WO2001054442A1 - Cell reselection signalling method - Google Patents

Cell reselection signalling method Download PDF

Info

Publication number
WO2001054442A1
WO2001054442A1 PCT/FI2001/000038 FI0100038W WO0154442A1 WO 2001054442 A1 WO2001054442 A1 WO 2001054442A1 FI 0100038 W FI0100038 W FI 0100038W WO 0154442 A1 WO0154442 A1 WO 0154442A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
information
connection
rejection message
channel
Prior art date
Application number
PCT/FI2001/000038
Other languages
French (fr)
Inventor
Pekka Marjelund
Juha Turunen
Kaisu Iisakkila
Oscar Salonaho
Original Assignee
Nokia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8557094&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001054442(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP01942843A priority Critical patent/EP1249151B1/en
Priority to BRPI0107654A priority patent/BRPI0107654B1/en
Priority to DK01942843.2T priority patent/DK1249151T3/en
Priority to CA002395586A priority patent/CA2395586C/en
Priority to AU28540/01A priority patent/AU766819B2/en
Application filed by Nokia Corporation filed Critical Nokia Corporation
Priority to US10/181,078 priority patent/US7433698B2/en
Priority to MXPA02006957A priority patent/MXPA02006957A/en
Priority to ES01942843T priority patent/ES2389497T3/en
Priority to JP2001553330A priority patent/JP2003520537A/en
Publication of WO2001054442A1 publication Critical patent/WO2001054442A1/en
Priority to US12/229,085 priority patent/US8364196B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link

Definitions

  • the invention relates to methods pertaining to cell reselection in a cellular telecommunication system. Especially, the invention is related to such a method as specified in the preamble of the first independent method claim.
  • Proposals for third-generation systems include UMTS (Universal Mobile Telecommunications System) and FPLMTS/TMT-2000 (Future Public Land Mobile Telecommunications System / International Mobile Telecommunications at 2000 MHz).
  • UMTS Universal Mobile Telecommunications System
  • FPLMTS/TMT-2000 Full Mobile Telecommunications System / International Mobile Telecommunications at 2000 MHz.
  • cells are categorised according to their size and characteristics into pico-, nano-, micro- and macrocells, and an example of the service level is the bit rate.
  • the bit rate is the highest in picocells and the lowest in macrocells.
  • the cells may overlap partially or completely and there may be different terminals o that not all terminals necessarily are able to utilise all the service levels offered by the cells.
  • Fig. 1 shows a version of a future cellular radio system which is not entirely new compared with the known GSM system but which includes both known elements and completely new elements.
  • the bottleneck that prevents more advanced services from being offered to the terminals comprises the radio access network RAN which includes the base stations and base station controllers.
  • the core network of a cellular radio system comprises mobile services switching centres (MSC), other network elements (in GSM, e.g. SGSN and GGSN, i.e. Serving GPRS Support Node and Gateway GPRS Support node, where GPRS stands for General Packet Radio Service) and the related transmission systems.
  • MSC mobile services switching centres
  • the core network of a cellular radio system 930 comprises a core ne work CN 931 which has three parallel radio access networks linked to it.
  • net- works 932 and 933 are UMTS radio access networks and network 934 is a GSM radio access network.
  • the upper UMTS radio access network 932 is e.g. a commercial radio access network, owned by a telecommunications operator offering mobile services, which equally serves all subscribers of said telecommunications operator.
  • the lower UMTS radio access network 933 is e.g. private and owned e.g. by a company in whose premises said radio access network operates.
  • the cells of the private radio access network 933 are nano- and/or picocells in which only terminals of the employees of said company can operate. All three radio access networks may have cells of different sizes offering different types of services. Additionally, cells of all three radio access networks 932, 933 and 934 may overlap either entirely or in part.
  • the bit rate used at a given moment of time depends, among other things, on the radio path conditions, characteristics of the services used, regional overall capacity of the cellular system and the capacity needs of other users.
  • the new types of radio access networks mentioned above are called generic radio access networks (GRAN).
  • GRAN generic radio access networks
  • Such a network can co-operate with different types of fixed core networks CN and especially with the GPRS network of the GSM system.
  • the generic radio access network (GRAN) can be defined as a set of base stations (BS) and radio network controllers (RNC) that are capable of communicating with each other using signaling messages. Below, the generic radio access network will be called in short a radio network GRAN.
  • the terminal 935 shown in Fig. 1 is preferably a so-called dual-mode terminal that can serve either as a second-generation GSM terminal or as a third-generation UMTS terminal according to what kind of services are available at each particular location and what the user's communication needs are. It may also be a multimode terminal that can function as terminal of several different communications systems according to need and the services available. Radio access networks and services available to the user are specified in a subscriber identity module 936 (SIM) connected to the terminal.
  • SIM subscriber identity module
  • a conventional way to treat a connection setup request in a congestion situation is to simply reject the connection setup request. Thereafter the mobile station (MS) needs to find a new cell for a new connection attempt.
  • the problem with this approach is a high amount of failed signalling, if the mobile station needs to make several connection attempts to several different cells before folding a cell, which accepts the new connection. Such a situation may arise, when many of the surrounding cells are congested as well.
  • the setup of the connection can therefore also take a long time, which may frustrate the user of the mobile station.
  • One other prior art way of treating a connection setup request congestion situation is to perform the connection setup as requested by the mobile station, and directly thereafter force a handover to a less congested cell. Such a method is quite satisfactory from the viewpoint of the user of the mobile station, since the network accepts the new connection quickly, but such a method causes too much signalling in the form of handover signalling.
  • the network has no explicit control over which cell the UE selects after an RRC connection setup is rejected in the serving cell. It has also been a problem in the GSM system that after the rejection of signaling connection request, cell reselection and reattempt actions of mobile stations have not been under control of the network.
  • An object of the invention is to realize a cell reselection method, which require;; only a small amount of signalling.
  • a further object of the invention is to realize a cell reselection method, which allows the network to have some control over the actions of the mobile stations in a connection rejection situation.
  • the objects are reached by indicating information affecting the determination of at least one parameter for a new connection attempt in a connection setup rejection message.
  • the channel reselection signalling method in a cellular telecommunications network according to the invention is characterized by that, what is specified in the characterizing part of the independent claim directed to a channel reselection signalling method in a cellular telecommunications network.
  • the channel reselection method in a mobile communication means of a cellular telecommunication system according to the invention is characterized by that, what is specified in the characterizing part of the independent claim directed to a channel reselection method in a mobile communication means of a cellular telecommunication system.
  • the network element according to the invention is characterized by that, what is specified in the characterizing part of the independent claim directed to a network element.
  • a connection setup rejection message is used to direct a mobile communication means to attempt a new connection with certain parameter values such as a certain carrier frequency.
  • a plurality of parameter values may as well be indicated in the message, which allows the network to direct the mobile communication means to make a connection setup request to a specific cell, for example.
  • the connection setup rejection message can be for example the CONNECTION SETUP REJECT message of the RRC protocol.
  • the network indicates a carrier frequency in the connection setup rejection message.
  • the mobile communication means After receiving the message, the mobile communication means attempts to set up a new connection to a cell which uses the carrier frequency. There may be more than one such cell. For example, in the WCDMA cellular system under development a plurality of cells may use the same carrier frequency. In such a case, the mobile station needs to select one of the cells for the new attempt.
  • the network indicates a carrier frequency and information identifying a certaing cell among the cells using the indicated carrier frequency.
  • information identifying a certain cell can advantageously be for example a scrambling code corresponding to the cell. Since these parameters define a certain cell, the mobile station does not need to select one cell among those using the carrier frequency, which shortens the time needed for setting up the desired connection.
  • the network indicates ⁇ " cellular network identifier in the rejection message.
  • This embodiment is advantageous in those cases, when more than one cellular network exists in the same geographical area and the mobile communication means is capable of using at least two, even plurality of different networks.
  • this embodiment allows a UMTS (Universal Mobile Telecommunications System) network to direct a mobile station to make a connection attept to a GSM (Global System for Mobile Communication) network, to a GPRS (General Packet Radio Service) network, to a EDGE-capable (Enhanced Data rates for GSM Evolution) network, or to some other network.
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE-capable Enhanced Data rates for GSM Evolution
  • the network may also indicate other parameters in the rejection message, such as for example parameter values for certain timers affecting the timing of the next connection attempt, time difference of the cell tiansmitting the rejection message and the cell suggested by the network, and parameter values identifying certain transmission channels to use.
  • Parameter values for certain transmission channels caii be for example parameter values describing a certain primary common pilot channel (CPICH) if the desired connection is a FDD (frequency division duplex) mode connection of the WCDMA system or a certain primary common control physical channel (CCPCH) if the desired connection is a TDD (time division duplex) mode connection of the WCDMA system.
  • CPICH primary common pilot channel
  • CPCH primary common control physical channel
  • the mobile communication means obtains at least one parameter value from a system information message, if the rejection message indicates a certain cause of rejection. For example, if the rejection message indicates that the cause is congestion, the mobile communication means can obtain a carrier frequency from a system information message for the next connection attempt.
  • a system information message is a System Info Block Type 5 message of the RRC protocol according to certain specifications of the WCDMA system.
  • Figure 1 illustrates a cellular telecommunications network according to prior art
  • FIG. 2 illustrates a method according to an advantageous embodiment of the invention
  • FIG. 3 illustrates a further method according to an advantageous embodiment of the invention.
  • a congestion situation typically arises because of shortage in the resources of a whole cell
  • a congestion situation may as well arise because of shortage in the radio resources of a channel, such as too many users in the channel.
  • a connection rejection message may result from channel congestion as well. Therefore, in the following explanation and especially in the claims the term channel is used to cover a cell as well as a specific channel according to specific frequency, code, etc. parameters.
  • the selection of a new channel similarly can refer to a change of a certain connection parameter such as code or frequency as well as change of the cell.
  • Channel selection can mean, for example, selection of a new frequency in the same cell or a different cell, selection of a new cell with the same or a different frequency, selection of a different scrambling or channel code on the same or different frequency in the same or different cell, or selection of even another cellular telecori iunication system.
  • the term mobile station is intended to cover any mobile communication means.
  • a channel reselection signalling method in a cellular telecommunications network is provided.
  • This aspect of the invention is illustrated in figure 2.
  • the network 10 indicates in a connection rejection message 30 to a mobile station 20 information about the value of at least one parameter relating to connection setup for use in a new connection setup attempt.
  • connection rejection message 30 is RRC CONNECTION REJECT message.
  • said information comprises information 100 about a preferred channel for the next connection attempt.
  • said information comprises frequency information 110.
  • said information comprises information 115 about reference time difference between the previously attempted channel and the preferred channel for the next attempt.
  • said information comprises information 120 about a primary CPICH channel (PCPICH).
  • PCPICH primary CPICH channel
  • said information comprises information 125 about a primary CCPCH channel.
  • said information comprises scrambling code information 130 corresponding to a certain preferred channel.
  • said information comprises channel code information 135 corresponding to a certain preferred channel. In an advantageous embodiment, said information comprises information 140 about a second channelular telecommunication network.
  • a a channel reselection method in a mobile communication means of a cellular telecommunication system is provided.
  • This aspect of the invention is illustrated in figure 3.
  • the method comprises the steps of
  • connection rejection message - observing 210 at least one parameter of said connection rejection message, and - setting 220 the value of at least one parameter for a new connection attempt at least in part on the basis of information in at least one parameter of said connection rejection message.
  • said connection rejection message is a RRC CONNECTION REJECT message.
  • a predetermined parameter of said connection rejection message has a predetermined value
  • the value o at least one parameter for a new connection attempt is obtained from a system information message.
  • the method further comprises steps of
  • the reception frequency can be for example a UTRA (UMTS Terrestrial Radio Access) carrier frequency.
  • the UE selects a suitable cell to camp on.
  • Candidate cells for this selection are those cells on that frequency, which the UE was monitoring before initiating the original RRC connection setup procedure resulting in the rejection, message. If no suitable cell is found, the UE can use for example the stored information cell selection procedure in order to find a suitable cell to camp on. After having camped on a cell, the UE advantageously re-initiates the RRC connection setup procedure.
  • the stored information cell selection procedure is described for example in the 3GPP specification TS 25.304 "UE Procedures in Idle Mode".
  • the method further comprises the steps of
  • the method further comprises the steps of - setting of a reception frequency on the basis of the value of a parameter of said connection rejection message,
  • the method further comprises the step of setting of a timing value on the basis of the value of a parameter of said connection rejection message.
  • the method further comprises the step of setting of a reception frequency on the basis of the value of a parameter of said connection rejection message
  • the method further comprises the step of setting of a timing value on the basis of the value of & parameter of said connection rejection message.
  • the method further comprises the step of setting of a scrambling code parameter on the basis of the value of a parameter of said connection rejection message.
  • the method further comprises the step of setting of a channel code parameter on the basis of the value of a parameter of said connection rejection message.
  • the method further comprises the step of setting of a parameter describing a certain primary CPICH channel on the basis of the value of a parameter of said connection rejection message.
  • the method further comprises the step of setting of a parameter describing a certain primary CCPCH channel on the basis of the value of a parameter of said connection rejection message.
  • the method further comprises the step of setting of a parameter identifying a second cellular telecommunication network on the basis of the value of a parameter of said connection rejection message.
  • the method further comprises the step of starting a new connection attempt at least partly according to the value of the parameter of said connection rejection message.
  • a network element of a cellular telecommunications network is provided.
  • the network element is arranged to indicate in a connection rejection message to a mobile station information about the value of at least one parameter relating to connection setup for use in a new connection setup attempt.
  • the network element is a network element of a radio access network of a cellular telecommunications network.
  • the network element is a radio network controller.
  • said connection rejection message is RRC CONNECTION REJECT message.
  • said information comprises information about a preferred channel for the next connection attempt.
  • said information comprises frequency information.
  • said information comprises information about reference time difference between the previously attempted channel and the preferred channel for the next attempt.
  • said information comprises information about a primary CPICH channel.
  • said information comprises information about a primary CCPCH channel.
  • said information comprises scrambling code information corresponding to a certain preferred channel.
  • said information comprises channel code information corresponding to a certain preferred channel.
  • said information comprises information about a second cellular telecommunication network.
  • the invention has several advantages. For example, the invention reduces signalling between a mobile telecommunication means and a network. No handover signalling is needed, as new information for setting up a new connection can be informed to the mobile in a rejection message.
  • the invention is applicable in many different cellular telecommunication systems, such as the UMTS system or the GSM system.
  • the invention is applicable in any such cellular telecommunication system, in which the cellular telecommunication network sends a rejection message as a response to a connection setup request from a mobile station, if the network is unable to provide the requested connection.
  • radio network controller The name of a given functional entity, such as the radio network controller, is often different in the context of different cellular telecommunication systems.
  • the functional entity corresponding to a radio network controller (RNC) is the base station controller (BSC). Therefore, the term radio network controller in the claims is intended to cover all corresponding functional entities regardless of the term used for the entity in the particular cellular tele- communication system.
  • the various message names such as the CONNECTION SETUP REJECT message name are intended to be examples only, and the invention is not limited to using the message names recited in this specification.

Abstract

The invention relates to methods pertaining to cell reselection in a cellular telecommunication system. According to the invention, a connection setup rejection message is used to direct a mobile communication means to attempt a new connection with certain parameter values such as a certain carrier frequency. A plurality of parameter values may as well be indicated in the message, which allows the network to direct the mobile communication means to make a connection setup request to a specific cell, for example. The connection setup rejection message can be for example the CONNECTION SETUP REJECT message of the RRC protocol.

Description

CELL RESΞLΞC-TION SIGNALLING METHOD
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to methods pertaining to cell reselection in a cellular telecommunication system. Especially, the invention is related to such a method as specified in the preamble of the first independent method claim.
2. Description of Related Art
For clarification of common terms used in this document, an overview of certain cellular telecommunication system configurations is presented in the following.
Proposals for third-generation systems include UMTS (Universal Mobile Telecommunications System) and FPLMTS/TMT-2000 (Future Public Land Mobile Telecommunications System / International Mobile Telecommunications at 2000 MHz). In these plans cells are categorised according to their size and characteristics into pico-, nano-, micro- and macrocells, and an example of the service level is the bit rate. The bit rate is the highest in picocells and the lowest in macrocells. The cells may overlap partially or completely and there may be different terminals o that not all terminals necessarily are able to utilise all the service levels offered by the cells.
Fig. 1 shows a version of a future cellular radio system which is not entirely new compared with the known GSM system but which includes both known elements and completely new elements. In current cellular radio systems the bottleneck that prevents more advanced services from being offered to the terminals comprises the radio access network RAN which includes the base stations and base station controllers. The core network of a cellular radio system comprises mobile services switching centres (MSC), other network elements (in GSM, e.g. SGSN and GGSN, i.e. Serving GPRS Support Node and Gateway GPRS Support node, where GPRS stands for General Packet Radio Service) and the related transmission systems. According e.g. to the GSM+ specifications developed from GSM the core network can also provide new services.
In Fig. 1, the core network of a cellular radio system 930 comprises a core ne work CN 931 which has three parallel radio access networks linked to it. Of those, net- works 932 and 933 are UMTS radio access networks and network 934 is a GSM radio access network. The upper UMTS radio access network 932 is e.g. a commercial radio access network, owned by a telecommunications operator offering mobile services, which equally serves all subscribers of said telecommunications operator. The lower UMTS radio access network 933 is e.g. private and owned e.g. by a company in whose premises said radio access network operates. Typically the cells of the private radio access network 933 are nano- and/or picocells in which only terminals of the employees of said company can operate. All three radio access networks may have cells of different sizes offering different types of services. Additionally, cells of all three radio access networks 932, 933 and 934 may overlap either entirely or in part. The bit rate used at a given moment of time depends, among other things, on the radio path conditions, characteristics of the services used, regional overall capacity of the cellular system and the capacity needs of other users. The new types of radio access networks mentioned above are called generic radio access networks (GRAN). Such a network can co-operate with different types of fixed core networks CN and especially with the GPRS network of the GSM system. The generic radio access network (GRAN) can be defined as a set of base stations (BS) and radio network controllers (RNC) that are capable of communicating with each other using signaling messages. Below, the generic radio access network will be called in short a radio network GRAN.
The terminal 935 shown in Fig. 1 is preferably a so-called dual-mode terminal that can serve either as a second-generation GSM terminal or as a third-generation UMTS terminal according to what kind of services are available at each particular location and what the user's communication needs are. It may also be a multimode terminal that can function as terminal of several different communications systems according to need and the services available. Radio access networks and services available to the user are specified in a subscriber identity module 936 (SIM) connected to the terminal.
A conventional way to treat a connection setup request in a congestion situation is to simply reject the connection setup request. Thereafter the mobile station (MS) needs to find a new cell for a new connection attempt. The problem with this approach is a high amount of failed signalling, if the mobile station needs to make several connection attempts to several different cells before folding a cell, which accepts the new connection. Such a situation may arise, when many of the surrounding cells are congested as well. The setup of the connection can therefore also take a long time, which may frustrate the user of the mobile station. One other prior art way of treating a connection setup request congestion situation is to perform the connection setup as requested by the mobile station, and directly thereafter force a handover to a less congested cell. Such a method is quite satisfactory from the viewpoint of the user of the mobile station, since the network accepts the new connection quickly, but such a method causes too much signalling in the form of handover signalling.
At the time of writing this patent application, the RRC specifications of third generation cellular networks the network has no explicit control over which cell the UE selects after an RRC connection setup is rejected in the serving cell. It has also been a problem in the GSM system that after the rejection of signaling connection request, cell reselection and reattempt actions of mobile stations have not been under control of the network.
SUMMARY OF THE INVENTION
An object of the invention is to realize a cell reselection method, which require;; only a small amount of signalling. A further object of the invention is to realize a cell reselection method, which allows the network to have some control over the actions of the mobile stations in a connection rejection situation.
The objects are reached by indicating information affecting the determination of at least one parameter for a new connection attempt in a connection setup rejection message.
The channel reselection signalling method in a cellular telecommunications network according to the invention is characterized by that, what is specified in the characterizing part of the independent claim directed to a channel reselection signalling method in a cellular telecommunications network. The channel reselection method in a mobile communication means of a cellular telecommunication system according to the invention is characterized by that, what is specified in the characterizing part of the independent claim directed to a channel reselection method in a mobile communication means of a cellular telecommunication system. The network element according to the invention is characterized by that, what is specified in the characterizing part of the independent claim directed to a network element. The dependent claims describe further advantageous embodiments of the invention.
According to the invention, a connection setup rejection message is used to direct a mobile communication means to attempt a new connection with certain parameter values such as a certain carrier frequency. A plurality of parameter values may as well be indicated in the message, which allows the network to direct the mobile communication means to make a connection setup request to a specific cell, for example. The connection setup rejection message can be for example the CONNECTION SETUP REJECT message of the RRC protocol.
In one advantageous embodiment, the network indicates a carrier frequency in the connection setup rejection message. After receiving the message, the mobile communication means attempts to set up a new connection to a cell which uses the carrier frequency. There may be more than one such cell. For example, in the WCDMA cellular system under development a plurality of cells may use the same carrier frequency. In such a case, the mobile station needs to select one of the cells for the new attempt.
In a further advantageous embodiment, the network indicates a carrier frequency and information identifying a certaing cell among the cells using the indicated carrier frequency. Such information identifying a certain cell can advantageously be for example a scrambling code corresponding to the cell. Since these parameters define a certain cell, the mobile station does not need to select one cell among those using the carrier frequency, which shortens the time needed for setting up the desired connection.
In a still further advantageous embodiment of the invention, the network indicates ύ " cellular network identifier in the rejection message. This embodiment is advantageous in those cases, when more than one cellular network exists in the same geographical area and the mobile communication means is capable of using at least two, even plurality of different networks. For example, this embodiment allows a UMTS (Universal Mobile Telecommunications System) network to direct a mobile station to make a connection attept to a GSM (Global System for Mobile Communication) network, to a GPRS (General Packet Radio Service) network, to a EDGE-capable (Enhanced Data rates for GSM Evolution) network, or to some other network.
The network may also indicate other parameters in the rejection message, such as for example parameter values for certain timers affecting the timing of the next connection attempt, time difference of the cell tiansmitting the rejection message and the cell suggested by the network, and parameter values identifying certain transmission channels to use. Parameter values for certain transmission channels caii be for example parameter values describing a certain primary common pilot channel (CPICH) if the desired connection is a FDD (frequency division duplex) mode connection of the WCDMA system or a certain primary common control physical channel (CCPCH) if the desired connection is a TDD (time division duplex) mode connection of the WCDMA system.
In a further advantageous embodiment of the invention, the mobile communication means obtains at least one parameter value from a system information message, if the rejection message indicates a certain cause of rejection. For example, if the rejection message indicates that the cause is congestion, the mobile communication means can obtain a carrier frequency from a system information message for the next connection attempt. In an advantageous embodiment of the invention, such a system information message is a System Info Block Type 5 message of the RRC protocol according to certain specifications of the WCDMA system.
BRIEF DESCRIPTION OF THE DRAWINGS
Various embodiments of the invention will be described in detail below, by way of example only, with reference to the accompanying drawings, of which
Figure 1 illustrates a cellular telecommunications network according to prior art,
Figure 2 illustrates a method according to an advantageous embodiment of the invention, and
Figure 3 illustrates a further method according to an advantageous embodiment of the invention.
A description of Figure 1 was given earlier in connection with the description of the state of the art. Same reference numerals are used for similar entities in the figures.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Although a congestion situation typically arises because of shortage in the resources of a whole cell, a congestion situation may as well arise because of shortage in the radio resources of a channel, such as too many users in the channel. A connection rejection message may result from channel congestion as well. Therefore, in the following explanation and especially in the claims the term channel is used to cover a cell as well as a specific channel according to specific frequency, code, etc. parameters. As a handover can mean a change of certain connection parameters such as code or frequency as well as change of the connection from a first cell to a second cell, the selection of a new channel similarly can refer to a change of a certain connection parameter such as code or frequency as well as change of the cell. Channel selection can mean, for example, selection of a new frequency in the same cell or a different cell, selection of a new cell with the same or a different frequency, selection of a different scrambling or channel code on the same or different frequency in the same or different cell, or selection of even another cellular telecori iunication system. Further, the term mobile station is intended to cover any mobile communication means.
A. A FIRST GROUP OF ADVANTAGEOUS EMBODIMENTS
According to a first aspect of the invention, a channel reselection signalling method in a cellular telecommunications network is provided. This aspect of the invention is illustrated in figure 2. According to the method the network 10 indicates in a connection rejection message 30 to a mobile station 20 information about the value of at least one parameter relating to connection setup for use in a new connection setup attempt.
In an advantageous embodiment, said connection rejection message 30 is RRC CONNECTION REJECT message.
In an advantageous embodiment, said information comprises information 100 about a preferred channel for the next connection attempt.
In an advantageous embodiment, said information comprises frequency information 110.
In an advantageous embodiment, said information comprises information 115 about reference time difference between the previously attempted channel and the preferred channel for the next attempt.
In an advantageous embodiment, said information comprises information 120 about a primary CPICH channel (PCPICH).
In an advantageous embodiment, said information comprises information 125 about a primary CCPCH channel.
In an advantageous embodiment, said information comprises scrambling code information 130 corresponding to a certain preferred channel.
In an advantageous embodiment, said information comprises channel code information 135 corresponding to a certain preferred channel. In an advantageous embodiment, said information comprises information 140 about a second channelular telecommunication network.
B. A SECOND GROUP OF ADVANTAGEOUS EMBODIMENTS
According to a second aspect of the invention, a a channel reselection method in a mobile communication means of a cellular telecommunication system is provided. This aspect of the invention is illustrated in figure 3. According to an advantageous embodiment of the invention the method comprises the steps of
- receiving 200 of a connection rejection message,
- observing 210 at least one parameter of said connection rejection message, and - setting 220 the value of at least one parameter for a new connection attempt at least in part on the basis of information in at least one parameter of said connection rejection message.
According to a further advantageous embodiment of the invention, said connection rejection message is a RRC CONNECTION REJECT message.
In a further advantageous embodiment of the invention, if a predetermined parameter of said connection rejection message has a predetermined value, the value o at least one parameter for a new connection attempt is obtained from a system information message.
According to a further advantageous embodiment of the invention, the method further comprises steps of
- setting of a reception frequency on the basis of the value of a parameter of said connection rejection message,
- selecting of a channel tiansnύtting on said reception frequency,
- initiating a connection setup procedure.
According to an advantageous embodiment of the invention, the reception frequency can be for example a UTRA (UMTS Terrestrial Radio Access) carrier frequency. On that frequency, the UE selects a suitable cell to camp on. Candidate cells for this selection are those cells on that frequency, which the UE was monitoring before initiating the original RRC connection setup procedure resulting in the rejection, message. If no suitable cell is found, the UE can use for example the stored information cell selection procedure in order to find a suitable cell to camp on. After having camped on a cell, the UE advantageously re-initiates the RRC connection setup procedure. The stored information cell selection procedure is described for example in the 3GPP specification TS 25.304 "UE Procedures in Idle Mode". According to a further advantageous embodiment of the invention, the method further comprises the steps of
- setting of a reception frequency on the basis of the value of a parameter of said connection rejection message, - setting a specific channel scrambling code on the basis of the value of a parameter of said connection rejection message, and
- initiating a connection setup procedure.
According to a further advantageous embodiment of the invention, the method further comprises the steps of - setting of a reception frequency on the basis of the value of a parameter of said connection rejection message,
- setting a specific channel code on the basis of the value of a parameter of said connection rejection message, and
- initiating a connection setup procedure.
According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a timing value on the basis of the value of a parameter of said connection rejection message.
According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a reception frequency on the basis of the value of a parameter of said connection rejection message
According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a timing value on the basis of the value of & parameter of said connection rejection message.
According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a scrambling code parameter on the basis of the value of a parameter of said connection rejection message.
According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a channel code parameter on the basis of the value of a parameter of said connection rejection message.
According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a parameter describing a certain primary CPICH channel on the basis of the value of a parameter of said connection rejection message. According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a parameter describing a certain primary CCPCH channel on the basis of the value of a parameter of said connection rejection message.
According to a further advantageous embodiment of the invention, the method further comprises the step of setting of a parameter identifying a second cellular telecommunication network on the basis of the value of a parameter of said connection rejection message.
According to a further advantageous embodiment of the invention, the method further comprises the step of starting a new connection attempt at least partly according to the value of the parameter of said connection rejection message.
C. A THIRD GROUP OF ADVANTAGEOUS EMBODIMENTS
According to a third aspect of the invention, a network element of a cellular telecommunications network is provided. In an advantageous embodiment of the invention the network element is arranged to indicate in a connection rejection message to a mobile station information about the value of at least one parameter relating to connection setup for use in a new connection setup attempt.
According to a further advantageous embodiment concerning a network element, the network element is a network element of a radio access network of a cellular telecommunications network.
According to a further advantageous embodiment concerning a network element, the network element is a radio network controller.
According to a further advantageous embodiment concerning a network element, said connection rejection message is RRC CONNECTION REJECT message.
According to a further advantageous embodiment concerning a network element said information comprises information about a preferred channel for the next connection attempt.
According to a further advantageous embodiment concerning a network element, said information comprises frequency information. According to a further advantageous embodiment concerning a network element, said information comprises information about reference time difference between the previously attempted channel and the preferred channel for the next attempt.
According to a further advantageous embodiment concerning a network element, said information comprises information about a primary CPICH channel.
According to a further advantageous embodiment concerning a network element, said information comprises information about a primary CCPCH channel.
According to a further advantageous embodiment concerning a network element, said information comprises scrambling code information corresponding to a certain preferred channel.
According to a further advantageous embodiment concerning a network element, said information comprises channel code information corresponding to a certain preferred channel.
According to a further advantageous embodiment concerning a network element, said information comprises information about a second cellular telecommunication network.
D. FURTHER CONSIDERATIONS
The invention has several advantages. For example, the invention reduces signalling between a mobile telecommunication means and a network. No handover signalling is needed, as new information for setting up a new connection can be informed to the mobile in a rejection message.
The invention is applicable in many different cellular telecommunication systems, such as the UMTS system or the GSM system. The invention is applicable in any such cellular telecommunication system, in which the cellular telecommunication network sends a rejection message as a response to a connection setup request from a mobile station, if the network is unable to provide the requested connection.
The name of a given functional entity, such as the radio network controller, is often different in the context of different cellular telecommunication systems. For example, in the GSM system the functional entity corresponding to a radio network controller (RNC) is the base station controller (BSC). Therefore, the term radio network controller in the claims is intended to cover all corresponding functional entities regardless of the term used for the entity in the particular cellular tele- communication system. Further, the various message names such as the CONNECTION SETUP REJECT message name are intended to be examples only, and the invention is not limited to using the message names recited in this specification.
In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention. While a preferred embodiment of the invention has been described in detail, it should be apparent that many modifications and variations thereto are possible, all of which fall within the true spirit and scope of the invention.

Claims

Claims
1. Channel reselection signalling method in a cellular telecommunications network, characterized in that in the method the network indicates in a connection rejection message to a mobile station information about the value of at least one parameter relating to connection setup for use in a new connection setup attempt.
2. A method according to claim 1, characterized in that said connection rejection message is RRC CONNECTION REJECT message.
3. A method according to claim 1, characterized in that said information comprises information about a preferred channel for the next connection attempt.
4. A method according to claim 1, characterized in that said information comprises frequency information.
5. A method according to claim 1, characterized in that said information comprises information about reference time difference between the previously attempted channel and the preferred channel for the next attempt.
6. A method according to claim 1, characterized in that said information comprises information about a primary CPICH channel.
7. A method according to claim 1, characterized in that said information comprises information about a primary CCPCH channel.
8. A method according to claim 1, characterized in that said information comprises scrambling code information corresponding to a certain preferred channel.
9. A method according to claim 1, characterized in that said informatiori comprises channel code information corresponding to a certain preferred channel.
10. A method according to claim 1, characterized in that said information comprises information about a second cellular telecommunication network.
11. A channel reselection method in a mobile con runication means of a cellular telecommunication system, characterized in that the method comprises the steps of - receiving of a connection rejection message, - observing at least one parameter of said connection rejection message, and - setting the value of at least one parameter for a new connection attempt at least in part on the basis of information in at least one parameter of said connection rejection message.
12. A method according to claim 11, characterized in that said connection rejection message is a RRC CONNECTION REJECT message.
13. A method according to claim 11, characterized in that if a predetermined parameter of said connection rejection message has a predetermined value, the value of at least one parameter for a new connection attempt is obtained from a system information message.
14. A method according to claim 11, characterized in that the method further comprises steps of
- setting of a reception frequency on the basis of the value of a parameter of said connection rejection message,
- selecting of a channel tiansmitting on said reception frequency, and - initiating a connection setup procedure.
15. A method according to claim 11, characterized in that the method further comprises the steps of
- setting of a reception frequency on the basis of the value of a parameter of said connection rejection message, - setting a specific channel scrambling code on the basis of the value of a parameter of said connection rejection message, and
- initiating a connection setup procedure.
16. A method according to claim 11, characterized in that the method further comprises the steps of - setting of a reception frequency on the basis of the value of a parameter of said connection rejection message,
- setting a specific channel code on the basis of the value of a parameter of said connection rejection message, and
- initiating a connection setup procedure.
17. A method according to claim 16, characterized in that the method further comprises the step of setting of a timing value on the basis of the value of a parameter of said connection rejection message.
18. A method according to claim 11, characterized in that the method further comprises the step of setting of a reception frequency on the basis of the value of a parameter of said connection rejection message
19. A method according to claim 11, characterized in that the method further comprises the step of setting of a timing value on the basis of the value of a parameter of said connection rejection message.
20. A method according to claim 11, characterized in that the method further comprises the step of setting of a scrambling code parameter on the basis of the value of a parameter of said connection rejection message.
21. A method according to claim 11, characterized in that the method further comprises the step of setting of a channel code parameter on the basis of the value of a parameter of said connection rejection message.
22. A method according to claim 11, characterized in that the method further comprises the step of setting of a parameter describing a certain primary CPICH channel on the basis of the value of a parameter of said connection rejection message.
23. A method according to claim 11, characterized in that the method furth ;:; comprises the step of setting of a parameter describing a certain primary CCPCH channel on the basis of the value of a parameter of said connection rejection message.
24. A method according to claim 11, characterized in that the method further comprises the step of setting of a parameter identifying a second cellular telecommunication network on the basis of the value of a parameter of said connection rejection message.
25. A method according to claim 12, characterized in that the method further comprises the step of starting a new connection attempt at least partly according to the value of the parameter of said connection rejection message.
26. A network element of a cellular telecommunications network, characterized in that the network element is arranged to indicate in a connection rejection message to a mobile station information about the value of at least one parameter relating to connection setup for use in a new connection setup attempt.
27. A network element according to claim 26, characterized in that the network element is a network element of a radio access network of a cellular telecommunications network.
28. A network element according to claim 26, characterized in that the network element is a radio network controller.
29. A network element according to claim 26, characterized in that said connection rejection message is RRC CONNECTION REJECT message.
30. A network element according to claim 26, characterized in that said information comprises information about a preferred channel for the next connection attempt.
31. A network element according to claim 26, characterized in that said information comprises frequency information.
32. A network element according to claim 26, characterized in that said information comprises information about reference time difference between the previously attempted channel and the preferred channel for the next attempt.
33. A network element according to claim 26, characterized in that said information comprises information about a primary CPICH channel.
34. A network element according to claim 26, characterized in that said information comprises information about a primary CCPCH channel.
35. A network element according to claim 26, characterized in that said information comprises scrambling code information corresponding to a certain preferred channel.
36. A network element according to claim 26, characterized in that said information comprises channel code information corresponding to a certain preferred channel.
37. A network element according to claim 26, characterized in that said information comprises information about a second cellular telecommunication network.
PCT/FI2001/000038 2000-01-17 2001-01-17 Cell reselection signalling method WO2001054442A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2001553330A JP2003520537A (en) 2000-01-17 2001-01-17 Cell reselection signaling method
BRPI0107654A BRPI0107654B1 (en) 2000-01-17 2001-01-17 channel reselection signaling processes in a cellular telecommunications network and channel reselection in a mobile communication medium of a cellular telecommunications system, and, network element of a cellular telecommunications network
DK01942843.2T DK1249151T3 (en) 2000-01-17 2001-01-17 Method of Cell Selection Signaling
CA002395586A CA2395586C (en) 2000-01-17 2001-01-17 Cell reselection signalling method
AU28540/01A AU766819B2 (en) 2000-01-17 2001-01-17 Cell reselection signalling method
EP01942843A EP1249151B1 (en) 2000-01-17 2001-01-17 Cell reselection signalling method
US10/181,078 US7433698B2 (en) 2000-01-17 2001-01-17 Cell reselection signalling method
MXPA02006957A MXPA02006957A (en) 2000-01-17 2001-01-17 Cell reselection signalling method.
ES01942843T ES2389497T3 (en) 2000-01-17 2001-01-17 Methods of cell reselection signaling
US12/229,085 US8364196B2 (en) 2000-01-17 2008-08-19 Cell reselection signalling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20000090 2000-01-17
FI20000090A FI109071B (en) 2000-01-17 2000-01-17 A signaling

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10181078 A-371-Of-International 2001-01-17
US12/229,085 Continuation US8364196B2 (en) 2000-01-17 2008-08-19 Cell reselection signalling method

Publications (1)

Publication Number Publication Date
WO2001054442A1 true WO2001054442A1 (en) 2001-07-26

Family

ID=8557094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2001/000038 WO2001054442A1 (en) 2000-01-17 2001-01-17 Cell reselection signalling method

Country Status (16)

Country Link
US (2) US7433698B2 (en)
EP (1) EP1249151B1 (en)
JP (1) JP2003520537A (en)
KR (1) KR100554710B1 (en)
CN (2) CN1725899B (en)
AU (1) AU766819B2 (en)
BR (1) BRPI0107654B1 (en)
CA (1) CA2395586C (en)
DK (1) DK1249151T3 (en)
ES (1) ES2389497T3 (en)
FI (1) FI109071B (en)
HK (1) HK1087293A1 (en)
MX (1) MXPA02006957A (en)
PT (1) PT1249151E (en)
RU (1) RU2233047C2 (en)
WO (1) WO2001054442A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047302A1 (en) * 2001-11-26 2003-06-05 Qualcomm Incorporated Reducing handover frequency error
EP1814270A1 (en) * 2006-01-26 2007-08-01 Samsung Electronics Co., Ltd. Apparatus and method for connecting call in mobile terminal
WO2008043882A1 (en) * 2006-10-12 2008-04-17 Nokia Corporation Connection establishment method
GB2456126A (en) * 2007-12-17 2009-07-08 Motorola Inc Performing cell re-selection by applying at least one group offset to at least one radio link parameter
WO2012125092A1 (en) * 2011-03-16 2012-09-20 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for managing radio link failure
GB2504698A (en) * 2012-08-06 2014-02-12 Broadcom Corp Faster cell reselection by user equipment upon receiving a RRC connection rejection message

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959719B1 (en) * 2003-05-09 2010-05-25 엘지전자 주식회사 Radio resource management method in mobile communication system
KR100548344B1 (en) * 2003-05-13 2006-02-02 엘지전자 주식회사 Rrc connection method in mobile communication system
BRPI0413816B1 (en) * 2003-08-22 2018-04-10 Samsung Electronics Co., Ltd. CELL SELECTION METHOD FOR RECEIVING PACKAGE DATA IN A MBMS SUPPORT MOBILE COMMUNICATION SYSTEM
US7333795B2 (en) * 2003-10-24 2008-02-19 Motorola Inc. Emergency call placement method
CN100337444C (en) * 2003-12-24 2007-09-12 华为技术有限公司 A method for redirecting packet data gateway in wireless LAN
CN100442879C (en) 2004-03-29 2008-12-10 Ut斯达康通讯有限公司 Method of regulating resource and guiding service in the multi-mode radio network
GB2416269A (en) * 2004-04-16 2006-01-18 Nokia Corp Cell selection and re-selection
AU2005203267B2 (en) 2004-07-27 2007-10-25 Samsung Electronics Co., Ltd. Method and apparatus for selecting frequency layer for connected mode UE in an MBMS mobile communication system
US20060094396A1 (en) * 2004-10-28 2006-05-04 Sharada Raghuram Apparatus and method for connecting an emergency call
US20060252430A1 (en) * 2005-02-08 2006-11-09 Nokia Corporation Frequency layer dispersion
DE102005015111A1 (en) * 2005-04-01 2006-10-05 Siemens Ag Retention of data connections when changing the communication network
US8437288B2 (en) * 2006-03-07 2013-05-07 Qualcomm Incorporated Network selection by wireless terminals
KR100895180B1 (en) 2006-04-14 2009-04-24 삼성전자주식회사 Method for Radio Resource Control Connection Setup and Apparatus for the same
KR100827615B1 (en) * 2006-11-17 2008-05-07 삼성전자주식회사 Apparatus and method for congestion solution in wideband code division multiple access system
CN101242349A (en) * 2007-02-08 2008-08-13 华为技术有限公司 Method for transmitting data between terminal and network and system, network and terminal
KR101471559B1 (en) 2007-12-11 2014-12-11 삼성전자주식회사 Apparatus and method for controlling entry of mobile station in broadband wireless communication system
WO2009099362A1 (en) * 2008-02-08 2009-08-13 Telefonaktiebolaget L M Ericsson (Publ) Method and user equipment in a communication network
US8813168B2 (en) 2008-06-05 2014-08-19 Tekelec, Inc. Methods, systems, and computer readable media for providing nested policy configuration in a communications network
JP4493707B2 (en) * 2008-08-07 2010-06-30 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method, mobile station and exchange
CN101677449A (en) * 2008-09-19 2010-03-24 中兴通讯股份有限公司 Cell reselecting method and terminal
US8996005B2 (en) * 2009-01-23 2015-03-31 Htc Corporation Method of handling cell change and related apparatus
EP2257117A1 (en) 2009-05-28 2010-12-01 Thomson Telecom Belgium System and method for redirecting a mobile device
JP5150601B2 (en) * 2009-10-20 2013-02-20 株式会社エヌ・ティ・ティ・ドコモ Mobile communication terminal, mobile communication control apparatus, mobile communication system, and mobile communication method
US8787174B2 (en) * 2009-12-31 2014-07-22 Tekelec, Inc. Methods, systems, and computer readable media for condition-triggered policies
KR101227529B1 (en) 2010-01-08 2013-01-31 엘지전자 주식회사 Method and apparatus for receiving a downlink signal in a wireless communication system supporting carrier aggregation
US8838106B2 (en) * 2010-02-23 2014-09-16 Apple Inc. Method and apparatus for cell reselection
US9185510B2 (en) * 2010-03-03 2015-11-10 Tekelec, Inc. Methods, systems, and computer readable media for managing the roaming preferences of mobile subscribers
US9917700B2 (en) 2010-03-15 2018-03-13 Tekelec, Inc. Systems, methods, and computer readable media for policy enforcement correlation
US8812020B2 (en) 2010-10-15 2014-08-19 Tekelec, Inc. Methods, systems, and computer readable media for location-based policy enhancement
US8626156B2 (en) 2010-10-20 2014-01-07 Tekelec, Inc. Methods, systems, and computer readable media for selective policy enhancement (PE) for high-usage roamers
US8681622B2 (en) 2010-12-17 2014-03-25 Tekelec, Inc. Policy and charging rules function (PCRF) and performance intelligence center (PIC) based congestion control
JP5661207B2 (en) 2011-03-18 2015-01-28 テケレック・インコーポレイテッドTekelec, Inc. Method, system, and computer-readable medium for diameter-based guidance of mobile device network access
WO2012154674A2 (en) 2011-05-06 2012-11-15 Tekelec, Inc. Methods, systems, and computer readable media for steering a subscriber between access networks
US9860390B2 (en) 2011-08-10 2018-01-02 Tekelec, Inc. Methods, systems, and computer readable media for policy event record generation
JP6039680B2 (en) * 2011-11-04 2016-12-07 エルジー エレクトロニクス インコーポレイティド Cell reselection method applying highest priority in wireless communication system and apparatus supporting the same
US20150163847A1 (en) * 2011-12-05 2015-06-11 Srikathyayani Srikanteswara Techniques for managing the transfer of a wireless connection between wireless networks, channels or bands
JP6514639B2 (en) 2012-07-14 2019-05-15 テケレック・インコーポレイテッドTekelec, Inc. Method, system and computer readable medium for dynamically controlling congestion in a radio access network
CN104429103B (en) 2012-07-14 2019-03-08 泰科来股份有限公司 For local method, system and the computer-readable medium for shunting (LBO) based on strategy
WO2014015331A1 (en) 2012-07-20 2014-01-23 Tekelec, Inc. Methods, systems and computer readable media for distributing policy rules to the mobile edge
US9215133B2 (en) 2013-02-20 2015-12-15 Tekelec, Inc. Methods, systems, and computer readable media for detecting orphan Sy or Rx sessions using audit messages with fake parameter values
WO2014173427A1 (en) 2013-04-22 2014-10-30 Nokia Solutions And Networks Oy Incoming call
US10117127B2 (en) 2015-07-08 2018-10-30 Oracle International Corporation Methods, systems, and computer readable media for communicating radio access network congestion status information for large numbers of users
US10225762B2 (en) 2017-03-28 2019-03-05 Oracle International Corporation Methods, systems, and computer readable media for message flood suppression during access node-gateway (AN-GW) unavailability and after AN-GW restoration
US10237418B2 (en) 2017-04-21 2019-03-19 Oracle International Corporation Methods, systems, and computer readable media for charging based on radio congestion in mobile networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047154A1 (en) * 1996-06-07 1997-12-11 Qualcomm Incorporated Method and apparatus for performing idle handoff in a multiple access communication system
US5724665A (en) 1993-11-24 1998-03-03 Lucent Technologies Inc. Wireless communication base station
WO2000016581A1 (en) * 1998-09-16 2000-03-23 Nokia Mobile Phones Limited Improved method and arrangement for changing cells
WO2000067511A1 (en) * 1999-04-30 2000-11-09 Nokia Corporation An improved method and arrangement for managing cell reselection in a terminal for a cellular system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654879A (en) * 1985-03-29 1987-03-31 Itt Corporation Cellular mobile radio subscriber location detection
US4670899A (en) * 1985-05-31 1987-06-02 Northern Telecom Limited Load balancing for cellular radiotelephone system
JP3278865B2 (en) * 1991-06-28 2002-04-30 日本電気株式会社 Traffic control method
FI91345C (en) * 1992-06-24 1994-06-10 Nokia Mobile Phones Ltd A method for enhancing handover
US5604744A (en) * 1992-10-05 1997-02-18 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels for multiple access radiocommunication
US5701301A (en) * 1993-06-28 1997-12-23 Bellsouth Corporation Mediation of open advanced intelligent network in SS7 protocol open access environment
US6088590A (en) * 1993-11-01 2000-07-11 Omnipoint Corporation Method and system for mobile controlled handoff and link maintenance in spread spectrum communication
US6101399A (en) * 1995-02-22 2000-08-08 The Board Of Trustees Of The Leland Stanford Jr. University Adaptive beam forming for transmitter operation in a wireless communication system
FI100575B (en) * 1995-05-17 1997-12-31 Nokia Mobile Phones Ltd Method for improving handover and connection reliability and cellular radio system
JP2656758B2 (en) 1995-06-20 1997-09-24 日本電気移動通信株式会社 Channel switching method between wireless zones in mobile communication system
US5826169A (en) * 1995-09-25 1998-10-20 Motorola, Inc. Admission control system and method in space-based mobile telecommunication system
US5666356A (en) * 1995-10-04 1997-09-09 Motorola, Inc. Method and apparatus for controlling calls in a code division multiple access system
US5726981A (en) * 1995-12-21 1998-03-10 Nokia Mobile Phones Limited Methods for making active channel measurements in a personal base station environment
US5903840A (en) * 1996-01-16 1999-05-11 Telefonaktiebolaget Im Ericsson (Publ) System and method for adaptive measurement collection and handoff queuing in a radio telecommunications network
JP2897711B2 (en) * 1996-02-05 1999-05-31 日本電気株式会社 Transmission control system
JP3204088B2 (en) 1996-05-10 2001-09-04 三菱電機株式会社 Wireless communication control device and wireless communication control method
US5740533A (en) * 1996-06-03 1998-04-14 Motorola, Inc. Congestion control system and method for efficient multi-frequency messaging
US5953665A (en) * 1996-12-26 1999-09-14 Nokia Mobile Phones Limited Method and apparatus for digital control channel (DCCH) scanning and selection in a cellular telecommunications network
JPH10191441A (en) 1996-12-26 1998-07-21 Nec Corp Mobile body communication system
US5999816A (en) 1997-02-18 1999-12-07 Qualcomm Incorporated Method and apparatus for performing mobile assisted hard handoff between communication systems
US5960339A (en) * 1997-06-03 1999-09-28 At & T Corp Analog-to-digital transition: selecting the optimal cellular radio mix
FI105639B (en) * 1997-06-25 2000-09-15 Nokia Mobile Phones Ltd An improved method for cell switching
US6282419B1 (en) * 1997-08-20 2001-08-28 Ericsson Inc Apparatus and method for mobile terminal rescans during roaming
US5956368A (en) * 1997-08-29 1999-09-21 Telefonaktiebolaget Lm Ericsson Downlink channel handling within a spread spectrum communications system
US6112098A (en) * 1997-11-26 2000-08-29 International Business Machines Corporation Cordless or wireless system protocol for providing reliable channel connections
JPH11275623A (en) * 1998-03-20 1999-10-08 Fujitsu Ltd Method for selecting zone according to circuit state in mobile radio communication system
SE522542C2 (en) * 1998-03-26 2004-02-17 Telia Ab Method for redistributing traffic load on a cellular cellular telephone system
JP3109504B2 (en) * 1998-03-27 2000-11-20 日本電気株式会社 Cellular system, method for avoiding adjacent frequency interference in cellular system, and mobile station
US6240287B1 (en) * 1998-10-06 2001-05-29 Lucent Technologies Inc. Processing overload control at base stations of cellular wireless communication systems
US6185423B1 (en) * 1999-05-28 2001-02-06 3Com Corporation Method and apparatus for selecting a communication channel in a communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724665A (en) 1993-11-24 1998-03-03 Lucent Technologies Inc. Wireless communication base station
WO1997047154A1 (en) * 1996-06-07 1997-12-11 Qualcomm Incorporated Method and apparatus for performing idle handoff in a multiple access communication system
WO2000016581A1 (en) * 1998-09-16 2000-03-23 Nokia Mobile Phones Limited Improved method and arrangement for changing cells
WO2000067511A1 (en) * 1999-04-30 2000-11-09 Nokia Corporation An improved method and arrangement for managing cell reselection in a terminal for a cellular system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047302A1 (en) * 2001-11-26 2003-06-05 Qualcomm Incorporated Reducing handover frequency error
US7580390B2 (en) 2001-11-26 2009-08-25 Qualcomm Incorporated Reducing handover frequency error
EP1814270A1 (en) * 2006-01-26 2007-08-01 Samsung Electronics Co., Ltd. Apparatus and method for connecting call in mobile terminal
US8000705B2 (en) 2006-01-26 2011-08-16 Samsung Electronics Co., Ltd Apparatus and method for connecting call in mobile terminal
WO2008043882A1 (en) * 2006-10-12 2008-04-17 Nokia Corporation Connection establishment method
GB2456126A (en) * 2007-12-17 2009-07-08 Motorola Inc Performing cell re-selection by applying at least one group offset to at least one radio link parameter
GB2456126B (en) * 2007-12-17 2010-01-27 Motorola Inc Method and apparatus for performing cell re-selection
WO2012125092A1 (en) * 2011-03-16 2012-09-20 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for managing radio link failure
GB2504698A (en) * 2012-08-06 2014-02-12 Broadcom Corp Faster cell reselection by user equipment upon receiving a RRC connection rejection message

Also Published As

Publication number Publication date
CN1394453A (en) 2003-01-29
RU2002122112A (en) 2004-02-10
MXPA02006957A (en) 2002-12-13
CA2395586C (en) 2005-08-16
KR20020064966A (en) 2002-08-10
HK1087293A1 (en) 2006-10-06
CN1725899B (en) 2011-01-26
JP2003520537A (en) 2003-07-02
KR100554710B1 (en) 2006-02-24
BRPI0107654B1 (en) 2015-09-08
RU2233047C2 (en) 2004-07-20
FI20000090A (en) 2001-07-18
US20090029712A1 (en) 2009-01-29
AU2854001A (en) 2001-07-31
FI109071B (en) 2002-05-15
US20030003928A1 (en) 2003-01-02
DK1249151T3 (en) 2012-09-10
CN1725899A (en) 2006-01-25
US7433698B2 (en) 2008-10-07
EP1249151B1 (en) 2012-06-13
CN100508657C (en) 2009-07-01
US8364196B2 (en) 2013-01-29
FI20000090A0 (en) 2000-01-17
ES2389497T3 (en) 2012-10-26
EP1249151A1 (en) 2002-10-16
PT1249151E (en) 2012-08-03
CA2395586A1 (en) 2001-07-26
BR0107654A (en) 2002-10-15
AU766819B2 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
US7433698B2 (en) Cell reselection signalling method
KR100713240B1 (en) Routing procedure for a communication system
FI114077B (en) ID booking method
KR100830914B1 (en) Data-capable network prioritization with reduced delays in data service
KR100550305B1 (en) A cell selection method
CN102077645B (en) Method and system for the common management of communication resources in a telecommunications network having distinct communication resources pools
EP1802158B1 (en) Method for handling periodic PLMN search in RRC connected mode in UMTS system
US20100216464A1 (en) Cell selection in mobile communications
US8064383B2 (en) Method for requesting radio resources for uplink packet transmission in GPRS system
EP1443788B1 (en) Frequency searching method and apparatus in mobile communications
EP1260112B1 (en) Intersystem handover with modified parameters
KR100657610B1 (en) Method for entering wcdma private network and registering
EP3363238A1 (en) Systems and methods for handling non-access stratum (nas) incompatibility and scope of an assigned dcn

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001942843

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 28540/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 018032141

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2395586

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027008333

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1040/CHE

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2001 553330

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10181078

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/006957

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1020027008333

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2002 2002122112

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2001942843

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 28540/01

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027008333

Country of ref document: KR