WO2001059502A1 - Reflection/refraction optical system - Google Patents

Reflection/refraction optical system Download PDF

Info

Publication number
WO2001059502A1
WO2001059502A1 PCT/JP2001/000912 JP0100912W WO0159502A1 WO 2001059502 A1 WO2001059502 A1 WO 2001059502A1 JP 0100912 W JP0100912 W JP 0100912W WO 0159502 A1 WO0159502 A1 WO 0159502A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
caf2
catadioptric
imaging optical
lens
Prior art date
Application number
PCT/JP2001/000912
Other languages
French (fr)
Japanese (ja)
Inventor
Tomowaki Takahashi
Kiyoshi Mitarai
Satoru Kumagai
Hiroyuki Tsukamoto
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2001232257A priority Critical patent/AU2001232257A1/en
Publication of WO2001059502A1 publication Critical patent/WO2001059502A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0892Catadioptric systems specially adapted for the UV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Definitions

  • the present invention relates to a catadioptric system, and more particularly, to a catadioptric system of an exposure apparatus such as a stepper used for manufacturing a semiconductor. More specifically, the present invention relates to a catadioptric reduction optical system of a scanning reduction exposure apparatus of about 1/4 that has a resolution of a submicron unit in an ultraviolet wavelength region.
  • the wavelength of the light source of the exposure apparatus must be shortened and the NA (numerical aperture of the optical system) must be increased.
  • the optical glass that can withstand practical use is limited due to light absorption.
  • the projection optical system of the exposure apparatus is constituted only by the refraction optical system, chromatic aberration correction becomes impossible at all. Therefore, it is very difficult to construct a projection lens by constructing an optical system using only a refraction system as the projection optical system to achieve the required resolution.
  • Japanese Unexamined Patent Publication No. Hei 5-25170 Japanese Unexamined Patent Publication No. 63-163319, Japanese Unexamined Patent Publication No. 4-234722, and US Pat. No. 4,779,966 may be mentioned.
  • the one using only one concave mirror is the optical system disclosed in JP-A-4-234722 and USP-4,779,966.
  • these optical systems only a negative lens is used in a reciprocating optical system composed of a concave mirror, and a positive power system is not used.
  • the light beam spreads and enters the concave mirror, so that the diameter of the concave mirror tends to increase.
  • the reciprocating optical system disclosed in Japanese Patent Application Laid-Open No. 4-234722 is a completely symmetrical type, and the generation of aberrations in the optical system there is minimized, and the subsequent refractive optical system is responsible for aberration correction.
  • the working distance (WD) on the first surface (reticle or mask) side is reduced.
  • a concave mirror is used in a second imaging optical system behind the intermediate image. Therefore, in order to ensure the required brightness of the optical system, the light beam spreads and enters the concave mirror, making it difficult to reduce the size of the concave mirror.
  • the ratio ⁇ value of the N A of the illumination optical system and the N A of the projection optical system is made variable.
  • an aperture stop can be installed in the illumination optical system, but if the above-described catadioptric optical system is used in the projection optical system, an effective aperture installation portion cannot be taken anywhere in the projection optical system. It will be.
  • a catadioptric optical system capable of adopting an effective diaphragm installation portion, having a sufficient peaking distance, and being capable of forming a large-sized concave mirror with the smallest possible size. It is intended to provide a system. Disclosure of the invention
  • a first imaging optical system G1 composed of a refractive lens, at least one concave lens and two reflecting mirrors are provided. And a third imaging optical system G3 comprising a refracting lens.
  • the first imaging optical system G1 has a first intermediate image IM of the first surface R.
  • the second imaging optical system G2 forms a second intermediate image IM2 by re-imaging the first intermediate image IM1, and the third imaging optical G3 system.
  • a catadioptric system that re-images the second intermediate image IM2 onto the second surface W.
  • the present invention also provides a projection exposure apparatus and a projection exposure method using the catadioptric optical system.
  • a light source an illumination optical system for uniformly irradiating a light beam from the light source onto the first surface R, and a catadioptric optical system for projecting the first surface R to the second surface W
  • a projection exposure apparatus characterized by including:
  • the illumination light is emitted from the light source, and the illumination optical system uniformly illuminates the illumination light on the first surface R.
  • a projection exposure method wherein the first surface R is projected onto the second surface W using the above-described catadioptric system, and the second surface W is exposed.
  • FIG. 1 is a principle diagram of a catadioptric optical system according to the present invention.
  • FIG. 2 is an optical path diagram of the catadioptric optical system of the first embodiment.
  • FIG. 3 is a coma aberration diagram of the first example.
  • FIG. 4 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the first example.
  • FIG. 5 is an optical path diagram of the catadioptric optical system of the second embodiment.
  • FIG. 6 is a coma aberration diagram of the second example.
  • FIG. 7 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the second example.
  • FIG. 8 is an optical path diagram of the catadioptric optical system of the third embodiment.
  • FIG. 9 is a coma aberration diagram of the third example.
  • FIG. 10 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the third example.
  • FIG. 11 is an optical path diagram of the catadioptric optical system of the fourth embodiment.
  • FIG. 12 is a coma aberration diagram of the fourth example.
  • FIG. 13 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the fourth example.
  • FIG. 14 is an optical path diagram of the catadioptric optical system of the fifth embodiment.
  • FIG. 15 is a coma aberration diagram of the fifth example.
  • FIG. 16 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the fifth example.
  • FIG. 17 is an optical path diagram of the catadioptric optical system of the sixth embodiment.
  • FIG. 18 is a coma aberration diagram of the sixth example.
  • FIG. 19 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the sixth example.
  • FIG. 20 is an optical path diagram of the catadioptric optical system of the seventh embodiment.
  • FIG. 21 is a coma aberration diagram of the seventh example. '
  • FIG. 22 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the seventh example.
  • FIG. 23 is an optical path diagram of the catadioptric optical system of the eighth embodiment.
  • FIG. 24 is a coma aberration diagram of the eighth example.
  • FIG. 25 is a diagram of spherical aberration, astigmatism, and distortion of the eighth embodiment.
  • FIG. 26 is a diagram of a projection exposure apparatus according to the present invention.
  • FIG. 27 is a view showing the procedure of the projection exposure method according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the optical axes of these imaging optical systems can be configured to be a single straight line.
  • color correction which is a characteristic of the catadioptric system, is performed, so that color correction using a single glass type is possible.
  • the refractive optical system portion (the first imaging optical system and the third imaging optical system) includes a positive power
  • the Petzval sum which tends to be a positive value, is also reduced by the negative peak of the concave mirror portion. It can be completely canceled out by the Koval value.
  • the first intermediate image IM1 is converted into a first concave mirror K1 (a concave mirror that is arranged near the first imaging optical system G1 of the two concave mirrors) with an aperture.
  • the second intermediate image is formed near the center opening of the second concave mirror K 2 (a concave mirror disposed near the third imaging optical system G 3 of the two concave mirrors), and the second intermediate image is formed. It is necessary to guide the light ray path backward through the center opening of.
  • the entrance pupil has a central shielding part, but the size of the intermediate image is smaller than the size of the concave mirror, and the image formation position of the intermediate image is far away from the position of the concave mirror. Therefore, the size of the central shielding portion relative to the size of the entrance pupil, that is, the so-called central shielding ratio is small, and does not significantly affect the imaging performance.
  • the numerical aperture on the second surface side is NA0 and the effective diameter of at least one concave lens of the second imaging optical system is ⁇ , it is preferable that the following condition is satisfied.
  • This condition is for reducing the size of the refractive lens and the reflecting mirror used in the catadioptric optical system. If this condition is not met, it becomes difficult to reduce the size of the refractive lens and the reflecting mirror.
  • the catadioptric system be composed of 21 or more refractive lenses. Even better results can be obtained if it consists of more than a few refracting lenses.
  • the catadioptric optical system is preferably composed of 20 or less refractive lenses when the performance of the antireflection coating is difficult to improve or when there is a problem with the transmittance of the glass material. 'Even better results can be obtained if it consists of no more than 18 refractive lenses.
  • the two reflecting mirrors are arranged so as to face each other with the concave reflecting surfaces facing each other. It is preferably a concave mirror.
  • the first imaging optical system G1 includes at least two or more positive lenses
  • the third imaging optical system G3 includes at least two or more positive lenses.
  • at least one or more aperture stops are arranged in the first imaging optical system G1 or the third imaging optical system G3.
  • at least one or more central shielding plates be disposed in the first imaging optical system G1 or the third imaging optical system G3.
  • the catadioptric system preferably includes at least five or more aspheric surfaces. By using an aspherical surface, it is possible to achieve higher performance of the projection optical system and a reduction in the number of lenses. Further, it is preferable that all the refractive lenses of the catadioptric system are made of the same glass material, particularly fluorite. As the glass material, besides fluorite, quartz glass to which fluorine is added or crystals of a fluorine compound can be considered.
  • the one arranged closer to the first surface side R is referred to as the first 113
  • the surface mirror Kl, the one located closer to the second surface W side is the second concave mirror K2
  • the distance from the position of the first intermediate image I Ml to the position of the first concave mirror 1 is d1
  • the distance from the position of the second intermediate image IM2 to the position of the second concave mirror K2 is d2
  • the diameter of the exposure area on the second surface W is, the following conditions are preferably satisfied.
  • the condition relating to d1 defines an appropriate refractive power distribution of the first imaging optical system G1 and the second imaging optical system G2, and the condition relating to d2 corresponds to the second imaging optical system G1.
  • G2 and third imaging optical system G3 define an appropriate refractive power distribution. If these conditions are deviated, the refractive power of one of the imaging optical systems becomes tight, and it becomes difficult to satisfactorily correct aberrations, and at the same time, it becomes difficult to reduce the size of the concave mirror.
  • the catadioptric optical system is preferably a telecentric optical system on the first surface R side or the second surface W side.
  • the catadioptric optical system basically includes, as shown in FIG. 1, a first imaging optical system Gl and a second imaging optical system G2 in order from the first surface to the second surface W side. And a third imaging optical system G3.
  • the first imaging optical system G1 forms a first intermediate image I Ml of the first surface R near the second imaging optical system G2.
  • the second imaging optical system G2 forms a second intermediate image IM2, which is a re-imaged image of the first intermediate image IM1, in the vicinity of the third imaging optical system G3.
  • the optical system G3 forms the second intermediate image IM2 on the second surface W.
  • FIG. 1 also shows scanning directions on the first surface R and the second surface W when the catadioptric optical system according to the present invention is applied to a scanning projection exposure apparatus.
  • the running directions on the first surface R and the second surface W are opposite to each other.
  • the illumination area and the exposure area have a rectangular shape centered on the optical axis. Note that an aperture stop ST0 is disposed in the third imaging optical system G3.
  • an aspherical surface is used. Is as follows ( y: Height from optical axis
  • Fluorite has a refractive index of 1.5600 at a wavelength of 157 nm.
  • the catadioptric optical system includes, in order from the first surface R to the second surface W side, a first imaging optical system Gl, a second imaging optical system G2, and a second imaging optical system G2. It consists of three imaging optics G3.
  • the first imaging optical system G1 is provided with three positive meniscus lenses, three negative meniscus lenses, two positive lenses, and three positive meniscus lenses in order from the first surface R side.
  • the two imaging optics G 2 is trained by one concave mirror, two negative meniscus lenses and one concave mirror.
  • the third imaging optical system G 3 includes one positive meniscus lens, one negative lens, two positive meniscus lenses, one negative lens, four positive meniscus lenses, and one negative meniscus lens. The course is taught by a lens and one positive meniscus lens.
  • the catadioptric optical system of this example has a reduction ratio of 1/4, a numerical aperture (NA) of the second surface W side of 0.75, and a maximum object height of the first surface R side of 37.44 mm.
  • the maximum image height on the second side W side is 9.36 ram, and the exposure size on the second side W is a 17.5 x 6.6 mm rectangular aperture. You. By performing scanning and exposure, the overall exposure area is 17.2 X 25 mm.
  • the WD is 50.912830 on the first surface R side and 13.234625 on the second surface W side.
  • the diameter of the concave mirror used is 260.2 mm or less, the effective diameter of the two largest lenses of the lenses used is 246.9 ram or less, and the effective diameter of most other lenses is 183. It is 5 watts or less, which is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
  • the shielding ratio of the shielding part of the concave mirror to the light beam is 19.5% in NA ratio, and has little effect on the imaging performance, and sufficient high performance can be obtained.
  • the refractive lens part is made of fluorite, and chromatic aberration correction with a half-value width of 1 pm at a wavelength of 157 nm of an ultraviolet F2 excimer laser is performed.
  • the projection optical system according to the second embodiment includes, in order from the first surface R to the second surface W side, a first imaging optical system Gl, a second imaging optical system G2, and a third imaging optical system G2. It consists of an imaging optical system G3.
  • the first imaging optical system G 1 includes, in order from the first surface R side, three positive meniscus lenses, three negative meniscus lenses, two positive lenses, one negative meniscus lens, and two positive meniscus lenses.
  • the second imaging optical system G2 is provided by one concave mirror, two negative meniscus lenses, and one concave mirror.
  • Third imaging light G3 has one positive meniscus lens, one negative lens, two positive meniscus lenses, one negative lens, four positive meniscus lenses, one negative lens, and one positive meniscus It is taught by lens.
  • the catadioptric optical system according to the present embodiment has a reduction ratio of 1/4, a numerical aperture (NA) force S 0.75 on the second surface W side, and a maximum object height 37.44 on the first surface R side. mm, the maximum image height on the second surface W side is 9.36 images, and the exposure size on the second surface W is a 17.5 x 6.6 cubic rectangular aperture.
  • NA numerical aperture
  • the WD is 50.000 000 on the first surface R side and 12.333503 on the second surface W side.
  • the diameter of the concave mirror used is less than 251.2 cm, the effective diameter of the two largest lenses among the lenses used is less than 238.4 mm, and the effective diameter of most other lenses is 187 mm This is much smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
  • the shielding ratio of the shielding part of the concave mirror to the light beam is 19.5% in NA ratio, and has little effect on the imaging performance, and sufficient high performance can be obtained.
  • the refractive lens part is made of fluorite, and has a chromatic aberration correction with a half-value width of 1.0 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
  • the catadioptric optical system As shown in FIG. In order to the side, it is composed of a first imaging optical system Gl, a second imaging optical system G2, and a third imaging optical system G3.
  • the first imaging optical system G 1 includes, in order from the first surface R side, one negative meniscus lens, one positive lens, '' three positive meniscus lenses, one negative lens, and two positive meniscus. It consists of a lens, two positive lenses, and two positive meniscus lenses, and the second imaging optical system G 2 is configured by one concave mirror, two negative meniscus lenses, and one concave mirror. .
  • the third imaging optical system G3 includes one positive lens, one negative lens, one positive meniscus lens, one positive lens, one positive meniscus lens, one negative meniscus lens, The course is taught by four positive meniscus lenses, one positive lens, one negative meniscus lens and one positive meniscus lens.
  • the catadioptric optical system of this embodiment has a reduction magnification power S 1/4 times, a numerical aperture NA on the second surface W side of 0.75, and a maximum object height on the first surface R side of 52.8 sq.
  • the maximum image height on the second side W side is 13.2, and the exposure size on the second side W is a rectangular aperture of 25 x 8.8 mm.
  • the WD is 72.733469.5 on the first surface R side and 17.227255 on the second surface W side.
  • the diameter of the concave mirror used is 260 mm or less, the effective diameter of the two largest lenses of the lenses used is 259 mm or less, and the effective diameter of most other lenses is 188 mm or less. However, it is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system used in the normal specification.
  • the shielding ratio of the shielding part of the concave mirror to the light flux is 20% in NA ratio, and has little effect on the imaging performance, and it is possible to obtain sufficiently high performance.
  • the refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of ultraviolet F2 excimer laser.
  • the catadioptric optical system according to the fourth embodiment includes, as shown in FIG. 11, a first imaging optical system G1, a second imaging optical system G2, and a second surface W in order from the first surface R to the second surface W. It comprises a third imaging optical system G3.
  • the first imaging optical system G1 includes three positive meniscus lenses, one negative meniscus lens, one negative lens, one positive meniscus lens, and two positive lenses in order from the first surface R side. , One positive meniscus lens, one positive lens, and one positive meniscus lens, and the second imaging optical system G2 has two concave mirrors arranged to face each other symmetrically. And two negative meniscus lenses.
  • the third imaging optical system G3 includes one positive meniscus lens, one concave lens, two positive meniscus lenses, one negative meniscus lens, four positive meniscus lenses, one negative lens, It consists of one positive meniscus lens.
  • the catadioptric optical system of this embodiment has a reduction magnification of 1/4, a numerical aperture on the second surface W side of 0.75, a maximum object height on the first surface R side of 52.8 thighs, and a second surface.
  • the maximum image height on the W side is 13.2 mm
  • the exposure size on the second surface W is a rectangular aperture of 25.0 X 8.8 ram. With this, scanning and exposure are performed, and the entire exposure area is set to 25.0 X 33 rows.
  • WD is 78.864226 on the first surface R side and 12.628525 on the second surface W side.
  • the diameter of the concave mirror used is less than 265 cm, the effective diameter of the two largest lenses of the lenses used is less than 260 mm, and the effective diameter of most other lenses is less than 183 cm.
  • the effective lens of the refractive system spherical optical system used in this specification It is much smaller than the diameter.
  • the shielding ratio of the shielding part of the concave mirror to the light beam is 20% in NA ratio, and the effect on the imaging performance is small, and sufficiently high performance can be obtained.
  • the refractive lens part is made of fluorite, and has a chromatic aberration correction with a half-value width of 2.0 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
  • the catadioptric optical system according to the fifth embodiment includes, as shown in FIG. 14, a first imaging optical system G1, a second imaging optical system G2, and a second surface W in order from the first surface R. It comprises a third imaging optical system G3.
  • the first imaging optical system G 1 includes, in order from the first surface R side, one positive meniscus lens, one positive lens, one negative meniscus lens, one negative lens, and two positive meniscus lenses
  • the second imaging optical system G2 is provided by one concave mirror, two negative meniscus lenses, and one concave mirror.
  • the second imaging optical system G2 is provided by two positive lenses and one concave meniscus lens.
  • the third imaging optical system G3 has two positive lenses, one negative meniscus lens, one positive meniscus lens, one positive lens, one positive lens, one positive meniscus lens, One negative meniscus lens, two positive lenses, one negative meniscus lens, one positive meniscus lens, and one negative meniscus lens.
  • the catadioptric optical system of this example has a reduction ratio of 1/4, a numerical aperture NA on the second surface W side of 0.75, a maximum object height on the first surface R side of 52.8 mm, The maximum image height on the W side of the second surface is 13.2 thighs, and the exposure size on the second surface W is a rectangular aperture of 25 x 8.8 thighs. The exposure area is 25 X 8.8 ram, and the WD is 110.490999 on the first surface R side and 13.000594 on the second surface W side.
  • the diameter of the concave mirror used is 313 mm or less, the effective diameter of the two largest lenses of the lenses used is 308 or less, and the effective diameter of most other lenses is 195 awake or less. However, it is considerably smaller than the effective diameter of the lens used in the refractive spherical optical system used in the ordinary spec.
  • the shielding ratio of the shielding portion of the concave mirror to the light beam is 23% in NA ratio, and has little effect on the imaging performance, and it is possible to obtain sufficiently high performance.
  • the refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
  • the catadioptric optical system according to the sixth embodiment includes, in order from the first surface R to the second surface W side, a first imaging optical system Gl, a second imaging optical system G2, It comprises a third imaging optical system G3.
  • the first imaging optical system G 1 includes, in order from the first surface R side, one positive lens, one positive meniscus lens, two negative meniscus lenses, two positive lenses, and one positive meniscus lens
  • the second imaging optical system G2 is provided by one concave mirror, two negative meniscus lenses, and one concave mirror.
  • the third imaging optical system G3 is controlled by one positive lens, two positive meniscus lenses, two positive lenses, one positive meniscus lens, one positive lens, and two positive meniscus lenses. Done It is.
  • the catadioptric optical system of this example has a reduction ratio of 1/4, an image-side numerical aperture NA of 0.75, a maximum object height of 51.2 ⁇ , and a maximum image height of 12.8 ⁇ .
  • the exposure size on the wafer is a 25 x 5.5 mm rectangular aperture. Thus, scanning and exposure are performed, and the overall exposure area is 25 X 33 mm.
  • the WD is 224.250603 on the first surface R side and 18.245931 on the second surface W side.
  • the diameter of the tetrahedron used is 272 ram or less, the effective diameter of the two largest lenses of the lenses used is 269.2 mm or less, and the effective diameter of most other lenses is 191.6. mm or less, which is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this spec.
  • the shielding ratio of the shielding part of the concave mirror to the light beam is 20% in NA ratio, and the effect on the imaging performance is small, and sufficiently high performance can be obtained.
  • the refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of ultraviolet F2 excimer laser.
  • the catadioptric optical system according to the seventh embodiment includes a first imaging optical system Gl, a second imaging optical system G2, It comprises a third imaging optical system G3.
  • the first imaging optical system G 1 includes three positive meniscus lenses, one negative meniscus lens, one negative lens, one positive meniscus lens, and two positive lenses in order from the first surface R side. , One positive meniscus lens, one positive lens, one positive lens
  • the second imaging optical system G2 is composed of two concave mirrors and two negative meniscus lenses which are arranged symmetrically facing each other.
  • the third imaging optical system G3 includes one positive meniscus lens, one negative lens, two positive meniscus lenses, one negative meniscus lens, four positive meniscus lenses, and one negative meniscus lens. The lens consists of one positive lens.
  • the catadioptric optical system of this embodiment has a reduction ratio of 1/4, an image-side numerical aperture NA of 0.75, a maximum object height of 41.6, and a maximum image height of 10.4.
  • the exposure size of the second side WJ is a 20.0 X 5.5 ram rectangular aperture. Thus, scanning and exposure are performed, and the entire exposed area is set to 20.0 X 33 awake.
  • WD is 166.292101 on the first surface R side and 15.484990 on the second surface W side.
  • the diameter of the concave mirror used is 264.3 mm or less, the effective diameter of the two largest lenses of the used lenses is 259.8 or less, and the effective diameter of most other lenses is 182. It is 5 mm or less, which is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
  • the shielding ratio of the shielding part of the concave mirror to the light beam is 20% in NA ratio, and the effect on the imaging performance is small, and sufficiently high performance can be obtained.
  • the refractive lens part is made of fluorite, and has a chromatic aberration correction with a half-width of 2.0 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
  • the catadioptric optical system according to the eighth embodiment includes, as shown in FIG. 23, a first imaging optical system G1, a second imaging optical system G2, and It comprises a third imaging optical system G3.
  • the first imaging optical system G 1 includes, in order from the first surface R side, one negative meniscus lens, one positive lens, three positive meniscus lenses, one negative meniscus lens, and two positive meniscus lenses.
  • the second imaging optical system G2 includes a lens, two positive lenses, and two positive meniscus lenses.
  • the second imaging optical system G2 includes one concave mirror, two negative meniscus lenses, and one concave mirror.
  • the third imaging optical system G3 has one positive lens, one negative meniscus lens, one positive meniscus lens, one positive lens, one positive meniscus lens, and one negative lens. It consists of a meniscus lens, four positive meniscus lenses, one positive lens, one negative meniscus lens, and one positive meniscus lens.
  • the catadioptric optical system of this example has a reduction ratio of 1/4, an image-side numerical aperture of 0.75, a maximum object height of 52.8 mm, and a maximum image height of 13.2 mm.
  • the exposure size on the two sides W is a 25 x 8.8 rectangular aperture. Thus, scanning and exposure are performed, and the overall exposure area is 25 X 33 mm.
  • WD is 181.103882 on the first surface R side and 18.788119 on the second surface W side.
  • the diameter of the concave mirror used is 260.0 mm or less, the effective diameter of the two largest lenses of the lenses used is 258.1 mm or less, and the effective diameter of most other lenses is 174 thighs. This is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
  • the shielding ratio of the shielding part of the concave mirror to the light beam is 24.0% in NA ratio, and has little effect on the imaging performance, and it is possible to obtain sufficiently high performance.
  • the refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
  • 000000 ⁇ 1 ⁇ ⁇ ' ⁇ L6f9 ⁇ 63 ⁇ is • 9S 8S98I ⁇ 06 OS ⁇ ⁇ 8 ⁇ S0608' 1L ⁇ 2-3 ⁇ 968 ⁇ ⁇ : ⁇ ⁇ — 36S1 ⁇ 26I ⁇ 0 0 2I-36 8S62 ⁇ : 9 80-399 ⁇ 6 ⁇ V
  • a reticle as a projection original plate on which a predetermined circuit pattern is formed is arranged, and on the second surface W of the projection optical system PL, a photoresist as a substrate is applied. Wafer is placed.
  • the reticle is held on a reticle stage R S, the wafer is held on a wafer stage W S, and an illumination optical device I S for uniformly illuminating the reticle is arranged above the reticle.
  • the illumination optical device includes a light source that emits exposure light, and an illumination optical system that uniformly irradiates a light beam from the light source onto a reticle.
  • the light source is an F2 excimer laser light source, and emits exposure light having a wavelength of 157 nm.
  • the illumination optics system consists of a fly-eye lens for uniforming the illuminance distribution, an illumination system aperture stop, a variable field stop (reticle blind), and a condenser lens system.
  • the projection optical system PL is substantially telecentric on the reticle side and the wafer side as described above.
  • the exposure light supplied from the illumination optical device IS illuminates the reticle, and an image of the light source of the illumination optical device IS is formed at the position of the aperture stop STO of the projection optical system PL, so-called Koehler illumination is performed. Then, the circuit pattern of the reticle illuminated with Koehler illumination is reduced at a predetermined magnification via the projection optical system PL and projected onto the wafer.
  • step 1 a metal film is deposited on one lot of wafers.
  • step 2 A photoresist is applied on the metal film.
  • step 3 the pattern on the reticle is sequentially scanned and exposed on each exposure area on the wafer via the projection optical system PL using the above-mentioned projection exposure apparatus.
  • step 4 the photoresist on the wafer is developed.
  • step 5 a circuit pattern corresponding to the resist pattern on the reticle is formed in each exposure region on the wafer by etching the wafer on which the resist pattern is formed.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of a further upper layer.
  • the entire optical system is optically controlled.
  • the search can be performed with the axis as the center, and the inclination and displacement of each internal lens can be detected.
  • it is possible to obtain an effective diaphragm installation part, obtain a sufficient working distance, and obtain an optical system with a dramatically small concave mirror, and finally use the smallest aspherical element.
  • it consists of a single optical axis that is easy to adjust, and the reticle scanning direction can be taken in a direction perpendicular to gravity.

Abstract

A reflection/refraction optical system in which an effective stop installation portion is provided, a long-enough working distance is achieved, and as small a concave mirror as possible which is conventionally liable to be large. The system is characterized in that it includes, in the order from a first plane R toward a second plane W, a first image-forming optical system (G1) having a refracting lens, a second image-forming optical system (G2) having at least one concave lens and two reflecting mirrors, and a third image-forming optical system (G3) having a refracting lens, and in that the first image-forming optical lens (G1) forms a first intermediate image (IM1) of the first plane R, the second image-forming optical system (G2) forms a second intermediate image (IM2) by re-formation of the first intermediate image (IM2), and the third image-forming optical system (G3) re-forming the second intermediate image (IM2) on the second plane W.

Description

明細書 反射屈折光学系 技術分野  Description Catadioptric system Technical field
本発明は、 反射屈折光学系に関し、 特に、 半導体の製造に用いられるステッパー などの露光装置の反射屈折光学系に関するものである。 より具体的には、 紫外線波 長域でのサブミク口ン単位の分解能を有する 1 / 4倍程度の走査型縮小露光装置 の反射屈折縮小光学系に関するものである。  The present invention relates to a catadioptric system, and more particularly, to a catadioptric system of an exposure apparatus such as a stepper used for manufacturing a semiconductor. More specifically, the present invention relates to a catadioptric reduction optical system of a scanning reduction exposure apparatus of about 1/4 that has a resolution of a submicron unit in an ultraviolet wavelength region.
本出願は日本国特許出願平成 1 2年第 0 3 1 2 8 5号を基礎としており、その内 容を本明細書に組み込む。 背景技術  The present application is based on Japanese Patent Application No. 03112885, the contents of which are incorporated herein. Background art
近年、 半導体の製造や半導体チップ実装基板の製造では、 ますますラインアンド スペースの微細化が進んでおり、 これらのパターンを焼き付ける露光装置は、 より 解像力の高いものが要求されてきている。  In recent years, in the manufacture of semiconductors and the manufacture of semiconductor chip mounting substrates, the line and space have been increasingly miniaturized, and an exposure apparatus for printing these patterns has been required to have a higher resolution.
この要求を満足するためには、 露光装置の光源の波長を短波長化し、 かつ N A (光学系の開口数) を大きくしなければならない。 し力 しながら、 波長が短くなる と、 光の吸収のため実用に耐える光学ガラスが限られてくる。  In order to satisfy this requirement, the wavelength of the light source of the exposure apparatus must be shortened and the NA (numerical aperture of the optical system) must be increased. However, as the wavelength decreases, the optical glass that can withstand practical use is limited due to light absorption.
このような場合、 屈折光学系だけで露光装置の投影光学系を構成したのでは、 色 収差補正がまったく不可能となる。 従って、 要求される解像力を達成するために投 影光学系を屈折系のみで光学系を構成し、 投影レンズを作ることは、 非常に難しい ものとなる。  In such a case, if the projection optical system of the exposure apparatus is constituted only by the refraction optical system, chromatic aberration correction becomes impossible at all. Therefore, it is very difficult to construct a projection lens by constructing an optical system using only a refraction system as the projection optical system to achieve the required resolution.
これに対して、反射光学系のみで露光装置の投影光学系を構成することも試みら れているが、 この場合、 投影光学系が大型化し、 かつ反射面の非球面化が必要とな る。 高精度の反射非球面を多数用いることは、 製作の面で極めて困難になる。 そこで反射光学系と使用波長に使える光学ガラスからなる屈折光学系とを組み 合せた、 いわゆる反射屈折光学系が、 色々提案されている。 On the other hand, attempts have been made to configure the projection optical system of the exposure apparatus using only the reflection optical system, but in this case, the projection optical system becomes large and the reflection surface needs to be made aspherical. . Using a large number of high-precision reflective aspheric surfaces becomes extremely difficult in terms of manufacturing. Therefore, a reflective optical system and a refractive optical system made of optical glass that can be used for the wavelength used are combined. Various so-called catadioptric optical systems have been proposed.
その中で、投影光学系の光路の途中で少なくとも 1回以上の中間結像を行なうタ ィプは、 これまでに、 様々なものが提案されているが、 途中 1回結像のみ行うのも のに限定してみると、 特公平 5- 25170号公報 、 特開昭 63-163319号公報 、 特開平 4 - 234722号公報 、 USP - 4, 779, 966号に開示されたもの が挙げられる。  Among them, various types have been proposed to perform at least one intermediate image formation in the middle of the optical path of the projection optical system, but various types have been proposed so far. For example, Japanese Unexamined Patent Publication No. Hei 5-25170, Japanese Unexamined Patent Publication No. 63-163319, Japanese Unexamined Patent Publication No. 4-234722, and US Pat. No. 4,779,966 may be mentioned.
上記従来技術の中で、 凹面鏡を 1枚だけ使用しているものは、 特開平 4- 234722号 公報及び USP- 4, 779, 966号に開示された光学系である。 これらの光学系は、 凹面鏡 で構成される往復兼用光学系において、負レンズのみが採用されており、 正のパヮ 一の光学系が使われていない。 そのため、 光束が広がって凹面鏡に入射するため、 凹面鏡の径が大きくなりがちであった。  Among the above prior arts, the one using only one concave mirror is the optical system disclosed in JP-A-4-234722 and USP-4,779,966. In these optical systems, only a negative lens is used in a reciprocating optical system composed of a concave mirror, and a positive power system is not used. As a result, the light beam spreads and enters the concave mirror, so that the diameter of the concave mirror tends to increase.
また、 特に、 特開平 4-234722号公報に開示された往復兼用光学系は、 完全対称型 であり、 そこの光学系での収差発生を極力抑えて、 後続の屈折光学系の収差補正負 担を軽くしているが、 対称光学系を採用しているため、 第 1面 (レチクル又はマス ク) 側でのワーキングディスタンス (WD ) が小さくなつてしまう問題があった。 また、 USP- 4, 779, 966号に開示された光学系では、 中間像よりも後方の第 2結像 光学系に凹面鏡を使用している。 したがって、 光学系の必要な明るさを確保するた めには、 光束が広がって凹面鏡に入射する.ことになり、 凹面鏡の小型化が困難なも のであった。  In particular, the reciprocating optical system disclosed in Japanese Patent Application Laid-Open No. 4-234722 is a completely symmetrical type, and the generation of aberrations in the optical system there is minimized, and the subsequent refractive optical system is responsible for aberration correction. However, since the symmetrical optical system is used, the working distance (WD) on the first surface (reticle or mask) side is reduced. In the optical system disclosed in US Pat. No. 4,779,966, a concave mirror is used in a second imaging optical system behind the intermediate image. Therefore, in order to ensure the required brightness of the optical system, the light beam spreads and enters the concave mirror, making it difficult to reduce the size of the concave mirror.
また、 複数の凹面鏡を使用するものでは、 屈折光学系のレンズ枚数を削減できる 可能性があるが、 これらのタイプでは以下に示す問題があつた。  In the case of using multiple concave mirrors, there is a possibility that the number of lenses in the refractive optical system can be reduced. However, these types have the following problems.
すなわち、 最近、 焦点深度を稼ぎながら解像力を上げるため、 照明光学系の N A と投影光学系の N Aとの比 σ値を可変にすることが行なわれている。 この場合、 照 明光学系には開口絞りを設置することができるが、前記に挙げた反射屈折光学系を 投影光学系に採用すると、有効な絞り設置部分が投影光学系中のどこにも採れない ことになってしまう。  That is, recently, in order to increase the resolution while increasing the depth of focus, the ratio σ value of the N A of the illumination optical system and the N A of the projection optical system is made variable. In this case, an aperture stop can be installed in the illumination optical system, but if the above-described catadioptric optical system is used in the projection optical system, an effective aperture installation portion cannot be taken anywhere in the projection optical system. It will be.
さらに、このような配置の往復光学系を縮小側の第 2面(ウェハー又はプレート) 側に採用するタイプの反射屈折光学系では、縮小倍率の関係から反射鏡で反射した 後、 第 2面までの距離が長く採れないため、 この光路中に挿入される投影光学系の レンズ枚数がそう多く採れず、そのため得られる光学系の明るさは限られたものと ならざるを得なかった。 たとえ高 N Aの光学系が実現出来ても、 限られた長さに多 くの光学部材が挿入されるため、 ウェハーと投影光学系の端面との距離、 いわゆる ワーキングディスタンス (WD ) が長く採れない光学系となっていた。 Further, in a catadioptric optical system of a type employing such a reciprocating optical system on the second surface (wafer or plate) side on the reduction side, the light is reflected by the reflecting mirror due to the reduction magnification. Later, since the distance to the second surface cannot be long, the number of lenses of the projection optical system inserted in this optical path cannot be so large, and the brightness of the obtained optical system must be limited. I didn't get it. Even if an optical system with a high NA can be realized, the distance between the wafer and the end face of the projection optical system, the so-called working distance (WD), cannot be long because many optical members are inserted in a limited length. It was an optical system.
また、 以上のような従来の反射屈折光学系においては、 光路の光軸を必ず途中で 偏心させる必要があり、 いわゆる偏心光学系となっていた。 この偏心光学系の偏心 部分の調整作業は、 困難であり、 なかなか高精度の光学系を実現することができな かった。  Further, in the above-described conventional catadioptric optical system, it is necessary to decenter the optical axis of the optical path in the middle of the optical path. Adjustment of the eccentric part of this eccentric optical system was difficult, and it was difficult to realize a highly accurate optical system.
本発明では、 以上の問題点に鑑み、 有効な絞り設置部分を採ることができ、 ヮー キングデスタンスを充分採れ、大型になり勝ちな凹面鏡をできるだけ小さいもので 構成することが可能な反射屈折光学系を提供することを目的とする。 発明の開示  In the present invention, in view of the above-mentioned problems, a catadioptric optical system capable of adopting an effective diaphragm installation portion, having a sufficient peaking distance, and being capable of forming a large-sized concave mirror with the smallest possible size. It is intended to provide a system. Disclosure of the invention
本発明では、 上記目的を達成するために、 第 1面 Rより第 2面 W側へ順に、 屈折 レンズからなる第 1結像光学系 G 1と、少なくとも 1つの凹レンズと 2つの反射鏡 とを有する第 2結像光学系 G 2と、 屈折レンズからなる第 3結像光学系 G 3と、 を 含み、 前記第 1結像光学系 G 1は、 前記第 1面 Rの第 1中間像 I M lを形成し、 前 記第 2結像光学系 G 2は、前記第 1中間像 I M 1を再結像することで第 2中間像 I M 2を形成し、 前記第 3結像光学 G 3系は、 前記第 2中間像 I M 2を前記第 2面 W 上へ再結像することを特徴とする反射屈折光学系を提供する。  In the present invention, in order to achieve the above object, in order from the first surface R to the second surface W side, a first imaging optical system G1 composed of a refractive lens, at least one concave lens and two reflecting mirrors are provided. And a third imaging optical system G3 comprising a refracting lens.The first imaging optical system G1 has a first intermediate image IM of the first surface R. The second imaging optical system G2 forms a second intermediate image IM2 by re-imaging the first intermediate image IM1, and the third imaging optical G3 system. Provides a catadioptric system that re-images the second intermediate image IM2 onto the second surface W.
また、 本発明では、 この反射屈折光学系を用いた投影露光装置及び投影露光方法 も提供する。  The present invention also provides a projection exposure apparatus and a projection exposure method using the catadioptric optical system.
具体的には、 光源と、 光源からの光束を第 1面 R上に均一照射するための照明光 学系と、 第 1面: Rを第 2面 Wへ投影する前述の反射屈折光学系と、 を含むことを特 徴とする投影露光装置を提供する。  Specifically, a light source, an illumination optical system for uniformly irradiating a light beam from the light source onto the first surface R, and a catadioptric optical system for projecting the first surface R to the second surface W Provided is a projection exposure apparatus characterized by including:
また、 光源より照明光を放射し、 照明光学系により照明光を第 1面 R上に均一照 射し、 前述の反射屈折光学系を用いて第 1面 Rを第 2面 Wへ投影し、 第 2面 Wの露 光を行うことを特徴とする投影露光方法を提供する。 図面の簡単な説明 The illumination light is emitted from the light source, and the illumination optical system uniformly illuminates the illumination light on the first surface R. And a projection exposure method, wherein the first surface R is projected onto the second surface W using the above-described catadioptric system, and the second surface W is exposed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による反射屈折光学系の原理図である。  FIG. 1 is a principle diagram of a catadioptric optical system according to the present invention.
図 2は、 第 1実施例の反射屈折光学系の光路図である。  FIG. 2 is an optical path diagram of the catadioptric optical system of the first embodiment.
図 3は、 第 1実施例のコマ収差図である。  FIG. 3 is a coma aberration diagram of the first example.
図 4は、 第 1実施例の球面収差図、 非点収差図及び歪曲収差図である。  FIG. 4 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the first example.
図 5は、 第 2実施例の反射屈折光学系の光路図である。  FIG. 5 is an optical path diagram of the catadioptric optical system of the second embodiment.
図 6は、 第 2実施例のコマ収差図である。  FIG. 6 is a coma aberration diagram of the second example.
図 7は、 第 2実施例の球面収差図、 非点収差図及び歪曲収差図である。  FIG. 7 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the second example.
図 8は、 第 3実施例の反射屈折光学系の光路図である。  FIG. 8 is an optical path diagram of the catadioptric optical system of the third embodiment.
図 9は、 第 3実施例のコマ収差図である。  FIG. 9 is a coma aberration diagram of the third example.
図 1 0は、 第 3実施例の球面収差図、 非点収差図及び歪曲収差図である。  FIG. 10 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the third example.
図 1 1は、 第 4実施例の反射屈折光学系の光路図である。  FIG. 11 is an optical path diagram of the catadioptric optical system of the fourth embodiment.
図 1 2は、 第 4実施例のコマ収差図である。  FIG. 12 is a coma aberration diagram of the fourth example.
図 1 3は、 第 4実施例の球面収差図、 非点収差図及び歪曲収差図である。  FIG. 13 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the fourth example.
図 1 4は、 第 5実施例の反射屈折光学系の光路図である。  FIG. 14 is an optical path diagram of the catadioptric optical system of the fifth embodiment.
図 1 5は、 第 5実施例のコマ収差図である。  FIG. 15 is a coma aberration diagram of the fifth example.
図 1 6は、 第 5実施例の球面収差図、 非点収差図及ぴ歪曲収差図である。  FIG. 16 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the fifth example.
図 1 7は、 第 6実施例の反射屈折光学系の光路図である。  FIG. 17 is an optical path diagram of the catadioptric optical system of the sixth embodiment.
'図 1 8は、 第 6実施例のコマ収差図である。  FIG. 18 is a coma aberration diagram of the sixth example.
図 1 9は、 第 6実施例の球面収差図、 非点収差図及び歪曲収差図である。  FIG. 19 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the sixth example.
図 2 0は、 第 7実施例の反射屈折光学系の光路図である。  FIG. 20 is an optical path diagram of the catadioptric optical system of the seventh embodiment.
図 2 1は、 第 7実施例のコマ収差図である。 '  FIG. 21 is a coma aberration diagram of the seventh example. '
図 2 2は、 第 7実施例の球面収差図、 非点収差図及び歪曲収差図である。  FIG. 22 shows a spherical aberration diagram, an astigmatism diagram, and a distortion diagram of the seventh example.
図 2 3は、 第 8実施例の反射屈折光学系の光路図である。 図 2 4は、 第 8実施例のコマ収差図である。 FIG. 23 is an optical path diagram of the catadioptric optical system of the eighth embodiment. FIG. 24 is a coma aberration diagram of the eighth example.
図 2 5は、 第 8実施例の球面収差図、 非点収差図及び歪曲収差図である。  FIG. 25 is a diagram of spherical aberration, astigmatism, and distortion of the eighth embodiment.
図 2 6は、 本発明による投影露光装置の図である。  FIG. 26 is a diagram of a projection exposure apparatus according to the present invention.
図 2 7は、 本発明による投影露光方法の手順を示した図である。 発明を実施するための最良の形態  FIG. 27 is a view showing the procedure of the projection exposure method according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
上述のような第 1結像光学系 G 1〜第 3結像光学系 G 3を採用することで、 これ らの結像光学系の光軸が 1本の直線とになるように構成できる。  By employing the first imaging optical system G1 to the third imaging optical system G3 as described above, the optical axes of these imaging optical systems can be configured to be a single straight line.
従って、 本発明の反射屈折光学系によれば、 いわゆる従来からの反射屈折光学系 で問題となっていた、光軸が偏心しているために問題となる偏心光学系の偏心部分 の調整作業が不要となり、 高精度の光学系を実現することができる。  Therefore, according to the catadioptric optical system of the present invention, there is no need to adjust the eccentric portion of the eccentric optical system, which is a problem in the so-called conventional catadioptric system, which is a problem because the optical axis is decentered. Thus, a high-precision optical system can be realized.
更に、 反射屈折光学系で構成することにより、 反射屈折光学系の特徴である色補 正がなされるので、 単一硝種による色補正が可能となる。  Further, by configuring the catadioptric system, color correction, which is a characteristic of the catadioptric system, is performed, so that color correction using a single glass type is possible.
また更に、 屈折光学系部分 (第 1結像光学系及び第 3結像光学系) に正のパワー を含んでいるため、 正の値になりがちなペッツバール和も、 凹面鏡部分の負のぺッ ッバール値により、 相殺され、 完全に 0 とすることができる。  Furthermore, since the refractive optical system portion (the first imaging optical system and the third imaging optical system) includes a positive power, the Petzval sum, which tends to be a positive value, is also reduced by the negative peak of the concave mirror portion. It can be completely canceled out by the Koval value.
もちろん、 このような構成をとると、 第 1中間像 I M 1を第 1凹面鏡 K 1 ( 2つ の凹面鏡のうち第 1結像光学系 G 1の近くに配置されている凹面鏡) の中 開口付 近に結像させ、 第 2中間像を第 2凹面鏡 K 2 ( 2つの凹面鏡のうち第 3結像光学系 G 3の近くに配置されている凹面鏡) の中心開口付近に結像させ、 各凹面鏡の中心 開口を通して、 光線光路を後方に導く必要がある。  Of course, if such a configuration is adopted, the first intermediate image IM1 is converted into a first concave mirror K1 (a concave mirror that is arranged near the first imaging optical system G1 of the two concave mirrors) with an aperture. The second intermediate image is formed near the center opening of the second concave mirror K 2 (a concave mirror disposed near the third imaging optical system G 3 of the two concave mirrors), and the second intermediate image is formed. It is necessary to guide the light ray path backward through the center opening of.
このため、 入射瞳には、 中心遮蔽部が存在するが、 中間像の大きさが、 凹面鏡の 大きさに比して小さく、 また中間像の結像位置が、 凹面鏡の位置に対して大きく離 れていないため、 入射瞳の大きさに対する中心遮蔽部の大きさ、 いわゆる中心遮蔽 率は僅かであり、 結像性能に大きな影響を与えない。  For this reason, the entrance pupil has a central shielding part, but the size of the intermediate image is smaller than the size of the concave mirror, and the image formation position of the intermediate image is far away from the position of the concave mirror. Therefore, the size of the central shielding portion relative to the size of the entrance pupil, that is, the so-called central shielding ratio is small, and does not significantly affect the imaging performance.
また、 本発明は、 前記第 2面側の開口数を NA0とし、 前記第 2結像光学系の少な くとも 1つの凹レンズの有効径を Φとするとき、以下の条件を満足することが好ま しい。 In the present invention, when the numerical aperture on the second surface side is NA0 and the effective diameter of at least one concave lens of the second imaging optical system is Φ, it is preferable that the following condition is satisfied. New
3 Χ Φぐ 1 0 0 0 X NAO  3 Χ Φ 1 0 0 0 X NAO
この条件は、反射屈折光学系に使用される屈折レンズ及び反射鏡を小型化するた めの条件である。 この条件を逸脱すると、 屈折レンズ及び反射鏡の小型化が困難に なる。  This condition is for reducing the size of the refractive lens and the reflecting mirror used in the catadioptric optical system. If this condition is not met, it becomes difficult to reduce the size of the refractive lens and the reflecting mirror.
また、 反射屈折光学系は、 より高性能なものを得ようとするときは、 2 1枚以上 の屈折レンズから構成されることが好ましい。 もし、 2 3枚以上の屈折レンズから 構成されるようにすれば、 更に良い結果が得られる。  In order to obtain a higher-performance catadioptric system, it is preferable that the catadioptric system be composed of 21 or more refractive lenses. Even better results can be obtained if it consists of more than a few refracting lenses.
また、 反射屈折光学系は、 反射防止コートの性能が上げにくい場合や硝材の透過 率に問題がある場合は、 2 0枚以下の屈折レンズから構成されることが好ましい。 ' もし、 1 8枚以下の屈折レンズから構成されるようにすれば、 更に良い結果が得ら れる。  The catadioptric optical system is preferably composed of 20 or less refractive lenses when the performance of the antireflection coating is difficult to improve or when there is a problem with the transmittance of the glass material. 'Even better results can be obtained if it consists of no more than 18 refractive lenses.
更に好ましい態様としては、 前述の 2つの反射鏡の間に開口を有したり、 色収差 を良好に補正するためには、 前述の 2つの反射鏡は、 互いに凹面反射面を向かい会 わせに配置された凹面鏡であることが好ましい。  In a more preferred embodiment, in order to have an aperture between the two reflecting mirrors or to satisfactorily correct chromatic aberration, the two reflecting mirrors are arranged so as to face each other with the concave reflecting surfaces facing each other. It is preferably a concave mirror.
また、 第 1結像光学系 G 1は、 少なくとも、 2つ以上の正レンズで構成され、 第 3結像光学系 G 3は、少なくとも 2つ以上の正レンズで構成されることが好ましい。 更に、 第 1結像光学系 G 1または第 3結像光学系 G 3に、少なくとも 1つ以上の 開口絞りを配置することが好ましい。 また、 第 1結像光学系 G 1または第 3結像光 学系 G 3には、 少なくとも 1つ以上の中心遮蔽板を配置することが好ましい。 この ようにすることで、 像質の改善を行うことが出来る。  In addition, it is preferable that the first imaging optical system G1 includes at least two or more positive lenses, and the third imaging optical system G3 includes at least two or more positive lenses. Further, it is preferable that at least one or more aperture stops are arranged in the first imaging optical system G1 or the third imaging optical system G3. In addition, it is preferable that at least one or more central shielding plates be disposed in the first imaging optical system G1 or the third imaging optical system G3. By doing so, the image quality can be improved.
また、 反射屈折光学系は、 非球面を少なくとも 5面以上含むことが好ましい。 非 球面を用いることで、 投影光学系の高性能化やレンズの枚数削減が達成できる。 更に、 反射屈折光学系の屈折レンズを、 すべて同一の硝材、 特に、 蛍石で構成す ることが好ましい。 硝材としては、 蛍石以外には、 フッ素を添加した石英ガラスや フッ素化合物の結晶が考えられる。  The catadioptric system preferably includes at least five or more aspheric surfaces. By using an aspherical surface, it is possible to achieve higher performance of the projection optical system and a reduction in the number of lenses. Further, it is preferable that all the refractive lenses of the catadioptric system are made of the same glass material, particularly fluorite. As the glass material, besides fluorite, quartz glass to which fluorine is added or crystals of a fluorine compound can be considered.
また、 2つの凹面鏡のうち、 第 1面側 Rに近い方に配置されているものを第 1 113 面鏡 K lとし、第 2面 W側に近い方に配置されているものを第 2凹面鏡 K 2とし、 第 1中間像 I Mlの位置から第 1凹面鏡 1の位置までの距離を d 1、第 2中間像 I M 2の位置から第 2凹面鏡 K 2の位置までの距離を d 2とし、 第 2面 W上の露光領 域の直径を とするとき、 以下の条件を満足することが好ましい。 In addition, of the two concave mirrors, the one arranged closer to the first surface side R is referred to as the first 113 The surface mirror Kl, the one located closer to the second surface W side is the second concave mirror K2, and the distance from the position of the first intermediate image I Ml to the position of the first concave mirror 1 is d1, When the distance from the position of the second intermediate image IM2 to the position of the second concave mirror K2 is d2, and the diameter of the exposure area on the second surface W is, the following conditions are preferably satisfied.
I d l I く  I d l I
I d 2 I く  I d 2 I
d 1に係る条件は、第 1結像光学系 G 1及び第 2結像光学系 G 2の適切な屈折力 配分を規定するものであり、 d 2に係る条件は、 第 2結像光学系 G 2及び第 3結像 光学系 G 3の適切な屈折力配分を規定するものである。 これら条件の範囲を逸脱す ると、 いずれかの結像光学系の屈折力が逼大になり、 良好な収差補正が困難になる と同時に、 凹面鏡の小型化が困難になる。  The condition relating to d1 defines an appropriate refractive power distribution of the first imaging optical system G1 and the second imaging optical system G2, and the condition relating to d2 corresponds to the second imaging optical system G1. G2 and third imaging optical system G3 define an appropriate refractive power distribution. If these conditions are deviated, the refractive power of one of the imaging optical systems becomes tight, and it becomes difficult to satisfactorily correct aberrations, and at the same time, it becomes difficult to reduce the size of the concave mirror.
また、 反射屈折光学系は、 第 1面 R側、 または第 2面 W側でテレセントリックな 光学系であることが好ましい。  The catadioptric optical system is preferably a telecentric optical system on the first surface R side or the second surface W side.
本発明による反射屈折光学系は、 基本的には、 図 1に示すように、 第 1面 より 第 2面 W側へ順に、 第 1結像光学系 G l、 第 2結像光学系 G 2及び第 3結像光学系 G 3より構成されている。 ここで、 第 1結像光学系 G 1は、 第 1面 Rの第 1中間像 I M lを第 2結像光学系 G 2の付近に形成する。 更に、 第 2結像光学系 G 2は、 第 1中間像 I M 1の再結像像である第 2中間像 I M 2を第 3結像光学系 G 3の付近 に形成し、 第 3結像光学系 G 3は、 第 2中間像 I M 2を第 2面 W上に結像させる。 図 1には、 第 1面 R、 第 1中間像 I M 1、 第 2中間像 I M 2及び第 2面 Wの結像 関係による物体及ぴ像の向きが、 矢印を用いて示されている。 また、 図 1には、 本 発明による反射屈折光学系を走査型投影露光装置に適用したときの、第 1面 R及び 第 2面 W上での走査方向も示されている。第 1面 R及び第 2面 W上での走查方向は、 それぞれ反対の方向となる。 また、 照明領域及ぴ露光領域は、 光軸を中心とする長 方形形状である。 尚、 第 3結像光学系 G 3中には、 開口絞り S T0が配置されてい る。  The catadioptric optical system according to the present invention basically includes, as shown in FIG. 1, a first imaging optical system Gl and a second imaging optical system G2 in order from the first surface to the second surface W side. And a third imaging optical system G3. Here, the first imaging optical system G1 forms a first intermediate image I Ml of the first surface R near the second imaging optical system G2. Further, the second imaging optical system G2 forms a second intermediate image IM2, which is a re-imaged image of the first intermediate image IM1, in the vicinity of the third imaging optical system G3. The optical system G3 forms the second intermediate image IM2 on the second surface W. In FIG. 1, the directions of the object and the image based on the imaging relationship among the first surface R, the first intermediate image IM1, the second intermediate image IM2, and the second surface W are indicated by arrows. FIG. 1 also shows scanning directions on the first surface R and the second surface W when the catadioptric optical system according to the present invention is applied to a scanning projection exposure apparatus. The running directions on the first surface R and the second surface W are opposite to each other. The illumination area and the exposure area have a rectangular shape centered on the optical axis. Note that an aperture stop ST0 is disposed in the third imaging optical system G3.
また、 以下に示す各実施例では非球面を用いており、 非球面形状を表す式は以下 の通りである ( y :光軸からの高さ In each of the embodiments described below, an aspherical surface is used. Is as follows ( y: Height from optical axis
z :接平面から非球面までの光軸方向の距離 z: Distance in the optical axis direction from the tangent plane to the aspheric surface
r :頂点曲率半径 r: radius of curvature at the vertex
κ :円錐係数 κ: Cone coefficient
A, B, C, D :非球面係数 A, B, C, D: Aspheric coefficient
更に、 以下に示す各実施例の投影光学系は、 全て蛍石によって構成されている。 蛍石の屈折率は、 波長 1 5 7 n mで 1 . 5 6 0 0 0である。  Further, the projection optical systems of the following embodiments are all made of fluorite. Fluorite has a refractive index of 1.5600 at a wavelength of 157 nm.
以下に、 本発明による各実施例を示す。 以下に示す表中で、 CaF2は蛍石を示し、 REFは反射鏡を示し、 ST0は開口絞りを示している。  Below, each Example by this invention is shown. In the table below, CaF2 indicates fluorite, REF indicates a reflector, and ST0 indicates an aperture stop.
〔第 1実施例〕  (First embodiment)
第 1実施例による反射屈折光学系は、 図 2に示すように、 第 1面 Rより第 2面 W 側へ順に、 第 1結像光学系 G l、 第 2結像光学系 G 2及び第 3結像光学系 G 3より 構成されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 3枚の正メニスカ スレンズ、 3枚の負メュスカスレンズ、 2枚の正レンズ及ぴ 3枚の正メニスカスレ ンズにより講成され、 第 2結像光学系 G 2は、 1枚の凹面鏡、. 2枚の負メニスカス レンズ及び 1枚の凹面鏡によって講成されている。 また、 第 3結像光学系 G 3は、 1枚の正メニスカスレンズ、 1枚の負レンズ、 2枚の正メ-スカスレンズ、 1枚の 負レンズ、 4枚の正メニスカスレンズ、 1枚の負レンズ及び 1枚の正メニスカスレ ンズにより講成されている。  As shown in FIG. 2, the catadioptric optical system according to the first embodiment includes, in order from the first surface R to the second surface W side, a first imaging optical system Gl, a second imaging optical system G2, and a second imaging optical system G2. It consists of three imaging optics G3. The first imaging optical system G1 is provided with three positive meniscus lenses, three negative meniscus lenses, two positive lenses, and three positive meniscus lenses in order from the first surface R side. The two imaging optics G 2 is trained by one concave mirror, two negative meniscus lenses and one concave mirror. In addition, the third imaging optical system G 3 includes one positive meniscus lens, one negative lens, two positive meniscus lenses, one negative lens, four positive meniscus lenses, and one negative meniscus lens. The course is taught by a lens and one positive meniscus lens.
また、 本実施例の反射屈折光学系は、 縮小倍率 が 1/4倍、 第 2面 W側の開口数 ( NA ) が 0. 75、 第 1面 R側の最大物体高が 37. 44 mm、 第 2面 W側の最大像高が 9. 36 ramであり、 第 2面 W上の露光サイズを 17. 5 X 6. 6 mmの矩形開口としてい る。 これにより、 走査して露光を行うことで、 全体の露光面積は 17. 2 X 25 mmと している。 また、 WDは、 第 1面 R側で 50. 912830で、 第 2面 W側で 13. 234625であ る。 The catadioptric optical system of this example has a reduction ratio of 1/4, a numerical aperture (NA) of the second surface W side of 0.75, and a maximum object height of the first surface R side of 37.44 mm. The maximum image height on the second side W side is 9.36 ram, and the exposure size on the second side W is a 17.5 x 6.6 mm rectangular aperture. You. By performing scanning and exposure, the overall exposure area is 17.2 X 25 mm. The WD is 50.912830 on the first surface R side and 13.234625 on the second surface W side.
使用する凹面鏡の直径は、 260. 2 mm以下、 使用レンズの中で、 2枚の最大のレ ンズの有効径は 246. 9 ram以下であり、その他の大部分のレンズの有効径は 183. 5醒 以下であり、通常のこのスペックで使用される屈折系球面光学系の使用レンズの有 効径よりも、 かなり小さいものである。  The diameter of the concave mirror used is 260.2 mm or less, the effective diameter of the two largest lenses of the lenses used is 246.9 ram or less, and the effective diameter of most other lenses is 183. It is 5 watts or less, which is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 19. 5 %であり、 結像性能に与 える影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding part of the concave mirror to the light beam is 19.5% in NA ratio, and has little effect on the imaging performance, and sufficient high performance can be obtained.
屈折レンズ部は蛍石を使用し、 紫外線 F2 エキシマレーザ一の 157 nm の波長に おける、 半値幅 1 pmの色収差補正がなされている。  The refractive lens part is made of fluorite, and chromatic aberration correction with a half-value width of 1 pm at a wavelength of 157 nm of an ultraviolet F2 excimer laser is performed.
また、 図 3及び図 4に示すように、 球面収差、 コマ収差、 非点収差及び歪曲収差 ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供してい る。 表 1  In addition, as shown in FIGS. 3 and 4, spherical aberration, coma, astigmatism, and distortion are all well corrected to a state close to almost no aberration, thereby providing an optical system with excellent performance. table 1
曲率半径 面間隔  Radius of curvature Surface spacing
-3000. 00000 20. 777380 CaF2 G  -3000.00000 20.777380 CaF2 G
K : 0. 000000  K: 0.000000
A : -. 414199E-07 , B : 0. 101382E- 11  A:-. 414199E-07, B: 0.1101382E-11
C : -. 507220E-17 D : 0. 410909E- 20  C:-. 507220E-17 D: 0.410909E-20
2 -187. 15560 92. 403460  2 -187.15560 92.403460
3 -558. 99669 25. 971725 CaF2  3 -558. 99669 25. 971725 CaF2
4 -210. 93675 15. 861605  4 -210.93675 15.861605
5 263. 61227 25. 971725 CaF2  5 263. 61227 25. 971725 CaF2
6 1257. 90730 13. 379506  6 1257.90730 13.379506
K : 0. 000000 A : -. 355346E- 7 B : 0. 293775E-11K: 0.000000 A:-. 355346E-7 B: 0.293775E-11
C : 0. 514678E- -17 D : 0. 170581E- 19C: 0.5514678E--17 D: 0.170581E-19
150. 00000 29. 526565 CaF2150.00000 29.526565 CaF2
94. 28503 30. 499818 94.28503 30.499818
420. 59234 20D C. 800000 CaF2 420.59234 20D C. 800000 CaF2
141. 55197 13. 16 o900057 141.55197 13.16 o900057
K : 0. 000000 0 0  K: 0.000000 0 0
A : -. 137576E- -06 B : - . 430519E - 10 A:-. 137576E--06 B:-. 430519E-10
C : 0. 994337E- -14 D : -. 468002E-17C: 0.9994337E- -14 D:-. 468002E-17
522. 48173 20. 722934 CaF2522.48173 20.722934 CaF2
155. 53167 155. 53167
1055. 46476 17. 359120 CaF2 1055.46476 17.359120 CaF2
-130. 14083 22. 492621 -130.14083 22.492621
671. 87155 21. 568896 CaF2 671.87155 21.568896 CaF2
- 160. 00000 37. 130352 -160.00000 37.130352
-225. 56184 20. 677950 CaF2 -225.56184 20.677950 CaF2
: 0. 000000 : 0.000000
A : -. 144554E- -06 B : 0. 106034E - 10 A:-. 144554E- -06 B: 0.10603E-10
C : -. 946352E- - 15 D : 0. 959437E-20C:-. 946352E--15 D: 0.959437E-20
-101. 07298 14. 929386 -101. 07298 14. 929386
156. 60829 20. 000000 CaF2 156. 60829 20. 000000 CaF2
241. 09685 3. 949536 241.099685 3.949536
191. 75976 20. 777380 CaF2 191.75976 20.777380 CaF2
480. 17990 3. 469721 480.17990 3.469721
127. 28576 33. 411885 CaF2 127.28576 33.411885 CaF2
-1587. 54253 29. 129562 -1587.54253 29.129562
K : 0. 000000 2 K: 0.000000 Two
9. S a 31 . K : 0. 000000 9. S a 31. K: 0.000000
A : -. 161976E- 07 B : -. 584652E-12 A:-. 161976E- 07 B:-. 584652E-12
C : -. 193271E- 16 D : -. 650552E-21 C:-. 193271E-16 D:-. 650552E-21
- 194. 22167 25. 609160 CaF2  -194.22167 25.609160 CaF2
K : 0. 000000  K: 0.000000
A : 0. 132322E- 07 B : 0. 673254E-12 A: 0.132322E- 07 B: 0.673254E-12
C : 0. 256289E- 16 D : 0. 413237E-21 C: 0.2256289E-16 D: 0.413237E-21
1120. 36909 31. 786896  1120.36909 31.786896
-246. 29797 31. 010448 仮想面  -246. 29797 31. 010448 Virtual surface
3000. 00000 43. 702739 CaF2 G 3 : 0. 000000  3000.00000 43.702739 CaF2G3: 0.000000
: -. 241471E- 06 B : -. 189700E-10 : 0. 150133E- 14 D : -. 600549E - 18  :-. 241471E-06 B:-. 189700E-10: 0.150133E-14 D:-. 600549E-18
-126. 02993 5. 832116  -126. 02993 5. 832116
- 506. 82326 18. 699642 CaF2  -506.82326 18.699642 CaF2
619. 13207 26. 763769  619.13207 26.763769
.1377. 00220 44. 048046 CaF2 : 0. 000000  .1377. 00220 44.048046 CaF2: 0.000000
: -. 502983E- 07 B : 0. 363010E - 11 : -. 133698E- 16 D : -. 278297E-20  :-. 502983E- 07 B: 0.363010E-11:-. 133698E-16 D:-. 278297E-20
-126. 12121 5. 581666  -126.12121 5.581581
■3000. 00000 31. 166070 CaF2  ■ 3000.00000 31.166070 CaF2
- 211. 50805 101. 102525  -211. 50805 101. 102525
-404. 56272 18. 699642 CaF2  -404.56272 18.699642 CaF2
3000. 00000 18. 000000  3000.00000 18.000000
321. 09183 25. 000000 CaF2  321.09183 25.000000 CaF2
3000. 00000 31. 200000 K 0. 000000 3000.00000 31.200000 K 0.000000
A 0. 262291E— 07 B : 0. 174496E— 11  A 0.262291E— 07 B: 0.174496E— 11
C 0. 726166E-16 D : -. 125632E - 20  C 0. 726166E-16 D:-. 125632E-20
53 oo 32. 963838 STO  53 oo 32. 963838 STO
54 179. 49045 30. 535668 CaF2  54 179.49045 30.535668 CaF2
55 3000. 00000 42. 026705  55 3000. 00000 42. 026705
56 228. 90738 20. 198128 CaF2  56 228.90738 20.198128 CaF2
57 3000. 00000 1. 123733  57 3000.00000 1.123733
K 0. 000000  K 0.000000
A 0. 118587E-07 B : 一 . 220599E一 11  A 0. 118587E-07 B: 1.
C 0. 904169E- 16 D : -. 814939E-20  C 0. 904169E-16 D:-. 814939E-20
58 100. 73952 33. 183232 CaF2  58 100. 73952 33. 183232 CaF2
59 1100. 00000 6. 964116  59 1100.00000 6.964116
60 2754. 43020 15. 000000 CaF2  60 2754.43020 15.000000 CaF2
K : 0. 000000  K: 0.000000
Α : -. 182017E-07 B : -. 884609E- 11  ::-. 182017E-07 B:-. 884609E-11
C : 0. 715263E- 15 D : -. 161609E- 19  C: 0.715263E-15 D:-. 161609E-19
61 493. 21390 6. 009195  61 493. 21390 6. 009195
62 164. 38322 40. 068312 CaF2  62 164. 38322 40. 068312 CaF2
63 2793. 72651 13. 234625  63 2793.72651 13.234625
〔第 2実施例〕  (Second embodiment)
第 2実施例による投影光学系は、 図 5に示すように、 第 1面 Rより第 2面 W側へ 順に、 第 1結像光学系 G l、 第 2結像光学系 G 2及び第 3結像光学系 G 3より構成 されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 3枚の正メニスカスレ ンズ、 3枚の負メニスカスレンズ、 2枚の正レンズ、 1枚の負メニスカスレンズ、 2枚の正メニスカスレンズ、 により講成され、 第 2結像光学系 G 2は、 1枚の凹面 鏡、 2枚の負メニスカスレンズ及び 1枚の凹面鏡によって講成される。 第 3結像光 学系 G 3は、 1枚の正メニスカスレンズ、 1枚の負レンズ、 2枚の正メニスカスレ ンズ、 1枚の負レンズ、 4枚の正メニスカスレンズ、 1枚の負レンズ及び 1枚の正 メニスカスレンズにより講成される。 As shown in FIG. 5, the projection optical system according to the second embodiment includes, in order from the first surface R to the second surface W side, a first imaging optical system Gl, a second imaging optical system G2, and a third imaging optical system G2. It consists of an imaging optical system G3. The first imaging optical system G 1 includes, in order from the first surface R side, three positive meniscus lenses, three negative meniscus lenses, two positive lenses, one negative meniscus lens, and two positive meniscus lenses. The second imaging optical system G2 is provided by one concave mirror, two negative meniscus lenses, and one concave mirror. Third imaging light G3 has one positive meniscus lens, one negative lens, two positive meniscus lenses, one negative lens, four positive meniscus lenses, one negative lens, and one positive meniscus It is taught by lens.
また、 本実施例の反射屈折光学系は、 縮小倍率が 1/4倍、 第 2面 W側の開口数 ( NA ) 力 S 0. 75、 第 1面 R側の最大物体高が 37. 44 mm、 第 2面 W側の最大像高が 9. 36 画 であり、 第 2面 W上の露光サイズは 17. 5 X 6. 6 膽 の矩形開口としてい る。 これにより、 走査して露光し、 全体の露光面積は 17. 2 X 25 mmとしている。 また、 WDは、 第 1面 R側で 50. 000000で、 第 2面 W側で 12. 335033である。  The catadioptric optical system according to the present embodiment has a reduction ratio of 1/4, a numerical aperture (NA) force S 0.75 on the second surface W side, and a maximum object height 37.44 on the first surface R side. mm, the maximum image height on the second surface W side is 9.36 images, and the exposure size on the second surface W is a 17.5 x 6.6 cubic rectangular aperture. Thus, scanning and exposure are performed, and the overall exposure area is 17.2 X 25 mm. The WD is 50.000 000 on the first surface R side and 12.333503 on the second surface W side.
使用する凹面鏡の直径は、 251. 2 讓以下、 使用レンズの中で、 2枚の最大のレ ンズの有効径は 238. 4 膽以下であり、 その他の大部分のレンズの有効径は 187 mm 以下であり、通常のこのスペックで使用される屈折系球面光学系の使用レンズの有 効径よりも、 かなり小さいものである。  The diameter of the concave mirror used is less than 251.2 cm, the effective diameter of the two largest lenses among the lenses used is less than 238.4 mm, and the effective diameter of most other lenses is 187 mm This is much smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 19. 5 %であり、 結像性能に与 える影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding part of the concave mirror to the light beam is 19.5% in NA ratio, and has little effect on the imaging performance, and sufficient high performance can be obtained.
屈折レンズ部は蛍石を使用し、 紫外線エキシマレーザーの 157 nmの波長におけ る、 半値幅 1. 0 pm の色収差補正がなされている。  The refractive lens part is made of fluorite, and has a chromatic aberration correction with a half-value width of 1.0 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
また、 図 6及び図 7に示すように、 球面収差、 コマ収差、 非点収差及び歪曲収差 ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供してい る。 表 2  In addition, as shown in FIGS. 6 and 7, spherical aberration, coma, astigmatism, and distortion are all well corrected to almost no aberration, thereby providing an optical system with excellent performance. Table 2
面番号 曲率半径 面間隔 Surface number Curvature radius Surface spacing
1 -3000. 00000 22. 000000 CaF2 G 1  1 -3000.00000 22.000000 CaF2 G 1
K : 0. 000000  K: 0.000000
A : -. 375155E-07 B : 0. 129267E-11  A:-. 375155E-07 B: 0.129267E-11
C : -. 129447E-16 D : 0. 274885E-20  C:-. 129447E-16 D: 0.274885E-20
2 -218. 25882 41. 898836 Q ZZfS '8T ooooo 'οοοε oz 2 -218. 25882 41. 898836 Q ZZfS '8T ooooo' οοοε oz
Zd^O 98εΐ '9Ζ 9S0£9 '½ΐ 6ΐ  Zd ^ O 98εΐ '9Ζ 9S0 £ 9' ½ΐ 6ΐ
OOOOO ΖΤ- 81 OOOOO ΖΤ- 81
6i-aTS6zss Ό : α ^ι- ■H80T^T '- : 06i-aTS6zss Ό: α ^ ι- ■ H80T ^ T'-: 0
Οΐ - 30S060S O : 9 90- •38S680Z - : V Οΐ-30S060S O: 9 90-• 38S680Z-: V
000000 : 1 000000: 1
Ζή^Ο 000000 '8Ζ tlSSO -SST- LI Ζή ^ Ο 000000 '8Ζ tlSSO -SST-LI
890SI6 "Ζ OOOOO Ό9Τ- 9T 890SI6 "Ζ OOOOO Ό9Τ-9T
Zd^D οοοοοο 'οε 6086 -6ZS 9ΐ Zd ^ D οοοοοο 'οε 6086 -6ZS 9ΐ
S8S 6SSS8 Ί8ΐ- ΐ Zd^O 000000 "82 TSST6 Ό9Ψ CT  S8S 6SSS8 Ί8ΐ- ΐ Zd ^ O 000000 "82 TSST6 Ό9Ψ CT
86½Π "01 6C988 '6ST Ζΐ 86½Π "01 6C988 '6ST Ζΐ
Zi οοοοοο 'οε 8969S '9^1 IIZi οοοοοο 'οε 8969S' 9 ^ 1 II
ΖΙ-398966Ι - : α I- -3869821 - : 3 01— 38ΐ 86 '一 : Η 90- -H8TS8ZS '- : V 398-398966Ι-: α I- -3869821-: 3 01— 38ΐ 86 'One: Η 90- -H8TS8ZS'-: V
000000 Ό :  000000 ::
OT  OT
Zd^O 000000 '02 OOOOO ·00Ζ 6  Zd ^ O 000000 '02 OOOOO 00Ζ 6
00Z296 ·9ΐ Sf99l ΊΙ 8 Zd^O 000000 'LZ OOOOO Ό9ΐ L 6Τ-ΗΖΪ8606 Ό : a 91- -ΆίΖ^Ιί '- : 0 0T-HZT620T "0 : a 90- -H20SZ0I '- : V  00Z296 · 9ΐ Sf99l ΊΙ 8 Zd ^ O 000000 'LZ OOOOO Ό9ΐ L 6Τ-ΗΖΪ8606 Ό: a 91- -ΆίΖ ^ Ιί'-: 0 0T-HZT620T "0: a 90- -H20SZ0I '-: V
000000 : 1 000000: 1
98ZZ09 ΊΙ 00000 Οθε 9 000000 'ZZ ooooo 'οοε 3 9AZtS0 '98 "992- f 000000 '92 ooooo oos- s 98ZZ09 ΊΙ 00000 Οθε 9 000000 'ZZ ooooo' οοε 3 9AZtS0 '98 "992- f 000000 '92 ooooo oos-s
STST
ZT600/I0df/X3d Z0S6S/T0 OAV Zl-^L6Z 9L a o-a s^ is - : v ZT600 / I0df / X3d Z0S6S / T0 OAV Zl- ^ L6Z 9L a oa s ^ is-: v
oooooo : I oooooo: I
Ζ ^Ο 000009 -fZ- - LILIL "9^1 εεΖ ^ Ο 000009 -fZ--LILIL "9 ^ 1 εε
- 36 86Ι8 Ό : α 0-36 86Ι8 Ό: α 0
2T-aoc^o9 : a O-H T^ZT Ό V 2T-aoc ^ o9: a O-H T ^ ZT Ό V
000000 Ό 1 000000 Ό 1
8629^9 ' 6- - 9Ϊ6 ' 06ΐ- ζε Ζή^ 000009 ' Z- - ZIS88 ·ε 6- IS dm 9Ζ99ε ·οε- - Z£Lf9 '9S2- OS 8629 ^ 9 '6--9Ϊ6' 06ΐ- ζε Ζή ^ 000009 'Z--ZIS88 · ε 6- IS dm 9Ζ99ε · οε--Z £ Lf9' 9S2- OS
9Z99S 'οε SI886 'S 6- 6Z Τ2-Η8^86ΐ8 Ό : d 9T-HCSZZ8Z Ό : 0 2I-aOZ^09 Ό : 8 0-3 19 ^ Ό : V  9Z99S 'οε SI886' S 6-6Z Τ2-Η8 ^ 86ΐ8 :: d 9T-HCSZZ8Z Ό: 0 2I-aOZ ^ 09 8: 8 0-3 19 ^ :: V
000000 Ό : 1 000000 :: 1
Zd^O 00000S 'fZ 9Ϊ6 '06ΐ- 8Ζ I2-a0898^ '- : α Zd ^ O 00000S 'fZ 9Ϊ6 '06 ΐ- 8Ζ I2-a0898 ^'-: α
ζι-Άί&ζ ι '- : a Lo-^m z ·- : V  ζι-Άί & ζ ι '-: a Lo- ^ m z ·-: V
000000 Ό : 1 000000 :: 1
8688^9 · 6 LILIL "3^1 LZ z o Zd^O 00000S ' Z TS99S Έ ε 9Ζ ffi驟 2} 982660 "SS 006Ζ9 'Ζ£Ζ Ζ Ll-'RLfSUl "0 : a -Άζ ζ : ο ZT-H9Z 80^ '- : a 90-aS00T8S : V 8688 ^ 9 · 6 LILIL "3 ^ 1 LZ zo Zd ^ O 00000S 'Z TS99S Έ ε 9 驟 ffi liquor 2} 982660" SS 006Ζ9' Ζ £ Ζ Ζ Ll-'RLfSUl "0: a -Άζ :: ο ZT- H9Z 80 ^ '-: a 90-aS00T8S: V
000000 Ό : I ZSLL06 '9Ζ ZZOZl '0S9 fZ 000000 Ό: I ZSLL06 '9Ζ ZZOZl' 0S9 fZ
000000 'OS 66StS "STI sz oooooo Ί ooooo 'οοοε zz -QZ 08880 '612 IZ 000000 'OS 66StS "STI sz oooooo Ί ooooo' οοοε zz -QZ 08880 '612 IZ
91 91
ZT600/I0df/X3d Z0S6S/T0 OAV 00000 '000S - L ZT600 / I0df / X3d Z0S6S / T0 OAV 00000 '000S-L
69ST00 g eso "9ST- 9 TZ-3998Z8Z Ό : a  69ST00 g eso "9ST-9 TZ-3998Z8Z Ό: a
TT-as nig-o : a - mzz - : v  TT-as nig-o: a-mzz-: v
000000 Ό : 1 000000 :: 1
Zi^D 629289 '9S 00000 Ό09Ι- S Zi ^ D 629 289 '9S 00000 Ό09Ι- S
8 9W6 -fZ 9iL6f 'εΐε  8 9W6 -fZ 9iL6f 'εΐε
Zi^O ZS9Z66 ' Z Ϊ2ΖΖ 'OIL- ε  Zi ^ O ZS9Z66 'Z Ϊ2ΖΖ' OIL- ε
0ZT9T9 ΈΤ '88- Zf ii-ao98S8i -·: a 1— 38S00II ·- : 0  0ZT9T9 ΈΤ '88-Zf ii-ao98S8i-: a 1-38S00II ·-: 0
90- Ά ίΖΖ - : V  90- Ά ίΖΖ-: V
000000 Ό : ¾ 000000 Ό: ¾
S O Zi 9Z9SSI ' LZL92 'OS - If ffi铧 ifiezi ·εε Of S O Zi 9Z9SSI 'LZL92' OS-If ffi 铧 ifiezi
^9299S 'OS STS88 6- 6S IS - 38 86Ϊ8Ό : a 9ΐ- 3ZS^82 '0 : 3  ^ 9299S 'OS STS88 6-6S IS-38 86Ϊ8Ό: a 9ΐ-3ZS ^ 82' 0: 3
Ό : 9 O-H^TS^I ·0 V  Ό: 9 O-H ^ TS ^ I · 0 V
000000 "0 : ¾ 000000 "0: ¾
Zi^O 000009 916 ' 06ΐ— 8S T2-30896^Z - : a 91- 36S8S^2 '- : 3 2I-a 6St9 '- : 9 10-31SHTZ - : V Zi ^ O 000009 916 '06ΐ— 8S T2-30896 ^ Z-: a 91-36S8S ^ 2'-: 3 2I-a 6St9 '-: 9 10-31SHTZ-: V
000000 "0 : 1 LlLlL^ l LZ 000000 "0: 1 LlLlL ^ l LZ
ZjeO ooooos T9S92 'εζε 9£ iW 982660 "9S 006S9 £Ζ 9C ZjeOooooos T9S92 'εζε 9 £ iW 982660 "9S 006S9 £ Ζ 9C
9S2660 "9ε· - T999S '8Z ε is-ao898^ - : a 91-Ά6Ζ8£ Ζ - :  9S2660 "9ε ·-T999S '8Z ε is-ao898 ^-: a 91-Ά6Ζ8 £ Ζ-:
LI LI
iI600/TOdf/X3d Z0S6S/T0 OAV 48 -172. 27507 80. 378735 iI600 / TOdf / X3d Z0S6S / T0 OAV 48 -172.27507 80.378735
49 -298. 04283 26. 000000 CaF2  49 -298. 04283 26. 000000 CaF2
50 900. 114寸29 18. 000000  50 900.114 inch 29 18.000
51 26. 986309 CaF2  51 26. 986309 CaF2
52 1840. 88546 29. 082204  52 1840.88546 29.082204
K : 0. 000000  K: 0.000000
A : 0. 305762E- -07 B : 0. 350662E-11  A: 0.305762E- -07 B: 0.3506662E-11
C : -. 150807E- -16 D : 0. 100764E— 20  C:-. 150807E- -16 D: 0.10764E--20
53 INFINITY 32. 814087 STO  53 INFINITY 32. 814087 STO
54 183. 92572 27. 075959 CaF2  54 183. 92572 27. 075959 CaF2
55 2999. 93355 40. 709071  55 2999. 93355 40. 709071
56 199. 36289 21. 746889 CaF2  56 199.36289 21.746889 CaF2
57 3000. 00000 1. 000299  57 3000.00000 1.000299
K : 0. 000000  K: 0.000000
A : 0. 334340E-08 B : -. 123754E - 11  A: 0.3334340E-08 B:-. 123754E-11
C : 0. 220160E-15 D : - . 245539E- 19  C: 0.2220160E-15 D:-. 245539E-19
58 107. 10593 31. 458160 CaF2  58 107.10593 31.458160 CaF2
59 1100. 00000 5. 646428  59 1100.00000 5.646428
60 -23185. 44979 15. 000165 CaF2  60 -23185.44979 15.000165 CaF2
K : 0. 000000  K: 0.000000
A : 0. 165825E-07 B : ―. 600208E- II  A: 0.165825E-07 B: ―. 600208E-II
C : ―. 104560E-14 D: 0. 976604E- 19  C: ―. 104560E-14 D: 0.9976604E-19
61 678. 36633 3. 108222  61 678.36633 3.108222
62 172. 06068 38. 667335 CaF2  62 172. 06068 38. 667335 CaF2
63 2689. 20000 12. 335033  63 2689. 20000 12. 335033
〔第 3実施例〕 (Third embodiment)
第 3実施例による反射屈折光学系は、 図 8に示すよう 第 1面 Rより第 2面 W 側へ順に、 第 1結像光学系 G l、 第 2結像光学系 G 2及び第 3結像光学系 G 3より 構成されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 1枚の負メニスカ スレンズ、 1枚の正レンズ、 ' 3枚の正メニスカスレンズ、 1枚の負レンズ、 2枚の 正メニスカスレンズ、 2枚の正レンズ及び 2枚の正メニスカスレンズにより構成さ れ、 第 2結像光学系 G 2は、 1枚の凹面鏡、 2枚の負メニスカスレンズ及び 1枚の 凹面鏡によって講成される。 第 3結像光学系 G 3は、 1枚の正レンズ、 1枚の負レ ンズ、 1枚の正メニスカスレンズ、 1枚の正レンズ、 1枚の正メニスカスレンズ、 1枚の負メニスカスレンズ、 4枚の正メニスカスレンズ、 1枚の正レンズ、 1枚の 負メニスカスレンズ及び 1枚の正メニスカスレンズにより講成される。 In the catadioptric optical system according to the third embodiment, as shown in FIG. In order to the side, it is composed of a first imaging optical system Gl, a second imaging optical system G2, and a third imaging optical system G3. The first imaging optical system G 1 includes, in order from the first surface R side, one negative meniscus lens, one positive lens, '' three positive meniscus lenses, one negative lens, and two positive meniscus. It consists of a lens, two positive lenses, and two positive meniscus lenses, and the second imaging optical system G 2 is configured by one concave mirror, two negative meniscus lenses, and one concave mirror. . The third imaging optical system G3 includes one positive lens, one negative lens, one positive meniscus lens, one positive lens, one positive meniscus lens, one negative meniscus lens, The course is taught by four positive meniscus lenses, one positive lens, one negative meniscus lens and one positive meniscus lens.
また、 本実施例の反射屈折光学系は、 縮小倍率力 S 1/4倍、 第 2面 W側の開口数 NA が 0. 75、 第 1面 R側の最大物体高が 52. 8 讓 、 第 2面 W側の最大像高が 13. 2 匪 であり、 第 2面 W上の露光サイズは 25 X 8. 8 mmの矩形開口としている。 これに より、 走査して露光し、 全体の露光面積は 25 X 33 腿 としている。 また、 WD は、 第 1面 R側で 72. 73469.5で、 第 2面 W側で 17. 227255である。  The catadioptric optical system of this embodiment has a reduction magnification power S 1/4 times, a numerical aperture NA on the second surface W side of 0.75, and a maximum object height on the first surface R side of 52.8 sq. The maximum image height on the second side W side is 13.2, and the exposure size on the second side W is a rectangular aperture of 25 x 8.8 mm. By scanning and exposing, the overall exposure area is 25 x 33 thighs. The WD is 72.733469.5 on the first surface R side and 17.227255 on the second surface W side.
使用する凹面鏡の直径は、 260 mm以下、 使用レンズの中で、 2枚の最大のレン ズの有効径は 259 謹以下であり、 その他の大部分のレンズの有効径は 188 mm以 下であり、通常のこのスペックで使用される屈折系球面光学系の使用レンズの有効 径よりも、 かなり小さいものである。  The diameter of the concave mirror used is 260 mm or less, the effective diameter of the two largest lenses of the lenses used is 259 mm or less, and the effective diameter of most other lenses is 188 mm or less. However, it is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system used in the normal specification.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 20 %であり、 結像' I生能に与え る影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding part of the concave mirror to the light flux is 20% in NA ratio, and has little effect on the imaging performance, and it is possible to obtain sufficiently high performance.
屈折レンズ部は蛍石を使用し、 紫外線 F2 エキシマレーザーの 157 nm の波長に おける、 半値幅 2pm の色収差補正がなされている。  The refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of ultraviolet F2 excimer laser.
また、 図 9及び図 1 0に示すように、 球面収差、 コマ収差、 非点収差及び歪曲収 差ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供して いる。 表 3 2 In addition, as shown in FIGS. 9 and 10, spherical aberration, coma, astigmatism, and distortion are all well corrected to almost no aberration, providing an optical system with excellent performance. . Table 3 Two
εεΌ SO α363ώ03 : -- 12 εεΌ SO α363ώ03:- 12
21  twenty one
- 68. 56232 20. 000000 CaF2 -68.56232 20.000000 CaF2
-70. 74293 41. 134534  -70.74293 41.134534
567. 87517 25. 000000 CaF2  567. 87517 25. 000000 CaF2
-194. 21146 10. 854699  -194. 21146 10. 854699
210. 32584 30. 000000 CaF2  210.32584 30.000000 CaF2
- 387. 06333 5. 932971  -387.06333 5.932971
163. 81379 35. 000000 CaF2  163. 81379 35. 000000 CaF2
1102. 33199 1. 887552  1102.33199 1.887552
K : 0. 000000  K: 0.000000
A : 0. 158223E- -06 B : -. 539232E- 11  A: 0.158223E--06 B:-. 539232E-11
C : 0. 714678E - -15 D : -. 255633E-19  C: 0.7714678E--15 D:-. 255633E-19
140. 36912 31. 500000 CaF2  140.36912 31.500000 CaF2
794. 90624 25. 500189  794.90624 25.500189
220. 90770 36. 833447 仮想面  220.90770 36.8333447 Virtual surface
1036. 33936 22. 500000 CaF2 G 2  1036. 33936 22.500000 CaF2 G 2
188. 66330 94. 552939  188.66330 94.552939
K : 0. 000000  K: 0.000000
A : -. 256120E- -07 B : -. 895159E-12  A:-. 256120E- -07 B:-. 895159E-12
C : -. 185484E- -16 D : -. 417720E-21  C:-. 185484E- -16 D:-. 417720E-21
-240. 79096 22. 500000 CaF2  -240.79096 22.500000 CaF2
K : 0. 000000  K: 0.000000
Λ  Λ
n. ' • n v. R ϋRΟ1Ι 91丄 P- -08 B : 0. 421447E-12 n. '• n v. R ϋRΟ1Ι 91 丄 P- -08 B: 0.42147E-12
c : 0. 378121E- -17 D : 0. 191012E-21 c: 0.378121E--17 D: 0.191012E-21
-1024. 32842 24. 739484  -1024.32842 24.739484
-258. 87707 -24. 739484 REF  -258.87707 -24.739484 REF
-1024. 32842 -22. 500000 CaF2  -1024. 32842 -22. 500000 CaF2
-240. 79096 -94. 552939 K : 0. 000000 -240.79096 -94.552939 K: 0.000000
A : 0. 68122 IE- 08 B : 0. 21447E-12  A: 0.668122 IE-08 B: 0.221447E-12
C : 0. 378121E - 17 D : 0. 191012E-21  C: 0.378121E-17 D: 0.191012E-21
188. 66330 -22. 500000 CaF2  188.66330 -22.500000 CaF2
K : 0. 000000 K: 0.000000
Α : -. 256120E-07 B : - . 895159E- 12 Α:-. 256120E-07 B:-. 895159E-12
C : -. 185484E-16 D : -. 417720E- 21 C:-. 185484E-16 D:-. 417720E-21
1036. 33936 - 36. 833447  1036.33936-36.8333447
220. 90770 36. 833447 EF  220.90770 36.8333447 EF
1036. 33936 22. 500000 CaF2  1036.33936 22.500000 CaF2
188. 66330 94. 552939  188.66330 94.552939
K : 0. 000000 K: 0.000000
A : -. 256120E-07 B : -. 895159E-12 A:-. 256120E-07 B:-. 895159E-12
C : -. 185484E-16 D : -. 417720E-21 C:-. 185484E-16 D:-. 417720E-21
-240. 79096 22. 500000 CaF2  -240.79096 22.500000 CaF2
K : 0. 000000 K: 0.000000
A : 0. 681221E-08 B : 0. 421447E-12  A: 0.6681221E-08 B: 0.42147E-12
C : 0. 378121E - 17 D : 0. 191012E - 21 C: 0.3378121E-17 D: 0.191012E-21
-1024. 32842 24. 739484  -1024.32842 24.739484
-258. 87707 25. 486063 仮想面  -258.87707 25.486063 Virtual surface
407. 25535 38. 190207 CaF2 G 3 -80. 77131 0. 450000  407.25535 38.190207 CaF2 G3 -80.77131 0.450000
-90. 03715 13. 500000 CaF2  -90.03715 13.500000 CaF2
-3749. 7527 11. 431836  -3749.7527 11.431836
K : 0. 000000 K: 0.000000
A : 0. 179888E-06 B : -. 100180E-10  A: 0.179888E-06 B:-. 100180E-10
C : 0. 237530E-15 D : 0. 234800E-19 -291. 30723 31. 500000 CaF2 C: 0.237530E-15 D: 0.234800E-19 -291. 30723 31. 500000 CaF2
129. 59272 30. 000000 CaF2 129.59272 30.000000 CaF2
209. 83508 0. 090000 209.83508 0.090000
109. 82374 36. 402419 CaF2 109.82374 36.402419 CaF2
-1410. 86181 11. 758388 -1410.86181 11.758388
K : 0. 000000  K: 0.000000
A : 0. 738536E- -07 B : 0. 186966E- 11 C : -. 217836E-16 D : - . 114821E- 19 A: 0.738536E- -07 B: 0.186966E-11 C:-. 217836E-16 D:-. 114821E-19
64 -257. 15288 13. 500000 CaF2  64 -257.15288 13.500000 CaF2
K : 0. 000000  K: 0.000000
A : 0. 160993E-06 B : -. 241393E-10  A: 0.160993E-06 B:-. 241393E-10
C : 0. 214179E-14 D : - . 751863E— 19  C: 0.2214179E-14 D:-.751863E-19
65 -1000. 00000 10. 984355  65 -1000.00000 10.984355
66 135. 64836 24. 135094 CaF2  66 135.64836 24.135094 CaF2
67 2954. 96641 17. 227255  67 2954.96641 17.227255
〔第 4実施例〕  (Fourth embodiment)
第 4実施例による反射屈折光学系は、 図 1 1に示すように、 第 1面 Rより第 2面 W側へ順に、 第 1結像光学系 G 1、 第 2結像光学系 G 2及び第 3結像光学系 G 3よ り構成されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 3枚の正メニス カスレンズ、 1枚の負メニスカスレンズ、 1枚の負レンズ、 1枚の正メニスカスレ ンズ、 2枚の正レンズ、 1枚の正メニスカスレンズ、 1枚の正レンズ及ぴ 1枚の正 メニスカスレンズで構成され、 第 2結像光学系 G 2は、 互いに対称形に向かい合つ て配置された 2枚の凹面鏡と 2枚の負メニスカスレンズとで構成されている。第 3 結像光学系 G 3は、 1枚の正メニスカスレンズ、 1枚の凹レンズ、 2枚の正メニス カスレンズ、 1枚の負メニスカスレンズ、 4枚の正メニスカスレンズ、 1枚の負レ ンズ及び 1枚の正メニスカスレンズから構成されている。  The catadioptric optical system according to the fourth embodiment includes, as shown in FIG. 11, a first imaging optical system G1, a second imaging optical system G2, and a second surface W in order from the first surface R to the second surface W. It comprises a third imaging optical system G3. The first imaging optical system G1 includes three positive meniscus lenses, one negative meniscus lens, one negative lens, one positive meniscus lens, and two positive lenses in order from the first surface R side. , One positive meniscus lens, one positive lens, and one positive meniscus lens, and the second imaging optical system G2 has two concave mirrors arranged to face each other symmetrically. And two negative meniscus lenses. The third imaging optical system G3 includes one positive meniscus lens, one concave lens, two positive meniscus lenses, one negative meniscus lens, four positive meniscus lenses, one negative lens, It consists of one positive meniscus lens.
また本実施例の反射屈折光学系は、 縮小倍率が 1/4倍、 第 2面 W側の開口数 が 0. 75, 第 1面 R側の最大物体高が 52. 8 腿 、 第 2面 W側の最大像高が 13. 2mm で あり、 第 2面 W上の露光サイズは 25. 0 X 8. 8 ramの矩形開口としている。 これに より、 走査して露光し、 全体の露光面積は 25. 0 X 33 讓 としている。 また、 W Dは、 第 1面 R側で 78. 864226で、 第 2面 W側で 12. 628525である。  The catadioptric optical system of this embodiment has a reduction magnification of 1/4, a numerical aperture on the second surface W side of 0.75, a maximum object height on the first surface R side of 52.8 thighs, and a second surface. The maximum image height on the W side is 13.2 mm, and the exposure size on the second surface W is a rectangular aperture of 25.0 X 8.8 ram. With this, scanning and exposure are performed, and the entire exposure area is set to 25.0 X 33 rows. In addition, WD is 78.864226 on the first surface R side and 12.628525 on the second surface W side.
使用する凹面鏡の直径は、 265 讓以下、 使用レンズの中で、 2枚の最大のレン ズの有効径は 260 mm 以下であり、 その他の大部分のレンズの有効径は 183 讓 以 下であり、通常のこのスペックで使用される屈折系球面光学系の使用レンズの有効 径よりも、 かなり小さいものである。 The diameter of the concave mirror used is less than 265 cm, the effective diameter of the two largest lenses of the lenses used is less than 260 mm, and the effective diameter of most other lenses is less than 183 cm. , The effective lens of the refractive system spherical optical system used in this specification It is much smaller than the diameter.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 20 %であり、 結像性能に与え る影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding part of the concave mirror to the light beam is 20% in NA ratio, and the effect on the imaging performance is small, and sufficiently high performance can be obtained.
屈折レンズ部は蛍石を使用し、 紫外線エキシマレーザーの 157 nmの波長におけ る、 半値幅 2. 0 pmの色収差補正がなされている。  The refractive lens part is made of fluorite, and has a chromatic aberration correction with a half-value width of 2.0 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
また、 図 1 2及び 1 3に示すように、 球面収差、 コマ収差、 非点収差及び歪曲収 差ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供して いる。 表 4  In addition, as shown in Figs. 12 and 13, spherical aberration, coma, astigmatism, and distortion are all well corrected to almost no aberration, providing an optical system with excellent performance. . Table 4
面番号 曲率半径 面間隔 Surface number Curvature radius Surface spacing
-3000. 00000 22. 075897 CaF2 G 1  -3000.00000 22.075897 CaF2 G 1
K : 0. 000000  K: 0.000000
A : -. 654529E- 07 B : -. 199200E- 11  A:-. 654529E-07 B:-. 199200E-11
C : -. 674789E- 16 D : -. 342457E-20  C:-. 674789E-16 D:-. 342457E-20
2 -386. 80140 52. 772690  2 -386.8014052.772690
3 -373. 50991 27. 882563 CaF2  3 -373. 50991 27.882563 CaF2
4 - 156. 04363 100. 139573  4-156.04363 100.139573
5 -3000. 00000 35. 000000 CaF2  5 -3000. 00000 35. 000000 CaF2
K : 0. 000000  K: 0.000000
A : 0. 530589E- 08 B : 0. 169821E-11  A: 0.530589E-08 B: 0.169821E-11
C : -. 942769E- 16 D : 0. 409411E-21  C:-. 942769E-16 D: 0.40941E-21
6 -229. 11836 1. 000000  6 -229. 11836 1. 000000
7 88. 82633 50. 737308 CaF2  7 88.82633 50.737308 CaF2
8 65. 21188 45. 509130  8 65.21188 45.509130
9 -108. 82430 23. 450398 CaF2  9 -108.82430 23.450398 CaF2
: 0. 000000 609S9 '66 ^T69 '681 : 0.000000 609S9 '66 ^ T69 '681
z o zd^o oooogz ' Z 69 Έ96 η  z o zd ^ o oooogz 'Z 69 Έ96 η
Μ ~ εε8 9 ·6ε f9£S 'SZZ  Μ ~ εε8 9 · 6ε f9 £ S 'SZZ
6Ϊ-Η8920Ι9 - : d ΐ- -368902^ "0 : 0 Π-38ΠΖ9Ζ '-: a 90- -3SZ690C Ό : V  6Ϊ-Η8920Ι9-: dΐ- -368902 ^ "0: 0Π-38ΠΖ9Ζ'-: a 90- -3SZ690C Ό: V
000000 Ό : ¾ f8Bl£ '9fl ζζ z^d omz 'ζε ZLI Z '901 ιζ 000000 Ό: ¾ f8Bl £ '9fl ζζ z ^ d omz' ζε ZLI Z '901 ιζ
6Χ-Η9^Τ08Ζ Ό : α -'aeizzi '- : 6Χ-Η9 ^ Τ08Ζ α: α -'aeizzi '-:
TT-a089S98 : 9 ιο- -3X92909 Ό : V  TT-a089S98: 9 ιο- -3X92909 Ό: V
000000 Ό :  000000 ::
000000 ·ΐ 9Π99 "Z68- 02 000000 · ΐ 9Π99 "Z68- 02
000000 Ί 00000 OOS 81 ¾ 000000 '92 Τ6ΐεε 'Lfz LI  000000 Ί 00000 OOS 81 ¾ 000000 '92 Τ6ΐεε 'Lfz LI
- f l£Z L "I8S- 91 -f l £ Z L "I8S- 91
998 '68Z 91998 '68Z 91
000000 66S9^ "S6T- fl000000 66S9 ^ "S6T- fl
Π8 " 99 ει 8tSS9 'Z 29866 'Ψ91- 8T-a22C9T2 Ό : d fl- -as^oin Ό :  Π8 "99 ει 8tSS9 'Z 29866' Ψ91- 8T-a22C9T2 :: d fl- -as ^ oin Ό:
0T-3868ZS2 "0 : 9 LO- -3Z8S8TT Ό : V  0T-3868ZS2 "0: 9 LO- -3Z8S8TT Ό: V
000000 Ό : zd^o 89 09 'εε LL O 1S9- II  000000 Ό: zd ^ o 89 09 'εε LL O 1S9- II
S90S99 ΊΤ ·£0Ζ 01 T-az6S909 - : α l- '- : D S90S99 ΊΤ · £ 0Ζ 01 T-az6S909-: α l- '-: D
Οΐ - 3906998· - : Η 90- -H09SSZI '0 : V Οΐ-3906998 ·-: Η 90- -H09SSZI '0: V
9Z 9Z
ZT600/I0df/X3d Z0S6S/T0 OAV K : 0. 000000 ZT600 / I0df / X3d Z0S6S / T0 OAV K: 0.000000
Α : -. 252659E-07 B : -. 830414E-12 Α:-. 252659E-07 B:-. 830414E-12
C : -. 175740E - 16 D : - . 268579E - 21 -297. 63016 24. 750000 CaF2 K : 0. 000000 C:-. 175740E-16 D:-. 268579E-21 -297. 63016 24.750000 CaF2 K: 0.000000
A : 0. 546102E - 08 B : 0. 289886E - 12 A: 0.5546102E-08 B: 0.289886E-12
C : 0. 177975E-17 D : 0. 119389E-21 -2160. 94390 24. 864215 C: 0.177975E-17 D: 0.1119389E-21 -2160.94390 24.864215
-281. 20741 ― ■24. 854215 REF -2160. 94390 - ■24. 750000 CaF2 -297. 63016 - .99. 636094  -281.20741 ― ■ 24.854215 REF -2160.94390-■ 24.750000 CaF2 -297.63016-.99. 636094
K : 0. 000000 K: 0.000000
A : 0. 546102E-08 B : 0. 289886E-12 A: 0.5546102E-08 B: 0.289886E-12
C : 0. 177975E- 17 D : 0. 119388E-21 189. 59124 一•24. 750000 CaF2 K : 0. 000000 C: 0.177975E-17 D: 0.1119388E-21 189.59124 1 • 24.750000 CaF2 K: 0.000000
A : - . 252659E- 07 B : -. 830414E-12 A:-. 252659E- 07 B:-. 830414E-12
C : -. 176740E-16 D : -. 268579E-21 963. 69544 - -39. 634833 C:-. 176740E-16 D:-. 268579E-21 963. 69544--39. 634833
228. 49364 39. 634833 REF 963. 69544 24. 750000 CaF2 189. 59124 99. 636094  228.49364 39.634833 REF 963.69544 24.750000 CaF2 189.59124 99.636094
K : 0. 000000 K: 0.000000
A : -. 252659E-07 B : -. 830414E-12 A:-. 252659E-07 B:-. 830414E-12
C ―. 176740E-16 D : - . 268579E - 21 -297. 63016 24. 750000 CaF2 K : 0. 000000 A 0. 546102E - 08 B : 0. 289886E- 12 C ―. 176740E-16 D:-.268579E-21 -297. 63016 24.750000 CaF2 K: 0.000000 A 0. 546102E-08 B: 0.289886E-12
C 0. 177975E- 17 D : 0. 119388E - 21 C 0.177975E-17D: 0.1119388E-21
2160. 94390 24. 864215  2160.94390 24.864215
-281. 20741 31. 125800 仮想面  -281.20741 31.125800 Virtual surface
3000. 00000 35. 472862 CaF2 G 3 3000.00000 35.472862 CaF2 G 3
K 0. 000000 K 0.000000
A -. 170069E- 06 B : 0. 674464E-11 A-. 170069E-06 B: 0.674464E-11
C 0. 186386E-•14 D : 0. 143709E— 18 C 0. 186386E- • 14 D: 0.143709E—18
- 92. 54829 3. 008806  -92.54829 3.008806
-249. 24892 , 24. 585174 CaF2  -249. 24892, 24. 585174 CaF2
4651. 12185 19. 289496  4651.12185 19.289496
1377. 18462 30. 000000 CaF2  1377. 18462 30. 000000 CaF2
K 0. 000000  K 0.000000
A -. 548419E- ■07 B : 0. 426591E - 12 A-. 548419E- ■ 07 B: 0.426591E-12
C 0. 201460E-•15 D : -. 141841E-19 C 0. 201460E- • 15 D:-. 141841E-19
-137. 02413 1. 000000  -137. 02413 1. 000000
-529. 67962 41. 532614 CaF2  -529.67962 41.532614 CaF2
-178. 30383 32. 564995  -178. 30383 32. 564995
1120. 95257 20. 000000 CaF2  1120.95257 20.000000 CaF2
950. 03072 33. 000000  950.03072 33.00000
243. 45289 20. 000000 CaF2  243.45289 20.00000000 CaF2
817. 22813 43. 500000  817.22813 43.500000
K 0. 000000  K 0.000000
A 0. 114940E- -07 B : 0. 694313E-12 A 0.114940E- -07 B: 0.694313E-12
C -. 162058E- -16 D : -. 112537E- 20 C-. 162058E- -16 D:-. 112537E-20
INFINITY 14. 493571 STO  INFINITY 14. 493571 STO
259. 52152 30. 000000 CaF2 53 1200. 60898 30. 738619 259.52152 30.000000 CaF2 53 1200.60898 30. 738619
54 120. 15502 25. 979031 CaF2  54 120. 15502 25. 979031 CaF2
55 338. 49381 3. 701219  55 338. 49381 3.701219
K : 0. 000000  K: 0.000000
A : 0. 433295E - 07 B : - · 118741E-11  A: 0.433295E-07 B:-· 118741E-11
C : -. 719231E-16 D : - . 375588E-20  C:-. 719231E-16 D:-. 375588E-20
56 101. 37860 32. 225269 CaF2  56 101. 37860 32. 225269 CaF2
57 1768. 45447 9. 504206  57 1768.45447 9.504206
58 -297. 45709 15. 890847 CaF2  58 -297. 45709 15.890847 CaF2
K : 0. 000000  K: 0.000000
Α : 0. 171643E-07 B : 0. 316707E-11  Α: 0.17164E-07 B: 0.3316707E-11
C : -. 333732E-15 D : 0. 112876E - 19  C:-. 333732E-15 D: 0.1112876E-19
59 274. 59785 8. 773853  59 274.59785 8.773853
60 74. 77999 40. 562463 CaF2  60 74.77999 40.562463 CaF2
61 2700. 00000 12. 629525  61 2700.00000 12.629629525
〔第 5実施例〕  (Fifth embodiment)
第 5実施例による反射屈折光学系は、 図 1 4に示すように、 第 1面 Rより第 2面 W側へ順に、 第 1結像光学系 G 1、 第 2結像光学系 G 2及び第 3結像光学系 G 3よ り構成されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 1枚の正メニス カスレンズ、 1枚の正レンズ、 1枚の負メニスカスレンズ、 1枚の負レンズ、 2枚 の正メニスカスレンズ 2枚の正レンズ及び 1枚の凹メニスカスレンズにより講成 され、 第 2結像光学系 G 2は、 1枚の凹面鏡、 2枚の負メニスカスレンズ、 1枚の 凹面鏡によって講成されている。 第 3結像光学系 G 3は、 2枚の正レンズ、 1枚の 負メニスカスレンズ、 1枚の正メニスカスレンズ、 1枚の正レンズ、 1枚の正レン ズ、 1枚の正メニスカスレンズ、 1枚の負メニスカスレンズ、 2枚の正レンズ 1枚 の負メニスカスレンズ、 1枚の正メニスカスレンズ及び 1枚の負メニスカスレンズ により講成されている。 また、 本実施例の反射屈折光学系は、 縮小倍率が 1/4倍、 第 2面 W側の開口数 NA が 0. 75、 第 1面 R側の最大物体高が 52. 8 mm、 第 2面" W側の最大像高が 13. 2 腿 であり、 第 2面 W上の露光サイズは 25 X 8. 8 腿 の矩形開口としている。 これに より、 走査して露光し、 全体の露光面積は 25 X 8. 8 ram としている。 また、 WD は、 第 1面 R側で 110. 490999で、 第 2面 W側で 13. 000594である。 The catadioptric optical system according to the fifth embodiment includes, as shown in FIG. 14, a first imaging optical system G1, a second imaging optical system G2, and a second surface W in order from the first surface R. It comprises a third imaging optical system G3. The first imaging optical system G 1 includes, in order from the first surface R side, one positive meniscus lens, one positive lens, one negative meniscus lens, one negative lens, and two positive meniscus lenses The second imaging optical system G2 is provided by one concave mirror, two negative meniscus lenses, and one concave mirror. The second imaging optical system G2 is provided by two positive lenses and one concave meniscus lens. The third imaging optical system G3 has two positive lenses, one negative meniscus lens, one positive meniscus lens, one positive lens, one positive lens, one positive meniscus lens, One negative meniscus lens, two positive lenses, one negative meniscus lens, one positive meniscus lens, and one negative meniscus lens. The catadioptric optical system of this example has a reduction ratio of 1/4, a numerical aperture NA on the second surface W side of 0.75, a maximum object height on the first surface R side of 52.8 mm, The maximum image height on the W side of the second surface is 13.2 thighs, and the exposure size on the second surface W is a rectangular aperture of 25 x 8.8 thighs. The exposure area is 25 X 8.8 ram, and the WD is 110.490999 on the first surface R side and 13.000594 on the second surface W side.
使用する凹面鏡の直径は、 313 mm以下、 使用レンズの中で、 2枚の最大のレン ズの有効径は 308 匪以下であり、 その他の大部分のレンズの有効径は 195 醒以 下であり、通常のこのスぺックで使用される屈折系球面光学系の使用レンズの有効 径よりも、 かなり小さいものである。  The diameter of the concave mirror used is 313 mm or less, the effective diameter of the two largest lenses of the lenses used is 308 or less, and the effective diameter of most other lenses is 195 awake or less. However, it is considerably smaller than the effective diameter of the lens used in the refractive spherical optical system used in the ordinary spec.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 23 %であり、 結像性能に与え る影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding portion of the concave mirror to the light beam is 23% in NA ratio, and has little effect on the imaging performance, and it is possible to obtain sufficiently high performance.
屈折レンズ部は蛍石を使用し、 紫外線エキシマレーザーの 157 nmの波長におけ る、 半値幅 2pmの色収差補正がなされている。  The refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
また、 図 1 5及び図 1 6に示すように、 球面収差、 コマ収差、 非点収差及び歪曲 収差ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供し ている。 表 5  In addition, as shown in Figs. 15 and 16, spherical aberration, coma, astigmatism, and distortion are all well corrected to almost no aberration, providing an optical system with excellent performance. . Table 5
面番号 曲率半径 面間隔 Surface number Curvature radius Surface spacing
1 159. 32095 25. 651285 CaF2 G 1  1 159. 32095 25. 651285 CaF2 G 1
K : 0. 000000  K: 0.000000
A : -. 324889E-07 B : -. 524220E- 12  A:-. 324889E-07 B:-. 524220E-12
C : -. 273309E-16 D : -· 138335E- 20  C:-. 273309E-16 D:-138335E-20
2 2637. 91245 142. 138736  2 2637.91245 142.138736
3 151. 60085 26. 901202 CaF2  3 151.60085 26.901202 CaF2
4 -509. 70443 1. 877036  4 -509. 70443 1. 877036
5 74. 09675 20. 000000 CaF2 57. 88708 35. 542620 5 74.09675 20.000000 CaF2 57.88708 35.542620
K : 0. 000000  K: 0.000000
A : - . 363303E- 7 B : _. 410027E一 11  A:-. 363303E-7 B: _. 410027E-1 11
C : -. 415849E- -15 D : - . 286718E- 18  C:-. 415849E- -15 D:-. 286718E-18
- 159. 68008 15. 000000 CaF2  -159. 68008 15. 000000 CaF2
253. 42748 13. 780501  253.42748 13.780501
-82. 56455 30. 000000 CaF2  -82. 56455 30. 000000 CaF2
-70. 90308 1. 002904 -70.90308 1.002904
K : 0. 000000  K: 0.000000
A : -. 114773E - -06 B : 0. 234099E-12  A:-. 114773E--06 B: 0.234099E-12
C : 0. OOOOOOE+00 D : 0. OOOOOOE+00  C: 0. OOOOOOE + 00 D: 0. OOOOOOE + 00
-87. 46332 24. 956992  -87. 46332 24. 956992
301. 65849 28. 809544 CaF2  301.65849 28.809544 CaF2
-170. 13474 16. 440815  -170.13474 16.440815
145. 40564 24. 000000 CaF2  145. 40564 24. 000000 CaF2
-373. 48587 1. 115491  -373.48587 1.115491
-523. 17400 20. 611851 CaF2  -523. 17400 20. 611851 CaF2
K : 0. 000000  K: 0.000000
A : -. 158656E- -06 B : 0. 146192E-11  A:-. 158656E--06 B: 0.146192E-11
C : 0. 214154E- -15 D : 0. 937835E-20  C: 0.214154E- -15 D: 0.937835E-20
-202. 52624 37. 489392  -202.52624 37.489392
252. 45443 40. 015913 仮想面  252. 45443 40.015913 Virtual surface
603. 99618 32. 760000 CaF2 G 2 603.99618 32.760000 CaF2 G 2
181. 82657 114. 201884 181.82657 114.201884
K : 0. 000000  K: 0.000000
A : 一. 661884E- -08 B : -.: 157014E— 12 C : -. 424640E- 17 D : -. 969518E-22 -391. 73360 32. 760000 CaF2 K : 0. 000000 A: I. 661884E- -08 B:-.: 157014E— 12 C:-. 424640E-17 D:-. 969518E-22 -391. 73360 32. 760000 CaF2 K: 0.000000
Α : 0. 755172E- 08 B : 0. 392267E— 12 C : -. 266238E- 17 D : 0. 240423E-21 -2749. 75395 25. 587922  Α: 0.755172E-08 B: 0.392267E— 12 C:-. 266238E-17D: 0.2240423E-21 -2749. 75395 25.587922
-336. 43406 -25. 587922 REF -2749. 75395 -32. 760000 CaF2 -391. 73360 - 114. 201884  -336.43406 -25.587922 REF -2749.75395 -32.760000 CaF2 -391.73360 -114.201884
K : 0. 000000 K: 0.000000
A : 0. 755172E- 08 B : 0. 392267E-12 C : -. 266238E-■17 D : 0. 240423E-21 181. 82657 - 32. 760000 CaF2 K : 0. 000000  A: 0.755172E-08 B: 0.392267E-12 C:-. 266238E- ■ 17 D: 0.2240423E-21 181.882657-32.760000 CaF2 K: 0.000000
A : -. 661884E- 08 B : -. 157014E-12 C : -. 424640E-•17 D : _. 969518E - 22 603. 99618 -40. 015913 A:-. 661884E- 08 B:-. 157014E-12 C:-. 424640E- • 17 D: _. 969518E-22 603. 99618 -40. 015913
252. 45443 40. 015913 REF 603. 99618 32. 760000 CaF2 181. 82657 114. 201884  252.45443 40.015913 REF 603.99618 32.760000 CaF2 181.882657 114.201884
K : 0. 000000 K: 0.000000
A : -. 661884E- •08 B : -. 157014E - 12 C : -. 424640E-■17 D : -. 969518E-22 -391. 73360 32. 760000 CaF2 K : 0. 000000  A:-. 661884E- • 08 B:-. 157014E-12 C:-. 424640E- ■ 17 D:-. 969518E-22 -391. 73360 32. 760000 CaF2 K: 0.000000
A : 0. 755172E- -08 B : 0. 392267E-12 C : -. 266238E- -17 D : 0. 240423E-21 2T-a^80 g "ο : a o- -aS6Z68I '- : V A: 0.755172E- -08 B: 0.392267E-12 C:-. 266238E- -17 D: 0.2240423E-21 2T-a ^ 80 g "ο: a o- -aS6Z68I '-: V
000000 ·0 : I 000000 · 0: I
Si 99ΠΖ0 '6Z 0Ζ6£ζ ·88Τ- 8Si 99ΠΖ0 '6Z 0Ζ6 £ ζ88Τ-8
OIS 69 ζ A1INWNI LfOIS 69 ζ A1INWNI Lf
T9ZZ6S '8ΐ ε½ε 'οεζ 9T9ZZ6S '8ΐ ε½ε' οεζ 9
Zd^D 6^6S 'OS 68 9ΐ ·69ΐ Zd ^ D 6 ^ 6S 'OS 68 9ΐ69ΐ
oooooo τ 99ZLZ Ί 9_  oooooo τ 99ZLZ Ί 9_
02-Η098Τ9Ι '- : d 91- -H0 Z6I ·0 : 3 02-Η098Τ9Ι '-: d91- -H0 Z6I · 0: 3
2ΐ-3^6990Ζ - : a zo- -H0S206Z "- : V 2ΐ-3 ^ 6990Ζ-: a zo- -H0S206Z "-: V
000000 ·0 : ¾  000000 · 0: ¾
Zi^D 000000 ·8Ζ 6S 98 ·Ζ8 Zf  Zi ^ D 0000008Ζ6S 98Ζ8 Zf
Ϊ0289Ι 'S 98S60 "99ΐ- Z Ϊ0289Ι 'S 98S60 "99ΐ- Z
Ζή^Ο I96T0 " S 98^80 '9Ζΐ- If Ζή ^ Ο I96T0 "S 98 ^ 80 '9Ζΐ- If
8CG00S 'f ΪΖΖ98 'SSI- Of 8CG00S 'f ΪΖΖ98' SSI- Of
6Ι-3Τ88Τ Π Ό : α 9Τ- -aZST60T '- : 06Ι-3Τ88Τ Π Ό: α 9Τ- -aZST60T '-: 0
Ζΐ-3^066Ζ8 '- : Η Ζ0- -3Τ96δΠ ' : V Ζΐ-3 ^ 066Ζ8'-: Η Ζ0- -3Τ96δΠ ': V
000000 '0 : 1 000000 '0: 1
Zd^O 999Ϊ60 τζ szsze τζι- 68 Zd ^ O 999Ϊ60 τζ szsze τζι- 68
Ζ68Ι9 ·89Ζ_  Ζ68Ι9 · 89Ζ_
00+3000000 Ό : α 00+3000000 : 3 zi-mzLZZL ·- : a o- -H9I9Z8S Ό : V  00 + 3000000 Ό: α 00 + 3000000: 3 zi-mzLZZL ·-: a o- -H9I9Z8S Ό: V
000000 :  000000:
Ζή^Ο S96 89 ' Z 290^ 'S88 S Ζή ^ Ο S96 89 'Z 290 ^' S88 S
ε ο Zd^D 90Z806 '9 99ΖΗ '80εΐ 9S ffif^ 09t8S8 '6f 90 "9εε- ε ο Zd ^ D 90Z806 '9 99ΖΗ '80 εΐ 9S ffif ^ 09t8S8' 6f 90 "9εε-
96SSZ '6flZ- εε 96SSZ '6flZ- εε
εε εε
ZT600/I0df/X3d Z0S6S/T0 OAV C : -. 708602E - -16 D : 0. 313415E-20 ZT600 / I0df / X3d Z0S6S / T0 OAV C:-. 708602E--16 D: 0.313415E-20
49 -242. 4891 78. 739019  49 -242. 4891 78. 739019
50 39. 841080 CaF2  50 39.841080 CaF2
K : 0. 000000  K: 0.000000
A : -. 394487Ε- -07 Β : -. 442516E-12  A:-. 394487Ε- -07Β:-. 442516E-12
C : -. 396969Ε- -16 D : 0. 575958Ε- 21  C:-. 396969Ε- -16 D: 0.5575958Ε- 21
51 -883. 24052 2. 195912  51 -883.24052 2.195912
52 737. 47989 28. 000000 CaF2  52 737.47989 28.00000000 CaF2
53 ■1302. 38891 1. 112464  53 ■ 1302. 38891 1. 112464
54 117. 94897 37. 991002 GaF2  54 117.94897 37.991002 GaF2
55 85. 68253 1. 000000  55 85. 68253 1. 000000
K : 0. 000000  K: 0.000000
A : 一. 123733E- -06 Β : -.: 140293E - 10  A: One. 123733E--06 Β:-.: 140293E-10
c : -. 164551E- -14 D : - . 238378E - 18  c:-. 164551E- -14D:-. 238378E-18
56 81. 00762 26. 342878 CaF2  56 81.00762 26. 342878 CaF2
57 274. 41527 1. 081239  57 274. 41527 1. 081239
58 147. 55374 35. 700000 CaF2  58 147. 55374 35. 700000 CaF2
59 103. 84485 13. 000594  59 103. 84485 13.000594
〔第 6実施例〕  (Sixth embodiment)
第 6実施例による反射屈折光学系は、 図 1 7に示すように、 第 1面 Rより第 2面 W側へ順に、 第 1結像光学系 G l、 第 2結像光学系 G 2及び第 3結像光学系 G 3よ り構成されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 1枚の正レンズ、 1枚の正メニスカスレンズ、 2枚の負メニスカスレンズ、 2枚の正レンズ及び 1枚 の正メニスカスレンズにより講成され、 第 2結像光学系 G 2は、 1枚の凹面鏡、 2 枚の負メニスカスレンズ及び 1枚の凹面鏡によつて講成されている。第 3結像光学 系 G 3は、 1枚の正レンズ、 2枚の正メニスカスレンズ、 2枚の正レンズ、 1枚の 正メニスカスレンズ、 1枚の正レンズ及び 2枚の正メニスカスレンズにより講成さ れる。 As shown in FIG. 17, the catadioptric optical system according to the sixth embodiment includes, in order from the first surface R to the second surface W side, a first imaging optical system Gl, a second imaging optical system G2, It comprises a third imaging optical system G3. The first imaging optical system G 1 includes, in order from the first surface R side, one positive lens, one positive meniscus lens, two negative meniscus lenses, two positive lenses, and one positive meniscus lens The second imaging optical system G2 is provided by one concave mirror, two negative meniscus lenses, and one concave mirror. The third imaging optical system G3 is controlled by one positive lens, two positive meniscus lenses, two positive lenses, one positive meniscus lens, one positive lens, and two positive meniscus lenses. Done It is.
また、 本実施例の反射屈折光学系は、 縮小倍率が 1/4倍、 像側の開口数 NAが 0. 75、 最大物体高が 51. 2 讓 、 最大像高が 12. 8 讓であり、 ウェハー上の露光サイズは 25 X 5. 5 mm の矩形開口としている。 これにより、 走査して露光し、 全体の露光 面積は 25 X 33 mm としている。 また、 WDは、 第 1面 R側で 224. 250603で、 第 2面 W側で 18. 245931である。  The catadioptric optical system of this example has a reduction ratio of 1/4, an image-side numerical aperture NA of 0.75, a maximum object height of 51.2 讓, and a maximum image height of 12.8 讓. The exposure size on the wafer is a 25 x 5.5 mm rectangular aperture. Thus, scanning and exposure are performed, and the overall exposure area is 25 X 33 mm. The WD is 224.250603 on the first surface R side and 18.245931 on the second surface W side.
使用する四面鏡の直径は、 272 ram以下、 使用レンズの中で、 2枚の最大のレン ズの有効径は 269. 2 mm以下であり、 その他の大部分のレンズの有効径は 191. 6 mm 以下であり、通常のこのスぺックで使用される屈折系球面光学系の使用レンズの有 効径よりも、 かなり小さいものである。  The diameter of the tetrahedron used is 272 ram or less, the effective diameter of the two largest lenses of the lenses used is 269.2 mm or less, and the effective diameter of most other lenses is 191.6. mm or less, which is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this spec.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 20 %であり、 結像性能に与え る影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding part of the concave mirror to the light beam is 20% in NA ratio, and the effect on the imaging performance is small, and sufficiently high performance can be obtained.
屈折レンズ部は蛍石を使用し、 紫外線 F2 エキシマレーザーの 157 nm の波長に おける、 半値幅 2pm の色収差補正がなされている。  The refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of ultraviolet F2 excimer laser.
また、 図 1 8及び図 1 9に示すように、 球面収差、 コマ収差、 非点収差及び歪曲 収差ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供し ている。 表 6  In addition, as shown in FIGS. 18 and 19, spherical aberration, coma, astigmatism, and distortion are all well corrected to almost no aberration, providing an optical system with excellent performance. . Table 6
ώ畨号 曲率半径 面間隔 No. Curvature radius Surface spacing
1 675. 27704 28. 000000 CaF2 G 1  1 675. 27704 28. 000000 CaF2 G 1
Κ 0. 000000  Κ 0.000000
A -. 146813E-07 B : 0. 539491E- 13  A-. 146813E-07 B: 0.539491E-13
C 0. 103176E-17 D : -. 244047E- 21  C 0. 103176E-17 D:-. 244047E-21
2 335. 34816 1. 000000  2 335. 34816 1. 000000
3 157. 23297 33. 000000 CaF2  3 157. 23297 33. 000000 CaF2
4 661. 95829 111. 498290 534. 17597 15. 000000 CaF2 4 661.95829 111.498290 534. 17597 15.000000 CaF2
79. 28442 24. 533018  79.28442 24.533018
K : 0. 000000 K: 0.000000
A : -. 797912E- 06 B : 0. 168232E-10  A:-. 797912E- 06 B: 0.168232E-10
C : 0. 117292E- 13 D : 1. 330075E - 18 C: 0.1117292E-13 D: 1. 330075E-18
-319. 67720 60. 000000 CaF2  -319.67720 60.00000000 CaF2
-495. 87689 8. 881377  -495.87689 8.881377
K : 0. 000000 K: 0.000000
Α : -. 546569E- 07 B : -. 157901E - 10  Α:-. 546569E- 07 B:-. 157901E-10
C : 0. 228747E- 14 D : - . 168939E - 17 C: 0.228747E-14 D:-.168939E-17
232. 64869 60. 000000 CaF2  232.64869 60.00000000 CaF2
-146. 64044 62. 387678  -146.64044 62.387678
K : 0. 000000 K: 0.000000
A : -. 200960E- 06 B : 0. 264632E-10  A:-. 200960E-06 B: 0.264632E-10
C : -. 626544E- 15 D : 0. 109885E 18 C:-. 626544E- 15 D: 0.109885E 18
107. 02679 25. 087487 CaF2  107.02679 25.087487 CaF2
-841. 18145 0. 100000  -841. 18145 0.100000
K : 0. 000000 K: 0.000000
A : 0. 129965E- ■06 B : - 700973Ε-Π  A: 0.129965E- ■ 06 B:-700973Ε-Π
C : 0. 304094E-■15 D : _. 199817E - 19 C: 0.30494E- ■ 15 D: _. 199817E-19
100. 79906 23. 657931 CaF2  100.79906 23.657931 CaF2
K : 0. 000000 K: 0.000000
A : -. 240247E- ■06 B : -. 168548E - 10 A:-. 240247E- ■ 06 B:-. 168548E-10
C : -. 4Π925Ε- 15 D : - . 888645E - 19 C:-. 4Π925Ε-15 D:-. 888645E-19
875. 61302 25. 002516  875.61302 25.002516
241. 41202 38. 633224 仮想面  241. 41202 38.633224 Virtual surface
1168. 21411 30. 000000 CaF2 G 2 203. 40383 112. 439708 1168. 21411 30. 000000 CaF2 G 2 203.40383 112.439708
K 0. 000000  K 0.000000
A 一. 833351E一 08 B : -. 207642E-12 C -. 102761E- 16 D : -. 273382E-21 -202. 10723 30. 000000 CaF2A 833351E 08B:-. 207642E-12 C-. 102761E-16 D:-. 273382E-21 -202. 10723 30. 000000 CaF2
K 0. 000000 K 0.000000
A 0. 990715E- .08 B : 0. 324224E-12 C 一. 514650E-■18 D : 0. 201608E-21 -425. 74836 14. 807875 A 0.990715E- .08 B: 0.324224E-12 C i. 514650E- ■ 18 D: 0. 201608E-21 -425. 74836 14.807807
-283. 61051 -14. 907875 REF -425. 74836 -30. 000000 CaF2 -202. 10723 -112. 439708  -283.61051 -14.907875 REF -425.74836 -30.000000 CaF2 -202.10723 -112.439708
K 0. 000000  K 0.000000
A 0. 990715E- 08 B : 0. 324224E-12 C ―. 514650E- 18 D : 0. 201608E - 21 203. 40383 -30. 000000 CaF2 A 0.990715E- 08 B: 0.324224E-12 C ―. 514650E-18 D: 0. 201608E-21 203. 40383 -30. 000000 CaF2
K 0. 000000 K 0.000000
A -. 833351E- 08 B : -. 207642E-12 C -. 102761E- .16 D : -. 273382E-21 1169. 21411 -38. 633224 A-. 833351E- 08 B:-. 207642E-12 C-. 102761E- .16 D:-. 273382E-21 1169. 21411 -38. 633224
241. 41202 38. 633224 REF 1168. 21911 30. 000000 CaF2 203. 40383 112. 439708  241.41202 38.633224 REF 1168.21911 30.000000 CaF2 203.40383 112.439708
K 0. 000000  K 0.000000
A -. 833351E- 08 B : -. 207642E-12 C -. 102761E- 16 D : - . 273382E - 21 202. 10723 30. 000000 CaF2 K : 0. 000000 A-. 833351E- 08 B:-. 207642E-12 C-. 102761E-16 D:-. 273382E-21 202. 10723 30. 000000 CaF2 K: 0.000000
A : 0. 990715E- 08 B : 0. 324224E-12 A: 0.9990715E- 08 B: 0.324224E-12
C : - . 514650E - 18 D : 0. 20160BE-21 C:-. 514650E-18 D: 0. 20160BE-21
-425. 74836 14. 807875  -425.74836 14.80707
-283. 61051 25. 000000 仮想、面  -283.61051 25.000000 virtual, surface
408. 30244 15. 958879 CaF2 G 3 -129. 66207 0. 100000  408.30244 15.958879 CaF2 G 3 -129.66207 0.100000
K : 0. 000000 K: 0.000000
Α : 0. 308939E- 06 B : -. 495584E-12  Α: 0.308939E-06 B:-. 495584E-12
C : 0. 568005E- 14 D : -. 203678E-17 C: 0.5568005E-14 D:-. 203678E-17
841. 18145 43. 602945 CaF2  841.18145 43.602945 CaF2
3875. 93725 10. 578146  3875.93725 10. 578146
K : 0. 000000 K: 0.000000
Α : 0. 171725E- ■07 B :0. 344953E-10  Α: 0.171725E- ■ 07 B: 0.334495E-10
C : -. 131126E- 13 D : 0. 512647E-18 C:-. 131126E- 13 D: 0.5512647E-18
-167. 86677 60. 000000 CaF2  -167.86677 60.00000000 CaF2
K : 0. 000000 K: 0.000000
A : 0. 391387E- 06 B : — . 110373E - 10  A: 0.391387E-06 B: —. 110373E-10
C : -. 549672E- 14 D : -. 497050E-18 C:-. 549672E-14 D:-. 497050E-18
-112. 93534 24. 501940  -112.93534 24.501940
616. 75392 43. 453476 CaF2  616.75392 43.453476 CaF2
K : 0. 000000 K: 0.000000
A : -. 198458E- -06 B : 0. 360691E-11  A:-. 198458E--06 B: 0.30691E-11
C : 一. 118837E- -15 D : 0. 134586E-19 C: one. 118837E- -15 D: 0.134586E-19
-373. 27621 31. 163698  -373. 27621 31. 163698
224. 13016 35. 000000 CaF2  224. 13016 35. 000000 CaF2
-1362. 06585 32. 000000 K : 0. 000000 -1362. 06585 32. 000000 K: 0.000000
A : 0. 545277E-07 B : 0. 369811E- 11  A: 0.5545277E-07 B: 0.3699811E-11
C : -. 103696E- 15 D : -. 453358E-20  C:-. 103696E-15 D:-. 453358E-20
41 INFINITY 37. 587346 STO  41 INFINITY 37.587346 STO
42 254. 79537 25. 432188 CaF2  42 254. 79537 25.432188 CaF2
43 542. 88995 71. 860654  43 542.88995 71.860654
K : 0. 000000  K: 0.000000
A : 一. 126528E- 06 B : 0. 785291E - 11  A: One 126528E-06 B: 0.785291E-11
C : 一. 506945E - 15 D : 0. 132815E- 19  C: one. 506945E-15 D: 0.132815E-19
44 154. 13901 26. 723139 CaF2  44 154. 13901 26. 723139 CaF2
K : 0. 000000  K: 0.000000
A : -. 118663E- 06 B : -. 148063E- 10  A:-. 118663E-06 B:-. 148063E-10
C : 0. 101438E-14 D : -. 509185E—19  C: 0.1101438E-14 D:-. 509185E-19
45 -841. 18145 0. 100000  45 -841. 18145 0.100000
46 130. 58367 35. 411951 CaF2  46 130. 58367 35. 411951 CaF2
: 0. 000000  : 0.000000
A : 0. 639539E-07 B : 0. 195918E-10  A: 0.639539E-07 B: 0.195918E-10
C : -. 415162E-15 D : 0. 727844E-19  C:-. 415162E-15 D: 0.7727844E-19
47 1672. 54131 1. 000000  47 1672. 54131 1.000 000
48 70. 06949 34. 000000 CaF2  48 70.06949 34.000000 CaF2
49 51. 37703 18. 245931  49 51. 37703 18. 245931
〔第 7実施例〕  (Seventh embodiment)
第 7実施例による反射屈折光学系は、 図 2 0に示すように、 第 1面 Rより第 2面 W側へ順に、 第 1結像光学系 G l、 第 2結像光学系 G 2及び第 3結像光学系 G 3よ り構成されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 3枚の正メニス カスレンズ、 1枚の負メニスカスレンズ、 1枚の負レンズ、 1枚の正メニスカスレ ンズ、 2枚の正レンズ、 1枚の正メニスカスレンズ、 1枚の正レンズ、 1枚の正メ ニスカスレンズ、 で構成され、 第 2結像光学系 G 2は、 互いに対称形に向かい合つ て配置された 2枚の凹面鏡と 2枚の負メニスカスレンズで構成されている。 また、 第 3結像光学系 G 3は、 1枚の正メニスカスレンズ、 1枚の負レンズ、 2枚の正メ ニスカスレンズ、 1枚の負メニスカスレンズ、 4枚の正メニスカスレンズ、 1枚の 負レンズ、 1枚の正レンズから構成されている。 As shown in FIG. 20, the catadioptric optical system according to the seventh embodiment includes a first imaging optical system Gl, a second imaging optical system G2, It comprises a third imaging optical system G3. The first imaging optical system G 1 includes three positive meniscus lenses, one negative meniscus lens, one negative lens, one positive meniscus lens, and two positive lenses in order from the first surface R side. , One positive meniscus lens, one positive lens, one positive lens The second imaging optical system G2 is composed of two concave mirrors and two negative meniscus lenses which are arranged symmetrically facing each other. The third imaging optical system G3 includes one positive meniscus lens, one negative lens, two positive meniscus lenses, one negative meniscus lens, four positive meniscus lenses, and one negative meniscus lens. The lens consists of one positive lens.
また本実施例の反射屈折光学系は、 縮小倍率が 1/4倍、 像側の開口数 NAが 0. 75、 最大物体高が 41. 6 匪 、 最大像高が 10. 4 墮であり、 第 2面 WJ の露光サイズは 20. 0 X 5. 5 ram の矩形開口としている。 これにより、 走査して露光し、 全体の露 光面積は 20. 0 X 33 醒 としている。 また、 WDは、 第 1面 R側で 166. 292101で、 第 2面 W側で 15. 484990である。  The catadioptric optical system of this embodiment has a reduction ratio of 1/4, an image-side numerical aperture NA of 0.75, a maximum object height of 41.6, and a maximum image height of 10.4. The exposure size of the second side WJ is a 20.0 X 5.5 ram rectangular aperture. Thus, scanning and exposure are performed, and the entire exposed area is set to 20.0 X 33 awake. WD is 166.292101 on the first surface R side and 15.484990 on the second surface W side.
使用する凹面鏡の直径は、 264. 3 mm以下、 使用レンズの中で、 2枚の最大のレ ンズの有効径は 259. 8腿以下であり、その他の大部分のレンズの有効径は 182. 5 mm 以下であり、通常のこのスペックで使用される屈折系球面光学系の使用レンズの有 効径よりも、 かなり小さいものである。  The diameter of the concave mirror used is 264.3 mm or less, the effective diameter of the two largest lenses of the used lenses is 259.8 or less, and the effective diameter of most other lenses is 182. It is 5 mm or less, which is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 20 %であり、 結像性能に与え る影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding part of the concave mirror to the light beam is 20% in NA ratio, and the effect on the imaging performance is small, and sufficiently high performance can be obtained.
屈折レンズ部は蛍石を使用し、 紫外線エキシマレーザーの 157 nm の波長におけ る、 半値幅 2. 0 pm の色収差補正がなされている。  The refractive lens part is made of fluorite, and has a chromatic aberration correction with a half-width of 2.0 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
また、 図 2 1及び図 2 2に示すように、 球面収差、 コマ収差、 非点収差及び歪曲 収差ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供し ている。 表 7  In addition, as shown in FIGS. 21 and 22, spherical aberration, coma, astigmatism, and distortion are all well corrected to almost no aberration, providing an optical system with excellent performance. . Table 7
面番号 曲率半径 面間隔 Surface number Curvature radius Surface spacing
1 -525. 71881 18. 855219 CaF2 G 1  1 -525.71881 18.855219 CaF2 G 1
K : 0. 000000  K: 0.000000
A : -. 460704E-07 B : 0. 530079E - 12 C : -. 290541E- -16 D : -. : 118063E-20 A:-. 460704E-07 B: 0.5530079E-12 C:-. 290541E- -16 D:-.: 118063E-20
-168. 10582 1. 000000  -168. 10582 1. 000000
174. 09049 31. 02363 CaF2  174.09049 31.02363 CaF2
-434. 44522 83. 565235  -434. 44522 83. 565235
-195. 85797 15. 000000 CaF2  -195.85797 15.000000 CaF2
134. 23857 18. 083546  134. 23857 18. 083546
K : 0. 000000  K: 0.000000
A -. 517515E - 06 B : . 770290E- 10  A-. 517515E-06 B: .770290E-10
C 0. 262130E-13 D : 0. 155727E-17 C 0.262130E-13 D: 0.155727E-17
- 96. 19280 39. 200000 CaF2  -96. 19280 39. 200000 CaF2
-98. 15241 34. 935677  -98.15241 34.935677
2573. 98955 60. 000000 CaF2  2573. 98955 60.00000000 CaF2
- 104. 16392 46. 463326  -104. 16392 46.463326
105. 53430 57. 942150 CaF2  105.53430 57.942150 CaF2
-841. 18145 0. 100000  -841. 18145 0.100000
126. 95491 15. 457412 CaF2  126.95491 15.457412 CaF2
K 0. 000000  K 0.000000
A 一. 415551E-06 B : - 270373E-10  A. 415551E-06 B:-270373E-10
C -. 131530E - 14 D : 0. 759664E- 18 C-. 131530E-14 D: 0.759664E-18
-516. 33392 25. 000000  -516. 33392 25. 000000
239. 22664 37. 963959 仮想面  239.22664 37.963959 Virtual surface
1137. 01670 30. 000000 CaF2 G 2 203. 83422 112. 004716  1137.01670 30.000000 CaF2 G2 203.83422 112.004716
K 0. 000000  K 0.000000
A -. 155989E-07 B : . 113913E-12 A-. 155989E-07 B:. 113913E-12
C 0. 404793E - 17 D : -. 636121E-22 C 0.404793E-17D:-. 636121E-22
223. 15574 30. 000000 CaF2 K : 0. 000000 223. 15574 30. 000000 CaF2 K: 0.000000
A : 0. 115838E- 07 B : 0. 244013E - 12 C : 0. 366112E-■17 D 0. 376420E-21 -552. 28008 17. 415175 A: 0.115838E- 07 B: 0.244013E-12 C: 0.366112E- ■ 17 D 0.376420E-21 -552.28008 17.415175
- 290. 52506 -17. 415175 REF -552. 28008 - 30. 000000 CaF2 -223. 15574 -112. 004716  -290.52506 -17.415175 REF -552.28008-30.000000 CaF2 -223.15574 -112.004716
: 0. 000000  : 0.000000
: 0. 115838E- 07 B : 0. 244013E-12 : 0. 366112E-•17 D : 0. 376420E-21 : 0.115838E- 07 B: 0.244013E-12: 0.366112E- • 17 D: 0.3376420E-21
203. 83422 - 30. 000000 CaF2 : 0. 000000 203.83422-30. 000000 CaF2: 0.000000
: -. 155989E- 07 B : - . 113913E - 12 : 0. 404793E- 17 D : -. 636121E - 22 1137. 01670 - 37. 963959  :-. 155989E- 07 B:-. 113913E-12: 0.404793E-17 D:-. 636121E-22 1137. 01670-37. 963959
239. 22664 37. 963959 REF 1137. 01670 30. 000000 CaF2 239.22664 37.963959 REF 1137.01670 30.000000 CaF2
203. 83422 112. 004716 203.83422 112.004716
: 0. 000000  : 0.000000
: ―. 155989E- .07 B : -. 113913E- 12 : 0. 404793E- 17 D : -. 636121E-22 -223. 15574 30. 000000 CaF2 : 0. 000000  :-. 155989E- .07 B:-. 113913E-12: 0.404793E-17 D:-. 636121E-22 -223. 15574 30. 000000 CaF2: 0.000000
: 0. 115838E- •07 B : 0. 244013E-12 : 0. 366112E- 17 D : 0. 376420E-21 -552. 28008 17. 415175  : 0.115838E- • 07 B: 0.244013E-12: 0.366112E-17 D: 0.3376420E-21 -552. 28008 17. 415175
-290. 52506 30. 053542 仮想面 -1386. 54471 26. 805234 CaF2 G 3 -91. 53532 0. 100000 -290.52506 30.053542 Virtual surface -1386.54471 26.805234 CaF2 G 3 -91.53532 0.100000
K : 0. 000000 K: 0.000000
A : 0. 178052E- 06 B : 0. 195629E-10  A: 0.18052E-06 B: 0.195629E-10
C : -. 110934E- 14 D : 0. 386843E-18 C:-. 110934E- 14 D: 0.386843E-18
841. 18145 23. 670554 CaF2  841.18145 23.670554 CaF2
-711. 10712 12. 542840  -711. 10712 12.5422840
-105. 01372 59. 999909 CaF2  -105.01372 59.999909 CaF2
K : 0. 000000 K: 0.000000
Α : 0. 381349E- 06 B : -. 473502E-10  Α: 0.381349E-06 B:-. 473502E-10
C : 0. 331465E- 14 D : -. 247388E-18 C: 0.3331465E-14 D:-. 247388E-18
-110. 87458 7. 115651  -110.87458 7.115651
-457. 60456 51. 201496 CaF2  -457. 60456 51. 201496 CaF2
K : 0. 000000 K: 0.000000
Α : -. 143466E- 06 B : 0. 244627E - 11  Α:-. 143466E-06 B: 0.244627E-11
C : 0. 115659E- 15 D : 0. 357474E-20 C: 0.115659E-15 D: 0.3357474E-20
-172. 32176 64. 093132  -172. 32176 64.093132
248. 24178 35. 000000 CaF2  248. 24178 35. 000000 CaF2
-2267. 70363 32. 973714  -2267. 70363 32. 973714
K : 0. 000000 K: 0.000000
A : 0. 601607E- 07 B : -. 668204E-12  A: 0.601607E-07 B:-. 668204E-12
C : 0. 109411E-■15 D : 0. 240099E-20 C: 0.109411E- ■ 15 D: 0.240099E-20
INFINITY 95. 819153 ST0  INFINITY 95.819153 ST0
148. 49449 . 34. 000000 CaF2  148.49449.34.0000000000 CaF2
1034. 52186 23. 149391  1034.52186 23.149391
264. 65948 20. 021296 CaF2  264.65948 20.021296 CaF2
K : 0. 000000 A -. 928883E-07 B - . 318545E - 11 K: 0.000000 A-. 928883E-07 B-. 318545E-11
C 0. 395198E- 15 D -. 615977E - 20  C 0.395198E- 15 D-. 615977E-20
45 -841. 18145 0. 100000  45 -841. 18145 0.100000
46 192. 76008 42. 091338 CaF2  46 192.76008 42.091338 CaF2
K 0. 000000  K 0.000000
Α 0. 100517E-06 B - . 214895E-11  Α 0.100517E-06 B-. 214895E-11
C -. 536036E- 15 D -. 797901E-19  C-. 536036E- 15 D-. 797901E-19
47 -722. 90445 1. 000000  47 -722. 90445 1.000 000
48 82. 59564 34. 000000 CaF2  48 82. 59564 34. 000000 CaF2
49 58. 64470 15. 484990  49 58. 64 470 15.484990
〔第 8実施例〕  (Eighth embodiment)
第 8実施例による反射屈折光学系は、 図 2 3に示すように、 第 1面 Rより第 2面 W側へ順に、 第 1結像光学系 G 1、 第 2結像光学系 G 2及び第 3結像光学系 G 3よ り構成されている。 第 1結像光学系 G 1は、 第 1面 R側より順に、 1枚の負メニス カスレンズ、 1枚の正レンズ、 3枚の正メニスカスレンズ、 1枚の負メニスカスレ ンズ、 2枚の正メニスカスレンズ、 2枚の正レンズ、 2枚の正メニスカスレンズに より構成され、 第 2結像光学系 G 2は、 1枚の凹面鏡、 2枚の負メニスカスレンズ、 1枚の凹面鏡によって構成されている。 また、 第 3結像光学系 G 3は、 1枚の正レ ンズ、 1枚の負メニスカスレンズ、 1枚の正メニスカスレンズ、 1枚の正レンズ、 1枚の正メニスカスレンズ、 1枚の負メニスカスレンズ、 4枚の正メニスカスレン ズ、 1枚の正レンズ、 1枚の負メニスカスレンズ、 1枚の正メニスカスレンズに構 成されている。  The catadioptric optical system according to the eighth embodiment includes, as shown in FIG. 23, a first imaging optical system G1, a second imaging optical system G2, and It comprises a third imaging optical system G3. The first imaging optical system G 1 includes, in order from the first surface R side, one negative meniscus lens, one positive lens, three positive meniscus lenses, one negative meniscus lens, and two positive meniscus lenses. The second imaging optical system G2 includes a lens, two positive lenses, and two positive meniscus lenses.The second imaging optical system G2 includes one concave mirror, two negative meniscus lenses, and one concave mirror. . The third imaging optical system G3 has one positive lens, one negative meniscus lens, one positive meniscus lens, one positive lens, one positive meniscus lens, and one negative lens. It consists of a meniscus lens, four positive meniscus lenses, one positive lens, one negative meniscus lens, and one positive meniscus lens.
また、 本実施例の反射屈折光学系は、 縮小倍率が 1/4倍、 像側の開口数 が 0. 75 最大物体高が 52. 8 mm、 最大像高が 13. 2 mmであり、 第 2面 W上の露光サイズは 25 X 8. 8 の矩形開口としている。 これにより、 走査して露光し、 全体の露光 面積は 25 X 33 mm としている。 また、 WDは、 第 1面 R側で 181. 103882で、 第 2面 W側で 18. 788119である。 使用する凹面鏡の直径は、 260. 0 mm以下、 使用レンズの中で、 2枚の最大のレ ンズの有効径は 258. 1 mm以下であり、 その他の大部分のレンズの有効径は 174 腿 以下であり、通常のこのスペックで使用される屈折系球面光学系の使用レンズの有 効径よりも、 かなり小さいものである。 The catadioptric optical system of this example has a reduction ratio of 1/4, an image-side numerical aperture of 0.75, a maximum object height of 52.8 mm, and a maximum image height of 13.2 mm. The exposure size on the two sides W is a 25 x 8.8 rectangular aperture. Thus, scanning and exposure are performed, and the overall exposure area is 25 X 33 mm. WD is 181.103882 on the first surface R side and 18.788119 on the second surface W side. The diameter of the concave mirror used is 260.0 mm or less, the effective diameter of the two largest lenses of the lenses used is 258.1 mm or less, and the effective diameter of most other lenses is 174 thighs. This is considerably smaller than the effective diameter of the lens used for the refractive spherical optical system normally used in this specification.
凹面鏡の遮蔽部の光束に対する遮蔽率は NA比で 24. 0 %であり、 結像性能に与 える影響は少なく、 充分高性能を得ることができる。  The shielding ratio of the shielding part of the concave mirror to the light beam is 24.0% in NA ratio, and has little effect on the imaging performance, and it is possible to obtain sufficiently high performance.
屈折レンズ部は蛍石を使用し、 紫外線エキシマレーザーの 157 nmの波長におけ る、 半値幅 2pm の色収差補正がなされている。  The refractive lens part is made of fluorite and has a chromatic aberration correction with a half-width of 2 pm at a wavelength of 157 nm of an ultraviolet excimer laser.
また、 図 2 4及び図 2 5に示すように、 球面収差、 コマ収差、 非点収差及び歪曲 収差ともほぼ無収差に近い状態まで良好に補正され、優れた性能の光学系を提供し ている。 表 8  In addition, as shown in FIGS. 24 and 25, spherical aberration, coma, astigmatism, and distortion are all well corrected to almost no aberration, providing an optical system with excellent performance. . Table 8
面番号 曲率半径 面間隔 Surface number Curvature radius Surface spacing
1 -522. 12779 30. 000000 CaF2 G 1  1 -522. 12779 30. 000000 CaF2 G 1
K : 0. 000000  K: 0.000000
A : -. 836382E- 07 B : -. 232619E-12  A:-. 836382E- 07 B:-. 232619E-12
C : 0. 147976E- 16 D : -. 418940E-20  C: 0.147976E-16 D:-. 418940E-20
2 -132. 55730 1. 000000  2 -132. 55730 1. 000000
3 128. 94293 35. 000000 CaF2  3 128. 94 293 35. 000000 CaF2
4 -12753. 60003 59. 866513  4 -12753. 60003 59.866513
5 -6802. 25073 20. 000000 CaF2  5 -6802.25073 20.0000000 CaF2
6 55. 79157 80. 243257  6 55.79157 80.243257
K : 0. 000000  K: 0.000000
A : -. 546724E- 06 B : -. 181493E-09  A:-. 546724E-06 B:-. 181493E-09
C : 0. 1.42455E- 15 D : -. 176747E-16  C : 0.1.24455E-15 D :-. 176747E-16
7 -47. 47029 20. 000000 CaF2 -60. 32191 7. 654429 7 -47.47029 20.0000000 CaF2 -60.32191 7.654429
290. 99547 40. 000000 CaF2  290. 99547 40. 000000 CaF2
-113. 88786 67. 900717  -113.88786 67.900717
K : 0. 000000 K: 0.000000
A : -. 389830E-07 B : 0. 132957E-10  A:-. 389830E-07 B: 0.132957E-10
C : -. 154157E- 15 D : 0. 371446E-19 C:-. 154157E-15D: 0.3371446E-19
157. 77320 35. 000000 CaF2  157.77320 35.000000 CaF2
-841. 18145 0. 100000  -841. 18145 0.100000
75. 95634 35. 000000 CaF2  75.95634 35. 000000 CaF2
K : 0. 000000 K: 0.000000
Α : -. 188721E-06 B : -. 172094E-10  Α:-. 188721E-06 B:-. 172094E-10
C : -. 230506E- 14 D : -. 451419E - 18 C:-. 230506E-14 D:-. 451419E-18
136. 73212 29. 629039  136.73212 29.629039
236. 80433 38. 189196 仮想、面  236.80433 38.189196 Virtual, plane
1123. 83252 25. 000000 CaF2 G 2 215. 20242 118. 218608  1123.83252 25.000000 CaF2 G2 215.20242 118.218608
K : 0. 000000 K: 0.000000
A : -. 125437E-07 B : -. 384933E-12  A:-. 125437E-07 B:-. 384933E-12
C : - 548370E-17 D : -. 130736E- 21 C:-548370E-17 D:-. 130736E-21
-230. 30939 25. 000000 CaF2  -230. 30939 25. 000000 CaF2
K : 0. 000000 K: 0.000000
A : 0. 794466E-08 B : 0. 292879E-12  A: 0.794466E-08 B: 0.292879E-12
C : 0. 193439E - 17 D : 0. 178964E-21 C: 0.193439E-17 D: 0.178964E-21
-715. 80903 18. 001730  -715.80903 18.001730
-290. 18558 - 18. 001730 REF  -290.18558-18.001730 REF
-715. 80903 -25. 000000 CaF2  -715.80903 -25.000000 CaF2
-230. 30939 -118. 218608 000000 '0 : ¾ -230. 30939 -118. 218608 000000 '0: ¾
Zd^O 000000 •οτ B£ z τοι- εε  Zd ^ O 000000 • οτ B £ z τοι- εε
000000 'S 89189 '8 ー  000000 'S 89189' 8 ー
'- : α 0 60-aSC669I - : a 90-3T£88SC '- V  '-: Α 0 60-aSC669I-: a 90-3T £ 88SC'-V
000000 Ό 1 ε ο 'ΐε L6f9 ·63ε is •9S 8S98I ·06 OS οεζτοο ·8ΐ S0608 ' 1L ΐ2-3^968Ζΐ Ό : α ΐ— 36S½6I ·0 0 2I-36 8S62 Ό : 9 80-399^6Ζ V  000000 Ό 1 ε ο 'ΐε L6f9 · 63ε is • 9S 8S98I · 06 OS οεζτοο · 8ΐ S0608' 1L ΐ2-3 ^ 968Ζΐ Ό: α ΐ— 36S½6I · 0 0 2I-36 8S62 Ό: 9 80-399 ^ 6Ζ V
000000 ·0  000000 0
2^3 000000 "9Ζ 6S60S 'OSS— 82 ΐ2-39ε οει '- : α 3 2T-aes6t88 - : a o-a s^9ST '- V  2 ^ 3 000000 "9Ζ 6S60S 'OSS— 82 ΐ2-39ε οει'-: α 3 2T-aes6t88-: a o-a s ^ 9ST '-V
000000 Ό 000000 Ό
2^3 000000 92 ήΜ 96T68T '8ε εε 08 '9£ζ Z 96Τ68Ϊ •8S- Ζ2Ζ£8 -£Zll fZ TZ-H9SZ0ST - : α ZT-aOZS8 9 '- 0 zi-ass6^8e - : a L0-2l£f9Zl - V  2 ^ 3 000000 92 ήΜ 96T68T '8ε εε 08' 9 £ ζ Z 96Τ68Ϊ • 8S- Ζ2Ζ £ 8-£ Zll fZ TZ-H9SZ0ST-: α ZT-aOZS8 9 '-0 zi-ass6 ^ 8e-: a L0- 2l £ f9Zl-V
000000 '0 1 000000 '0 1
Si 000000 '92- Z OZ ' ΪΖ Si 000000 '92-Z OZ 'ΪΖ
ΪΖ- 3 968 I 'O : α I-H6S^e6T Ό D  ΪΖ- 3 968 I 'O: α I-H6S ^ e6T Ό D
80-H99^6A "0 V  80-H99 ^ 6A "0 V
000000 I  000000 I
ZT600/I0df/X3d Z0S6S/T0 OAV n-as6½iz - : a o-as 9z 9 : v ZT600 / I0df / X3d Z0S6S / T0 OAV n-as6½iz-: a o-as 9z 9: v
000000 : 1  000000: 1
08 96 ·06  08 9606
00000T "0 ^8006 2 0Z-398S06T "- : α 9ΐ- 9£ZL -- : 0 Ζΐ- 3 08½'0 : e 90- 39SS66T : V  00000T "0 ^ 8006 2 0Z-398S06T"-: α 9ΐ-9 £ ZL-: 0Ζΐ-3 08½'0: e 90-39SS66T: V
000000 "0 : I 000000 "0: I
Zd^D fL£LQ 'OS 9Z692 ΈΟΐ Zd ^ D fL £ LQ 'OS 9Z692 ΈΟΐ
000000 'ΐ 8998Τ ·98Τ- If 0Z-386Z 69 - : α ΐ- 3686801 ·0 : 3 IT-aZ9TS98 '- : e 90- ■ ζζιιη ·ο ν  000000 'ΐ 8998Τ · 98Τ- If 0Z-386Z 69-: α ΐ- 3686801 · 0: 3 IT-aZ9TS98'-: e 90- ■ ζζιιη · ο ν
000000 : 1 000000: 1
Ζύ^Ο 000000 ΌΖ 6Τ920 ' π— Of OIS 88SISZ -Qf AIINWNI 6GΖύ ^ Ο 000000 ΌΖ 6Τ920 'π— Of OIS 88SISZ -Qf AIINWNI 6G
6i-a 60osi ·ο : a ST-■39S 9S - : 06i-a 60osi · ο: a ST- ■ 39S 9S-: 0
Π - 39 6 9 '0 : 9 90-■3 0Ζ02Ϊ '0 : V 39-39 6 9 '0: 9 90- ■ 3 0Ζ02Ϊ' 0: V
000000 ·0 : I S09960 6ZT90 '86S - 8S  000000 · 0: I S09960 6ZT90 '86S-8S
00S96 Ό^Τ  00S96 Ό ^ Τ
S8S0T9 "SB LZL68 '68- 9C zT-asio99i '- : α ετ- -39I0S Ό : 3 0T-as 9T6^ - : a 90-■399Ζ0ΖΪ ·0 : V  S8S0T9 "SB LZL68 '68 -9C zT-asio99i'-: α ετ- -39I0S :: 30T-as 9T6 ^-: a 90- {399Ζ0} · 0: V
000000 Ό : ¾ 000000 Ό: ¾
Zd^D 000000 'οε U6VZ '89Ζ- 80S86 -92L- nZd ^ D 000000 'οε U6VZ '89 Ζ- 80S86 -92L- n
Π-Ά£9 98£ -- : α ει- -329^0 ΐ '-: 0 60-3Α926ΖΤ Ό : Η 90- - oz — : V Π-Ά £ 9 98 £-: α ει- -329 ^ 0 ΐ '-: 0 60-3Α926ΖΤ :: Η 90--oz —: V
ί1600/10<ΙΓ/Χ3<Ι Z0S6S/T0 OAV -16 D 0. 299820E - 19 ί1600 / 10 <ΙΓ / Χ3 <Ι Z0S6S / T0 OAV -16 D 0.299820E-19
45 -2124. 35764 4. 092115  45 -2124.35764 4.092115
46 -423. 57811 10. 000000 CaF2  46 -423.57811 10.000000 CaF2
47 347. 85468 4. 136085  47 347.85468 4.136085
48 92·— 34253 33. 000000 CaF2  48 92 · − 34253 33. 000000 CaF2
49 581. 34791 18. 788119  49 581.34791 18.788119
次に、上述の反射屈折光学系を投影光学系として搭載した投影露光装置の実施例 を、 図 2 6を用いて説明する。  Next, an embodiment of a projection exposure apparatus equipped with the above catadioptric optical system as a projection optical system will be described with reference to FIG.
投影光学系 P Lの第 1面 Rには所定の回路パターンが形成された投影原板とし てのレチクルが配置され、 投影光学系 P Lの第 2面 Wには、 基板としてのフオトレ ジス トが塗布されたウェハが配置されている。 レチクルはレチクルステージ R S上 に保持され、 ウェハーはウェハーステージ W S上に保持され、 レチクルの上方には、 レチクルを均一照明するための照明光学装置 I Sが配置されている。  On the first surface R of the projection optical system PL, a reticle as a projection original plate on which a predetermined circuit pattern is formed is arranged, and on the second surface W of the projection optical system PL, a photoresist as a substrate is applied. Wafer is placed. The reticle is held on a reticle stage R S, the wafer is held on a wafer stage W S, and an illumination optical device I S for uniformly illuminating the reticle is arranged above the reticle.
照明光学装置は、 露光光を放射する光源、 及びこの光源からの光束をレチクル上 に均一照射するための照明光学系から構成されている。 本実施例では、 光源は、 F 2エキシマレーザー光源であり、 波長 1 5 7 n mの露光光を放射している。 照明光 学系は、 照度分布を均一化するためのフライアイレンズ、 照明系開口絞り、 可変視 野絞り (レチクルブラインド)、 及びコンデンサーレンズ系等から構成されている。 投影光学系 P Lは、 上述のようにレチクル側及びウェハー側において、 実質的に テレセントリックになっている。 また、 照明光学装置 I Sから供給される露光光は レチクルを照明し、投影光学系 P Lの開口絞り S T Oの位置には照明光学装置 I S の光源の像が形成され、 いわゆるケーラー照明が行われる。 そして、 ケーラー照明 されたレチクルの回路パターンは、投影光学系 P Lを介して所定の倍率で縮小され、 ウェハー上に投影される。  The illumination optical device includes a light source that emits exposure light, and an illumination optical system that uniformly irradiates a light beam from the light source onto a reticle. In this embodiment, the light source is an F2 excimer laser light source, and emits exposure light having a wavelength of 157 nm. The illumination optics system consists of a fly-eye lens for uniforming the illuminance distribution, an illumination system aperture stop, a variable field stop (reticle blind), and a condenser lens system. The projection optical system PL is substantially telecentric on the reticle side and the wafer side as described above. The exposure light supplied from the illumination optical device IS illuminates the reticle, and an image of the light source of the illumination optical device IS is formed at the position of the aperture stop STO of the projection optical system PL, so-called Koehler illumination is performed. Then, the circuit pattern of the reticle illuminated with Koehler illumination is reduced at a predetermined magnification via the projection optical system PL and projected onto the wafer.
この投影露光装置を用いて、 ウェハー上に所定の回路パターンを形成する際の動 作の一例につき、 図 2 7のフローチャートを参照して説明する。 先ず、 ステップ 1 において、 1ロットのウェハー上に金属膜を蒸着する。 ステップ 2において、 その 金属膜上にフォトレジストを塗布する。 その後、 ステップ 3において、 上述の投影 露光装置を用いて、 レチクル上のパターンを、 投影光学系 P Lを介して、 ウェハー 上の各露光領域に順次走査露光する。 そして、 ステップ 4において、 ウェハー上の フォトレジストの現像を行う。 これにより、 ウェハー上には、 レジストパターンが 形成される。 次に、 ステップ 5において、 レジストパターンの形成されたウェハー をエッチングすることによって、 レチクル上のレジストパターンに対応する回路パ ターンが、 ウェハー上の各露光領域に形成される。 An example of the operation when forming a predetermined circuit pattern on a wafer using this projection exposure apparatus will be described with reference to the flowchart in FIG. First, in step 1, a metal film is deposited on one lot of wafers. In step 2, A photoresist is applied on the metal film. Thereafter, in step 3, the pattern on the reticle is sequentially scanned and exposed on each exposure area on the wafer via the projection optical system PL using the above-mentioned projection exposure apparatus. Then, in step 4, the photoresist on the wafer is developed. As a result, a resist pattern is formed on the wafer. Next, in step 5, a circuit pattern corresponding to the resist pattern on the reticle is formed in each exposure region on the wafer by etching the wafer on which the resist pattern is formed.
その後、 更に上の層の回路パターンの形成等を行う事によって、 半導体素子等の デバイスが製造される。 産業上の利用可能性  After that, a device such as a semiconductor element is manufactured by forming a circuit pattern of a further upper layer. Industrial applicability
以上のように、 本発明では、 結像部分を構成する第 1結像光学系 G 1〜第 3結像 光学系 G 3を 1本の光軸になるように構成したため、光学系全体を光軸を中心とし てで調べることができ、 各内部レンズの傾きや位置ずれを検知することができる。 その結果、 最終的には、 有効な絞り設置部分を採ることができ、 ワーキングデス タンスを充分採れ、 劇的に小型の凹面鏡を有した光学系を得ることができ、 最小の 非球面要素を使いながら、調整に容易な 1本の光軸で構成し、 レチクル走査方向を 重力と直交する方向に採ることができたものである。  As described above, in the present invention, since the first imaging optical system G1 to the third imaging optical system G3 constituting the imaging portion are configured to have one optical axis, the entire optical system is optically controlled. The search can be performed with the axis as the center, and the inclination and displacement of each internal lens can be detected. As a result, it is possible to obtain an effective diaphragm installation part, obtain a sufficient working distance, and obtain an optical system with a dramatically small concave mirror, and finally use the smallest aspherical element. However, it consists of a single optical axis that is easy to adjust, and the reticle scanning direction can be taken in a direction perpendicular to gravity.

Claims

請求の範囲 The scope of the claims
1 . 第 1面より第 2面側へ順に、 屈折レンズからなる第 1結像光学系と、 少なくと も 1つの凹レンズと 2つの反射鏡とを有する第 2結像光学系と、屈折レンズからな る第 3結像光学系と、 を含む反射屈折光学系であって、 1. From the first surface to the second surface side, in order from the first imaging optical system composed of a refractive lens, the second imaging optical system having at least one concave lens and two reflecting mirrors, and the refractive lens And a catadioptric optical system comprising:
前記第 1結像光学系は、 前記第 1面の第 1中間像を形成し、 前記第 2結像光学系 は、 前記第 1中間像を再結像することで第 2中間像を形成し、 前記第 3結像光学系 は、 前記第 2中間像を前記第 2面上へ再結像する。  The first imaging optical system forms a first intermediate image of the first surface, and the second imaging optical system forms a second intermediate image by re-imaging the first intermediate image. The third imaging optical system re-images the second intermediate image on the second surface.
2 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記第 2面側の開口数を NA0とし、 前記第 2結像光学系の少なくとも 1つの凹レンズの有効径を Φとすると き、 以下の条件を満足する。 2. The catadioptric optical system according to claim 1, wherein a numerical aperture on the second surface side is NA0, and an effective diameter of at least one concave lens of the second imaging optical system is Φ. Satisfies the following conditions.
3 Χ Φぐ 1 0 0 0 X NA0  3 Χ Φ 1 0 0 0 X NA0
3 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記反射屈折光学系は、 2 1枚以上の屈折レンズから構成される。 3. The catadioptric optical system according to claim 1, wherein the catadioptric optical system comprises 21 or more refractive lenses.
4 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記反射屈折光学系は、 2 0枚以下の屈折レンズから構成される。 4. The catadioptric optical system according to claim 1, wherein the catadioptric optical system comprises 20 or less refractive lenses.
5 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記 2つの反射鏡の間に 開口を持つ。 5. The catadioptric optical system according to claim 1, wherein an aperture is provided between the two reflecting mirrors.
6 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記 2つの反射鏡は、 互 いに凹面反射面を向かい会わせに配置された凹面鏡である。 6. The catadioptric optical system according to claim 1, wherein the two reflecting mirrors are concave mirrors arranged with their concave reflecting surfaces facing each other.
7 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記第 1結像光学系は、 少なくとも 2つ以上の正レ ズで構成され、 前記第 3結像光学系は、 少なくとも 2 つ以上の正レンズで構成される。 7. The catadioptric optical system according to claim 1, wherein the first imaging optical system is: The third imaging optical system includes at least two or more positive lenses, and the third imaging optical system includes at least two or more positive lenses.
8 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記第 1結像光学系また は前記第 3結像光学系に、 少なくとも 1つ以上の開口絞りを配置する。 8. The catadioptric optical system according to claim 1, wherein at least one aperture stop is arranged in said first imaging optical system or said third imaging optical system.
9 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記第 1結像光学系また は前記第 3結像光学系には、 少なくとも 1つ以上の中心遮蔽板を配置する。 9. The catadioptric optical system according to claim 1, wherein at least one or more central shielding plates are arranged in the first imaging optical system or the third imaging optical system.
1 0 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記反射屈折光学系は、 非球面を少なくとも 5面以上含む。 10. The catadioptric optical system according to claim 1, wherein said catadioptric optical system includes at least five or more aspherical surfaces.
1 1 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記反射屈折光学系の 屈折レンズをすベて同一の硝材で構成する。 11. The catadioptric optical system according to claim 1, wherein all refractive lenses of the catadioptric optical system are made of the same glass material.
1 2 . 請求の範囲第 6項に記載の反射屈折光学系であって、 前記 2つの凹面鏡のう ち、 前記第 1面側に近い方に配置されているものを第 1凹面鏡とし、 前記第 2面側 に近い方に配置されているものを第 2凹面鏡とし、前記第 1中間像の位置から前記 第 1凹面鏡の位置までの距離を d 1、 前記第 2中間像位置から前記第 2凹面鏡の位 置までの距離を d 2とし、 前記第 2面上の露光領域の径を とするとき、 以下の 条件を満足する。 12. The catadioptric optical system according to claim 6, wherein, of the two concave mirrors, one arranged closer to the first surface side is a first concave mirror, The one located closer to the second surface is called the second concave mirror, the distance from the position of the first intermediate image to the position of the first concave mirror is d1, and the distance from the second intermediate image position to the second concave mirror is When the distance to the position is defined as d 2 and the diameter of the exposure area on the second surface is defined as, the following condition is satisfied.
I d l I <  I d l I <
I d 2 I < Φ ΑΛ  I d 2 I <Φ ΑΛ
1 3 . 請求の範囲第 1項に記載の反射屈折光学系であって、 前記反射屈折光学系は、 前記第 1面側、 または前記第 2面側でテレセントリックな光学系である。 13. The catadioptric optical system according to claim 1, wherein the catadioptric optical system is a telecentric optical system on the first surface side or the second surface side.
1 4 . 光源と、 該光源からの光束を前記第 1面上に均一照射するための照明光学系 と、前記第 1面を前記第 2面へ投影する前記請求項 1乃至 1 3に記載の反射屈折光 学系と、 を含む投影露光装置。 14. The light source according to any one of claims 1 to 13, wherein the light source; an illumination optical system configured to uniformly irradiate the light flux from the light source onto the first surface; and the first surface is projected onto the second surface. A catadioptric system, and a projection exposure apparatus including
1 5 . 光源より照明光を放射し、 照明光学系により前記照明光を前記第 1面上に均 一照射し、前記請求項 1乃至 1 3に記載された反射屈折光学系を用いて前記第 1面 を前記第 2面へ投影し、 前記第 2面の露光を行う投影露光方法。 15. An illuminating light is emitted from a light source, and the illuminating light is uniformly illuminated on the first surface by an illuminating optical system. A projection exposure method for projecting one surface onto the second surface and exposing the second surface.
PCT/JP2001/000912 2000-02-09 2001-02-09 Reflection/refraction optical system WO2001059502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001232257A AU2001232257A1 (en) 2000-02-09 2001-02-09 Reflection/refraction optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-31285 2000-02-09
JP2000031285A JP2005233979A (en) 2000-02-09 2000-02-09 Catadioptric system

Publications (1)

Publication Number Publication Date
WO2001059502A1 true WO2001059502A1 (en) 2001-08-16

Family

ID=18556059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000912 WO2001059502A1 (en) 2000-02-09 2001-02-09 Reflection/refraction optical system

Country Status (3)

Country Link
JP (1) JP2005233979A (en)
AU (1) AU2001232257A1 (en)
WO (1) WO2001059502A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600608B1 (en) 1999-11-05 2003-07-29 Carl-Zeiss-Stiftung Catadioptric objective comprising two intermediate images
JP2005129775A (en) * 2003-10-24 2005-05-19 Nikon Corp Catadioptric projection optical system, aligner, and exposure method
WO2006005547A1 (en) * 2004-07-14 2006-01-19 Carl Zeiss Smt Ag Catadioptric projection objective
EP1480065A3 (en) * 2003-05-23 2006-05-10 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
US7738188B2 (en) 2006-03-28 2010-06-15 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus including the same
JP2011049571A (en) * 2010-09-24 2011-03-10 Nikon Corp Catadioptric projection optical system, exposure device and exposure method
US7920338B2 (en) 2006-03-28 2011-04-05 Carl Zeiss Smt Gmbh Reduction projection objective and projection exposure apparatus including the same
JP2012073632A (en) * 2011-11-18 2012-04-12 Nikon Corp Catadioptric projection optical system, exposure equipment and exposure method
JP2012108540A (en) * 2004-07-14 2012-06-07 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
KR101171131B1 (en) 2004-07-14 2012-08-07 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
EP2722702A3 (en) * 2003-05-06 2014-07-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JPWO2007086220A1 (en) 2006-01-30 2009-06-18 株式会社ニコン Catadioptric imaging optical system, exposure apparatus, and device manufacturing method
DE102008001216A1 (en) * 2007-04-18 2008-10-23 Carl Zeiss Smt Ag Projection objective for microlithography

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312254A (en) * 1996-05-21 1997-12-02 Canon Inc Scanning exposure device and manufacture of device using that
US5861997A (en) * 1994-08-23 1999-01-19 Nikon Corporation Catadioptric reduction projection optical system and exposure apparatus having the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861997A (en) * 1994-08-23 1999-01-19 Nikon Corporation Catadioptric reduction projection optical system and exposure apparatus having the same
JPH09312254A (en) * 1996-05-21 1997-12-02 Canon Inc Scanning exposure device and manufacture of device using that

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41350E1 (en) 1999-11-05 2010-05-25 Carl Zeiss Smt Ag Catadioptric objective comprising two intermediate images
US6600608B1 (en) 1999-11-05 2003-07-29 Carl-Zeiss-Stiftung Catadioptric objective comprising two intermediate images
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
EP2722702A3 (en) * 2003-05-06 2014-07-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
US10156792B2 (en) 2003-05-06 2018-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9846366B2 (en) 2003-05-06 2017-12-19 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9086635B2 (en) 2003-05-06 2015-07-21 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
US9606443B2 (en) 2003-05-06 2017-03-28 Nikon Corporation Reducing immersion projection optical system
US9500943B2 (en) 2003-05-06 2016-11-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9933705B2 (en) 2003-05-06 2018-04-03 Nikon Corporation Reduction projection optical system, exposure apparatus, and exposure method
EP1480065A3 (en) * 2003-05-23 2006-05-10 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
JP4706171B2 (en) * 2003-10-24 2011-06-22 株式会社ニコン Catadioptric projection optical system, exposure apparatus and exposure method
JP2005129775A (en) * 2003-10-24 2005-05-19 Nikon Corp Catadioptric projection optical system, aligner, and exposure method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
EP2189848A3 (en) * 2004-07-14 2010-06-09 Carl Zeiss SMT AG Catadioptric projection objective
JP2012108540A (en) * 2004-07-14 2012-06-07 Carl Zeiss Smt Gmbh Catadioptric projection objective
WO2006005547A1 (en) * 2004-07-14 2006-01-19 Carl Zeiss Smt Ag Catadioptric projection objective
KR101171131B1 (en) 2004-07-14 2012-08-07 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7920338B2 (en) 2006-03-28 2011-04-05 Carl Zeiss Smt Gmbh Reduction projection objective and projection exposure apparatus including the same
US7738188B2 (en) 2006-03-28 2010-06-15 Carl Zeiss Smt Ag Projection objective and projection exposure apparatus including the same
US7965453B2 (en) 2006-03-28 2011-06-21 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus including the same
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
JP2011049571A (en) * 2010-09-24 2011-03-10 Nikon Corp Catadioptric projection optical system, exposure device and exposure method
JP2012073632A (en) * 2011-11-18 2012-04-12 Nikon Corp Catadioptric projection optical system, exposure equipment and exposure method

Also Published As

Publication number Publication date
JP2005233979A (en) 2005-09-02
AU2001232257A1 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
WO2001059502A1 (en) Reflection/refraction optical system
US6750948B2 (en) Projection optical system, projection exposure apparatus having the projection optical system, projection method thereof, exposure method thereof and fabricating method for fabricating a device using the projection exposure apparatus
US7130018B2 (en) Catoptric projection optical system, exposure apparatus and device fabrication method
US7403262B2 (en) Projection optical system and exposure apparatus having the same
KR100315180B1 (en) Projection Optics and Projection Exposure Equipment
TWI486714B (en) Illumination apparatus and exprosure apparatus and method for fabricating micro device
JPWO2008007633A1 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2004252363A (en) Reflection type projection optical system
JP2003107354A (en) Image formation optical system and exposure device
JP2003045782A (en) Reflection-type reduced projection optical system and projection aligner using the same
US6947210B2 (en) Catoptric projection optical system, exposure apparatus and device fabrication method using same
JP6159754B2 (en) Win-Dyson projection lens with reduced sensitivity to UV damage
TW536735B (en) Optical condenser system, optical illumination system provided with the same, and exposure system
JP2004022708A (en) Imaging optical system, illumination optical system, aligner and method for exposure
US6860610B2 (en) Reflection type projection optical system, exposure apparatus and device fabrication method using the same
WO2007086220A1 (en) Cata-dioptric imaging system, exposure device, and device manufacturing method
US7242457B2 (en) Exposure apparatus and exposure method, and device manufacturing method using the same
US6947121B2 (en) Projection optical system, a projection exposure apparatus provided with the same, as well as a device manufacturing method
US20040218164A1 (en) Exposure apparatus
US7292316B2 (en) Illumination optical system and exposure apparatus having the same
JP2008158211A (en) Projection optical system and exposure device using the same
JP2006120985A (en) Illumination optical device, and exposure apparatus and method
JP2005209769A (en) Aligner
JP2002055279A (en) Zoom optical system, exposure device equipped therewith and exposure method
JP2007132981A (en) Objective optical system, aberration measuring instrument and exposure device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP