WO2001064848A9 - Procede et dispositif de culture cellulaire ou tissulaire - Google Patents

Procede et dispositif de culture cellulaire ou tissulaire

Info

Publication number
WO2001064848A9
WO2001064848A9 PCT/JP2001/001516 JP0101516W WO0164848A9 WO 2001064848 A9 WO2001064848 A9 WO 2001064848A9 JP 0101516 W JP0101516 W JP 0101516W WO 0164848 A9 WO0164848 A9 WO 0164848A9
Authority
WO
WIPO (PCT)
Prior art keywords
culture
pressure
cells
tissue
tissues
Prior art date
Application number
PCT/JP2001/001516
Other languages
English (en)
French (fr)
Other versions
WO2001064848A1 (fr
Inventor
Takao Takagi
Setsuo Watanabe
Hidetada Takai
Ibuki Kinouchi
Shuichi Mizuno
Julie Glowacki
Original Assignee
Takagi Kogyo Kk
Brigham & Womens Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Kogyo Kk, Brigham & Womens Hospital filed Critical Takagi Kogyo Kk
Priority to DE60139926T priority Critical patent/DE60139926D1/de
Priority to AU2001236002A priority patent/AU2001236002B2/en
Priority to CA2401559A priority patent/CA2401559C/en
Priority to KR1020027011525A priority patent/KR100674788B1/ko
Priority to AT01908154T priority patent/ATE443130T1/de
Priority to EP01908154A priority patent/EP1266960B1/en
Priority to AU3600201A priority patent/AU3600201A/xx
Publication of WO2001064848A1 publication Critical patent/WO2001064848A1/ja
Publication of WO2001064848A9 publication Critical patent/WO2001064848A9/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/14Pressurized fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to tissue and tissue culture technology used for tissue engineering, which is an application of cell tissue engineering or gene therapy, and is used for in vitro culture of cells and tissues necessary for repairing defective tissues in the human body.
  • the present invention relates to a method for culturing cells or tissues and an apparatus therefor.
  • the first method is to use a material other than the living body, such as plastic, metal, or ceramic, as a means of repairing defective or abnormal parts.
  • Alternatives include ceramics for bone, stainless steel, polyethylene resin for joints, and vinyl resin for blood vessels.
  • the third is a method of transplanting an organ of another person.
  • a repair method which is expected to be put to practical use is a method in which cells or tissues obtained by culturing living cells in vivo or outside of the cells or tissues are used to repair defective sites.
  • Current studies have reported that many tissues, such as skin, cartilage, bone, blood vessels, liver, and kidney, have the potential.
  • tissue used for repair Since the tissue has the patient's own gene, there is no rejection reaction, and no chemical substances other than biomaterials such as synthetic resin do not adversely affect the living body. Ideal treatment is possible.
  • the pump and pressure sensor are disassembled and only the passage of the culture media is taken out and sterilized with chemicals, and the other parts are sterilized with an autoclave and then connected with the pump and pressure sensor. Since it is necessary to assemble the equipment, it is troublesome and there is a high risk of bacterial contamination. In addition, when culturing using an incubator (incubator), pumps and control devices are easily affected by temperature and humidity, and all devices cannot be accommodated in an incubator with a limited capacity. For this reason, the equipment must be assembled with the incubator connected to the outside air in order to pass pipes, power supply, and control wires through the through holes of the incubator.
  • the entire system in order to apply pressure to the entire circuit of the culture medium, the entire system must be pressure-resistant, including components such as pumps and piping.
  • a high pressure for example, IMPa or more
  • the entire structure must have a high withstand voltage structure, and cost up becomes a problem.
  • the culture device is configured as shown in Fig. 26. Each element and its function in this culture device will be described.
  • the pump 400 plays the role of circulating the culture medium 402. And pressurizes the inside of the culture chamber 404 to apply hydrostatic pressure to the cells 406 or tissue.For example, a pump for liquid chromatography is used, and a control device for flowing a constant flow rate is built in. ing.
  • valve 410 When the pressure exceeds the pressure to be applied to the cells 406 or the tissue, the valve 410 opens the valve 410 to release the pressure, and the pressure inside the culture chamber 404 is kept constant. To keep. Depending on the pressure to be applied to the cells 406, select and attach the back pressure 408.
  • the culture chamber 404 constitutes a space for culturing cells 406 or tissue, and the culture chamber 404 has a cell 406 or tissue implanted on a scaffold 412 made of a sponge formed of collagen. House things.
  • the cells 406 or tissue grow on the scaffold 412 consisting of collagen sponge.
  • the pressure sensor 414 detects the pressure in the culture chamber 404, and the pressure monitor 416 displays the detected pressure of the pressure sensor 414.
  • the pump 400 is controlled by the detected pressure, and when the detected pressure becomes excessive, the operation of the pump 400 is stopped.
  • the culture medium tank 418 is suitable for cells 406 to be cultured or tissue.
  • the culture medium 402 is stored, and this culture medium 402 is made of, for example, amino acids, sugars, and salts.
  • the culture media tank 4 18 communicates with the outside air through a ventilation tube 4 22 penetrated through the obturator 4 20, and the ventilation filter 4 24 prevents contamination by the outside air.
  • This culture device is housed in an incubator that is a closed space. This incubator is a space that creates a comfortable culture atmosphere and is maintained at the optimal temperature, humidity and gas concentration (oxygen and carbon dioxide) for cells and tissues. Then, the culture medium 402 is filled in the circuit 426 by the pump 400 and circulates.
  • the pressure in the culture chamber 404 gradually increases, and when the pressure exceeds the set pressure of the knock pressure regulator 408, the back pressure regulator 4
  • the valve 410 of 08 opens to discharge the culture medium 402, and the pressure of the culture medium 402 decreases by the amount discharged by the culture medium 402, so the valve 410 closes.
  • a constant pressure is maintained, and at the same time, the circulation of a certain amount of the culture medium 402 is repeated.
  • this culture apparatus can maintain a constant pressure, it cannot repeatedly increase and decrease the pressure. Since the pressure rise depends on the pump 400, the speed at which the pressure rises depends on the capacity of the pump 400.If the circulation amount of the culture medium 402 is increased, the rise speed becomes faster, and if the circulation amount is set smaller, The pressure rises slowly. Therefore, when the pressure cycle is repeated continuously, to reduce the pressure, as shown in Fig. 27, the bypass valve 428 and the orifice valve are connected in parallel with the back pressure regulator 400. (Needle valve) There is a method of installing a bypass passage 432 provided with 4330.
  • each component must be disassembled, cleaned and sterilized, and then the equipment must be assembled, which may result in bacterial contamination after sterilization.
  • a sterilization process such as an autoclave (121 ° C absolute pressure 2 atm).
  • pumps and pressure sensors use many electronic components, special resins, It is impossible because of the oil. For this reason, at present, the pump and pressure sensor are disassembled and only the passage part of the culture medium is taken out, sterilized by chemicals, and the other parts are sterilized by autoclave and then pump and pressure sensors are removed. The sensor and equipment must be assembled, which is time-consuming and highly susceptible to bacterial contamination.
  • Oxygen and carbon dioxide gas is introduced into the culture media through a filter, but it is directly from the surrounding atmosphere, so there is a risk of contamination.
  • this culture device is housed in an incubator, but the pump unit II pressure monitor is easily affected by temperature and humidity, and it is difficult to accommodate the pump unit II pressure monitor in the incubator in terms of volume. For this reason, it is necessary to assemble the equipment by connecting the inside and the outside of the incubator through a tube power supply for pipes and control wires through through holes of the incubator.
  • the pressure setting must be changed by selecting a back pressure regulator according to the set pressure and incorporating it.To change the pressure setting, it is necessary to replace the back pressure regulator. It is troublesome and has a high risk of bacterial contamination.
  • the culture apparatus shown in Fig. 27 cannot set the low pressure side, and even if the pressure can be adjusted to some extent by the orifice valve 430, the set pressure cannot be changed. Changes with the circulation flow rate of the pump 400.
  • the temperature, humidity, carbon dioxide concentration, and oxygen concentration in an incubator are set to optimal conditions, and the cells are cultured therein. I have. Incubation using such an incubator is a two-dimensional (2D) culture on a petri dish, and attempts have been made for 3D culture. In such a culture method, it is easy to be contaminated by culture media or cells or tissue bacteria exposed to the outside air, and stable culture is difficult.
  • the cells of living organisms are always under physical stimulation, and their stimulation indirectly affects the control of cell metabolism, the cell division cycle, the concentration gradient and dispersion of biological stimulation, etc.
  • an object of the present invention is to provide a method for culturing cells or tissues and an apparatus therefor, which realize efficient in vitro culture while preventing contamination. Disclosure of the invention
  • an culturing position (culturing chamber) is installed in an environment controlled arbitrarily, such as an environment imitating a living body, and a culturing medium is supplied while holding cells or tissues at the culturing position.
  • a culturing medium is supplied while holding cells or tissues at the culturing position.
  • the method for culturing cells or tissues of the present invention comprises the steps of: holding cells or tissues of a living body at a specific culturing position (culturing chamber); setting the cells or tissues in an environment imitating a living body; A culture media is supplied to the tissue, and the cell or the tissue is cultured at the culture position.
  • a culture media is supplied to the tissue, and the cell or the tissue is cultured at the culture position.
  • cells and tissues collected from living organisms are used and cultured in vitro. What is important in this in vitro culture is to prevent contamination and artificially realize a culture environment equivalent to that of a living body, that is, an environment that imitates a living body.
  • an in vitro culture of cells or tissues is realized by setting a culture position in an artificially formed environment, holding cells or tissues in the culture position, and supplying a culture medium.
  • the environment refers to a living body formed by cells or tissues, and refers to living conditions including internal and external stimuli necessary for maintaining a healthy life.
  • the culture medium also contains nutrients necessary for maintaining the life of cells or tissues and growing.
  • the supply of culture media provides a physical stimulus to cells or tissue, hydrostatic pressure and flow, which affects cells or tissues due to metabolic functions, division cycles, and the concentration gradients and dispersion of biological stimuli, and As a result, it is possible to culture cells or tissues that are close to the body tissue and that easily fuse with the body tissue.
  • the method for culturing cells or tissues of the present invention comprises the steps of: holding cells (5) or tissues of a living body at a specific culturing position (culturing chamber 20); setting the cells or tissues in an environment simulating a living body; A culture medium is continuously or intermittently supplied to the cells or the tissue through a culture circuit (culture circuit unit 4), and a pressure that changes continuously, intermittently, or periodically is applied to the cells or the tissue, and the culture is performed. Culturing the cell or the tissue at a location.
  • the setting of the culture position and environment setting are as described above.
  • the culture medium is supplied continuously or intermittently to the cells or tissues set in the culture position through the culture circuit.
  • the supply of the culture media can be performed continuously or intermittently, and at the same time, contamination can be prevented.
  • the living body can be imitated and cells or tissues can be cultured efficiently.
  • a desired pressure is applied to the cells or tissue to apply physical stimulus, and the form of the pressure is changed continuously, intermittently, or periodically to imitate a living body.
  • the method for culturing cells or tissues of the present invention is characterized by comprising a holding means for holding the cells or the tissues to be cultured at the culture position in a floating state or a non-floating state in the culture medium. That is, experiments have confirmed that it is necessary to maintain the cells or tissues to be cultured in a static state in order to increase the culture efficiency. Therefore, efficient culture can be realized by holding cells or tissues in a floating or non-floating state in a culture medium.
  • the method for culturing cells or tissues of the present invention includes: a hydrogel in which the holding means holds the cells or the tissue in a suspended state in the culture medium; or A scaffold that is absorbed by cells or the tissue is used. That is, cells or tissues to be cultured may be held in any manner, and in this case, a hydrogel or a scaffold is an example.
  • the hide-mouth jewel is a means for wrapping cells and tissues to be cultured and keeping them in a floating state, and when the culture is completed, the cells and tissues can be taken out from the hydrojewel.
  • the scaffold can be composed of a porous body made of a protein, and cells or tissues to be cultured are retained on the scaffold, but absorb the scaffold as nutrients as they grow.
  • the method for culturing cells or tissues of the present invention is characterized in that the culture medium contains one or more of various amino acids, sugars, salts or proteins. That is, the culture medium can be used according to the cell or tissue to be cultured.For example, the medium contains one or more of two or more substances selected from various amino acids, saccharides or proteins, or all of them. Can be used.
  • the choice of culture media is a key factor in efficient culture and formation of high quality cells or tissues.
  • the environment for culturing the cell or the tissue may include a physiological condition of the site of the living body, or age, height, weight, sex, and other information in addition to the physiological condition. Is set according to the unique information for each living body. You. That is, it is most important that cells or tissues used for repairing a part of a living body match the living body, and a culture environment is set using the unique information of the living body as one element.
  • the method for culturing cells or tissues of the present invention is characterized in that the environment is set by a gas such as nitrogen, oxygen or carbon dioxide supplied through the culture medium, temperature or humidity. That is, since the environment in which cells or tissues are to be cultured is desirably an environment compatible with living organisms, for example, nitrogen, oxygen, and carbon dioxide are supplied to the culture space, and the temperature and humidity are set to temperatures and humidity suitable for culture. Thus, the living environment is controlled to a desired state.
  • a gas such as nitrogen, oxygen or carbon dioxide supplied through the culture medium, temperature or humidity.
  • the cell or tissue culture method of the present invention is characterized in that the pressure applied to the cell or the tissue is arbitrarily set according to the site of the cell or the tissue. That is, by applying pressure corresponding to the site of the living body to be repaired, ideal and practical cells or tissues can be formed.
  • the method for culturing cells or tissues of the present invention is characterized in that the pressure applied to the cells or tissues is a pressure that changes continuously, intermittently or periodically, or a combination of these.
  • the pressure pattern is changed continuously, intermittently, or periodically, and selected or combined to achieve ideal physical stimulation. It affects the concentration gradient and dispersion of biological stimuli, and promotes culture.
  • the cell or tissue culture apparatus of the present invention includes a culture unit (culture circuit unit) that includes a culture chamber that houses cells or tissue and supplies a culture medium, and applies pressure to the cells or the tissue in the culture chamber. And a culture medium supply means (culture medium supply apparatus) for intermittently or continuously supplying the culture medium to the culture unit.
  • a culture unit culture circuit unit
  • culture medium supply means culture medium supply apparatus
  • the culture unit accommodates cells or tissues to be cultured in a culture chamber and supplies culture media necessary for cells or tissues that are shielded from the outside air.
  • Cells or tissues that are shielded from the open air are protected from bacterial contamination and, as a result, grow into high-quality tissues.
  • the cells or tissues are given a desired pressure by a pressurizing means.
  • g Cell or tissue cultivation is promoted by being affected by the function, division cycle, concentration gradient and dispersion of biological stimuli.
  • the supply form of the culture media to the cells or tissues can be arbitrarily set by the culture media supply means and can be supplied intermittently or continuously.
  • the supply form of the culture medium includes one or both of supply of a new culture medium and supply of recirculating the culture medium repeatedly.
  • the culture medium can be saved, but in the case of unidirectional supply, it is advantageous in that the concentration of the culture medium can be prevented from changing.
  • the cell or tissue culturing apparatus of the present invention is characterized by comprising a control means for controlling the pressurizing means or the culture media supplying means.
  • the pressurizing means or the culture media supply means can use various control means such as a force computer which can be arbitrarily controlled, thereby enabling various controls such as feedback control and feedforward control, and program control. It is. Of course, it is possible to take into account human correction control by interruption, and this does not exclude correction control.
  • the cell or tissue culturing apparatus of the present invention is characterized in that the pressure applied to the cell or the tissue from the pressurizing means is arbitrarily set according to the cell or the tissue.
  • the cell or tissue culture apparatus of the present invention is characterized in that the pressure applied to the cell or tissue from the pressurizing means is increased or decreased at regular intervals, in an intermittent state, continuously repeated at regular intervals. . That is, the pressure pattern can assume any form, and the cell or tissue can be efficiently cultured by selecting the pressure pattern.
  • the cell or tissue culture device of the present invention is characterized in that the culture unit can be independently separated from the culture device body. That is, a culture unit having a culture chamber for storing cultured cells or tissues can be separated and detached independently of the culture apparatus main body, thereby transferring the cells or tissues together with the culture unit separated from the outside air.
  • the cell or tissue can be protected from contamination by bacteria and the like during the movement.
  • the cell or tissue culturing device of the present invention is a device for culturing cells in an enclosed space that is isolated from the outside air. It is characterized by containing a knit. That is, since the closed space is a culture space and is isolated from the outside air, a culture environment can be set by supplying a desired gas, and cells or tissues can be protected from contamination by the outside air.
  • the cell or tissue culture apparatus of the present invention is characterized by comprising a gas absorbing means capable of absorbing a gas such as nitrogen, oxygen or carbon dioxide. That is, by supplying gas such as nitrogen, oxygen or carbon dioxide to the culture unit housed in the closed space, and by providing the culture unit with a gas absorbing means, the gas can be applied to cells or tissues.
  • a gas absorbing means capable of absorbing a gas such as nitrogen, oxygen or carbon dioxide. That is, by supplying gas such as nitrogen, oxygen or carbon dioxide to the culture unit housed in the closed space, and by providing the culture unit with a gas absorbing means, the gas can be applied to cells or tissues.
  • the living environment can be imitated by gas supply and control.
  • the cell or tissue culture device of the present invention is characterized in that the closed space is filled with a gas such as nitrogen, oxygen or carbon dioxide. That is, a biological environment can be imitated by filling the culture space formed by the closed space with a gas such as nitrogen, oxygen, or carbon dioxide.
  • the cell or tissue culture device of the present invention is characterized by comprising a culture media tank for storing the culture media to be supplied to the culture unit. That is, in order to supply or circulate the culture media required for the culture unit, a culture media supply source is required, and the culture media tank is the supply source. In particular, if the culture media tank is installed in a closed space that is isolated from the outside air, contamination of the stored culture media can be prevented.
  • the cell or tissue culture device of the present invention is characterized in that the culture chamber is provided with a pressure-receiving membrane that receives pressure from the outside.
  • the pressure-receiving membrane by installing the pressure-receiving membrane, it is possible to apply a pressure stimulus to cells or tissues housed in the culture chamber in a state where the cells or tissues are blocked from the outside air, and to apply a desired stimulation such as a stimulus imitating the biological environment Pressure stimulation can be realized.
  • the cell or tissue culture device of the present invention is characterized in that the culture unit has a pressure buffer means. That is, when a part of the culture unit is pressurized, if the pressure is adjusted by pressure buffer means, physical stimulation close to the biological environment can be realized, and the culture of cells or tissues can be promoted. it can.
  • a pressure chamber is attached to the culture chamber via the pressure receiving membrane, and water pressure, hydraulic pressure, or air pressure is applied to the pressure chamber. Pressure is applied to the cells or the tissue in the culture chamber. That is, a desired pressurization stimulus can be realized using any of water pressure, hydraulic pressure, or air pressure as the pressure generating means, and a biological environment can be accurately imitated.
  • the culture unit may be provided with a liquid supply chamber, and the culture medium supply unit may be configured to include a liquid supply apparatus that pressurizes and sends out the culture medium taken in the liquid supply chamber.
  • the culture medium supply means is a means for supplying or circulating the culture medium to the culture unit, and various forms can be envisaged.
  • a liquid supply chamber is provided and the liquid supply chamber is provided. If it is configured with a liquid sending device that pressurizes and sends out the taken culture media, a desired liquid sending amount can be set by controlling the applied pressure amount.
  • the cell or tissue culture device of the present invention further comprises a pressure relief valve provided in the culture unit, wherein when the pressure of the culture medium exceeds a predetermined pressure arbitrarily set in the pressure relief valve, the pressure relief valve is provided. It is characterized in that it is opened to reduce the pressure of the culture medium. In other words, buffering the pressure applied to the culture medium is extremely important for applying ideal pressurized stimulus to cells or tissues, and as one means, the pressure of the culture medium is controlled by using a pressure relief valve. If the pressure exceeds a certain pressure set arbitrarily set in the pressure relief valve, open the pressure relief valve and reduce the pressure of the culture medium to control the culture medium to an ideal pressure state without contaminating the culture medium. Can be.
  • the cell or tissue culture apparatus of the present invention is characterized in that the closed space is provided with a heating means or a humidifying means, and is maintained and controlled at a desired temperature or humidity. That is, the temperature and humidity of the enclosed space in which the culture unit is accommodated can be controlled, and a culture space that matches the biological environment can be formed.
  • the cell or tissue culture device of the present invention is characterized by comprising a sound wave generator for applying a sound wave such as an ultrasonic wave to the culture chamber of the culture unit. That is, the living body receives acoustic stimulus from the outside world, and by using a sound wave generator together, the living environment can be acoustically imitated. Further, when cells or tissues to be cultured are injected into the culture chamber, efficient and highly reliable injection can be performed by using ultrasonic waves.
  • the cell or tissue culture apparatus of the present invention controls the concentration of gas supplied to the closed space. And a control means for controlling. That is, by controlling the concentration of gas supplied to the closed space by the control means, the living environment can be imitated, and the culturing of cells or tissues can be promoted.
  • FIG. 1 is a block diagram showing a first embodiment of the cell or tissue culture method and device of the present invention.
  • FIG. 2 is a diagram showing a cell or tissue culturing method and a device therefor.
  • FIG. 3 is an enlarged view of a part of a culture circuit unit of the culture device, a culture media supply device, a pressure application device, and a pressure buffer device.
  • FIG. 4 is a diagram showing a separated state of the culture device and the culture circuit unit.
  • FIG. 5 is a block diagram showing a control device.
  • FIG. 6 is a flowchart showing the method for culturing cells or tissues of the present invention.
  • FIG. 7 is a flowchart showing initial settings in the cell or tissue culture method of the present invention.
  • FIG. 8 is a flowchart showing initial settings in the cell or tissue culture method of the present invention.
  • FIG. 9 is a flowchart showing initial settings in the cell or tissue culture method of the present invention.
  • FIG. 10 is a diagram showing the pressure in the pressure chamber with respect to the displacement and movement of the pressurizing piston in the pressure applying device.
  • FIG. 11 is a diagram showing an adjustment pressure of the pressure relief valve with respect to a displacement of the valve over a period of time.
  • FIG. 12 is a timing chart showing an execution mode of the variable pressure culture mode.
  • FIG. 13 is a timing chart showing another embodiment of the variable pressure culture mode.
  • FIG. 14 shows a second embodiment of the cell or tissue culture method and device of the present invention. It is a figure which shows the front side of the culture apparatus which is 1.
  • FIG. 15 is a diagram showing a side surface side of the culture device of FIG.
  • FIG. 16 is a diagram showing a part of a culture device main body and a culture circuit unit.
  • FIG. 17 is a diagram showing a culture circuit unit separated from the culture device main body.
  • FIG. 18 is a partial cross-sectional view showing a part of the main body of the culture apparatus from which the culture circuit unit has been removed.
  • FIG. 19 is a partial cross-sectional view showing a pressure applying device in the culture circuit unit.
  • FIG. 20 is a partial cross-sectional view showing a culture medium supply device in the culture circuit unit.
  • FIG. 21 is a partial cross-sectional view showing a pressure buffer device in the culture circuit unit.
  • FIG. 22 is a partial cross-sectional view showing another configuration example of the culture medium supply device in the culture circuit unit.
  • FIG. 23 is a diagram showing a third embodiment of the cell or tissue culture method and device of the present invention.
  • FIG. 24 is a diagram showing a fourth embodiment of the cell or tissue culture method and device of the present invention.
  • FIG. 25 is a diagram showing the pressurization control.
  • FIG. 26 is a diagram showing a conventional cell or tissue culture method and its device.
  • FIG. 27 is a diagram showing another conventional cell or tissue culture method and apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a first embodiment of the cell or tissue culture method and device of the present invention.
  • a culture apparatus 1 for realizing a cell or tissue culture method is provided with a sealed space 2 as a culture space, and a culture unit for supplying a culture medium 3 to cells or tissues to be cultured in the sealed space 2.
  • a culture circuit unit 4 is installed as a bird.
  • the culture circuit unit 4 can be set to be detachable and detachable from the main body of the apparatus.
  • the culture circuit unit 4 includes a culture media tank 9, a culture media supply device 6, a culture pressurization device 8, a gas absorption device 10, a valve 11, and a branch 13. This branch 13 is provided with a valve 15.
  • the culture medium 3 is a carrier that provides nutrients to cells and tissues to be cultured, and is a liquid containing essential amino acids and various amino acids and glucose (saccharides).
  • inorganic substances such as N a + and C a ++ may be added, or proteins such as serum may be contained.
  • these devices are made of resin materials that have sufficient heat resistance, such as fluororesin, PEEK, high heat-resistant grade polypropylene, silicone, and stainless steel, and do not elute substances that affect the living body. As a result, contamination of the components can be prevented.
  • Valves 11 and 15 can be configured with pinch valves, etc.Culture circuit unit 4 closes valve 15 and opens valve 11 to close the loop, opens valve 15 and closes valve 11 As a result, a fully open loop circuit and a partially open loop circuit by opening both valves 11 and 15 together.
  • the culture circuit unit 4 may include a gas absorbing portion 41 indicated by a two-dot chain line and a pressure-resistant portion 43 indicated by a solid line, instead of the gas absorbing device 10 partially installed.
  • Absorbing part 4 1 absorbs gas filled in closed space 2 into culture media 3, and pressure-resistant part 4 3 secures reliable liquid supply corresponding to the pressurized part of culture media 3 and leaks This is the part that prevents
  • the gas-absorbing unit 4 1, for example, leaving in be used C 0 2, 0 2 tube formed by easily elastomeric material passes through the gas in the gas or the like, and the like.
  • the culture media tank 9 is a means that is stored in the closed space 2 and stores the culture media 3 necessary for culturing cells or tissues.
  • the culture medium supply device 6 is a means for supplying the culture medium 3 to the culture circuit unit 4.
  • the culture medium supply device 6 drives the liquid feeding device 12 inserted in the culture circuit unit 4 by the driving device 14, and supplies a predetermined amount.
  • the culture medium 3 is supplied to the culture circuit unit 4.
  • the culture pressurizing device 8 is a means for pressurizing the cells 5 (FIG. 3) or tissue to be cultured, and includes a pressure applying device 16 and a pressure buffering device 18.
  • the pressure applying device 16 attaches a pressure vessel 22 to the culture chamber 20 of the culture circuit unit 4, and applies an arbitrary pressure to the culture chamber 20 by the driving device 24.
  • cells or tissues to be cultured are implanted and housed in a scaffold formed of collagen or the like, and isolated from the outside.
  • the pressure buffer device 18 reduces the pressure of the culture medium 3 pressurized by the culture pressurizing device 8.
  • a pressure relief valve 26 inserted into the culture circuit unit 4 is driven by a driving device 28 to set a maximum pressure for a pressure of the culture medium 3 exceeding a predetermined value, and the maximum pressure is set.
  • the pressure of the culture medium 3 exceeds the pressure, the pressure is buffered by releasing the culture medium 3. Further, the pressurized liquid is injected into the pressure vessel 22 from a pressurized liquid injection device 30 attached to the culture pressurization device 8.
  • the culture apparatus 1 is provided with a humidity controller 32, a temperature controller 34, and a gas mixing / concentration controller 36, and controls the humidity, temperature, and gas concentration of the atmosphere.
  • the operating device 38 is for performing a desired adjusting operation by an administrator
  • the control device 40 is a culture medium supply device 6, a culture pressurizing device 8, a pressurized liquid injection device 30, a humidity control. This is a means for controlling various devices such as the device 32, the temperature control device 34, and the gas mixing / concentration control device 36 by an operation input from the operation device 38 or a control program.
  • the control device 40 In preparation for culturing, necessary information such as culturing conditions is input to the control device 40 by operating the operation device 38 or the like. In this case, what is required is what pressure should be set for the culture medium 3.
  • the setting form is the maximum pressure, the minimum pressure, the pressure gradient such as pressure increase or pressure reduction, the pressurization cycle, and the culture medium 3. Flow rate, culture temperature, culture time, etc. Further, the culture circuit unit 4 selects between a closed loop and an open loop by switching between opening and closing the valves 11 and 15.
  • a scaffold 7 such as a collagen sponge is set in the culture chamber 20, and cells 5 (FIG. 3) or tissue to be cultured are implanted on the scaffold.
  • the collagen sponge may be formed by freeze-drying the collagen solution in the culture chamber 20.
  • the culture medium 3 flows to the culture chamber 20 through the liquid supply device 12, and the culture medium 3 is supplied to cells or tissues to be cultured.
  • the supply form of the culture medium 3 may be continuous, intermittent, Is selected.
  • the culture chamber 20 filled with the culture medium 3 contains cells or tissues held by a scaffold, and pressure is applied to the cells or tissues from the pressure vessel 22. This pressure depends on the pressure pattern set during the culture preparation. When the pressure applied to the culture medium 3 exceeds the set pressure, the culture medium 3 flows out of the pressure-resistant portion 43 through the pressure relief valve 26, and the pressure is adjusted.
  • cells or tissues grow to a desired size in the culture chamber 20. If a collagen sponge is used for the scaffold, the cells or tissue to be cultured will absorb the collagen and the scaffold will disappear by itself.
  • hydrogel When a hydrogel is used as the holding means, cells or tissues are held and held in a floating state in the hydrogel.
  • the culture medium 3 circulates in the culture circuit unit 4 and the cells or tissues to be cultured are circulated. Is supplied with a culture medium 3. Also, when the valve 11 is closed and the valve 15 is opened to open the culture circuit unit 4 into an open loop, the culture medium 3 flows to the branch 13 side, and the pressurized liquid injection device 30 side, In other words, the culture medium flows to the pressurized water tank 68 (FIG. 2), and fresh culture media 3 can always be supplied to the cells or tissues to be cultured.
  • the gas absorbing device 10 or the gas absorbing section 41 of the culture circuit unit 4 absorbs gas such as nitrogen, oxygen, and carbon dioxide from the inside of the closed space 2 into the culture medium 3 flowing therethrough.
  • gas such as nitrogen, oxygen, and carbon dioxide from the inside of the closed space 2 into the culture medium 3 flowing therethrough.
  • the gas force required for gas exchange in the same manner as described above is supplied to the cells or tissues through the culture medium 3.
  • a culture environment imitating a living body is set in a cell or tissue, so that in vitro culture can be performed efficiently without being contaminated by bacteria and the like. That is, the cells or tissues are subjected to physical stimulation by the hydrostatic pressure and flow of the culture medium 3 in the culture chamber 20, and are affected by the metabolic function, the division cycle, and the concentration gradient and dispersion of the biological stimulus. The culture is promoted. In addition, cells or tissues are applied by a pressure applying device 16 It receives a physical stimulus according to the pressurization and the form of pressurization. As a result, culture of cells or tissues is promoted, and tissues close to tissues in the body and easily fused with tissues in the body can be cultured. Further, by partially setting the withstand voltage section 43, the cost required for the withstand voltage structure can be reduced.
  • FIG. 2 shows a specific embodiment of the culture device 1
  • FIG. 3 shows a part of a culture circuit unit 4 of the culture device 1, a culture media supply device 6, and a pressure application of a culture pressurizing device 8.
  • the device 16 and the pressure damper 18 are shown enlarged.
  • the culture device 1 has a configuration in which the culture circuit unit 4 is attached and detached, as shown in FIG.
  • the culturing apparatus 1 is provided with a closable cultivation room 42, and the opening and closing of a door 270 (FIG. 14) is detected by a door switch 44.
  • the culture compartment 42 accommodates a culture circuit unit 4 for supplying a culture medium 3.
  • the culture circuit unit 4 includes a culture media bag 48 serving as a culture media tank for storing the culture media 3 via a culture chamber 20, a liquid sending device 12, and a pressure relief valve 26, in tubes 50 A and 50 B. , 50C, 50D, and 50E, which are detachable tube units.
  • the tubes 50A, 50D, and 50E are the gas absorbing portions 41 (FIG.
  • the tubes 50 B and 50 C are pressure-resistant parts 43 (FIG. 1), which are pressure-resistant tubes that can withstand the pressure of the culture medium 3.
  • the tube 50E has a gas absorbing portion 52 that bends the tube 50E to absorb the gas in the culture circuit unit 4.
  • the culture media bag 48 is supported by a hook 56 provided with a detection switch 54 as a weight detection means on the wall surface of the culture container 42, and the capacity of the culture media 3 in the culture media bag 48 is the weight thereof. Is detected by the detection switch 54.
  • the detection switch 54 detects a decrease in the predetermined weight of the culture media bag 48, the abnormality is notified through display means (display device 232) or a telephone through the control device 40.
  • Tubes 50A and 50E between the gas absorbing section 52 and the liquid sending device 12 are provided with a branching medium discharging section 58 in the branch, which is opened and closed by a check valve 59. .
  • the check valve 59 is a means for collecting the culture media 3 in the culture circuit unit 4, and is collected from the culture media discharge section 58.
  • the culture medium 3 can be subjected to an inspection of its denatured state, that is, whether or not it is contaminated by substances such as bacterial cells, and the like, such as PH, concentration, product, oxygen concentration, and carbon dioxide concentration.
  • the cells 5 to be cultured are implanted on a scaffold 7 formed of collagen or the like, and housed in the culture chamber 20 together with the scaffold 7.
  • the culture chamber 20 is constituted by a culture vessel 61.
  • the culture vessel 61 is detachably attached to the pressure chamber 60 by a plurality of fixing means such as bolts 62. G 3 It is provided strongly.
  • the injection port 63 is used for implanting cells 5 to be cultured on the scaffold 7 provided in the culture chamber 20 from outside using a syringe or the like.
  • other fixing means such as a clamper may be used.
  • the pressure chamber 60 and the culture vessel 61 are sealed with a sealing material such as an O-ring.
  • the surface of the culture chamber 20 on the side of the pressure chamber 60 is closed with a pressure receiving membrane 64 to form a closed space, and the pressurized water in the pressure chamber 60 is supplied to the culture chamber 20 via the pressure receiving membrane 64. 6 5 forces
  • a pressurized water (liquid) tank 68 is connected to the pressure chamber 60 through a water supply pipe 66, and a running water sensor 70, a pump 80, a bypass valve 82 and a sealing valve 8 are connected to the water supply pipe 66. 4 is provided, and the bypass valve 82 is provided with a bypass pipe 88 having an orifice 86 in the middle. That is, by opening the bypass valve 82 and the sealing valve 84 and driving the pump 80, the pressurized water 65 can be filled from the pressurized water tank 68 into the pressure chamber 60.
  • the pressurized water tank 65 Since the pressurized water level in the pressurized water tank 68 is detected by the water level sensor 96, the pressurized water tank 65 is replenished with the pressurized water 65 through the water supply line 94 by opening and closing the water supply valve 92 according to the water level. Therefore, the water level of the pressurized water tank 68 can always be maintained at the optimum water level. Further, a drainage line 98 is branched from a water supply line 66 of the pressurized water tank 68, and at the end of the culture of the cells 5, the drainage valve 100 is opened to release the pressurized water 65 ⁇ .
  • the pressure chamber 60 is provided with a collecting pipe 102 directed toward the pressurized water tank 68, and the collecting pipe 102 is provided with a sealing valve 104 and a circulation pump 106. ing.
  • the distal end of the recovery pipe 102 is immersed in pressurized water 65 in a pressurized water tank 68. That is, the sealing pump 84 is opened and the bypass valve 82 is closed to drive the circulation pump 106. Then, the pressure inside the pressure chamber 60 is reduced, and air bubbles and the like adhering to the inner walls of the pressure chamber 60 and the pipes 66, 102, etc. can be discharged to the pressurized water tank 68 side.
  • the pressurized water 65 in the pressure chamber 60 is supplied from the pressurized water tank 68 to the pressure chamber 60 through the water supply line 66 by the simultaneous driving of the pumps 80 and 106, while the recovery line 1 is supplied. It is also possible to return to the pressurized water tank 68 through 02 and to circulate with the pressurized water tank 68.
  • the wall of the pressure chamber 60 is provided with a heater 108, a temperature sensor 110, a pressure sensor 112 and a sound wave generator 114, which heats the contained pressurized water 65 and heats it. A temperature or pressure is detected, and a sound wave such as an ultrasonic wave can be applied to the pressure chamber 60 from the sound wave generator 114 as needed.
  • the pressure chamber 60 is provided with a pressurizing piston 1 16 as a pressurizing means so as to be able to advance and retreat, and the pressurizing piston 1 16 is formed by a support cylinder 1 17 protruding from the wall of the pressure chamber 60. It is supported, and is sealed between the support cylinder portion 117 and the pressurized biston 116 by an O-ring 119 serving as sealing means.
  • An actuator 120 and a motor 122 are attached to the pressure piston 1 16 as pressure drive means via a pressure spring 1 18.
  • the motor 122 is composed of, for example, a stepping motor.
  • the rotation of the motor 122 is converted into forward / backward movement by an actuator 120 and is applied to a pressurizing spring 1 18 to apply a pressurizing piston 1 16
  • the pressure in the pressure chamber 60 can be increased or decreased in accordance with the forward or backward movement of the pressure chamber.
  • a pressurizing piston 116 enters a high pressure is generated.
  • the position of the pressurizing piston 1 16 is detected by the position sensor 123, and the detected data is used for controlling the advance and retreat of the pressurizing piston 116, that is, for controlling the pressurizing stimulus.
  • the pressure chamber 60 is filled with pressurized water 65, and the pressure applied from the pressurizing piston 116 acts on the pressure-receiving membrane 64 entirely through the pressurized water 65, and the pressure is applied to the pressure-receiving membrane.
  • the hydrostatic pressure can be applied evenly to the cells 5 and the tissue from the culture medium 3 through the culture medium 3, and the strain (displacement) can also be applied equally.
  • the dynamic range of the pressure change can be increased by controlling the amount of movement of the pressurized biston 116, and fine control from a small value to a large value is possible.
  • the movement of the pressurizing piston 1 16 is detected by the position sensor 123 and monitored by the control device 40, and when the movement amount reaches the limit position, it is determined that the culture device 1 is abnormal.
  • An alarm output is issued from 40 and a warning is displayed on the display means (such as the display device 2 32 in FIG. 5) connected to the control device 4 or to the administrator via a communication line such as a telephone. Can be announced.
  • the liquid sending device 12 that continuously or intermittently sends the culture medium 3 to the culture chamber 20 is a liquid sending chamber having a sending-side check valve 12 4 and a suction-side check valve 12 6 at the inlet and outlet. It is provided with 1 28, and is detachably attached to the culture chamber 42 with a screw 130.
  • a liquid sending piston 13 2 is attached to the liquid sending chamber 1 28 so as to be able to advance and retreat, and a sterilizing liquid reservoir 1 34 is provided in the middle of the liquid sending piston 13 2.
  • a pressure spring 1 3 6 is installed.
  • the O-rings 133, 135 serving as sealing means are provided between the liquid sending piston 132 and the main body of the liquid sending chamber 128.
  • the germicidal fluid reservoir 134 is filled with germicides, disinfectants or antibiotics such as penicillin to prevent invasion of bacteria and foreign substances from outside.
  • the pressurizing spring 1 36 is housed in a protective cylinder 1 37.
  • An actuator 130 and a motor 140 are attached to the rear end of the liquid feeding piston 132 as driving means.
  • the motor 140 is composed of, for example, a stepping motor.
  • the rotation of the motor 140 is converted into forward / backward motion by the actuator 1/38, and is added to the pressurizing spring 1/36.
  • the pressure in the liquid sending chamber 128 increases or decreases in accordance with the advance or retreat of the liquid, and the change in the pressure is applied to the valve elements 144, 144 of the check valves 124, 126.
  • the liquid transfer piston 1 3 2 is withdrawn from the liquid transfer chamber 1 2 8, the liquid transfer chamber 1 is drawn by the amount of the liquid transfer piston 1 3 2 drawn out.
  • Negative pressure is applied to the inside of 2 8, and the valve 1 4 2 is pulled down by the restoring force of the spring 1 4 3, closing the delivery-side check valve 1 2 4 and applying pressure to the valve 1 4 4 by the spring 14 5.
  • the culture medium 3 is sucked into the liquid-feeding chamber 1 28 by being pulled up against the pressure and opening the suction-side check valve 1 26. Also, the liquid feeding piston 1
  • the pressure buffer device 18 of the culture medium 3 is provided with a pressure relief valve 26, and the pressure relief valve 26 is detachably attached to the culture container 42 by a screw 144.
  • the pressure relief valve 26 is provided with a valve element 150 that can be opened and closed by moving into and out of the valve chamber 144, and a sterilizing liquid reservoir 1 is provided in the middle of the plunger 15 2 of the valve element 150. 5 3 is provided. O-rings 155 and 157 as sealing means are provided between the plunger 155 and the main body of the valve chamber 148.
  • the germicidal solution reservoir 153 is filled with a germicide, a disinfecting solution, or an antibiotic such as benicillin to prevent entry of bacterial cells and foreign substances from the outside.
  • an actuator 156 as a driving means and a motor 158 are mounted via a buffer spring 154.
  • the motor 158 is composed of, for example, a stepping motor. The rotation of the motor 158 is converted into forward / backward movement by an actuator 156 and is added to the buffer spring 154.
  • the operating pressure for opening is adjusted according to the degree of compression of the buffer springs 154. That is, when the compression degree of the buffer spring 154 is high, the pressure from the culture media 3 required to open the valve element 150 increases, and when the compression degree of the buffer spring 154 is low. However, the pressure from the culture medium 3 required to open the valve body 150 decreases.
  • the pressure buffer device 18 is provided in order to buffer the pressure applied to the culture medium 3 in the culture chamber 20 on the culture circuit unit 4 side.
  • a tube 50 D connecting the valve chamber 1 4.8 of the pressure relief valve 26 to the culture media bag 48 is provided with a suction tube 16 4 and a force branch together with the pinch valve 16 2.
  • the suction tube 16 4 is provided with a pinch valve 16 6, a check valve 16 8, and a culture media reservoir 170, and the culture media reservoir 170 is collected via a suction tube 16 5.
  • the pinch valve 16 2 opens and closes the tube 50 D, and the pinch valve 16 6 is used to open and close the suction tube 16 4.
  • the check valve 168 closes the valve element 169 by the pressure of the spring 171, and when the pressure of the culture medium 3 exceeds the pressure of the spring 171, the culture medium 3 Flows through the suction tube 164 to the culture media reservoir 170 side.
  • the pinch valve 1 6 6 is operated independently of the check valve 16 8
  • the suction tube 16 4 can be closed, and the flow of the culture medium 3 can be blocked by the closing.
  • the pinch valve 166 is open, the culture media reservoir 170 is a closed container, so when the sealing valve 104 is closed and the circulating pump 106 is driven, the culture media reservoir 170 Since the internal pressure is reduced, the valve element 169 can be moved against the pressing force of the spring 1 ⁇ 1, and the check valve 168 can be opened. At this time, the culture medium 3 is stored in the culture medium storage 1 It can be retracted to the 70 side.
  • N 2 gas cylinders 17 2, 0 2 gas cylinders 17 4, and C 0 2 gas cylinders 176 are provided in the culture chamber 42 as gas mixing / concentration control devices 36, respectively.
  • 182, 180, 182, and gas switching valves 184, 186, 188, flow control valves 190, 192, 1 94, Flowme 1960, 1980, 200, Pressure regulators 202, 204, 206 and valves 208, 210, 2122 I have. That is, by selectively opening and closing the gas on-off valves 184 to 188, one or more of N 2 , O 2 or CO 2 is supplied and mixed.
  • a humidification water receiving tray 2 16 for storing humidification water 2 14 and a stirring fan 2 18 as a humidity control device 32 serving as humidification means are installed in the cultivation room 4 2.
  • a heater 220 for gas heating, a temperature sensor 222 inside the refrigerator, and a fan 218 for stirring are installed.
  • the stirring fan 2 18 is driven by a fan motor 2 24.
  • the control device 40 continues the heat retention control, the gas concentration control, and the liquid feeding operation in the culture chamber 42. In such a continuous operation, even when a predetermined culturing time has arrived, or when the operation has been normally completed, the heat retention control, the gas concentration control, and the liquid feeding operation in the culture chamber 42 are similarly performed. Let it continue.
  • FIG. 5 shows a configuration example of the operation device 38 and the control device 40.
  • the operation device 38 and the control device 40 include a main control device 230 constituted by a personal computer or the like.
  • the main control unit 230 includes a display device such as a display and a liquid crystal device 232, a hard disk, an optical disk, a floppy disk, and an IC card.
  • W 01/64848 a display device such as a display and a liquid crystal device 232, a hard disk, an optical disk, a floppy disk, and an IC card.
  • the input device 2 36 constitutes a part or all of the operation device 38.
  • the main control unit 230 receives the temperature sensor 110 output through the temperature detection circuit 238, the temperature sensor 222 output through the temperature detection circuit 240, and the pressure detection circuit 242 through the temperature detection circuit 240.
  • the detection output of the pressure sensor 112, the detection output of the position sensor 123, and the detection output of the detection switch 54 are added, and the drive output of the motor 122 is driven by the drive circuit 244 and the motor 404.
  • the output is the drive circuit 24 6, the drive output of the motor 158 is the drive circuit 24 8, the drive output of the heater 108 is the drive circuit 250, the valve 18 4, 18 6, and the valve 18 8
  • the drive output is obtained from the drive circuit 25 2
  • the drive output of the fan motor 22 4 is obtained from the drive circuit 25 4
  • the drive output of the heater 220 is obtained from the drive circuit 256, and the sound wave generator 1 1 4 Is obtained.
  • Step S1 is an initial setting mode.
  • the initial setting mode includes a step of filling the pressurized water 65 in the pressure chamber 60 after filling the culture circuit unit 4 and filling the culture medium 3 in the culture circuit unit 4, and a pressure set and input.
  • the method includes a step of sampling the amount of operation of the pressure applying device 16 and the pressure buffering device 18 of the culture pressurizing device 8 corresponding to the value, and storing and storing the amount.
  • the elongation rates of the materials constituting the culture circuit unit 4 and the pressure receiving membrane 64 are different, and the amount of operation for obtaining the set pressure is different due to bubbles remaining in the pressure chamber 60. Therefore, these settings are corrected in the initial setting mode.
  • the gas mixing / concentration control device 36, the humidity control device 32, and the temperature control device 34 are operated to fill the inside of the culture chamber 42 with gas and to adjust the humidity and Control to an appropriate temperature.
  • the water supply valve 92 is opened to replenish the pressurized water tank 68 with pressurized water 65 consisting of clean water and the like to the set water level
  • the bypass valve 82 and the sealing valve 84.104 are opened
  • the pump 80 is opened. It operates to supply pressurized water 65 into the pressure chamber 60.
  • the amount of pressurized water 65 supplied to the pressure chamber 60 is detected by the flowing water sensor 70, and when a predetermined amount of pressurized water 65 is detected, the pump 80 is stopped and switched to the circulation operation by the circulation pump 106.
  • the bypass valve 82 is closed and the flow path is switched to the bypass pipe 88.
  • the flow rate of the pressurized water 65 is restricted by the orifice 86, and the suction force of the circulation pump 106 creates a negative pressure in the pressure chamber 60, and the air bubbles remaining in the pressure chamber 60 are removed from the pressurized water tank 6. It is discharged to the 8 side.
  • the pinch valve 16 2 is closed, the pinch valve 16 6 is opened, and the culture medium 3 in the culture medium bag 48 is transferred to the tubes 50 E, 50 A, by the negative pressure generated by the circulation pump 106. Fill the culture chamber 20 through 50B.
  • the pinch valve 1666 is closed, the pinch valve 162 and the bypass valve 82 are opened, and the circulating flow is applied. Release the negative pressure and stop the circulation pump 106. Subsequently, after closing the sealing valves 84 and 104, the pressurized water 65 in the pressure chamber 60 is heated by the heater 108 and the temperature is detected by the temperature sensor 110 to control the temperature. To start.
  • the motor 158 of the pressure buffer device 18 is operated, the pressure relief valve 26 is closed, and the tube 50C is closed at a constant pressure.
  • the pressure applying device 16 is operated by operating the motors 122 until the preset maximum pressure Pmax is detected.
  • the pulse count of the motor 122 is stored in the memory of the main controller 230.
  • the motor 158 of the pressure buffering device 18 is rotated until the current pressure value decreases, and this pressure value is set to the position of the maximum pressure Pmax, and the pulse force of the motor 158 is used as the main control device 2. Store in 30 memory.
  • the motor 12 of the pressure applying device 16 is rotated until a preset minimum pressure P min is detected.
  • the pulse count of the motor 122 is stored in the memory of the main controller 230.
  • the motor 158 of the pressure buffer device 18 is rotated, and the motor 158 is stopped at the position where the pressure starts to decrease from the minimum pressure P min. At that time, the pulse count of this motor 158 is performed. The value is stored in the main controller 230 memory.
  • step S2 determines whether or not the mode is the variable pressure culture mode. That is, it is determined whether or not the culture is performed by periodically changing the pressure. If the pressure is to be changed, the process shifts to the variable pressure culture mode in step S3. If the culture is performed at a constant pressure, the process proceeds to step S7. To the fixed pressure culture mode. In the variable pressure culture mode in step S3, pressurization, pressure holding, depressurization, and pressure holding are repeated at every cycle T to stimulate the cells 5 in the culture chamber 20 under pressure, and the culture medium 3 is sent. .
  • step S4 it is determined whether or not the error between the pressure due to the operation of the pressure applying device 16 and the pressure buffering device 18 and Pmax and Pmin is equal to or greater than a predetermined value.
  • the process proceeds to step S5 to sample the moving amount of the pressure applying device 16 and the pressure buffering device 18 that match the maximum pressure Pmax and the minimum pressure Pmin. To correct the stored value of the memory of main controller 230.
  • step S6 steps S3 to S6 are repeated until a predetermined culturing time t has elapsed, and when the predetermined culturing time t has elapsed, the cultivation is terminated, and the process proceeds to step S11. I do.
  • step S7 the cells 5 or the tissue are stimulated by a constant pressure, and the culture medium 3 is sent. That is, in step S8, it is determined whether an error between the pressure caused by the operation of the pressure applying device 16 and the pressure buffering device 18 and the set pressure Ps is equal to or larger than a predetermined value. When an error equal to or more than the predetermined value occurs, the process proceeds to step S9 to sample the movement amounts of the pressure application device 16 and the pressure buffer device 18 that match the set pressure Ps, and store the memory of the main control device 230. Modify the stored value of. Then, in step S10, when the predetermined culture time t has elapsed, the culture is terminated, and the process proceeds to step S11.
  • step S11 a living cell storage operation mode is executed. Even if the culture of the cells 5 or the tissue is completed, that is, even if the tissue is generated, it is necessary to store the cells 5 or the tissue in a healthy state until the transfer for transplantation is started.
  • the living cell storage operation mode the culture medium 3 is supplied to keep the living cells in a healthy state while maintaining the cells 5 at a predetermined temperature.
  • step S12 it is determined whether or not living cells are to be transplanted, that is, whether or not an operation stop command has been input for the transplantation of the tissue composed of the cells 5, and the circulation of the culture medium 3 is performed according to the operation stop command. And stop the temperature control.
  • the culture circuit unit 4 is detached, and the cells 5 or tissues are transferred together with the culture circuit unit 4.
  • Figs. 7, 8 and 9 show the setting input operation in the initial setting mode.
  • the symbols a, b, c, d, and e are connectors in the flowchart separately described, and the coincidence of the symbols a to e is a joint.
  • step S21 it is input whether the culture in the culture chamber 20 is performed under periodic pressurization or under a constant pressure.
  • the process proceeds to step S24 and "variable pressure" is displayed.
  • the flow shifts to step S23 to display “constant pressure”.
  • step S25 a cycle T for changing the pressure is input.
  • step S26 it is determined whether or not the input cycle T is within the executable range. If the input is out of the execution range, the process proceeds to step S27 and "Re-input cycle T" is displayed. To step S25 and re-enter. If it is within the execution range, the process proceeds to step S28, where the set “cycle T” is displayed and stored in the memory of main controller 230.
  • step S29 the holding time t, of the maximum pressure Pmax is input.
  • step S30 it is determined whether or not the input time t, is within the operation range of the cycle T.
  • step S31 If it is out of the operation range, the flow shifts to step S31 to notify by displaying "re-input of t,” and shifts to step S29 to input again. If it is within the operating range, the flow shifts to step S32 to display "maximum pressure holding time t,” and to store it in the memory of main controller 230.
  • step S 3 3 inputs the minimum pressure P min of the retention time t 2.
  • step S 3 in 4 input time t 2 determines whether within the operating range of the period T. If the operating range outside the process proceeds to step S 3 5 to display the "re-input of t 2", cormorants to re-enter the process proceeds to step S 3 3. The process proceeds to Step S 3 6 Within the operating range performs a display of "minimum dwell time t 2", the memory of the main controller 2 3 0 of the memory.
  • Step S 3 7 In the input period T and time (t, + t 2) The difference time 2 minutes to pressurization, calculates the decompression time t 3.
  • Step S 3 at 8 time t 3 determines whether within the operating range.
  • Time t 3 is the operating range in the near Rutoki
  • the operation time t 3 stored in the main control unit 2 3 0 of the memory "pressure in step S 3 9, displays the decompression time t 3 J.
  • Step In S40 an input is made as to whether or not to make a change in acceleration or deceleration during pressurization or depressurization. If it is, move to step S42, and if not, move to step S46.
  • step S42 a change amount is input in order to make the speed change during pressurization and decompression.
  • step S43 it is determined whether the input change amount is operable. If the operation is not possible, proceed to step S44, display "Re-input of pressurized / depressurized change", and then proceed to step S42 to re-enter. If operable, the flow shifts to step S45 to display "pressurizing and depressurizing amounts" and to store them in the memory of main controller 230. At this time, a simulation screen of the pressure displacement may be displayed.
  • step S46 the minimum pressure Pmin is input.
  • step S47 it is determined whether or not the pressure applying device 16 is within an executable range. If it is out of the execution range, the flow shifts to step S48 to display "re-input of minimum pressure P min", and re-input is performed in step S46. If it is within the execution range, the flow shifts to step S49 to display "minimum pressure Pmin" and store it in the memory of main controller 230.
  • step S50 the maximum pressure Pmax is input, and in step S51, it is determined whether or not the pressure applying device 16 is within an executable range. If it is out of the execution range, the flow shifts to step S52 to display “Re-input of maximum pressure P ma X”, and re-input is performed in step S50. If it is within the execution range, the flow shifts to step S53 to display "maximum pressure P max" and store it in the memory of main controller 230.
  • step S54 the control temperature ct of the pressure chamber 60 is input.
  • step S55 it is determined whether or not it is within an executable range. If it is out of the execution range, the flow shifts to step S56 to display "re-input of temperature ct", and re-input in step S54. If it is within the execution range, the flow shifts to step S57 to display "temperature ct" and store it in the memory of main controller 230.
  • step S58 the circulation flow rate f of the culture medium 3 of the culture circuit unit 4 is input.
  • step S59 it is determined whether or not it is within an executable range. If it is out of the execution range, the flow shifts to step S60, a message "reinput of circulating flow rate f" is displayed and notified, and input is performed again in step S58. If it is within the execution range, the flow shifts to step S61 to display "circulating flow rate f" and store it in the memory of main controller 230.
  • step S62 the operation time is input.
  • step S63 "operation time” is displayed and stored in the memory of main controller 230.
  • the amount of movement by the motor 1 2 2 L 2 is the amount of shrinkage of the pressurizing spring 1 1 8
  • L 3 is moved in the pressurizing piston 1 1 6 of the case of not using the pressurizing spring 1 1 8 the amount
  • L 4 is the amount of movement of the pressure-bis tons 1 1 6 due to contraction of the air are mixed
  • L 5 is the amount of movement of the pressure piston 1 1 6 due to shrinkage of the water
  • L 6 is the culture chamber 2 0
  • pressure The amount of movement of the pressurizing piston 1 16 due to the deformation of the container in the chamber 60 is shown.
  • L 3 is a sum of L 4, L 5, L 6 , L, represents the sum of L 2, L 3.
  • the relationship between the amount of movement of the pressurizing piston 1 16 by the pressure applying device 16 and the pressure value of the pressure sensor 112 is stored in the memory of the main control device 230.
  • the total travel of the pressurized piston 1 16 is the value obtained by adding the equations (1), (2), (3) and (4).
  • the liquid feeding pistons 13 and 2 are further moved from that position, and when they move to a position where they cannot be moved, they are returned to their original positions.
  • the drop pressure becomes higher than the set allowable value, the data related to the movement amount and pressure of the actuator 15 6 of the pressure relief valve 26 stored before operation is corrected based on this value. There is a need.
  • FIG. 12 shows an embodiment of the variable pressure culture mode performed in step S3 of FIG. 12 is a timing chart showing the state of pressure applied to the culture chamber 20 and the timing of pressurization.
  • FIG. 12 (a) shows a change in the pressure of the culture chamber 20, and
  • FIG. (C) shows the pressurization timing of the pressure applying device 16, and
  • (d) shows the liquid sending timing of the culture media supply device 6.
  • the culture chamber 20 is repeatedly pressurized and depressurized at a cycle T between a maximum pressure Pmax and a minimum pressure Pmin. Is the time for holding the maximum pressure Pmax, t 2 is the time to hold the minimum pressure Pmi n. Is the operating time during pressurization and decompression.
  • These maximum pressure Pma X, the minimum pressure Pm in, time t, t 2, 1 3 can be arbitrarily changed according to the site to be outside the culture raw body.
  • pressurization and decompression can be performed by selecting appropriate numerical values according to data such as the age, sex, height, weight, and site in the living body of the cells 5 to be cultured.
  • the pressure buffer device 18 Before starting pressurization, the pressure buffer device 18 is operated at time t at the maximum speed to the position where the maximum pressure Pmax can be obtained to close the tube 50C. Thereafter, most at a speed starts the operation of the pressure applying device 1 6 via the delay time of t 4, corresponding to the time t 3 Pressurize from small pressure P min to maximum pressure P max.
  • the pressure control When the pressure control is started, the pressure is increased from around 0 to the maximum pressure Pmax. At this time, the pressure buffer 18 moves to the closed position at the maximum speed, and after the time t 9 has elapsed, the pressure applying device 16 is operated, and the time until the maximum pressure Pmax is reached at the speed corresponding to the time t 3 is reached. Pressurize for t.
  • FIG. 13 shows another embodiment of the variable pressure culture mode executed in step S3 of FIG. That is, FIG.
  • FIG. 13 is a timing chart showing the pressure state applied to the culture chamber 20 and the pressurization timing, where (a) shows the pressure transition of the culture chamber 20, and (b) shows the pressure buffer. 18 shows the operation timing, (c) shows the pressurization timing of the pressure applying device 16, and (d) shows the liquid supply timing of the culture media supply device 6, that is, a modification of the pressure pattern applied to the culture chamber 20. .
  • pressurization and decompression time t 3 pressing speed, which the rate of pressure reduction was sending a quadratically variations are allowed pressure application pattern with a regulation by, placing a pace to pressure fluctuations
  • a pressure pattern applied to the cartilage of the knee during walking can be reproduced.
  • the pressure applying device 16 is operated for time t! 5, t 16, is the operating speed is changed as shown in t 17, regulation is applied to the pressure at time t 3.
  • Other operations are the same as the operations in FIG. 12, and thus description thereof is omitted.
  • FIGS. 14 to 21 show a second embodiment of the cell or tissue culture device of the present invention
  • FIG. 14 is a front side arrangement of the culture device
  • FIG. Equipment side Side arrangement Fig. 16 shows the main part of the culture device
  • Fig. 17 shows the main part of the culture device excluding the culture circuit unit 4
  • Fig. 18 shows the main part of the culture device excluding the culture circuit unit 4
  • Fig. 9 shows the application of pressure Apparatus 16
  • FIG. 20 shows culture medium supply apparatus 6
  • FIG. 21 shows pressure buffer apparatus 18.
  • the same parts as those in the first embodiment are denoted by the same reference numerals.
  • This culturing apparatus is constituted by a single housing 260, and the housing 260 is divided into a culturing room 262, a machine room 264, and a control and power supply room 266.
  • the inside of the culture room 26 2 contains a culture room 42, and the configuration inside the culture room 42 is the same as that of the first embodiment, except that the culture medium supply device 6 and the pressure
  • the application device 16 and the pressure buffer device 18 are composed of a single processing unit 268.
  • the culture room 26 2 and the machine room 26 4 are provided with doors 27 0 and 27 2 that can be opened and closed independently.
  • the machine room 26 4 has a culture media supply device 6 and a pressure application device 16.
  • a pressurized water tank 68 and the like are housed together with the mechanism part of the pressure buffering device 18 and the like, and each of the cutout units 120, 13 8 and 15 6 is arranged as shown in FIG. It is supported on the rear side of the machine room 264 by a common mounting plate 269.
  • a water supply port 274 and a drain port 276 are provided on the wall of the machine room 264.
  • the power supply room 2666 houses a control device 40 and a power supply device, and a power supply switch 2778 is installed on the front panel side together with the display device 232.
  • the culture room 26 2 contains a culture room 42, and the culture room 42 contains a culture circuit unit 4 and a processing unit 268 force.
  • the processing unit 280 on the culture circuit unit 4 side is configured to be detachable from the processing unit 268.
  • FIG. 19 shows a pressure application device 16 including a culture vessel 61 and a pressure vessel 22 constituting the culture chamber 20.
  • the actuator 120 of the pressure applying device 16 mounts the ball screw 284 on the housing 282 and couples the motor 122 to the rear end of the ball screw 284. It is connected by joint 286.
  • the ball screw 284 is provided with a moving bed 288 that moves back and forth by rotation, and a supporting flange 290 provided on the front end side of the moving bed 288 and the ball screw 284.
  • the pressure spring 1 '18 A, 1 1 The compression state of 8B is changed by the moving pad 288 that moves in accordance with the rotation of the ball screw 284, and the elastic properties of each of the pressure springs 1 18A and 1 18B are pressurized. Acts on piston 1 16 side.
  • a belt 120 cam or the like may be used to form the actuator 120.
  • FIG. 20 shows the culture medium supply device 6.
  • a ball screw 292 is attached to a housing 291, and a motor 140 is connected to the rear end of the ball screw 292 by a force coupling joint 294.
  • the ball screw 292 is provided with a moving bed 296 that moves back and forth by rotation, and a piston push plate 298 attached to the moving bed 296 has a liquid feeding piston 1 3 2 The rear end is in contact.
  • FIG. 21 shows a pressure buffering device 18.
  • the actuating unit 1506 has a ball screw 302 mounted on a housing 300, and a motor 158 connected to a rear end of the ball screw 302 by a coupling joint 304. You.
  • the ball screw 302 is provided with a moving bed 303 that moves back and forth by rotation, and the moving bed 303 is connected to a buffer spring 1504A and 154B that are superimposed.
  • the plunger push plate 308 is attached to the plunger push plate 308, and the rear end of the plunger 152 of the pressure relief valve 26 is in contact with the front surface of the plunger push plate 308.
  • the plunger push plate is moved together with the buffer springs 154A and 154B. 308 is advanced, and the compression state of the buffer springs 154A and 154B changes.
  • FIG. 22 shows a modification of the culture medium supply device 6.
  • the force of the pressurizing spring 13 6 installed on the liquid feeding piston 13 2, except for the pressurizing spring 13 6, Attach the connecting shaft 3 10 to the moving bed 2 96 which is moved by the ball screw 29 2 of the unit 1 38, and attach the liquid feed piston 1 3 2 to the end of this connecting shaft 3 10 May be connected by fixing means such as fixing pins 312. Even with such a configuration, the liquid feed biston 13 2 can be moved forward and backward by the forward and reverse rotation of the ball screw 29 2.
  • FIG. 23 shows a third embodiment of the cell or tissue culture apparatus of the present invention.
  • the pressurized air is supplied to the pressure regulator 3 14, It is operated through a line 67 provided with a valve 3 16 and a needle valve 3 18, and the pressurized air in the pressure chamber 60 is collected 1 with a needle valve 3 20 and a pressure reducing valve 3 22.
  • the valve is opened and closed by the rotation of the actuator 312 in place of the valve 11 (Fig. 1) or the pinch valve 16 2 (Fig. 2) on the tube 50 D side. 3 2 3 may be provided.
  • a pressure stimulus can be applied to the cells 5.
  • a change can be imparted to the pressurized stimulus by controlling the opening and closing of the pressure increasing valve 316 and the pressure reducing valve 3222.
  • the pressure change per unit movement can be reduced at low pressure, the pressure change per unit movement can be increased at high pressure, and the pressure on cells or tissues can be increased.
  • the voltage is applied, unnecessary vibrations generated from the module and the like can be absorbed, and the accuracy of the pressure stimulus to cells or tissues can be improved.
  • FIGS. 24 and 25 show a fourth embodiment of the cell or tissue culture apparatus of the present invention.
  • the cells to be cultured 5 are transplanted to a scaffold 7 formed from collagen or the like, and are stored in the culture chamber 20 for each scaffold 7.
  • a culture medium 3 is supplied to the culture chamber 20 from a culture medium tank 49 through a culture circuit unit 4.
  • the culture circuit unit 4 forms a closed circuit.
  • the pump 4 is provided with a pump 32 4 as a liquid sending device 12, a pressure sensor 32 6 and a pressure buffering device 18.
  • the detected pressure of the pressure sensor 326 is applied to the pressure controller 328, and a control output corresponding to the detected pressure is applied from the pressure controller 328 to the pump 324. That is, the pressure P of the culture medium 3 is controlled to be constant.
  • the pressure buffering device 18 is provided with a buffer spring 1554 between the plunger 152 of the valve body 150 of the pressure relief valve 26 inserted into a part of the culture circuit unit 4 and an actuator.
  • the motor 156 is connected to the actuator 156.
  • the rotation of the motor 158 that is, forward rotation, reverse rotation, stop, and rotation speed are controlled by the controller 40.
  • the rotation of the motor 158 is transmitted to the ball screw 302, and the rotation of the ball screw 302 moves the moving bed 360 forward and backward according to the direction of rotation.
  • This movement is transmitted to the plunger 152 of the valve element 150 through the buffer spring 1554, so that the closing force of the valve element 150 moves.
  • Set by the compression force of 54 When the pressure of the culture medium 3 by the pump 3 24 and the closing force of the valve 150 are overcome, the valve 150 is opened and the culture medium 3 passes through the pressure relief valve 26.
  • the culture media tank 49 is provided with an air pipe 330 for taking in gas such as oxygen or carbon dioxide.
  • the air pipe 330 is a filter for preventing invasion of bacteria, foreign matter, and the like. Is provided. That is, oxygen or carbon dioxide introduced from the air line 330 is transmitted to the cells 5 in the culture chamber 20 together with the culture medium 3.
  • the culture medium 3 is supplied to the culture circuit unit 4 and flows through the culture chamber 20, so that the nutrients required for the cells 5 and oxygen or carbon dioxide, etc. Supply gas.
  • the culture circuit unit 4 is closed, and the pressure in the culture chamber 20 is increased by the pressure applied to the culture medium 3 from the pumps 32.
  • the buffering force of the pressure buffering device 18, that is, the closing force of the valve element 150 an arbitrary pressure value that balances with the pressure applied from the pump 324 can be obtained.
  • FIG. 25 shows this pressurizing operation.
  • the maximum pressure P max and the minimum pressure P min are alternately applied to the cells 5. be able to. That is, the maximum pressure P max time to the cell 5 t,, minimum pressure P min time t 2, also boosting time 1 3 and the step-down time 1 3 is set, the pressure cycling of biological as well as culture media 3 As a result, the growth environment power equivalent to the living body is realized.
  • time, t. 2, t 3 can be arbitrarily adjusted, Rukoto to achieve optimal conditions in accordance with the characteristics and the body part of the cells 5 to be cultured Can be.
  • the cells can be cultured efficiently without being contaminated in an environment that mimics the in-vivo environment, and cells or tissues that are close to and can easily fuse with body tissues can be cultured.
  • c Cells or tissues to be cultured can be held in a culture medium in a floating or non-floating state, and efficient culture can be performed in an extremely stable state.
  • the culture medium is used in accordance with the cells or tissues to be cultured, for example, one containing various amino acids, saccharides, salts, or proteins, or a substance containing two or more substances or all of them.
  • efficient culture and high-quality cells or tissues can be cultured.
  • the culture environment is set according to the physiological conditions of the body part, or age, height, weight, sex, and other unique information for each living body in addition to these physiological conditions.
  • the tissue can be cultured.
  • the living environment is set by the supply and control of gas such as nitrogen, oxygen or carbon dioxide, and the setting and control of temperature or humidity, it is possible to achieve environmental control close to that of the living body, and the strength of the body close to the body tissue Contribute to the culture of cells or tissues that easily fuse with the tissue Can be.
  • gas such as nitrogen, oxygen or carbon dioxide
  • temperature or humidity the setting and control of temperature or humidity
  • the ideal physical stimulation can be achieved by selecting a continuous or intermittent or periodic change in the pattern of pressure, and selecting or combining it.
  • the metabolic function of cells, the division cycle, and biological stimulation It influences the concentration gradient and dispersion of the culture, and can promote the culture.
  • the culture unit accommodates cells or tissues to be cultured in a culture chamber and supplies necessary culture media to cells or tissues that are isolated from the outside air. Protects against contamination of the soil, so that high quality tissue can be cultured.
  • the cells or tissues are subjected to the desired pressure by the pressurizing means in addition to the hydrostatic pressure and the physical stimulation by the flow by the culture medium, so that the metabolic function of the cells, the division cycle, the concentration gradient of the biological stimulation, Affected by dispersion, it can promote cell or tissue culture.
  • the mode of supplying the culture media to the cells or tissues can be arbitrarily set by the culture media supply means and can be supplied intermittently or continuously, so that the culture is promoted by physical stimuli with variations. Can be.
  • the pressurizing means or the culture medium supply means can be controlled arbitrarily.By using various control means such as a computer, various program controls such as feedback control and feed forward control are performed, Simultaneously, the desired environment can be set, and efficient culture can be performed.
  • More efficient culture can be performed by setting the method of applying pressure, that is, the pressure pattern according to the cell or tissue to be cultured.
  • the pressure pattern can be set in any form, and cell or tissue culture can be performed efficiently by selecting and combining the pressure pattern.
  • the culture unit equipped with a culture chamber for storing cultured cells or tissues can be separated and detached independently of the culture device itself.Therefore, the cells or tissues must be moved together with the culture unit separated from the outside air. The cell or tissue can be protected from contamination by bacteria and the like during movement, and the reliability of the restoration of the living body can be improved. O By blocking the closed space, which is the culture space, from the outside air, it is possible to set the culture environment by supplying a desired gas and to protect cells or tissues from contamination by the outside air.
  • Gas is supplied to cells or tissues by supplying gas such as nitrogen, oxygen or carbon dioxide to the culture unit housed in the closed space, and by providing the culture unit with gas absorbing means. Supply and control can mimic the biological environment.
  • a living environment By filling the culture space formed by the closed space with a gas such as nitrogen, oxygen or carbon dioxide, a living environment can be imitated and a desired culture space can be formed.
  • a gas such as nitrogen, oxygen or carbon dioxide
  • a culture media tank for supplying or circulating the culture media required for the culture unit is provided.
  • the culture media tank is installed in a closed space that is shielded from the outside air. Prevention can be achieved.
  • a pressure-receiving membrane By installing a pressure-receiving membrane, it is possible to apply a pressure stimulus to cells or tissues contained in the culture chamber in a state where it is shielded from the outside air, and to apply a desired pressure stimulus such as a stimulus that imitates the biological environment. realizable.
  • a desired pressure stimulus can be realized by using any of water pressure, hydraulic pressure, or air pressure as a pressure generating means, and a living environment can be accurately imitated.
  • the culture media supply means is composed of a liquid sending device that pressurizes and sends the culture media taken in the liquid sending chamber, the culture media can be efficiently supplied or circulated to the culture unit, and the amount of pressurization is controlled. In this way, a desired amount of liquid can be set.
  • w Buffer s the pressure applied to the culture media, so that an ideal pressurized stimulus can be applied to cells or tissues.
  • the pressure of the culture medium can be controlled by controlling the pressure relief valve. Opening the pressure relief valve to lower the pressure of the culture media allows the culture media to be controlled to an ideal pressure state without contamination. Can be.
  • the living body receives acoustic stimulus from the outside world, and by using a sound wave generator together, it can imitate the living environment acoustically, and the force of the cell or tissue to be cultured in the culture chamber is also reduced. Efficient and highly reliable injection can be performed by using ultrasonic waves in combination.
  • control means By controlling the gas concentration supplied to the enclosed space by the control means, it is possible to imitate the biological environment and contribute to promoting the culture of cells or tissues.
  • the present invention which describes the configuration, operation, and effects of the embodiments of the present invention, is not limited to the above-described embodiments and examples, but may be inferred by the objects and embodiments of the present invention. It includes all configurations that can be predicted or estimated by those skilled in the art, such as various configurations and modifications. Industrial applicability
  • the cell or tissue culture method and apparatus of the present invention are useful as a tissue culture technique used for tissue engineering, which is an application of cell tissue engineering or gene therapy. It is suitable for use in in vitro culture of cells and tissues, and the cultured cells and tissues are suitable for use in repairing defective tissues in the human body.

Description

明 細 書 細胞又は組織の培養方法及びその装置 技術分野
本発明は、 細胞組織工学や遺伝子治療等の応用であるティッシュ ·エンジニア リングに用いられる細胞 ·組織培養技術に係り、 人体の欠損組織の修復等に必要 な細胞や組織の体外培養に用いられる、 細胞又は組織の培養方法及びその装置に 関する。 背景技術
生体の欠損箇所や異常箇所の修復には次のような方法がある。 その第 1は、 欠 損箇所や異常箇所の修復手段として、 プラスチック、 金属、 セラミック等の生体 以外の材料で代用する方法である。 代用品としては骨用のセラミック、 ステンレ ススチール、 関節用のポリエチレン樹脂、 血管用のビニール樹脂等がある。 第 2 は、 他の動物、 他の部位等の生体材料を代用する方法がある。 この代用品には例 えば、 皮膚等がある。 また、 第 3は、 他人の臓器を移植する方法である。
第 1の方法では、 プラスチック、 金属、 セラミック等の生体以外の材料の摩耗、 消耗によつて定期的に交換の必要が生じたり、 摩耗等により分離した物質が生体 に対して悪影響を与えることがある。 また、 合成樹脂の血管では、 血管が長期間 の使用により、 内部が詰まってくるという事例も報告されている。 第 3の方法で は、 移植すべき臓器の提供者がいなければ実施は不可能であるし、 実施した場合 でも臓器間の拒否反応の問題が残る。
このため、 実用化の期待がかかる修復方法は、 生体細胞をその体内又は体外で 細胞又は組織を培養して得られた細胞や組織を欠陥部位の修復にあてるという方 法である。 現在の研究では、 皮膚、 軟骨、 骨、 血管、 肝臓、 脖臓等多くの組織に その可能性があることが報告されている。 生体の細胞から患者の体内、 体外で細 胞又は組織を培養し、 その培養によって得られた細胞や組織を欠損部分の修復に あてれば、 体内で再生不可能な組織の再生ができ、 し力、も、 修復に用いた組織は 患者自身の遺伝子を持った組織であるから拒否反応はなく、 また、 例えば合成樹 脂等のように生体材料以外の化学物質が生体に悪影響を与えるということもない。 理想的な治療が可能になる。
ところで、 従来、 この種の技術として特開平 9— 3 1 3 1 6 6号 「細胞培養装 置」 が提案されている。 この技術では、 培養毎に各部品を分解して洗浄、 滅菌を 行った後、 再度装置を組み立てなければならず、 滅菌後に細菌に汚染されるおそ れがある。 汚染を防ぐために装置を組み立ててから、 ォートクレーブ (1 2 1 ° C絶対圧 2気圧) 等の滅菌処理を行うことは可能である力^ ポンプや圧力センサ は多くの電子部品や特殊な榭脂、 オイルを含んでいるから、 汚染防止上、 用いる ことができない。 そのため、 ポンプや圧力センサはその一部を分解して培養メデ ィァの通路部分のみを取り出して薬品による滅菌を行い、 他の部品はオートクレ —ブにより滅菌を行い、 その後、 ポンプや圧力センサと装置を組み立てることに. なるため、 手間がかかるとともに雑菌汚染の危険性が高い。 また、 インキュベー タ (培養庫) を用いて培養することは、 ポンプや制御装置が温度、 湿度により悪 影響を受け易く、 容積に限りがあるインキュベータに全ての装置を収容すること ができない。 このため、 インキュベータの貫通穴に配管や電源、 制御用の電線を 通すため、 ィンキュベータと外気とを連結した状態で装置を組み上げなければな らない。 また、 培養メディアの回路全体に圧力をかけるため、 ポンプや配管等の 部品を含め、 全体を耐圧構造にしなければならないが、 高い圧力 (例えば I M P a以上) の設定は非常に難しく、 高圧力を与えようとすると、 全体を高耐圧構造 としなければならず、 コストアツプが問題となる。
また、 従来、 物理的刺激として圧力を加えながら生体組織を培養する研究はハ 一バードメディカルスクールの水野秀一博士他から報告されている [Mater ials Science and Engineering C6 (1998)301-306) 。 この研究によれば、 第 2 6図に 示すように培養装置が構成されており、 この培養装置における各要素とその機能 について説明すると、 ポンプ 4 0 0は、 培養メディア 4 0 2を循環させる役割と、 培養チャンバ 4 0 4の内部を加圧して細胞 4 0 6又は組織に静水圧を与える役割 を果たし、 例えば、 液体クロマト用のポンプが用いられ、 一定流量を流すための 制御装置が内蔵されている。 バックプレツシャレギユレ一夕 4 0 8は、 細胞 4 0 6又は組織に与えようとす る圧力以上になると弁 4 1 0を開いて圧力を逃がし、 培養チャンバ 4 0 4内部の 圧力を一定に保つ。 細胞 4 0 6に与えようとする圧力に応じて、 バックプレツシ ャレギユレ一夕 4 0 8を選択して取り付ける。
培養チャンバ 4 0 4は細胞 4 0 6又は組織を培養する空間を構成し、 この培養 チャンバ 4 0 4にはコラーゲンで形成されたスポンジからなる足場 4 1 2に細胞 4 0 6又は組織を植え付けたものを収容する。 細胞 4 0 6又は組織は、 コラーゲ ンのスポンジからなる足場 4 1 2で増殖する。
圧力センサ 4 1 4は、 培養チャンバ 4 0 4内の圧力を検知し、 圧力モニタ 4 1 6は圧力センサ 4 1 4の検出圧力を表示する。 ポンプ 4 0 0は、 この検出圧力に よって制御され、 その検出圧力が過大となった場合、 ポンプ 4 0 0の運転を停止 する。
培養メディア槽 4 1 8は、 培養する細胞 4 0 6又は組織に適する.培養メディア 4 0 2を溜め、 この培養メディア 4 0 2は、 例えば、 ァミノ酸類、 '糖類、 塩類等 からなる。 培養メディア槽 4 1 8は、 閉塞栓 4 2 0に貫通させた通気チューブ 4 2 2を通して外気に通じ、 通気フィルタ 4 2 4は外気による汚染を防止する。 この培養装置は、 密閉空間であるインキュベータに収容される。 このインキュ ベータは、 快適な培養雰囲気を形成する空間であって、 細胞、 組織に最適な温度、 湿度及びガス濃度 (酸素、 炭酸ガス) に維持されている。 そして、 培養メディア 4 0 2はポンプ 4 0 0によって回路 4 2 6内に満たされて循環する。 酸素、 炭酸 ガスは通気フィルタ 4 2 4を通過して培養メディア 4 0 2に溶け込み、 培養メデ ィァ 4 0 2は適度な酸素濃度、 炭酸ガス濃度に保たれる。 ポンプ 4 0 0を運転す ると、 次第に培養チャンバ 4 0 4の中の圧力が上昇し、 ノくックプレッシャレギュ レータ 4 0 8の設定圧力以上になると、 バックプレツシャレギユレ一タ 4 0 8の 弁 4 1 0が開いて培養メディア 4 0 2を排出し、 培養メディア 4 0 2が排出した 分だけ、 培養メディア 4 0 2の圧力が低下するため、 弁 4 1 0が閉じる。 このよ うな動作の繰り返しにより、 一定圧力が維持され、 同時に、 一定量の培養メディ ァ 4 0 2の循環が繰り返される。 細胞 4 0 6又は組織はこのような圧力刺激を受 けながら増殖する。 この培養装置では一定圧力を維持できるものの、 圧力の昇降を繰り返すことが できない。 圧力上昇はポンプ 4 0 0によるため、 圧力の上昇速度がポンプ 4 0 0 の能力により決まり、 培養メディア 4 0 2の循環量を増すと、 上昇速度が速くな り、 その循環量を少なく設定すると、 圧力上昇が緩慢になる。 このため、 圧力サ イクルを連続的に繰り返す場合、 圧力を下降させるには、 第 2 7図のように、 バ ックプレッシャレギユレ一夕 4 0 8に並列にバイパス弁 4 2 8とオリフィス弁 (ニードル弁) 4 3 0を備えたバイパス路 4 3 2を設置する方法がある。 この方 法では、 降圧が可能になるものの、 1周期に要する時間が長くなると同時に、 繰 り返し周期の設定と培養メディア 4 0 2の循環量を独立させることができず、 ま た、 オリフィス弁 4 3 0の調節が微 となり、 圧力低下の割合が不安定になると いう欠点がある。
そして、 培養の実施の度に各部品を分解して洗浄、 滅菌を行った後、 装置を組 み立てなければならないため、 滅菌後に細菌汚染のおそれがある。 汚染防止のた め、 組み立てた装置をォ一トクレーブ (1 2 1 ° C絶対圧 2気圧) 等の滅菌処理 を施すことが考えられるが、 ポンプや圧力センサは多くの電子部品や特殊な樹脂、 オイルが含まれているために不可能である。 このため、 現状では、 ポンプや圧力 センサは一部を分解して培養メディアの通路部分のみを取り出し、 薬品による滅 菌を行い、 他の部分はォ一トクレーブにより滅菌を行った後、 ポンプや圧力セン ザと装置を組み立てなければならず、 手間がかかり、 雑菌汚染のおそれも高い。 培養メディアへの酸素、 炭酸ガスの取り込みはフィルタを通しているが、 周囲 の雰囲気から直接行っているため、 汚染のおそれもある。 また、 この培養装置は、 インキュベータに収容されるが、 ポンプュニットゃ圧力モニタは温度、 湿度によ り悪影響を受け易く、 インキュベータにポンプュニットゃ圧力モニタを収容する ことは容積的に困難である。 このため、 インキュベータの貫通穴に配管用のチュ —ブゃ電源、 制御用の電線を通してその内部と外部とを連結することにより、 装 置を組み上げなければならない。
また、 圧力の設定は設定圧力に応じたバックプレツシャレギュレ一タを選択し て組み込むため、 圧力の設定を変えるには、 バックプレツシャレギユレ一夕を取 り替えなければならないため、 手間がかかるとともに雑菌汚染の危険性も高い。 圧力サイクルを変更する場合、 第 2 7図に示す培養装置は、 低圧側の設定をす ることができず、 オリフィス弁 4 3 0である程度の圧力調整が可能であるとして も、 設定された圧力がポンプ 4 0 0の循環流量で変化する。
このように、 従来の生体の細胞又は組織の培養方法では、 インキュベータ (培 養庫) 内の温度、 湿度、 二酸化炭素濃度、 酸素濃度を最適な条件に設定し、 その 中で細胞を培養している。 このようなインキュベータによる培養では、 シャーレ の上での平面的 (2次元的) 培養であり、 3次元的な培養の試みが成されている。 し力、も、 このような培養方法においては、 外気に晒された培養メディアや細胞又 は組織力細菌に汚染され易く、 安定的な培養が難しい。
し力、も、 生体の細胞は常に物理的刺激下にあり、 それらの剌激は細胞の代謝機 能の制御、 細胞分裂サイクル、 生物刺激の濃度勾配や分散等に間接的に影響を与 えているが、 それを安定的に実現することが難しく、 物理的刺激の量、 変化、 周 期等の設定や変更は非常に困難であった。 そして、 培養にあたっては微妙な圧力 設定や調整が必要となり、 培養担当者の熟練を要する。
このため、 従来の生体細胞の体外培養は、 修復すべき部位の大きさに成長させ るのに時間がかかり、 汚染等により正常な培養が損なわれることがあつた。
そこで、 本発明は、 汚染の防止とともに効率的な体外培養を実現した細胞又は 組織の培養方法及びその装置を提供することを課題とする。 発明の開示
本発明は、 生体を模倣した環境等、 任意に制御される環境下に培養位置 (培養 チャンバ) を設置するとともに、 前記培養位置に細胞又は組織を保持しながら培 養メディアを供給し、 理想的な環境下にある前記培養位置で前記細胞又は前記組 織を培養することで、 汚染防止を図るとともに、 前記細胞又は前記糸且織の効率的 な体外培養を実現したものである。
本発明の細胞又は組織の培養方法は、 生体の細胞又は組織を特定の培養位置 (培養チャンバ) に保持し、 生体を模倣した環境下に前記細胞又は前記組織を設 定するとともに前記細胞又は前記組織に培養メディァを供給し、 前記培養位置で 前記細胞又は前記組織を培養することを特徴とする。 即ち、 欠損した生体の一部等の修復に必要な組織は、 その生体の細胞や組織を 用いることが理想的である。 これを実現するためには、 生体から採取した細胞や 組織を用いてそれを体外培養することである。 この体外培養で重要なことは、 汚 染防止と、 生体と同等の培養環境、 即ち、 生体を模倣した環境を人工的に実現す ることである。 そこで、 人工的に形成した環境に培養位置を設定し、 この培養位 置に細胞又は組織を保持し、 培養メディアを供給することにより、 細胞又は組織 の体外培養を実現している。 ここで、 環境とは、 細胞又は組織によって形成され る生体を基準とし、 その生命を健康的に維持するに必要な体内、 体外の刺激を含 む生存条件を示す。 また、 培養メディアは、 細胞又は組織の生命を維持するとと もに生育に必要な栄養源を含む。 この場合、 培養メディアの供給は、 細胞又は組 織に静水圧と流れという物理的刺激を与え、 細胞又は組織が代謝機能、 分裂サイ クル、 生物刺激の濃度勾配や分散に影響を受け、 その培養が促進され、 その結果、 体内組織に近く、 また、 体内組織と融合し易い細胞又は組織を培養することが可 肯 となる。
本発明の細胞又は組織の培養方法は、 生体の細胞 (5 ) 又は組織を特定の培養 位置 (培養チャンバ 2 0 ) に保持し、 生体を模倣した環境下に前記細胞又は前記 組織を設定するとともに前記細胞又は前記組織に培養回路 (培養回路ュニット 4 ) を通して培養メディアを連続的又は断続的に供給するとともに、 前記細胞又 は前記組織に連続、 間欠又は周期的に変化する圧力を加え、 前記培養位置で前記 細胞又は前記組織を培養することを特徴とする。
培養位置の設定や環境設定については、 既に述べた通りである。 培養位置に設 定された細胞又は組織に対し、 培養回路を通して培養メディァを連続的又は断続 的に供給する。 外界と分離又は遮断された培養回路を通して培養メディァを供給 することにより、 培養メディァの供給形態を連続的又は断続的に行うことができ ると同時に、 汚染防止を図ることができる。 培養メディアの供袷形態についても、 生体の環境に対応して制御することで、 生体を模倣することができ、 効率的に細 胞又は組織の培養を行うことができる。 そして、 培養中に細胞又は組織には所望 の圧力を作用させて物理的刺激を加えており、 その圧力の形態は、 連続、 間欠又 は周期的な変化とすることにより、 生体を模倣し、 培養される細胞又は組織に必 要な柔軟性や耐久性等の生体に必要な物理的、 機械的な強度を付与することがで きる。 これは、 修復すべき生体の部位に対応した理想的かつ実用的な細胞又は組 織、 即ち、 体内組織に近く、 体内組織と融合し易い細胞又は組織の培養に寄与す Oしとに7よ o
本発明の細胞又は組織の培養方法は、 前記培養位置に培養すべき前記細胞又は 前記組織を前記培養メディァ中に浮遊状態又は非浮遊状態で保持させる保持手段 を備えることを特徴とする。 即ち、 培養すべき細胞又は組織は、 静的状態に保持 することが培養効率を高める上で必要であることが実験により確認されている。 そこで、 細胞又は組織は、 培養メディア中に浮遊又は非浮遊の状態で保持するこ とにより、 効率的な培養を実現することができる。
本発明の細胞又は組織の培養方法は、 前記保持手段に前記細胞又は前記組織を 前記培養メディア中に浮遊状態で保持させるハイドロジエル、 又は、 前記細胞又 は前記組織を保持するとともにその成長により前記細胞又は前記組織に吸収され る足場を用いたことを特徴とする。 即ち、 培養すべき細胞又は組織をどのように 保持しても良く、 この場合、 ハイドロジヱル又は足場はその一例である。 ハイド 口ジエルは、 培養すべき細胞又は組織を包み込んで浮遊状態に保持する手段であ り、 培養が完了した時点でそのハイドロジエルから細胞や組織を取り出すことが できる。 また、 足場は、 タンパク質からなる多孔体で構成することができ、 培養 される細胞又は組織は、 その足場に保持されるが、 成長とともにその足場を養分 として吸収する。
本発明の細胞又は組織の培養方法は、 前記培養メディアを各種アミノ酸、 糖類、 塩類又はタンパク質の 1又は 2以上を含んで構成したことを特徴とする。 即ち、 培養メディアには、 培養すべき細胞又は組織に応じたものを使用でき、 例えば、 各種ァミノ酸、 糖類又はタンパク質の 1つ又はこれらから選択された 2以上の物 質又は全てを含んで構成したものを用いることができる。 培養メディアの選択は、 効率的な培養や品質の良い細胞又は組織を形成する上で主要な要素である。
本発明の細胞又は組織の培養方法は、 前記細胞又は前記組織を培養する前記環 境が、 前記生体の部位の生理的条件、 又はこの生理的条件に加えて年齢、 身長、 体重、 性別、 その他の前記生体毎の固有情報に応じて設定されることを特徴とす る。 即ち、 生体の一部を修復するに用いる細胞又は組織は、 その生体と整合する ことが最も重要であり、 その一要素としてその生体の固有情報を用いて培養環境 を設定する。
本発明の細胞又は組織の培養方法は、 前記環境が前記培養メディァを通して供 給される窒素、 酸素又は二酸化炭素等のガス、 温度又は湿度によって設定される ことを特徴とする。 即ち、 細胞又は組織を培養すべき環境は生体に対応した環境 が望ましいことから、 例えば、 窒素、 酸素、 二酸化炭素が培養空間に供給され、 温度、 湿度が培養に適した温度、 湿度に設定されることにより、 生体環境が所望 の状態に制御される。
本発明の細胞又は組織の培養方法は、 前記細胞又は前記組織に加える前記圧力 を前記細胞又は前記組織の前記部位に応じて任意に設定することを特徴とする。 即ち、 修復すべき生体の部位に対応して圧力を加えることにより、 理想的かつ実 用的な細胞又は組織を形成することができる。
本発明の細胞又は組織の培養方法は、 前記細胞又は前記組織に加える前記圧力 が連続、 間欠又は周期的に変化する圧力又はこれらの組合せからなる圧力である ことを特徵とする。 即ち、 圧力のパターンを連続、 間欠又は周期的に変化する形 態とし、 それを選択し、 又は組み合わせることにより、 理想的な物理的刺激を実 現することができ、 細胞の代謝機能や分裂サイクル、 生物刺激の濃度勾配や分散 に影響を与え、 培養の促進を図ることができる。
本発明の細胞又は組織の培養装置は、 細胞又は組織を収容する培養チャンバを 備えて培養メディアを供給する培養ュニット (培養回路ュニット) と、 前記培養 チャンバ内の前記細胞又は前記組織に圧力を付与する加圧手段 (圧力印加装置) と、 前記培養ュニッ卜に前記培養メディアを間欠的又は連続的に供給させる培養 メディア供給手段 (培養メディア供給装置) とを備えたことを特徴とする。
即ち、 培養ュニッ トは、 培養すべき細胞又は組織を培養チャンバに収容し、 外 気と遮断された細胞又は組織に必要な培養メディアを供給する。 外気と遮断され た細胞又は組織は、 菌体等の汚染から防護され、 その結果、 品質の良い組織に成 長する。 また、 細胞又は組織には、 培養メディアによる静水圧と流れによる物理 的刺激に加え、 加圧手段によって所望の圧力が付与される。 この結果、 細胞の代 g 謝機能、 分裂サイクル、 生物刺激の濃度勾配や分散に影響を受け、 細胞又は組織 の培養が促進される。 また、 細胞又は組織への培養メディアの供給形態は培養メ ディァ供給手段によって任意に設定され、 間欠的又は連続的に供給することがで きるので、 バリエーションのある物理的刺激によって培養の促進が図られる。 培 養メディアの供給形態は、 常に新しい培養メディアの供給、 培養メディアを繰り 返し循環させる供給の何れか一方又は双方を含むものである。 循環させる形態で は、 培養メディアを節約できるが、 一方向的な供給の場合には培養メディアの濃 度変化を防止できる点で有利であろう。
本発明の細胞又は組織の培養装置は、 前記加圧手段又は前記培養メディァ供給 手段を制御する制御手段を備えたことを特徴とする。 即ち、 加圧手段又は培養メ ディア供給手段は、 任意に制御することができる力^ コンピュータ等の制御手段 を用いることにより、 フィードバック制御やフィードフォヮ一ド制御等の各種の 制御、 プログラム制御等が可能である。 勿論、 割り込みによる人的な捕正制御を 加味することは可能であり、 修正制御を排除するものではない。
本発明の細胞又は組織の培養装置は、 前記加圧手段から前記細胞又は前記組織 に加えられる前記圧力を前記細胞又は前記組織に応じて任意に設定することを特 徴とする。 圧力の加え方、 即ち、 圧力パターンは培養すべき細胞又は組織に対応 して設定することにより、 より効率的な培養を行うことができる。
本発明の細胞又は組織の培養装置は、 前記加圧手段から前記細胞又は前記組織 に加えられる前記圧力が、 断続状態、 一定時間毎の連続した繰り返し、 一定時間 毎に増減させることを特徴とする。 即ち、 圧力パターンはあらゆる形態を想定す ることができ、 その選択により効率的に細胞又は組織の培養を行うことができる。 本発明の細胞又は組織の培養装置は、 前記培養ュニットを培養装置本体から独 立して分離可能であることを特徵とする。 即ち、 培養した細胞又は組織を収容す る培養チャンバを備える培養ュニットは、 培養装置本体と独立して分離、 着脱可 能とすることにより、 外気と分離された培養ュニッ卜とともに細胞又は組織を移 動させることができ、 移動中に菌体等による汚染から細胞又は組織を防護するこ とができる。
本発明の細胞又は組織の培養装置は、 外気と遮断された密閉空間に前記培養ュ ニッ トを収容してなることを特徴とする。 即ち、 密閉空間が培養空間であり、 外 気と遮断されることにより、 所望のガスの供給による培養環境の設定が可能にな るとともに、 外気による汚染から細胞又は組織を防護することができる。
本発明の細胞又は組織の培養装置は、 窒素、 酸素又は二酸化炭素等のガスを吸 収可能な気体吸収手段を備えたことを特徴とする。 即ち、 密閉空間に収容される 培養ュニッ 卜に窒素、 酸素又は二酸化炭素等のガスを供給するとともに、 培養ュ ニッ 卜に気体吸収手段を備えることにより、 ガスを細胞又は組織に付与すること ができ、 ガスの供給及び制御によって生体環境を模倣することができる。
本発明の細胞又は組織の培養装置は、 前記密閉空間に窒素、 酸素又は二酸化炭 素等のガスを充塡させてなることを特徴とする。 即ち、 密閉空間によって形成さ れる培養空間に窒素、 酸素又は二酸化炭素等のガスを充填させることにより、 生 体環境を模倣することができる。
本発明の細胞又は組織の培養装置は、 前記培養ュニッ卜に供給すべき前記培養 メディアを溜める培養メディア槽を備えることを特徴とする。 即ち、 培養ュニッ トに必要な培養メディアを供給又は循環させるためには培養メディァ供給源が必 要であり、 培養メディア槽はその供給源である。 特に、 外気と遮断された密閉空 間内に培養メディァ槽を設置すれば、 保存している培養メディアの汚染を防止で きる。
本発明の細胞又は組織の培養装置は、 前記培養チャンバに外部から圧力を受け る受圧膜を備えたことを特徴とする。 即ち、 受圧膜を設置したことにより、 培養 チャンバに収容されている細胞又は組織に対し、 外気と遮断した状態で加圧刺激 を与えることができるとともに、 生体環境を模倣した刺激等、 所望の加圧刺激を 実現できる。
本発明の細胞又は組織の培養装置は、 前記培養ュニッ卜に圧力緩衝手段を備え たことを特徴とする。即ち、 培養ュニットの一部を加圧した場合、 その圧力調整 を圧力緩衝手段で行えば、 生体環境に近い物理的刺激を実現することができ、 細 胞又は組織の培養の促進を図ることができる。
本発明の細胞又は組織の培養装置は、 前記培養チャンバに前記受圧膜を介して 圧力チャンバを取り付け、 この圧力チャンバに水圧、 油圧又は空気圧を作用させ て前記培養チャンバ内の前記細胞又は前記組織に圧力を加えるようにしたことを 特徴とする。 即ち、 圧力の形成手段として、 水圧、 油圧又は空気圧の何れを用い ても所望の加圧刺激を実現でき、 生体環境を精度良く模倣することができる。 本発明の細胞又は組織の培養装置は、 前記培養ュニットに送液チャンバを設け、 この送液チャンバに取り込んだ前記培養メディァを加圧して送り出す送液装置で 前記培養メディア供給手段を構成したことを特徴とする。 即ち、 培養メディア供 給手段は、 培養ユニットに培養メディアを供給又は循環させる手段であって、 そ の形態は各種のものが想定できるが、 例えば、 送液チャンバを設け、 この送液チ ャンバに取り込んだ培養メディァを加圧して送り出す送液装置で構成すれば、 加 圧量を制御することで所望の送液量を設定できる。
本発明の細胞又は組織の培養装置は、 前記培養ュニッ卜に圧力逃し弁を設置し、 前記培養メディァの圧力が前記圧力逃し弁に任意に設定される一定圧力を越える とき、 前記圧力逃し弁を開いて前記培養メディァの圧力を降下させることを特徴 とする。 即ち、 培養メディアに加えられる圧力を緩衝することは、 理想的な加圧 刺激を細胞又は組織に付与するために極めて重要であり、 その一手段として、 圧 力逃し弁を用いて培養メディアの圧力が圧力逃し弁に任意に設定される一定圧力 を越えるとき、 圧力逃し弁を開いて培養メディアの圧力を降下させれば、 培養メ ディァを汚染させることなく、 理想的な圧力状態に制御することができる。
本発明の細胞又は組織の培養装置は、 前記密閉空間が加熱手 又は加湿手段が 設置され、 所望の温度又は湿度に維持、 制御されることを特徴とする。 即ち、 培 養ュニッ卜が収容される密閉空間の温度及び湿度を制御し、 生体環境に合致する 培養空間を形成することができる。
本発明の細胞又は組織の培養装置は、 前記培養ュニッ卜の前記培養チャンバに 超音波等の音波を付与する音波発生装置を備えたことを特徴とする。 即ち、 生体 は外界からの音響的刺激を受けており、 音波発生装置を併用することにより、 生 体環境を音響的に模倣することができる。 また、 培養チャンバに培養すべき細胞 又は組織を注入する際に、 超音波を併用して効率的かつ信頼性の高い注入を行う ことができる。
本発明の細胞又は組織の培養装置は、 前記密閉空間に供給されるガス濃度を制 御する制御手段を備えことを特徴とする。 即ち、 密閉空間に供給されるガス濃度 を制御手段によって制御することにより、 生体環境を模倣することができ、 細胞 又は組織の培養促進を図ることができる。
なお、 本発明の目的、 特色、 利益等は、 第 1ないし第 4の実施形態、 詳細な説 明及び図面の参酌により一層明確になるであろう。 図面の簡単な説明
第 1図は、 本発明の細胞又は組織の培養方法及びその装置の第 1の実施形態を 示すプロック図である。
第 2図は、 細胞又は組織の培養方法及びその装置を示す図である。
第 3図は、 培養装置の培養回路ュニットの一部、 培養メディア供給装置、 圧力 印加装置及び圧力緩衝装置を拡大して示した図である。
第 4図は、 培養装置と培養回路ュニッ卜との分離状態を示す図である。
第 5図は、 制御装置を示すブロック図である。
第 6図は、 本発明の細胞又は組織の培養方法を示すフローチヤ一トである。 第 7図は、 本発明の細胞又は組織の培養方法における初期設定を示すフローチ ヤートである。
第 8図は、 本発明の細胞又は組織の培養方法における初期設定を示すフローチ ャ一卜でめる。
第 9図は、 本発明の細胞又は組織の培養方法における初期設定を示すフローチ ャ一トである。
第 1 0図は、 圧力印加装置における加圧ピストンの変位、 移動量に対する圧力 チャンバ内の圧力を示す図である。
第 1 1図は、 圧力逃し弁におけるァクチユエ一夕の変位に対する弁の調整圧力 を示す図である。
第 1 2図は、 圧力可変培養モードの実行形態を示すタイミングチャートである。 第 1 3図は、 圧力可変培養モードの他の実行形態を示すタイミングチャートで あ o
第 1 4図は、 本発明の細胞又は組織の培養方法及びその装置の第 2の実施形態 である培養装置の正面側を示す図である。
第 1 5図は、 第 1 4図の培養装置の側面側を示す図である。
第 1 6図は、 培養装置本体の部分及び培養回路ュニットを示す図である。
第 1 7図は、 培養装置本体から分離した培養回路ュニッ トを示す図である。 第 1 8図は、 培養回路ュニッ 卜を外した培養装置本体の部分を示す部分断面図 である。
第 1 9図は、 培養回路ュニッ 卜における圧力印加装置を示す部分断面図である。 第 2 0図は、 培養回路ュニッ 卜における培養メディア供給装置を示す部分断面 図である。
第 2 1図は、 培養回路ュニッ 卜における圧力緩衝装置を示す部分断面図である。 第 2 2図は、 培養回路ュニッ 卜における培養メディア供給装置の他の構成例を 示す部分断面図である。
第 2 3図は、 本発明の細胞又は組織の培養方法及びその装置の第 3の実施形態 を示す図である。
第 2 4図は、 本発明の細胞又は組織の培養方法及びその装置の第 4の実施形態 を示す図である。
第 2 5図は、 加圧制御を示す図である。
第 2 6図は、 従来の細胞又は組織の培養方法及びその装置を示す図である。 第 2 7図は、 従来の他の細胞又は組織の培養方法及びその装置を示す図である。 発明を実施するための最良の形態
第 1図は、 本発明の細胞又は組織の培養方法及びその装置の第 1の実施形態を 示している。
細胞又は組織の培養方法を実現する培養装置 1は、 その培養空間として密閉空 間 2を備えており、 この密閉空間 2には、 培養すべき細胞又は組織に培養メディ ァ 3を供給する培養ュニッ卜としての培養回路ュニット 4が設置されている。 こ の培養回路ュニッ 卜 4は、 装置本体側と分離、 着脱可能に設定することができる。 この培養回路ュニット 4は、 培養メディア槽 9、 培養メディア供給装置 6、 培養 加圧装置 8、 気体吸収装置 1 0及び弁 1 1を備えているとともに分岐路 1 3を備 えており、 この分岐路 1 3には弁 1 5が設けられている。 培養メディア 3は、 培 養しょうとする細胞や組織に養分を与えるキャリアであって、 必須アミノ酸や各 種アミノ酸とグルコース (糖類) を含んだ液体であり、 培養しょうとする細胞や 組織に応じて N a +、 C a ++等の無機質力追加されたり、 血清等のタンパク質を 含む場合もある。 また、 これらの装置は、 フッ素樹脂、 P E E K、 高耐熱グレー ドポリプロピレン、 シリコーン、 ステンレススチール等の十分な耐熱性を持ち、 生体に影響を与えるような物質の溶出のない樹脂材料を用いて構成することによ り、 構成部品での汚染を防止することができる。
弁 1 1、 1 5は、 ピンチバルブ等で構成することができ、 培養回路ュニット 4 は、 弁 1 5を閉じ弁 1 1を開くことで閉ループ回路、 弁 1 5を開き弁 1 1を閉じ ることで全開ループ回路、 弁 1 1、 1 5を共に開くことで一部開ループ回路とな る。 また、 培養回路ュニット 4は、 部分的に設置した気体吸収装置 1 0に代えて、 二点鎖線で示す気体吸収部 4 1と、 実線で示す耐圧部 4 3とを備えても良く、 気 体吸収部 4 1は密閉空間 2に充満させたガスを培養メディァ 3に吸収させる部分、 耐圧部 4 3は培養メディア 3の加圧部分に対応して信頼性のある送液を確保して 液漏れを防止する部分である。 気体吸収部 4 1には、 例えば、 C 02、 02 ガス 等のガスを透過し易いエラストマ材料等で形成されたチューブを用いることがで さる。
培養メディア槽 9は、 密閉空間 2に収容されて細胞又は組織の培養に必要な培 養メディア 3を溜める手段である。 また、 培養メディア供給装置 6は培養回路ュ ニッ卜 4に培養メディア 3を供給する手段であって、 培養回路ュニット 4に挿入 された送液装置 1 2を駆動装置 1 4によって駆動し、 所定量の培養メディア 3を 培養回路ュニット 4に供給する。培養加圧装置 8は、 培養すべき細胞 5 (第 3 図) 又は組織に加圧する手段であって、 圧力印加装置 1 6及び圧力緩衝装置 1 8 を備えている。 圧力印加装置 1 6は、 培養回路ュニット 4の培養チャンバ 2 0に 圧力容器 2 2を取り付け、 駆動装置 2 4によって任意の圧力を培養チャンバ 2 0 に作用させる。 培養チャンバ 2 0にはコラーゲン等から成形された足場に培養す べき細胞又は組織が植え付けられて収容され、 外界から隔離される。
圧力緩衝装置 1 8は、 培養加圧装置 8で加圧される培養メディァ 3の圧力を緩 衝する手段であって、 所定値を越える培養メディア 3の圧力に対し、 培養回路ュ ニット 4に挿入された圧力逃し弁 2 6を駆動装置 2 8で駆動して最大圧を設定し、 その最大圧を越える培養メディア 3の圧力が作用したとき、 培養メディア 3を逃 がすことにより圧力を緩衝する。 また、 圧力容器 2 2には、 培養加圧装置 8に併 設された加圧用液体注入装置 3 0から加圧用液体が注入される。
また、 この培養装置 1には湿度調節装置 3 2、 温度調節装置 3 4及びガス混合 •濃度調節装置 3 6が設置されており、 雰囲気の湿度、 温度及びガス混合♦濃度 が調節される。 また、 操作装置 3 8は管理者によって所望の調整操作を行うため のものであって、 制御装置 4 0は培養メディア供給装置 6、 培養加圧装置 8、 加 圧用液体注入装置 3 0、 湿度調節装置 3 2、 温度調節装置 3 4及びガス混合 ·濃 度調節装置 3 6等の各種装置を操作装置 3 8からの操作入力や制御プログラムに よって制御する手段である。
次に、 この装置を用いた細胞又は組織の培養方法を説明すると、 培養準備とし て、 制御装置 4 0に対して操作装置 3 8等の操作によって培養条件等の必要事項 を入力する。 この場合、 必要事項は、 培養メディア 3にどのような圧力を設定す るかであり、 その設定形態は、 最大圧力、 最小圧力、 その昇圧又は減圧等の圧力 傾斜、 加圧周期、 培養メディア 3の流量、 培養温度、 培養時間等である。 また、 培養回路ユニット 4は、 弁 1 1、 1 5の開閉を切り換えることにより、 閉ループ とするか、 開ループとするかを選択する。
次に、 培養チャンバ 2 0の中にコラーゲンのスポンジ等の足場 7 (第 3図) を 設置し、 この足場に培養すべき細胞 5 (第 3図)又は組織を植え付ける。 コラ一 ゲンのスポンジは、 培養チャンバ 2 0内でコラーゲン液を凍結乾燥することによ つて形成しても良い。
次に、 培養メディア槽 9に規定量の培養メディァ 3を入れ、 密閉空間 2を閉鎖 した後、 運転スィッチを投入し、 培養運転の準備 (自動運転) により、 加圧用液 体注入装置 3 0から圧力容器 2 2側に加圧用液体が供袷される。
培養メディア供給装置 6が駆動されると、 送液装置 1 2を通じて培養メディア 3が培養チャンバ 2 0側に流れ、 培養すべき細胞又は組織に培養メディア 3が供 給される。 この培養メディア 3の供給形態は、 連続、 間欠的、 周期的又はこれら の組合せの何れかが選択される。
また、 培養メディア 3で満たされた培養チャンバ 2 0には、 足場によって保持 された細胞又は組織が収容されており、 この細胞又は組織には圧力容器 2 2から 圧力が加えられる。 この圧力は、 培養準備で設定された圧力パターンによる。 そして、 培養メディァ 3に加えられる圧力が設定圧力を越えた場合には、 圧力 逃し弁 2 6を通して培養メディア 3が耐圧部 4 3力、ら流出し、 圧力調整が行われ る
このような動作を所定の培養時間中繰り返すことにより、 細胞又は組織が培養 チャンバ 2 0内で所望の大きさに成長する。 足場にコラーゲンのスポンジを用い ている場合には、 培養される細胞又は組織がそのコラーゲンを吸収し、 足場は自 然に消失する。
また、 ハイドロジヱルを保持手段に用いた場合には、 そのハイドロジヱル内に 細胞又は組織が浮遊状態で収容されて保持されている。
また、弁 1 5を閉じ、 弁 1 1を開いて培養回路ュニット 4を閉ループ化した場 合には、 培養メディア 3は、 培養回路ュニッ卜 4内を循環し、 培養すべき細胞又 は組織側には培養メディア 3が供給される。 また、 弁 1 1を閉じ、 弁 1 5を開い て培養回路ュニッ ト 4を開ループ化した場合には、 培養メディア 3は、 分岐路 1 3側に流れ、 加圧用液体注入装置 3 0側、 即ち、 加圧水槽 6 8 (第 2図) 側に流 れ、 培養すべき細胞又は組織側には常に新鮮な培養メディァ 3を供給することが できる。
そして、 培養中、 培養回路ュニット 4の気体吸収装置 1 0又は気体吸収部 4 1 には、 通流する培養メディア 3に密閉空間 2内から窒素、 酸素、 二酸化炭素等の ガスが吸収され、 生体と同様のガス交換に必要なガス力細胞又は組織に培養メデ ィァ 3を通じて供給される。
このように、 細胞又は組織には、 生体を模倣した培養環境が設定されて体外培 養を、 菌体等に汚染されることなく、 効率的に行うことができる。 即ち、 細胞又 は組織は、 培養チャンバ 2 0内で培養メディア 3の静水圧と流れによる物理的刺 激が加えられるので、 代謝機能、 分裂サイクル、 生物刺激の濃度勾配や分散に影 響を受け、 培養が促進される。 また、 細胞又は組織は、 圧力印加装置 1 6による 加圧及びその加圧形態に応じて物理的刺激を受ける。 この結果、 細胞又は組織の 培養が促進され、 体内の組織に近い、 また、 体内組織と融合し易い組織を培養す ることができる。 また、 耐圧部 4 3を部分的に設定することにより、 耐圧構造に 要するコストを低減することができる。
次に、 第 2図は培養装置 1の具体的な実施形態を示し、 第 3図は培養装置 1の 培養回路ュニット 4の一部、 培養メディァ供給装置 6、 培養加圧装置 8の圧力印 加装置 1 6及び圧力緩衝装置 1 8を拡大して示している。 培養装置 1は、 第 4図 に示すように、 培養回路ュニッ ト 4が着脱される構成である。
この培養装置 1は、 密閉可能な培養庫 4 2を備えており、 ドア 2 7 0 (第 1 4 図) の開閉がドアスィッチ 4 4によって検出される。 この培養庫 4 2には、 培養 メディア 3を供給する培養回路ュニット 4が収容される。 この培養回路ュニット 4は、 培養チャンバ 2 0、 送液装置 1 2、 圧力逃し弁 2 6を介して培養メディア 3を溜める培養メディア槽としての培養メディアバッグ 4 8をチューブ 5 0 A、 5 0 B、 5 0 C、 5 0 D、 5 0 Eで連結した着脱可能なチューブュニッ 卜である。 チューブ 5 0 A、 5 0 D、 5 0 Eは、 気体吸収部 4 1 (第 1図) であって、 培養 庫 4 2内のガスを吸収可能なエラストマ材料等で構成された通気チューブで構成 され、 また、 チューブ 5 0 B、 5 0 Cは耐圧部 4 3 (第 1図) であって、 培養メ ディア 3の圧力に耐える耐圧チューブで構成される。 そして、 チューブ 5 0 Eに は、 チューブ 5 0 Eを屈曲させて培養回路ュニット 4内のガスを吸収するガス吸 収部 5 2が形成されている。
培養メディアバッグ 4 8は培養庫 4 2の壁面に重量検知手段としての検知スィ ツチ 5 4を備えるフック 5 6を以て支持されており、 培養メディアバッグ 4 8内 の培養メディ了 3の容量がその重量により検知スィツチ 5 4によって検知される。 この検知スィッチ 5 4が培養メディアバッグ 4 8の所定重量の減少を検知したと き、 制御装置 4 0を通して表示手段 (表示装置 2 3 2 ) や電話等を通じてその異 常を告知する。 ガス吸収部 5 2と送液装置 1 2との間のチューブ 5 0 A、 5 0 E には培養メディア排出部 5 8が分岐して設けられ、 チヱック用バルブ 5 9によつ て開閉される。 このチヱック用バルブ 5 9は、 培養回路ュニッ卜 4内の培養メデ ィァ 3を採取するための手段であって、 培養メディア排出部 5 8から採取された 培養メディア 3は、 その変性状態、 即ち菌体等の物質によって汚染されているか 否か、 P H、 濃度、 生成物、 酸素濃度、 二酸化炭素濃度等の検査に供することが できる。
培養すべき細胞 5はコラーゲン等で形成された足場 7に着床させ、 足場 7とと もに培養チャンバ 2 0に収容される。 この培養チャンバ 2 0は培養容器 6 1によ つて構成され、 培養容器 6 1は、 圧力チャンバ 6 0に複数のボルト 6 2等の固定 手段によって取外し可能に取り付けられており、 インジヱクションポ一ト 6 3力く 設けられている。 このインジヱクションポ一ト 6 3は、 培養チャンバ 2 0内に設 置した足場 7に培養すべき細胞 5を外部から注射器等によつて着床させるために 用いる。培養チャンバ 2 0の固定には例えばクランパのような他の固定手段を用 いても良い。 圧力チャンバ 6 0及び培養容器 6 1は 0リング等のシール材によつ て封止される。培養チャンバ 2 0の圧力チャンバ 6 0側の面部が受圧膜 6 4で閉 塞されて密閉空間を形成しており、 この受圧膜 6 4を介して培養チャンバ 2 0に 圧力チャンバ 6 0内の加圧水 6 5力《接している。
圧力チャンバ 6 0には給水管路 6 6を通して加圧水 (液) 槽 6 8が連結されて おり、 給水管路 6 6には流水センサ 7 0、 ポンプ 8 0、 バイパス弁 8 2及び封止 弁 8 4が設けられ、 バイパス弁 8 2には中間にオリフィス 8 6を持つバイパス管 路 8 8が設けられている。 即ち、 バイパス弁 8 2及び封止弁 8 4を開いてポンプ 8 0を駆動することにより、 加圧水 6 5を加圧水槽 6 8から圧力チャンバ 6 0内 に充塡することができる。 加圧水槽 6 8の加圧水位は水位センサ 9 6によって検 出されるので、 その水位に応じて給水バルブ 9 2を開閉することにより、 加圧水 槽 6 8に加圧水 6 5を給水管路 9 4を通じて補充するので、 加圧水槽 6 8の水位 を常に最適水位に保持することができる。 また、 加圧水槽 6 8の給水管路 6 6に は排水管路 9 8が分岐されており、 細胞 5の培養終了時、 排水バルブ 1 0 0を開 いて加圧水 6 5力《排水される。
また、 圧力チャンバ 6 0には加圧水槽 6 8側に向かう回収管路 1 0 2が設けら れ、 この回収管路 1 0 2には封止弁 1 0 4及び循環ポンプ 1 0 6が設けられてい る。 回収管路 1 0 2の先端部は加圧水槽 6 8内の加圧水 6 5中に浸漬している。 即ち、 封止弁 8 4を開きかつバイパス弁 8 2を閉じて循環ポンプ 1 0 6を駆動す ると、 圧力チャンバ 6 0内が減圧されて、 圧力チャンバ 6 0や各管路 6 6、 1 0 2等の内壁に付着している気泡等を加圧水槽 6 8側に排出することができる。 ま た、 この圧力チャンバ 6 0の加圧水 6 5は、 ポンプ 8 0、 1 0 6の同時駆動によ り加圧水槽 6 8から給水管路 6 6を通して圧力チャンバ 6 0に供給しつつ回収管 路 1 0 2を通して加圧水槽 6 8に戻し、 加圧水槽 6 8との間で循環させることも 可能である。
圧力チャンバ 6 0の壁面部にはヒータ 1 0 8、 温度センサ 1 1 0、 圧力センサ 1 1 2及び音波発生装置 1 1 4が設けられており、 収容されている加圧水 6 5の 加熱と、 その温度又は圧力が検出されるとともに、 圧力チャンバ 6 0には、 必要 に応じて音波発生装置 1 1 4から超音波等の音波を加えることができる。
そして、 圧力チャンバ 6 0には加圧手段として加圧ピストン 1 1 6が進退自在 に設けられ、 加圧ピストン 1 1 6は圧力チャンバ 6 0の壁面部に突出させた支持 筒部 1 1 7によって支持され、 支持筒部 1 1 7と加圧ビストン 1 1 6との間には 封止手段である 0リング 1 1 9によって封止されている。 この加圧ピストン 1 1 6には加圧用スプリング 1 1 8を介して加圧駆動手段としてァクチユエ一タ 1 2 0及びモータ 1 2 2が取り付けられている。 モータ 1 2 2は例えば、 ステツピン グモータで構成され、 このモータ 1 2 2の回転がァクチユエ一タ 1 2 0によって 進退動に変換されて加圧用スプリング 1 1 8に加えられ、 加圧ピストン 1 1 6の 進退に応じて圧力チャンバ 6 0内の圧力を増減させることができ、 加圧ピストン 1 1 6の進入時、 高圧、 加圧ピストン 1 1 6の後退時、 低圧を生じさせ、 その圧 力変化が受圧膜 6 4を通して足場 7上の細胞 5に加圧刺激を与える。 また、 加圧 ピストン 1 1 6の位置は位置センサ 1 2 3によって検出されており、 その検出デ —夕は加圧ピストン 1 1 6の進退の制御、 即ち、 加圧刺激の制御に用いられる。 この場合、 圧力チャンバ 6 0には加圧水 6 5が充填されており、 加圧ピストン 1 1 6から加えられる圧力は、 加圧水 6 5を通じて受圧膜 6 4に全面的に作用し、 その圧力が受圧膜 6 4から培養メディア 3を通して細胞 5や組織に均等に静水圧 を作用させることができ、 ストレイン (変位) も同様に均等に作用させることが できる。 しかも、 加圧ビストン 1 1 6の移動量の制御で圧力変化量のダイナミッ クレンジを大きくでき、 小さい値から大きな値まできめ細かい制御が可能である。 そして、 加圧ピストン 1 1 6の移動は位置センサ 1 2 3によって検出されて制御 装置 4 0によって監視され、 その移動量が限界位置に到達した場合には、 培養装 置 1の異常として制御装置 4 0から警報出力が発せられ、 制御装置 4ひに接続さ れている表示手段 (第 5図の表示装置 2 3 2等) に警告表示を行い、 又は、 電話 等の通信回線を通じて管理者に告知することができる。
また、 培養チャンバ 2 0に連続的又は間欠的に培養メディア 3を送る送液装置 1 2は、 出入側に送出側逆流防止弁 1 2 4、 吸引側逆流防止弁 1 2 6を有する送 液チャンバ 1 2 8を備え、 培養庫 4 2にネジ 1 3 0によって取外し可能に取り付 けられている。 送液チャンバ 1 2 8には送液ピストン 1 3 2力進退自在に取り付 けられ、 この送液ピストン 1 3 2の中途部には殺菌液溜 1 3 4が設けられるとと もに、 加圧用スプリング 1 3 6が取り付けられている。 送液ピストン 1 3 2と送 液チャンバ 1 2 8の本体部との間には封止手段である 0リング 1 3 3、 1 3 5力く 設けられている。 殺菌液溜 1 3 4には、 殺菌剤、 消毒液又はペニシリン等の抗生 物質が充填され、 外部からの菌体ゃ異物の侵入を阻止している。 加圧用スプリン グ 1 3 6は、 防護筒 1 3 7内に収容されている。
送液ビストン 1 3 2の後端部には駆動手段としてァクチユエ一タ 1 3 8及びモ —タ 1 4 0が取り付けられている。 モータ 1 4 0は例えば、 ステッピングモータ で構成され、 このモータ 1 4 0の回転がァクチユエ一夕 1 3 8によって進退動に 変換されて加圧用スプリング 1 3 6に加えられ、 送液ビストン 1 3 2の進退に応 じて送液チャンバ 1 2 8内の圧力が増減し、 その圧力変化が各逆流防止弁 1 2 4、 1 2 6の弁体 1 4 2、 1 4 4に加えられる。 送液ビストン 1 3 2が送液チャンバ 1 2 8から引き出されると、 送液ピストン 1 3 2の引出し分だけ送液チャンバ 1
2 8内が負圧になって弁体 1 4 2はスプリング 1 4 3の復元力によって引き下げ られて送出側逆流防止弁 1 2 4が閉じるとともに、 弁体 1 4 4がスプリング 1 4 5の加圧力に逆らって引き上げられて吸引側逆流防止弁 1 2 6が開くことにより、 送液チャンバ 1 2 8内に培養メディア 3が吸い込まれる。 また、 送液ピストン 1
3 2が送液チャンバ 1 2 8内に進入すると、 送液チャンバ 1 2 8内力《加圧されて 弁体 1 4 4が下降して吸引側逆流防止弁 1 2 6が閉じ、 弁体 1 4 2が上昇して送 出側逆流防止弁 1 2 4が開くので、 送液チャンバ 1 2 8内の培養メディア 3が培 養チャンバ 2 0側に送り出される。
また、 培養メディア 3の圧力緩衝装置 1 8は圧力逃し弁 2 6を備えており、 圧 力逃し弁 2 6は培養庫 4 2にネジ 1 4 6によって取外し可能に取り付けられてい る。 この圧力逃し弁 2 6は、 弁室 1 4 8に進退して開閉可能な弁体 1 5 0が取り 付けられ、 この弁体 1 5 0のプランジャ 1 5 2の中途部には殺菌液溜 1 5 3が設 けられている。 プランジャ 1 5 2と弁室 1 4 8の本体部との間には封止手段であ る 0リング 1 5 5、 1 5 7が設けられている。 殺菌液溜 1 5 3には、 殺菌剤、 消 毒液又はべニシリン等の抗生物質が充塡され、 外部からの菌体ゃ異物の侵入を阻 止している。 また、 弁体 1 5 0のプランジャ 1 5 2の後端部には緩衝スプリング 1 5 4を介して駆動手段としてのァクチユエ一夕 1 5 6及びモータ 1 5 8カ《取り 付けられている。 モータ 1 5 8は例えば、 ステッピングモータで構成され、 この モータ 1 5 8の回転がァクチユエ一タ 1 5 6によって進退動に変換されて緩衝ス プリング 1 5 4に加えられ、 弁体 1 5 0を開く動作圧は緩衝スプリング 1 5 4の 圧縮度に応じて調整される。 即ち、 緩衝スプリング 1 5 4の圧縮度が高いとき、 弁体 1 5 0を開くために必要な培養メディ了 3からの圧力が高くなり、 また、 緩 衝スプリング 1 5 4の圧縮度が低いとき、 弁体 1 5 0を開くために必要な培養メ ディア 3からの圧力が低くなる。 このような圧力緩衝装置 1 8を設けるのは、 培 養チャンバ 2 0の培養メディア 3に加えられる加圧力を培養回路ュニット 4側で 緩衝するためである。
この圧力逃し弁 2 6の弁室 1 4 8と培養メディアバッグ 4 8とを連結するチュ ーブ 5 0 Dにはピンチバルブ 1 6 2とともに吸引チューブ 1 6 4力く分岐して設け られ、 この吸引チューブ 1 6 4にはピンチバルブ 1 6 6、 逆流防止弁 1 6 8及び 培養メディア溜 1 7 0が設けられており、 培養メディア溜 1 7 0は吸引チューブ 1 6 5を通じて回収管路 1 0 2に連結されている。 ピンチバルブ 1 6 2はチュー ブ 5 0 Dを開閉し、 また、 ピンチバルブ 1 6 6は吸引チューブ 1 6 4の開閉に用 いられる。 逆流防止弁 1 6 8は、 弁体 1 6 9をスプリング 1 7 1の加圧力によつ て閉止させており、 培養メディア 3の圧力がスプリング 1 7 1の加圧力を越える とき、 培養メディア 3が吸引チューブ 1 6 4を通して培養メディア溜 1 7 0側に 流れる。 ピンチバルブ 1 6 6は逆流防止弁 1 6 8とは無関係にその操作によって 吸引チューブ 1 6 4を閉止でき、 その閉止によって培養メディア 3の通流を阻止 することができる。 また、 ピンチバルブ 1 6 6が開いているとき、 培養メディア 溜 1 7 0は密閉容器であるから、 封止弁 1 0 4を閉じ、 循環ポンプ 1 0 6を駆動 すると、 培養メディア溜 1 7 0内力減圧されるので、 スプリング 1 Ί 1の加圧力 に対抗して弁体 1 6 9を移動させ、 逆流防止弁 1 6 8を開くことができ、 このと き、 培養メディア 3を培養メディア溜 1 7 0側に引き込むことができる。
また、 培養庫 4 2にはガス混合 ·濃度調節装置 3 6として N 2 ガスボンベ 1 7 2、 0 2 ガスボンベ 1 7 4、 C 02 ガスボンベ 1 7 6がそれぞれ管路 1 7 8、 1 8 0 . 1 8 2を通して連結され、 各管路 1 7 8、 1 8 0、 1 8 2にはガス開閉バ ルブ 1 8 4、 1 8 6、 1 8 8、 流量調節弁 1 9 0、 1 9 2 、 1 9 4、 フローメ一 夕 1 9 6、 1 9 8、 2 0 0、 圧力調整器 2 0 2、 2 0 4、 2 0 6及びバルブ 2 0 8、 2 1 0、 2 1 2が設置されている。 即ち、 ガス開閉バルブ 1 8 4〜 1 8 8を 選択的に開閉することにより、 N 2 、 0 2 又は C O 2 の 1又は 2以上が供給され て混合される。
また、 培養庫 4 2には加湿手段である湿度調節装置 3 2として加湿用水 2 1 4 を溜める加湿用水受皿 2 1 6及び攪拌用ファン 2 1 8が設置されるとともに、 加 熱手段である温度調節装置 3 4として気体加熱用ヒータ 2 2 0、 庫内温度センサ 2 2 2及び攪拌用ファン 2 1 8が設置されている。 攪拌用ファン 2 1 8は、 ファ ンモータ 2 2 4によって駆動される。
なお、 培養装置 1の異常発生時、 警告を発することを言及しているが、 管理者 が必要な処置を行うまで、 異常の種別に関係なく培養中の細胞 5や組織を保存す るため、 制御装置 4 0は、 培養庫 4 2内の保温制御、 ガス濃度の制御、 送液運転 を継続する。 このような継続運転は、 所定の培養時間が到来しても、 また、 正常 に運転が終了した場合にも、 培養庫 4 2内の保温制御、 ガス濃度の制御、 送液運 転を同様に継続させる。
次に、 第 5図は、 操作装置 3 8及び制御装置 4 0の構成例を示している。操作 装置 3 8及び制御装置 4 0は、 パーソナルコンピュータ等で構成された主制御装 置 2 3 0を備えている。 主制御装置 2 3 0にはディスプレイ、 液晶等の表示装置 2 3 2、 ハードディスク、 光ディスク、 フロッピィディスク、 I C力一ド等の外 W 01/64848
2 3 部記憶装置 2 3 4、 キ一ボードの入力装置 2 3 6が接続されている。 入力装置 2 3 6は、 操作装置 3 8の一部又は全部を構成する。
主制御装置 2 3 0には、 温度検出回路 2 3 8を通じて温度センサ 1 1 0の検出 出力、 温度検出回路 2 4 0を通じて庫内温度センサ 2 2 2の検出出力、 圧力検出 回路 2 4 2を通じて圧力センサ 1 1 2の検出出力、 位置センサ 1 2 3の検出出力 及び検知スィッチ 5 4の検知出力が加えられ、 モータ 1 2 2の駆動出力が駆動回 路 2 4 4、 モータ 1 4 0の駆動出力が駆動回路 2 4 6、 モータ 1 5 8の駆動出力 が駆動回路 2 4 8、 ヒータ 1 0 8の駆動出力が駆動回路 2 5 0、 バルブ 1 8 4、 1 8 6及びバルブ 1 8 8の駆動出力が駆動回路 2 5 2、 ファンモータ 2 2 4の駆 動出力が駆動回路 2 5 4、 ヒータ 2 2 0の駆動出力が駆動回路 2 5 6から得られ るとともに、 音波発生装置 1 1 4の駆動出力が得られる。
次に、 本発明の細胞又は組織の培養方法を第 6図に示す動作フローチャートを 参照して説明する。
ステップ S 1は初期設定モードである。 この初期設定モードは、 培養回路ュニ ット 4の装着後に、 圧力チャンバ 6 0内に加圧水 6 5を満たし、 培養回路ュニッ ト 4内に培養メディ了 3を満たす工程と、 設定入力された圧力値に相当する培養 加圧装置 8の圧力印加装置 1 6、 圧力緩衝装置 1 8の動作量をサンプリングして 記憶保持する工程を含む。 培養回路ュニット 4及び受圧膜 6 4を構成する材質の 伸び率が異なり、 かつ圧力チャンバ 6 0内に残留する気泡等によって設定圧力を 得るための動作量が異なる。 そこで、 初期設定モードでは、 これらの設定値を修 正する。
培養回路ュニット 4が装着されると、 ガス混合 ·濃度調節装置 3 6、 湿度調節 装置 3 2及び温度調節装置 3 4を動作させ、 培養庫 4 2の内部にガスを充塡する とともに適湿及び適温に制御する。 そして、 給水バルブ 9 2を開いて加圧水槽 6 8に上水等からなる加圧水 6 5を設定水位まで補充し、 バイパス弁 8 2、 封止弁 8 4 . 1 0 4を開き、 ポンプ 8 0を動作させて圧力チャンバ 6 0内に加圧水 6 5 を供給する。 圧力チャンバ 6 0への加圧水 6 5の供給量は流水センサ 7 0で検出 され、 所定量の加圧水 6 5が検出されたとき、 ポンプ 8 0を停止し、 循環ポンプ 1 0 6による循環動作に切り換える。 循環動作では、 バイパス弁 8 2を閉じてバイパス管路 8 8への流路に切り換え る。 このとき、 オリフィス 8 6によって加圧水 6 5の通流量が制限され、 循環ポ ンプ 1 0 6の吸引力によって圧力チャンバ 6 0内が負圧となり、 圧力チャンバ 6 0内に残留する気泡が加圧水槽 6 8側に排出される。 このとき、 ピンチバルブ 1 6 2を閉じ、 ピンチバルブ 1 6 6を開いて、 循環ポンプ 1 0 6によって生じる負 圧により培養メディアバッグ 4 8内の培養メディア 3をチューブ 5 0 E、 5 0 A、 5 0 Bを通して培養チャンバ 2 0に充塡する。 循環ポンプ 1 0 6を所定時間動作 させて培養メディア 3を培養チャンバ 2 0に充塡させた後、 ピンチバルブ 1 6 6 を閉じ、 ピンチバルブ 1 6 2とバイパス弁 8 2を開き、 循環流による負圧を解除 し、 かつ循環ポンプ 1 0 6を停止させる。 続いて封止弁 8 4、 1 0 4を閉じた後、 ヒータ 1 0 8により圧力チャンバ 6 0内の加圧水 6 5を加熱し、 その温度を温度 センサ 1 1 0で検出することにより、 温度制御を開始する。
次に、 圧力緩衝装置 1 8のモータ 1 5 8を動作させ、 圧力逃し弁 2 6を閉じ、 チューブ 5 0 Cを一定圧で閉塞させる。 モータ 1 2 2を動作させて予め設定した 最大圧力 P m a Xが検出されるまで圧力印加装置 1 6を動作させる。 最大圧力 P m a Xが検出されたとき、 モータ 1 2 2のパルスカウントを主制御装置 2 3 0の メモリに記憶する。 次に、 圧力緩衝装置 1 8のモータ 1 5 8を現在の圧力値が低 下するまで回転させ、 この圧力値を最大圧力 P m a xの位置としてモータ 1 5 8 のパルス力ゥントを主制御装置 2 3 0のメモリに記憶する。
次に、 圧力印加装置 1 6のモータ 1 2を予め設定した最小圧力 P m i nが検 出されるまで回転させる。 最小圧力 P m i nが検出されたとき、 モータ 1 2 2の パルスカウントを主制御装置 2 3 0のメモリに記憶する。 次に、 圧力緩衝装置 1 8のモータ 1 5 8を回転させ、 最小圧力 P m i nより減少を開始する位置にてモ —夕 1 5 8を停止し、 そのとき、 このモータ 1 5 8のパルスカウント値を主制御 装置 2 3 0のメモリに記憶する。
次に、 この初期設定モードの後、 ステップ S 2に移行し、 圧力可変培養モード か否かを判定する。 即ち、 圧力を周期的に変更して培養を行うか否かが判定され、 圧力可変を行うときはステップ S 3の圧力可変培養モードに移行し、 また、 一定 圧力で培養するときはステップ S 7の固定圧力培養モードに移行する。 ステップ S 3の圧力可変培養モードでは、 周期 T毎に加圧、 圧力保持、 減圧、 圧力保持を繰り返して培養チャンバ 2 0の細胞 5を加圧刺激し、 かつ培養メディ ァ 3の送液を行う。
ステップ S 4では、 圧力印加装置 1 6、 圧力緩衝装置 1 8の動作による圧力と P m a x, P m i nとの誤差が所定値以上か否かが判定される。 所定値以上の誤 差が生じたとき、 ステップ S 5に移行して最大圧力 P m a x、 最小圧力 P m i n の各値と一致する圧力印加装置 1 6、 圧力緩衝装置 1 8の移動量をサンプリング して主制御装置 2 3 0のメモリの記憶値を修正する。
次に、 ステップ S 6では、 所定の培養時間 t力経過するまでステップ S 3〜ス テツプ S 6を繰り返し、 所定の培養時間 tが経過したとき、 培養終了とし、 ステ ップ S 1 1に移行する。
また、 ステップ S 7の固定圧力培養モードでは一定の圧力によって細胞 5又は 組織を刺激し、 かつ培養メディア 3の送液を行う。 即ち、 ステップ S 8では圧力 印加装置 1 6、 圧力緩衝装置 1 8の動作による圧力と設定圧力 P sとの誤差が所 定値以上か否かが判定される。 所定値以上の誤差が生じたとき、 ステップ S 9に 移行して設定圧力 P sと一致する圧力印加装置 1 6、 圧力緩衝装置 1 8の移動量 をサンプリングして主制御装置 2 3 0のメモリの記憶値を修正する。 そして、 ス テツプ S 1 0では、 所定の培養時間 tが経過したとき、 培養終了とし、 ステップ S 1 1に移 ί亍する。
次に、 ステップ S 1 1では生体細胞保存運転モードを実行する。 細胞 5又は組 織の培養が完了、 即ち、 組織が生成されても、 移植のための移送を開始するまで の間、 その細胞 5ないし組織を健全に保存する必要がある。 生体細胞保存運転モ ―ドでは、 細胞 5を所定温度に維持しつつ、 培養メディァ 3を供給して生体細胞 を健全な状態に保持する。
次に、 ステップ S 1 2では生体細胞を移植か否か、 即ち、 細胞 5からなる組織 の移植のために運転停止命令が入力されたか否かを判定し、 運転停止命令により 培養メディア 3の循環と温度制御を停止する。 培養回路ュニット 4を脱離させ、 細胞 5ないし組織は培養回路ュニット 4とともに移送される。
次に、 第 7図、 第 8図及び第 9図は、 初期設定モードにおける設定入力動作を 示し、 符号 a、 b、 c、 d及び eは、 分割して記載したフローチャートの結合子 であって、 符号 a〜eの一致は結合部である。
ステップ S 2 1では培養チャンバ 2 0を周期的な加圧下での培養か、 又は一定 圧力下での培養かを入力する。 ステップ S 2 2において、 圧力を周期的に可変さ せるとき、 ステップ S 2 4に移行して 「圧力可変」 を表示する。 また、 一定圧力 下で培養を行うとき、 ステップ S 2 3に移行して 「圧力一定」 を表示する。
ステップ S 2 5では、 圧力を可変させる周期 Tを入力する。 ステップ S 2 6で は入力された周期 Tが実行可能な範囲内であるか否かを判定し、 実行範囲外のと きはステップ S 2 7に移行して 「周期 Tの再入力」 を表示して告知し、 ステップ S 2 5に移行して再入力を行う。 実行範囲内であれば、 ステップ S 2 8に移行し て設定した 「周期 T」 の表示と、 主制御装置 2 3 0のメモリへの記憶が行われる。 ステップ S 2 9では最大圧力 P m a Xの保持時間 t , を入力する。 ステップ S 3 0では入力された時間 t , が周期 Tの動作範囲内にあるか否かを判定する。 動 作範囲外であればステップ S 3 1に移行して 「t , の再入力」 の表示により告知 し、 ステップ S 2 9に移行して再入力を行う。 動作範囲内であればステップ S 3 2に移行して 「最大圧保持時間 t , 」 の表示と主制御装置 2 3 0のメモリへの記 憶が行われる。
ステップ S 3 3では最小圧力 P m i nの保持時間 t 2 を入力する。 ステップ S 3 4では入力された時間 t 2 が周期 Tの動作範囲内にあるか否かを判定する。 動 作範囲外であればステップ S 3 5に移行し 「t 2 の再入力」 を表示し、 ステップ S 3 3に移行して再入力を う。 動作範囲内であればステップ S 3 6に移行して 「最小圧保持時間 t 2 」 の表示と、 主制御装置 2 3 0のメモリへの記憶を行う。 ステップ S 3 7では入力された周期 Tと時間 (t , + t 2 ) の差時間を 2分し て加圧、 減圧時間 t 3 を演算する。 ステップ S 3 8では時間 t 3 が動作範囲内に あるか否かを判定する。 動作範囲外にあるとき、 周期 T、 時間 、 t 2 の値が 適切なものでないと判断し、 ステップ S 2 5に戻る。 時間 t 3 が動作範囲内にあ るとき、 演算された時間 t 3 を主制御装置 2 3 0のメモリに格納し、 ステップ S 3 9において 「加圧、 減圧時間 t 3 J を表示する。 ステップ S 4 0では加圧、 減 圧時に緩急の変化を付けるか否かの入力を行う。 ステップ S 4 1において緩急を 付けるときにはステップ S 4 2に移行し、 緩急を付けないときはステップ S 4 6 に移行する。 ステップ S 4 2では加圧、 減圧時に緩急を付けるための変化量の入 力が行われる。 ステップ S 4 3では入力された変化量が動作可能か否かを判定す る。 動作不能のときはステップ S 4 4に移行し 「加圧、 減圧変化量の再入力」 を 表示してステップ S 4 2に移行して再入力を行う。 また、 動作可能であればステ ップ S 4 5に移行して 「加圧、 減圧量」 の表示と、 主制御装置 2 3 0のメモリへ の記憶とを行う。 このとき、 圧力変位のシュミレーシヨン画面を表示させても良 い。
ステップ S 4 6では最小圧力 P m i nを入力する。 ステップ S 4 7では圧力印 加装置 1 6が実行可能な範囲内にあるか否かを判定する。 実行範囲外であればス テツプ S 4 8に移行し 「最小圧力 P m i nの再入力」 を表示し、 ステップ S 4 6 で再入力が行われる。 また、 実行範囲内であればステップ S 4 9に移行し 「最小 圧力 P m i n」 の表示と、 主制御装置 2 3 0のメモリへの記憶を行う。
ステップ S 5 0では最大圧力 P m a Xを入力し、 ステップ S 5 1では圧力印加 装置 1 6が実行可能な範囲内にあるか否かを判定する。 実行範囲外であればステ ップ S 5 2に移行し 「最大圧力 P m a Xの再入力」 を表示し、 ステップ S 5 0で 再入力が行われる。 また、 実行範囲内であればステップ S 5 3に移行し 「最大圧 力 P m a x」 の表示と、 主制御装置 2 3 0のメモリへの記憶を行う。
ステップ S 5 4では圧力チヤンバ 6 0の制御温度 c tが入力される。 ステップ S 5 5では実行可能な範囲内にあるか否かが判定される。 実行範囲外であればス テツプ S 5 6に移行し 「温度 c tの再入力」 を表示し、 ステップ S 5 4で再入力 を行う。 また、 実行範囲内であればステップ S 5 7に移行し 「温度 c t」 の表示 と主制御装置 2 3 0のメモリへの記憶を行う。
ステップ S 5 8では培養回路ュニット 4の培養メディア 3の循環流量 f を入力 する。 ステップ S 5 9では実行可能な範囲内にあるか否かが判定される。 実行範 囲外であればステップ S 6 0に移行し、 「循環流量 f の再入力」 を表示して告知 し、 ステップ S 5 8で再入力を行う。 また、 実 ί亍範囲内であればステップ S 6 1 に移行し 「循環流量 f 」 の表示と、 主制御装置 2 3 0のメモリへの記憶を行う。 ステップ S 62では運転時間の入力を行う。 ステップ S 6 3では 「運転時間」 の表示と、 主制御装置 2 3 0のメモリへの記憶を行う。
ここで、 圧力印加装置 1 6における加圧ピストン 1 1 6と細胞 5或いは組織に 加えられる圧力との関係を説明すると、 加圧ピストン 1 1 6の断面積を A (cm2 ) 、 圧力を P (kg/cm2 ) 、 力を F (kgf ) とすると、 力 Fは、 F = PxAとな り、 加圧用スプリング 1 1 8のパネ定数を K ( kgf/mm) 、 そのパネ収縮量を L 2 (麵) とすると、 力 Fは、 F二 KXL2 であるから、
Kx L2 =Px A
L2 = (PXA) /K · · · (1) となる。 即ち、 加圧ビストン 1 1 6が移動するとき、 加圧用スプリング 1 1 8の 弾性力が加圧ビストン 1 1 6に作用し、 加圧ビストン 1 1 6は圧力チャンバ 6 0 内の加圧水 6 5を圧縮する。 圧縮されることにより圧力チャンバ 6 0内は圧力が 上昇し、 圧力センサ 1 1 2でその圧力が検出される。 この加圧ピストン 1 1 6の 変位、 即ち、 移動量 (画) と圧力 P (kg/cm2 ) との関係は、 例えば、 第 1 0図 のようになる。 第 1 0図において、 はモータ 1 2 2による移動量、 L2 は加 圧用スプリング 1 1 8の収縮量、 L3 は加圧用スプリング 1 1 8を用いない場合 の加圧ピストン 1 1 6の移動量、 L4 は混入している空気の収縮による加圧ビス トン 1 1 6の移動量、 L5 は水の収縮による加圧ピストン 1 1 6の移動量、 L6 は培養チャンバ 2 0及び圧力チャンバ 6 0の容器の変形による加圧ピストン 1 1 6の移動量を示している。 L3 は L4 、 L5 、 L6 の総和であり、 L, は L2 、 L3 の総和を表している。 この圧力印加装置 1 6による加圧ピストン 1 1 6の移 動量と、 圧力センサ 1 1 2の圧力値の関係を主制御装置 2 3 0のメモリに格納す 。
空気の収縮による加圧ピストン 1 1 6の移動量を説明すると、 空気の容積 (1 気圧時) を V (cm3 ) 、 空気の容積 (加圧時) を Va (cm3 ) とし、 1 xV二 (Pa + 1) x Va =一定とすると、 空気の容積 Va は、 Va =V/ (Pa + 1) となり、 空気の収縮による加圧ピストン 1 1 6の移動量 L4 (mm) は、
L4 = 1 0 x { (V-Va ) /A)
= [ (V-V/ (Pa + 1 ) } /A] x 1 0 · · · (2) となる。
また、 水及び培養メディア 3の圧縮による加圧ピストン 1 1 6の移動量は以下 のようになる。 即ち、 水及び培養メディア 3の体積を W (cm3 ) 、 水の圧縮率 (4 0° C) を 0. 44 X 1 CT5 ( cmVkg) とすると、 水及び培養メディア 3 の圧縮量 AW (cm3 ) は、 AW=0. 4 4 X 1 0— 5XPXWとなり、 水及び培養 メディア 3の圧縮による加圧ピストン 1 1 6の移動量 L 5 (mm) は、
Figure imgf000031_0001
= 1 0 X { (0. 4 4 X 1 0 -5X P XW) /A}
… (3) となる。 ここで、 圧力容器 2 2及び培養容器 6 1の変形によるみかけの収縮率を Ct とすると、 収縮量 AWt は、 AWt =WxCt であるから、 容器の変形によ る加圧ピストン 1 1 6の移動量 L 6 は、
Ls = (AWt /A.) x 1 0 = 1 0 x { (WxCt ) / )
• · · (4) となる。 したがって、 加圧ピストン 1 1 6の総移動量は式 (1)、 (2)、 ( 3) 及び (4) を加算した値 となる。
また、 圧力緩衝装置 1 8側では、 緩衝スプリング 1 5 4に加える圧力を減らし ていくと、 培養チャンバ 2 0内の圧力が、 圧力逃し弁 2 6にかかる圧力に打ち勝 ち、 圧力逃し弁 2 6が開き、 培養メディア 3が圧力逃し弁 2 6を通過し、 培養チ ヤンバ 2 0側の圧力が低下する。 緩衝スプリング 1 5 4の加圧力と培養メディア 3側の圧力が釣り合ったところで落ち着く。 圧力緩衝装置 1 8の圧力逃し弁 2 6 に加えられる力を説明すると、 圧力逃し弁 2 6による閉塞面積を B (cm2 ) 、 圧 力を P (kg/ cm2 ) 、 圧力 Pと釣り合う力を F (kgf ) とすると、 F = PxBと なり、 緩衝スプリング 1 54のパネ定数を K ( kgf mm) 、 緩衝スプリング 1 5 4の縮み量を m (mm) とすると、 約り合う力 Fは F = K Xmとなり、 緩衝スプリ ング 1 54の縮み量 mは m=PxBZKによって表される。 第 1 1図は、 圧力逃 し弁 2 6側に加える圧力、 即ち、 ァクチユエ一夕 1 5 6側の移動量 (緩衝スプリ ング 1 5 4の縮み量) と圧力逃し弁 2 6に作用する圧力、 即ち、 調整圧力との関 係を示す。 第 1 1図において、 m, は単一の緩衝スプリング 1 5 4を用いた場合、 m2 は緩衝スプリング 1 54に異なる 2つのスプリングを用いた場合を示してい 。
送液装置 1 2の容積が小さいため、 培養メディア 3の収縮や容器の変形、 気体 の収縮等はほとんど無視することができる。 そのため、 送液ピストン 1 32の送 液量 V (ml) は送液ピストン 1 3 2の断面積 C (cm2 ) 、 移動量 1 (cm) とする と、 V = CX 1であるので、 移動量 1は 1 となり、 送液量に応じて移動 量が決定する。 送液装置 1 2の送液ビストン 1 32の移動量が多い場合は、 送液 ピストン 1 3 2の移動後すぐに元の位置に戻すが、 培養メディァ 3の移動量が少 ない場合は戻さず、 次の送液動作のときはその位置からさらに送液ピストン 1 3 2を移動させ、 移動不可能な位置まで移動したら元の位置に戻す。 このとき、 設 定の降下圧力の許容値より高くなつた場合は運転前に記憶した圧力逃し弁 26の ァクチユエ一タ 1 5 6の移動量と圧力の関係のデータをこの値を元に補正する必 要がある。
次に、 第 1 2図は、 第 6図のステップ S 3で実 される圧力可変培養モードの 実行形態を表している。 即ち、 第 1 2図は、 培養チャンバ 20に印加される圧力 状態と加圧タイミングを表すタイミングチャートであって、 (a) は培養チャン バ 20の圧力推移、 (b) は圧力緩衝装置 1 8の動作タイミング、 (c) は圧力 印加装置 1 6の加圧タイミング、 (d) は培養メディア供給装置 6の送液タイミ ングを示している。
培養チャンバ 20は周期 Tで最大圧力 Pmaxと最小圧力 Pm i nの間で加圧、 減圧が繰り返される。 は最大圧力 Pmaxを保持する時間であり、 t 2 は最 小圧力 Pmi nを保持する時間である。 また、 は加圧、 減圧時の動作時間で ある。 これら最大圧力 Pma X、 最小圧力 Pm i n、 時間 t 、 t 2 、 13 は生 体内の外部培養させる部位に応じて任意に変更することができる。 また、 培養す べき細胞 5における生体の年齢、 性別、 身長、 体重、 生体内の部位等のデータに よって適切な数値を選択して加圧、 減圧を行うこともできる。
圧力緩衝装置 1 8は加圧を開始する前に時間 t で最大速力にて最大圧力 Pm axを得られる位置まで動作させてチューブ 50 Cを閉塞する。 その後、 t4 の 遅延時間を経て圧力印加装置 1 6の動作を開始し、 時間 t3 に相当する速度で最 小圧力 P m i nから最大圧力 P m a xまで加圧を行う。
最大圧力 Pmaxの時間 で保持した後、 圧力印加装置 1 6が再び動作し、 時間 t 3 に相当する速度で最大圧力 Pmaxから最小圧力 Pm i nまで減圧を開 始する。 圧力印加装置 1 6が動作してから時間 16 だけ遅延して圧力緩衝装置 1 8が時間 t 7 だけ動作して、 チューブ 50 Cの閉塞力を解除する。
また、 圧力制御を開始したとき、 圧力 0付近から最大圧力 Pmaxまで増加さ せる。 このとき、 圧力緩衝装置 1 8は最大速度で閉塞位置まで移動し、 時間 t 9 経過後に圧力印加装置 1 6を動作させ、 時間 t 3 に相当する速度で最大圧力 Pm a xに到達するまでの時間 t の間加圧を行う。
最小圧力 Pm i nに保持されてから時間 t の経過後に培養メディァ供給装置 6が時間 t , 2だけ動作して培養メディア 3を培養チャンバ 20に送出する。 時間 t 12を変更することにより送液量を任意に設定することができる。 送液後、 時間 t だけ経過後に時間 t! 2とほぼ等しい時間 t! の間、 送液ピストン 1 3 2を後 退させる。 なお、 この例では最小圧力 Pmi nの保持時間 t 2 で送液を行ったが、 最大圧力 Pma Xの保持時間 t , 又は加圧、 減圧時間 t 3 で送液を行っても良い。 次に、 第 1 3図は、 第 6図のステップ S 3で実行される圧力可変培養モードの 他の実行形態を表している。即ち、 第 1 3図は、 培養チャンバ 20に印加される 圧力状態と加圧タイミングを表すタイミングチヤ一卜であって、 (a) は培養チ ヤンバ 20の圧力推移、 (b) は圧力緩衝装置 1 8の動作タイミング、 (c) は 圧力印加装置 1 6の加圧タイミング、 (d) は培養メディア供給装置 6の送液タ イミング、 即ち、 培養チャンバ 20に印加する圧力パターンの変形例を示す。 この例では、 加圧、 減圧時間 t 3 に、 加圧速度、 減圧速度を 2次関数的に変動 させて緩急を付けた圧力印加パターンを送出させたものであり、 圧力変動に緩急 を付けることにより、 例えば歩行時の膝の軟骨にかかる圧力バタ一ンを再現する ことができる。 この場合、 圧力印加装置 16は時間 t! 5、 t 16、 t 17に示される ように動作速度が変更され、 時間 t3 において加圧力に緩急が加えられる。 その 他の動作は、 第 1 2図の動作と同様であるので、 その説明を省略する。
次に、 第 1 4図ないし第 2 1図は、 本発明の細胞又は組織の培養装置の第 2の 実施形態を示し、 第 1 4図は培養装置の正面側配置、 第 1 5図は培養装置の側面 側配置、 第 1 6図は培養装置の要部、 第 1 7図は培養回路ュニッ卜 4、 第 1 8図 は培養回路ュニット 4を除いた培養装置の要部、 第〗 9図は圧力印加装置 1 6、 第 2 0図は培養メディア供給装置 6、 第 2 1図は圧力緩衝装置 1 8を示している。 第 1の実施形態と同一部分には同一符号を付してある。
この培養装置は単一のハウジング 2 6 0を以て構成され、 ハウジング 2 6 0は 培養室 2 6 2、 機械室 2 6 4及び制御 ·電源室 2 6 6に区画されている。 培養室 2 6 2の内部には培養庫 4 2が収容されており、 培養庫 4 2内の構成は第 1の実 施形態と同様であるが、 異なる点は、 培養メディア供給装置 6、 圧力印加装置 1 6及び圧力緩衝装置 1 8等が単一の処理部 2 6 8で構成されている。
培養室 2 6 2及び機械室 2 6 4には独立して開閉されるドア 2 7 0、 2 7 2力く 設けられ、 機械室 2 6 4には培養メディア供給装置 6、 圧力印加装置 1 6及び圧 力緩衝装置 1 8の機構部分とともに加圧水槽 6 8等が収容されており、 各了クチ ユエ一タ 1 2 0、 1 3 8、 1 5 6は、 第 1 5図に示すように、 共通の取付板 2 6 9で機械室 2 6 4の背面側に支持されている。 機械室 2 6 4の壁面には、 給水口 2 7 4、 排水口 2 7 6が設けられている。 制御 ·電源室 2 6 6には制御装置 4 0 及び電源装置が収容されており、 その前面パネル側に表示装置 2 3 2とともに電 源スィツチ 2 7 8が設置されている。
次に、 第 1 6図に示すように、 培養室 2 6 2には培養庫 4 2が収容されており、 培養庫 4 2には培養回路ュニット 4及び処理部 2 6 8力収容されている。 処理部 2 6 8には、 第 1 7図及び第 1 8図に示すように、 培養回路ュニット 4側の処理 ユニッ ト 2 8 0が着脱可能に構成されている。
次に、 第 1 9図は、 培養チャンバ 2 0を構成する培養容器 6 1、 圧力容器 2 2 を含む圧力印加装置 1 6を示している。 この場合、 圧力印加装置 1 6のァクチュ ェ一タ 1 2 0は、 ハウジング 2 8 2にボールスクリュ 2 8 4を取り付け、 このボ 一ルスクリュ 2 8 4の後端部にモータ 1 2 2をカツプリングジョイント 2 8 6で 結合したものである。 ボールスクリュ 2 8 4には回転によって前後動する移動べ ッド 2 8 8が設けられ、 この移動べッド 2 8 8とボールスクリュ 2 8 4の前端部 側に設けられた支持フランジ 2 9 0との間に重合させた 2つの加圧用スプリング 1 1 8 A、 1 1 8 Bが設置されている。 即ち、 加圧用スプリング 1' 1 8 A、 1 1 8 Bは、 ボ一ルスクリュ 2 8 4の回転に応じて移動する移動べッ ド 2 8 8により 圧縮状態が変化し、 各加圧用スプリング 1 1 8 A、 1 1 8 Bの弾性特性が加圧ピ ストン 1 1 6側に作用する。 ボールスクリュ 2 8 4に代えてベルトゃカム等でァ クチユエ一夕 1 2 0を構成しても良い。
次に、 第 2 0図は、 培養メディア供給装置 6を示している。 ァクチユエ一夕 1 3 8は、 ハウジング 2 9 1にボールスクリュ 2 9 2を取り付け、 このボールスク リュ 2 9 2の後端部にモータ 1 4 0を力ップリングジョイント 2 9 4で結合した ものである。 ボールスクリュ 2 9 2には回転によって前後動する移動べッ ド 2 9 6が設けられ、 この移動べッ ド 2 9 6に取り付けられたピストン押板 2 9 8の前 面部には送液ピストン 1 3 2の後端部が接触している。 即ち、 モータ 1 4 0によ るボールスクリュ 2 9 2の回転に応じて移動する移動べッ ド 2 9 6が前進するこ とにより、 加圧用スプリング 1 3 6が圧縮されると、 送液ビストン 1 3 2が前進 し、 移動べッ ド 2 9 6が後進することにより、 加圧用スプリング 1 3 6の圧縮が 解かれ、 加圧用スプリング 1 3 6の復帰力によって送液ビストン 1 3 2が後退す る。 送液ビストン 1 3 2の進退によって培養メディア 3を送り出すことができる。 次に、 第 2 1図は、 圧力緩衝装置 1 8を示している。 ァクチユエ一タ 1 5 6は、 ハウジング 3 0 0にボ一ルスクリュ 3 0 2を取り付け、 このボールスクリュ 3 0 2の後端部にモータ 1 5 8をカツプリングジョイント 3 0 4で結合したものであ る。 ボ一ルスクリュ 3 0 2には回転によって前後動する移動べッ ド 3 0 6が設け られ、 この移動べッ ド 3 0 6には重合させた緩衝スプリング 1 5 4 A、 1 5 4 B を介してプランジャ押板 3 0 8が取り付けられ、 このプランジャ押板 3 0 8の前 面部には圧力逃し弁 2 6のプランジャ 1 5 2の後端部が接触している。 即ち、 モ 一夕 1 5 8によるボールスクリュ 3 0 2の回転に応じて移動する移動べッ ド 3 0 6が前進することにより、 緩衝スプリング 1 5 4 A、 1 5 4 Bとともにプランジ ャ押板 3 0 8を前進させ、 緩衝スプリング 1 5 4 A、 1 5 4 Bの圧縮状態が変化 する。 即ち、 弁体 1 5 0が圧縮状態にある緩衝スプリング 1 5 4 A、 1 5 4 Bを 介して押し付けられ、 圧力逃し弁 2 6が閉塞状態に保持される。 この保持状態は、 ボ一ルスクリュ 3 0 2の回転と、 それに伴う緩衝スプリング 1 5 4 A、 1 5 4 B の圧縮状態によって変化する。 次に、 第 2 2図は、 培養メディア供給装置 6の変形例を示している。 第 2図、 第 3図及び第 1 4図に示す培養メディア供給装置 6では、 送液ピストン 1 3 2に 加圧用スプリング 1 3 6を設置した力、 加圧用スプリング 1 3 6を除き、 ァクチ ユエ一タ 1 3 8のボールスクリュ 2 9 2で移動する移動べッ ド 2 9 6に連結シャ フト 3 1 0を取り付け、 この連結シャフト 3 1 0の先端に送液ビストン 1 3 2の 後端部を固定ピン 3 1 2等の固定手段を以て連結するようにしても良い。 このよ うに構成しても、 ボールスクリュ 2 9 2の正逆転によって送液ビストン 1 3 2を 進退させることができる。
次に、 第 2 3図は、 本発明の細胞又は組織の培養装置の第 3の実施形態を示し ている。 この実施形態では、 圧力印加装置 1 6の圧力容器 2 2で形成される圧力 チャンバ 6 0の内部に図示しないコンプレッサから矢印 P rで示すように、 加圧 空気を圧力調整器 3 1 4、 昇圧バルブ 3 1 6及び二—ドルバルブ 3 1 8を備えた 管路 6 7を通して作用させ、 圧力チャンバ 6 0内の加圧空気をニードルバルブ 3 2 0及び降圧バルブ 3 2 2を備えた回収管路 1 0 2を通して排出させ、 チューブ 5 0 D側に弁 1 1 (第 1図) 又はピンチバルブ 1 6 2 (第 2図) に代えて、 ァク チユエ一夕 3 2 1の回転によって開閉されるバルブ 3 2 3を設けても良い。 バル ブ 3 2 3を間欠的に閉塞させる動作と、 加圧空気を作用させて受圧膜 6 4を加圧 する動作とを併用することにより、 細胞 5に加圧刺激を加えることができる。 こ の場合、 加圧刺激に変ィヒを付与するには、 昇圧バルブ 3 1 6及び降圧バルブ 3 2 2の開閉制御によって行うことができる。 このような空気を用いた場合には、 低 圧では単位移動量あたりの圧力変化量を小さく、 また、 高圧では単位移動量あた りの圧力変化量を大きくできるとともに、 細胞又は組織に圧力を印加する際、 モ 一夕ゃァクチユエ一夕等から発生する不要な振動の吸収が可能となり、 細胞又は 組織に対する加圧刺激の精度を高めることができる。
次に、 第 2 4図及び第 2 5図は、 本発明の細胞又は組織の培養装置の第 4の実 施形態を示している。 培養すベき細胞 5はコラーゲン等から成形された足場 7に 移植されており、 足場 7毎に培養チャンバ 2 0に格納される。 培養チャンバ 2 0 には培養メディア 3が培養メディア槽 4 9から培養回路ュニット 4を通して供給 される。培養回路ュニット 4は、 閉回路を構成しており、 この培養回路ュニット 4には、 送液装置 1 2としてのポンプ 3 2 4、 圧力センサ 3 2 6及び圧力緩衝装 置 1 8が設けられている。 圧力センサ 3 2 6の検出圧力は圧力制御器 3 2 8に加 えられ、 その検出圧力に応じた制御出力が圧力制御器 3 2 8からポンプ 3 2 4に 加えられている。 即ち、 培養メディア 3の圧力 Pが一定に制御されている。 また、 圧力緩衝装置 1 8は、 培養回路ュニット 4の一部に挿入された圧力逃し 弁 2 6の弁体 1 5 0のプランジャ 1 5 2に緩衝スプリング 1 5 4を介在してァク チユエ一タ 1 5 6を取り付け、 このァクチユエ一夕 1 5 6にモータ 1 5 8を連結 したものである。 モータ 1 5 8の回転、 即ち、 正転、 逆転、 停止及び回転速度が 制御装置 4 0によって制御される。 即ち、 モータ 1 5 8の回転がボールスクリュ 3 0 2に伝達され、 ボ一ルスクリュ 3 0 2の回転によって移動べッ ド 3 0 6がそ の回転方向に応じて前後に移動する。 この移動は、 緩衝スプリング 1 5 4を介し て弁体 1 5 0のプランジャ 1 5 2に伝達されるので、 弁体 1 5 0の閉止力が移動 べッド 3 0 6の位置及び緩衝スプリング 1 5 4の圧縮力によって設定される。 ポ ンプ 3 2 4による培養メディァ 3の圧力力く弁体 1 5 0の閉止力に打ち勝つとき、 弁体 1 5 0が開かれ、 圧力逃し弁 2 6を培養メディア 3が通過する。
そして、 培養メディア槽 4 9には、 酸素又は二酸化炭素等のガスを取り入れる 空気管路 3 3 0が設けられ、 空気管路 3 3 0には雑菌、 異物等の侵入を防止する フィルタ 3 3 2が設けられている。 即ち、 空気管路 3 3 0から取り入れられた酸 素又は二酸化炭素は培養メディア 3とともに培養チャンバ 2 0の細胞 5に伝達さ れる。
このような構成によれば、 ポンプ 3 2 4を駆動することにより、 培養メディア 3が培養回路ュニット 4に供給されて培養チャンバ 2 0に通流し、 細胞 5に必要 な養分と酸素又は二酸化炭素等のガスを供給する。 圧力緩衝装置 1 8を駆動する ことにより培養回路ュニット 4が閉塞され、 ポンプ 3 2 4から培養メディア 3に 加えられる圧力によって培養チャンバ 2 0内の圧力が上昇する。 圧力緩衝装置 1 8の緩衝力、 即ち、 弁体 1 5 0の閉止力の調整によって、 ポンプ 3 2 4から加え られた圧力と平衡する任意の圧力値を得ることができる。
第 2 5図はこの加圧動作を示している。 圧力緩衝装置 1 8を周期的に動作させ ることにより、 最大圧力 P m a Xと最小圧力 P m i nを交互に細胞 5に付与する ことができる。 即ち、 細胞 5には最大圧力 P m a xが時間 t , 、 最小圧力 P m i nが時間 t 2 、 また、 昇圧時間 1 3 及び降圧時間 1 3 が設定され、 生体と同様に 培養メディア 3の圧力循環が得られ、 生体と同等の成長環境力実現される。 そし て、 圧力緩衝装置 1 8の動作速度を制御することにより、 時間 、 t .2 、 t 3 を任意に調整でき、 培養する細胞 5の特性や生体部位に応じた最適状態を実現す ることができる。
以上説明したように、 本発明によれば、 次の効果が得られる。
a 生体内環境を模倣した環境下で汚染されることなく効率良く培養すること ができ、 体内組織に近い、 し力、も、 体内組織と融合し易い細胞又は組織を培養す ることができる。
b 生体の細胞又は組織を特定の培養位置に保持し、 生体を模倣した環境下に 設定して培養メディアを連続的又は断続的に供給し、 連続、 間欠又は周期的に変 化する圧力を加えることにより、 修復すべき生体の部位に対応した理想的かつ実 用的な組織、 即ち、 体内組織に近く、 体内組織と融合し易い組織の培養を実現す ることができる。
c 培養すべき細胞又は組織を培養メディァ中に浮遊又は非浮遊の状態で保持 し、 極めて安定した状態で効率的な培養を行うことができる。
d 細胞又は組織を培養メディァ中に浮遊状態でハイドロジヱル、 又は足場に -よつて保持するので、 細胞又は組織の培養を促進することができる。
e 培養メディァを培養すべき細胞又は組織に応じた、 例えば、 各種ァミノ酸、 糖類、 塩類又はタンパク質の 1つ又はこれらから選択された 2以上の物質又は全 てを含んで構成したものを用いるので、 効率的な培養や品質の良い細胞又は組織 を培養することができる。
f 培養環境を生体の部位の生理的条件、 又はこの生理的条件に加えて年齢、 身長、 体重、 性別、 その他の生体毎の固有情報に応じて設定するので、 体内組織 と融合し易い細胞又は組織を培養することができる。
g 窒素、 酸素又は二酸化炭素等のガスの供給及び制御、 温度又は湿度の設定 及び制御により生体環境を設定するので、 生体に近い環境制御を実現でき、 体内 組織に近い、 し力、も、 体内組織と融合し易い細胞又は組織の培養に寄与すること ができる。
h 修復すべき生体の部位に対応して圧力を加えることにより、 理想的かつ実 用的な細胞又は組織を形成することができる。
i 圧力のパターンを連続、 間欠又は周期的に変化する形態とし、 それを選択 し、 又は組み合わせることにより、 理想的な物理的刺激を実現することができ、 細胞の代謝機能や分裂サイクル、 生物刺激の濃度勾配や分散に影響を与え、 培養 の促進を図ることができる。
j 培養ュニットは、 培養すべき細胞又は組織を培養チャンバに収容して外気 と遮断された細胞又は組織に必要な培養メディァを供給するので、 外気と遮断さ れた細胞又は組織は、 菌体等の汚染から防護され、 その結果、 品質の良い組織を 培養することができる。 また、 細胞又は組織は、 培養メディアによる静水圧と流 れによる物理的刺激に加え、 加圧手段によって所望の圧力が付与されるので、 細 胞の代謝機能、 分裂サイクル、 生物刺激の濃度勾配や分散に影響を受け、 細胞又 は組織の培養を促進することができる。 また、 細胞又は組織への培養メディアの 供給形態は培養メディア供給手段によって任意に設定され、 間欠的又は連続的に 供給することができるので、 バリエーションのある物理的刺激によって培養の促 進を図ることができる。
k 加圧手段又は培養メディア供給手段は、 任意に制御することができ、 コン ピュータ等の制御手段を用いることにより、 フィードバック制御やフィードフォ ワード制御等の各種のプログラム制御を行うことにより、 生体環境を模倣すると ともに、 所望の環境を設定でき、 効率の良い培養を行うことができる。
1 圧力の加え方、 即ち、 圧力パターンは培養すべき細胞又は組織に対応して 設定することにより、 より効率的な培養を行うことができる。
m 圧力パターンはあらゆる形態に設定でき、 その選択及び ¾a合せを以て効率 的に細胞又は組織の培養を行うことができる。
n 培養した細胞又は組織を収容する培養チャンバを備える培養ュニットは、 培養装置本体と独立して分離、 着脱可能であるので、 外気と分離された培養ュニ ットとともに細胞又は組織を移動させることができ、 移動中に菌体等による汚染 から細胞又は組織を防護でき、 生体の修復等の信頼性を高めることができる。 O 培養空間である密閉空間が外気と遮断されることにより、 所望のガスの供 給による培養環境の設定が可能になるとともに、 外気による汚染から細胞又は組 織を防護することができる。
密閉空間に収容される培養ュニッ卜に窒素、 酸素又は二酸化炭素等のガス を供給するとともに、 培養ュニッ卜に気体吸収手段を備えることにより、 ガスを 細胞又は組織に付与することができ、 ガスの供給及び制御によって生体環境を模 倣することができる。
q 密閉空間によって形成される培養空間に窒素、 酸素又は二酸化炭素等のガ スを充填させることにより、 生体環境を模倣し、 所望の培養空間を形成すること ができる。
r 培養ュニットに必要な培養メディアを供給又は循環させるための培養メデ ィァ槽を備え、 し力、も、 外気と遮断された密閉空間内に培養メディア槽を設置す るので、 培養メディアの汚染防止を図ることができる。
s 受圧膜の設置により、 培養チャンバに収容されている細胞又は組織に対し、 外気と遮断した状態で加圧刺激を与えることができるとともに、 生体環境を模倣 した刺激等、 所望の加圧刺激を実現できる。
t 培養ユニッ トの一部を加圧した場合、 その圧力調整を圧力緩衝手段で行え ば、 生体環境に近い物理的刺激を実現することができ、 細胞又は組織の培養の促 進を図ることができる。
u 圧力の形成手段として、 水圧、 油圧又は空気圧の何れを用いても所望の加 圧刺激を実現でき、 生体環境を精度良く模倣することができる。
V 培養メディァ供給手段を送液チャンバに取り込んだ培養メディァを加圧し て送り出す送液装置で構成すれば、 培養ュニットに効率良く培養メディアを供給 又は循環させることができ、 この加圧量を制御することで所望の送液量を設定で きる。
w 培養メディアに加えられる圧力を緩衝するので、 理想的な加圧刺激を細胞 又は組織に付与することができ、 例えば、 圧力逃し弁を用いて、 培養メディアの 圧力を圧力逃し弁の制御により、 圧力逃し弁を開いて培養メディァの圧力を降下 させれば、 培養メディアを汚染させることなく、 理想的な圧力状態に制御するこ とができる。
X 培養ュニッ 卜が収容される密閉空間の温度及び湿度を制御し、 生体環境に 合致する培養空間を形成することができる。
y 生体は外界からの音響的刺激を受けており、 音波発生装置を併用すること により、 生体環境を音響的に模倣することができ、 し力、も、 培養チャンバに培養 すべき細胞又は組織を注入する際に、 超音波を併用して効率的かつ、 信頼性の高 い注入を行うこともできる。
z 密閉空間に供給されるガス濃度を制御手段によって制御することにより、 生体環境を模倣することができ、 細胞又は組織の培養促進に寄与することができ る。
なお、 本発明の実施形態としての構成、 作用及び効果について述べた力 本発 明は、 上記の実施形態や実施例に限定されるものではなく、 本.発明の目的、 実施 の形態によって推測される各種の構成、 変形例等、 当業者が予測ないし推測でき る全ての構成を包含するものである。 産業上の利用可能性
以上のように、 本発明の細胞又は組織の培養方法及びその装置は、 細胞組織工 学や遺伝子治療等の応用であるティッシュ ·エンジニアリングに用いられる細胞 '組織培養技術として有用であって、 特に、 細胞や組織の体外培養に用いるのに 適しているとともに、 培養された細胞や組織は人体の欠損組織の修復等に用いる のに適している。

Claims

請 求 の 範 囲
1 . . 生体の細胞又は組織を特定の培養位置に保持し、 生体を模倣した環境下に 前記細胞又は前記組織を設定するとともに前記細胞又は前記組織に培養メディァ を供給し、 前記培養位置で前記細胞又は前記組織を培養することを特徴とする細 胞又は組織の培養方法。
2 . 生体の細胞又は組織を特定の培養位置に保持し、 生体を模倣した環境下に 前記細胞又は前記組織を設定するとともに前記細胞又は前記組織に培養回路を通 して培養メディァを連続的又は断続的に供給するとともに、 前記細胞又は前記組 織に連続、 間欠又は周期的に変化する圧力を加え、 前記培養位置で前記細胞又は 前記組織を培養することを特徴とする細胞又は組織の培養方法。
3 . 前記培養位置に培養すべき前記細胞又は前記組織を前記培養メディァ中に 浮遊状態又は非浮遊状態で保持させる保持手段を備えることを特徴とする請求項 1又は 2記載の細胞又は組織の培養方法。
4 . 前記保持手段に前記細胞又は前記組織を前記培養メディァ中に浮遊状態で 保持させるハイドロジヱル、 又は、 前記細胞又は前記組織を保持するとともにそ の成長により前記細胞又は前記組織に吸収される足場を用いたことを特徴と る 請求項 1又は 2記載の細胞又は組織の培養方法。
5 . 前記培養メディアは、 各種アミノ酸、 糖類、 塩類又はタンパク質の 1又は 2以上を含んで構成したことを特徴とする請求項 1又は 2記載の細胞又は組織の 培養方法。
6 . 前記細胞又は前記組織を培養する前記環境は、 前記生体の部位の生理的条 件、 又はこの生理的条件に加えて年齢、 身長、 体重、 性別、 その他の前記生体毎 の固有情報に応じて設定されることを特徴とする請求項 1又は 2記載の細胞又は 組織の培養方法。
7 . 前記環境は、 前記培養メディアを通して供給される窒素、 酸素又は二酸化 炭素等のガス、 温度又は湿度によって設定されることを特徴とする請求項 1又は 2記載の細胞又は組織の培養方法。
8 . 前記細胞又は前記組織に加える前記圧力は、 前記細胞又は前記組織の前記 部位に応じて任意に設定することを特徴とする請求項 2記載の細胞又は組織の培 養方法。
9 . 前記細胞又は前記組織に加える前記圧力は、 連続、 間欠又は周期的に変化 する圧力又はこれらの組合せからなる圧力であることを特徴とする請求項 2記載 の細胞又は組織の培養方法。
1 0 . 細胞又は組織を収容する培養チャンバを備えて培養メディアを供給する 培養ュニッ卜と、
前記培養チャンバ内の前記細胞又は前記組織に圧力を付与する加圧手段と、 前記培養ュニットに前記培養メディァを間欠的又は連続的に供給させる培養メ ディア供給手段と、
を備えたことを特徴とする細胞又は組織の培養装置。
1 1 . 前記加圧手段又は前記培養メディア供給手段を制御する制御手段を備え たことを特徴とする請求項 1 0記載の細胞又は組織の培養装置。
1 2 . 前記加圧手段から前記細胞又は前記組織に加えられる前記圧力は、 前記 細胞又は前記組織に応じて任意に設定することを特徴とする請求項 1 0記載の細 胞又は組織の培養装置。
1 3 . 前記加圧手段から前記細胞又は前記組織に加えられる前記圧力は、 断続 状態、 一定時間毎の連続した繰り返し、 一定時間毎に増減させることを特徴とす る請求項 1 0記載の細胞又は組織の培養装置。
1 4 . 前記培養ュニットを培養装置本体から独立して分離可能であることを特 徴とする請求項 1 0記載の細胞又は組織の培養装置。
1 5 . 外気と遮断された密閉空間に前記培養ュニットを収容してなることを特 徵とする請求項 1 0記載の細胞又は組織の培養装置。
1 6 . 窒素、 酸素又は二酸化炭素等のガスを吸収可能な気体吸収手段を備えた ことを特徴とする請求項 1 0記載の細胞又は組織の培養装置。
1 7 . 前記密閉空間に窒素、 酸素又は二酸化炭素等のガスを充塡させてなるこ とを特徴とする請求項 1 0記載の細胞又は組織の培養装置。
1 8 . 前記培養ュニッ卜に供給すべき前記培養メディアを溜める培養メディア 槽を備えることを特徴とする請求項 1 0記載の細胞又は組織の培養装置。
1 9 . 前記培養チャンバに外部から圧力を受ける受圧膜を備えたことを特徴と する請求項 1 0記載の細胞又は組織の培養装置。
2 0 . 前記培養ュニッ卜に圧力緩衝手段を備えたことを特徴とする請求項 1 0 記載の細胞又は組織の培養装置。
2 1 . 前記培養チャンバに前記受圧膜を介して圧力チャンバを取り付け、 この 圧力チャンバに水圧、 油圧又は空気圧を作用させて前記培養チャンバ内の前記細 胞又は前記組織に圧力を加えるようにしたことを特徴とする請求項 1 0記載の細 胞又は組織の培養装置。 .
2 2 . 前記培養メディァ供給手段は、 前記培養ュニッ トに送液チャンバを設け、 この送液チャンバに取り込んだ前記培養メディァを加圧して送り出す送液装置で 構成したことを特徴とする請求項 1 0記載の細胞又は組織の培養装置。
2 3 . 前記培養ュニッ卜に圧力逃し弁を設置し、 前記培養メディアの圧力が前 記圧力逃し弁に任意に設定される一定圧力を越えるとき、 前記圧力逃し弁を開い て前記培養メディアの圧力を降下させることを特徴とする請求項 1 0記載の細胞 又は組織の培養装置。
2 4 . 前記密閉空間は、 加熱手段又は加湿手段が設置され、 所望の温度又は湿 度に維持、 制御されることを特徴とする請求項 1 0記載の細胞又は組織の培養装
2 5 . 前記培養ュニットの前記培養チャンバに超音波等の音波を付与する音波 発生装置を備えたことを特徴とする請求項 1 0記載の細胞又は組織の培養装置。
2 6 . 前記密閉空間に供給されるガス濃度を制御する制御手段を備えたことを 特徴とする請求項 1 0記載の細胞又は組織の培養装置。
PCT/JP2001/001516 2000-03-02 2001-02-28 Procede et dispositif de culture cellulaire ou tissulaire WO2001064848A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE60139926T DE60139926D1 (de) 2000-03-02 2001-02-28 Methode oder apparat zur kultivierung von zellen oder gewebe
AU2001236002A AU2001236002B2 (en) 2000-03-02 2001-02-28 Method and apparatus for culturing cell or tissue
CA2401559A CA2401559C (en) 2000-03-02 2001-02-28 Method of and apparatus for cultivating a cell or tissue
KR1020027011525A KR100674788B1 (ko) 2000-03-02 2001-02-28 세포 또는 조직의 배양방법 및 그 장치
AT01908154T ATE443130T1 (de) 2000-03-02 2001-02-28 Methode oder apparat zur kultivierung von zellen oder gewebe
EP01908154A EP1266960B1 (en) 2000-03-02 2001-02-28 Method and apparatus for culturing cell or tissue
AU3600201A AU3600201A (en) 2000-03-02 2001-02-28 Method and apparatus for culturing cell or tissue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000057585A JP3865354B2 (ja) 2000-03-02 2000-03-02 細胞又は組織の培養方法
JP2000-57585 2000-03-02

Publications (2)

Publication Number Publication Date
WO2001064848A1 WO2001064848A1 (fr) 2001-09-07
WO2001064848A9 true WO2001064848A9 (fr) 2001-11-22

Family

ID=18578342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001516 WO2001064848A1 (fr) 2000-03-02 2001-02-28 Procede et dispositif de culture cellulaire ou tissulaire

Country Status (10)

Country Link
US (3) US6432713B2 (ja)
EP (1) EP1266960B1 (ja)
JP (1) JP3865354B2 (ja)
KR (1) KR100674788B1 (ja)
CN (3) CN1313601C (ja)
AT (1) ATE443130T1 (ja)
AU (2) AU2001236002B2 (ja)
CA (1) CA2401559C (ja)
DE (1) DE60139926D1 (ja)
WO (1) WO2001064848A1 (ja)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1370194B1 (en) * 2001-03-23 2013-01-23 Histogenics Corporation Composition and methods fro the production of biological tissues and tissue constructs
US20040151705A1 (en) * 2002-03-22 2004-08-05 Shuichi Mizuno Neo-cartilage constructs and a method for preparation thereof
JP3896386B2 (ja) * 2001-10-22 2007-03-22 株式会社治研 インキュベータ
US20030098069A1 (en) * 2001-11-26 2003-05-29 Sund Wesley E. High purity fluid delivery system
JP4451582B2 (ja) * 2001-12-21 2010-04-14 高木産業株式会社 細胞・組織培養装置
JP4378909B2 (ja) * 2002-02-20 2009-12-09 株式会社日立プラントテクノロジー 生体細胞の培養制御方法及び培養装置の制御装置並びに培養装置
AU2003211461C1 (en) * 2002-03-04 2008-10-23 New X-National Technology K.K. Closed cell culture system
JP4067419B2 (ja) * 2002-03-04 2008-03-26 株式会社ネクスト21 閉鎖型細胞培養システム
US7537780B2 (en) * 2002-03-22 2009-05-26 Histogenics Corporation Method for preparing and implanting a cartilage construct to treat cartilage lesions
US7468192B2 (en) * 2002-03-22 2008-12-23 Histogenics Corporation Method for repair of cartilage lesions
CA2485350C (en) * 2002-04-08 2014-08-19 Millenium Biologix Inc. Automated tissue engineering system comprising sensors linked to a microprocessor
US7744597B2 (en) 2002-06-26 2010-06-29 Lifenet Health Device and process for producing fiber products and fiber products produced thereby
JP3774466B2 (ja) * 2002-06-28 2006-05-17 株式会社生物有機化学研究所 キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材
JP4666335B2 (ja) 2002-09-04 2011-04-06 晶夫 岸田 機械的振動による生物機能の制御方法とその装置
JP4086183B2 (ja) * 2002-09-24 2008-05-14 賢治 柏木 生体細胞又は組織の加重培養方法および装置
US20060275888A1 (en) * 2003-04-09 2006-12-07 Hiroki Hibino Culture treatment apparatus and automatic culture apparatus
JP2004305148A (ja) * 2003-04-09 2004-11-04 Olympus Corp 自動培養装置
US7494811B2 (en) 2003-05-01 2009-02-24 Lifenet Health In vitro growth of tissues suitable to the formation of bone and bone forming tissue formed thereby
JP4607432B2 (ja) * 2003-05-12 2011-01-05 高木産業株式会社 細胞又は組織の培養装置
JP4116057B2 (ja) * 2004-06-17 2008-07-09 研 中田 生体力学的刺激負荷装置
AU2004321311B8 (en) * 2004-07-30 2009-11-19 Histogenics Corporation Neo-cartilage constructs and methods of preparation thereof
AU2005267748B2 (en) * 2004-07-30 2012-09-20 The Brigham And Women's Hospital, Inc. Amorphous cell delivery vehicle treated with physical/physicochemical stimuli
JP2006325556A (ja) * 2005-05-30 2006-12-07 Takagi Ind Co Ltd 加圧装置、培養装置及び加圧容器
BRPI0611752B8 (pt) * 2005-06-17 2021-05-25 Merz Pharma Gmbh & Co Kgaa dispositivo e processo para produção fermentativa de compostos biologicamente ativos
US8921109B2 (en) 2005-09-19 2014-12-30 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
JP5433129B2 (ja) 2006-07-10 2014-03-05 パーパス株式会社 細胞又は組織の培養方法
JP4981374B2 (ja) * 2006-07-10 2012-07-18 パーパス株式会社 細胞又は組織の培養装置及び培養方法
DE102006032703A1 (de) * 2006-07-14 2008-01-24 OCé PRINTING SYSTEMS GMBH Verfahren und Anordnung zum Erzeugen einer vorgegebenen Umlaufgeschwindigkeit eines endlosen bandförmigen Bildträgers
JP5053628B2 (ja) * 2006-12-15 2012-10-17 パーパス株式会社 加圧装置、その加圧方法、ポンプ装置及び培養装置
JP5169035B2 (ja) * 2007-06-19 2013-03-27 株式会社Ihi 加圧試験方法及び装置
US9421304B2 (en) 2007-07-03 2016-08-23 Histogenics Corporation Method for improvement of differentiation of mesenchymal stem cells using a double-structured tissue implant
US8685107B2 (en) 2007-07-03 2014-04-01 Histogenics Corporation Double-structured tissue implant and a method for preparation and use thereof
US20090054984A1 (en) 2007-08-20 2009-02-26 Histogenics Corporation Method For Use Of A Double-Structured Tissue Implant For Treatment Of Tissue Defects
US9410113B2 (en) * 2007-10-26 2016-08-09 St3 Development Corporation Bioreactor system for three-dimensional tissue stimulator
JP5341540B2 (ja) * 2009-02-02 2013-11-13 敏昭 春山 きのこの液体種菌培養装置及びきのこの液体種菌の培養方法
EP3103415B1 (en) 2009-03-03 2020-12-16 The Trustees of Columbia University in the City of New York Method for bone tissue engineering using a bioreactor
DE102009028338A1 (de) * 2009-08-07 2011-02-10 Wacker Chemie Ag Bioreaktor mit Siliconbeschichtung
DE102009028339A1 (de) * 2009-08-07 2011-02-24 Wacker Chemie Ag Bioreaktor aus Siliconmaterialien
DE202010011059U1 (de) 2009-08-13 2011-01-13 F. Hoffmann-La Roche Ag Stützeinheit zum Anbringen von mehreren Flüssigkeitsaufbewahrungseinheiten
CN101993823B (zh) * 2009-08-28 2012-11-07 中国航天员科研训练中心 环境自控型细胞学实验平台
JP5638216B2 (ja) * 2009-10-09 2014-12-10 パーパス株式会社 加圧循環培養装置及び加圧循環培養システム
KR101126599B1 (ko) * 2009-12-04 2012-03-23 한국과학기술원 세포 자극 장치
US20120034695A1 (en) * 2010-06-30 2012-02-09 Palaniappan Sethu Tissue/cell culturing system and related methods
CN101974416B (zh) * 2010-09-08 2013-07-31 牛刚 压强检测装置及微生物检验薄膜系统
JP5786444B2 (ja) * 2011-05-17 2015-09-30 東洋製罐グループホールディングス株式会社 細胞培養方法、及び細胞培養システム
KR20130044912A (ko) * 2011-10-25 2013-05-03 삼성전기주식회사 배양 장치 및 배양액 교체 방법
KR101441179B1 (ko) * 2012-03-05 2014-09-18 제주대학교 산학협력단 초음파 배양 접시 및 그것을 이용한 초음파 모니터링 시스템
EP2910642B1 (en) 2012-10-17 2019-07-31 Konica Minolta, Inc. Method for recovering rare cells and method for detecting rare cells
JP6249816B2 (ja) * 2013-03-28 2017-12-20 アークレイ株式会社 細胞培養装置、細胞培養システム、及び細胞培養方法
CN105316227A (zh) * 2014-07-28 2016-02-10 温州医科大学附属第二医院 一种多功能细胞模拟舱
US10640742B2 (en) * 2014-09-25 2020-05-05 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Hybrid linear actuator controlled hydraulic cell stretching
JP6733126B2 (ja) * 2014-09-29 2020-07-29 公立大学法人横浜市立大学 三次元細胞集合体の作製方法
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
CN104750022A (zh) * 2015-02-05 2015-07-01 西安交通大学 组织工程与3d打印肉组织生产加工系统及加工方法
US20180066223A1 (en) * 2015-04-17 2018-03-08 Xcell Biosciences, Inc. Cancer cell enrichment system
EP3283611A4 (en) * 2015-04-17 2018-12-26 Xcell Biosciences Inc. Cancer cell enrichment system
CN108431199B (zh) * 2016-01-05 2022-04-08 日本板硝子株式会社 反应处理装置和反应处理方法
RU2626526C1 (ru) * 2016-04-19 2017-07-28 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Система создания биоинженерных моделей тканей животных и человека
EP3607046A4 (en) * 2017-04-07 2020-05-27 Epibone, Inc. SOWING AND CROP SYSTEM AND METHOD
KR20230092033A (ko) 2017-09-01 2023-06-23 론차 콜로그네 게엠베하 엔드-투-엔드 세포 요법의 자동화
CN108467834B (zh) * 2018-02-11 2023-07-25 温州医科大学 一种压力可控的小型细胞培养装置
KR102110252B1 (ko) * 2018-05-29 2020-05-14 한국과학기술연구원 가압환경 세포의 배양 장치 및 배양 방법
CN112601813A (zh) * 2018-08-20 2021-04-02 田边刚士 细胞的培养或诱导方法
KR20210108406A (ko) 2018-12-21 2021-09-02 론자 워커스빌 아이엔씨. 바이러스 벡터의 자동화된 생산
SG11202106384YA (en) 2018-12-21 2021-07-29 Octane Biotech Inc Carousel for modular biologic production units
KR102240707B1 (ko) * 2018-12-24 2021-04-16 연세대학교 산학협력단 약제 유효성을 결정하기 위한 어셈블리
TWI732357B (zh) * 2018-12-27 2021-07-01 財團法人工業技術研究院 細胞培養裝置及方法
US11773365B2 (en) 2019-02-08 2023-10-03 Lonza Walkersville, Inc. Cell concentration methods and devices for use in automated bioreactors
FR3094012B1 (fr) * 2019-03-20 2022-08-12 Cherry Biotech Sas Procédé d'enrichissement en gaz et simultanément de déplacement d’un fluide et dispositif pour le contrôle de l'environnement cellulaire sur une plaque de culture cellulaire multipuits correspondant.
CN113637579A (zh) * 2020-04-27 2021-11-12 复旦大学 一种静液压可调的细胞和组织加压培养装置
CN114350591A (zh) * 2022-01-13 2022-04-15 中山大学附属第一医院 一种在压力条件下培养细胞的方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0048109B1 (en) * 1980-09-11 1985-11-06 United Kingdom Atomic Energy Authority Improvements in or relating to composite materials
US5266476A (en) * 1985-06-18 1993-11-30 Yeda Research & Development Co., Ltd. Fibrous matrix for in vitro cell cultivation
US5026649A (en) * 1986-03-20 1991-06-25 Costar Corporation Apparatus for growing tissue cultures in vitro
DE3786213T2 (de) * 1986-09-19 1993-09-30 Shimadzu Corp Druckbrutschrank.
US5162225A (en) * 1989-03-17 1992-11-10 The Dow Chemical Company Growth of cells in hollow fibers in an agitated vessel
JP3095464B2 (ja) 1991-08-08 2000-10-03 宇宙開発事業団 細胞培養装置
IT1251381B (it) 1991-08-30 1995-05-09 Pirelli Dispositivo di comando per camere di vulcanizzazione in presse di vulcanizzazione, e procedimento di comando attuato da detto dispositivo.
US5330915A (en) 1991-10-18 1994-07-19 Endotronics, Inc. Pressure control system for a bioreactor
DE4206585C2 (de) * 1992-03-03 1994-11-24 Augustinus Dr Med Bader Vorrichtung zur Massenkultur von Zellen
JPH0754656B2 (ja) 1992-05-15 1995-06-07 帝国通信工業株式会社 押釦スイッチのキートップの製造方法
US5656492A (en) 1993-02-12 1997-08-12 Brigham And Women's Hospital, Inc. Cell induction device
DE4306661C2 (de) 1993-03-03 1995-04-20 Michael Dipl Biol Sittinger Verfahren zum Herstellen eines Implantates aus Zellkulturen
JPH06343457A (ja) 1993-06-10 1994-12-20 Power Fuiirudo:Kk 加圧培養方法および培養容器
US5686301A (en) * 1993-09-02 1997-11-11 Heraeus Instruments Gmbh Culture vessel for cell cultures
JPH07184634A (ja) * 1993-12-28 1995-07-25 Ajinomoto Co Inc 微生物好気培養における培養方法及び装置
US5882918A (en) * 1995-08-08 1999-03-16 Genespan Corporation Cell culture incubator
JPH07298869A (ja) 1994-03-08 1995-11-14 Kanegafuchi Chem Ind Co Ltd 微生物の付着および沈澱を防止して培養する方法
US5792603A (en) * 1995-04-27 1998-08-11 Advanced Tissue Sciences, Inc. Apparatus and method for sterilizing, seeding, culturing, storing, shipping and testing tissue, synthetic or native, vascular grafts
JPH09313166A (ja) 1996-05-31 1997-12-09 Sanei Medical Support Kk 細胞培養装置
US6048723A (en) * 1997-12-02 2000-04-11 Flexcell International Corporation Flexible bottom culture plate for applying mechanical load to cell cultures
US6037141A (en) * 1998-06-04 2000-03-14 Banes; Albert J. Culture compression device
JP2961107B1 (ja) * 1998-07-21 1999-10-12 デベロップメント センター フォー バイオテクノロジー 空気動力圧力差式淹浸バイオリアクター

Also Published As

Publication number Publication date
CN1737107A (zh) 2006-02-22
JP2001238663A (ja) 2001-09-04
CA2401559A1 (en) 2002-08-28
CN100354406C (zh) 2007-12-12
CN1313601C (zh) 2007-05-02
CN1737106A (zh) 2006-02-22
US6607917B2 (en) 2003-08-19
DE60139926D1 (de) 2009-10-29
CA2401559C (en) 2011-07-26
KR20030032925A (ko) 2003-04-26
ATE443130T1 (de) 2009-10-15
KR100674788B1 (ko) 2007-01-25
CN1737106B (zh) 2011-11-09
US20020098586A1 (en) 2002-07-25
WO2001064848A1 (fr) 2001-09-07
US20010021529A1 (en) 2001-09-13
AU2001236002B2 (en) 2006-02-16
EP1266960A1 (en) 2002-12-18
US6432713B2 (en) 2002-08-13
US6599734B2 (en) 2003-07-29
AU3600201A (en) 2001-09-12
EP1266960B1 (en) 2009-09-16
US20020037586A1 (en) 2002-03-28
CN1427888A (zh) 2003-07-02
EP1266960A4 (en) 2004-07-14
JP3865354B2 (ja) 2007-01-10

Similar Documents

Publication Publication Date Title
JP3865354B2 (ja) 細胞又は組織の培養方法
US9670450B2 (en) Cell or tissue cultivation apparatus and method of cultivation
US9410113B2 (en) Bioreactor system for three-dimensional tissue stimulator
US6121042A (en) Apparatus and method for simulating in vivo conditions while seeding and culturing three-dimensional tissue constructs
JP4607432B2 (ja) 細胞又は組織の培養装置
JP4398125B2 (ja) 細胞・組織培養装置
WO2012126578A1 (en) Bioreactor with mechanical and electrical stimulation means
IL269839A (en) System and method for sowing and growing in culture
KR101104336B1 (ko) 배양액 박동장치 및 박동식 배양 시스템
JP2004350557A (ja) ガス透過性バッグを用いた加圧培養装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CH CN DE ES GB KR SE

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C2

Designated state(s): AU CA CH CN DE ES GB KR SE

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

COP Corrected version of pamphlet

Free format text: PAGE 19/27, DRAWINGS, ADDED

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2401559

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027011525

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001236002

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001908154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018088864

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001908154

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020027011525

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027011525

Country of ref document: KR