WO2001058981A1 - Continuous process for producing poly(trimethylene terephthalate) - Google Patents

Continuous process for producing poly(trimethylene terephthalate) Download PDF

Info

Publication number
WO2001058981A1
WO2001058981A1 PCT/US2000/021779 US0021779W WO0158981A1 WO 2001058981 A1 WO2001058981 A1 WO 2001058981A1 US 0021779 W US0021779 W US 0021779W WO 0158981 A1 WO0158981 A1 WO 0158981A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
flasher
trimethylene terephthalate
continuously
terephthalate
Prior art date
Application number
PCT/US2000/021779
Other languages
French (fr)
Inventor
Carl J. Giardino
David B. Griffith
Chungfah Howard Ho
James M. Howell
Michelle Hoyt Watkins
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23998724&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001058981(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to EP00953909A priority Critical patent/EP1259558B2/en
Priority to MXPA02007740A priority patent/MXPA02007740A/en
Priority to CA 2396469 priority patent/CA2396469C/en
Priority to CN008188939A priority patent/CN1433439B/en
Priority to BR0017106A priority patent/BR0017106B1/en
Priority to DE2000610342 priority patent/DE60010342T3/en
Priority to JP2001558125A priority patent/JP4578752B2/en
Priority to AT00953909T priority patent/ATE265486T1/en
Publication of WO2001058981A1 publication Critical patent/WO2001058981A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a continuous process for the production of poly(trimethylene terephthalate), which is also commonly referred to as poly(l,3- propylene terephthalate).
  • the process of the invention can be used as part of a four- vessel process, the first vessel being either an ester exchanger for producing a mixture of bis-3-hydroxypropyl terephthalate and low molecular weight polymers of 1,3- propanediol and terephthalic acid having an average degree of polymerization of 15 or less from dimethylterephthalate and 1,3-propanediol or a reactor for producing the starting material from terephthalic acid and 1,3-propanediol.
  • the second vessel is a flasher
  • the third vessel is a prepolymerizer
  • the fourth vessel is a final polymerizer or finisher.
  • a continuous process for the production of poly(trimethylene terephthalate) comprising the steps of:
  • liquid feed mixture comprising a catalyst and at least one of bis-3-hydroxypropyl terephthalate and low molecular weight polyesters of 1,3-propanediol and terephthalic acid, and the liquid feed mixture having a mole ratio of propylene groups to terephthalate groups of 1.1 to 2.2;
  • Figure 1 is a schematic representation of an apparatus useful in carrying out the process of the invention.
  • the process of the invention is part of a continuous, four-vessel, four-stage process for the production of poly(trimethylene terephthalate).
  • the first stage in the process is either an ester exchange or direct esterification reaction, depending upon whether the starting material for the process is dimethylterephthalate or terephthalic acid.
  • the second stage is the rapid removal of 1,3-propanediol in a flasher, the third stage is a prepolymerization, and the fourth stage is a final polymerization.
  • the feed material for the flasher may be produced either by ester exchange from dimethylterephthalate and 1,3-propanediol or by direct esterification from terephthalic acid and 1,3-propanediol.
  • reaction vessel 10 is a source of monomer and/or oligomers, which are fed to flasher 12.
  • Reaction vessel 10 can be either an ester exchange reactor or a direct esterification reactor.
  • a catalyst is added prior to the esterification or transesterification reaction.
  • Catalysts useful in the ester exchange process include organic and inorganic compounds of titanium, lanthanum, and zinc. Titanium catalysts, such as tetraisopropyl titanate and tetraisobutyl titanate are preferred and are added to the 1,3-propanediol in an amount sufficient to yield 20 to 90 ppm of titanium by weight based on the finished polymer.
  • ester exchange reaction levels produce relatively low unreacted dimethylterephthalate in the ester exchange reaction (less than 5% by weight based on the total weight of the exit stream from the ester exchange), give reasonable reaction rates in the prepolymerization and final polymerization steps, and produce polymer with CIELAB b* color of less than 8.
  • Another useful ester exchange catalyst is lanthanum acetate, which may be added in an amount sufficient to yield 125 to 250 ppm of lanthanum by weight based on the finished polymer. Following the ester exchange reaction, the lanthanum is deactivated by the addition of phosphoric acid in an amount sufficient to yield 10 to 50 ppm of phosphorus by weight based on the finished polymer.
  • Tetraisopropyl titanate or tetraisobutyl titanate is then added as a polycondensation catalyst in an amount sufficient to yield 10 to 50 ppm of titanium by weight based on the finished polymer. Amounts of other ester exchange catalysts are adjusted to give the same effect as the 20 to 90 ppm of titanium.
  • Catalysts useful in the direct esterification process include organo-titanium and organo-tin compounds, which are added to the 1,3-propanediol in an amount sufficient to yield at least 20 ppm of titanium, or at least 50 ppm of tin, respectively, by weight based on the finished polymer.
  • Additional catalyst may be added to the monomer/oligomer mixture after the ester exchange or direct esterification reaction and prior to prepolymerization.
  • the mole ratio of propylene groups to terephthalate groups is maintained at about 1.1 to 2.2, preferably about 1.4 to 1.8, and more preferably about 1.5 entering the flasher. 2. Flasher
  • the monomer/oligomer mixture is pumped from the ester exchanger or direct esterification reactor to flasher 12 by means of a temperature-controlled feed line 11 equipped with pumps and filters.
  • the monomer/oligomer mixture is maintained at a temperature of about 215° to
  • the flasher is a jacketed and heated vessel with an internal heater.
  • the internal heater heats and vaporizes the excess 1,3-propanediol in the feed material.
  • the bubbling of the 1,3-propanediol vapor provides the needed agitation.
  • the excess 1,3-propanediol is removed through vapor line 13 connected to a vacuum source and then condensed.
  • the monomer/oligomer mixture is maintained at a temperature of about 235° to 250°C, preferably about 240° to 245°C, and more preferably about 245°C.
  • the pressure in the flasher is maintained at about 40 to 80 mm of Hg, preferably about 45 to 75 mm Hg, and more preferably about 50 to 70 mm Hg.
  • the monomer/oligomer mixture reacts to form a liquid flasher reaction product comprising a low molecular weight trimethylene terephthalate polymer and releasing 1,3-propanediol as a by-product.
  • the excess 1,3-propanediol is vaporized and continuously removed from the liquid reactants, lowering the 1,3- propanediol to dimethylterephthalate mole ratio to less than about 1.5, preferably less than about 1.3, in the liquid flasher reaction product.
  • the excess 1,3-propanediol that is removed from the flasher can be condensed by means of spray condenser 14. Vapors from vapor line 13 pass into a vertical condenser, where they are sprayed with condensed 1,3-propanediol that has been cooled to a temperature of less than 60°C, preferably less than 50°C.
  • the condensed 1,3-propanediol vapors from flasher 12, together with the 1,3-propanediol spray, flow into hotwell 15 located beneath condenser 14, where they are combined with additional 1,3-propanediol.
  • a portion of the liquid mixture in hotwell 14 is pumped through a cooler to the top of the condenser for use as the condensing spray.
  • the condensed vapors from flasher 12 are combined with the condensed vapors from prepolymerizer 17 in hotwell 15.
  • the flasher reaction product is fed via temperature- controlled feed line 16 to prepolymerizer 17.
  • Prepolymerizer 17 performs the initial polymerization step, which involves removing excess 1,3-propanediol and increasing the product viscosity by building longer chain molecules of polymer.
  • the prepolymerizer is a jacketed and heated vessel with an internal agitator. The agitator provides agitation and creates liquid/vapor surface area for 1,3- propanediol removal.
  • the temperature of liquid reactants in the prepolymerizer is maintained at about 240° to 255°C, preferably about 245° to 250°C, and more preferably about 250°C.
  • the pressure in the prepolymerizer is maintained at about 5 to 30 mm of Hg, preferably about 10 to 20 mm of Hg, and more preferably about 15 mm of Hg.
  • the excess 1,3-propanediol is removed through vapor line 18 connected to a vacuum source and then condensed.
  • One method for condensing the 1 ,3-propanediol vapors from the prepolymerizer is by means of spray condenser 19 similar to that described above for condensing 1,3-propanediol vapors from the flasher.
  • the condensed vapors from prepolymerizer 17 are combined with the condensed vapors from flasher 12 in hotwell 15.
  • the condensed 1,3-propanediol vapors exiting the flasher and prepolymerizer typically contain other reaction by-products such as acrolein and allyl alcohol. It is desirable that the production of by-products such as acrolein and allyl alcohol be minimized because both of these compounds are highly toxic and cause irritation to the eyes and mucous membranes.
  • the amount of acrolein contained in the combined condensed 1,3-propanediol streams exiting the flasher and prepolymerizer is no greater than 100 ppm by weight of condensate, preferably no greater than 60 ppm, and more preferably no greater than 40 ppm.
  • the amount of allyl alcohol contained in the combined condensed 1,3- propanediol streams exiting the flasher and prepolymerizer is no greater than 600 ppm by weight of condensate, preferably no greater than 400 ppm, and more preferably no greater than 250 ppm.
  • Relative viscosity is an indicator of molecular weight. Relative viscosity, often referred to as "LRV,” is the ratio of the viscosity of a solution of 4.75 grams of poly(trimethylene terephthalate) in 100 grams of solution to the viscosity of the solvent itself.
  • the solvent used herein for measuring relative viscosity is hexafluoroisopropanol containing 100 ppm sulfuric acid, and the measurements are made at 25°C.
  • the poly(trimethylene terephthalate) prepolymer that is withdrawn from the prepolymerizer has a relative viscosity of at least about 5, preferably about 5.5 to 7.
  • the residence or hold-up time in the prepolymerizer typically ranges from about 30 to 90 minutes.
  • the liquid reaction product from prepolymerizer 17 is fed via temperature-controlled feed line 20 to final polymerizer or finisher 21.
  • finisher 21 is to increase the molecular chain length or viscosity of the polymer. This is accomplished by using heat, agitation, vacuum and catalyst. It is desirable that the molecular weight of the finished polymer be maximized, so that further processing, e.g., solid state polymerization, can be avoided prior to fiber spinning or other forming operation.
  • the finisher is normally a horizontal cylindrical vessel surrounded by a jacket containing a heating medium, such as Dowtherm vapor.
  • a heating medium such as Dowtherm vapor.
  • Prepolymer from prepolymerizer 17 flows through an inlet into the finisher.
  • An agitator generates large surface areas of thin films of polymer to enhance the mass transfer of 1 ,3-propanediol from the polymer.
  • the temperature of the liquid reactants in the finisher is maintained at about 245° to 265°C, preferably about 250° to 260°C, and more preferably about 255°C.
  • the pressure in the finisher is maintained at about 0.5 to 3.0 mm Hg.
  • the relative viscosity of the poly(trimethylene terephthalate) exiting the finisher is at least about 17, preferably at least about 35, more preferably at least about 40, more preferably at least about 45, and most preferably at least about 50.
  • these relative viscosities correspond to intrinsic viscosities of 0.55 dl g, 0.85 dl/g, 0.91 dl/g, 0.96 dl/g, and 1.0 dl/g, respectively.
  • the viscosity of the finished polymer may be controlled by adjusting finisher pressure or other variables.
  • the residence or hold-up time in the finisher is typically about 1 to 2 hours.
  • 1,3-Propanediol and other gaseous by-products are removed from the finisher through vapor line 22 connected to a vacuum source and then condensed.
  • One method for condensing the 1,3-propanediol vapors from the finisher is by means of spray condenser 23 similar to that described above for condensing 1,3-propanediol vapors from the flasher and prepolymerizer.
  • the condensed vapors from finisher 21 are collected in hotwell 24.
  • the amount of acrolein contained in the condensed 1,3-propanediol stream exiting the finisher is no greater than 200 ppm by weight of condensate, preferably no greater than 100 ppm, and more preferably no greater than 70 ppm.
  • the amount of allyl alcohol contained in the condensed 1,3- propanediol stream exiting the finisher is no greater than 3000 ppm, preferably no greater than 2500 ppm, and more preferably no greater than 1000 ppm.
  • the finished polymer may be pelletized or fed directly to a forming operation, such as fiber spinning, film formation or molding operation. Fibers made from the poly(trimethylene terephthalate) produced by the process of the invention have properties which make them useful in various textile applications, including the manufacture of carpet or apparel. 4. Additives
  • additives may be used in the process of the invention. These include color inhibitors, such as phosphoric acid, delustrants, such as titanium dioxide, dyeability modifiers, pigments and whiteners. If separate ester exchange and polymerization catalysts are used, phosphoric acid (H 3 PO 4 ) or other color inhibitors may be added to minimize or prevent the color forming property of the ester exchange catalyst.
  • color inhibitors such as phosphoric acid
  • delustrants such as titanium dioxide
  • dyeability modifiers such as titanium dioxide
  • pigments and whiteners whiteners
  • phosphoric acid (H 3 PO 4 ) or other color inhibitors may be added to minimize or prevent the color forming property of the ester exchange catalyst.
  • Poly(trimethylene terephthalate) was prepared using an apparatus of the type indicated in the drawing, including an ester exchanger, a flasher, a prepolymerizer and a finisher.
  • a 94.1 lb./hr (42.7 kg/hr) stream of dimethylterephthalate was preheated to a temperature of 185°C and continuously mixed with a 55.3 lb./hr (25.1 kg/hr) stream of catalyzed 1,3-propanediol which was also preheated to a temperature of 185°C, to form a mixture having a mole ratio of 1.5 moles of 1,3- propanediol per mole of dimethylterephthalate.
  • Example 9 the throughput was lowered to 51.4 lb./hr (23.3 kg/hr) of dimethyltereph-thalate and 40.3 lb./hr (18.3 kg/hr) of catalyzed 1,3-propanediol which were combined to form a mixture having a mole ratio of 2.0 moles of 1,3-propanediol per mole of dimethylterephthalate.
  • Example 10 the throughput was lowered still further to 38.2 lb./hr (17.3 kg/hr) of dimethylterephthalate and 30.0 lb./hr (13.6 kg/hr) of catalyzed 1,3-propanediol which were combined to form a mixture having a mole ratio of 2.0 moles of 1,3-propanediol per mole of dimethylterephthalate.
  • the catalyst was tetraisopropyl titanate (Tyzor® TPT, DuPont Performance Chemicals).
  • the tetraisopropyl titanate was added to the 1,3-propanediol in an amount sufficient to yield 30-60 ppm by weight of titanium based on the weight of poly(trimethylene terephthalate) formed in the process.
  • the catalyst level was raised to 70 ppm of titanium.
  • the dimethylterephthalate/catalyzed 1,3-propanediol mixture was fed into the base of an ester exchanger, where the pressure at the base of the ester exchanger was maintained at 825 to 900 mm Hg.
  • Example 1-8 the temperature of the liquid reactants in the ester exchanger was maintained at 230°C, and in Examples 9 and 10, the temperature of liquid reactants in the ester exchanger was maintained at 237°C and 239°C, respectively.
  • the pressure at the top of the ester exchange column was atmospheric.
  • the 1,3-propanediol reacted with the dimethylterephthalate to form bis-3-hydroxypropyl terephthalate monomer and low molecular weight oligomers of 1,3-propanediol and terephthalic acid, liberating methanol vapor, which was continuously removed from the top of the ester exchanger.
  • the monomer/oligomer mixture was continuously removed from the base of the ester exchanger and fed to the inlet of a flasher.
  • the monomers and oligomers reacted to form a low molecular weight trimethylene terephthalate polymer, liberating 1,3-propanediol vapor.
  • the 1,3-propanediol vapor and other gaseous by-products were removed from the top of the flasher and condensed.
  • the low molecular weight trimethylene terephthalate polymer was continuously withdrawn from the flasher and fed to the inlet end of a prepolymerizer.
  • the monomers and oligomers further reacted to form a higher molecular weight poly( trimethylene terephthalate) prepolymer, liberating 1 ,3- propanediol vapor.
  • the 1,3-propanediol vapor and other gaseous by-products were removed from the top of the prepolymerizer, condensed and combined with the condensates from the flasher.
  • the poly(trimethylene terephthalate) prepolymer was continuously withdrawn from the prepolymerizer and fed to the inlet end of a finisher vessel. The temperature of the liquid reactants in the finisher was maintained at 255° to 260°C.
  • the poly(trimethylene terephthalate) prepolymer reacted to form an even higher molecular weight polymer, liberating additional 1 ,3-propanediol vapor.
  • the 1,3-propanediol vapor and other gaseous by-products were continuously removed from the finisher.
  • the poly(trimethylene terephthalate) was continuously removed from the finisher and pelletized.
  • the conditions and results for the continuous polymerization are set forth in Tables I, II and III. In Examples 9 and 10, the levels of polymer and hold-up times in the finisher were reduced, resulting in lower by-product formation and higher relative viscosity (LRV).
  • the acrolein and allyl alcohol levels are given in parts per million (ppm) by weight based on the combined condensates that are removed from the flasher and prepolymerizer and the condensates that are removed from the finisher, respectively.
  • the dipropylene glycol (DPG) levels are given as a weight percent based on the total prepolymer or finished polymer that is removed from the flasher, prepolymerizer and finisher, respectively.
  • the speed of the agitator in the finisher is given in revolutions per minute (RPM).
  • the amount of carboxyl end groups (COOH) in the finished polymer is given in microequivalents per gram based on the total weight of the finished polymer.
  • the level of catalyst is given as parts per million (ppm) by weight of titanium in the finished polymer.

Abstract

A continuous process for the production of poly(trimethylene terephthalate) is disclosed. According to the process, a liquid feed mixture comprising bis-3-hydroxypropyl terephthalate and/or low molecular weight polyesters of 1,3-propanediol and terephthalic acid, the liquid feed mixture having a mole ratio of propylene groups to terephthalate groups of 1.1 to 2.2 is fed to a flasher. A first stream of gaseous by-products is continuously vaporized and removed from the flasher, and a liquid flasher reaction product having a mole ratio of propylene groups to terephthalate groups of less than about 1.5 is continuously withdrawn from the flasher. The liquid flasher reaction product is continuously fed to a prepolymerizer where it is continuously polymerized to form a poly(trimethylene terephthalate) prepolymer and a second stream of gaseous by-products. Poly(trimethylene terephthalate) prepolymer having a relative viscosity of at least about 5 is continuously withdrawn from the prepolymerizer and continuously fed to a final polymerizer, where it is continuously polymerized to form a higher molecular weight poly(trimethylene terephthalate) and a third stream of gaseous by-products. Higher molecular weight poly(trimethylene terephthalate) having a relative viscosity of at least about 17 is continuously withdrawn from the final polymerizer.

Description

TITLE
CONTINUOUS PROCESS FOR PRODUCING
POLY(TRIMETHYLENE TEREPHTHALATE)
Field of the Invention
The present invention relates to a continuous process for the production of poly(trimethylene terephthalate), which is also commonly referred to as poly(l,3- propylene terephthalate). The process of the invention can be used as part of a four- vessel process, the first vessel being either an ester exchanger for producing a mixture of bis-3-hydroxypropyl terephthalate and low molecular weight polymers of 1,3- propanediol and terephthalic acid having an average degree of polymerization of 15 or less from dimethylterephthalate and 1,3-propanediol or a reactor for producing the starting material from terephthalic acid and 1,3-propanediol. The second vessel is a flasher, the third vessel is a prepolymerizer, and the fourth vessel is a final polymerizer or finisher.
Background of the Invention
Continuous, four vessel processes for the production of poly(ethylene terephthalate) are known. For example, Sheller, U.S. Patent No. 3,438,942 discloses a process for the continuous production of poly( ethyl ene terephthalate) comprising ester exchange followed by three polycondensation steps.
Also known are batch processes for the production of poly(trimethylene terephthalate). For example, Doerr et al., U.S. Patent No. 5,340,909 discloses the production of poly(trimethylene terephthalate) using either an ester exchange reaction starting with lower dialkyl terephthalate ester or direct esterification of terephthalic acid followed by a polycondensation reaction, both of which are carried out in batches using an autoclave.
It would be highly desirable to provide a continuous, four-vessel process for the production of poly(trim ethyl ene terephthalate).
It would also be desirable to provide a continuous process for the production of poly(trimethylene terephthalate) in which the production of by-products, such as acrolein and allyl alcohol, is minimized, and in which the molecular weight of the final poly(trimethylene terephthalate) polymer is maximized.
Summary of the Invention 1. A continuous process for the production of poly(trimethylene terephthalate) comprising the steps of:
(a) continuously feeding a liquid feed mixture to a flasher, the liquid feed mixture comprising a catalyst and at least one of bis-3-hydroxypropyl terephthalate and low molecular weight polyesters of 1,3-propanediol and terephthalic acid, and the liquid feed mixture having a mole ratio of propylene groups to terephthalate groups of 1.1 to 2.2;
(b) continuously vaporizing and removing a first stream of gaseous by- products from the flasher, and continuously withdrawing a liquid flasher reaction product having a mole ratio of propylene groups to terephthalate groups of less than about 1.5 from the flasher;
(c) continuously feeding the liquid flasher reaction product to a prepolymerizer, and continuously polymerizing the flasher reaction product in the prepolymerizer to form a poly(trimethylene terephthalate) prepolymer and a second stream of gaseous by-products;
(d) continuously withdrawing the poly(trimethylene terephthalate) prepolymer from the prepolymerizer, the prepolymer having a relative viscosity of at least about 5; (e) continuously feeding the poly(trimethylene terephthalate) prepolymer to a final polymerizer, and continuously polymerizing the poly(trimethylene terephthalate) prepolymer to form a higher molecular weight poly(trimethylene terephthalate) and a third stream of gaseous by-products; and (f) continuously withdrawing the higher molecular weight poly(trimethylene terephthalate) from the final polymerizer, the higher molecular weight poly(trimethylene terephthalate) having a relative viscosity of at least about 17.
Description of the Drawings Figure 1 is a schematic representation of an apparatus useful in carrying out the process of the invention.
Detailed Description of the Preferred Embodiments
The process of the invention is part of a continuous, four-vessel, four-stage process for the production of poly(trimethylene terephthalate). The first stage in the process is either an ester exchange or direct esterification reaction, depending upon whether the starting material for the process is dimethylterephthalate or terephthalic acid. The second stage is the rapid removal of 1,3-propanediol in a flasher, the third stage is a prepolymerization, and the fourth stage is a final polymerization. 1. Production of Feed Materials The feed material for the flasher may be produced either by ester exchange from dimethylterephthalate and 1,3-propanediol or by direct esterification from terephthalic acid and 1,3-propanediol. Both processes yield bis-3-hydroxypropyl terephthalate (referred to as "monomer") and low molecular weight polyesters of 1,3- propanediol and terephthalic acid having an average degree of polymerization of 15 or less (referred to as "oligomers"). As shown in Figure 1, reaction vessel 10 is a source of monomer and/or oligomers, which are fed to flasher 12. Reaction vessel 10 can be either an ester exchange reactor or a direct esterification reactor.
Whether the monomer/oligomer feed mixture is produced by direct esterification from terephthalic acid or ester exchange from dimethylterephthalate, a catalyst is added prior to the esterification or transesterification reaction. Catalysts useful in the ester exchange process include organic and inorganic compounds of titanium, lanthanum, and zinc. Titanium catalysts, such as tetraisopropyl titanate and tetraisobutyl titanate are preferred and are added to the 1,3-propanediol in an amount sufficient to yield 20 to 90 ppm of titanium by weight based on the finished polymer. These levels produce relatively low unreacted dimethylterephthalate in the ester exchange reaction (less than 5% by weight based on the total weight of the exit stream from the ester exchange), give reasonable reaction rates in the prepolymerization and final polymerization steps, and produce polymer with CIELAB b* color of less than 8. Another useful ester exchange catalyst is lanthanum acetate, which may be added in an amount sufficient to yield 125 to 250 ppm of lanthanum by weight based on the finished polymer. Following the ester exchange reaction, the lanthanum is deactivated by the addition of phosphoric acid in an amount sufficient to yield 10 to 50 ppm of phosphorus by weight based on the finished polymer. Tetraisopropyl titanate or tetraisobutyl titanate is then added as a polycondensation catalyst in an amount sufficient to yield 10 to 50 ppm of titanium by weight based on the finished polymer. Amounts of other ester exchange catalysts are adjusted to give the same effect as the 20 to 90 ppm of titanium.
Catalysts useful in the direct esterification process include organo-titanium and organo-tin compounds, which are added to the 1,3-propanediol in an amount sufficient to yield at least 20 ppm of titanium, or at least 50 ppm of tin, respectively, by weight based on the finished polymer.
Additional catalyst may be added to the monomer/oligomer mixture after the ester exchange or direct esterification reaction and prior to prepolymerization.
Whether the monomer/oligomer feed mixture is produced by direct esterification from terephthalic acid or ester exchange from dimethylterephthalate, the mole ratio of propylene groups to terephthalate groups is maintained at about 1.1 to 2.2, preferably about 1.4 to 1.8, and more preferably about 1.5 entering the flasher. 2. Flasher
As shown in Figure 1, the monomer/oligomer mixture is pumped from the ester exchanger or direct esterification reactor to flasher 12 by means of a temperature-controlled feed line 11 equipped with pumps and filters. In the feed lines, the monomer/oligomer mixture is maintained at a temperature of about 215° to
250°C.
The flasher is a jacketed and heated vessel with an internal heater. The internal heater heats and vaporizes the excess 1,3-propanediol in the feed material. The bubbling of the 1,3-propanediol vapor provides the needed agitation. The excess 1,3-propanediol is removed through vapor line 13 connected to a vacuum source and then condensed. In the flasher, the monomer/oligomer mixture is maintained at a temperature of about 235° to 250°C, preferably about 240° to 245°C, and more preferably about 245°C. The pressure in the flasher is maintained at about 40 to 80 mm of Hg, preferably about 45 to 75 mm Hg, and more preferably about 50 to 70 mm Hg.
In the flasher, the monomer/oligomer mixture reacts to form a liquid flasher reaction product comprising a low molecular weight trimethylene terephthalate polymer and releasing 1,3-propanediol as a by-product. The excess 1,3-propanediol is vaporized and continuously removed from the liquid reactants, lowering the 1,3- propanediol to dimethylterephthalate mole ratio to less than about 1.5, preferably less than about 1.3, in the liquid flasher reaction product.
The excess 1,3-propanediol that is removed from the flasher can be condensed by means of spray condenser 14. Vapors from vapor line 13 pass into a vertical condenser, where they are sprayed with condensed 1,3-propanediol that has been cooled to a temperature of less than 60°C, preferably less than 50°C. The condensed 1,3-propanediol vapors from flasher 12, together with the 1,3-propanediol spray, flow into hotwell 15 located beneath condenser 14, where they are combined with additional 1,3-propanediol. A portion of the liquid mixture in hotwell 14 is pumped through a cooler to the top of the condenser for use as the condensing spray. The condensed vapors from flasher 12 are combined with the condensed vapors from prepolymerizer 17 in hotwell 15.
3. Prepolymerization
As shown in Figure 1, the flasher reaction product is fed via temperature- controlled feed line 16 to prepolymerizer 17. Prepolymerizer 17 performs the initial polymerization step, which involves removing excess 1,3-propanediol and increasing the product viscosity by building longer chain molecules of polymer. The prepolymerizer is a jacketed and heated vessel with an internal agitator. The agitator provides agitation and creates liquid/vapor surface area for 1,3- propanediol removal. The temperature of liquid reactants in the prepolymerizer is maintained at about 240° to 255°C, preferably about 245° to 250°C, and more preferably about 250°C. The pressure in the prepolymerizer is maintained at about 5 to 30 mm of Hg, preferably about 10 to 20 mm of Hg, and more preferably about 15 mm of Hg.
The excess 1,3-propanediol is removed through vapor line 18 connected to a vacuum source and then condensed. One method for condensing the 1 ,3-propanediol vapors from the prepolymerizer is by means of spray condenser 19 similar to that described above for condensing 1,3-propanediol vapors from the flasher. The condensed vapors from prepolymerizer 17 are combined with the condensed vapors from flasher 12 in hotwell 15.
The condensed 1,3-propanediol vapors exiting the flasher and prepolymerizer typically contain other reaction by-products such as acrolein and allyl alcohol. It is desirable that the production of by-products such as acrolein and allyl alcohol be minimized because both of these compounds are highly toxic and cause irritation to the eyes and mucous membranes. According to the process of the invention, the amount of acrolein contained in the combined condensed 1,3-propanediol streams exiting the flasher and prepolymerizer is no greater than 100 ppm by weight of condensate, preferably no greater than 60 ppm, and more preferably no greater than 40 ppm. The amount of allyl alcohol contained in the combined condensed 1,3- propanediol streams exiting the flasher and prepolymerizer is no greater than 600 ppm by weight of condensate, preferably no greater than 400 ppm, and more preferably no greater than 250 ppm.
Relative viscosity is an indicator of molecular weight. Relative viscosity, often referred to as "LRV," is the ratio of the viscosity of a solution of 4.75 grams of poly(trimethylene terephthalate) in 100 grams of solution to the viscosity of the solvent itself. The solvent used herein for measuring relative viscosity is hexafluoroisopropanol containing 100 ppm sulfuric acid, and the measurements are made at 25°C. The poly(trimethylene terephthalate) prepolymer that is withdrawn from the prepolymerizer has a relative viscosity of at least about 5, preferably about 5.5 to 7.
The residence or hold-up time in the prepolymerizer typically ranges from about 30 to 90 minutes.
4. Final Polymerization As shown in Figure 1, the liquid reaction product from prepolymerizer 17 is fed via temperature-controlled feed line 20 to final polymerizer or finisher 21. The major purpose of finisher 21 is to increase the molecular chain length or viscosity of the polymer. This is accomplished by using heat, agitation, vacuum and catalyst. It is desirable that the molecular weight of the finished polymer be maximized, so that further processing, e.g., solid state polymerization, can be avoided prior to fiber spinning or other forming operation.
The finisher is normally a horizontal cylindrical vessel surrounded by a jacket containing a heating medium, such as Dowtherm vapor. Prepolymer from prepolymerizer 17 flows through an inlet into the finisher. An agitator generates large surface areas of thin films of polymer to enhance the mass transfer of 1 ,3-propanediol from the polymer.
The temperature of the liquid reactants in the finisher is maintained at about 245° to 265°C, preferably about 250° to 260°C, and more preferably about 255°C. The pressure in the finisher is maintained at about 0.5 to 3.0 mm Hg.
Finished polymer is removed from the finisher through an outlet by means of a pump. The relative viscosity of the poly(trimethylene terephthalate) exiting the finisher is at least about 17, preferably at least about 35, more preferably at least about 40, more preferably at least about 45, and most preferably at least about 50. When correlated to intrinsic viscosity measurements in 60/40 weight percent phenol/1, 1,2,2- tetrachloroethane following ASTM D 4603-96, these relative viscosities correspond to intrinsic viscosities of 0.55 dl g, 0.85 dl/g, 0.91 dl/g, 0.96 dl/g, and 1.0 dl/g, respectively. The viscosity of the finished polymer may be controlled by adjusting finisher pressure or other variables. The residence or hold-up time in the finisher is typically about 1 to 2 hours.
1,3-Propanediol and other gaseous by-products are removed from the finisher through vapor line 22 connected to a vacuum source and then condensed. One method for condensing the 1,3-propanediol vapors from the finisher is by means of spray condenser 23 similar to that described above for condensing 1,3-propanediol vapors from the flasher and prepolymerizer. The condensed vapors from finisher 21 are collected in hotwell 24.
According to the present invention, the amount of acrolein contained in the condensed 1,3-propanediol stream exiting the finisher is no greater than 200 ppm by weight of condensate, preferably no greater than 100 ppm, and more preferably no greater than 70 ppm. The amount of allyl alcohol contained in the condensed 1,3- propanediol stream exiting the finisher is no greater than 3000 ppm, preferably no greater than 2500 ppm, and more preferably no greater than 1000 ppm. The finished polymer may be pelletized or fed directly to a forming operation, such as fiber spinning, film formation or molding operation. Fibers made from the poly(trimethylene terephthalate) produced by the process of the invention have properties which make them useful in various textile applications, including the manufacture of carpet or apparel. 4. Additives
Various additives may be used in the process of the invention. These include color inhibitors, such as phosphoric acid, delustrants, such as titanium dioxide, dyeability modifiers, pigments and whiteners. If separate ester exchange and polymerization catalysts are used, phosphoric acid (H3PO4) or other color inhibitors may be added to minimize or prevent the color forming property of the ester exchange catalyst.
EXAMPLES
Poly(trimethylene terephthalate) was prepared using an apparatus of the type indicated in the drawing, including an ester exchanger, a flasher, a prepolymerizer and a finisher. In Examples 1-8, a 94.1 lb./hr (42.7 kg/hr) stream of dimethylterephthalate was preheated to a temperature of 185°C and continuously mixed with a 55.3 lb./hr (25.1 kg/hr) stream of catalyzed 1,3-propanediol which was also preheated to a temperature of 185°C, to form a mixture having a mole ratio of 1.5 moles of 1,3- propanediol per mole of dimethylterephthalate. In Example 9, the throughput was lowered to 51.4 lb./hr (23.3 kg/hr) of dimethyltereph-thalate and 40.3 lb./hr (18.3 kg/hr) of catalyzed 1,3-propanediol which were combined to form a mixture having a mole ratio of 2.0 moles of 1,3-propanediol per mole of dimethylterephthalate. In Example 10, the throughput was lowered still further to 38.2 lb./hr (17.3 kg/hr) of dimethylterephthalate and 30.0 lb./hr (13.6 kg/hr) of catalyzed 1,3-propanediol which were combined to form a mixture having a mole ratio of 2.0 moles of 1,3-propanediol per mole of dimethylterephthalate. The catalyst was tetraisopropyl titanate (Tyzor® TPT, DuPont Performance Chemicals). In Examples 1-8, the tetraisopropyl titanate was added to the 1,3-propanediol in an amount sufficient to yield 30-60 ppm by weight of titanium based on the weight of poly(trimethylene terephthalate) formed in the process. In Examples 9 and 10, the catalyst level was raised to 70 ppm of titanium. The dimethylterephthalate/catalyzed 1,3-propanediol mixture was fed into the base of an ester exchanger, where the pressure at the base of the ester exchanger was maintained at 825 to 900 mm Hg. In Examples 1-8, the temperature of the liquid reactants in the ester exchanger was maintained at 230°C, and in Examples 9 and 10, the temperature of liquid reactants in the ester exchanger was maintained at 237°C and 239°C, respectively. The pressure at the top of the ester exchange column was atmospheric. In the ester exchanger, the 1,3-propanediol reacted with the dimethylterephthalate to form bis-3-hydroxypropyl terephthalate monomer and low molecular weight oligomers of 1,3-propanediol and terephthalic acid, liberating methanol vapor, which was continuously removed from the top of the ester exchanger. The monomer/oligomer mixture was continuously removed from the base of the ester exchanger and fed to the inlet of a flasher. In the flasher, the monomers and oligomers reacted to form a low molecular weight trimethylene terephthalate polymer, liberating 1,3-propanediol vapor. The 1,3-propanediol vapor and other gaseous by-products were removed from the top of the flasher and condensed. The low molecular weight trimethylene terephthalate polymer was continuously withdrawn from the flasher and fed to the inlet end of a prepolymerizer. In the prepolymerizer, the monomers and oligomers further reacted to form a higher molecular weight poly( trimethylene terephthalate) prepolymer, liberating 1 ,3- propanediol vapor. The 1,3-propanediol vapor and other gaseous by-products were removed from the top of the prepolymerizer, condensed and combined with the condensates from the flasher. The poly(trimethylene terephthalate) prepolymer was continuously withdrawn from the prepolymerizer and fed to the inlet end of a finisher vessel. The temperature of the liquid reactants in the finisher was maintained at 255° to 260°C. In the finisher, the poly(trimethylene terephthalate) prepolymer reacted to form an even higher molecular weight polymer, liberating additional 1 ,3-propanediol vapor. The 1,3-propanediol vapor and other gaseous by-products were continuously removed from the finisher. The poly(trimethylene terephthalate) was continuously removed from the finisher and pelletized. The conditions and results for the continuous polymerization are set forth in Tables I, II and III. In Examples 9 and 10, the levels of polymer and hold-up times in the finisher were reduced, resulting in lower by-product formation and higher relative viscosity (LRV).
In the Tables, the acrolein and allyl alcohol levels are given in parts per million (ppm) by weight based on the combined condensates that are removed from the flasher and prepolymerizer and the condensates that are removed from the finisher, respectively. The dipropylene glycol (DPG) levels are given as a weight percent based on the total prepolymer or finished polymer that is removed from the flasher, prepolymerizer and finisher, respectively. The speed of the agitator in the finisher is given in revolutions per minute (RPM). The amount of carboxyl end groups (COOH) in the finished polymer is given in microequivalents per gram based on the total weight of the finished polymer. The level of catalyst is given as parts per million (ppm) by weight of titanium in the finished polymer.
TABLE I
Figure imgf000010_0001
TABLE II
Figure imgf000010_0002
TABLE II (CONTINUED)
Figure imgf000011_0001
TABLE III
Figure imgf000011_0002

Claims

THAT WHICH IS CLAIMED IS:
1. A continuous process for the production of poly( trimethylene terephthalate) comprising the steps of:
(a) continuously feeding a liquid feed mixture to a flasher, the liquid feed mixture comprising a catalyst and at least one of bis-3-hydroxypropyl terephthalate and low molecular weight polyesters of 1,3-propanediol and terephthalic acid, and the liquid feed mixture having a mole ratio of propylene groups to terephthalate groups of 1.1 to 2.2;
(b) continuously vaporizing and removing a first stream of gaseous by- products from the flasher, and continuously withdrawing a liquid flasher reaction product having a mole ratio of propylene groups to terephthalate groups of less than about 1.5 from the flasher;
(c) continuously feeding the liquid flasher reaction product to a prepolymerizer, and continuously polymerizing the flasher reaction product in the prepolymerizer to form a poly(trimethylene terephthalate) prepolymer and a second stream of gaseous by-products;
(d) continuously withdrawing the poly(trimethylene terephthalate) prepolymer from the prepolymerizer, the prepolymer having a relative viscosity of at least about 5; (e) continuously feeding the poly(trimethylene terephthalate) prepolymer to a final polymerizer, and continuously polymerizing the poly(trimethylene terephthalate) prepolymer to form a higher molecular weight poly(trimethylene terephthalate) and a third stream of gaseous by-products; and (f) continuously withdrawing the higher molecular weight poly(trimethylene terephthalate) from the final polymerizer, the higher molecular weight poly(trimethylene terephthalate) having a relative viscosity of at least about 17.
2. The process according to claim 1, wherein the temperature of liquid reactants in the flasher is maintained at about 235° to about 250°C, and the pressure in the flasher is maintained at about 40 to about 80 mm of Hg.
3. The process according to any one of the foregoing claims, wherein the temperature of liquid reactants in the prepolymerizer is maintained at about 240° to about 255°C, and the pressure in the prepolymerizer is maintained at about 5 to about 30 mm of Hg.
4. The process according to any one of the foregoing claims, wherein the temperature of liquid reactants in the final polymerizer is maintained at about 245° to about 265°C, and the pressure in the final polymerizer is maintained at about 0.8 to about 2.
5 mm H ι&e.- 5. The process according to any one of the foregoing claims, wherein the poly(trimethylene terephthalate) that is withdrawn from the final polymerizer has a relative viscosity of at least about 35.
6. The process according to any one of the foregoing claims, wherein the poly(trimethylene terephthalate) that is withdrawn from the final polymerizer has a relative viscosity of at least about 40.
7. The process according to any one of the foregoing claims, wherein the poly(trimethylene terephthalate) that is withdrawn from the final polymerizer has a relative viscosity of at least about 50.
8. The process according to any one of the foregoing claims, wherein the first stream of gaseous by-products is continuously removed from the flasher and condensed, the second stream of gaseous by-products is continuously removed from the prepolymerizer and condensed, and the combined first and second streams of condensed by-products contain not more than 100 ppm of acrolein and not more than 600 ppm of allyl alcohol.
9. The process according to claim 8, wherein the combined first and second streams of condensed by-products contain not more than 40 ppm of acrolein and not more than 250 ppm of allyl alcohol.
10. The process according to any one of the foregoing claims, wherein the third stream of gaseous by-products is continuously removed from the final polymerizer and condensed, and the third stream of condensed by-products contains not more than 200 ppm of acrolein and not more than 3000 ppm of allyl alcohol.
PCT/US2000/021779 2000-02-11 2000-08-10 Continuous process for producing poly(trimethylene terephthalate) WO2001058981A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP00953909A EP1259558B2 (en) 2000-02-11 2000-08-10 Continuous process for producing poly(trimethylene terephthalate)
MXPA02007740A MXPA02007740A (en) 2000-02-11 2000-08-10 Continuous process for producing poly(trimethylene terephthalate).
CA 2396469 CA2396469C (en) 2000-02-11 2000-08-10 Continuous process for producing poly(trimethylene terephthalate)
CN008188939A CN1433439B (en) 2000-02-11 2000-08-10 Continuous process for producing poly (trimethylene terephthalate)
BR0017106A BR0017106B1 (en) 2000-02-11 2000-08-10 continuous process for the production of poly (trimethylene terephthalate).
DE2000610342 DE60010342T3 (en) 2000-02-11 2000-08-10 CONTINUOUS METHOD FOR THE PREPARATION OF POLYTRIMETHYLENEPEPHTHALATE
JP2001558125A JP4578752B2 (en) 2000-02-11 2000-08-10 Continuous process for producing poly (trimethylene terephthalate)
AT00953909T ATE265486T1 (en) 2000-02-11 2000-08-10 CONTINUOUS PROCESS FOR PRODUCING POLYTRIMETHYLENE TEREPHTHALATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50264200A 2000-02-11 2000-02-11
US09/502,642 2000-02-11

Publications (1)

Publication Number Publication Date
WO2001058981A1 true WO2001058981A1 (en) 2001-08-16

Family

ID=23998724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/021779 WO2001058981A1 (en) 2000-02-11 2000-08-10 Continuous process for producing poly(trimethylene terephthalate)

Country Status (15)

Country Link
US (4) US6538076B2 (en)
EP (2) EP1420036A3 (en)
JP (1) JP4578752B2 (en)
KR (1) KR100713761B1 (en)
CN (1) CN1433439B (en)
AR (1) AR028483A1 (en)
AT (1) ATE265486T1 (en)
BR (1) BR0017106B1 (en)
CA (1) CA2396469C (en)
DE (1) DE60010342T3 (en)
ES (1) ES2219377T5 (en)
MX (1) MXPA02007740A (en)
TR (1) TR200201959T2 (en)
TW (1) TWI250173B (en)
WO (1) WO2001058981A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509438B2 (en) 2000-04-21 2003-01-21 Shell Oil Company Optimum dipropylene glycol content polytrimethylene terephthalate compositions
US6512080B2 (en) 1999-04-22 2003-01-28 Shell Oil Company Process of producing polytrimethylene terephthalate (PTT)
US6800718B1 (en) 1999-04-22 2004-10-05 Zimmer Aktiengesellschaft Process for producing polytrimethylene terephthalate (PTT)
US6841505B2 (en) 2002-07-26 2005-01-11 E..I. Du Pont De Nemours And Company Titanium-zirconium catalyst compositions and use thereof
KR100888882B1 (en) * 2008-09-23 2009-03-17 김창현 Process for producing poly trimethylene terephthalate
US7785709B2 (en) 2004-04-30 2010-08-31 E.I. Du Pont De Nemours And Company Spinning poly(trimethylene terephthalate) yarns

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906147B2 (en) * 2002-03-20 2005-06-14 Cyclics Corporation Catalytic systems
ES2219377T5 (en) * 2000-02-11 2010-10-14 E.I. Du Pont De Nemours And Company CONTINUOUS POLI PRODUCTION PROCEDURE (TRIMETHYLENE TEREFTALATE).
MXPA01011167A (en) 2000-03-03 2002-05-06 Du Pont Poly(trimethylene terephthalate) yarn.
US6287688B1 (en) * 2000-03-03 2001-09-11 E. I. Du Pont De Nemours And Company Partially oriented poly(trimethylene terephthalate) yarn
US7767781B2 (en) 2000-09-01 2010-08-03 Cyclics Corporation Preparation of low-acid polyalkylene terephthalate and preparation of macrocyclic polyester oligomer therefrom
US7750109B2 (en) 2000-09-01 2010-07-06 Cyclics Corporation Use of a residual oligomer recyclate in the production of macrocyclic polyester oligomer
CA2451767A1 (en) 2001-06-27 2003-01-09 Cyclics Corporation Isolation, formulation, and shaping of macrocyclic oligoesters
MXPA04012278A (en) 2002-12-23 2005-02-25 Du Pont Poly(trimethylene terephthalate) bicomponent fiber process.
US20070035057A1 (en) * 2003-06-26 2007-02-15 Chang Jing C Poly(trimethylene terephthalate) bicomponent fiber process
JP4510420B2 (en) * 2003-10-02 2010-07-21 上野製薬株式会社 Liquid crystalline polyester resin
US20050147784A1 (en) * 2004-01-06 2005-07-07 Chang Jing C. Process for preparing poly(trimethylene terephthalate) fiber
US20060041039A1 (en) * 2004-08-20 2006-02-23 Gyorgyi Fenyvesi Fluorescent poly(alkylene terephthalate) compositions
US7396896B2 (en) * 2004-12-21 2008-07-08 E.I. Dupont De Nemours And Company Poly(trimethylene terephthalate) composition and shaped articles prepared therefrom
EP2270065A3 (en) 2004-12-21 2011-03-09 E. I. du Pont de Nemours and Company Poly(trimethylene terephthalate) composition and shaped articles prepared therefrom
US7357985B2 (en) * 2005-09-19 2008-04-15 E.I. Du Pont De Nemours And Company High crimp bicomponent fibers
US7666501B2 (en) * 2005-12-07 2010-02-23 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) bi-constituent filaments
US20070129503A1 (en) * 2005-12-07 2007-06-07 Kurian Joseph V Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) molded, shaped articles
US20070128459A1 (en) * 2005-12-07 2007-06-07 Kurian Joseph V Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) films
US7504474B2 (en) * 2005-12-21 2009-03-17 E. I. Du Pont De Nemours And Company Poly(trimethylene therephthalate) continuous manufacturing process
US7531617B2 (en) * 2005-12-21 2009-05-12 E. I. Du Pont De Nemours And Company Continuous process for producing poly(trimethylene terephthalate)
US7524921B2 (en) * 2005-12-21 2009-04-28 E. I. Du Pont De Nemours And Company Continuous manufacture of poly(trimethylene terephthalate)
US7855244B2 (en) * 2007-08-06 2010-12-21 E.I. Du Pont De Nemours And Company Flame retardant polytrimethylene terephthalate composition
US20090043017A1 (en) * 2007-08-06 2009-02-12 Jing-Chung Chang Flame retardant polytrimethylene terephthalate composition
US20090043019A1 (en) * 2007-08-06 2009-02-12 Jing-Chung Chang Flame retardant polytrimethylene terephthalate composition
US20090043021A1 (en) * 2007-08-06 2009-02-12 Jing-Chung Chang Flame retardant polytrimethylene terephthalate composition
US20090043016A1 (en) * 2007-08-06 2009-02-12 Jing-Chung Chang Flame retardant polytrimethylene terephthalate composition
AU2009303596A1 (en) * 2008-10-16 2010-04-22 E. I. Du Pont De Nemours And Company Flame retardant poly(trimethylene terephthalate) composition
US20100152329A1 (en) 2008-12-17 2010-06-17 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) polymer blends that have reduced whitening
US20100152412A1 (en) 2008-12-17 2010-06-17 E. I. Du Pont De Nemours And Company Reduction of whitening of poly(trimethylene terephthalate) parts by solvent exposure
WO2010077907A1 (en) 2008-12-17 2010-07-08 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate) with reduced whitening
WO2010101892A1 (en) 2009-03-03 2010-09-10 E. I. Du Pont De Nemours And Company Process of making a poly(trimethylene terephthalate) resin having low cyclic dimer content, and compositions and articles therefrom
KR20110131256A (en) 2009-03-03 2011-12-06 이 아이 듀폰 디 네모아 앤드 캄파니 Poly(trimethylene terephthalate) pellets with reduced oligomers and method to measure oligomer reduction
EP2643383A1 (en) 2010-11-22 2013-10-02 E.I. Du Pont De Nemours And Company Block copolymers comprising poly(1,3-trimethylene terephthalate) and poly(1,3-trimethylene 2,6-naphthalate)
US9527953B2 (en) 2012-11-19 2016-12-27 Samsung Electronics Co., Ltd. Continuous preparation for polyester
KR102191438B1 (en) * 2014-08-26 2020-12-15 에스케이케미칼 주식회사 Process for producing poly(trimethylene terephthalate) containing low levels of by-products
KR20160047218A (en) 2014-10-22 2016-05-02 에스케이케미칼주식회사 Continuous process for producing poly(trimethylene terephthalate) containing low levels of by-products
KR102202999B1 (en) * 2016-12-28 2021-01-14 주식회사 엘지화학 Method of manufacturing a thermoplastic polyester elastomer
EP3814562A1 (en) 2018-06-28 2021-05-05 DuPont Industrial Biosciences USA, LLC Spun yarn comprising polyester staple fibre and fabric comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973341A (en) * 1956-01-25 1961-02-28 Glanzstoff Ag Continuous process for production of a polyethylene terephthalate condensate
US5466776A (en) * 1994-06-03 1995-11-14 Zimmer Aktiengesellschaft Process for the multistage generation of vacuum for polyester production
US5599900A (en) * 1993-10-18 1997-02-04 E. I. Du Pont De Nemours And Company Polyesters production process
WO1997021754A1 (en) * 1995-12-14 1997-06-19 E.I. Du Pont De Nemours And Company Process of making polyester prepolymer

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29289A (en) * 1860-07-24 John mcdermott
US2465319A (en) * 1941-07-29 1949-03-22 Du Pont Polymeric linear terephthalic esters
US2485319A (en) * 1947-09-24 1949-10-18 Arthur Rosen Sanitary mousetrap
US2727882A (en) 1952-10-14 1955-12-20 Du Pont Process and apparatus for the continuous polymerization of bis-2-hydroxyethyl terephthalate
BE549094A (en) 1955-06-29
US2933476A (en) 1955-09-30 1960-04-19 Du Pont Polymerization process
NL108873C (en) 1957-01-17
US2829153A (en) 1957-03-04 1958-04-01 Du Pont Continuous ester interchange process
US3192184A (en) 1959-03-19 1965-06-29 Du Pont Prepolymerization process
NL288080A (en) 1962-01-24
DE1570568A1 (en) 1964-06-01 1970-03-12 Fiber Industries Inc Process for the production of polycondensation products
US3438942A (en) 1965-06-01 1969-04-15 Vickers Zimmer Ag Continuous polyester process
US3609125A (en) 1968-04-24 1971-09-28 Asahi Chemical Ind Polyesterification process and apparatus
US3676485A (en) 1968-08-12 1972-07-11 Eastman Kodak Co Method for use in a continuous flow reaction for producing a monomer and or a protopolymer
US4096122A (en) 1972-03-18 1978-06-20 Dynamit Nobel Aktiengesellschaft Process for the production of polyesters of 1,4-butanediol
US4100142A (en) 1972-09-13 1978-07-11 Fiber Industries, Inc. Polyester process and product
JPS5530010B2 (en) 1973-11-19 1980-08-07
DE2504258A1 (en) 1975-02-01 1976-08-05 Dynamit Nobel Ag PROCESS AND APPARATUS FOR THE MANUFACTURING OF OLIGOMERIC ALKYLENE TEREPHTHALATES
DE2514116C3 (en) 1975-03-29 1983-03-17 Basf Ag, 6700 Ludwigshafen Process for the continuous production of linear, high molecular weight polybutylene terephthalates
US4049635A (en) 1976-01-19 1977-09-20 Phillips Petroleum Company Production of tetramethylene terephthalate polymers using 225° to 248° C. polycondensation temperature
US4110316A (en) 1977-04-14 1978-08-29 E. I. Du Pont De Nemours And Company Improved process for preparing poly(ethylene terephthalate)
US5340909A (en) 1991-12-18 1994-08-23 Hoechst Celanese Corporation Poly(1,3-propylene terephthalate)
GB9300051D0 (en) * 1993-01-04 1993-03-03 Merck Sharp & Dohme Therapeutic agents
US5434239A (en) 1993-10-18 1995-07-18 E. I. Du Pont De Nemours And Company Continuous polyester process
US5540868A (en) 1995-01-20 1996-07-30 E. I. Du Pont De Nemours And Company Process for pellet formation from amorphous polyester
US5633018A (en) 1995-01-20 1997-05-27 E. I. Du Pont De Nemours And Company Apparatus for forming crystalline polymer pellets
US5510454A (en) 1995-01-20 1996-04-23 E. I. Du Pont De Nemours And Company Production of poly(ethylene terephthalate)
US5811496A (en) 1995-12-21 1998-09-22 E.I. Du Pont De Nemours And Company Process for polymerization of polyester oligomers
US5459229A (en) * 1995-02-27 1995-10-17 Shell Oil Company By product stream purification in the preparation of 1,3-propanediol-based polyesters
US6315934B1 (en) * 1995-05-08 2001-11-13 Shell Oil Company Process for preparing poly(thimethylene therephthalate) carpet yarn
AU695724B2 (en) 1995-05-08 1998-08-20 Shell Internationale Research Maatschappij B.V. Process for preparing poly(trimethylene) yarns
US6113825A (en) * 1995-05-08 2000-09-05 Shell Oil Company Process for preparing poly(trimethylene terephthalate) carpet yarn
US5559205A (en) 1995-05-18 1996-09-24 E. I. Du Pont De Nemours And Company Sulfonate-containing polyesters dyeable with basic dyes
US5703179A (en) 1995-08-28 1997-12-30 Toray Industries, Inc. Method for producing polyesters
AR004241A1 (en) 1995-12-22 1998-11-04 Du Pont COMPOSITION AND PARTICLES OF POLY (TRIMETHYLENE-TEREFTALATE) MODIFIED OR NOT MODIFIED AND PROCESSES TO CRYSTALLIZE SUCH COMPOSITION AND FOR SOLID STATE POLYMERIZATION OF THE SAME
US5670606A (en) 1996-01-05 1997-09-23 E. I. Du Pont De Nemours And Compant Crystalline form of poly(ethylene 2,6-naphthalate) and a method for its production
US5677415A (en) 1996-03-28 1997-10-14 E. I. Du Pont De Nemours And Company Apparatus and process for a polycondensation reaction
US5663281A (en) 1996-07-30 1997-09-02 E. I. Du Pont De Nemours And Company Process for preparing high molecular weight polyesters
US5891985A (en) 1996-10-09 1999-04-06 E. I. Du Pont De Nemours And Company Soluble mono-alkyl stannoic acid catalyst and its use in preparing high molecular weight polyesters
DE19705249A1 (en) 1997-02-12 1998-08-13 Zimmer Ag Process for the production of polypropylene terephthalate
MY118950A (en) * 1997-04-30 2005-02-28 Shell Int Research Purification of by- product stream in preparation of polytrimethylene terephthalate
US5990265A (en) 1997-06-23 1999-11-23 E. I. Du Pont De Nemours And Company Production of poly(trimethylene terephthalate)
TW400361B (en) * 1997-09-03 2000-08-01 Asahi Chemical Ind A polyester resin composition
US5840957A (en) 1998-03-16 1998-11-24 E. I. Du Pont De Nemours And Company Transesterification process using lanthanum compound catalyst
ID26040A (en) 1998-04-17 2000-11-16 Du Pont CATALYTIC COMPOSITION CONSIST OF TITANIUM COMPOUND, AMINA PHOSFOR COMPOUND; MANUFACTURE AND USE OF IT
US6350895B1 (en) * 1999-03-26 2002-02-26 E. I. Du Pont De Nemours And Company Transesterification process using yttrium and samarium compound catalystis
ATE234336T1 (en) * 1999-04-22 2003-03-15 Zimmer Ag METHOD FOR PRODUCING POLYTRIMETHYLENE TEREPHTHALATE (PTT)
US6512080B2 (en) * 1999-04-22 2003-01-28 Shell Oil Company Process of producing polytrimethylene terephthalate (PTT)
US6277947B1 (en) 2000-04-21 2001-08-21 Shell Oil Company Process of producing polytrimethylene terephthalate (PTT)
ATE290036T1 (en) * 1999-08-25 2005-03-15 Du Pont PRODUCTION OF POLY(TRIMETHYLENE TEREPHTHALATE)
US6255442B1 (en) * 2000-02-08 2001-07-03 E. I. Du Pont De Nemours And Company Esterification process
US6951954B1 (en) 2000-02-11 2005-10-04 E.I. Du Pont De Nemours And Company Continuous process for producing bis(3-hydroxypropyl) terephthalate
US6353062B1 (en) 2000-02-11 2002-03-05 E. I. Du Pont De Nemours And Company Continuous process for producing poly(trimethylene terephthalate)
ES2219377T5 (en) * 2000-02-11 2010-10-14 E.I. Du Pont De Nemours And Company CONTINUOUS POLI PRODUCTION PROCEDURE (TRIMETHYLENE TEREFTALATE).
US6740400B2 (en) 2001-02-07 2004-05-25 Asahi Kasei Kabushiki Kaisha Poly (trimethylene terephthalate) and a process for producing the same
US6657044B1 (en) * 2001-10-30 2003-12-02 Shell Oil Company Process for making polytrimethylene terephthalate
EP1347005A1 (en) 2002-03-23 2003-09-24 Zimmer AG Polytrimethylene terephtalate resins with improved properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973341A (en) * 1956-01-25 1961-02-28 Glanzstoff Ag Continuous process for production of a polyethylene terephthalate condensate
US5599900A (en) * 1993-10-18 1997-02-04 E. I. Du Pont De Nemours And Company Polyesters production process
US5688898A (en) * 1993-10-18 1997-11-18 E. I. Du Pont De Nemours And Company Polyesters production process
US5466776A (en) * 1994-06-03 1995-11-14 Zimmer Aktiengesellschaft Process for the multistage generation of vacuum for polyester production
WO1997021754A1 (en) * 1995-12-14 1997-06-19 E.I. Du Pont De Nemours And Company Process of making polyester prepolymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512080B2 (en) 1999-04-22 2003-01-28 Shell Oil Company Process of producing polytrimethylene terephthalate (PTT)
US6800718B1 (en) 1999-04-22 2004-10-05 Zimmer Aktiengesellschaft Process for producing polytrimethylene terephthalate (PTT)
US6509438B2 (en) 2000-04-21 2003-01-21 Shell Oil Company Optimum dipropylene glycol content polytrimethylene terephthalate compositions
US6841505B2 (en) 2002-07-26 2005-01-11 E..I. Du Pont De Nemours And Company Titanium-zirconium catalyst compositions and use thereof
US7785709B2 (en) 2004-04-30 2010-08-31 E.I. Du Pont De Nemours And Company Spinning poly(trimethylene terephthalate) yarns
US7785507B2 (en) 2004-04-30 2010-08-31 E. I. Du Pont De Nemours And Company Spinning poly(trimethylene terephthalate) yarns
KR100888882B1 (en) * 2008-09-23 2009-03-17 김창현 Process for producing poly trimethylene terephthalate
WO2010035931A1 (en) * 2008-09-23 2010-04-01 주식회사 스몰랩 Method for producing poly(trimethylene terephthalate)

Also Published As

Publication number Publication date
CA2396469A1 (en) 2001-08-16
DE60010342T2 (en) 2005-05-25
BR0017106B1 (en) 2010-07-27
EP1420036A3 (en) 2004-07-14
US7132484B2 (en) 2006-11-07
DE60010342D1 (en) 2004-06-03
CA2396469C (en) 2010-01-26
EP1259558B1 (en) 2004-04-28
ATE265486T1 (en) 2004-05-15
EP1259558A1 (en) 2002-11-27
JP4578752B2 (en) 2010-11-10
KR100713761B1 (en) 2007-05-07
EP1420036A2 (en) 2004-05-19
US20020132962A1 (en) 2002-09-19
ES2219377T3 (en) 2004-12-01
EP1259558B2 (en) 2010-04-21
US20050165178A1 (en) 2005-07-28
KR20020075410A (en) 2002-10-04
JP2003522262A (en) 2003-07-22
MXPA02007740A (en) 2002-10-23
US20030220465A1 (en) 2003-11-27
CN1433439A (en) 2003-07-30
TR200201959T2 (en) 2003-02-21
ES2219377T5 (en) 2010-10-14
AR028483A1 (en) 2003-05-14
BR0017106A (en) 2003-01-14
US6538076B2 (en) 2003-03-25
US20020107348A1 (en) 2002-08-08
TWI250173B (en) 2006-03-01
DE60010342T3 (en) 2010-12-30
CN1433439B (en) 2012-08-29

Similar Documents

Publication Publication Date Title
CA2396469C (en) Continuous process for producing poly(trimethylene terephthalate)
CA2396465C (en) Continuous process for producing poly(trimethylene terephthalate)
EP1976999B1 (en) Continuous process for producing poly(trimethylene terephthalate)
US7504474B2 (en) Poly(trimethylene therephthalate) continuous manufacturing process
EP1971629B1 (en) Continuous manufacture of poly(trimethylene terephthalate)
MX2008007926A (en) Continuous process for producing poly(trimethylene terephthalate)
MX2008007925A (en) Poly(trimethylene terephthalate) continuous manufacturing process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID IN JP KR MX TR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2396469

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00919/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000953909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002/01959

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2001 558125

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/007740

Country of ref document: MX

Ref document number: 008188939

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027010389

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027010389

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000953909

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000953909

Country of ref document: EP