WO2001050749A2 - Method and system for transmitting and storing interactive device control data using horizontal overscan portion of a video signal - Google Patents

Method and system for transmitting and storing interactive device control data using horizontal overscan portion of a video signal Download PDF

Info

Publication number
WO2001050749A2
WO2001050749A2 PCT/US2000/034789 US0034789W WO0150749A2 WO 2001050749 A2 WO2001050749 A2 WO 2001050749A2 US 0034789 W US0034789 W US 0034789W WO 0150749 A2 WO0150749 A2 WO 0150749A2
Authority
WO
WIPO (PCT)
Prior art keywords
control data
interactive device
video signal
transmission session
data
Prior art date
Application number
PCT/US2000/034789
Other languages
French (fr)
Other versions
WO2001050749A3 (en
Inventor
Craig Ranta
Harjit Singh
Jeffrey Alexander
Original Assignee
Microsoft Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corporation filed Critical Microsoft Corporation
Priority to EP00993762A priority Critical patent/EP1243134B1/en
Priority to JP2001551003A priority patent/JP4883865B2/en
Priority to AT00993762T priority patent/ATE281738T1/en
Priority to AU29104/01A priority patent/AU2910401A/en
Priority to DE60015604T priority patent/DE60015604T2/en
Publication of WO2001050749A2 publication Critical patent/WO2001050749A2/en
Publication of WO2001050749A3 publication Critical patent/WO2001050749A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
    • H04N7/084Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division with signal insertion during the horizontal blanking interval only
    • H04N7/085Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division with signal insertion during the horizontal blanking interval only the inserted signal being digital
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H2200/00Computerized interactive toys, e.g. dolls

Definitions

  • the present invention relates to data communication systems and, more particularly, relates to encoding interactive device data in the horizontal overscan portion of a video signal and storing the data within an interactive device.
  • Interactive devices have become very popular with consumers.
  • an interactive device is an interactive toy, which is a toy that responds to input from an external data source, such as a user or a video signal.
  • Interactive toys are commonly implemented in the form of a child's doll, such as a teddy bear.
  • An interactive toy will usually be capable of speech and/or motion, collectively referred to as interactive toy behavior.
  • One example of an interactive toy responds to sound impulses, such as the speech of a user other noises in a room.
  • Another kind of interactive toy responds to data that is delivered by a data stream, such as data delivered via a video signal or over an Internet connection.
  • Transmitting behavior data via a video signal provides the advantage of enabling the coordination of a video program with a particular interactive device.
  • behavior data can be transmitted to a teddy bear interactive toy during a television program about the same teddy bear.
  • the behavior of the teddy bear interactive toy can be coordinated with events occurring in the televised program.
  • the teddy bear interactive toy might sing and dance in concert with characters in the televised program.
  • Another approach to transmitting behavior data via a video signal varied the brightness of portions of a video image.
  • This approach provided the benefit of being reproducible on video tape, as the behavior data was transmitted as part of the viewable video signal.
  • the brightness variations were associated with predetermined behavior data.
  • a decoder on the interactive toy would translate the brightness variations into behavior data. While this approach permitted the behavior data to be stored on video tape, the approach had other shortcomings. Most notably, the image which refreshes only 60 times per second, makes this approach unsuitable for most applications requiring significant data throughput rates.
  • One of the more recent implementations of behavior data transmission technology uses the horizontal overscan portion of a video signal to transmit data to an interactive toy.
  • the horizontal overscan portion of the video signal is reproducible on video tape.
  • the achievable data transmission rate is limited by the much faster horizontal refresh rate of the video.
  • the video signal can be decoded either by a separate decoder unit or by the toy itself to extract the behavior data. Once the data has been decoded, the data can be used to cause the toy to perform various speech or actions.
  • this technology is implemented by transmitting the interactive toy content data during a television show or throughout a program recorded on a video tape.
  • the system should be able to be deployed over any means of delivering a video signal, such as via television antenna, cable television, or video tape.
  • the system should be robust, such that the effects of data transmission errors can be minimized.
  • the present invention meets the needs described above by providing a method and system for decoding and storing control data transmitted in the horizontal overscan portion of a video signal.
  • An interactive device such as an interactive toy performs behavior defined by control data that can be encoded into a video signal that can be broadcast or played-back from video tape.
  • the interactive device is equipped with a non-volatile memory that permits the control data to be stored for performance subsequent to the transmission session (e.g., a televised program).
  • the interactive device also may be equipped to perform behavior during the transmission session.
  • the control data is delivered as a series of control data words that include genus codes and sequence codes. .
  • Genus codes identify the interactive device to which the data word is directed, so that a particular interactive device will respond (i.e., perform behavior) only in accordance with the control data words including the appropriate genus code. Because video transmissions are subject to video signal deterioration, error grading is used to ir ⁇ nize the effect of such signal deterioration. During a given control data transmission session, control data words will be repeated, so that an interactive device receives several control data words with the same sequence number. Based on the relative gradings, the interactive device will replace previously received control data words of lower quality than subsequently received data words having the same sequence number.
  • a method for delivering and storing interactive device control data using the horizontal overscan portion of a video signal.
  • the video signal is received during a transmission session, such as a television program or a video taped program.
  • Control data is extracted from the horizontal overscan portion of the video signal.
  • the interactive device performs behavior defined by the control data.
  • a system for delivering and storing interactive device control data using the horizontal overscan portion of a video signal.
  • a decoder extracts control data from a horizontal overscan portion of a video signal during a transmission session, such as a television program or a video taped program.
  • the interactive device performs the behavior defined by the control data.
  • the interactive device has a non-volatile memory for storing the control data during the transmission session for use by the interactive device after the transmission session.
  • the interactive device also has a controller for retrieving the control data from the non-volatile memory and for causing the interactive device to perform the behavior defined by the control data.
  • a method for delivering and storing interactive device control data via a video signal.
  • the video signal is received during a transmission session and control data is extracted from the video signal.
  • Behavior defined by the control data is performed during the transmission session and control data is stored in a nonvolatile memory in response to the receipt of a storage instruction within the extracted control data. After the transmission session ends, the behavior defined by the control data is performed.
  • the encoded video signal can also be passed along to the receiving interactive device without decoding.
  • the interactive device can store the received video signal data and then can transmit the stored data to yet another device, which can, in turn, either store or decode the data.
  • Fig. 1 is a block diagram of a control system for delivering control data to an interactive device via the horizontal overscan portion of a video signal.
  • Fig. 2 is a block diagram illustrating the primary functional components of an exemplary interactive device.
  • Fig. 3 is a block diagram depicting the primary components of an exemplary control data word.
  • Fig. 4 is a flow chart that illustrates an exemplary method for processing control data words during and after a transmission session.
  • Fig. 5 is a flow chart that illustrates an exemplary method for storing control data words that are extracted from an encoded video signal and for performing behavior defined therein.
  • An exemplary embodiment of the invention is a system and method for decoding and storing control data received via the horizontal overscan area of a video signal.
  • a method and system for encoding control data into the horizontal overscan area of a video signal is provided in a co-pending U.S. patent application, Serial No. 08/885,385, which is a continuation-in-part of U.S. patent application Serial No. 08,795,710. Both of these applications are assigned to the Assignee of the present application, Microsoft Corporation, and both applications are hereby incorporated by reference.
  • control data also called behavior data
  • the present invention may be deployed in a wireless or hard-wired communication environment that includes an interactive device, such as an interactive toy, and a decoder that extracts control data from a video signal and provides it to the interactive device.
  • the interactive device may include a controller and several electro-mechanical output devices, such as servomotors, voice synthesizer, and visual devices, such as light bulbs or LEDs.
  • the controller receives control data from the decoder and controls the output devices in accordance with the control data received from the decoder.
  • the controller also can store the received control data in a memory that is also part of the interactive device.
  • Control data can be transmitted from the decoder to the controller by many well-known means of data transmission.
  • the decoder has an infrared transmitter and the interactive device has an infrared receiver.
  • the control data can be transmitted from the transmitter to the receiver in discrete data words over a short distance.
  • the decoder has a surface (or base station) upon which the interactive device can be placed to minimize the distance between the transmitter and the receiver.
  • Control data that is encoded into the video signal may include noise or other erroneous data.
  • the controller can store received control data in association with a sequence code. During a particular transmission period (e.g., during a television program), the controller may receive repeated transmissions of the same control data word. Identical control data words have the same sequence number. The controller may replace a previously stored data word with a more recently received data word if the more recent data word has fewer errors in the control data contained therein. A well known grading procedure can be used to determine the quality grade (i.e., number of errors) of a particular data word. When each data word is stored in memory, the grade associated with the word can also be stored in memory. By comparing the quality grade of a stored data word with that of a recently received data word, the controller can replace lower quality data words with higher quality data words.
  • Fig. 1 illustrates an exemplary environment for embodiments of the present invention.
  • the depicted environment may be operated as a learning and entertainment system for a child.
  • the environment includes a control system 10 that provides control data to an interactive device, such as interactive toy 100.
  • An exemplary control system 10 includes a video signal source 102, a decoder/base station 104, and a display device, such as television 106.
  • the control system 10 transmits control data to the interactive toy 100 via decoder 104.
  • the decoder 104 interfaces with the audio/video signal source 102 and the television 106 through a standard video interface. Over this standard video interface, the decoder 104 receives a video signal encoded with control data (encoded video) from the video signal source 102.
  • the decoder 104 extracts the control data from the encoded video signal, and then transfers the control data to the interactive toy 100.
  • the control system may also have a video tape player 108.
  • the video tape player 108 can also provide control data that is stored on a video tape played by the video tape player.
  • the video tape player 108 can transmit an encoded video signal to the decoder 104 over a video out line 110 that can be directly connected to the decoder.
  • control data may be provided from either the video signal source 102 or the video tape player 108. This is advantageous, because it is desirable to provide control data both through televised programs (via the video signal source 102) and through taped programs (via the video tape player 108).
  • control data is provided via the video signal source 102, the encoded video signal will simply pass through the video tape player 108.
  • the video signal will be passed through the decoder 104 to the television 106, which will present the encoded video signal in the conventional manner.
  • a user can observe the video presentation on the television 106 while the decoder 104 transmits control data to the interactive toy 100.
  • the reception of the control data may cause the interactive toy 100 to move and talk as though it is a character in the video program presented on the television 106.
  • the decoder 104 receives the encoded video signal, which is a standard video signal that has been modified to include digital information in the horizontal overscan intervals of the scan lines, which are not displayed on the television 106.
  • the television 106 can receive and display the encoded video signal without modification.
  • the decoder 104 only needs to extract the control data from the encoded video signal and transmit the control data to the interactive toy 100.
  • the encoded signal may be delivered by another data transmission means, such as via a computer (not shown).
  • the decoder 104 could receive encoded data from the computer during a transmission session and could extract the control data. The decoder 104 could then pass the control data along to the interactive toy 100 which could store the control data and perform the behavior defined by the control data during or after the transmission session.
  • a transmission session may be, for example, the period during which a particular computer application is executing.
  • FIG. 2 is a block diagram illustrating the primary functional components of an exemplary interactive device 200.
  • the interactive device 200 receives control data in the form of a series of data words from the decoder 208 by way of infrared receiver 206.
  • the infrared receiver 206 then passes the control data to the controller 202.
  • the controller 202 can store the control data in memory 204 or can cause the interactive device 200 to perform the behavior defined by the control data by controlling electro-mechanical devices 210-214.
  • the controller 202 can retrieve control data from memory 204 and cause the interactive device 200 to perform the behavior defined by the control data.
  • the controller 202 can cause the interactive device 200 to perform the behavior defined by the control data in real-time (i.e., as it is being received), without storing the control data in the memory 204.
  • the decoder 208 could transmit control data by a means other than the described infrared signal.
  • the control data could be transmitted by a radio frequency (RF) signal, whereby the decoder 208 and the interactive device 200 could be separated by a significant distance during transmission of control data.
  • the decoder may be implemented as an integral part of the interactive device 200.
  • the encoded video signal can also be passed along to the receiving interactive device without decoding. The interactive device of this embodiment can store the received video signal data and then can transmit the stored data to yet another device, which can, in tum, either store or decode the data.
  • the electro-mechanical devices 210-214 are merely examples of devices that could be incorporated into an interactive device.
  • the controller 202 may run a motor 210 to cause an interactive toy's limb to move.
  • the controller 202 may provide speech data to drive a speech synthesizer to produce audio output through a speaker (not shown) or may turn on a light 214 or other visual display device.
  • These devices are preferably controlled to coordinate the behavior of the interactive device 200 with a televised program or to teach the interactive device behavior that can be performed subsequent to the televised program.
  • the period during which control data is received by the interactive device 200 (whether via a broadcast or via video tape playback) is referred to as the transmission session.
  • an exemplary embodiment of the interactive device 200 is equipped with a non-volatile memory 204.
  • the memory 204 permits the storage of control data that can control the behavior of the interactive device 200 even after the encoded video signal stops providing control data.
  • the interactive device 200 can be an interactive toy, but could also be implemented as any other device that is capable of receiving and processing control data.
  • An example of another interactive device is an electronic coupon which is described and claimed in a co-pending application filed on December 31, 1999 with U.S. patent application Serial No. assigned to Microsoft Corporation. This co-pending application has been assigned Attorney Docket No. 13237-2560 and is hereby incorporated by reference.
  • Fig. 3 is a block diagram that illustrates the primary components of an exemplary control data word 300.
  • Data word 300 includes three main components, a genus code 302, a sequence code 304, and control data 306.
  • the genus code is 16 bits in length
  • the sequence code is 8 bits in length
  • the control data is 64 bits in length.
  • the genus code 302 is used to identify the interactive device to which the control data 306 is directed.
  • the genus code 302 enables the control system 10 (Fig. 1) to avert a situation in which an interactive device receives and performs behavior that was intended for another interactive device. Additionally, use of the genus code 302 permits the receipt of control data by more than one interactive device during the same transmission session, without delivering control data to the wrong interactive device.
  • a video program may involve more than one character, each represented by a separate interactive toy. A user can teach each interactive toy new and separate behavior during the same video program, because each interactive toy will receive only the control data with the proper genus code and will ignore the control data with a different genus code.
  • Genus code filtering can be done by the decoder 208 (Fig. 2) or by the controller 202 (Fig. 2) of the interactive device 200 (Fig. 2).
  • the sequence code 304 is used to identify control codes delivered to the interactive device during a transmission session. Each unique control code word that is delivered during a transmission session has a unique sequence code 304.
  • the sequence code is useful primarily for two reasons. First, the control data can be ordered in memory, based on the sequence code of the control data word. When the interactive device performs the behavior defined by the control codes in memory, the codes can be performed in order. Thus, the performed behavior can be serialized, such that each stored control word is performed in a particular order. Of course, the controller can also cause the control data to be performed in random order.
  • the sequence code enables the nrinimization of the effects of data errors. Because video signal deterioration can cause the introduction of data errors into the control data 306 during transmission, a method for reducing the effects of such errors is provided in an exemplary embodiment of the present invention.
  • the controller receives a control data word 306, the controller analyzes the control data to identify errors. This analysis can be any one of a number of well known means for identifying errors in transmitted data.
  • the control data might include a checksum in a predefined location that can be compared against the received control data to determine whether the control data contains an error.
  • the controller can then assign the control data word 300 an error grade, that reflects the number or significance of errors identified in the control data 306.
  • the error grade can be stored in memory in association with the control data word 300.
  • the quality of the stored control data words can be maximized by repeating the transmission of control data words having the same sequence number.
  • the controller receives a control data word 300 having a new sequence number, then the controller simply saves the data word in memory.
  • the controller may replace the previously stored data word with the newly received data word.
  • the controller generates an error grade for the newly received data word and compares the error grade to the error grade that has been stored in association with the previously stored data word.
  • the controller will replace the previously stored data word with the newly received data word in memory.
  • the error grade for the newly received data word will be stored in association with the newly received data word in memory.
  • the control data 306 component of the control data word 300 can include various kinds of data and can be any length suitable for the intended interactive device. Most importantly, it contains the control data that defines the behavior to be performed by the interactive device. However, it can also contain other data, such as the checksum value described above. In an alternative embodiment, the control data 306 component also can include an instruction as to whether the data word should be stored in memory or not stored in memory. In another alternative embodiment, the control data 306 component also can include an instruction as to whether the behavior defined by the control data in the data word should be performed in real-time (i.e., during the transmission session). Those skilled in the art will appreciate that the control data word can be formatted in various ways to provide control data to an interactive device.
  • Fig. 4 is a flow chart that illustrates an exemplary method for processing control data words during and after a transmission session.
  • the method starts at step 400 and proceeds to step 402, wherein the transmission session begins. Normally, this will happen when a television show is broadcast or a video tape is played-back that includes control data encoded within the video signal.
  • the method proceeds to step 404, in which the interactive device enters a receive/perform mode. In this mode, an exemplary interactive device is enabled to receive and store control data. In an alternative embodiment, the interactive device is enabled to perform the behavior defined by the control data in real-time.
  • the method then proceeds to step 406 wherein the transmission session ends. Typically, this will occur when the television program or video tape program is over or when the transmission of control data is terminated.
  • step 408 the interactive device switches to perform-only mode.
  • the interactive device In perform only mode, the interactive device is no longer receiving control data, but simply performs the behavior defined by the control data stored in the interactive device's memory.
  • the interactive device can be switched between Receive/Perform mode and Perform-only mode in various ways.
  • the interactive device could be equipped with a switch that the user can operate to select between these modes.
  • the interactive device may be programmed to automatically select an appropriate mode. For example, if the interactive device is powered-up and does not detect a control data transmission at its infrared receiver, then the interactive device may automatically select Perform-only mode. If, on the other hand, the interactive device detects the transmission of control data, then the interactive device may automatically select Receive ⁇ Perform mode.
  • step 404 the Receive/Perform mode
  • step 404 the Receive/Perform mode
  • Fig. 5 is a flow chart that illustrates an exemplary method for storing control data words that are extracted from an encoded video signal.
  • the method starts at step 500 and proceeds to step 502 in which a control data word is received from the decoder.
  • the method then proceeds to step 504 and a determination is made as to whether the control data word includes a genus code corresponding to the interactive device. If the genus code does not match that of the interactive device, then the genus code is meant for another interactive device, and the method branches back to step 500. Alternatively, if the genus code matches that of the interactive device, then the method branches along the "Yes" path to decision block 506.
  • decision block 506 a determination is made as to whether the data word includes a storage instruction. If the data word does not include a storage instruction, then the method branches to decision block 518. On the other hand, if the data word includes a storage instruction, then the method branches to step 508.
  • the sequence code for the received data word is determined.
  • the method then proceeds to step 510 and the quality grade is determined for the data word.
  • the method branches to decision block 512 and a determination is made as to whether a data word with the same sequence code has been previously stored in memory. If one has not been, then the method branches to step 516 and the data word is stored in memory with its sequence code and its quality grade.
  • the method branches to decision block 514, wherein a determination is made as to whether the quality grade of the current data word is greater (i.e., better) than the quality grade of the previously stored data word. If not, then the method branches back to step 500. On the other hand, if the quality grade of the current data word is greater than the quality grade of the previously stored data word, then the current data word is stored in memory with its sequence code and its quality grade. Notably, the current data word will replace the previously received data word, having the same sequence number. Once the data word is stored in memory in step 516, then the method proceeds to step 500.
  • decision block 506 if the received data word does not include a storage instruction, then the method branches to decision block 518.
  • decision block 518 a determination is made as to whether the received data word includes a performance instruction. If it does, then the method branches to step 520 and the interactive device performs the behavior defined by the received control data word.
  • the invention thus provides a method and system for decoding and storing encoded control data delivered via the horizontal overscan area of a video signal.
  • An interactive device such as an interactive toy performs behavior defined by control data that can be encoded into a video signal that can be broadcast or played-back from video tape.
  • the interactive device is equipped with a non-volatile memory that permits the control data to be stored for performance subsequent to the transmission session (e.g., a televised program).
  • the interactive device also may be equipped to perform behavior during the transmission session.
  • the control data is delivered as a series of control data words that include genus codes and sequence codes.
  • Genus codes identify the interactive device to which the data word is directed, so that a particular interactive device will respond (i.e., perform behavior) only in accordance with the control data words including the appropriate genus code. Because video transmissions are subject to video signal deterioration, error grading is used to minimize the effect of such signal deterioration. During a given control data transmission session, control data words will be repeated, so that an interactive device receives several control data words with the same sequence number. Based on the relative gradings, the interactive device will replace previously received control data words of lower quality than subsequently received data words having the same sequence number.

Abstract

A method and system for decoding and storing encoded control data delivered via the horizontal overscan area of a video signal. An interactive device such as an interactive toy performs behavior defined by control data that can be encoded into a video signal that can be broadcast or played-back from video tape. The interactive device is equipped with a non-volatile memory that permits the control data to be stored for performance subsequent to the transmission session (e.g., a televised program). The interactive device also may be equipped to perform behavior during the transmission session. The control data is delivered as a series of control data words that include genus codes and sequence codes. Genus codes identify the interactive device to which the data word is directed, so that a particular interactive device will respond (i.e., perform behavior) only in accordance with the control data words including the appropriate genus code. Because video transmissions are subject to video signal deterioration, error grading is used to minimize the effect of such signal deterioration. During a given control data transmission session, control data words will be repeated, so that an interactive device receives several control data words with the same sequence number. Based on the relative gradings, the interactive device will replace previously received control data words of lower quality than subsequently received data words having the same sequence number.

Description

METHOD AND SYSTEM FOR DOWNLOADING AND STORING INTERACTIVE DEVICE CONTENT USING THE HORIZONTAL OVERSCAN PORTION OF A VIDEO SIGNAL
TECHNICAL FIELD The present invention relates to data communication systems and, more particularly, relates to encoding interactive device data in the horizontal overscan portion of a video signal and storing the data within an interactive device.
BACKGROUND OF THE INVENTION
Interactive devices have become very popular with consumers. One example of an interactive device is an interactive toy, which is a toy that responds to input from an external data source, such as a user or a video signal. Interactive toys are commonly implemented in the form of a child's doll, such as a teddy bear. An interactive toy will usually be capable of speech and/or motion, collectively referred to as interactive toy behavior. One example of an interactive toy responds to sound impulses, such as the speech of a user other noises in a room. Another kind of interactive toy responds to data that is delivered by a data stream, such as data delivered via a video signal or over an Internet connection.
Transmitting behavior data via a video signal provides the advantage of enabling the coordination of a video program with a particular interactive device. -For example, behavior data can be transmitted to a teddy bear interactive toy during a television program about the same teddy bear. Thus, the behavior of the teddy bear interactive toy can be coordinated with events occurring in the televised program. For example, the teddy bear interactive toy might sing and dance in concert with characters in the televised program.
Providing interactive data to an interactive toy via a video signal has been implemented in various ways. In an early implementation of such an interactive toy, behavior data was transmitted to the interactive toy in a portion of a video signal that was not viewable by the user watching the program. The interactive toy received the data by monitoring the video signal and extracting the behavior data from the non-viewable portion. Unfortunately, in this implementation the behavior data was transmitted in a portion of the signal that was not reproduced when the video transmission was stored on video tape. Thus, the behavior data could only be transmitted via a television broadcast and could not be transmitted via a video taped program. This deficiency limited the market for such interactive toys, as it is desirable to provide behavior data on video tapes that can be sold in conjunction with the interactive toy.
Another approach to transmitting behavior data via a video signal varied the brightness of portions of a video image. This approach provided the benefit of being reproducible on video tape, as the behavior data was transmitted as part of the viewable video signal. The brightness variations were associated with predetermined behavior data. When the interactive toy was placed directly in front of the television screen displaying the video image, a decoder on the interactive toy would translate the brightness variations into behavior data. While this approach permitted the behavior data to be stored on video tape, the approach had other shortcomings. Most notably, the image which refreshes only 60 times per second, makes this approach unsuitable for most applications requiring significant data throughput rates.
One of the more recent implementations of behavior data transmission technology uses the horizontal overscan portion of a video signal to transmit data to an interactive toy. Advantageously, the horizontal overscan portion of the video signal is reproducible on video tape. The achievable data transmission rate is limited by the much faster horizontal refresh rate of the video. The video signal can be decoded either by a separate decoder unit or by the toy itself to extract the behavior data. Once the data has been decoded, the data can be used to cause the toy to perform various speech or actions. Usually, this technology is implemented by transmitting the interactive toy content data during a television show or throughout a program recorded on a video tape.
Unfortunately, interactive toys existing in the prior art were unable to retain the ability to perform the actions defined by the extracted data. That is, once the data transmission was ceased (i.e., the television show or video taped program ended), then the toy lost its ability to perform the actions defined by the interactive toy content data. This problem exists for two reasons: 1) prior art interactive toys do not include a programmable nonvolatile memory; and 2) prior art video data encoding systems did not provide enough bandwidth to transfer enough data to support such behavior retention.
Therefore, there is a need for a system capable of delivering interactive toy content data to an interactive toy at a high data throughput rate and for enabling the toy to retain the behavior defined in the interactive toy content data. The system should be able to be deployed over any means of delivering a video signal, such as via television antenna, cable television, or video tape. The system should be robust, such that the effects of data transmission errors can be minimized.
SUMMARY OF THE INVENTION The present invention meets the needs described above by providing a method and system for decoding and storing control data transmitted in the horizontal overscan portion of a video signal. An interactive device such as an interactive toy performs behavior defined by control data that can be encoded into a video signal that can be broadcast or played-back from video tape. The interactive device is equipped with a non-volatile memory that permits the control data to be stored for performance subsequent to the transmission session (e.g., a televised program). The interactive device also may be equipped to perform behavior during the transmission session. The control data is delivered as a series of control data words that include genus codes and sequence codes. . Genus codes identify the interactive device to which the data word is directed, so that a particular interactive device will respond (i.e., perform behavior) only in accordance with the control data words including the appropriate genus code. Because video transmissions are subject to video signal deterioration, error grading is used to irώώnize the effect of such signal deterioration. During a given control data transmission session, control data words will be repeated, so that an interactive device receives several control data words with the same sequence number. Based on the relative gradings, the interactive device will replace previously received control data words of lower quality than subsequently received data words having the same sequence number.
In one aspect of the invention, a method is provided for delivering and storing interactive device control data using the horizontal overscan portion of a video signal. The video signal is received during a transmission session, such as a television program or a video taped program. Control data is extracted from the horizontal overscan portion of the video signal. After the transmission session has ended, the interactive device performs behavior defined by the control data.
In another aspect of the invention, a system is provided for delivering and storing interactive device control data using the horizontal overscan portion of a video signal. A decoder extracts control data from a horizontal overscan portion of a video signal during a transmission session, such as a television program or a video taped program. The interactive device performs the behavior defined by the control data. The interactive device has a non-volatile memory for storing the control data during the transmission session for use by the interactive device after the transmission session. The interactive device also has a controller for retrieving the control data from the non-volatile memory and for causing the interactive device to perform the behavior defined by the control data.
In yet another aspect of the invention a method is provided for delivering and storing interactive device control data via a video signal. The video signal is received during a transmission session and control data is extracted from the video signal. Behavior defined by the control data is performed during the transmission session and control data is stored in a nonvolatile memory in response to the receipt of a storage instruction within the extracted control data. After the transmission session ends, the behavior defined by the control data is performed.
In an alternative embodiment, the encoded video signal can also be passed along to the receiving interactive device without decoding. The interactive device can store the received video signal data and then can transmit the stored data to yet another device, which can, in turn, either store or decode the data.
That the invention improves over the drawbacks of the prior art and accomplishes these advantages will become apparent from the following detailed description of the exemplary embodiments and the appended drawings and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of a control system for delivering control data to an interactive device via the horizontal overscan portion of a video signal. Fig. 2 is a block diagram illustrating the primary functional components of an exemplary interactive device.
Fig. 3 is a block diagram depicting the primary components of an exemplary control data word.
Fig. 4 is a flow chart that illustrates an exemplary method for processing control data words during and after a transmission session.
Fig. 5 is a flow chart that illustrates an exemplary method for storing control data words that are extracted from an encoded video signal and for performing behavior defined therein.
DETAILED DESCRIPTION
An exemplary embodiment of the invention is a system and method for decoding and storing control data received via the horizontal overscan area of a video signal. A method and system for encoding control data into the horizontal overscan area of a video signal is provided in a co-pending U.S. patent application, Serial No. 08/885,385, which is a continuation-in-part of U.S. patent application Serial No. 08,795,710. Both of these applications are assigned to the Assignee of the present application, Microsoft Corporation, and both applications are hereby incorporated by reference. For the purposes of the following discussion, it is assumed that control data (also called behavior data) has been encoded into the horizontal overscan portion of a video signal.
The present invention may be deployed in a wireless or hard-wired communication environment that includes an interactive device, such as an interactive toy, and a decoder that extracts control data from a video signal and provides it to the interactive device. The interactive device may include a controller and several electro-mechanical output devices, such as servomotors, voice synthesizer, and visual devices, such as light bulbs or LEDs. The controller receives control data from the decoder and controls the output devices in accordance with the control data received from the decoder. The controller also can store the received control data in a memory that is also part of the interactive device.
Control data can be transmitted from the decoder to the controller by many well-known means of data transmission. In an exemplary embodiment, the decoder has an infrared transmitter and the interactive device has an infrared receiver. The control data can be transmitted from the transmitter to the receiver in discrete data words over a short distance. Preferably, the decoder has a surface (or base station) upon which the interactive device can be placed to minimize the distance between the transmitter and the receiver.
Control data that is encoded into the video signal may include noise or other erroneous data. In an exemplary embodiment, the controller can store received control data in association with a sequence code. During a particular transmission period (e.g., during a television program), the controller may receive repeated transmissions of the same control data word. Identical control data words have the same sequence number. The controller may replace a previously stored data word with a more recently received data word if the more recent data word has fewer errors in the control data contained therein. A well known grading procedure can be used to determine the quality grade (i.e., number of errors) of a particular data word. When each data word is stored in memory, the grade associated with the word can also be stored in memory. By comparing the quality grade of a stored data word with that of a recently received data word, the controller can replace lower quality data words with higher quality data words.
An Exemplary Interactive Device Control System Referring now to the drawings, in which like numerals represent like elements throughout the several figures, aspects of the present invention and exemplary operating environments will be described.
Fig. 1 illustrates an exemplary environment for embodiments of the present invention. The depicted environment may be operated as a learning and entertainment system for a child. The environment includes a control system 10 that provides control data to an interactive device, such as interactive toy 100. An exemplary control system 10 includes a video signal source 102, a decoder/base station 104, and a display device, such as television 106. The control system 10 transmits control data to the interactive toy 100 via decoder 104. To accomplish this task, the decoder 104 interfaces with the audio/video signal source 102 and the television 106 through a standard video interface. Over this standard video interface, the decoder 104 receives a video signal encoded with control data (encoded video) from the video signal source 102. The decoder 104 extracts the control data from the encoded video signal, and then transfers the control data to the interactive toy 100.
The control system may also have a video tape player 108. The video tape player 108 can also provide control data that is stored on a video tape played by the video tape player. The video tape player 108 can transmit an encoded video signal to the decoder 104 over a video out line 110 that can be directly connected to the decoder. When the control system is configured with a video tape player 108, as depicted, control data may be provided from either the video signal source 102 or the video tape player 108. This is advantageous, because it is desirable to provide control data both through televised programs (via the video signal source 102) and through taped programs (via the video tape player 108). When control data is provided via the video signal source 102, the encoded video signal will simply pass through the video tape player 108.
In either case, the video signal will be passed through the decoder 104 to the television 106, which will present the encoded video signal in the conventional manner. Thus, a user can observe the video presentation on the television 106 while the decoder 104 transmits control data to the interactive toy 100. The reception of the control data may cause the interactive toy 100 to move and talk as though it is a character in the video program presented on the television 106.
There is no need to modify the encoded video signal before passing it to the television 106. Typically, the decoder 104 receives the encoded video signal, which is a standard video signal that has been modified to include digital information in the horizontal overscan intervals of the scan lines, which are not displayed on the television 106. Thus, the television 106 can receive and display the encoded video signal without modification. The decoder 104 only needs to extract the control data from the encoded video signal and transmit the control data to the interactive toy 100.
In an alternative embodiment, the encoded signal may be delivered by another data transmission means, such as via a computer (not shown). In this embodiment, the decoder 104 could receive encoded data from the computer during a transmission session and could extract the control data. The decoder 104 could then pass the control data along to the interactive toy 100 which could store the control data and perform the behavior defined by the control data during or after the transmission session. A transmission session may be, for example, the period during which a particular computer application is executing.
An Exemplary Interactive Device FIG. 2 is a block diagram illustrating the primary functional components of an exemplary interactive device 200. As described in connection with Fig. 1, the interactive device 200 receives control data in the form of a series of data words from the decoder 208 by way of infrared receiver 206. The infrared receiver 206 then passes the control data to the controller 202. The controller 202 can store the control data in memory 204 or can cause the interactive device 200 to perform the behavior defined by the control data by controlling electro-mechanical devices 210-214. Alternatively, the controller 202 can retrieve control data from memory 204 and cause the interactive device 200 to perform the behavior defined by the control data. In another alternative embodiment, the controller 202 can cause the interactive device 200 to perform the behavior defined by the control data in real-time (i.e., as it is being received), without storing the control data in the memory 204.
In an alternative embodiment, the decoder 208 could transmit control data by a means other than the described infrared signal. For example, the control data could be transmitted by a radio frequency (RF) signal, whereby the decoder 208 and the interactive device 200 could be separated by a significant distance during transmission of control data. In another alternative embodiment, the decoder may be implemented as an integral part of the interactive device 200. In yet another alternative embodiment, the encoded video signal can also be passed along to the receiving interactive device without decoding. The interactive device of this embodiment can store the received video signal data and then can transmit the stored data to yet another device, which can, in tum, either store or decode the data. It will be appreciated that the electro-mechanical devices 210-214 are merely examples of devices that could be incorporated into an interactive device. In response to received control data, the controller 202 may run a motor 210 to cause an interactive toy's limb to move. Alternatively, the controller 202 may provide speech data to drive a speech synthesizer to produce audio output through a speaker (not shown) or may turn on a light 214 or other visual display device. These devices are preferably controlled to coordinate the behavior of the interactive device 200 with a televised program or to teach the interactive device behavior that can be performed subsequent to the televised program. The period during which control data is received by the interactive device 200 (whether via a broadcast or via video tape playback) is referred to as the transmission session.
Importantly, an exemplary embodiment of the interactive device 200 is equipped with a non-volatile memory 204. The memory 204 permits the storage of control data that can control the behavior of the interactive device 200 even after the encoded video signal stops providing control data. Generally, this means that the behavior of the interactive device 200 persists despite the termination of control data flow into the infrared receiver 206. More practically, this means that an interactive device can be programmed to exhibit behavior that is "learned" during the transmission session of an encoded video signal, long after the transmission session has ended. Accordingly, in an exemplary embodiment of the interactive device 200, the device could perform behavior defined by the control data during and/or after the transmission session.
It will be appreciated by those skilled in the art that the interactive device 200 can be an interactive toy, but could also be implemented as any other device that is capable of receiving and processing control data. An example of another interactive device is an electronic coupon which is described and claimed in a co-pending application filed on December 31, 1999 with U.S. patent application Serial No. assigned to Microsoft Corporation. This co-pending application has been assigned Attorney Docket No. 13237-2560 and is hereby incorporated by reference.
An Exemplary Control Data Word
Fig. 3 is a block diagram that illustrates the primary components of an exemplary control data word 300. Data word 300 includes three main components, a genus code 302, a sequence code 304, and control data 306.
In an exemplary embodiment, the genus code is 16 bits in length, the sequence code is 8 bits in length, and the control data is 64 bits in length.
The genus code 302 is used to identify the interactive device to which the control data 306 is directed. The genus code 302 enables the control system 10 (Fig. 1) to avert a situation in which an interactive device receives and performs behavior that was intended for another interactive device. Additionally, use of the genus code 302 permits the receipt of control data by more than one interactive device during the same transmission session, without delivering control data to the wrong interactive device. For example, a video program may involve more than one character, each represented by a separate interactive toy. A user can teach each interactive toy new and separate behavior during the same video program, because each interactive toy will receive only the control data with the proper genus code and will ignore the control data with a different genus code. Genus code filtering can be done by the decoder 208 (Fig. 2) or by the controller 202 (Fig. 2) of the interactive device 200 (Fig. 2).
The sequence code 304 is used to identify control codes delivered to the interactive device during a transmission session. Each unique control code word that is delivered during a transmission session has a unique sequence code 304. The sequence code is useful primarily for two reasons. First, the control data can be ordered in memory, based on the sequence code of the control data word. When the interactive device performs the behavior defined by the control codes in memory, the codes can be performed in order. Thus, the performed behavior can be serialized, such that each stored control word is performed in a particular order. Of course, the controller can also cause the control data to be performed in random order.
Second, the sequence code enables the nrinimization of the effects of data errors. Because video signal deterioration can cause the introduction of data errors into the control data 306 during transmission, a method for reducing the effects of such errors is provided in an exemplary embodiment of the present invention. When the controller receives a control data word 306, the controller analyzes the control data to identify errors. This analysis can be any one of a number of well known means for identifying errors in transmitted data. For example, the control data might include a checksum in a predefined location that can be compared against the received control data to determine whether the control data contains an error. The controller can then assign the control data word 300 an error grade, that reflects the number or significance of errors identified in the control data 306. The error grade can be stored in memory in association with the control data word 300.
The quality of the stored control data words can be maximized by repeating the transmission of control data words having the same sequence number. When the controller receives a control data word 300 having a new sequence number, then the controller simply saves the data word in memory. When the controller receives a data word having a sequence number matching another data word that is already stored in memory, then the controller may replace the previously stored data word with the newly received data word. To make this determination, the controller generates an error grade for the newly received data word and compares the error grade to the error grade that has been stored in association with the previously stored data word. If the error grade for the newly received data word is greater (i.e., fewer or less significant errors in the control data) than that of the previously stored data word, then the controller will replace the previously stored data word with the newly received data word in memory. The error grade for the newly received data word will be stored in association with the newly received data word in memory.
The control data 306 component of the control data word 300 can include various kinds of data and can be any length suitable for the intended interactive device. Most importantly, it contains the control data that defines the behavior to be performed by the interactive device. However, it can also contain other data, such as the checksum value described above. In an alternative embodiment, the control data 306 component also can include an instruction as to whether the data word should be stored in memory or not stored in memory. In another alternative embodiment, the control data 306 component also can include an instruction as to whether the behavior defined by the control data in the data word should be performed in real-time (i.e., during the transmission session). Those skilled in the art will appreciate that the control data word can be formatted in various ways to provide control data to an interactive device.
An Exemplary Method for Processing Control Data
Fig. 4 is a flow chart that illustrates an exemplary method for processing control data words during and after a transmission session. The method starts at step 400 and proceeds to step 402, wherein the transmission session begins. Normally, this will happen when a television show is broadcast or a video tape is played-back that includes control data encoded within the video signal. The method proceeds to step 404, in which the interactive device enters a receive/perform mode. In this mode, an exemplary interactive device is enabled to receive and store control data. In an alternative embodiment, the interactive device is enabled to perform the behavior defined by the control data in real-time. The method then proceeds to step 406 wherein the transmission session ends. Typically, this will occur when the television program or video tape program is over or when the transmission of control data is terminated. The method then proceeds to step 408, wherein the interactive device switches to perform-only mode. In perform only mode, the interactive device is no longer receiving control data, but simply performs the behavior defined by the control data stored in the interactive device's memory. It should be appreciated that the interactive device can be switched between Receive/Perform mode and Perform-only mode in various ways. In an exemplary embodiment, the interactive device could be equipped with a switch that the user can operate to select between these modes. Alternatively, the interactive device may be programmed to automatically select an appropriate mode. For example, if the interactive device is powered-up and does not detect a control data transmission at its infrared receiver, then the interactive device may automatically select Perform-only mode. If, on the other hand, the interactive device detects the transmission of control data, then the interactive device may automatically select Receive\Perform mode.
A more detailed description of step 404, the Receive/Perform mode, is provided below in connection with Fig. 5. An Exemplary Method for Storing Control Data
Fig. 5 is a flow chart that illustrates an exemplary method for storing control data words that are extracted from an encoded video signal. The method starts at step 500 and proceeds to step 502 in which a control data word is received from the decoder. The method then proceeds to step 504 and a determination is made as to whether the control data word includes a genus code corresponding to the interactive device. If the genus code does not match that of the interactive device, then the genus code is meant for another interactive device, and the method branches back to step 500. Alternatively, if the genus code matches that of the interactive device, then the method branches along the "Yes" path to decision block 506. At decision block 506, a determination is made as to whether the data word includes a storage instruction. If the data word does not include a storage instruction, then the method branches to decision block 518. On the other hand, if the data word includes a storage instruction, then the method branches to step 508.
At step 508, the sequence code for the received data word is determined. The method then proceeds to step 510 and the quality grade is determined for the data word. Those skilled in the art will appreciate that various well known methods exist for determining and grading the quality of data that has been transmitted. Once a quality grade has been determined for the data word, the method branches to decision block 512 and a determination is made as to whether a data word with the same sequence code has been previously stored in memory. If one has not been, then the method branches to step 516 and the data word is stored in memory with its sequence code and its quality grade. On the other hand, if a data word with the same sequence code has been previously stored in memory the method branches to decision block 514, wherein a determination is made as to whether the quality grade of the current data word is greater (i.e., better) than the quality grade of the previously stored data word. If not, then the method branches back to step 500. On the other hand, if the quality grade of the current data word is greater than the quality grade of the previously stored data word, then the current data word is stored in memory with its sequence code and its quality grade. Notably, the current data word will replace the previously received data word, having the same sequence number. Once the data word is stored in memory in step 516, then the method proceeds to step 500.
Returning now to decision block 506, if the received data word does not include a storage instruction, then the method branches to decision block 518. At decision block 518, a determination is made as to whether the received data word includes a performance instruction. If it does, then the method branches to step 520 and the interactive device performs the behavior defined by the received control data word.
The invention thus provides a method and system for decoding and storing encoded control data delivered via the horizontal overscan area of a video signal. An interactive device such as an interactive toy performs behavior defined by control data that can be encoded into a video signal that can be broadcast or played-back from video tape. The interactive device is equipped with a non-volatile memory that permits the control data to be stored for performance subsequent to the transmission session (e.g., a televised program). The interactive device also may be equipped to perform behavior during the transmission session. The control data is delivered as a series of control data words that include genus codes and sequence codes. Genus codes identify the interactive device to which the data word is directed, so that a particular interactive device will respond (i.e., perform behavior) only in accordance with the control data words including the appropriate genus code. Because video transmissions are subject to video signal deterioration, error grading is used to minimize the effect of such signal deterioration. During a given control data transmission session, control data words will be repeated, so that an interactive device receives several control data words with the same sequence number. Based on the relative gradings, the interactive device will replace previously received control data words of lower quality than subsequently received data words having the same sequence number. It should be understood that the foregoing relates only to specific embodiments of the invention, and that numerous changes may be made therein without departing from the spirit and scope of the invention as defined by the following claims.

Claims

CLAIMS What is claimed is:
1. A method for delivering and storing interactive device control data using the horizontal overscan portion of a video signal, the method comprising the steps of: receiving the video signal during a transmission session; extracting control data from the horizontal overscan portion of the video signal; and following the transmission session, performing behavior defined by the control data.
2. The method of Claim 1 , wherein the transmission session comprises a broadcast of a television program.
3. The method of Claim 1, wherein the transmission session comprises a play-back of a video taped program.
4. The method of Claim 1, further comprising the step of performing behavior defined by the control data during the transmission session.
5. The method of Claim 1, further comprising the step of storing the control data in a non-volatile memory.
6. The method of Claim 5, wherein the step of storing the control data is performed in response to the receipt of a storage instruction within the extracted control data.
7. The method of Claim 5, further comprising the step of retrieving control data from the memory prior to performing the behavior defined thereby.
8. The method of Claim 1, further comprising the step of grading the quality of the extracted control data and generating an error grade.
9. The method of Claim 8, further comprising the step of storing the control data in a non-volatile memory in association with a corresponding error grade.
10. The method of Claim 1, wherein the step of extracting control comprises extracting control data as a series of control data words.
11. The method of Claim 10, wherein each control data word includes a genus code.
12. The method of Claim 10, wherein each control data word includes a sequence code.
13. The method of Claim 4, wherein the behavior defined by the control data comprises storing the received control data for subsequent transmission to another device.
14. A system for delivering and storing interactive device control data using the horizontal overscan portion of a video signal, the system comprising: a decoder operative to extract control data from a horizontal overscan portion of a video signal during a transmission session; and an interactive device operative to perform behavior defined by the control data, the interactive device comprising: a non- volatile memory operative to store the control data during the transmission session for use by the interactive device after the transmission session, and a controller operative to retrieve the control data from the non-volatile memory and to cause the interactive device to perform the behavior defined by the control data.
15. The system of Claim 14, wherein the decoder is integrated within the interactive device.
16. The system of Claim 14, wherein the decoder is separate from the interactive device.
17. The system of Claim 14, wherein the controller is further operative to receive the control data from the decoder and to store the control data in the non- volatile memory.
18. The system of Claim 17, wherein the controller receives the control data from the decoder via an infrared receiver.
19. The system of Claim 17, wherein the controller receives the control data from the decoder via a radio frequency receiver.
20. The method of Claim 14, wherein the transmission session comprises a play -back of a video taped program.
21. A method for delivering and storing interactive device control data via a video signal, the method comprising the steps of: receiving the video signal during a transmission session; extracting control data from the video signal; performing behavior defined by the control data during the transmission session; storing the control data in a non- volatile memory; in response to the receipt of a storage instruction within the extracted control data; and following the transmission session, performing behavior defined by the control data.
22. A method for delivering and storing interactive device control data using an encoded signal, the method comprising the steps of: receiving the encoded signal during a transmission session; extracting control data from the encoded signal; and following the transmission session, performing behavior defined by the control data.
PCT/US2000/034789 1999-12-30 2000-12-20 Method and system for transmitting and storing interactive device control data using horizontal overscan portion of a video signal WO2001050749A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP00993762A EP1243134B1 (en) 1999-12-30 2000-12-20 Method and system for downloading and storing interactive device content using the horizontal overscan portion of a video signal
JP2001551003A JP4883865B2 (en) 1999-12-30 2000-12-20 Method and system for transmitting and storing interactive device control data using a horizontal overscan portion of a video signal
AT00993762T ATE281738T1 (en) 1999-12-30 2000-12-20 METHOD AND SYSTEM FOR TRANSMITTING AND STORING INTERACTION DEVICE CONTROL DATA USING THE HORIZONTAL OVERSAMPLING PORTION OF A VIDEO SIGNAL
AU29104/01A AU2910401A (en) 1999-12-30 2000-12-20 Method and system for downloading and storing interactive device content using the horizontal overscan portion of video signal
DE60015604T DE60015604T2 (en) 1999-12-30 2000-12-20 METHOD AND SYSTEM FOR TRANSFERRING AND STORING INTERACTION SETUP CONTROL DATA USING THE HORIZONTAL TRANSFER PORTION OF A VIDEO SIGNAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/475,832 US6937289B1 (en) 1999-12-30 1999-12-30 Method and system for downloading and storing interactive device content using the horizontal overscan portion of a video signal
US09/475,832 1999-12-30

Publications (2)

Publication Number Publication Date
WO2001050749A2 true WO2001050749A2 (en) 2001-07-12
WO2001050749A3 WO2001050749A3 (en) 2002-03-07

Family

ID=23889342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/034789 WO2001050749A2 (en) 1999-12-30 2000-12-20 Method and system for transmitting and storing interactive device control data using horizontal overscan portion of a video signal

Country Status (8)

Country Link
US (3) US6937289B1 (en)
EP (1) EP1243134B1 (en)
JP (1) JP4883865B2 (en)
AT (1) ATE281738T1 (en)
AU (1) AU2910401A (en)
DE (1) DE60015604T2 (en)
TW (1) TW497361B (en)
WO (1) WO2001050749A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055631A2 (en) 2002-12-12 2004-07-01 Scientific-Atlanta, Inc. Data enhanced multi-media system for a set-top terminal
GB2448883A (en) * 2007-04-30 2008-11-05 Sony Comp Entertainment Europe Interactive toy and entertainment device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050148279A1 (en) * 1997-04-04 2005-07-07 Shalong Maa Digitally synchronized animated talking doll
US6937289B1 (en) * 1999-12-30 2005-08-30 Microsoft Corporation Method and system for downloading and storing interactive device content using the horizontal overscan portion of a video signal
US8312490B2 (en) * 2000-03-23 2012-11-13 The Directv Group, Inc. DVR with enhanced functionality
US20070127887A1 (en) * 2000-03-23 2007-06-07 Adrian Yap Digital video recorder enhanced features
US20020054750A1 (en) * 2000-04-25 2002-05-09 Michael Ficco DVR functions status indicator
US20040045038A1 (en) * 2002-08-29 2004-03-04 Duff John F. System and method for the synchronized activation of external devices in association with video programs
US20040117858A1 (en) * 2002-12-12 2004-06-17 Boudreau Paul A. Data enhanced multi-media system for an external device
US7238079B2 (en) * 2003-01-14 2007-07-03 Disney Enterprise, Inc. Animatronic supported walking system
US20040158877A1 (en) * 2003-02-07 2004-08-12 Global View Co., Ltd. Control method and device of video signal combined with interactive control data
US8157611B2 (en) * 2005-10-21 2012-04-17 Patent Category Corp. Interactive toy system
US7867088B2 (en) * 2006-05-23 2011-01-11 Mga Entertainment, Inc. Interactive game system using game data encoded within a video signal
WO2008023337A2 (en) * 2006-08-25 2008-02-28 Koninklijke Philips Electronics N.V. Storing tv-anytime crids in objects
US8033901B2 (en) * 2006-10-09 2011-10-11 Mattel, Inc. Electronic game system with character units
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
CN103127716B (en) 2010-03-22 2015-09-16 美泰有限公司 The input and output of electronic installation and data
USD685862S1 (en) 2011-07-21 2013-07-09 Mattel, Inc. Toy vehicle housing
USD681742S1 (en) 2011-07-21 2013-05-07 Mattel, Inc. Toy vehicle
US8923649B2 (en) 2011-09-06 2014-12-30 Cisco Technology, Inc. System and method for calibrating display overscan using a mobile device
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
WO2014153158A1 (en) 2013-03-14 2014-09-25 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US20160151705A1 (en) * 2013-07-08 2016-06-02 Seung Hwan Ji System for providing augmented reality content by using toy attachment type add-on apparatus
WO2015100429A1 (en) 2013-12-26 2015-07-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
WO2015191445A1 (en) 2014-06-09 2015-12-17 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
CN107583291B (en) * 2017-09-29 2023-05-02 深圳希格玛和芯微电子有限公司 Toy interaction method and device and toy
WO2019076845A1 (en) * 2017-10-16 2019-04-25 Lego A/S Interactive play apparatus
JP7219906B2 (en) * 2018-07-19 2023-02-09 株式会社Icon Learning toy, mobile object for learning toy used for this, and portable information processing terminal for learning toy used for this

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010490A1 (en) * 1990-01-17 1991-07-25 The Drummer Group Interrelational audio kinetic entertainment system
WO1999000979A1 (en) * 1997-06-30 1999-01-07 Microsoft Corporation Method and system for encoding data in the horizontal overscan portion of a video signal
WO2000044460A2 (en) * 1999-01-28 2000-08-03 Pleschutznig Lanette O Interactively programmable toy

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493674A (en) 1965-05-28 1970-02-03 Rca Corp Television message system for transmitting auxiliary information during the vertical blanking interval of each television field
US3743767A (en) 1971-10-04 1973-07-03 Univ Illinois Transmitter and receiver for the transmission of digital data over standard television channels
US3900887A (en) 1973-01-18 1975-08-19 Nippon Steel Corp Method of simultaneous multiplex recording of picture and data and of regenerating such record and apparatus therefor
US3891792A (en) 1974-06-25 1975-06-24 Asahi Broadcasting Television character crawl display method and apparatus
US3993861A (en) 1975-03-24 1976-11-23 Sanders Associates, Inc. Digital video modulation and demodulation system
JPS6050469B2 (en) 1976-10-18 1985-11-08 東京デザイン工芸株式会社 model equipment
US4186413A (en) 1977-11-14 1980-01-29 Sanders Associates, Inc. Apparatus for receiving encoded messages on the screen of a television receiver and for redisplay thereof on the same receiver screen in a readable format
FR2477816A1 (en) 1980-03-04 1981-09-11 Telediffusion Fse TELEVISION SYSTEM USING AN IMAGE SUPERIOR CODE
US4862268A (en) 1980-03-31 1989-08-29 General Instrument Corporation Addressable cable television control system with video format data transmission
US4665431A (en) 1982-06-24 1987-05-12 Cooper J Carl Apparatus and method for receiving audio signals transmitted as part of a television video signal
US4638359A (en) 1983-05-19 1987-01-20 Westinghouse Electric Corp. Remote control switching of television sources
DE3318919C2 (en) 1983-05-25 1985-03-21 TeleMetric S.A., Internationale Gesellschaft für Fernsehzuschauerforschung, Zug Method and apparatus for collecting data on television viewing behavior of television viewers
US4540176A (en) 1983-08-25 1985-09-10 Sanders Associates, Inc. Microprocessor interface device
JPS61156405A (en) 1984-12-28 1986-07-16 Nintendo Co Ltd Robot composite system
US4660033A (en) 1985-07-29 1987-04-21 Brandt Gordon C Animation system for walk-around costumes
GB2178584A (en) 1985-08-02 1987-02-11 Gray Ventures Inc Method and apparatus for the recording and playback of animation control signals
US4864607A (en) 1986-01-22 1989-09-05 Tomy Kogyo Co., Inc. Animated annunciator apparatus
US5108341A (en) 1986-05-28 1992-04-28 View-Master Ideal Group, Inc. Toy which moves in synchronization with an audio source
US4771344A (en) 1986-11-13 1988-09-13 James Fallacaro System for enhancing audio and/or visual presentation
US4846693A (en) 1987-01-08 1989-07-11 Smith Engineering Video based instructional and entertainment system using animated figure
US4840602A (en) 1987-02-06 1989-06-20 Coleco Industries, Inc. Talking doll responsive to external signal
US4847700A (en) 1987-07-16 1989-07-11 Actv, Inc. Interactive television system for providing full motion synched compatible audio/visual displays from transmitted television signals
US4847699A (en) 1987-07-16 1989-07-11 Actv, Inc. Method for providing an interactive full motion synched compatible audio/visual television display
US4855827A (en) 1987-07-21 1989-08-08 Worlds Of Wonder, Inc. Method of providing identification, other digital data and multiple audio tracks in video systems
US4807031A (en) 1987-10-20 1989-02-21 Interactive Systems, Incorporated Interactive video method and apparatus
US4969041A (en) 1988-09-23 1990-11-06 Dubner Computer Systems, Inc. Embedment of data in a video signal
US4930019A (en) 1988-11-29 1990-05-29 Chi Wai Chu Multiple-user interactive audio/video apparatus with automatic response units
US5021878A (en) 1989-09-20 1991-06-04 Semborg-Recrob, Corp. Animated character system with real-time control
US5198893A (en) 1989-09-20 1993-03-30 Semborg Recrob, Corp. Interactive animated charater immediately after the title
NL9000130A (en) 1990-01-19 1990-05-01 Philips Nv VIDEO SYSTEM.
US5200822A (en) * 1991-04-23 1993-04-06 National Broadcasting Company, Inc. Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs
US5453795A (en) 1991-07-02 1995-09-26 Thomson Consumer Electronics, Inc. Horizontal line counter insensitive to large phase shifts of video
US5243423A (en) 1991-12-20 1993-09-07 A. C. Nielsen Company Spread spectrum digital data transmission over TV video
US5463423A (en) 1992-03-11 1995-10-31 Thomson Consumer Electronics, Inc. Auxiliary video data detector and data slicer
US5371545A (en) 1992-03-11 1994-12-06 Thomson Consumer Electronics, Inc. Auxiliary video data slicer with adjustable window for detecting the run in clock
WO1993023955A1 (en) 1992-05-12 1993-11-25 Holman Michael J Electronic redeemable coupon system
ATE171031T1 (en) 1992-06-01 1998-09-15 Thomson Multimedia Sa ADDITIONAL VIDEO DATA SEPARATOR
JPH07111721B2 (en) 1992-06-05 1995-11-29 日本アイ・ビー・エム株式会社 Line element data three-dimensional conversion device and method
US5270480A (en) 1992-06-25 1993-12-14 Victor Company Of Japan, Ltd. Toy acting in response to a MIDI signal
JP3257081B2 (en) 1992-10-08 2002-02-18 ソニー株式会社 Data demodulator
CA2146643A1 (en) 1992-10-19 1994-04-28 Jeffrey Scott Jani Video and radio controlled moving and talking device
KR940017376A (en) 1992-12-21 1994-07-26 오오가 노리오 Transmission method, reception method, communication method and two-way bus system
US5450134A (en) 1993-01-12 1995-09-12 Visual Automation Systems, Inc. Video facility management system for encoding and decoding video signals to facilitate identification of the video signals
US5523794A (en) 1993-04-16 1996-06-04 Mankovitz; Roy J. Method and apparatus for portable storage and use of data transmitted by television signal
US5398071A (en) 1993-11-02 1995-03-14 Texas Instruments Incorporated Film-to-video format detection for digital television
US5483289A (en) 1993-12-22 1996-01-09 Matsushita Electric Industrial Co., Ltd. Data slicing circuit and method
WO1995029558A1 (en) 1994-04-20 1995-11-02 Shoot The Moon Products, Inc. Method and apparatus for nesting secondary signals within a television signal
KR0178718B1 (en) 1994-06-10 1999-05-01 김광호 Detection clock generator for digital data on complex image signal and data detector by detection clock
EP0710022A3 (en) 1994-10-31 1998-08-26 AT&T Corp. System and method for encoding digital information in a television signal
JPH08340497A (en) 1995-06-14 1996-12-24 Hitachi Ltd Receiving device for television signal
US5752880A (en) 1995-11-20 1998-05-19 Creator Ltd. Interactive doll
US6377308B1 (en) 1996-06-26 2002-04-23 Intel Corporation Method and apparatus for line-specific decoding of VBI scan lines
US5812207A (en) 1996-12-20 1998-09-22 Intel Corporation Method and apparatus for supporting variable oversampling ratios when decoding vertical blanking interval data
US5873765A (en) * 1997-01-07 1999-02-23 Mattel, Inc. Toy having data downloading station
US6415439B1 (en) 1997-02-04 2002-07-02 Microsoft Corporation Protocol for a wireless control system
US5977951A (en) 1997-02-04 1999-11-02 Microsoft Corporation System and method for substituting an animated character when a remote control physical character is unavailable
US6072532A (en) 1997-02-18 2000-06-06 Scientific-Atlanta, Inc. Method and apparatus for generic insertion of data in vertical blanking intervals
US6012961A (en) * 1997-05-14 2000-01-11 Design Lab, Llc Electronic toy including a reprogrammable data storage device
US6057889A (en) 1997-09-26 2000-05-02 Sarnoff Corporation Format-responsive video processing system
US6094228A (en) 1997-10-28 2000-07-25 Ciardullo; Daniel Andrew Method for transmitting data on viewable portion of a video signal
US6281939B1 (en) 1998-11-12 2001-08-28 Microsoft Corporation Method and apparatus for decoding data encoded in the horizontal overscan portion of a video signal
JP3695274B2 (en) * 1999-11-05 2005-09-14 日本ビクター株式会社 Entertainment system and reception side terminal and transmission side device used therefor
US6937289B1 (en) * 1999-12-30 2005-08-30 Microsoft Corporation Method and system for downloading and storing interactive device content using the horizontal overscan portion of a video signal
US6556247B1 (en) * 1999-12-30 2003-04-29 Microsoft Corporation Method and system for decoding data in the horizontal overscan portion of a video signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010490A1 (en) * 1990-01-17 1991-07-25 The Drummer Group Interrelational audio kinetic entertainment system
WO1999000979A1 (en) * 1997-06-30 1999-01-07 Microsoft Corporation Method and system for encoding data in the horizontal overscan portion of a video signal
WO2000044460A2 (en) * 1999-01-28 2000-08-03 Pleschutznig Lanette O Interactively programmable toy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055631A2 (en) 2002-12-12 2004-07-01 Scientific-Atlanta, Inc. Data enhanced multi-media system for a set-top terminal
EP1579692A2 (en) * 2002-12-12 2005-09-28 Scientific-Atlanta, Inc. Data enhanced multi-media system for a set-top terminal
EP1579692A4 (en) * 2002-12-12 2010-04-28 Scientific Atlanta Data enhanced multi-media system for a set-top terminal
GB2448883A (en) * 2007-04-30 2008-11-05 Sony Comp Entertainment Europe Interactive toy and entertainment device
US8636558B2 (en) 2007-04-30 2014-01-28 Sony Computer Entertainment Europe Limited Interactive toy and entertainment device

Also Published As

Publication number Publication date
AU2910401A (en) 2001-07-16
US20090119739A1 (en) 2009-05-07
DE60015604T2 (en) 2005-03-24
DE60015604D1 (en) 2004-12-09
JP4883865B2 (en) 2012-02-22
US20050204400A1 (en) 2005-09-15
ATE281738T1 (en) 2004-11-15
TW497361B (en) 2002-08-01
WO2001050749A3 (en) 2002-03-07
US6937289B1 (en) 2005-08-30
US7477320B2 (en) 2009-01-13
JP2003519979A (en) 2003-06-24
US7787050B2 (en) 2010-08-31
EP1243134B1 (en) 2004-11-03
EP1243134A2 (en) 2002-09-25

Similar Documents

Publication Publication Date Title
EP1243134B1 (en) Method and system for downloading and storing interactive device content using the horizontal overscan portion of a video signal
US6742188B1 (en) Method and system for encoding data in the horizontal overscan portion of a video signal
US6761635B2 (en) Remote-control signal receiver
JP4568753B2 (en) Automatic setting mechanism for general-purpose remote controller
US8073304B2 (en) Portable recorded television viewer
JP4859271B2 (en) Method and system for encoding data into a horizontal overscan region of a video signal
KR100360722B1 (en) Toy system
CN100410907C (en) Music play control apparatus using at least one earphone function key and method thereof
JP2000500376A (en) Eye ▲ top * ▼ Doll
US20050215324A1 (en) Game system, methods and apparatus using embedded audio commands
US6353635B1 (en) Method for simultaneously controlling multiple devices using a single communication channel
US6281939B1 (en) Method and apparatus for decoding data encoded in the horizontal overscan portion of a video signal
US20050008342A1 (en) Multimedia player having the function of varying displayed contents in the suspending mode
US20050140521A1 (en) Method for controlling an electronic device from a distance via a command controller
US6556247B1 (en) Method and system for decoding data in the horizontal overscan portion of a video signal
WO2011084287A1 (en) Method and apparatus for controlling an electronic system
CN102598703A (en) Method and apparatus for controlling settings of a device for playback of a content item
EP0860764A1 (en) System for controlling information available on video and/or audio equipment by graphical display
CN101112082A (en) Method and apparatus for displaying words service in case of mute audio
US20040267389A1 (en) Modulated output of digital audio signals
JP3695274B2 (en) Entertainment system and reception side terminal and transmission side device used therefor
CN1425248A (en) Device for receiving digital radio signals
KR20070087894A (en) Image display system and controlling method for the same
KR20010097522A (en) Portable digital music player and method for enabling wireless music broadcasting
JPH0877692A (en) Magnetic recorder/player

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000993762

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 551003

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000993762

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000993762

Country of ref document: EP