WO2001049219A1 - Implant of bone matter - Google Patents

Implant of bone matter Download PDF

Info

Publication number
WO2001049219A1
WO2001049219A1 PCT/EP2000/012235 EP0012235W WO0149219A1 WO 2001049219 A1 WO2001049219 A1 WO 2001049219A1 EP 0012235 W EP0012235 W EP 0012235W WO 0149219 A1 WO0149219 A1 WO 0149219A1
Authority
WO
WIPO (PCT)
Prior art keywords
base body
spinal column
accordance
support element
implant
Prior art date
Application number
PCT/EP2000/012235
Other languages
French (fr)
Inventor
Rolf-Dieter Kalas
Karl Koschatzky
Manfred Krüger
Christoph SCHÖPF
Original Assignee
Tutogen Medical Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tutogen Medical Gmbh filed Critical Tutogen Medical Gmbh
Priority to EP00983226A priority Critical patent/EP1244398B1/en
Priority to DE60019643T priority patent/DE60019643T2/en
Priority to AT00983226T priority patent/ATE293413T1/en
Priority to AU20052/01A priority patent/AU2005201A/en
Publication of WO2001049219A1 publication Critical patent/WO2001049219A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30724Spacers for centering an implant in a bone cavity, e.g. in a cement-receiving cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • A61F2002/2839Bone plugs or bone graft dowels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30153Convex polygonal shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30159Concave polygonal shapes
    • A61F2002/30179X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30242Three-dimensional shapes spherical
    • A61F2002/30245Partial spheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30261Three-dimensional shapes parallelepipedal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30448Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2002/30733Inserts placed into an endoprosthetic cavity, e.g. for modifying a material property
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0019Angular shapes rectangular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0058X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0071Three-dimensional shapes spherical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0082Three-dimensional shapes parallelepipedal

Definitions

  • the present invention relates to an implant for the connection of bones and in particular to a spinal column implant for the fusion of vertebral bones which is introduced between two vertebral bones to be fused.
  • the principle for treating these symptoms consists in the operative excavation of the vertebral disc nucleus and the laying in or insertion respectively of one — in the region of the cervical vertebral column — or of two — in the region of the lumbar vertebral column — sufficiently stable bodies in order to restore the normal height of the vertebral disc space.
  • the horizontal displaceability must be prevented. This takes place either through the implant itself or through additional metal implants. These implants are subject in particular in the lumbar vertebral column to considerable forces, which can lead to the breakage of the metal implant. Therefore an attempt is made to have the intermediate vertebral insert grow together or fuse respectively as rapidly and as solidly as possible with the adjacent vertebral bodies.
  • a known possibility of fusing two vertebrae consists in the insertion of a suitably shaped cylinder or dowel into a prepared cavity which reaches the two vertebrae to be fused.
  • the material which is required for this is removed beforehand from the patient for example from the pelvic ridge.
  • an implant is produced and then inserted into the intervertebral space of the patient between the two vertebrae to be fused (auto -grafting) .
  • the object of the present invention therefore consists in creating an implant for the fusion of bones which restores the correct distance between the vertebral bodies and the stability of the spinal column, which provokes no immune reactions and which accelerates the healing process.
  • a particular advantage of the spinal column implant in accordance with the invention is given through the material used, which, as a result of its biological origin does not represent a foreign body.
  • the implant which is produced of bone matter, contributes in its entirety, that is, the support element of for example cortical bone marker as well as the base body of spongeous bone matter, to the fusion of the vertebral bodies in that it converts into the body's own tissue during the healing in.
  • the base body has no outer shell of hard bone matter, but rather consists of spongeous bone, the spongeous bone matter of the base body comes into direct contact with the bone surfaces of the vertebral bodies in order to form a bony connection with the latter and thereby to fuse them or to connect them to one another respectively.
  • the inventors have recognized that it is particularly advantageous to form the base body of spongeous, that is, relatively porous, bone matter in order to accelerate the healing in process.
  • at least one load-carrying support element is embedded in the base body of spongeous bone matter which extends from one side to an oppositely lying side of the base body.
  • the support element thus serves as a load-carrying part, in contrast to which the base body substantially has the function of seating the support element and enabling the growing together process with the surrounding bone matter.
  • the at least one support element consists of compact or of cortical bone respectively.
  • the support element can preferably be formed in the manner of a pin or a column respectively, with it also being possible for a plurality of support elements to be embedded in parallel into the base body. Depending on the stress distribution the support elements can also have different cross-sections in this situation.
  • the support element is designed to be areal or wall-like, through which yet higher stresses on the implant are possible.
  • a plurality of areal support elements, the planes of which intersect, are embedded in the base body.
  • the support element or support elements can terminate at the outer contour of the base body or project beyond the outer contour of the base body in order to facilitate the fitting in of the implant between two vertebrae to be fused.
  • the base body can contain at least one cavity which is accessible from its outer side for the reception of bone powder or bone granulate.
  • the introduction of materials of this kind into a cavity of this kind improves the healing in process yet further.
  • the base body can furthermore have a surface which is corrugated, toothed or provided with knobs.
  • the outer shape of the base body can also vary. The latter can be formed in the shape of a block, a rectangular parallelepiped or a wedge, with it being possible for rounded off corner contours or curved base bodies to be advantageous.
  • the implant is preferably matched in its size to the intervertebral space which is present between the adjacent vertebrae after the excavation of the intervertebral body.
  • the application of the spinal column implant in accordance with the invention takes place after excavation of the vertebral disc with subsequent exposure of the vertebral bodies lying above and below it without it being necessary to damage healthy bone matter for this. This brings about the advantage that the existing intervertebral space is not enlarged and the supporting structures remain intact.
  • a suitable allogenic or xenogenic bone matter is processed in such a manner that it is preserved, is capable of storage and can be used in accordance with its purpose.
  • the preservation of the bone matter can for example take place by means of freeze drying.
  • the spongeous bone matter is preferably produced through solvent dehydration of native bone matter by means of an organic solvent which is miscible with water, e.g. methanol, ethanol, propanol, isopropanol, acetone, methyl ethyl ketone or mixtures of these solvents.
  • the preservation and sterilization of the bone matter in accordance with this method is also a subject matter of the patent DE 29 06 650, the contents of which are taken up into the disclosure of the present application through this reference.
  • This method serves for the production of transplant preserves and enables a dehydration and exposure right into the fine structure of the fibrils of the bone matter, so that the processed bone matter has a morphological structure in a histological view which is very similar to that of the natural bone, and thus the desired properties of the bone matter are retained.
  • This method of solvent dehydration also has the advantage that a substantially lower apparative cost and complexity is required in comparison with freeze drying.
  • the spongeous bone matter can also be produced through solvent dehydration of bone matter with the subsequent terminal sterilization, in particular through irradiation with gamma rays.
  • the spongeous bone matter can be produced through aseptic processing of bone matter without terminal sterilization.
  • Fig. 1 a schematic perspective view of a first embodiment of a spinal column implant in accordance with the present invention
  • Fig. 2 a schematic perspective view of a further embodiment of a spinal column implant in accordance with the present invention.
  • Fig. 3 a schematic perspective view of a third embodiment of a spinal column implant in accordance with the present invention.
  • the same reference symbols designate in each case the same components of the illustrated embodiments.
  • the illustrated exemplary embodiments are suitable both for the cervical and for the lumbar fusion of vertebral bones.
  • a spinal column implant in accordance with the invention which is illustrated in Fig. 1 consists of a base body 10 of spongeous bone matter, which is designed to have substantially the shape of a rectangular parallelepiped.
  • a plurality of, in the illustrated exemplary embodiment five, support elements 12 which consist of cortical bone are embedded into the base body 10.
  • the support elements are formed as cylindrical pins and are embedded parallel spaced to one another into the base body 10.
  • the base body 10 of spongeous bone matter is provided with corresponding parallel bores into which the support elements 12 are fitted in.
  • the support elements 12 are substantially as long as the base body 10 is high, so that each support element 12 extends from one side of the base body to its oppositely lying side.
  • the end sides of the load-carrying support elements 12 substantially align with the outer contour of the base body 10.
  • Fig. 2 shows a further embodiment of a spinal column implant which consists of a base body 20 of spongeous bone matter which is designed having the shape of a rectangular parallelepiped.
  • a load-carrying support element 22 which consists of four wall sections 22a, 22b, 22c and 22d and the planes of which intersect in the middle of the support element 22 is embedded into the base body 20.
  • the support element 22 is milled in a single piece out of cortical bone and forms in plan view the shape of a diagonal cross.
  • the base body 20 of spongeous bone matter is provided with a milling-out corresponding to the outer contour of the support element 22 so that the support element 22 of cortical bone can be inserted into this milling-out.
  • Fig. 3 shows a further embodiment of a spinal column implant which consists of a base body 30 of spongeous bone matter having the shape of a rectangular parallelepiped.
  • a pin-like support element 32 which consists of cortical bone is embedded in the center of the base body 30.
  • the end sides of the support element 32 are rounded off in the manner of a dome so that the support element 32 projects with its dome-shaped end side 34 beyond the outer contour of the base body 30.
  • the opposite end side of the support element 32 is formed in the same way and likewise projects beyond the base body 30.
  • the securing of the support elements in the base body can take place through press seating or through adhesive bonding or another suitable securing means.
  • a large number of variations is possibly in the design of the support elements.
  • merely a wall-like support element can be inserted. Pinlike and wall-like support elements can however also be combined with one another.
  • the base body of spongeous bone matter can have various other surface designs in addition to the illustrated rectangular parallelepipedal shape.
  • its surface can be provided with knobs; it can be formed to be corrugated or toothed.
  • the outer shape of the base body can be wedge-like, rounded off or also curved in the manner of a banana.
  • At least one cavity which is accessible from the outer side of the base body and which can be filled with bone powder or bone granulate can be provided in the base body .
  • the size of the base body is matched to the predetermined location at which the implant is to be inserted.
  • the outer dimensions of a spinal column implant of this kind can, depending on the location of use in cervical or lumbar application, for example be as follows: length 15 to 23 mm, width 8 to 13 mm, height 5 to 13 mm.
  • the edges of the base body can be rounded off in order to facilitate the introduction of the implant. Furthermore, at least one reception opening for an application tool can be provided.
  • the spongeous bone matter of the base body can be of human or animal, in particular bovine, origin and preferably has osteoinductive properties in order to favor the healing in process.
  • base body support element base body support element a - - 22d partial wall base body support element end side

Abstract

A spinal column implant consists of a base body (10) of spongeous bone matter into which at least one load-carrying support element (12) is embedded.

Description

Implant of bone matter
The present invention relates to an implant for the connection of bones and in particular to a spinal column implant for the fusion of vertebral bones which is introduced between two vertebral bones to be fused.
Through the degeneration of the vertebral disc, in particular of the vertebral disc nucleus (nucleus pulposus) a loss of height in the affected vertebral disc space often comes about which is connected with a loosening of the vertebral disc annulus (annulus fibrosus) and of the ligaments. Through this the spinal column becomes instable at this location. The result is a horizontal displaceability of the vertebral bodies relative to one another (spondylolisthesis), which leads to impairments of the nerve roots in this region and/ or of the spinal cord together with the pain resulting from this.
The principle for treating these symptoms consists in the operative excavation of the vertebral disc nucleus and the laying in or insertion respectively of one — in the region of the cervical vertebral column — or of two — in the region of the lumbar vertebral column — sufficiently stable bodies in order to restore the normal height of the vertebral disc space. At the same time the horizontal displaceability must be prevented. This takes place either through the implant itself or through additional metal implants. These implants are subject in particular in the lumbar vertebral column to considerable forces, which can lead to the breakage of the metal implant. Therefore an attempt is made to have the intermediate vertebral insert grow together or fuse respectively as rapidly and as solidly as possible with the adjacent vertebral bodies.
A known possibility of fusing two vertebrae consists in the insertion of a suitably shaped cylinder or dowel into a prepared cavity which reaches the two vertebrae to be fused. The material which is required for this is removed beforehand from the patient for example from the pelvic ridge. From the thus won autogenic bone matter, that is, bone matter stemming from the same patient, an implant is produced and then inserted into the intervertebral space of the patient between the two vertebrae to be fused (auto -grafting) .
The object of the present invention therefore consists in creating an implant for the fusion of bones which restores the correct distance between the vertebral bodies and the stability of the spinal column, which provokes no immune reactions and which accelerates the healing process.
This object is satisfied by a spinal column implant with the features of claim 1.
A particular advantage of the spinal column implant in accordance with the invention is given through the material used, which, as a result of its biological origin does not represent a foreign body. Through this the implant, which is produced of bone matter, contributes in its entirety, that is, the support element of for example cortical bone marker as well as the base body of spongeous bone matter, to the fusion of the vertebral bodies in that it converts into the body's own tissue during the healing in.
Since the base body has no outer shell of hard bone matter, but rather consists of spongeous bone, the spongeous bone matter of the base body comes into direct contact with the bone surfaces of the vertebral bodies in order to form a bony connection with the latter and thereby to fuse them or to connect them to one another respectively.
The inventors have recognized that it is particularly advantageous to form the base body of spongeous, that is, relatively porous, bone matter in order to accelerate the healing in process. In order to be able however to take up the not inconsiderable forces which can arise between two vertebral bodies which are to be fused with one another, in accordance with the invention at least one load-carrying support element is embedded in the base body of spongeous bone matter which extends from one side to an oppositely lying side of the base body. The support element thus serves as a load-carrying part, in contrast to which the base body substantially has the function of seating the support element and enabling the growing together process with the surrounding bone matter.
In the description, the drawings and the subordinate claims, further advantageous embodiments of the spinal column implant in accordance with the present invention are set forth. In accordance with a first advantageous embodiment the at least one support element consists of compact or of cortical bone respectively. Through this it is ensured on the one hand that high forces can be taken up by the spinal column implant. On the other hand the implant has no artifacts, which further accelerates the healing in process.
The support element can preferably be formed in the manner of a pin or a column respectively, with it also being possible for a plurality of support elements to be embedded in parallel into the base body. Depending on the stress distribution the support elements can also have different cross-sections in this situation.
In accordance with a further embodiment of the invention the support element is designed to be areal or wall-like, through which yet higher stresses on the implant are possible. In this it is advantageous when a plurality of areal support elements, the planes of which intersect, are embedded in the base body.
The support element or support elements can terminate at the outer contour of the base body or project beyond the outer contour of the base body in order to facilitate the fitting in of the implant between two vertebrae to be fused.
In accordance with a further embodiment of the invention the base body can contain at least one cavity which is accessible from its outer side for the reception of bone powder or bone granulate. The introduction of materials of this kind into a cavity of this kind improves the healing in process yet further.
In order to facilitate an integration of the base body between two vertebrae to be fused, the base body can furthermore have a surface which is corrugated, toothed or provided with knobs. Furthermore, the outer shape of the base body can also vary. The latter can be formed in the shape of a block, a rectangular parallelepiped or a wedge, with it being possible for rounded off corner contours or curved base bodies to be advantageous.
The implant is preferably matched in its size to the intervertebral space which is present between the adjacent vertebrae after the excavation of the intervertebral body. The application of the spinal column implant in accordance with the invention takes place after excavation of the vertebral disc with subsequent exposure of the vertebral bodies lying above and below it without it being necessary to damage healthy bone matter for this. This brings about the advantage that the existing intervertebral space is not enlarged and the supporting structures remain intact.
In accordance with the invention a suitable allogenic or xenogenic bone matter is processed in such a manner that it is preserved, is capable of storage and can be used in accordance with its purpose. The preservation of the bone matter can for example take place by means of freeze drying. The spongeous bone matter is preferably produced through solvent dehydration of native bone matter by means of an organic solvent which is miscible with water, e.g. methanol, ethanol, propanol, isopropanol, acetone, methyl ethyl ketone or mixtures of these solvents. The preservation and sterilization of the bone matter in accordance with this method is also a subject matter of the patent DE 29 06 650, the contents of which are taken up into the disclosure of the present application through this reference.
This method serves for the production of transplant preserves and enables a dehydration and exposure right into the fine structure of the fibrils of the bone matter, so that the processed bone matter has a morphological structure in a histological view which is very similar to that of the natural bone, and thus the desired properties of the bone matter are retained. This method of solvent dehydration also has the advantage that a substantially lower apparative cost and complexity is required in comparison with freeze drying.
Furthermore, the spongeous bone matter can also be produced through solvent dehydration of bone matter with the subsequent terminal sterilization, in particular through irradiation with gamma rays. Alternatively, the spongeous bone matter can be produced through aseptic processing of bone matter without terminal sterilization.
In the following the present invention will be described in a purely exemplary manner with reference to an exemplary embodiments of spinal column implant in accordance with the invention and with reference to the accompanying drawings. It shows: Fig. 1 a schematic perspective view of a first embodiment of a spinal column implant in accordance with the present invention;
Fig. 2 a schematic perspective view of a further embodiment of a spinal column implant in accordance with the present invention; and
Fig. 3 a schematic perspective view of a third embodiment of a spinal column implant in accordance with the present invention.
In the figures the same reference symbols designate in each case the same components of the illustrated embodiments. The illustrated exemplary embodiments are suitable both for the cervical and for the lumbar fusion of vertebral bones.
The exemplary embodiment of a spinal column implant in accordance with the invention which is illustrated in Fig. 1 consists of a base body 10 of spongeous bone matter, which is designed to have substantially the shape of a rectangular parallelepiped. In the illustrated exemplary embodiment a plurality of, in the illustrated exemplary embodiment five, support elements 12 which consist of cortical bone are embedded into the base body 10. The support elements are formed as cylindrical pins and are embedded parallel spaced to one another into the base body 10. For this the base body 10 of spongeous bone matter is provided with corresponding parallel bores into which the support elements 12 are fitted in. The support elements 12 are substantially as long as the base body 10 is high, so that each support element 12 extends from one side of the base body to its oppositely lying side.
In the exemplary embodiment illustrated in Fig. 1 the end sides of the load-carrying support elements 12 substantially align with the outer contour of the base body 10.
Fig. 2 shows a further embodiment of a spinal column implant which consists of a base body 20 of spongeous bone matter which is designed having the shape of a rectangular parallelepiped. A load-carrying support element 22 which consists of four wall sections 22a, 22b, 22c and 22d and the planes of which intersect in the middle of the support element 22 is embedded into the base body 20. The support element 22 is milled in a single piece out of cortical bone and forms in plan view the shape of a diagonal cross. The base body 20 of spongeous bone matter is provided with a milling-out corresponding to the outer contour of the support element 22 so that the support element 22 of cortical bone can be inserted into this milling-out.
In this embodiment the end sides of the support element 22 again align with the outer contour of the base body 20, i.e. the lower side of the support element 22 aligns substantially with the lower side of the base body 20 and the upper side of the support element 22 aligns substantially with its upper side. Fig. 3 shows a further embodiment of a spinal column implant which consists of a base body 30 of spongeous bone matter having the shape of a rectangular parallelepiped. Similarly as in the embodiment of Fig. 1 a pin-like support element 32 which consists of cortical bone is embedded in the center of the base body 30. As can be recognized, the end sides of the support element 32 are rounded off in the manner of a dome so that the support element 32 projects with its dome-shaped end side 34 beyond the outer contour of the base body 30. The opposite end side of the support element 32 is formed in the same way and likewise projects beyond the base body 30.
The securing of the support elements in the base body can take place through press seating or through adhesive bonding or another suitable securing means. Likewise, a large number of variations is possibly in the design of the support elements. Instead of the illustrated exemplary embodiments, merely a wall-like support element can be inserted. Pinlike and wall-like support elements can however also be combined with one another.
The base body of spongeous bone matter can have various other surface designs in addition to the illustrated rectangular parallelepipedal shape. For example its surface can be provided with knobs; it can be formed to be corrugated or toothed. The outer shape of the base body can be wedge-like, rounded off or also curved in the manner of a banana.
Furthermore, at least one cavity which is accessible from the outer side of the base body and which can be filled with bone powder or bone granulate can be provided in the base body .
In principle the size of the base body is matched to the predetermined location at which the implant is to be inserted. The outer dimensions of a spinal column implant of this kind can, depending on the location of use in cervical or lumbar application, for example be as follows: length 15 to 23 mm, width 8 to 13 mm, height 5 to 13 mm.
The edges of the base body can be rounded off in order to facilitate the introduction of the implant. Furthermore, at least one reception opening for an application tool can be provided.
The spongeous bone matter of the base body can be of human or animal, in particular bovine, origin and preferably has osteoinductive properties in order to favor the healing in process.
List of reference symbols
base body support element base body support element a - - 22d partial wall base body support element end side

Claims

Claims:
1. Spinal column implant consisting of a base body ( 10, 20, 30) of spongeous bone matter into which at least one load-carrying support element (12, 22, 32) is embedded.
2. Spinal column implant in accordance with claim 1 , with the support element ( 12, 22, 32) extending from one side to an oppositely lying side of the base body (10, 20, 30).
3. Spinal column implant in accordance with claim 1 , with the support element ( 12, 22, 32) consisting of compact or cortical bone.
4. Spinal column implant in accordance with claim 1, with the support element being formed in the manner of a pin (12, 32).
5. Spinal column implant in accordance with claim 1, with a plurality of parallel support elements (12) being embedded into the base body.
6. Spinal column implant in accordance with claim 1 , with the support element (22) being formed areally or in the manner of a wall.
7. Spinal column implant in accordance with claim 1 , with a plurality of areal support elements (20a - 20d), the planes of which intersect, being embedded into the base body (20).
8. Spinal column implant in accordance with claim 1 , with the support element (32) projecting beyond the outer contour of the base body (30).
9. Spinal column implant in accordance with claim 1 , with the base body containing at least one cavity for the reception of bone powder or bone granulate which is accessible from its outer side.
10. Spinal column implant in accordance with claim 1, with the base body having a surface which is corrugated, toothed or provided with knobs.
11. Spinal column implant in accordance with claim 1 , with the base body being substantially block- shaped and with at least one through-going pin being embedded into this block as a support element (12, 32).
PCT/EP2000/012235 2000-01-06 2000-12-05 Implant of bone matter WO2001049219A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00983226A EP1244398B1 (en) 2000-01-06 2000-12-05 Implant of bone matter
DE60019643T DE60019643T2 (en) 2000-01-06 2000-12-05 IMPLANT FROM BONE MATERIAL
AT00983226T ATE293413T1 (en) 2000-01-06 2000-12-05 IMPLANT MADE OF BONE MATERIAL
AU20052/01A AU2005201A (en) 2000-01-06 2000-12-05 Implant of bone matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/478,820 2000-01-06
US09/478,820 US6379385B1 (en) 2000-01-06 2000-01-06 Implant of bone matter

Publications (1)

Publication Number Publication Date
WO2001049219A1 true WO2001049219A1 (en) 2001-07-12

Family

ID=23901486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012235 WO2001049219A1 (en) 2000-01-06 2000-12-05 Implant of bone matter

Country Status (6)

Country Link
US (1) US6379385B1 (en)
EP (1) EP1244398B1 (en)
AT (1) ATE293413T1 (en)
AU (1) AU2005201A (en)
DE (1) DE60019643T2 (en)
WO (1) WO2001049219A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024122A2 (en) * 2000-09-19 2002-03-28 Sdgi Holdings, Inc. Reinforced molded implant formed of cortical bone
US6635222B2 (en) 1993-07-22 2003-10-21 Clearant, Inc. Method of sterilizing products
US6652592B1 (en) 1997-10-27 2003-11-25 Regeneration Technologies, Inc. Segmentally demineralized bone implant
WO2002096324A3 (en) * 2001-05-29 2003-11-27 Tutogen Medical Gmbh Bone implant
US6696060B2 (en) 2001-06-14 2004-02-24 Clearant, Inc. Methods for sterilizing preparations of monoclonal immunoglobulins
US6749851B2 (en) 2001-08-31 2004-06-15 Clearant, Inc. Methods for sterilizing preparations of digestive enzymes
CN100428920C (en) * 2002-03-30 2008-10-29 斯恩蒂斯有限公司 Surgical implant
WO2013054057A1 (en) * 2011-10-14 2013-04-18 Arthroplastie Diffusion Intersomatic implant

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482584B1 (en) 1998-11-13 2002-11-19 Regeneration Technologies, Inc. Cyclic implant perfusion cleaning and passivation process
US20010031254A1 (en) * 1998-11-13 2001-10-18 Bianchi John R. Assembled implant
US5941972A (en) * 1997-12-31 1999-08-24 Crossroads Systems, Inc. Storage router and method for providing virtual local storage
US8563232B2 (en) 2000-09-12 2013-10-22 Lifenet Health Process for devitalizing soft-tissue engineered medical implants, and devitalized soft-tissue medical implants produced
US6293970B1 (en) 1998-06-30 2001-09-25 Lifenet Plasticized bone and soft tissue grafts and methods of making and using same
US20100030340A1 (en) * 1998-06-30 2010-02-04 Wolfinbarger Jr Lloyd Plasticized Grafts and Methods of Making and Using Same
US20080077251A1 (en) * 1999-06-07 2008-03-27 Chen Silvia S Cleaning and devitalization of cartilage
US6558422B1 (en) * 1999-03-26 2003-05-06 University Of Washington Structures having coated indentations
AU2624801A (en) * 1999-12-30 2001-07-16 Osteotech, Inc. Intervertebral implants
WO2001078798A1 (en) * 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
US6638310B2 (en) * 2000-07-26 2003-10-28 Osteotech, Inc. Intervertebral spacer and implant insertion instrumentation
US20030120274A1 (en) * 2000-10-20 2003-06-26 Morris John W. Implant retaining device
US6648894B2 (en) * 2000-12-21 2003-11-18 Stryker Spine Bone graft forming guide and method of forming bone grafts
US20020114795A1 (en) 2000-12-22 2002-08-22 Thorne Kevin J. Composition and process for bone growth and repair
US6855167B2 (en) * 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US20050143837A1 (en) * 2002-06-27 2005-06-30 Ferree Bret A. Arthroplasty devices configured to reduce shear stress
US7323011B2 (en) 2002-10-18 2008-01-29 Musculoskeletal Transplant Foundation Cortical and cancellous allograft cervical fusion block
US7497859B2 (en) * 2002-10-29 2009-03-03 Kyphon Sarl Tools for implanting an artificial vertebral disk
US6761739B2 (en) 2002-11-25 2004-07-13 Musculoskeletal Transplant Foundation Cortical and cancellous allograft spacer
US20050124993A1 (en) * 2002-12-02 2005-06-09 Chappuis James L. Facet fusion system
DE10309986B4 (en) * 2003-02-28 2005-03-17 Aesculap Ag & Co. Kg Implant, implant system for rebuilding a vertebral body
US20040199256A1 (en) * 2003-04-04 2004-10-07 Chao-Jan Wang Support device for supporting between spinal vertebrae
US7067123B2 (en) 2003-04-29 2006-06-27 Musculoskeletal Transplant Foundation Glue for cartilage repair
US20050064042A1 (en) * 2003-04-29 2005-03-24 Musculoskeletal Transplant Foundation Cartilage implant plug with fibrin glue and method for implantation
US7488348B2 (en) * 2003-05-16 2009-02-10 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7901457B2 (en) 2003-05-16 2011-03-08 Musculoskeletal Transplant Foundation Cartilage allograft plug
US7537617B2 (en) * 2003-06-05 2009-05-26 Warsaw Orthopedic, Inc. Bone strip implants and method of making same
US7351262B2 (en) * 2003-06-05 2008-04-01 Warsaw Orthopedic, Inc. Bone implants and methods of making same
US7252685B2 (en) * 2003-06-05 2007-08-07 Sdgi Holdings, Inc. Fusion implant and method of making same
US20050049703A1 (en) * 2003-08-26 2005-03-03 Lee Casey K. Spinal implant
US20050065607A1 (en) * 2003-09-24 2005-03-24 Gross Jeffrey M. Assembled fusion implant
US20050065613A1 (en) * 2003-09-24 2005-03-24 Gross Jeffrey M. Reinforced fusion implant
US7320707B2 (en) * 2003-11-05 2008-01-22 St. Francis Medical Technologies, Inc. Method of laterally inserting an artificial vertebral disk replacement implant with crossbar spacer
US7691146B2 (en) 2003-11-21 2010-04-06 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
EP1708651A4 (en) 2004-01-27 2011-11-02 Osteotech Inc Stabilized bone graft
US20090319045A1 (en) 2004-10-12 2009-12-24 Truncale Katherine G Cancellous constructs, cartilage particles and combinations of cancellous constructs and cartilage particles
US7837740B2 (en) 2007-01-24 2010-11-23 Musculoskeletal Transplant Foundation Two piece cancellous construct for cartilage repair
JP4796079B2 (en) * 2005-02-01 2011-10-19 オステオバイオロジクス・インコーポレーテッド Method and apparatus for selectively adding bioactive agents to multiphase implants
WO2006113586A2 (en) * 2005-04-15 2006-10-26 Musculoskeletal Transplant Foundation Vertebral disc repair
US7815926B2 (en) 2005-07-11 2010-10-19 Musculoskeletal Transplant Foundation Implant for articular cartilage repair
EP1926459B1 (en) 2005-09-19 2015-01-07 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US8062372B2 (en) * 2005-12-29 2011-11-22 Industrial Technology Research Institute Spinal fusion device
EP2076220A2 (en) * 2006-07-25 2009-07-08 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US20080161810A1 (en) * 2006-10-18 2008-07-03 Warsaw Orthopedic, Inc. Guide and Cutter for Contouring Facet Joints and Methods of Use
US7718616B2 (en) 2006-12-21 2010-05-18 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
US20080154379A1 (en) * 2006-12-22 2008-06-26 Musculoskeletal Transplant Foundation Interbody fusion hybrid graft
US20080234822A1 (en) * 2007-01-26 2008-09-25 Tutogen Medical, U.S., Inc. Method and Apparatus for Stabilization and Fusion of Adjacent Bone Segments
USD580551S1 (en) * 2007-02-01 2008-11-11 Zimmer Spine, Inc. Spinal implant
AU2008216371B2 (en) * 2007-02-12 2014-04-10 Warsaw Orthopedic, Inc. Joint revision implant
US8435551B2 (en) 2007-03-06 2013-05-07 Musculoskeletal Transplant Foundation Cancellous construct with support ring for repair of osteochondral defects
US20080234825A1 (en) * 2007-03-16 2008-09-25 Chappuis James L Modular Lumbar Interbody Fixation Systems and Methods
US8992616B2 (en) * 2007-03-19 2015-03-31 James L. Chappuis Modular lumbar interbody fixation systems and methods with reconstruction endplates
US9744043B2 (en) 2007-07-16 2017-08-29 Lifenet Health Crafting of cartilage
US9125743B2 (en) * 2007-07-16 2015-09-08 Lifenet Health Devitalization and recellularization of cartilage
US8685099B2 (en) * 2007-08-14 2014-04-01 Warsaw Orthopedic, Inc. Multiple component osteoimplant
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9700431B2 (en) * 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
PL2358309T3 (en) 2008-12-18 2016-04-29 4 Web Inc Truss implant
US8979748B2 (en) * 2009-10-23 2015-03-17 James L. Chappuis Devices and methods for temporarily retaining spinal rootlets within dural sac
US9867711B2 (en) 2010-11-10 2018-01-16 Mitsubishi Materials Corporation Vertebral body spacer
JP5942076B2 (en) 2010-11-10 2016-06-29 三菱マテリアル株式会社 Vertebral spacer
JP5907887B2 (en) * 2010-11-10 2016-04-26 Hoya株式会社 Vertebral spacer
AU2011329054B2 (en) 2010-11-15 2015-05-28 Zimmer Orthobiologics, Inc. Bone void fillers
US9848994B2 (en) 2011-09-16 2017-12-26 Globus Medical, Inc. Low profile plate
US9204975B2 (en) 2011-09-16 2015-12-08 Globus Medical, Inc. Multi-piece intervertebral implants
US8961606B2 (en) 2011-09-16 2015-02-24 Globus Medical, Inc. Multi-piece intervertebral implants
US10245155B2 (en) 2011-09-16 2019-04-02 Globus Medical, Inc. Low profile plate
US9539109B2 (en) 2011-09-16 2017-01-10 Globus Medical, Inc. Low profile plate
US9398960B2 (en) 2011-09-16 2016-07-26 Globus Medical, Inc. Multi-piece intervertebral implants
US9237957B2 (en) 2011-09-16 2016-01-19 Globus Medical, Inc. Low profile plate
US9149365B2 (en) 2013-03-05 2015-10-06 Globus Medical, Inc. Low profile plate
US9770340B2 (en) 2011-09-16 2017-09-26 Globus Medical, Inc. Multi-piece intervertebral implants
US10881526B2 (en) 2011-09-16 2021-01-05 Globus Medical, Inc. Low profile plate
US9681959B2 (en) 2011-09-16 2017-06-20 Globus Medical, Inc. Low profile plate
CA2889063C (en) 2012-09-25 2021-10-26 4Web, Inc. Programmable implants and methods of using programmable implants to repair bone structures
US9265609B2 (en) * 2013-01-08 2016-02-23 Warsaw Orthopedic, Inc. Osteograft implant
US9636226B2 (en) 2013-03-15 2017-05-02 4Web, Inc. Traumatic bone fracture repair systems and methods
US9566169B2 (en) 2014-03-13 2017-02-14 DePuy Synthes Products, Inc. ACIS allograft designs
EP2995278A1 (en) * 2014-09-09 2016-03-16 Klinikum rechts der Isar der Technischen Universität München Medical/surgical implant
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
US10376385B2 (en) 2017-04-05 2019-08-13 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US11452608B2 (en) 2017-04-05 2022-09-27 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910627A1 (en) * 1979-03-17 1980-09-25 Schuett & Grundei Sanitaet Implant which can be used as replacement for spongy bones - is built up from tolerated fibres which are implanted in bone cut=out
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US5769897A (en) * 1991-12-13 1998-06-23 Haerle; Anton Synthetic bone
US5814084A (en) * 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5899939A (en) * 1998-01-21 1999-05-04 Osteotech, Inc. Bone-derived implant for load-supporting applications

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848601A (en) 1972-06-14 1974-11-19 G Ma Method for interbody fusion of the spine
US3849805A (en) 1972-11-01 1974-11-26 Attending Staff Ass Los Angele Bone induction in an alloplastic tray
US3892648A (en) 1974-04-16 1975-07-01 Us Navy Electrochemical deposition of bone
US3918100A (en) 1974-05-13 1975-11-11 Us Navy Sputtering of bone on prostheses
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
US4309777A (en) 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4501269A (en) 1981-12-11 1985-02-26 Washington State University Research Foundation, Inc. Process for fusing bone joints
CA1227002A (en) 1982-02-18 1987-09-22 Robert V. Kenna Bone prosthesis with porous coating
ATE31616T1 (en) 1983-10-20 1988-01-15 Oscobal Ag BONE REPLACEMENT MATERIAL BASED ON NATURAL BONES.
US4553273A (en) 1983-11-23 1985-11-19 Henry Ford Hospital Vertebral body prosthesis and spine stabilizing method
JPS6131163A (en) 1984-07-23 1986-02-13 京セラ株式会社 Ceramic living body prosthetic material and its production
FI75493C (en) 1985-05-08 1988-07-11 Materials Consultants Oy SJAELVARMERAT ABSORBERBART PURCHASING SYNTHESIS.
US4678470A (en) 1985-05-29 1987-07-07 American Hospital Supply Corporation Bone-grafting material
US5053049A (en) 1985-05-29 1991-10-01 Baxter International Flexible prostheses of predetermined shapes and process for making same
DD246028A1 (en) 1986-02-12 1987-05-27 Karl Marx Stadt Tech Hochschul CERAMIZED METAL IMPLANT
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
DE3711426A1 (en) 1987-04-04 1988-10-13 Mtu Muenchen Gmbh IMPLANT WITH BIOACTIVE COATING
JPS6485644A (en) 1987-09-28 1989-03-30 Asahi Optical Co Ltd Preparation of ceramics composite
DE68917947T2 (en) 1988-02-08 1995-03-16 Mitsubishi Chem Ind Ceramic implant and method for its manufacture.
US5192325A (en) 1988-02-08 1993-03-09 Mitsubishi Kasei Corporation Ceramic implant
US5458638A (en) 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant
US5895427A (en) 1989-07-06 1999-04-20 Sulzer Spine-Tech Inc. Method for spinal fixation
US5061286A (en) 1989-08-18 1991-10-29 Osteotech, Inc. Osteoprosthetic implant
US5290558A (en) * 1989-09-21 1994-03-01 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
US5055104A (en) 1989-11-06 1991-10-08 Surgical Dynamics, Inc. Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
FR2654625B1 (en) 1989-11-22 1992-02-21 Transphyto Sa PROCESS FOR MANUFACTURING A MATERIAL FOR OSTEOPLASTY FROM A NATURAL BONE TISSUE AND MATERIAL OBTAINED BY THIS PROCESS.
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US5263985A (en) 1990-08-14 1993-11-23 Pfizer Hospital Products Group, Inc. Bone growth stimulator
ES2076467T3 (en) 1990-10-31 1995-11-01 El Gendler FLEXIBLE MEMBRANES PRODUCED WITH ORGANIC BONE MATTER FOR THE REPAIR AND RECONSTRUCTION OF PARTS OF THE SKELETON.
SE469653B (en) 1992-01-13 1993-08-16 Lucocer Ab POROEST IMPLANT
US5211664A (en) 1992-01-14 1993-05-18 Forschungsinstitut, Davos Laboratorium Fur Experimentelle Chirugie Shell structure for bone replacement
US5531791A (en) 1993-07-23 1996-07-02 Bioscience Consultants Composition for repair of defects in osseous tissues, method of making, and prosthesis
US5507813A (en) 1993-12-09 1996-04-16 Osteotech, Inc. Shaped materials derived from elongate bone particles
US5797871A (en) 1994-08-19 1998-08-25 Lifenet Research Foundation Ultrasonic cleaning of allograft bone
US5556379A (en) 1994-08-19 1996-09-17 Lifenet Research Foundation Process for cleaning large bone grafts and bone grafts produced thereby
US5549699A (en) 1994-10-21 1996-08-27 Osteotech Of Virginia Bony fixation and support of a prosthesis
DE19504955A1 (en) 1995-02-15 1996-08-22 Merck Patent Gmbh Process for producing cancellous bone ceramic moldings
US5980252A (en) * 1995-05-08 1999-11-09 Samchukov; Mikhail L. Device and method for enhancing the shape, mass, and strength of alveolar and intramembranous bone
US6149688A (en) * 1995-06-07 2000-11-21 Surgical Dynamics, Inc. Artificial bone graft implant
US5728159A (en) 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
US5749916A (en) 1997-01-21 1998-05-12 Spinal Innovations Fusion implant
US6123731A (en) * 1998-02-06 2000-09-26 Osteotech, Inc. Osteoimplant and method for its manufacture
US6200347B1 (en) * 1999-01-05 2001-03-13 Lifenet Composite bone graft, method of making and using same
US6143030A (en) * 1999-03-26 2000-11-07 Bristol-Myers Squibb Co. Impaction allograft form and method of orthopaedic surgery using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910627A1 (en) * 1979-03-17 1980-09-25 Schuett & Grundei Sanitaet Implant which can be used as replacement for spongy bones - is built up from tolerated fibres which are implanted in bone cut=out
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US5769897A (en) * 1991-12-13 1998-06-23 Haerle; Anton Synthetic bone
US5814084A (en) * 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5899939A (en) * 1998-01-21 1999-05-04 Osteotech, Inc. Bone-derived implant for load-supporting applications

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635222B2 (en) 1993-07-22 2003-10-21 Clearant, Inc. Method of sterilizing products
US6652592B1 (en) 1997-10-27 2003-11-25 Regeneration Technologies, Inc. Segmentally demineralized bone implant
US7618460B2 (en) 2000-09-19 2009-11-17 Warsaw Orthopedic, Inc. Reinforced molded implant formed of cortical bone
WO2002024122A3 (en) * 2000-09-19 2002-07-25 Sdgi Holdings Inc Reinforced molded implant formed of cortical bone
US6761738B1 (en) 2000-09-19 2004-07-13 Sdgi Holdings, Inc. Reinforced molded implant formed of cortical bone
WO2002024122A2 (en) * 2000-09-19 2002-03-28 Sdgi Holdings, Inc. Reinforced molded implant formed of cortical bone
WO2002096324A3 (en) * 2001-05-29 2003-11-27 Tutogen Medical Gmbh Bone implant
US6696060B2 (en) 2001-06-14 2004-02-24 Clearant, Inc. Methods for sterilizing preparations of monoclonal immunoglobulins
US6749851B2 (en) 2001-08-31 2004-06-15 Clearant, Inc. Methods for sterilizing preparations of digestive enzymes
CN100428920C (en) * 2002-03-30 2008-10-29 斯恩蒂斯有限公司 Surgical implant
WO2013054057A1 (en) * 2011-10-14 2013-04-18 Arthroplastie Diffusion Intersomatic implant
FR2981262A1 (en) * 2011-10-14 2013-04-19 Pierre Roussouly INTERSOMATIC IMPLANT
US9918847B2 (en) 2011-10-14 2018-03-20 Adsm Intersomatic implant

Also Published As

Publication number Publication date
AU2005201A (en) 2001-07-16
DE60019643D1 (en) 2005-05-25
EP1244398B1 (en) 2005-04-20
EP1244398A1 (en) 2002-10-02
US6379385B1 (en) 2002-04-30
DE60019643T2 (en) 2006-03-02
ATE293413T1 (en) 2005-05-15

Similar Documents

Publication Publication Date Title
US6379385B1 (en) Implant of bone matter
CA2389630C (en) Implant consisting of bone material
CA2386396C (en) Implant of bone matter
US6143033A (en) Allogenic intervertebral implant
US6206923B1 (en) Flexible implant using partially demineralized bone
US6761738B1 (en) Reinforced molded implant formed of cortical bone
AU746307B2 (en) Osteogenic fusion device
US8246683B2 (en) Spinal implant
EP1437105B1 (en) Intervertebral fusion device
US6383221B1 (en) Method for forming an intervertebral implant
US7959683B2 (en) Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
US20020029084A1 (en) Bone implants with central chambers
US20060241763A1 (en) Multipiece bone implant
JP2007503924A (en) Multiple allograft implants
JP2004514533A (en) Bone formation fusion device
JP2004508888A (en) Bone formation fusion device
US10893953B2 (en) Side pocket spinal fusion cage
US20050015147A1 (en) Spinal implants
US20090012620A1 (en) Implantable Cervical Fusion Device
US9839524B2 (en) Modified, pliable, and compressible cortical bone for spinal fusions and other skeletal transplants
WO2002098329A1 (en) Biomedical graft for skeletal structures

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000983226

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000983226

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000983226

Country of ref document: EP