel.
DE102007025135B3 (en) * 2007-05-30 2009-02-05 Flooring Technologies Ltd. Wood-based panel and method of manufacture
WO2009066081A1 (en) * 2007-11-23 2009-05-28 Kristian Holt Flooring material
EP2108524A1 (en) 2008-04-08 2009-10-14 Unilin Industries, Bvba Method for manufacturing coated panels and coated panel
BE1017927A3 (en) * 2008-01-09 2009-11-03 Flooring Ind Ltd Sarl Floor panel, has decorative side formed with printing, transparent plastic layer fitted on decorative side, and multiple zones exhibiting reduced transparency on rest of plastic layer, where plastic layer is visible to naked eye
BE1017928A3 (en) * 2008-01-09 2009-11-03 Flooring Ind Ltd Sarl Covered panel manufacturing method for e.g. furniture panel, involves forming decorative print on substrate by utilizing two printing cylinders, so that print comprising zone in which one of two print patterns is absent
NL1035423C2 (en) * 2008-05-15 2009-11-18 Trespa Int Bv Method for manufacturing a laminate product.
EP1290290B1 (en) * 2000-06-13 2010-01-06 Flooring Industries Ltd. Floor covering, floor panels, method for their realization
WO2009087440A3 (en) * 2008-01-09 2010-01-28 Flooring Industries Limited, Sarl Panels and method for manufacturing
CN101041315B (en) * 2007-04-27 2010-04-14 蒲正茂 Method for making tree growth ring picture
WO2010055429A2 (en) * 2008-11-13 2010-05-20 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained herewith
WO2010070474A2 (en) 2008-12-19 2010-06-24 Flooring Industries Limited, Sarl Coated panel and method for manufacturing such panel
WO2010070485A2 (en) 2008-12-19 2010-06-24 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained thereby
EP2202056A1 (en) 2008-12-23 2010-06-30 Unilin Industries, BVBA Floor panel and methods for manufacturing floor panels
WO2010084386A2 (en) 2009-01-20 2010-07-29 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained herewith
EP2213476A1 (en) * 2009-01-30 2010-08-04 Spanolux N.V.- DIV. Balterio A method of manufacturing a laminate panel, an apparatus and a laminate panel
WO2010103417A1 (en) 2009-03-12 2010-09-16 Flooring Industries Limited, Sarl Method for manufacturing panels and panels obtained hereby
EP2272662A1 (en) * 2009-06-22 2011-01-12 Courey, Stephen P. Tile structure and assembly for covering predetermined surface
EP2082898A3 (en) * 2008-01-22 2011-02-23 Guido Schulte Device and method for attaching a finish on a plate element, pressure roller, floor, wall or ceiling panel
US7914098B2 (en) 2006-11-07 2011-03-29 Homag Holzbearbeitungssysteme Ag Device for patterning workpieces
WO2011036141A1 (en) * 2009-09-23 2011-03-31 Theodor Hymmen Holding Gmbh Method for producing a digitally printed workpiece
WO2011039665A2 (en) 2009-10-01 2011-04-07 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained hereby
WO2011045690A2 (en) 2009-10-14 2011-04-21 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained hereby
WO2011013049A3 (en) * 2009-07-31 2011-05-12 Leonardo Panettieri Coated printing substrate
EP1762671B1 (en) * 2005-09-08 2011-06-22 Flooring Technologies Ltd. Building board, in particular flooring panel
US8038236B2 (en) 2006-08-25 2011-10-18 Homag Holzbearbeitungssysteme Ag Device for patterning workpieces
WO2011141850A2 (en) 2010-05-10 2011-11-17 Flooring Industries Limited, Sarl Panel and methods for manufacturing panels
EP2402172A1 (en) 2010-06-23 2012-01-04 Flooring Industries Limited, SARL Method for manufacturing coated panels
US8112958B2 (en) 2002-05-03 2012-02-14 Faus Group Flooring system having complementary sub-panels
US8181407B2 (en) 2002-05-03 2012-05-22 Faus Group Flooring system having sub-panels
WO2012069651A1 (en) * 2010-11-26 2012-05-31 Brillux Gmbh & Co. Kg Coating composition with sparkle effect
US8209928B2 (en) 1999-12-13 2012-07-03 Faus Group Embossed-in-registration flooring system
EP1697133B2 (en) 2003-11-25 2012-08-29 Pergo (Europe) AB A process for manufacturing a decorative laminate
EP2380747A3 (en) * 2010-04-23 2012-12-05 Fritz Egger GmbH & Co. OG Method for providing panels
US8328303B2 (en) 2006-06-26 2012-12-11 Dante Frati Process for printing surfaces of wood-based flat elements
US8349234B2 (en) 2010-01-15 2013-01-08 Ceraloc Innovation Belgium Bvba Fibre based panels with a decorative wear resistance surface
US8349235B2 (en) 2007-11-19 2013-01-08 Ceraloc Innovation Belgium Bvba Recycling of laminate floorings
US8366260B2 (en) 2006-03-08 2013-02-05 Homag Holzbearbeitungssysteme Ag Process and apparatus for the printing of panel-shaped workpieces
US8419877B2 (en) 2008-04-07 2013-04-16 Ceraloc Innovation Belgium Bvba Wood fibre based panels with a thin surface layer
US8431054B2 (en) 2007-11-19 2013-04-30 Ceraloc Innovation Belgium Bvba Fibre based panels with a wear resistance surface
US8481111B2 (en) 2010-01-15 2013-07-09 Ceraloc Innovation Belgium Bvba Bright coloured surface layer
US8480841B2 (en) 2010-04-13 2013-07-09 Ceralog Innovation Belgium BVBA Powder overlay
WO2014025309A1 (en) * 2012-08-09 2014-02-13 Välinge Flooring Technology AB Single layer scattering of powder surfaces
US8728564B2 (en) 2011-04-12 2014-05-20 Valinge Innovation Ab Powder mix and a method for producing a building panel
KR20140066187A (en) * 2011-08-26 2014-05-30 뵈링게 플루링 데크놀로지 아베 Panel coating
US8784587B2 (en) 2010-01-15 2014-07-22 Valinge Innovation Ab Fibre based panels with a decorative wear resistance surface
WO2014167472A1 (en) 2013-04-12 2014-10-16 Unilin, Bvba Method for manufacturing panels
ITBO20130301A1 (en) * 2013-06-14 2014-12-15 Sorbini Srl METHOD FOR PAINTING LISTONS FOR WOOD FLOORS AND ITS DERIVATIVES
US8920876B2 (en) 2012-03-19 2014-12-30 Valinge Innovation Ab Method for producing a building panel
US8925275B2 (en) 2010-05-10 2015-01-06 Flooring Industries Limited, Sarl Floor panel
US8993049B2 (en) 2012-08-09 2015-03-31 Valinge Flooring Technology Ab Single layer scattering of powder surfaces
US9073295B2 (en) 2008-12-19 2015-07-07 Fiber Composites, Llc Wood-plastic composites utilizing ionomer capstocks and methods of manufacture
EP1645339B1 (en) 2004-10-05 2015-07-08 Fritz Egger GmbH & Co. OG Process and apparatus for making a structured surface and manufactured object with stuctured surface
US9085905B2 (en) 2011-04-12 2015-07-21 Valinge Innovation Ab Powder based balancing layer
US9114603B2 (en) 2007-03-28 2015-08-25 Pergo (Europe) Ab Process for color variability in printing to simulate color variation of natural product
EP2910385A1 (en) * 2014-02-25 2015-08-26 Akzenta Paneele + Profile GmbH Method for producing decorative panels
US9163414B2 (en) 2010-05-10 2015-10-20 Flooring Industries Limited, Sarl Floor panel
US9181698B2 (en) 2013-01-11 2015-11-10 Valinge Innovation Ab Method of producing a building panel and a building panel
EP2947235A1 (en) * 2014-05-23 2015-11-25 Studiograph Print & Service S.r.l. Finishing element and process for the realization of said finishing element
US9200460B2 (en) 2006-06-02 2015-12-01 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US9222267B2 (en) 2006-01-12 2015-12-29 Valinge Innovation Ab Set of floorboards having a resilient groove
US9249581B2 (en) 2009-09-04 2016-02-02 Valinge Innovation Ab Resilient floor
EP2998457A1 (en) * 2014-09-19 2016-03-23 Saint-Gobain Ecophon AB Methods and tile for use in a false ceiling or wall and a false ceiling or wall
US9314936B2 (en) 2011-08-29 2016-04-19 Valinge Flooring Technology Ab Mechanical locking system for floor panels
US9352499B2 (en) 2011-04-12 2016-05-31 Valinge Innovation Ab Method of manufacturing a layer
EP1454763B2 (en) 2003-03-06 2016-06-08 Flooring Technologies Ltd. Decorative coating of a plate of wooden material
US9409382B2 (en) 2012-11-28 2016-08-09 Valinge Innovation Ab Method of producing a building panel
US9410328B2 (en) 2003-02-24 2016-08-09 Valinge Innovation Ab Floorboard and method for manufacturing thereof
US9410319B2 (en) 2010-01-15 2016-08-09 Valinge Innovation Ab Heat and pressure generated design
US9528278B2 (en) 2009-12-22 2016-12-27 Flooring Industries Limited, Sarl Panel, covering and method for installing such panels
US9556622B2 (en) 2007-11-19 2017-01-31 Valinge Innovation Ab Fibre based panels with a wear resistance surface
US9605168B2 (en) 2014-01-31 2017-03-28 Ceraloc Innovation Ab Digital print with water-based ink
US9605436B2 (en) 2003-12-02 2017-03-28 Valinge Innovation Ab Floorboard, system and method for forming a flooring, and a flooring formed thereof
US9637920B2 (en) 2006-01-20 2017-05-02 Material Innovations Llc Carpet waste composite
WO2017076532A1 (en) * 2015-11-02 2017-05-11 Atkaindl Flooring Gmbh Panel comprising an end-grain wood pattern, method for producing a pattern for such a panel, panel trading unit comprising at least one panel of this kind, embossing element for such a panel and decorative paper for such a panel
WO2017121825A1 (en) * 2016-01-11 2017-07-20 Tarkett Gdl Surface covering production method using digital printing
EP3246175A1 (en) * 2016-05-20 2017-11-22 Flooring Technologies Ltd. Method of producing an abrasion resistant wooden panel and production line for same
EP2730429B1 (en) 2012-11-07 2018-01-10 Akzenta Paneele + Profile GmbH Method for producing a decorated wall or floor panel
BE1024356B1 (en) * 2016-07-07 2018-02-05 Unilin Bvba Decorative panel or profile
WO2018007932A3 (en) * 2016-07-07 2018-02-15 Unilin, Bvba Floor panel and decorative panel or profile
EP2340928B1 (en) 2001-07-13 2018-04-11 Flooring Technologies Ltd. Embossed-in-register direct pressure laminate manufacturing process
US9994010B2 (en) 2014-01-24 2018-06-12 Ceraloc Innovation Ab Digital print with water-based ink on panel surfaces
US10059084B2 (en) 2014-07-16 2018-08-28 Valinge Innovation Ab Method to produce a thermoplastic wear resistant foil
US10100535B2 (en) 2014-01-10 2018-10-16 Valinge Innovation Ab Wood fibre based panel with a surface layer
US10105900B2 (en) 2013-08-14 2018-10-23 Homag Holzbearbeitungssysteme Gmbh Coating unit
US10286633B2 (en) 2014-05-12 2019-05-14 Valinge Innovation Ab Method of producing a veneered element and such a veneered element
US10301830B2 (en) 2013-03-25 2019-05-28 Valinge Innovation Ab Floorboards provided with a mechanical locking system
US10315219B2 (en) 2010-05-31 2019-06-11 Valinge Innovation Ab Method of manufacturing a panel
US10328680B2 (en) 2013-10-23 2019-06-25 Ceraloc Innovation Ab Method of forming a decorative wear resistant layer
WO2019135140A1 (en) 2018-01-04 2019-07-11 Unilin, Bvba Methods for manufacturing panels
US10369837B2 (en) 2012-04-30 2019-08-06 Valinge Innovation Ab Method for forming a decorative design on an element of a wood-based material
US10442164B2 (en) 2013-11-27 2019-10-15 Valinge Innovation Ab Floor, wall, or ceiling panel and method for producing same
US10479134B2 (en) 2014-05-09 2019-11-19 Akzenta Paneele + Profile Gmbh Method for producing a decorated wall or floor panel
US10513094B2 (en) 2013-10-18 2019-12-24 Valinge Innovation Ab Method of manufacturing a building panel
EP3374171A4 (en) * 2015-11-16 2020-04-01 AFI Licensing LLC Lvt formulation and drum surface for achieving improved drum tack while maintaining good cut smoothness
US10618346B2 (en) 2015-08-19 2020-04-14 Akzenta Paneele + Profile Gmbh Method for producing a decorated wall or floor panel
US10619356B2 (en) 2012-07-02 2020-04-14 Ceraloc Innovation Ab Panel forming
US10800186B2 (en) 2013-01-11 2020-10-13 Ceraloc Innovation Ab Digital printing with transparent blank ink
US10828881B2 (en) 2016-04-25 2020-11-10 Valinge Innovation Ab Veneered element and method of producing such a veneered element
US10899166B2 (en) 2010-04-13 2021-01-26 Valinge Innovation Ab Digitally injected designs in powder surfaces
US10913176B2 (en) 2013-07-02 2021-02-09 Valinge Innovation Ab Method of manufacturing a building panel and a building panel
US10975580B2 (en) 2001-07-27 2021-04-13 Valinge Innovation Ab Floor panel with sealing means
US11072156B2 (en) 2013-11-27 2021-07-27 Valinge Innovation Ab Method for producing a floorboard
US11090972B2 (en) 2015-12-21 2021-08-17 Valinge Innovation Ab Method to produce a building panel and a semi finished product
US11198319B2 (en) 2017-11-06 2021-12-14 Flooring Technologies Ltd. Method for producing an abrasion-resistant wood composite board and production line therefor
US11235565B2 (en) 2008-04-07 2022-02-01 Valinge Innovation Ab Wood fibre based panels with a thin surface layer
US11313123B2 (en) 2015-06-16 2022-04-26 Valinge Innovation Ab Method of forming a building panel or surface element and such a building panel and surface element
US11377855B2 (en) 2019-03-25 2022-07-05 Ceraloc Innovation Ab Mineral-based panel comprising grooves and a method for forming grooves
US11572646B2 (en) 2020-11-18 2023-02-07 Material Innovations Llc Composite building materials and methods of manufacture
EP4190583A1 (en) 2021-12-06 2023-06-07 Chiyoda Europa A decorative sheet and method for manufacturing
US11712816B2 (en) 2019-03-05 2023-08-01 Ceraloc Innovation Ab Method and system for forming grooves in a board element and an associated panel
US11725398B2 (en) 2019-12-27 2023-08-15 Ceraloc Innovation Ab Thermoplastic-based building panel comprising a balancing layer
US11725395B2 (en) 2009-09-04 2023-08-15 Välinge Innovation AB Resilient floor
US11872837B2 (en) 2019-01-22 2024-01-16 Flooring Technologies Ltd. Abrasion-resistant wood board

Families Citing this family (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084634A1 (en) 2001-11-08 2003-05-08 Oliver Stanchfield Transition molding
ES2168045B2 (en) 1999-11-05 2004-01-01 Ind Aux Es Faus Sl NEW DIRECT LAMINATED FLOOR.
US6863768B2 (en) 1999-11-08 2005-03-08 Premark Rwp Holdings Inc. Water resistant edge of laminate flooring
US6638387B2 (en) * 2001-07-13 2003-10-28 Industrias Auxiliares Faus S.L. Embossed-in-register manufacturing process
SE516696C2 (en) 1999-12-23 2002-02-12 Perstorp Flooring Ab Process for producing surface elements comprising an upper decorative layer as well as surface elements produced according to the method
DE10031030B4 (en) 2000-06-26 2005-08-04 Bauer, Jörg R. Method and device for producing flat components with a predetermined surface appearance and planar component, in particular front panel of a kitchen element
SE0003245L (en) * 2000-09-13 2002-03-14 Tetra Laval Holdings & Finance Packaging laminate for an autoclavable packaging container
SE0003550L (en) * 2000-10-03 2002-04-04 Pergo Ab Process for making surface elements
US7807263B2 (en) * 2006-11-06 2010-10-05 Panolam Industries International, Inc. Laminated panel
US7303810B2 (en) * 2001-03-05 2007-12-04 3Form, Inc. Fire-resistant architectural resin materials
US7008700B1 (en) 2001-03-05 2006-03-07 3-Form Architectural laminate panel with embedded compressible objects and methods for making the same
US7691470B2 (en) * 2001-03-05 2010-04-06 3Form Laminate structure with polycarbonate sheets
SE520381C2 (en) * 2001-03-14 2003-07-01 Pergo Ab Procedure for making decorative panels
SE522766C2 (en) * 2001-07-02 2004-03-02 Pergo Europ Ab Wall cladding with mounting brackets
US7207143B2 (en) 2001-11-08 2007-04-24 Pergo (Europe) Ab Transition molding and installation methods therefor
SE525681C2 (en) * 2001-12-07 2005-04-05 Pergo Ab Structured panels with matched surface
WO2003064170A1 (en) * 2002-01-30 2003-08-07 Gerber Scientific Products, Inc. Apparatus and method for printing and cutting customized wall decorations
US20040180181A1 (en) * 2002-03-29 2004-09-16 Eric Franzoi Wear resistant laminates
US20030203165A1 (en) * 2002-04-30 2003-10-30 Nobles Joy Sharon Computer generated decorative graphic article for application to a surface
US7836649B2 (en) 2002-05-03 2010-11-23 Faus Group, Inc. Flooring system having microbevels
US20030221387A1 (en) * 2002-05-28 2003-12-04 Kumud Shah Laminated indoor flooring board and method of making same
DE10224128A1 (en) 2002-05-29 2003-12-18 Schmid Rhyner Ag Adliswil Method of applying coatings to surfaces
JP4519641B2 (en) * 2002-07-01 2010-08-04 インカ・ディジタル・プリンターズ・リミテッド Printing with ink
US20040045240A1 (en) * 2002-09-10 2004-03-11 Mcilvaine Bruce L. Laminate flooring with custom images
DE10252865A1 (en) * 2002-11-12 2004-05-27 Kronotec Ag Process for creating a structured decoration in a wood-based panel
US7617651B2 (en) 2002-11-12 2009-11-17 Kronotec Ag Floor panel
ATE395481T1 (en) * 2002-11-15 2008-05-15 Flooring Technologies Ltd DEVICE CONSISTS OF TWO BUILDING PLATES THAT CAN BE CONNECTED TO EACH OTHER AND AN INSERT FOR LOCKING THESE BUILDING PLATES
US7959817B2 (en) 2004-01-09 2011-06-14 Masonite Corporation Door skin, a method of etching a plate, and an etched plate formed therefrom
US6988342B2 (en) 2003-01-17 2006-01-24 Masonite Corporation Door skin, a method of etching a plate for forming a wood grain pattern in the door skin, and an etched plate formed therefrom
DE10306118A1 (en) 2003-02-14 2004-09-09 Kronotec Ag building board
US7678425B2 (en) * 2003-03-06 2010-03-16 Flooring Technologies Ltd. Process for finishing a wooden board and wooden board produced by the process
DE20304761U1 (en) 2003-03-24 2004-04-08 Kronotec Ag Device for connecting building boards, in particular floor panels
BE1015760A6 (en) * 2003-06-04 2005-08-02 Flooring Ind Ltd Laminated floorboard has a decorative overlay and color product components inserted into recesses which, together, give a variety of visual wood effects
US6922965B2 (en) * 2003-07-25 2005-08-02 Ilinois Tool Works Inc. Bonded interlocking flooring
DE10362218B4 (en) 2003-09-06 2010-09-16 Kronotec Ag Method for sealing a building board
DE20315676U1 (en) * 2003-10-11 2003-12-11 Kronotec Ag Panel, especially floor panel
DE10350212A1 (en) 2003-10-27 2005-05-25 Giesecke & Devrient Gmbh Process for producing sheet-like materials
FI20031634A (en) * 2003-11-11 2005-05-12 Jari Ruuttu Process for manufacturing molded plastic products and integrated processing method
SE526722C2 (en) * 2003-11-25 2005-11-01 Pergo Europ Ab A method of making a surface structure on a decorative laminate
SE526728C2 (en) * 2003-12-11 2005-11-01 Pergo Europ Ab A method of making panels with a decorative surface
SE526333C2 (en) * 2003-12-11 2005-08-23 Pergo Europ Ab Flooring system with a plurality of different upper decorative surfaces
US7506481B2 (en) * 2003-12-17 2009-03-24 Kronotec Ag Building board for use in subfloors
DE102004005047B3 (en) * 2004-01-30 2005-10-20 Kronotec Ag Method and device for introducing a strip forming the spring of a plate
US7165374B2 (en) * 2004-02-13 2007-01-23 Viken Ohanesian Wall system and method
DE102004011931B4 (en) * 2004-03-11 2006-09-14 Kronotec Ag Insulation board made of a wood-material-binder fiber mixture
US7287357B2 (en) 2004-03-15 2007-10-30 Faus Group, Inc. Molding profile and molding profile assembly
CA2559855C (en) * 2004-03-23 2015-05-05 Building Materials Investment Corporation A building membrane
SE527165C2 (en) * 2004-04-07 2006-01-10 Pergo Europ Ab An improved process for making decorative laminate
US7383768B2 (en) * 2004-05-05 2008-06-10 Awi Licensing Company Rapid prototyping and filling commercial pipeline
US20050266210A1 (en) * 2004-06-01 2005-12-01 Blair Dolinar Imprinted wood-plastic composite, apparatus for manufacturing same, and related method of manufacture
DE102004032058B4 (en) * 2004-07-01 2009-12-03 Fritz Egger Gmbh & Co. A method of making a panel having a decorative surface and a panel having a decorative surface
US20060005498A1 (en) * 2004-07-07 2006-01-12 Vincente Sabater Flooring system having sub-panels with complementary edge patterns
US20070115336A1 (en) * 2004-07-30 2007-05-24 Ko Victory H Digital ink jet printing process method
US20060046017A1 (en) 2004-09-01 2006-03-02 3Form Architectural glass panels with embedded objects and methods for making the same
WO2006031169A1 (en) * 2004-09-14 2006-03-23 Pergo (Europe) Ab A decorative laminate board
US8201377B2 (en) 2004-11-05 2012-06-19 Faus Group, Inc. Flooring system having multiple alignment points
US20060194015A1 (en) * 2004-11-05 2006-08-31 Vincente Sabater Flooring system with slant pattern
DE102004056584B4 (en) * 2004-11-23 2007-12-13 Johannes Schulte Panels for floor, wall and ceiling coverings and a method for their manufacture
US7615279B2 (en) * 2004-12-07 2009-11-10 Rtistx, Llc Art surface and method for preparing same
ATE451251T1 (en) * 2004-12-23 2009-12-15 Flooring Ind Ltd LAYERED FLOOR PANEL
US20060147693A1 (en) * 2005-01-04 2006-07-06 James Przybylinski Foil or film laminated enhanced natural fiber/polymer composite
US8747596B2 (en) * 2005-01-12 2014-06-10 Flooring Industries Limited, Sarl Finishing set for floor covering and holder, as well as finishing profile, for a finishing set, and method for manufacturing a finishing profile and a skirting board
DE102005002295A1 (en) * 2005-01-17 2006-07-27 Kaindl Flooring Gmbh Panels with long plank look
ITTV20050035A1 (en) * 2005-03-04 2006-09-05 Roberto Brao Method for making a decorated piece of furniture.
US7281811B2 (en) * 2005-03-31 2007-10-16 S. C. Johnson & Son, Inc. Multi-clarity lenses
US20130139478A1 (en) 2005-03-31 2013-06-06 Flooring Industries Limited, Sarl Methods for packaging floor panels, as well as packed set of floor panels
BE1016938A6 (en) * 2005-03-31 2007-10-02 Flooring Ind Ltd Floor panel manufacturing method, involves providing panels at lower side with guiding groove and providing two opposite sides with profiled edge regions that comprise coupling parts
BE1016613A3 (en) * 2005-06-06 2007-02-06 Flooring Ind Ltd METHOD, DEVICE AND ACCESSORIES FOR MANUFACTURING FLOOR PANELS.
DE102005042657B4 (en) * 2005-09-08 2010-12-30 Kronotec Ag Building board and method of manufacture
US7854986B2 (en) 2005-09-08 2010-12-21 Flooring Technologies Ltd. Building board and method for production
WO2007038989A1 (en) * 2005-10-05 2007-04-12 Penrose Parkettgestaltung Gmbh Parquet area, parquet element, and combination of parquet elements
ES2247956B1 (en) * 2005-10-07 2007-05-16 Santos Jimenez Fuentes MANUFACTURING SYSTEM OF COATING PLATES AND RESULTING PLATES.
BE1016875A5 (en) * 2005-12-23 2007-08-07 Flooring Ind Ltd FLOOR PANEL AND METHOD FOR MANUFACTURING SUCH FLOOR PANEL.
DE102005063034B4 (en) 2005-12-29 2007-10-31 Flooring Technologies Ltd. Panel, in particular floor panel
BE1016925A6 (en) * 2006-02-07 2007-09-04 Flooring Ind Ltd FINISHING PROFILE FOR A FLOOR COATING AND METHODS FOR MANUFACTURING SUCH FINISHING PROFILE.
DE102006006124A1 (en) * 2006-02-10 2007-08-23 Flooring Technologies Ltd. Device for locking two building panels
DE102006007976B4 (en) * 2006-02-21 2007-11-08 Flooring Technologies Ltd. Process for refining a building board
DE102006018099B4 (en) * 2006-04-18 2017-10-12 Guido Schulte Floor panel with a base coat containing effect particles
US20070248836A1 (en) * 2006-04-25 2007-10-25 John Linde Quartz/solid surface laminate
DE102006023117A1 (en) * 2006-05-16 2007-11-22 Rehau Ag + Co. Method and device for printing on a substrate
DE102006024305B3 (en) * 2006-05-24 2007-10-25 Flooring Technologies Ltd. Panel production method involves heating embossing roll from two hundred to five hundred degree celsius, where panel is introduced between embossing roll and counter roll
US20070283654A1 (en) * 2006-05-25 2007-12-13 Pfleiderer Schweiz Ag Break-away multi-purpose flooring transition
US8122665B2 (en) * 2006-05-25 2012-02-28 Pergo (Europe) Ag Break-away multi-purpose flooring transition
US7918062B2 (en) * 2006-06-08 2011-04-05 Mannington Mills, Inc. Methods and systems for decorating bevel and other surfaces of laminated floorings
US7660750B1 (en) * 2006-06-09 2010-02-09 3Form Viewing and ordering customized resin panels through web-based interfaces
US20080050540A1 (en) * 2006-08-23 2008-02-28 Peter Christofer Thermochromic display assembly
DE102006040093B4 (en) * 2006-08-28 2015-09-10 Guido Schulte floor panels
US7793483B2 (en) * 2006-09-18 2010-09-14 Pergo AG Ventilated floor moldings
EP1908608A1 (en) * 2006-10-05 2008-04-09 Spanolux N.V. Div. Balterio Method of and apparatus for manufacturing a panel and produced panel
PL1925461T3 (en) * 2006-10-05 2014-04-30 Spanolux N V Method of manufacturing a large surface panel, and a large surface panel
EP2076638A4 (en) * 2006-10-18 2011-05-11 Pergo AG Transitions having disparate surfaces
DE102006052293C5 (en) * 2006-11-03 2011-02-03 Kronotec Ag Wood-based panel with real wood veneer and process for its production
US20080263983A1 (en) * 2006-11-13 2008-10-30 Pergo (Europe) Ab Flush or near-flush flooring transitions
US20080213562A1 (en) * 2006-11-22 2008-09-04 Przybylinski James P Plastic Composites Using Recycled Carpet Waste and Systems and Methods of Recycling Carpet Waste
DE102006057961A1 (en) * 2006-12-08 2008-06-12 Bauer, Jörg R. Method and device for generating a sequence of individual individual patterns from a master pattern and device for printing such individual patterns
DE102006058655B4 (en) * 2006-12-11 2010-01-21 Ulrich Windmöller Consulting GmbH floor panel
US8728603B2 (en) 2006-12-11 2014-05-20 Ulrich Windmöller Consulting GmbH Floor panel
EP1935657B1 (en) * 2006-12-20 2013-02-13 Homag Holzbearbeitungssysteme AG Method and device for coating workpieces
US20080187710A1 (en) * 2007-02-05 2008-08-07 Pergo (Europe) Ab Protective chair mat with or without reversible surface decor
EP1974928B1 (en) 2007-03-27 2009-11-18 Homag Holzbearbeitungssysteme AG Method for printing on a three-dimensional container
DE102007017503B3 (en) 2007-04-13 2008-11-06 Bauer, Jörg R. Method for producing a component with a printed real wood surface and component produced by the method
CN101730623B (en) * 2007-05-08 2013-06-12 亨特道格拉斯工业瑞士有限责任公司 Multivariate color system with texture application
PL1990204T3 (en) * 2007-05-10 2016-04-29 Homag Holzbearbeitungssysteme Ag Process and device for coating a surface
EP1992499B1 (en) 2007-05-15 2012-04-04 Flooring Industries Limited, SARL Method for manufacturing panels and panel obtained thereby
EP1992480A1 (en) * 2007-05-16 2008-11-19 Spanolux N.V. Div. Balterio A panel and a method of manufacturing a panel
US20080314513A1 (en) * 2007-06-19 2008-12-25 Achim Gauss Device for imparting a pattern onto the surface of work pieces
DE102007044261B4 (en) * 2007-09-17 2009-06-18 Flooring Technologies Ltd. Method for providing a roller arrangement for producing decors on a wood-based material surface
US10399377B2 (en) * 2007-09-17 2019-09-03 Flooring Technologies, Ltd. Method for providing a roller assembly for creating decorative patterns on a wood material surface
DE102007046237A1 (en) 2007-09-26 2009-04-02 Dekor-Kunststoffe Gmbh Process for the production of coating elements and related manufacturing equipment
US20090120249A1 (en) * 2007-11-14 2009-05-14 Achim Gauss Device For Refining Workpieces
DE202007018099U1 (en) * 2007-12-21 2009-05-14 Witex Flooring Products Gmbh floorboard
DE202007018100U1 (en) * 2007-12-21 2009-05-14 Witex Flooring Products Gmbh floorboard
US8186399B2 (en) * 2008-03-10 2012-05-29 Unilin Flooring Nc Llc Automated floor board texturing cell and method
US8066433B2 (en) * 2008-03-14 2011-11-29 Pro-Mart Industries, Inc. Valve for vacuum storage bag
EP2116778B1 (en) * 2008-05-09 2016-03-16 Kronoplus Technical AG Heatable fitting system
BE1018191A5 (en) * 2008-06-19 2010-07-06 Flooring Ind Ltd Sarl METHOD FOR MANUFACTURING A LAMINATE PRODUCT, LAMINATE PRODUCTS OBTAINED THEREOF AND APPARATUS FOR ACHIEVING THE METHOD.
US20090313935A1 (en) * 2008-06-24 2009-12-24 Environmental Interiors, Inc. High Impact, Moisture Resistant Wall Panel System
DE102008033273B4 (en) * 2008-07-03 2011-02-17 hülsta-werke Hüls GmbH & Co KG Method and digital printing device for printing on printing paper
WO2010021912A2 (en) * 2008-08-21 2010-02-25 Echelon Laser Systems, Lp Laser-marked multi-component assemblies, kits, and related methods
US20100221493A1 (en) 2008-11-21 2010-09-02 Mats Hintze Use of silane-treated particles in laminates to improve clarity
KR101679171B1 (en) * 2008-12-19 2016-11-23 플로어링 인더스트리즈 리미티드 에스에이알엘 Coated panel comprising foam or polyvinyl chloride and method for manufacturing
AT507848B1 (en) 2009-01-29 2011-06-15 Durst Phototechnik Digital Technology Gmbh DEVICE AND METHOD FOR APPLYING FLUID DROPS
CA2697573A1 (en) * 2009-03-27 2010-09-27 Pergo (Europe) Ab Joint cover assembly and kit comprising this joint cover assembly as well as installation method therefor
RU2494202C2 (en) * 2009-03-31 2013-09-27 Андрей Виленович Любомирский Facing panel (versions)
RU2494201C2 (en) * 2009-03-31 2013-09-27 Андрей Виленович Любомирский Facing panel (versions)
DE102009022483A1 (en) 2009-05-25 2010-12-02 Pergo (Europe) Ab Set of panels, in particular floor panels
NL2003019C2 (en) 2009-06-12 2010-12-15 4Sight Innovation Bv FLOOR PANEL AND FLOOR COVERAGE CONSISING OF MULTIPLE OF SUCH FLOOR PANELS.
EP2676795B1 (en) * 2009-06-17 2018-09-05 Välinge Innovation AB Method for manufacturing a panel and panel manufactured by said method.
SG176751A1 (en) * 2009-06-26 2012-01-30 Basf Se Paint coating system and method of producing multilayered paint coating
DE202009014669U1 (en) * 2009-10-30 2010-01-21 Hueck Rheinische Gmbh Material plate with decorative layer and embossing
DE102009060103A1 (en) * 2009-12-21 2011-06-22 Fritz Egger Gmbh & Co. Og Method for producing a group of panels for imitation of a long plank
PL2363299T3 (en) 2010-03-05 2013-02-28 Unilin Bvba A method of manufacturing a floor board
US20110245950A1 (en) * 2010-04-06 2011-10-06 Cvg Management Corporation Vehicle body structure and method for making same
DE102010036454B4 (en) * 2010-07-16 2012-09-27 Fritz Egger Gmbh & Co. Og A method of making a panel and panel having a decor and a three-dimensional structure made by the method
ITVR20100211A1 (en) * 2010-11-15 2012-05-16 Rollo Gabriel SUPPORT CONTAINING IMAGES AND / OR REGISTRATION AND SIMILAR, AND PROCEDURE FOR ITS REALIZATION
US8591696B2 (en) * 2010-11-17 2013-11-26 Pergo (Europe) Ab Method for manufacturing a surface element
AT12136U3 (en) * 2011-02-22 2012-07-15 Stainer Arno WOODEN ELEMENTS WITH ALTERNATE DECOR AND METHOD FOR THE PRODUCTION THEREOF
ES2805332T3 (en) 2011-04-12 2021-02-11 Vaelinge Innovation Ab Manufacturing method of a building panel
WO2013006125A1 (en) * 2011-07-05 2013-01-10 Välinge Photocatalytic Ab Coated wood products and method of producing coated wood products
CA2850965C (en) 2011-10-05 2017-06-13 Maax Bath Inc. Decorative panel and method for manufacturing the same
ES2808686T3 (en) * 2012-06-13 2021-03-01 Xylo Tech Ag Panel with decorative layer as well as procedure for printing plates
KR102551742B1 (en) * 2012-07-02 2023-07-04 세라록 이노베이션 에이비 A building panels, a method to produce of floor panels and a wooden based floor panel, with reduced weight and material content
CN110076060A (en) * 2012-07-13 2019-08-02 塞拉洛克创新股份有限公司 Apply the method for coating to building panelling using digital printing/coating technology
US20140017452A1 (en) * 2012-07-13 2014-01-16 Floor Iptech Ab Digital coating and printing
US10035358B2 (en) 2012-07-17 2018-07-31 Ceraloc Innovation Ab Panels with digital embossed in register surface
US9446602B2 (en) 2012-07-26 2016-09-20 Ceraloc Innovation Ab Digital binder printing
EP2700508A1 (en) * 2012-08-24 2014-02-26 Akzenta Paneele + Profile GmbH Method for printing a wall or floor panel
USD691289S1 (en) 2012-09-05 2013-10-08 3Form, Inc. Panel with cut and aligned thatch interlayer
EP2722189A1 (en) 2012-10-17 2014-04-23 Akzenta Paneele + Profile GmbH Method for producing a decorated wall or floor panel
US20140138014A1 (en) * 2012-11-19 2014-05-22 C.A.L.S., Ltd. Composite foam pattern structures
JP6117526B2 (en) * 2012-11-22 2017-04-19 株式会社ミマキエンジニアリング Printing method
US9375750B2 (en) * 2012-12-21 2016-06-28 Valinge Photocatalytic Ab Method for coating a building panel and a building panel
JP6486832B2 (en) * 2012-12-21 2019-03-20 ベーリンゲ、フォトカタリティック、アクチボラグVaelinge Photocatalytic Ab Method for coating a building panel and building panel
GB2538492A (en) 2015-05-11 2016-11-23 Cook Medical Technologies Llc Aneurysm treatment assembly
US10041212B2 (en) 2013-02-04 2018-08-07 Ceraloc Innovation Ab Digital overlay
US10071456B2 (en) 2013-03-15 2018-09-11 Columbia Insurance Company Automated hardwood texturing system and associated methods
CA3130498C (en) 2013-07-19 2024-01-02 Maax Bath Inc. Decorative panel having a digitally printed pattern and printing method therefor
DE102013113109A1 (en) 2013-11-27 2015-06-11 Guido Schulte floorboard
US20160023366A1 (en) * 2014-01-30 2016-01-28 Michael Kane Method and apparatus for automated creation of rigid framed images
WO2016010414A1 (en) * 2014-07-17 2016-01-21 Fok Seng Chong Floor panel
US11007791B2 (en) * 2014-11-19 2021-05-18 Electronics For Imaging, Ing. Multi-layered textured printing
CN104727525A (en) * 2015-03-18 2015-06-24 杭州伯爵地板有限公司 All-weather solid wood floor with reinforcing core board
CN104818824B (en) * 2015-03-23 2018-03-13 江苏科暖热能科技有限公司 Electric heating floor and preparation method thereof
JP6742075B2 (en) * 2015-03-31 2020-08-19 ニチハ株式会社 Building board and manufacturing method thereof
ES2847940T3 (en) 2015-09-24 2021-08-04 Akzenta Paneele Profile Gmbh Procedure for manufacturing a decorated wall or floor panel
CN105476308A (en) * 2015-12-16 2016-04-13 郑州人造金刚石及制品工程技术研究中心有限公司 Wear-resisting cabinet table-board and manufacturing technology thereof
EP3433105A4 (en) 2016-03-24 2019-11-13 Välinge Innovation AB A method for forming a décor on a substrate
US10732596B2 (en) 2016-05-04 2020-08-04 Mario Romano Design and Development, LLC Method of manufacturing complex three-dimensional building surfaces
US10891404B2 (en) 2016-05-04 2021-01-12 Mario Romano Design and Development, LLC Method of manufacturing complex three-dimensional building surfaces
DE102016109243A1 (en) * 2016-05-19 2017-11-23 Tilo Gmbh Digitized cut
US11479892B2 (en) 2016-08-19 2022-10-25 Levi Strauss & Co. Laser finishing system for apparel
AU2017228727B2 (en) * 2016-09-21 2022-03-03 STUT NO. 1 Pty Ltd An article and a method of forming an article
PT3315316T (en) 2016-10-27 2021-02-23 Akzenta Paneele Profile Gmbh Method for producing a decorated wall or floor panel
EP3326835A1 (en) * 2016-11-25 2018-05-30 Akzenta Paneele + Profile GmbH Substrate for a decorated wall or floor panel
BE1024775B1 (en) 2016-12-01 2018-07-02 Unilin Bvba Set of floor panels and method for assembling them.
US20180230324A1 (en) * 2017-02-14 2018-08-16 Mannington Mills, Inc. Flooring Coating Formulation And Floor Covering Having Wear Layer Formed With Same
JP6307195B1 (en) * 2017-03-31 2018-04-04 株式会社Dnpファインケミカル Receiving solution, ink set containing the receiving solution, and method for producing printed matter using the ink set
NL2018781B1 (en) 2017-04-26 2018-11-05 Innovations4Flooring Holding N V Panel and covering
EP4303021A3 (en) 2017-06-13 2024-03-13 Hymmen GmbH Maschinen- und Anlagenbau Method and device for producing a structured surface
US11420428B2 (en) 2017-07-25 2022-08-23 Lowe's Companies, Inc. Composite polymeric film wear layer for hard surfaces
EP3470972B1 (en) 2017-10-13 2022-03-02 Flooring Technologies Ltd. Method for the repeated use of digital print data for generating optically and/or haptically high value printed decorations on a substrate
US10921968B2 (en) 2017-10-31 2021-02-16 Levi Strauss & Co. Laser finishing design tool with image preview
EP3704608A4 (en) 2017-10-31 2021-08-18 Levi Strauss & Co. Using neural networks in creating apparel designs
DE102017125743A1 (en) * 2017-11-03 2019-05-09 Falquon Gmbh A method of making an extruded sheet and a sheet produced by the method
CN109822708A (en) * 2017-11-23 2019-05-31 圣象地板(句容)有限公司 The production technology of wire drawing embossing solid wooden compound floor
US11167533B2 (en) 2018-01-11 2021-11-09 Valinge Innovation Ab Method to produce a veneered element and a veneered element
WO2019139523A1 (en) 2018-01-11 2019-07-18 Välinge Innovation AB A method to produce a veneered element and a veneered element
EP3521055A1 (en) * 2018-01-31 2019-08-07 Agfa Nv Methods for manufacturing decorative laminate panels
WO2019168879A1 (en) 2018-02-27 2019-09-06 Levi Strauss & Co. On-demand manufacturing of laser-finished apparel
US11000086B2 (en) 2018-02-27 2021-05-11 Levi Strauss & Co. Apparel design system with collection management
US20190316364A1 (en) * 2018-04-13 2019-10-17 Angle World LLC Composite board and the method for producing it
US11505942B2 (en) * 2018-05-15 2022-11-22 Louisiana-Pacific Corporation Method of manufacturing OSB with extruded polymer bands
US11752661B2 (en) * 2018-05-21 2023-09-12 5R Technologies Sdn. Bhd. Natural effect panel and method of fabricating the same
BE1026326B1 (en) 2018-05-31 2020-01-13 Unilin Bvba Method for assembling a set of floor panels.
PL3578384T3 (en) 2018-06-05 2022-02-28 Akzenta Paneele + Profile Gmbh Substrate based on a plastic composition and solid composition on mineral basis for decorated wall or floor panels
EP3885155B1 (en) * 2018-06-08 2023-11-22 Flooring Technologies Ltd. Method for refining a large format building panel
US11760116B1 (en) 2018-06-29 2023-09-19 Nicholas Louis Hedges Methods of making surface materials with embedded images
CN108973502A (en) * 2018-07-29 2018-12-11 肇庆市耀东华装饰材料科技有限公司 A kind of synchronous grain-matched 3D effect high color fastness face artificial board and preparation method thereof
WO2020033606A1 (en) 2018-08-07 2020-02-13 Levi Strauss & Co. Laser finishing design tool
EP3611019A1 (en) * 2018-08-14 2020-02-19 Akzenta Paneele + Profile GmbH Decorative panel with a multilaminar plastic carrier plate and method for producing the same
DE102018119766B4 (en) * 2018-08-14 2023-03-23 Akzenta Paneele + Profile Gmbh Multilaminar plastic carrier material, method for its production and decorative panel
KR20210060496A (en) 2018-08-30 2021-05-26 인터페이스 인크. Digital printing for flooring and decorative structures
BE1026771B1 (en) 2018-11-09 2020-06-15 Unilin Bvba Coated panel and method of manufacturing coated panels.
WO2020095196A1 (en) 2018-11-09 2020-05-14 Unilin, Bvba Covered panel and method for manufacturing covered panels
BE1026995B1 (en) * 2018-11-09 2020-08-27 Unilin Bvba Coated panel and method of manufacturing coated panels
US11632994B2 (en) 2018-11-30 2023-04-25 Levi Strauss & Co. Laser finishing design tool with 3-D garment preview
WO2020145870A1 (en) 2019-01-09 2020-07-16 Välinge Innovation AB A method to produce a veneer element and a veneer element
WO2020145871A1 (en) * 2019-01-10 2020-07-16 Välinge Innovation AB A method of manufacturing a building element and a building element
ES2916708T3 (en) * 2019-01-23 2022-07-05 Flooring Technologies Ltd Procedure for the manufacture of a multilayer panel resistant to abrasion and water
DE102019206431A1 (en) 2019-05-03 2020-11-05 Hymmen GmbH Maschinen- und Anlagenbau Method for producing a structure on a surface
WO2021016497A1 (en) 2019-07-23 2021-01-28 Levi Strauss & Co. Three-dimensional rendering preview of laser-finished garments
US11559961B2 (en) 2019-09-17 2023-01-24 Daltile Corporation Pressing equipment, a plant and a method for forming a floor element
LU101526B1 (en) * 2019-12-12 2021-06-14 Tarkett Gdl Sa Decorative floor covering production method
US11485045B1 (en) 2019-12-24 2022-11-01 Cambria Company Llc Stone slabs, systems, and methods
WO2021190728A1 (en) * 2020-03-24 2021-09-30 PolymerTrend LLC. Production of a lignocellulose-containing, plastic-coated and printable molding
EP4008554A1 (en) * 2020-12-03 2022-06-08 SWISS KRONO Tec AG Method and device for processing an object
CN113374204A (en) * 2021-02-06 2021-09-10 钟兵 Simple to operate's artificial slabstone material of printing finish
WO2023072891A1 (en) 2021-10-29 2023-05-04 Covestro (Netherlands) B.V. Radical-curable composition
WO2023242683A1 (en) * 2022-06-16 2023-12-21 Dal-Tile, Llc Method for providing a side of a ceramic unit with decor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940503A (en) * 1988-02-18 1990-07-10 Prestorp Ab Process for the production of an abrasion resistant decorative thermosetting laminate
US5304272A (en) * 1991-08-12 1994-04-19 American Biltrite, Inc. Method for manufacture of process printed surface covering
SE504549C2 (en) * 1996-02-28 1997-03-03 Perstorp Ab Process for surface structuring of a decorative thermosetting laminate
US5744220A (en) * 1991-07-02 1998-04-28 Perstorp Ab Thermosetting laminate
WO1998026936A1 (en) * 1996-12-18 1998-06-25 Om Art Australia Pty Ltd Digital image laminating
GB2324982A (en) * 1997-10-01 1998-11-11 Samuel Louis Pieters Applying a pattern to a wood-based material

Family Cites Families (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1348272U (en)
US444042A (en) * 1890-04-03 1891-01-06 Veneered lumber
US2035761A (en) * 1934-09-17 1936-03-31 Thomas S Reese Synthetic veneer and process of making same
US2226607A (en) * 1938-06-07 1940-12-31 Gilmore Abrasive surface and method of preparing the same
US2221475A (en) * 1939-12-12 1940-11-12 Ruberoid Co Siding unit
US2246377A (en) * 1941-03-20 1941-06-17 Mastic Asphalt Corp Siding material
US2680700A (en) * 1950-09-26 1954-06-08 Eagle Picher Co Laminated sheet material and method of making same
US3050434A (en) * 1960-04-11 1962-08-21 Formica Corp Alginate coated sheets for use in a delaminating process
US3135643A (en) * 1960-05-31 1964-06-02 Gen Electric Decorative laminates
US3204380A (en) * 1962-01-31 1965-09-07 Allied Chem Acoustical tiles with thermoplastic covering sheets and interlocking tongue-and-groove edge connections
US3215579A (en) * 1963-01-23 1965-11-02 Formica Corp Process for releasing laminates
DE1258861C2 (en) 1964-03-06 1973-02-22 Kurashiki Rayon Company Ltd Process for the recovery of 4,4-dimethylmetadioxane in the production of isoprene by reacting an isobutene-containing hydrocarbon solution with formaldehyde and catalytic decomposition of the 4,4-dimethylmetadioxane formed
US3418189A (en) * 1964-06-02 1968-12-24 Formica Corp Process for making decorative laminates
GB1121082A (en) * 1964-07-07 1968-07-24 Dunlop Co Ltd Method of making decorative thermoplastic materials
FR1489710A (en) 1965-02-16 1967-07-28 Formica Sa Decorative laminate having a relief, in particular reproducing the relief of wood, and method of manufacturing this product
US3373068A (en) * 1966-11-16 1968-03-12 Formica Corp Process for preparing an embossed laminate
US3466952A (en) 1967-12-06 1969-09-16 Babcock & Wilcox Co Hydrostatic bearing supported boring bar
US3549404A (en) * 1968-04-24 1970-12-22 Nat Starch Chem Corp Seamless multi-layered coating assembly and process for preparing same
US3660187A (en) * 1969-03-14 1972-05-02 Congoleum Ind Inc Wear resistant, textured resinous compositions
BE757954A (en) 1969-10-24 1971-04-01 Westinghouse Electric Corp HIGH PRESSURE LAMINATE IMPROVEMENTS
US3672926A (en) * 1970-03-30 1972-06-27 Multicraft Inc Process for producing decorative simulated inlay
FR2104707B1 (en) 1970-08-07 1973-11-23 Arjomari Prioux
GB1321473A (en) * 1970-10-14 1973-06-27 Formica Int Wear-resistand decorative laminates and methods for producing same
JPS4945565B1 (en) * 1970-12-30 1974-12-05
US3720927A (en) 1971-01-25 1973-03-13 Redactron Corp Speed insensitive reading and writing apparatus for digital information
US3811915A (en) * 1971-04-27 1974-05-21 Inmont Corp Printing method for forming three dimensional simulated wood grain,and product formed thereby
DE2151397A1 (en) 1971-10-15 1973-04-26 Dynamit Nobel Ag PROCESS FOR THE MANUFACTURING OF COMPRESSED LAMINATED PANELS FROM HARD PAPER PROVIDED WITH DECORATED SHEETS
JPS5210355Y2 (en) 1971-12-27 1977-03-05
US3798111A (en) * 1972-03-24 1974-03-19 Mead Corp Multiple layer decorated paper,laminates prepared therefrom and process
US4002790A (en) * 1972-10-03 1977-01-11 General Electric Company Postformable laminate
JPS522642B2 (en) * 1972-12-26 1977-01-22
GB1463059A (en) * 1973-02-21 1977-02-02 Marley Tile Co Ltd Surface covering materials
US3915090A (en) * 1973-03-21 1975-10-28 Armstrong Cork Co Printed pattern and embossed pattern registration control system
GB1472629A (en) 1973-09-29 1977-05-04 Marukei Mokko Kk Process for manufacturing a decorative panel impressed with a permanent embossed pattern
US4073671A (en) * 1974-01-02 1978-02-14 Seton Name Plate Corporation Color filling indicia simultaneously with debossing
JPS573504B2 (en) * 1974-05-31 1982-01-21
US4093686A (en) * 1974-07-01 1978-06-06 Reed International Limited Sheet materials
JPS5182329A (en) * 1975-01-17 1976-07-19 Nippon Paint Co Ltd Ototsumoyono totsuchobuno osaenarashihoho
JPS5928477B2 (en) * 1975-01-31 1984-07-13 松下電工株式会社 Decorative material manufacturing method
US4139385A (en) 1975-06-20 1979-02-13 General Electric Company Coating method and composition using cationic photoinitiators polythio components and polyolefin components
GB1548164A (en) * 1975-06-25 1979-07-04 Penrose R Set of tiles for covering a surface
JPS5210355A (en) 1975-07-14 1977-01-26 Mitsubishi Rayon Co Method of producing stereoscopic decorative patterns
US4008401A (en) * 1975-10-01 1977-02-15 Dart Industries Inc. U. V. curing system
US4070435A (en) * 1975-10-29 1978-01-24 Armstrong Cork Company Multilevel embossing of foamed-sheet materials-II
US4083744A (en) * 1976-06-07 1978-04-11 Alfredo Degens Method of preparing composition board with improved polymeric skin
US4105118A (en) * 1976-06-10 1978-08-08 Eastman Kodak Company Laminates useful as packaging materials and container having alkaline fluid means
GB1580053A (en) * 1976-06-23 1980-11-26 Btr Industries Ltd Building construction
US4172169A (en) * 1976-10-01 1979-10-23 Nairn Floors Limited Floor or wall coverings
US4400423A (en) * 1977-01-10 1983-08-23 Nevamar Corporation Abrasion-resistant laminate
US4305987A (en) * 1978-02-22 1981-12-15 Nevamar Corporation Abrasion resistant laminate
US4065340A (en) * 1977-04-28 1977-12-27 The United States Of America As Represented By The National Aeronautics And Space Administration Composite lamination method
US4234676A (en) 1978-01-23 1980-11-18 W. R. Grace & Co. Polythiol effect curable polymeric composition
US4186044A (en) * 1977-12-27 1980-01-29 Boeing Commercial Airplane Company Apparatus and method for forming laminated composite structures
BR7906645A (en) * 1978-02-16 1980-02-26 Vaisman Jakov UNITARY AND PERFECT PROCESS OF FORMING A VARIETY OF DECORATED SURFACES
US4248922A (en) * 1978-02-21 1981-02-03 Congoleum Corporation Resinous polymer sheet materials having selective, surface decorative effects and methods of making the same
JPS5816710Y2 (en) 1978-03-25 1983-04-04 岐阜県 key chain storage case
JPS54142289A (en) 1978-04-27 1979-11-06 Eidai Co Ltd Manufacture of abrasion-resistant decorative laminate
US4233343A (en) * 1978-08-10 1980-11-11 J. J. Barker Company Limited Three-dimensional decorative surface
US4388137A (en) * 1978-12-07 1983-06-14 Mobil Oil Corporation Process for transfer coating with radiation-curable compositions
US4367110A (en) * 1979-07-02 1983-01-04 Toppan Printing Co. Decorative laminate and a manufacturing method therefor
DE2945549A1 (en) * 1979-11-10 1981-05-21 Röhm GmbH, 6100 Darmstadt LIQUID COATING AND BINDING AGENT CURABLE BY UV RADIATION
US4284435A (en) * 1979-11-28 1981-08-18 S. C. Johnson & Son, Inc. Method for spray cleaning painted surfaces
NL7909231A (en) 1979-12-21 1981-07-16 Philips Nv LAMP / REFLEX UNIT.
JPS6026708B2 (en) 1980-01-16 1985-06-25 大日本印刷株式会社 Decorative board manufacturing method
EP0034060A1 (en) 1980-02-08 1981-08-19 The Mead Corporation Ink jet printer
US4312686A (en) * 1980-02-11 1982-01-26 American Biltrite Inc. Printed and embossed floor covering and method and apparatus for its manufacture
DE3010060A1 (en) * 1980-03-15 1981-10-01 Letron GmbH, 8750 Aschaffenburg MULTI-LAYERED PLATE HAVING A VARNISH SURFACE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
CA1172354A (en) * 1980-06-03 1984-08-07 Hideo Satoh Microwave antenna having improved wide angle radiation characteristics
JPS573504A (en) 1980-06-04 1982-01-09 Hitachi Ltd Electric vehicle controlling device
DE3024391A1 (en) * 1980-06-28 1982-01-28 Letron GmbH, 8750 Aschaffenburg METHOD FOR PRODUCING FILMS FROM PRINTED DECORATION PAPERS
GB2088280A (en) 1980-12-02 1982-06-09 Formica Ltd Embossed Decorative Laminates
US4348447A (en) * 1981-02-24 1982-09-07 Armstrong World Industries, Inc. Non-skid plastic flooring product and method of manufacture
US4569873A (en) * 1981-05-26 1986-02-11 Robbins Earl Herbert Composite wood panel
US4675212A (en) * 1981-09-21 1987-06-23 Mannington Mills, Inc. Process for manufacturing decorative surface coverings
US4409280A (en) * 1981-09-21 1983-10-11 Mannington Mills Decorative surface coverings
US4500373A (en) * 1981-09-29 1985-02-19 Dai Nippon Insatsu Kabushiki Kaisha Process for producing coincidently embossed decorative sheets
US4393386A (en) 1981-09-30 1983-07-12 Pitney Bowes Inc. Ink jet printing apparatus
JPS58131174A (en) 1982-01-29 1983-08-04 Sadashige Tokushu Gouban Kogyo Kk Production of decorative plate excellent in wear resistance
JPS58131174U (en) 1982-02-24 1983-09-05 国産電機株式会社 flywheel magnet rotor
US4504523A (en) * 1982-03-29 1985-03-12 Armstrong World Industries, Inc. Durable, low-maintenance flooring tile
JPS58188687A (en) 1982-04-30 1983-11-04 Toppan Printing Co Ltd Preparation of decorative board
US4489768A (en) * 1982-09-03 1984-12-25 Wisconsin Dairies Cooperative Distribution device for butter filling system
US4490409A (en) * 1982-09-07 1984-12-25 Energy Sciences, Inc. Process and apparatus for decorating the surfaces of electron irradiation cured coatings on radiation-sensitive substrates
US4689259A (en) * 1982-09-29 1987-08-25 Armstrong World Industries, Inc. Floor tile product and process
DE3236865A1 (en) 1982-10-05 1984-04-05 The Mead Corp., 45463 Dayton, Ohio Ink drop copying device
US4604312A (en) * 1982-10-15 1986-08-05 Armstrong World Industries, Inc. Stress-free, embossed, ornamented tile surface covering and process for making the same
EP0106707A1 (en) 1982-10-20 1984-04-25 De Beers Industrial Diamond Division (Proprietary) Limited Coating composition
DE3247145A1 (en) * 1982-12-21 1984-07-05 Held, Kurt, 7218 Trossingen METAL CONTINUOUS PRESS RIBBON WITH STRUCTURED SURFACE FOR DOUBLE BAND PRESSES
DE3247146C1 (en) 1982-12-21 1984-03-22 Held, Kurt, 7218 Trossingen Method and device for the continuous production of laminated materials
US4440826A (en) * 1983-01-24 1984-04-03 Armstrong World Industries, Inc. Decorative surface covering
EP0117233B1 (en) * 1983-02-18 1987-08-26 Ciba-Geigy Ag Coloured photo-curable mouldings
JPS59155087A (en) 1983-02-23 1984-09-04 Toppan Printing Co Ltd Manufacture of synchronously embossed decorative material
JPS59155087U (en) 1983-03-31 1984-10-18 松下電器産業株式会社 Safety switch device for dehydrating and washing machines
DE3314610A1 (en) * 1983-04-22 1984-10-25 Letron GmbH, 8750 Aschaffenburg METHOD FOR PRODUCING COLORED MELAMINE RESIN CONTAINER FILMS WITH A THREE-DIMENSIONAL SURFACE STRUCTURE
US4612074A (en) * 1983-08-24 1986-09-16 American Biltrite Inc. Method for manufacturing a printed and embossed floor covering
US4773959A (en) * 1983-08-24 1988-09-27 American Biltrite, Inc. Apparatus for the manufacture of printed and embossed floor covering
DE3420381C1 (en) * 1984-06-01 1986-01-16 Fa. Carl Freudenberg, 6940 Weinheim Method for producing a profiled plate having at least two layers, and device for carrying out the method
JPS6173852A (en) 1984-09-18 1986-04-16 Natl Res Inst For Metals Ni base alloy for super plasticity forging and its manufacture
SE8404754L (en) * 1984-09-24 1986-03-25 Olle Holmqvist PROCEDURE FOR THE PREPARATION OF A MONSTRAD, DRAWN OUT OF A PREFERRED MATERIAL OF THREE OR CELLULOSAMATIC MATERIAL AND THE MEDICAL PROCEDURE PREPARED FORM
US4595621A (en) * 1984-10-29 1986-06-17 Armstrong World Industries, Inc. Simulated embossing on floor covering
JPH073504B2 (en) 1984-12-05 1995-01-18 松下電器産業株式会社 Projection lens
US4849768A (en) * 1985-05-01 1989-07-18 Burlington Industries, Inc. Printing random patterns with fluid jets
JPH0669547B2 (en) 1985-06-18 1994-09-07 大日本印刷株式会社 Method for manufacturing a decorative material having a synchronous embossing
ES8702243A1 (en) 1985-08-09 1987-01-16 Formica Espanola Laminated decorative panel prodn.
DE3533737A1 (en) * 1985-09-21 1987-03-26 Hoechst Ag DECORATIVE PLATE WITH IMPROVED SURFACE PROPERTIES
US4916007A (en) * 1985-10-18 1990-04-10 Tarkett Inc. Underprinted inlaid sheet materials having unique decorative design effects
US4678702A (en) * 1986-07-30 1987-07-07 Petro Products, Inc. Protective laminate
US4719141A (en) * 1986-07-30 1988-01-12 Collier Charles P Matting lacquer, paint and light-transmitting matte film
JPS6362577A (en) 1986-09-02 1988-03-18 Kikusui Kagaku Kogyo Kk Method for forming spurious tile pattern
US4808638A (en) 1986-10-14 1989-02-28 Loctite Corporation Thiolene compositions on based bicyclic 'ene compounds
US5252640A (en) * 1986-12-10 1993-10-12 Marley Mouldings Inc. Wood coating composition and process of use thereof
US4816317A (en) * 1987-06-08 1989-03-28 Armstrong World Industries, Inc. Decorative surface coverings
FR2621275B1 (en) * 1987-10-05 1990-10-12 Oris Sa IMPROVED METHOD AND INSTALLATION FOR MODIFYING THE SURFACE CONDITION OF MATERIALS, IN PARTICULAR OF THE PAPER AND / OR CARDBOARD TYPE
GB8810241D0 (en) 1988-04-29 1988-06-02 Am Int Drop-on-demand printhead
JPH0652006B2 (en) * 1988-07-12 1994-07-06 日東紡績株式会社 Floor tiles
US5178928A (en) * 1988-09-22 1993-01-12 Dai Nippon Insatsu Kabushiki Kaisha Decorative materials
JPH02284678A (en) 1989-04-25 1990-11-22 Inax Corp Method for decorating ceramics
US5571588A (en) * 1989-06-06 1996-11-05 Tarkett Inc. Durable inlaid floor coverings having a uniform, unpatterned decorative appearance
US5217745A (en) * 1989-06-28 1993-06-08 Baldev Patel Method and apparatus for applying a programmable pattern to a succession of moving objects
GB2236840B (en) 1989-10-10 1992-11-11 Sirena Spa A support for mounting a hazard warning light on a motor vehicle
US5122212A (en) * 1989-10-27 1992-06-16 American Biltrite, Inc. Method and apparatus for the manufacture of printed and embossed floor covering
US5077117A (en) * 1990-04-05 1991-12-31 Minnesota Mining And Manufacturing Company Pavement marking material with rupturing top layer
US5059989A (en) 1990-05-16 1991-10-22 Lexmark International, Inc. Thermal edge jet drop-on-demand ink jet print head
US5568391A (en) * 1990-05-29 1996-10-22 Mckee; Lance D. Automated tile mosaic creation system
JPH04126571A (en) 1990-08-13 1992-04-27 Dainippon Printing Co Ltd Production of decorative material having recessed part on surface
US5230945A (en) * 1990-11-19 1993-07-27 Armstrong World Industries, Inc. Laminate having textured wear surface of uniformly covered chips and recesses
US5194969A (en) * 1990-12-04 1993-03-16 Pixar Method for borderless mapping of texture images
US5169704A (en) * 1990-12-27 1992-12-08 Tarkett Inc. Decorative inlaid sheet materials having multiple printed layers
JPH04126571U (en) 1991-01-31 1992-11-18 喜康 上村 Golf club
US5182137A (en) * 1991-02-08 1993-01-26 501 Amlite Corporation Method of applying a bound particulate rubber outdoor surface
GB9104171D0 (en) 1991-02-27 1991-04-17 British Ceramic Res Ltd Improved ink
US5348778A (en) * 1991-04-12 1994-09-20 Bayer Aktiengesellschaft Sandwich elements in the form of slabs, shells and the like
US5169707A (en) * 1991-05-08 1992-12-08 Minnesota Mining And Manufacturing Company Retroreflective security laminates with dual level verification
FR2676743B1 (en) 1991-05-24 1994-10-14 Imaje INKS FOR MARKING OR DECORATING OBJECTS, ESPECIALLY CERAMIC OBJECTS.
US5702806A (en) * 1991-07-18 1997-12-30 O'dell; Robin D. Decorative laminate surface layer
ES2037612B1 (en) 1991-12-05 1994-02-01 Ind Losan S A MULTILAYER ORNAMENTAL COATING METHOD FOR WOODEN BOARDS AND THE LIKE.
US5408590A (en) 1991-12-09 1995-04-18 Domino Amjet, Inc. Direct ink drop interface board
ES2050598B1 (en) 1992-02-27 1994-12-01 Formica Espanola IMPROVED PROCEDURE FOR MANUFACTURING EXTERIOR SHEETS WITH HIGH ABRASION RESISTANCE.
DE4208980A1 (en) * 1992-03-20 1993-09-23 Rexroth Mannesmann Gmbh HYDRAULIC DRIVE DEVICE WITH A CYLINDER
JP2741823B2 (en) 1992-05-27 1998-04-22 松下電器産業株式会社 Surface treatment agent and method of using the same
US6406585B1 (en) * 1992-06-13 2002-06-18 Wilhelm Taubert Method for the application of a decorative layer on a substrate
JP3153349B2 (en) 1992-06-29 2001-04-09 大日本印刷株式会社 Decorative sheet and method for producing the decorative sheet
US5787655A (en) * 1992-09-11 1998-08-04 Saylor, Jr.; Edward T. Slip-resistant cover system and method for making same
JP3341332B2 (en) 1993-02-05 2002-11-05 凸版印刷株式会社 Decoration method of inorganic decorative board
US5344704A (en) * 1993-04-07 1994-09-06 Nevamar Corporation Abrasion-resistant, aesthetic surface layer laminate
US5443680A (en) * 1993-08-12 1995-08-22 Gerber Scientific Products, Inc. Mosaic tile maker
US5480680A (en) * 1993-09-09 1996-01-02 Furniture Medic, Inc. Method for refinishing wood
US5509966A (en) * 1993-10-22 1996-04-23 Sykes; Richard H. Graphic arts material extrusion device
IT1272050B (en) 1993-11-10 1997-06-11 Olivetti Canon Ind Spa PARALLEL PRINTER DEVICE WITH MODULAR STRUCTURE AND RELATED CONSTRUCTION PROCEDURE.
CA2132241C (en) * 1993-12-09 2000-11-28 Ralph A. Martino Semi-finished wood simulating product and method
JP3498344B2 (en) 1994-01-21 2004-02-16 ヤマハ株式会社 Decorative wood board
US5453313A (en) * 1994-01-26 1995-09-26 Environmental, L.L.C. Elastomeric polysulfide composites and method
US5570292A (en) * 1994-02-14 1996-10-29 Andersen Corporation Integrated method and apparatus for selecting, ordering and manufacturing art glass panels
JPH07266511A (en) 1994-03-31 1995-10-17 Dainippon Printing Co Ltd Matte decorative sheet having scratch resistance
DE4413242A1 (en) * 1994-04-16 1995-10-19 Basf Lacke & Farben Process for the production of objects with a three-dimensional surface structure and objects produced by this process
WO1995031343A1 (en) * 1994-05-17 1995-11-23 Pyramid Screen Print Limited The coating of surfaces of articles
DE4423891A1 (en) * 1994-07-07 1996-01-11 Daimler Benz Ag Layer structure and method of prodn. for motor vehicle industries
US5858160A (en) * 1994-08-08 1999-01-12 Congoleum Corporation Decorative surface coverings containing embossed-in-register inlaids
US5534352A (en) 1994-08-16 1996-07-09 Masonite Corporation Finishing process for textured panels, and structures made thereby
DE4430449C1 (en) * 1994-08-27 1996-02-01 Lohmann Therapie Syst Lts Sprayable film-forming drug delivery systems for use on plants
JP3204860B2 (en) * 1994-10-31 2001-09-04 ニチハ株式会社 Cement board and manufacturing method thereof
JP2740943B2 (en) * 1994-10-31 1998-04-15 大日本印刷株式会社 Cosmetic material with wear resistance
US5531818A (en) * 1994-12-01 1996-07-02 Xerox Corporation Ink jet ink compositions and printing processes
AU5176396A (en) * 1995-03-20 1996-10-08 Richard S. Zemel Graphic transfer and method
JP3217934B2 (en) 1995-05-01 2001-10-15 ニチハ株式会社 How to paint building boards
US5578343A (en) * 1995-06-07 1996-11-26 Norton Company Mesh-backed abrasive products
SE515261C2 (en) 1995-06-12 2001-07-09 Abb Research Ltd Contactor
SE504353C2 (en) 1995-06-19 1997-01-20 Perstorp Ab Process for making a decorative thermosetting laminate
DE19532724A1 (en) 1995-09-05 1997-03-06 Tampoprint Gmbh Multi-color printing device
US5966454A (en) * 1995-09-14 1999-10-12 Bentley Mills, Inc. Methods and systems for manipulation of images of floor coverings or other fabrics
JP3284037B2 (en) 1995-11-29 2002-05-20 ニチハ株式会社 How to paint building boards
SE9600169L (en) * 1996-01-18 1997-07-07 Bjoern Keding Method for making homogeneous decorative surface layers with electron-curing lacquer
JP3658714B2 (en) * 1996-02-09 2005-06-08 アイン興産株式会社 Pattern formation method for woody synthetic board
SE9600761L (en) 1996-02-28 1997-02-24 Perstorp Ab Process for making a decorative thermosetting laminate with surface structure
GB2310864B (en) * 1996-03-07 1999-05-19 Minnesota Mining & Mfg Coated abrasives and backing therefor
BE1010487A6 (en) * 1996-06-11 1998-10-06 Unilin Beheer Bv FLOOR COATING CONSISTING OF HARD FLOOR PANELS AND METHOD FOR MANUFACTURING SUCH FLOOR PANELS.
CN1096946C (en) * 1996-06-20 2002-12-25 佳能株式会社 Method for discharging liquid by communicating bubble with atmosphere, and apparatus
US5624471A (en) * 1996-07-22 1997-04-29 Norton Company Waterproof paper-backed coated abrasives
JP3898256B2 (en) * 1996-08-28 2007-03-28 大日本印刷株式会社 Decorative sheet
US6110317A (en) * 1996-09-23 2000-08-29 Sandor; Raymond P. Decorative design method and products
JP3115549B2 (en) 1996-09-30 2000-12-11 キヤノン株式会社 INK JET RECORDING APPARATUS, RECORDING METHOD, ASSISTANT MEMBER, INK JET HEAD, AND WARP CONTROL METHOD
US5791110A (en) * 1997-01-30 1998-08-11 Traynor; Phyllis Interactive decorative tiles
US6291078B1 (en) * 1997-10-22 2001-09-18 Mannington Mills, Inc. Surface coverings containing aluminum oxide
US5797237A (en) * 1997-02-28 1998-08-25 Standard Plywoods, Incorporated Flooring system
US5916662A (en) 1997-03-07 1999-06-29 Schmidt; Mark Joseph Decorative tile and decorative printing thereof
US6132883A (en) * 1997-05-02 2000-10-17 3M Innovative Properties Company Transparent powder coating compositions for protecting surfaces
SE512143C2 (en) * 1997-05-06 2000-01-31 Perstorp Ab Decorative laminate manufacture used for floor covering or work tops
WO1998051749A1 (en) 1997-05-12 1998-11-19 The General Electric Company, Plc Sedimentation free jet ink composition
JPH10330647A (en) 1997-06-02 1998-12-15 Nippon Shokubai Co Ltd Transparent coating composition and curing thereof
US5879781A (en) * 1997-08-20 1999-03-09 The Mead Corporation Flooring laminate having noise reduction properties
JP3220852B2 (en) 1997-10-16 2001-10-22 大日本印刷株式会社 Decorative sheet
US6203879B1 (en) * 1997-10-24 2001-03-20 Mannington Carpets, Inc. Repeating series of carpet tiles, and method for cutting and laying thereof
TWI238841B (en) * 1998-01-30 2005-09-01 Albemarle Corp Photopolymerization compositions including maleimides and method thereof
JP4126571B2 (en) 1998-04-01 2008-07-30 株式会社東京精密 Wafer peeling and cleaning equipment
HUP9800508A1 (en) 1998-03-09 2000-02-28 György Hegedűs Device for vibratory dispensing of liquid
US6423167B1 (en) * 1998-06-05 2002-07-23 Premark Rwp Holdings Method for controlling laminate gloss
US6150009A (en) * 1998-08-07 2000-11-21 Surface Technologies, Inc. Decorative structural panel
US6129872A (en) * 1998-08-29 2000-10-10 Jang; Justin Process and apparatus for creating a colorful three-dimensional object
US6504559B1 (en) * 1998-09-14 2003-01-07 Gerald W. Newton Digital thermal printing process
US6119423A (en) * 1998-09-14 2000-09-19 Costantino; John Apparatus and method for installing hardwood floors
DE19845496A1 (en) 1998-10-02 2000-04-06 Argotec Lacksysteme Gmbh Radiation-curable varnish, printing ink or coatings with improved hardness, abrasion resistance and scratch resistance contains hard particles, e.g. of aluminum oxide, in the nanometer size range
SE515789C2 (en) * 1999-02-10 2001-10-08 Perstorp Flooring Ab Floor covering material comprising floor elements which are intended to be joined vertically
ES2152167B1 (en) 1998-10-14 2001-08-16 Claramonte Jose Vicente Tomas DEVICE FOR DECORATION OF CERAMIC TILES.
US5992973A (en) * 1998-10-20 1999-11-30 Eastman Kodak Company Ink jet printing registered color images
CZ8610U1 (en) 1999-03-24 1999-05-03 3 Dts., A.S. Ceramic tile with decoration
DE19921925A1 (en) 1999-05-12 2000-11-16 Dmc2 Degussa Metals Catalysts Process for decorating solid materials
US6165406A (en) * 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
SE517009C2 (en) * 1999-07-05 2002-04-02 Perstorp Flooring Ab Floor element with controls
US6333076B1 (en) 1999-07-28 2001-12-25 Armstrong World Industries, Inc. Composition and method for manufacturing a surface covering product having a controlled gloss surface coated wearlayer
JP4234279B2 (en) 1999-09-09 2009-03-04 岐阜県 Color ink for inkjet printer and drawing body using this ink
US6214279B1 (en) * 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
ES2168045B2 (en) * 1999-11-05 2004-01-01 Ind Aux Es Faus Sl NEW DIRECT LAMINATED FLOOR.
US6436159B1 (en) * 1999-12-09 2002-08-20 Lilly Industries, Inc. Abrasion resistant coatings
US6691480B2 (en) * 2002-05-03 2004-02-17 Faus Group Embossed-in-register panel system
US6617009B1 (en) * 1999-12-14 2003-09-09 Mannington Mills, Inc. Thermoplastic planks and methods for making the same
SE516696C2 (en) 1999-12-23 2002-02-12 Perstorp Flooring Ab Process for producing surface elements comprising an upper decorative layer as well as surface elements produced according to the method
KR200189488Y1 (en) * 1999-12-29 2000-07-15 박상업 An ink-jet printer for digital textiling
US6354212B1 (en) * 2000-01-05 2002-03-12 Lynn Paula Krinsky Method of preparing customized wallpaper panels
US6402823B1 (en) 2000-01-07 2002-06-11 Ferro Corporation Individual inks and an ink set for use in the color ink jet printing of glazed ceramic tiles and surfaces
US6854146B2 (en) * 2000-06-12 2005-02-15 Milliken & Company Method for producing digitally designed carpet
BE1013553A3 (en) 2000-06-13 2002-03-05 Unilin Beheer Bv Floor covering.
JP2002019268A (en) 2000-07-03 2002-01-23 Nippon Aerosil Co Ltd Ultrafine particle ceramic powder aggregate dispersed water for forming ink absorption layer of ink jet recording medium
ES2170667B2 (en) 2000-08-08 2003-11-16 Colorobbia Espana Sa PHOTOSENSIBLE INK FOR DECORATION OF CERAMIC PARTS THROUGH THE INK SPRAY TECHNIQUE.
WO2002042087A2 (en) * 2000-11-13 2002-05-30 Imaging Alternatives, Inc. Wood surface inkjet receptor medium and method of making and using same
EP1223201A3 (en) 2001-01-16 2004-01-21 Carey Brothers Limited A phase change ink composition
SE0101620D0 (en) 2001-05-10 2001-05-10 Pergo Ab Embossed decorative boards
JP3925348B2 (en) * 2001-08-10 2007-06-06 セイコーエプソン株式会社 INKJET RECORDED MATERIAL AND HEAT TRANSFER SHEET USED FOR PRODUCTION
DE10146304B4 (en) 2001-09-19 2005-03-24 Heinrich Wemhöner GmbH & Co KG Method and device for the exact laying of coating material on to be coated in a press carrier plates
FI113807B (en) * 2001-12-07 2004-06-15 Stora Enso Oyj Digital printing method and paper or paperboard suitable for this
CN1655944B (en) * 2002-04-03 2011-12-14 麦森尼特公司 Method and apparatus for creating an image on an article, and printed article
ES2209634B1 (en) 2002-09-19 2005-10-01 Ferro Spain, S.A. New yellow color is for decoration of articles of ceramic and glass by means of ink jet technology
US7012346B2 (en) * 2003-03-07 2006-03-14 Resmed Limited Low profile d.c. brushless motor for an impeller mechanism or the like
US6720065B1 (en) * 2003-05-29 2004-04-13 Dupont Teijin Films U.S. Limited Partnership Decorative laminated panel with high distinctness of image
SE526727C2 (en) 2003-11-13 2005-11-01 Pergo Europ Ab Process for making a decorative laminate with matched surface structure
US7412472B2 (en) 2003-11-21 2008-08-12 Honeywell International Inc. Apparatus and method for filtering a signal
SE526728C2 (en) 2003-12-11 2005-11-01 Pergo Europ Ab A method of making panels with a decorative surface
DE102004011531C5 (en) 2004-03-08 2014-03-06 Kronotec Ag Wood-based panel, in particular floor panel
FI116956B (en) * 2004-06-17 2006-04-13 Stora Enso Oyj Digital printing of polymer coated paper or board
DE102004032058B4 (en) 2004-07-01 2009-12-03 Fritz Egger Gmbh & Co. A method of making a panel having a decorative surface and a panel having a decorative surface
ITRE20040106A1 (en) 2004-09-08 2004-12-08 Sacmi METHOD AND PLANT FOR THE DECORATION OF CERAMIC TILES
ES2257957B1 (en) 2005-01-18 2007-07-01 Torrecid, S.A. INK APPLICABLE TO INDUSTRIAL DECORATION.
US7141295B2 (en) * 2005-05-02 2006-11-28 Interprint, Inc. Optically embossed sheet for a laminate and method of making
EP1888699A1 (en) 2005-05-24 2008-02-20 Jettable, Ltd. Pigmented inks suitable for use with ceramics and a method of producing same
JP2007084623A (en) 2005-09-20 2007-04-05 Nihon Network Support:Kk Ink for inkjet printer
ES2289916B1 (en) 2006-01-23 2008-12-16 Ferro Spain, S.A. COLLOIDAL DISPERSION OF CERAMIC PIGMENTS.
JP4822422B2 (en) 2006-03-10 2011-11-24 岐阜県 Marking method and ink
ITMI20061227A1 (en) * 2006-06-26 2007-12-27 Dante Frati PROCEDURE FOR PRINTING SURFACES OF FLAT BASE ELEMENTS
US8095856B2 (en) 2007-09-14 2012-01-10 Industrial Technology Research Institute Method and apparatus for mitigating memory requirements of erasure decoding processing
US20090120249A1 (en) * 2007-11-14 2009-05-14 Achim Gauss Device For Refining Workpieces

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940503A (en) * 1988-02-18 1990-07-10 Prestorp Ab Process for the production of an abrasion resistant decorative thermosetting laminate
US4940503B1 (en) * 1988-02-18 1998-11-10 Perstorp Ab Process for the production of an abrasion resistant decorative thermosetting laminate
US5744220A (en) * 1991-07-02 1998-04-28 Perstorp Ab Thermosetting laminate
US5304272A (en) * 1991-08-12 1994-04-19 American Biltrite, Inc. Method for manufacture of process printed surface covering
SE504549C2 (en) * 1996-02-28 1997-03-03 Perstorp Ab Process for surface structuring of a decorative thermosetting laminate
WO1998026936A1 (en) * 1996-12-18 1998-06-25 Om Art Australia Pty Ltd Digital image laminating
GB2324982A (en) * 1997-10-01 1998-11-11 Samuel Louis Pieters Applying a pattern to a wood-based material

Cited By (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8209928B2 (en) 1999-12-13 2012-07-03 Faus Group Embossed-in-registration flooring system
US7842212B2 (en) 2000-06-13 2010-11-30 Flooring Industries Limited, Sarl Floor covering, floor panels for forming such floor covering, and method for realizing such floor panels
US9970198B2 (en) 2000-06-13 2018-05-15 Flooring Industries Limited, Sarl Floor covering, floor panels for forming such floor covering, and method for realizing such floor panels
EP1290290B1 (en) * 2000-06-13 2010-01-06 Flooring Industries Ltd. Floor covering, floor panels, method for their realization
US8535589B2 (en) 2000-06-13 2013-09-17 Flooring Industries Limited, Sarl Floor covering, floor panels for forming such floor covering, and method for realizing such floor panels
EP2340928B2 (en) 2001-07-13 2022-11-23 Flooring Technologies Ltd. Embossed-in-register direct pressure laminate manufacturing process
EP2340928B1 (en) 2001-07-13 2018-04-11 Flooring Technologies Ltd. Embossed-in-register direct pressure laminate manufacturing process
US10975580B2 (en) 2001-07-27 2021-04-13 Valinge Innovation Ab Floor panel with sealing means
EP1539476A4 (en) * 2002-05-03 2011-12-07 Faus Group Inc Embossed-in-register panel system
US8181407B2 (en) 2002-05-03 2012-05-22 Faus Group Flooring system having sub-panels
EP1539476A1 (en) * 2002-05-03 2005-06-15 Faus Group, Inc. Embossed-in-register panel system
US8448400B2 (en) 2002-05-03 2013-05-28 Faus Group Flooring system having complementary sub-panels
US8112958B2 (en) 2002-05-03 2012-02-14 Faus Group Flooring system having complementary sub-panels
WO2004042168A1 (en) * 2002-11-01 2004-05-21 Mannington Mills, Inc. A surface covering panel with printed pattern
EP1420126A3 (en) * 2002-11-12 2005-11-23 Kronotec Ag Wood-fiber-board, in particular flooring panel
EP1420126A2 (en) 2002-11-12 2004-05-19 Kronotec Ag Wood-fiber-board, in particular flooring panel
EP2957690A1 (en) 2002-11-12 2015-12-23 Kronotec AG Furniture panel
EP2455230A1 (en) * 2003-01-28 2012-05-23 Faus Group Flooring system having sub-panels with complementary edge patterns and non-coplanar upper surfaces
US9410328B2 (en) 2003-02-24 2016-08-09 Valinge Innovation Ab Floorboard and method for manufacturing thereof
US10137659B2 (en) 2003-02-24 2018-11-27 Valinge Innovation Ab Floorboard and method for manufacturing thereof
EP1454763B2 (en) 2003-03-06 2016-06-08 Flooring Technologies Ltd. Decorative coating of a plate of wooden material
EP1697133B2 (en) 2003-11-25 2012-08-29 Pergo (Europe) AB A process for manufacturing a decorative laminate
US9605436B2 (en) 2003-12-02 2017-03-28 Valinge Innovation Ab Floorboard, system and method for forming a flooring, and a flooring formed thereof
EP1574634A1 (en) * 2004-03-08 2005-09-14 Kronotec Ag Wooden material panel, in particular for floors
EP1645339B1 (en) 2004-10-05 2015-07-08 Fritz Egger GmbH & Co. OG Process and apparatus for making a structured surface and manufactured object with stuctured surface
WO2006074635A1 (en) * 2005-01-12 2006-07-20 Akzenta Paneele + Profile Gmbh Floor panel
EP1681158A3 (en) * 2005-01-14 2009-02-18 Giorgio Fedon & Figli S.p.A. Method of forming images or decorations on a support body
US7854965B2 (en) 2005-01-14 2010-12-21 Georgio Fedon & Figli S.p.A. Method of forming images or decorations on a support body
EP1681158A2 (en) 2005-01-14 2006-07-19 Giorgio Fedon & Figli S.p.A. Method of forming images or decorations on a support body
WO2007003804A2 (en) * 2005-05-10 2007-01-11 ESPACE PRODUCTION INTERNATIONAL EPI, Société Anonyme Method of producing floor covering strips, strips thus produced and facility and decorative sheet used to implement said method
WO2007003804A3 (en) * 2005-05-10 2007-07-05 Espace Production Internat Epi Method of producing floor covering strips, strips thus produced and facility and decorative sheet used to implement said method
US8182922B2 (en) 2005-08-24 2012-05-22 Usg Interiors, Llc Composite ceiling tile
EP1757747A1 (en) * 2005-08-24 2007-02-28 USG INTERIORS, Inc. Composite ceiling tile
US8919063B2 (en) 2005-09-08 2014-12-30 Flooring Technologies Ltd. Building board having a pattern applied onto side surfaces and conecting mechanisms thereof
EP1762671B1 (en) * 2005-09-08 2011-06-22 Flooring Technologies Ltd. Building board, in particular flooring panel
US9194133B2 (en) 2005-11-09 2015-11-24 Flooring Industries Limited, Sarl Floor covering, floor panels and method for manufacturing floor panels
WO2007054812A2 (en) * 2005-11-09 2007-05-18 Flooring Industries Limited, Sarl Floor covering, transfer film and method for manufacturing floor panels
WO2007054812A3 (en) * 2005-11-09 2007-10-18 Flooring Ind Ltd Floor covering, transfer film and method for manufacturing floor panels
US9506256B2 (en) 2005-11-09 2016-11-29 Flooring Industries Limited, Sarl Floor covering, floor panels and method for manufacturing floor panels
US10450760B2 (en) 2006-01-12 2019-10-22 Valinge Innovation Ab Floorboards comprising a decorative edge part in a resilient surface layer
US11066836B2 (en) 2006-01-12 2021-07-20 Valinge Innovation Ab Floorboards comprising a decorative edge part in a resilient surface layer
WO2007079541A1 (en) 2006-01-12 2007-07-19 John Lyndon Garnett Radiation curable system
US9765530B2 (en) 2006-01-12 2017-09-19 Valinge Innovation Ab Floorboards comprising a decorative edge part in a resilient surface layer
EP1976934A4 (en) * 2006-01-12 2009-05-13 John Lyndon Garnett Radiation curable system
US11702847B2 (en) 2006-01-12 2023-07-18 Valinge Innovation Ab Floorboards comprising a decorative edge part in a resilient surface layer
US9222267B2 (en) 2006-01-12 2015-12-29 Valinge Innovation Ab Set of floorboards having a resilient groove
EP1976934A1 (en) * 2006-01-12 2008-10-08 John Lyndon Garnett Radiation curable system
US9637920B2 (en) 2006-01-20 2017-05-02 Material Innovations Llc Carpet waste composite
US10822798B2 (en) 2006-01-20 2020-11-03 Material Innovations Llc Carpet waste composite
US11773592B2 (en) 2006-01-20 2023-10-03 Material Innovations Llc Carpet waste composite
US10294666B2 (en) 2006-01-20 2019-05-21 Material Innovations Llc Carpet waste composite
US8366260B2 (en) 2006-03-08 2013-02-05 Homag Holzbearbeitungssysteme Ag Process and apparatus for the printing of panel-shaped workpieces
US10975579B2 (en) 2006-06-02 2021-04-13 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US9200460B2 (en) 2006-06-02 2015-12-01 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US11680414B2 (en) 2006-06-02 2023-06-20 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US11933055B2 (en) 2006-06-02 2024-03-19 Unilin, Bv Floor covering, floor element and method for manufacturing floor elements
US9695599B2 (en) 2006-06-02 2017-07-04 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US10975578B2 (en) 2006-06-02 2021-04-13 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US10125499B2 (en) 2006-06-02 2018-11-13 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US10358831B2 (en) 2006-06-02 2019-07-23 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US9487957B2 (en) 2006-06-02 2016-11-08 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US9366037B2 (en) 2006-06-02 2016-06-14 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US10745921B2 (en) 2006-06-02 2020-08-18 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US9890542B2 (en) 2006-06-02 2018-02-13 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
US10519674B2 (en) 2006-06-02 2019-12-31 Flooring Industries Limited, Sarl Floor covering, floor element and method for manufacturing floor elements
EP1867488A1 (en) * 2006-06-12 2007-12-19 Homag Holzbearbeitungssysteme AG Device for patterning the surface of workpieces
WO2007144718A3 (en) * 2006-06-13 2008-03-13 Flooring Ind Ltd Method for manufacturing coated panels and coated panel
WO2007144718A2 (en) * 2006-06-13 2007-12-21 Flooring Industries Limited, Sarl Method for manufacturing coated panels and coated panel
BE1017168A5 (en) * 2006-06-13 2008-03-04 Flooring Ind Ltd Manufacturing of coated panels e.g. a floor panel or a furniture panel, comprises forming a carrier sheet provided with resin coating, and providing a suspension that includes a portion of hard micro-particles
WO2007144403A1 (en) * 2006-06-14 2007-12-21 Fritz Egger Gmbh & Co. Component, preferably for covering floors, walls and ceilings, and method of producing it
WO2007148184A2 (en) * 2006-06-21 2007-12-27 Flooring Industries Limited, Sarl Method for manufacturing floor elements and floor element
BE1017171A3 (en) * 2006-06-21 2008-03-04 Flooring Ind Ltd METHOD FOR MANUFACTURING FLOOR ELEMENTS AND FLOOR ELEMENT
WO2007148184A3 (en) * 2006-06-21 2008-06-19 Flooring Ind Ltd Sarl Method for manufacturing floor elements and floor element
US8328303B2 (en) 2006-06-26 2012-12-11 Dante Frati Process for printing surfaces of wood-based flat elements
US8960828B2 (en) 2006-06-26 2015-02-24 Dante Frati Process for printing wood-based flat elements and production line
US9340033B2 (en) 2006-06-26 2016-05-17 Dante Frati Process for printing wood-based flat elements and production line
EP2181852B1 (en) 2006-06-26 2019-08-07 Dante Frati Process for printing wood-based flat elements and production line
US8038236B2 (en) 2006-08-25 2011-10-18 Homag Holzbearbeitungssysteme Ag Device for patterning workpieces
EP1918336A1 (en) * 2006-10-31 2008-05-07 Akzo Nobel Coatings International B.V. Coating composition comprising gemstone particles
US7914098B2 (en) 2006-11-07 2011-03-29 Homag Holzbearbeitungssysteme Ag Device for patterning workpieces
EP1923223A1 (en) * 2006-11-14 2008-05-21 Impress Decor GmbH Method for manufacturing decorative films
WO2008102010A3 (en) * 2007-02-23 2009-05-07 Tgc Technologie Beteiligungsgm Method and device for grinding and polishing wooden materials, and corresponding wooden parts
US8920212B2 (en) 2007-02-23 2014-12-30 Tgc Technologie Beteiligungsgesellschaft Method and device for grinding and polishing wooden materials and corresponding wooden parts
WO2008102010A2 (en) 2007-02-23 2008-08-28 Tgc Technologie Beteiligungsgesellschaft Mbh Method and device for grinding and polishing wooden materials, and corresponding wooden parts
WO2008114117A2 (en) * 2007-03-21 2008-09-25 Flooring Industries Limited, Sarl Method for manufacturing floor panels by performing a photographic art
WO2008114117A3 (en) * 2007-03-21 2009-05-22 Flooring Ind Ltd Sarl Method for manufacturing floor panels by performing a photographic art
US9114603B2 (en) 2007-03-28 2015-08-25 Pergo (Europe) Ab Process for color variability in printing to simulate color variation of natural product
CN101041315B (en) * 2007-04-27 2010-04-14 蒲正茂 Method for making tree growth ring picture
EP1985464A1 (en) * 2007-04-27 2008-10-29 Kronotec Ag Construction plate, in particular floor panel and method for its production
US7989050B2 (en) 2007-04-27 2011-08-02 Kronotec Ag Building slab, floor panels in particular, and method of manufacturing the same
DE102007025135B3 (en) * 2007-05-30 2009-02-05 Flooring Technologies Ltd. Wood-based panel and method of manufacture
EP1997623B1 (en) * 2007-05-30 2011-06-22 Flooring Technologies Ltd. Composite wood board and method for its manufacture
WO2009013580A2 (en) 2007-07-26 2009-01-29 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel.
WO2009013580A3 (en) * 2007-07-26 2009-11-12 Flooring Industries Limited, Sarl Methods for manufacturing printed and structurized panels and panel
US9290040B2 (en) 2007-07-26 2016-03-22 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel
US9783996B2 (en) 2007-11-19 2017-10-10 Valinge Innovation Ab Fibre based panels with a wear resistance surface
US8617439B2 (en) 2007-11-19 2013-12-31 Valinge Innovation Ab Recycling of laminate floorings
US8349235B2 (en) 2007-11-19 2013-01-08 Ceraloc Innovation Belgium Bvba Recycling of laminate floorings
US9556622B2 (en) 2007-11-19 2017-01-31 Valinge Innovation Ab Fibre based panels with a wear resistance surface
US8431054B2 (en) 2007-11-19 2013-04-30 Ceraloc Innovation Belgium Bvba Fibre based panels with a wear resistance surface
WO2009066081A1 (en) * 2007-11-23 2009-05-28 Kristian Holt Flooring material
WO2009087440A3 (en) * 2008-01-09 2010-01-28 Flooring Industries Limited, Sarl Panels and method for manufacturing
BE1017928A3 (en) * 2008-01-09 2009-11-03 Flooring Ind Ltd Sarl Covered panel manufacturing method for e.g. furniture panel, involves forming decorative print on substrate by utilizing two printing cylinders, so that print comprising zone in which one of two print patterns is absent
BE1017927A3 (en) * 2008-01-09 2009-11-03 Flooring Ind Ltd Sarl Floor panel, has decorative side formed with printing, transparent plastic layer fitted on decorative side, and multiple zones exhibiting reduced transparency on rest of plastic layer, where plastic layer is visible to naked eye
EP2082898A3 (en) * 2008-01-22 2011-02-23 Guido Schulte Device and method for attaching a finish on a plate element, pressure roller, floor, wall or ceiling panel
US8419877B2 (en) 2008-04-07 2013-04-16 Ceraloc Innovation Belgium Bvba Wood fibre based panels with a thin surface layer
US11235565B2 (en) 2008-04-07 2022-02-01 Valinge Innovation Ab Wood fibre based panels with a thin surface layer
US9255405B2 (en) 2008-04-07 2016-02-09 Valinge Innovation Ab Wood fibre based panels with a thin surface layer
EP2108524A1 (en) 2008-04-08 2009-10-14 Unilin Industries, Bvba Method for manufacturing coated panels and coated panel
US8465804B2 (en) 2008-04-08 2013-06-18 Flooring Industries Limited, Sarl Method for manufacturing coated panels
WO2009139620A2 (en) * 2008-05-15 2009-11-19 Trespa International B.V. Method for manufacturing a laminate product
NL1035423C2 (en) * 2008-05-15 2009-11-18 Trespa Int Bv Method for manufacturing a laminate product.
WO2009139620A3 (en) * 2008-05-15 2010-01-14 Trespa International B.V. Method for manufacturing a laminate and product obtained
WO2010055429A2 (en) * 2008-11-13 2010-05-20 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained herewith
WO2010055429A3 (en) * 2008-11-13 2010-09-02 Flooring Industries Limited, Sarl Methods for manufacturing printed panels and panel obtained herewith
BE1018337A3 (en) * 2008-11-13 2010-09-07 Flooring Ind Ltd Sarl METHODS FOR MANUFACTURING PANELS AND PANEL OBTAINED HEREBY
EP3640042A1 (en) 2008-12-19 2020-04-22 Flooring Industries Limited, SARL Methods for manufacturing panels using a mask
US11198318B2 (en) 2008-12-19 2021-12-14 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained thereby
EP4344794A2 (en) 2008-12-19 2024-04-03 Unilin, BV Methods for manufacturing panels using a mask
BE1018725A3 (en) * 2008-12-19 2011-07-05 Flooring Ind Ltd Sarl METHODS FOR MANUFACTURING PANELS AND PANEL OBTAINED HEREBY
WO2010070474A2 (en) 2008-12-19 2010-06-24 Flooring Industries Limited, Sarl Coated panel and method for manufacturing such panel
EP3640041A1 (en) 2008-12-19 2020-04-22 Flooring Industries Limited, SARL Method for manufacturing coated panels
US11059320B2 (en) 2008-12-19 2021-07-13 Flooring Industries Limited, Sarl Coated panel and method for manufacturing such panel
EP3831615A1 (en) 2008-12-19 2021-06-09 Flooring Industries Limited, SARL Coated panel comprising foamable or foamed synthetic material
US9216610B2 (en) 2008-12-19 2015-12-22 Flooring Industries Limited, Sarl Coated panel and method for manufacturing such panel
US9073295B2 (en) 2008-12-19 2015-07-07 Fiber Composites, Llc Wood-plastic composites utilizing ionomer capstocks and methods of manufacture
WO2010070485A2 (en) 2008-12-19 2010-06-24 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained thereby
US11654712B2 (en) 2008-12-19 2023-05-23 Flooring Industries Limited, Sarl Coated panel and method for manufacturing such panel
US11491816B2 (en) 2008-12-19 2022-11-08 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained thereby
EP3293016A1 (en) 2008-12-19 2018-03-14 Flooring Industries Limited, SARL Method for manufacturing a coated panel
US9266382B2 (en) 2008-12-19 2016-02-23 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained thereby
BE1018680A5 (en) * 2008-12-19 2011-06-07 Flooring Ind Ltd Sarl METHODS FOR MANUFACTURING PANELS AND PANEL OBTAINED HEREBY
US10017005B2 (en) 2008-12-19 2018-07-10 Flooring Industries Limited, Sarl Coated panel and method for manufacturing such panel
US10875281B2 (en) 2008-12-19 2020-12-29 Fiber Composites Llc Wood-plastic composites utilizing ionomer capstocks and methods of manufacture
WO2010070485A3 (en) * 2008-12-19 2010-09-02 Flooring Industries Limited, Sarl Methods for manufacturing panels
EP2202056A1 (en) 2008-12-23 2010-06-30 Unilin Industries, BVBA Floor panel and methods for manufacturing floor panels
BE1018630A5 (en) * 2009-01-20 2011-05-03 Flooring Ind Ltd Sarl METHODS FOR MANUFACTURING PANELS AND PANEL OBTAINED HEREBY
WO2010084386A3 (en) * 2009-01-20 2010-09-30 Flooring Industries Limited, Sarl Manufacturing multicolour printed panels
WO2010084386A2 (en) 2009-01-20 2010-07-29 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained herewith
EP2213476A1 (en) * 2009-01-30 2010-08-04 Spanolux N.V.- DIV. Balterio A method of manufacturing a laminate panel, an apparatus and a laminate panel
WO2010103417A1 (en) 2009-03-12 2010-09-16 Flooring Industries Limited, Sarl Method for manufacturing panels and panels obtained hereby
EP2272662A1 (en) * 2009-06-22 2011-01-12 Courey, Stephen P. Tile structure and assembly for covering predetermined surface
WO2011013049A3 (en) * 2009-07-31 2011-05-12 Leonardo Panettieri Coated printing substrate
US9249581B2 (en) 2009-09-04 2016-02-02 Valinge Innovation Ab Resilient floor
US11725395B2 (en) 2009-09-04 2023-08-15 Välinge Innovation AB Resilient floor
WO2011036141A1 (en) * 2009-09-23 2011-03-31 Theodor Hymmen Holding Gmbh Method for producing a digitally printed workpiece
DE102009044091B4 (en) 2009-09-23 2018-08-23 Hymmen GmbH Maschinen- und Anlagenbau Method for producing a digitally printed workpiece
WO2011039665A2 (en) 2009-10-01 2011-04-07 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained hereby
WO2011039665A3 (en) * 2009-10-01 2011-05-26 Flooring Industries Limited, Sarl Method for manufacturing panels
BE1018943A3 (en) * 2009-10-01 2011-11-08 Flooring Ind Ltd Sarl METHODS FOR MANUFACTURING PANELS AND PANEL OBTAINED HEREBY
US9259959B2 (en) 2009-10-14 2016-02-16 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained hereby
WO2011045690A2 (en) 2009-10-14 2011-04-21 Flooring Industries Limited, Sarl Methods for manufacturing panels and panel obtained hereby
EP3508352A1 (en) 2009-10-14 2019-07-10 Flooring Industries Limited, SARL Printed panel
US11668099B2 (en) 2009-12-22 2023-06-06 Flooring Industries Limited, Sarl Panel, covering and method for installing such panels
US10428534B2 (en) 2009-12-22 2019-10-01 Flooring Industries Limited, Sarl Panel, covering and method for installing such panels
US9670682B2 (en) 2009-12-22 2017-06-06 Flooring Industries Limited, Sarl Panel, covering and method for installing such panels
US9670683B2 (en) 2009-12-22 2017-06-06 Flooring Industries Limited,Sarl Panel, covering and method for installing such panels
US10550582B2 (en) 2009-12-22 2020-02-04 Flooring Industries Limited, Sarl Panel, covering and method for installing such panels
US9528278B2 (en) 2009-12-22 2016-12-27 Flooring Industries Limited, Sarl Panel, covering and method for installing such panels
US9410319B2 (en) 2010-01-15 2016-08-09 Valinge Innovation Ab Heat and pressure generated design
US8481111B2 (en) 2010-01-15 2013-07-09 Ceraloc Innovation Belgium Bvba Bright coloured surface layer
US8663785B2 (en) 2010-01-15 2014-03-04 Valinge Innovation Ab Fibre based panels with a decorative wear resistance surface
US8784587B2 (en) 2010-01-15 2014-07-22 Valinge Innovation Ab Fibre based panels with a decorative wear resistance surface
US8920874B2 (en) 2010-01-15 2014-12-30 Valinge Innovation Ab Method of manufacturing a surface layer of building panels
US11401718B2 (en) 2010-01-15 2022-08-02 Valinge Innovation Ab Bright coloured surface layer
US8349234B2 (en) 2010-01-15 2013-01-08 Ceraloc Innovation Belgium Bvba Fibre based panels with a decorative wear resistance surface
US8480841B2 (en) 2010-04-13 2013-07-09 Ceralog Innovation Belgium BVBA Powder overlay
US10899166B2 (en) 2010-04-13 2021-01-26 Valinge Innovation Ab Digitally injected designs in powder surfaces
US9296191B2 (en) 2010-04-13 2016-03-29 Valinge Innovation Ab Powder overlay
US10344379B2 (en) 2010-04-13 2019-07-09 Valinge Innovation Ab Powder overlay
EP2380747A3 (en) * 2010-04-23 2012-12-05 Fritz Egger GmbH & Co. OG Method for providing panels
WO2011141850A2 (en) 2010-05-10 2011-11-17 Flooring Industries Limited, Sarl Panel and methods for manufacturing panels
US11371249B2 (en) 2010-05-10 2022-06-28 Flooring Industries Limited, Sarl Floor panel
US9163414B2 (en) 2010-05-10 2015-10-20 Flooring Industries Limited, Sarl Floor panel
US10190323B2 (en) 2010-05-10 2019-01-29 Flooring Industries Limited, Sarl Floor panel
US11505949B2 (en) 2010-05-10 2022-11-22 Flooring Industries Limited, Sarl Floor panel
US10208490B2 (en) 2010-05-10 2019-02-19 Flooring Industries Limited, Sarl Floor panel
US10815676B2 (en) 2010-05-10 2020-10-27 Flooring Industries Limited, Sarl Floor panel
US10041259B2 (en) 2010-05-10 2018-08-07 Flooring Industries Limited, Sarl Floor panel
US9809984B2 (en) 2010-05-10 2017-11-07 Flooring Industries Limited, Sarl Floor panel
US11236514B2 (en) 2010-05-10 2022-02-01 Flooring Industries Limited, Sarl Floor panel
US9783995B2 (en) 2010-05-10 2017-10-10 Flooring Industries Limited, Sarl Floor panel
US10094123B2 (en) 2010-05-10 2018-10-09 Flooring Industries Limited, Sarl Floor panel
US10100533B2 (en) 2010-05-10 2018-10-16 Flooring Industries Limited, Sarl Floor panel
US11193282B2 (en) 2010-05-10 2021-12-07 Flooring Industries Limited, Sarl Floor panel
US11566432B2 (en) 2010-05-10 2023-01-31 Flooring Industries Limited, Sarl Floor panel
US9080330B2 (en) 2010-05-10 2015-07-14 Flooring Industries Limited, Sarl Floor panel
US9366035B2 (en) 2010-05-10 2016-06-14 Flooring Industries Limited, Sarl Floor panel
EP3690165A1 (en) 2010-05-10 2020-08-05 Flooring Industries Limited, SARL Method for manufacturing a panel
US11795702B2 (en) 2010-05-10 2023-10-24 Flooring Industries Limited Sarl Floor panel
US10597876B2 (en) 2010-05-10 2020-03-24 Flooring Industries Limited, Sarl Floor panel
US10214921B2 (en) 2010-05-10 2019-02-26 Flooring Industries Limited, Sarl Floor panel
US10233655B2 (en) 2010-05-10 2019-03-19 Flooring Industries Limited, Sarl Floor panel
US8925275B2 (en) 2010-05-10 2015-01-06 Flooring Industries Limited, Sarl Floor panel
US10267048B2 (en) 2010-05-10 2019-04-23 Flooring Industries Limited, Sarl Floor panel
US11634913B2 (en) 2010-05-10 2023-04-25 Flooring Industries Limited, Sarl Floor panel
US11634914B2 (en) 2010-05-10 2023-04-25 Flooring Industries Limited, Sarl Floor panel
US10301831B2 (en) 2010-05-10 2019-05-28 Flooring Industries Limited, Sarl Floor panel
US10870994B2 (en) 2010-05-10 2020-12-22 Flooring Industries Limited Sarl Floor panel
US11377857B2 (en) 2010-05-10 2022-07-05 Flooring Industries Limited, Sarl Floor panel
US11702849B2 (en) 2010-05-10 2023-07-18 Flooring Industries Limited, Sarl Panel and methods for manufacturing panels
US10876303B2 (en) 2010-05-10 2020-12-29 Flooring Industries Limited, Sarl Floor panel
US10889998B2 (en) 2010-05-10 2021-01-12 Flooring Industries Limited, Sarl Floor panel
US11015352B2 (en) 2010-05-10 2021-05-25 Flooring Industries Limited, Sarl Panel and methods for manufacturing panels
US9453348B1 (en) 2010-05-10 2016-09-27 Flooring Industries Limited, Sarl Floor panel
US10927553B2 (en) 2010-05-10 2021-02-23 Flooring Industries Limited, Sarl Floor panel
US10315219B2 (en) 2010-05-31 2019-06-11 Valinge Innovation Ab Method of manufacturing a panel
US11040371B2 (en) 2010-05-31 2021-06-22 Valinge Innovation Ab Production method
US8840971B2 (en) 2010-06-23 2014-09-23 Flooring Industries Limited, Sarl Method for manufacturing panels and panels obtained thereby
EP2402172A1 (en) 2010-06-23 2012-01-04 Flooring Industries Limited, SARL Method for manufacturing coated panels
WO2012069651A1 (en) * 2010-11-26 2012-05-31 Brillux Gmbh & Co. Kg Coating composition with sparkle effect
US9352499B2 (en) 2011-04-12 2016-05-31 Valinge Innovation Ab Method of manufacturing a layer
US11633884B2 (en) 2011-04-12 2023-04-25 Valinge Innovation Ab Method of manufacturing a layer
US9085905B2 (en) 2011-04-12 2015-07-21 Valinge Innovation Ab Powder based balancing layer
US10214913B2 (en) 2011-04-12 2019-02-26 Valinge Innovation Ab Powder based balancing layer
US8728564B2 (en) 2011-04-12 2014-05-20 Valinge Innovation Ab Powder mix and a method for producing a building panel
KR20140066187A (en) * 2011-08-26 2014-05-30 뵈링게 플루링 데크놀로지 아베 Panel coating
RU2608416C2 (en) * 2011-08-26 2017-01-18 Сералок Инновейшн Аб Method of making multilayer article and floor panel
US10364578B2 (en) 2011-08-26 2019-07-30 Ceraloc Innovation Ab Panel coating
KR101969818B1 (en) * 2011-08-26 2019-04-17 세라록 이노베이션 에이비 Panel coating
US11566431B2 (en) 2011-08-26 2023-01-31 Ceraloc Innovation Ab Panel coating
US10017950B2 (en) 2011-08-26 2018-07-10 Ceraloc Innovation Ab Panel coating
US11649642B2 (en) 2011-08-29 2023-05-16 Ceraloc Innovation Ab Mechanical locking system for floor panels
US10669724B2 (en) 2011-08-29 2020-06-02 Ceraloc Innovation Ab Mechanical locking system for floor panels
US9314936B2 (en) 2011-08-29 2016-04-19 Valinge Flooring Technology Ab Mechanical locking system for floor panels
US8920876B2 (en) 2012-03-19 2014-12-30 Valinge Innovation Ab Method for producing a building panel
US9403286B2 (en) 2012-03-19 2016-08-02 Valinge Innovation Ab Method for producing a building panel
US10369837B2 (en) 2012-04-30 2019-08-06 Valinge Innovation Ab Method for forming a decorative design on an element of a wood-based material
US10619356B2 (en) 2012-07-02 2020-04-14 Ceraloc Innovation Ab Panel forming
US11002022B2 (en) 2012-07-02 2021-05-11 Ceraloc Innovation Ab Panel forming
US11781323B2 (en) 2012-07-02 2023-10-10 Ceraloc Innovation Ab Panel forming
US10392812B2 (en) 2012-08-09 2019-08-27 Ceraloc Innovation Ab Single layer scattering of powder surfaces
US11905717B2 (en) 2012-08-09 2024-02-20 Ceraloc Innovation Ab Single layer scattering of powder surfaces
US8993049B2 (en) 2012-08-09 2015-03-31 Valinge Flooring Technology Ab Single layer scattering of powder surfaces
WO2014025309A1 (en) * 2012-08-09 2014-02-13 Välinge Flooring Technology AB Single layer scattering of powder surfaces
EP2730429B1 (en) 2012-11-07 2018-01-10 Akzenta Paneele + Profile GmbH Method for producing a decorated wall or floor panel
US9409382B2 (en) 2012-11-28 2016-08-09 Valinge Innovation Ab Method of producing a building panel
US10493729B2 (en) 2013-01-11 2019-12-03 Valinge Innovation Ab Method of producing a building panel and a building panel
US9181698B2 (en) 2013-01-11 2015-11-10 Valinge Innovation Ab Method of producing a building panel and a building panel
US10800186B2 (en) 2013-01-11 2020-10-13 Ceraloc Innovation Ab Digital printing with transparent blank ink
US11898356B2 (en) 2013-03-25 2024-02-13 Välinge Innovation AB Floorboards provided with a mechanical locking system
US10301830B2 (en) 2013-03-25 2019-05-28 Valinge Innovation Ab Floorboards provided with a mechanical locking system
WO2014167472A1 (en) 2013-04-12 2014-10-16 Unilin, Bvba Method for manufacturing panels
ITBO20130301A1 (en) * 2013-06-14 2014-12-15 Sorbini Srl METHOD FOR PAINTING LISTONS FOR WOOD FLOORS AND ITS DERIVATIVES
EP2813296A1 (en) * 2013-06-14 2014-12-17 SORBINI S.r.l. Method for painting planks for floors in wood and its derivatives
US10913176B2 (en) 2013-07-02 2021-02-09 Valinge Innovation Ab Method of manufacturing a building panel and a building panel
US10105900B2 (en) 2013-08-14 2018-10-23 Homag Holzbearbeitungssysteme Gmbh Coating unit
US10513094B2 (en) 2013-10-18 2019-12-24 Valinge Innovation Ab Method of manufacturing a building panel
US10328680B2 (en) 2013-10-23 2019-06-25 Ceraloc Innovation Ab Method of forming a decorative wear resistant layer
US11077652B2 (en) 2013-10-23 2021-08-03 Ceraloc Innovation Ab Method of forming a decorative wear resistant layer
US11072156B2 (en) 2013-11-27 2021-07-27 Valinge Innovation Ab Method for producing a floorboard
US10442164B2 (en) 2013-11-27 2019-10-15 Valinge Innovation Ab Floor, wall, or ceiling panel and method for producing same
US11890847B2 (en) 2014-01-10 2024-02-06 Välinge Innovation AB Method of producing a veneered element
US10988941B2 (en) 2014-01-10 2021-04-27 Valinge Innovation Ab Method of producing a veneered element
US10100535B2 (en) 2014-01-10 2018-10-16 Valinge Innovation Ab Wood fibre based panel with a surface layer
US9994010B2 (en) 2014-01-24 2018-06-12 Ceraloc Innovation Ab Digital print with water-based ink on panel surfaces
US10071563B2 (en) 2014-01-31 2018-09-11 Ceraloc Innovation Ab Digital print with water-based ink
US9605168B2 (en) 2014-01-31 2017-03-28 Ceraloc Innovation Ab Digital print with water-based ink
US11117417B2 (en) 2014-02-25 2021-09-14 Akzenta Pancele + Profile GMBH Method for producing decorative panels
EP2910385A1 (en) * 2014-02-25 2015-08-26 Akzenta Paneele + Profile GmbH Method for producing decorative panels
WO2015128255A1 (en) * 2014-02-25 2015-09-03 Akzenta Paneele + Profile Gmbh Method for producing decorative panels
RU2635061C1 (en) * 2014-02-25 2017-11-08 Акцента Панееле + Профиле Гмбх Method of decorative panels manufacture
US10350938B2 (en) 2014-02-25 2019-07-16 Akzenta Paneele + Profile Gmbh Method for producing decorative panels
EP3323628A1 (en) * 2014-02-25 2018-05-23 Akzenta Paneele + Profile GmbH Method for producing decorative panels
US10479134B2 (en) 2014-05-09 2019-11-19 Akzenta Paneele + Profile Gmbh Method for producing a decorated wall or floor panel
US10286633B2 (en) 2014-05-12 2019-05-14 Valinge Innovation Ab Method of producing a veneered element and such a veneered element
EP2947235A1 (en) * 2014-05-23 2015-11-25 Studiograph Print & Service S.r.l. Finishing element and process for the realization of said finishing element
US10059084B2 (en) 2014-07-16 2018-08-28 Valinge Innovation Ab Method to produce a thermoplastic wear resistant foil
US10493731B2 (en) 2014-07-16 2019-12-03 Valinge Innovation Ab Method to produce a thermoplastic wear resistant foil
EP2998457A1 (en) * 2014-09-19 2016-03-23 Saint-Gobain Ecophon AB Methods and tile for use in a false ceiling or wall and a false ceiling or wall
WO2016042151A1 (en) * 2014-09-19 2016-03-24 Saint-Gobain Ecophon Ab Methods and tile for use in a false ceiling or wall and a false ceiling or wall
US11111671B2 (en) 2014-09-19 2021-09-07 Saint- Gobain Ecophon Ab Methods and tile for use in a false ceiling or wall and a false ceiling or wall
US11313123B2 (en) 2015-06-16 2022-04-26 Valinge Innovation Ab Method of forming a building panel or surface element and such a building panel and surface element
US10618346B2 (en) 2015-08-19 2020-04-14 Akzenta Paneele + Profile Gmbh Method for producing a decorated wall or floor panel
WO2017076532A1 (en) * 2015-11-02 2017-05-11 Atkaindl Flooring Gmbh Panel comprising an end-grain wood pattern, method for producing a pattern for such a panel, panel trading unit comprising at least one panel of this kind, embossing element for such a panel and decorative paper for such a panel
EP3374171A4 (en) * 2015-11-16 2020-04-01 AFI Licensing LLC Lvt formulation and drum surface for achieving improved drum tack while maintaining good cut smoothness
US11090972B2 (en) 2015-12-21 2021-08-17 Valinge Innovation Ab Method to produce a building panel and a semi finished product
WO2017121825A1 (en) * 2016-01-11 2017-07-20 Tarkett Gdl Surface covering production method using digital printing
US10906348B2 (en) 2016-01-11 2021-02-02 Tarkett Gdl Surface covering production method using digital printing
LU92941B1 (en) * 2016-01-11 2017-08-04 Tarkett Gdl Sa Surface covering production method using digital printing
US10828881B2 (en) 2016-04-25 2020-11-10 Valinge Innovation Ab Veneered element and method of producing such a veneered element
US11192398B2 (en) 2016-05-20 2021-12-07 Flooring Technologies Ltd. Method for producing an abrasion-resistant wood material panel and production line therefor
EP3246175A1 (en) * 2016-05-20 2017-11-22 Flooring Technologies Ltd. Method of producing an abrasion resistant wooden panel and production line for same
WO2017198474A1 (en) * 2016-05-20 2017-11-23 Flooring Technologies Ltd. Method for producing an abrasion-resistant wood material panel and production line therefor
US11884097B2 (en) 2016-05-20 2024-01-30 Flooring Technologies Ltd. Method for producing an abrasion-resistant wood material panel and production line therefor
WO2018007932A3 (en) * 2016-07-07 2018-02-15 Unilin, Bvba Floor panel and decorative panel or profile
BE1024356B1 (en) * 2016-07-07 2018-02-05 Unilin Bvba Decorative panel or profile
US11198319B2 (en) 2017-11-06 2021-12-14 Flooring Technologies Ltd. Method for producing an abrasion-resistant wood composite board and production line therefor
BE1025875B1 (en) * 2018-01-04 2019-08-06 Unilin Bvba Methods for manufacturing panels
WO2019135140A1 (en) 2018-01-04 2019-07-11 Unilin, Bvba Methods for manufacturing panels
US11794460B2 (en) 2018-01-04 2023-10-24 Flooring Industries Limited, Sarl Methods for manufacturing panels
EP4082808A1 (en) 2018-01-04 2022-11-02 Flooring Industries Limited, SARL Methods for manufacturing panels
US11872837B2 (en) 2019-01-22 2024-01-16 Flooring Technologies Ltd. Abrasion-resistant wood board
US11712816B2 (en) 2019-03-05 2023-08-01 Ceraloc Innovation Ab Method and system for forming grooves in a board element and an associated panel
US11377855B2 (en) 2019-03-25 2022-07-05 Ceraloc Innovation Ab Mineral-based panel comprising grooves and a method for forming grooves
US11725398B2 (en) 2019-12-27 2023-08-15 Ceraloc Innovation Ab Thermoplastic-based building panel comprising a balancing layer
US11572646B2 (en) 2020-11-18 2023-02-07 Material Innovations Llc Composite building materials and methods of manufacture
EP4190583A1 (en) 2021-12-06 2023-06-07 Chiyoda Europa A decorative sheet and method for manufacturing
WO2023104653A1 (en) 2021-12-06 2023-06-15 Chiyoda Europa A decorative sheet and method for manufacturing
BE1029949A1 (en) 2021-12-06 2023-06-15 Chiyoda Europa Nv DECORATIVE SHEET AND METHOD OF MANUFACTURE

Also Published As

Publication number Publication date
RU2255189C2 (en) 2005-06-27
EP1240026B1 (en) 2004-03-31
US6888147B1 (en) 2005-05-03
US20160303867A1 (en) 2016-10-20
US8944543B2 (en) 2015-02-03
US10464339B2 (en) 2019-11-05
US20030207083A1 (en) 2003-11-06
US9656476B2 (en) 2017-05-23
US20160136963A1 (en) 2016-05-19
US9636923B2 (en) 2017-05-02
DE60009556T2 (en) 2005-02-03
US6991830B1 (en) 2006-01-31
US9636922B2 (en) 2017-05-02
AU2414301A (en) 2001-07-09
EP1240026A1 (en) 2002-09-18
EP1242702A1 (en) 2002-09-25
EP1240025B1 (en) 2004-03-17
SE9904781D0 (en) 1999-12-23
US6565919B1 (en) 2003-05-20
US20140053484A1 (en) 2014-02-27
US8950138B2 (en) 2015-02-10
SE9904781L (en) 2001-06-24
SE516696C2 (en) 2002-02-12
ATE263031T1 (en) 2004-04-15
DE60009556D1 (en) 2004-05-06
AU2414401A (en) 2001-07-09
AU2239101A (en) 2001-07-09
DE60009141T2 (en) 2004-10-14
RU2002119576A (en) 2004-02-10
US20060136083A1 (en) 2006-06-22
ES2215775T3 (en) 2004-10-16
US20120288689A1 (en) 2012-11-15
US6465046B1 (en) 2002-10-15
AU2414501A (en) 2001-07-09
WO2001047726A1 (en) 2001-07-05
US9321299B2 (en) 2016-04-26
WO2001047717A1 (en) 2001-07-05
DE60009141D1 (en) 2004-04-22
DE60015603T3 (en) 2012-12-06
EP1242702B2 (en) 2012-05-23
US9409412B2 (en) 2016-08-09
WO2001047724A1 (en) 2001-07-05
WO2001047725A1 (en) 2001-07-05
US20150158328A1 (en) 2015-06-11
ATE281576T1 (en) 2004-11-15
US20160303866A1 (en) 2016-10-20
US6685993B1 (en) 2004-02-03
ATE261819T1 (en) 2004-04-15
AU2239201A (en) 2001-07-09
PT1242702E (en) 2005-01-31
AU2239001A (en) 2001-07-09
ES2217017T3 (en) 2004-11-01
US20050281993A1 (en) 2005-12-22
EP1240025A1 (en) 2002-09-18
WO2001047718A1 (en) 2001-07-05
US20160303868A1 (en) 2016-10-20
DE60015603T2 (en) 2006-02-02
CN1201059C (en) 2005-05-11
US7003364B1 (en) 2006-02-21
US7542818B2 (en) 2009-06-02
DE60015603D1 (en) 2004-12-09
US20160303894A1 (en) 2016-10-20
US8741421B2 (en) 2014-06-03
EP1242702B1 (en) 2004-11-03
CN1425098A (en) 2003-06-18

Similar Documents

Publication Publication Date Title
US10464339B2 (en) Process for the manufacturing of surface elements
EP1697133B2 (en) A process for manufacturing a decorative laminate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000987870

Country of ref document: EP

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002119576

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 008185816

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2000987870

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000987870

Country of ref document: EP