WO2001073161A1 - Procede de production de ceramique et appareil pour sa production, dispositif a semi-conducteur et dispositif piezo-electrique - Google Patents

Procede de production de ceramique et appareil pour sa production, dispositif a semi-conducteur et dispositif piezo-electrique Download PDF

Info

Publication number
WO2001073161A1
WO2001073161A1 PCT/JP2001/002631 JP0102631W WO0173161A1 WO 2001073161 A1 WO2001073161 A1 WO 2001073161A1 JP 0102631 W JP0102631 W JP 0102631W WO 0173161 A1 WO0173161 A1 WO 0173161A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
ceramic
ceramics
active species
producing
Prior art date
Application number
PCT/JP2001/002631
Other languages
English (en)
French (fr)
Inventor
Eiji Natori
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to EP01917596A priority Critical patent/EP1205575A4/en
Publication of WO2001073161A1 publication Critical patent/WO2001073161A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material

Definitions

  • the present invention relates to a method for manufacturing ceramics such as an oxide film, a nitride film, and a ferroelectric film and an apparatus for manufacturing the same, and a semiconductor device and a piezoelectric element using the ferroelectric film.
  • Strength is a dielectric material PZT (P b (Z r, T i) 0 3) when or SBT (S r B i 2 T a 2 0 9) forming the like requires a high process temperature.
  • a PZT film usually requires a temperature of 600 to 700: and a SBT film requires a temperature of 600 to 800 ° C.
  • the properties of these ferroelectrics depend on their crystallinity, and the higher the crystallinity, the generally better the properties.
  • the crystallinity of the ferroelectric material has various characteristics, such as remanent polarization characteristics, coercive electric field characteristics, and fatigue characteristics. It has a significant effect on characteristics and imprint characteristics.
  • a ferroelectric substance having good crystallinity a ferroelectric substance having a multi-element and a bevelovskite crystal structure having a complicated structure requires a migration energy with high atoms. As a result, crystallization of ferroelectrics requires high process temperatures.
  • ferroelectrics require high-temperature treatment in an oxygen atmosphere for crystallization.
  • the high-temperature treatment if the polysilicon and the electrode material are oxidized and an insulating layer is formed, the insulating layer deteriorates the characteristics of the ferroelectric capacitor, and the heat deteriorates the transistor characteristics of the semiconductor side. .
  • Pb and Bi which are constituent elements of PZT or SBT, are easily diffused, and when these elements diffuse to the semiconductor device side, they are deteriorated. These degradations become more pronounced as the ferroelectric film processing temperature increases. This is more noticeable in semiconductor devices with high integration and high integration (for example, semiconductor devices with an integration degree of 1 Mbit or more).
  • ferroelectric capacitors are applied to semiconductor devices with a high degree of integration (for example, 1 to 256 kbits) that are relatively unaffected even if the ferroelectric film processing temperature is high.
  • DRAMs, flash memories, and the like already require 16 Mbits to G bits of integration, which limits the application fields of ferroelectric memory devices.
  • the process temperature of the ferroelectric is lowered to prevent the device from being deteriorated due to the high-temperature oxygen atmosphere as described above, the crystallinity of the ferroelectric film is reduced. As a result, the remanent polarization characteristics of the ferroelectric capacitor are degraded, and the characteristics of the ferrite, the imprint characteristics and the retention characteristics are also degraded.
  • An object of the present invention is to provide a manufacturing method capable of obtaining a ceramic having high properties such as crystallinity while lowering a process temperature, and an apparatus for manufacturing a ceramic.
  • Another object of the present invention is to provide a semiconductor device and a piezoelectric element using the ceramic obtained by the method of the present invention.
  • the first manufacturing method according to the present invention includes a step of forming a ceramic film while supplying an active species of a substance that is at least a part of a ceramic raw material and an electromagnetic wave to a predetermined region.
  • the migration energy of the film can be synergistically increased, and a ceramic having excellent film quality can be formed. Furthermore, by supplying electromagnetic waves to a predetermined region, not only the migration energy of the active species can be increased, but also the density of the active species can be increased. As a result, ceramics can be formed at a lower process temperature than when no active species and electromagnetic waves are supplied. For example, in forming ferroelectrics, it is preferable to apply a process temperature below 600 ° C, and more preferably a process temperature below 450 ° C. Wear.
  • At least active species of a substance to be a part of the ceramic raw material, electromagnetic waves, and other reactive species of the ceramic raw material can be supplied to a predetermined region.
  • the crystallization can be performed simultaneously with the formation of the ceramic.
  • an active species 10 OA in order to form a ceramic film 20 on a substrate 10, an active species 10 OA, another reactive species 300 A, an electromagnetic wave 20 OA is supplied. Then, the ceramic film 20 is formed by reacting the reactive species 30 OA with the active species 10 OA. At this time, the electromagnetic wave 20 OA and the active species 10 OA have an effect of activating the reaction between the reactive species 30 OA and the active species 10 OA and further increasing the migration energy of the atoms in the film.
  • the active species 100 A, the electromagnetic wave 200 A and the reactive species 300 A are selected depending on the composition of the ceramic to be obtained, the crystal structure, the intended use of the ceramic material, and the like.
  • the active species 10 OA is generated by the active species supply unit 100, the reactive species 300 A is supplied via the reactive species supply unit 300, and the electromagnetic wave 20 OA is supplied by the electromagnetic wave generation unit 200.
  • a film made of a substance that becomes a part of the raw material of ceramics can be formed in the predetermined region.
  • this manufacturing method similarly to the manufacturing method of the above (1), crystallization can be performed simultaneously with film formation of the ceramics.
  • this manufacturing method is different from the above-mentioned manufacturing method (1) in that a part of the ceramic raw material is formed into a film.
  • a film 20a made of a substance to be a part of a raw material for ceramics is formed on a substrate 10.
  • the active species supply unit 100 supplies active species 10 OA to the predetermined region, and the electromagnetic wave generation unit 200 supplies electromagnetic waves 20 OA, thereby causing the film 20 a to react with the active species 10 OA to form a ceramic film.
  • the electromagnetic waves 20 OA and the active species 10 OA have an effect of activating the reaction between the film 20 a and the active species 10 OA, and further increasing the energy of the atoms in the film.
  • the ceramic film formed in advance is crystallized.
  • the active species 10 OA is supplied to the first ceramic film 20 c on the base 10 by the active species supply unit 100 and the electromagnetic wave generation unit 200 is supplied to the first ceramic film 20 c.
  • the electromagnetic waves 20 OA By supplying the electromagnetic waves 20 OA, the migration energy of atoms in the first ceramic film 20 c is increased, and a second ceramic film having high crystallinity can be formed.
  • the first ceramic is preferably in an amorphous state or a ceramic having low crystallinity. Irradiation with the active species 10 O A and the electromagnetic wave 20 O A makes such a first ceramic film a second ceramic having high crystallinity and a high migration energy of atoms in the film.
  • the ceramic film or the second ceramic film has a thickness of 5 to 30 nm.
  • the thickness of the film is in this range, an effect of increasing the migration energy of atoms by the electromagnetic waves and the active species can be obtained in the entire film.
  • the thickness of the film is smaller than 5 nm, the composition of the film tends to vary. If the thickness of the film is as large as 30 nm, the effect of increasing the migration energy of atoms is hardly obtained in the entire film.
  • the step of forming the ceramic thin film having a predetermined thickness by applying the above-described first manufacturing method is repeatedly performed a plurality of times to obtain a predetermined thickness.
  • Ceramic film can be manufactured. The following aspects can be taken as such a manufacturing method.
  • a ceramic film having a predetermined thickness is formed while supplying at least one of an active species of a substance to be at least a part of a ceramic raw material and an electromagnetic wave to a predetermined region. This step is repeated a plurality of times to form a film having a predetermined thickness.
  • a film made of a substance that becomes a part of a raw material for ceramics can be formed in the predetermined region.
  • a first ceramic film 20a is formed on a substrate 10 in a film forming apparatus 2000.
  • the substrate 10 on which the first ceramic film 20a has been formed is transferred to a crystallizer 100.
  • the active species supply section 100 0 or the active species 100 A is supplied from the electromagnetic wave generation section 200 to the first ceramic film 20 a.
  • the first ceramic film 20a is crystallized to become the second ceramic film 20. The above film formation and crystallization steps are repeatedly performed.
  • the thickness of the ceramic film or the second ceramic film is desirably 5 to 30 nm, as in the first manufacturing method.
  • the formation region of the ceramic film is not a whole region with respect to the substrate, but is a partial region, that is, a small region.
  • the following aspects can be taken.
  • the method may include a step of forming a ceramic film while supplying at least one of an active species of a substance to be a part of a ceramic raw material and at least one of electromagnetic waves to a predetermined region.
  • the method may include a step of forming a second ceramics film having a different crystal structure from the first ceramics.
  • the following method is preferred as a method for forming a ceramic film partially on a substrate. That is, a film forming portion having an affinity for the ceramics to be formed and a non-film forming portion having no affinity for the ceramics to be formed are formed on the surface of the base, and are self-aligned. Forming a ceramic film on the film forming portion.
  • the manufacturing method of the present invention can take the following aspects.
  • the active species of the substance that becomes a part of the ceramic raw material is a radical or an ion obtained by activating a substance containing oxygen or nitrogen. That is, as the active species, oxygen radicals, ions or ozone can be used in the case of oxides, and nitrogen radicals or ions can be used in the case of nitrides.
  • oxygen radicals, ions or ozone can be used in the case of oxides
  • nitrogen radicals or ions can be used in the case of nitrides.
  • Examples of the method of generating radicals or ions include known methods, for example, a method of generating active species using RF (high frequency), microwave, ECR (electron cycloton resonance), ozona-1, and the like.
  • the electromagnetic wave is selected depending on the composition, reactive species, active species and the like of the ceramic.
  • a source such as an excimer laser, a halogen lamp, and a young laser (harmonic) can be used.
  • an electromagnetic wave that can dissociate oxygen or nitrogen is selected, the concentration of the active species can be increased.
  • radicals or ions obtained by activating an inert gas can be supplied to a predetermined region.
  • xenon an inert gas
  • argon an inert gas
  • the use of xenon increases the concentration of active oxygen species (oxygen radicals) generated by microwaves.
  • a film forming device for forming a film made of a substance that is a part of a ceramic raw material or a ceramic film can be further provided in the same chamber.
  • a crystallization device comprising: a generator; and capable of supplying at least one of active species and electromagnetic waves to a ceramic formation region;
  • a film forming apparatus including the crystallization apparatus and another champer.
  • the arrangement portion of the base may constitute the heating portion.
  • At least one of the active species supply unit and the electromagnetic wave generation unit partially supplies at least one of an active species and an electromagnetic wave to the base. it can.
  • At least one of the active species and the electromagnetic wave can be supplied in a state of being relatively moved with respect to the base.
  • the film forming apparatus can form a film by a coating method, an LSMCD method, a CVD method, or a sputtering method.
  • the film forming apparatus can form a film by an LSMCD method or a CVD method.
  • the ceramics obtained by the production method according to the present invention can be used for various applications.
  • a semiconductor device having a capacitor including a dielectric film formed by the manufacturing method of the present invention examples include a DRAM and a ferroelectric memory (Fe RAM) device using a paraelectric obtained as a dielectric film by the manufacturing method of the present invention.
  • a DRAM and a ferroelectric memory (Fe RAM) device using a paraelectric obtained as a dielectric film by the manufacturing method of the present invention.
  • Fe RAM ferroelectric memory
  • FIG. 1 is a diagram schematically showing an example of the production method of the present invention.
  • FIG. 2 is a diagram schematically showing one example of the production method of the present invention.
  • FIG. 3 is a diagram schematically showing an example of the production method of the present invention.
  • FIG. 4 is a diagram schematically showing a first embodiment according to the manufacturing method and the manufacturing apparatus of the present invention.
  • FIG. 5 is a view schematically showing a second embodiment according to the manufacturing method and the manufacturing apparatus of the present invention.
  • FIG. 6 is a diagram schematically showing a third embodiment according to the manufacturing method and the manufacturing apparatus of the present invention.
  • FIG. 7 is a diagram schematically showing a fourth embodiment according to the manufacturing method and the manufacturing apparatus of the present invention.
  • FIG. 8 is a diagram schematically illustrating a semiconductor device according to a fifth embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a method for manufacturing ceramics and an apparatus for manufacturing the ceramics according to the present embodiment.
  • the manufacturing apparatus shown in FIG. 4 includes a film forming apparatus 2000, a crystallization apparatus 1000, and a load lock apparatus 3000.
  • the object 30 is reciprocally movable between a film forming apparatus 2000 and a crystallization apparatus 1000 via a load lock device 3000.
  • the film forming apparatus 2 00 is not particularly limited as long as the first ceramic film 20 a is formed on the base 10.
  • an L SMC D device capable of performing L SMC D (Liquid Source Misted Deposition) is used.
  • the film forming apparatus 2000 includes a raw material tank 410 containing a ceramic material such as an organic metal, a mist generating unit 420 for converting the raw material into mist, and a gas supplying carrier gas. And a raw material supply unit 450 for supplying mist-converted raw materials and gas to a predetermined region on the substrate 10 mounted on the mounting unit (arrangement unit) 40. Having.
  • a mesh 4600 is provided at the tip of the raw material supply section 450.
  • a mask 470 for forming the first ceramic film 20a to be formed into a predetermined pattern is provided between the base 10 and the raw material supply section 450 as necessary.
  • the mounting section 40 has a heating section for heating the base 10 to a predetermined temperature.
  • the first ceramic film 200a is formed in the following procedure.
  • the raw material supplied from the raw material tank 410 to the mist generating section 420 becomes mist having a diameter of 0.1 to 0.2 m by, for example, ultrasonic waves.
  • the mist formed in the mist forming section 420 and the gas supplied from the gas supply section 430 are sent to the raw material supply section 450.
  • a raw material species 30 O A is supplied from the raw material supply unit 450 to the base 10, and the first ceramic film 20 a in an amorphous state is formed on the base 10.
  • the first ceramic film 20a in an amorphous state can be obtained by heating the base 10 to decompose (so-called degrease) the organic metal complex. This degreasing may be performed in a separate room using RTA or furnace.
  • the first ceramic film 20a formed by using the LSMCD method has a fine and appropriate distribution of depletion in the film, which is advantageous for crystallization in that atoms have a migration-inhibited state.
  • the first ceramic film 20a is preferably formed to have a thickness of, for example, 5 to 30 nm in order to effectively perform crystallization in the next crystallization step. Since the thickness of the first ceramic film 20a is in this range, as described above, the crystallization treatment does not cause a variation in composition and can reduce the grain size of the crystal, thereby achieving high crystallinity. Ceramics can be obtained.
  • the crystallization apparatus 100 has an active species supply unit 100 and an electromagnetic wave generation unit 200.
  • the active species 100 A formed in the active species supply unit 100 is supplied to a predetermined region of the base 10 via the supply path 110.
  • the electromagnetic wave 200 A generated by the electromagnetic wave generator 200 is also applied to the region to which the active species 100 OA is supplied.
  • the arrangement of the active species supply unit 100 and the electromagnetic wave generation unit 200 does not prevent the supply of the active species 100 OA and the electromagnetic wave 200 OA Is set as appropriate.
  • the amorphous first ceramic film 20a formed by the film forming device 2000 is irradiated with active species 10 OA and electromagnetic waves 20 OA.
  • the migration energy of atoms in the first ceramic film 20a increases.
  • the second ceramic having high crystallinity is crystallized at a relatively low temperature, specifically, at a temperature of 600 ° C. or lower, more preferably at a temperature of 450 ° C. or less.
  • a film 20b is formed.
  • the formation of the first ceramic film 20a in the film forming apparatus 2000 and the formation of the crystalline ceramic film 20c in the crystallization apparatus 100 obtain a ceramic film having a predetermined thickness. Can be repeated multiple times.
  • the growth rate varies depending on the crystal orientation because the SBT is a layered vitreous buskite.
  • undesirable grooves and holes are likely to be formed in polycrystal.
  • a uniform film can be obtained with the above-mentioned grooves filled.
  • the first ceramics in which the atoms are fine and moderately depleted due to the use of the LSMCD method A membrane 20a can be obtained.
  • the first ceramic film 200a By irradiating the first ceramic film 200a with active species 100A and electromagnetic waves 200A in the crystallization apparatus 1000, a large migration energy is given to the atoms. As a result, better crystallization can be performed at a lower temperature than in a conventional apparatus.
  • FIG. 5 is a diagram schematically showing a film forming apparatus 400 according to the present embodiment.
  • the film forming apparatus 400 is an example of an apparatus capable of simultaneously performing film formation and crystallization of the film.
  • the film is formed by the MOCVD process, and the crystallization method of the present invention is combined with this.
  • the film forming apparatus 400 has a raw material tank 5100, a mist forming section 5200, a heater 540, and a raw material supply section 550 as a system for supplying a raw material.
  • the raw material tank 4100 and the mist forming section 5200 are the same as the raw material tank 410 and the mist forming section 5 described in the first embodiment. The description is omitted because it is the same as the conversion unit 420.
  • the heater 540 heats and vaporizes the misted raw material. Then, 30 OA of the reactive species is supplied from the raw material supply unit 550 to a predetermined region of the base 10.
  • an active species supply unit 100 and an electromagnetic wave generation unit 200 are arranged at positions where the supply of the reactive species 30 OA is not hindered. Then, the active species supply unit 100 irradiates a predetermined region of the base body 10 with the active species 100 A, while the electromagnetic wave generation unit 200 irradiates the electromagnetic wave 20 OA.
  • the wavelength of the electromagnetic wave is preferably 193 to 300 ⁇ m when forming an oxide such as PZT, S S.
  • the use of electromagnetic waves of this wavelength increases the migration of atoms in the oxide.
  • 193 nm ArF is used as an electromagnetic wave, oxygen can be dissociated, and the concentration of active species can be increased.
  • the film forming apparatus 4000 at the same time as forming a ceramics film by the MOC VD method, the film is crystallized by active species 10 OA and electromagnetic waves 20 OA, and the ceramic film 20 is formed. Is done.
  • the ceramic film By irradiating the ceramic film with 10 OA of active species and 20 OA of electromagnetic waves at the same time as the film is formed in the film forming device 4000, a large migration energy can be imparted to the atoms, and as a result, compared with the conventional device. And good crystallization can be performed at a low temperature.
  • FIG. 6 is a diagram showing an example of a method for supplying 10 OA of active species and 20 OA of electromagnetic waves.
  • at least one of active species 10 OA and electromagnetic waves 20 OA, preferably both, or at least electromagnetic waves 20 OA are partially supplied to the ceramics forming region of target object 30.
  • the active species 10 OA and the electromagnetic waves 20 OA are supplied to a line-shaped region 30a or a spot-shaped region 30b as shown in FIG.
  • the regions 30 a and 30 b to which the activated species 10 OA and the electromagnetic waves 20 OA are supplied are set so as to be relatively movable with respect to the object 30.
  • any of the method of moving the processing object 30, the method of moving the areas 30a and 30b, and the method of moving both can be used. Good.
  • Regions 30a and 30 When the active species 100 A and the electromagnetic waves 200 OA are supplied in a linear form, at least one of the active species 100 a and the electromagnetic wave If the active species 10 OA and the electromagnetic waves 20 OA are supplied in the form of spots when moved in the orthogonal direction (for example, the X direction in FIG. 6), at least one of the two is in one direction (for example, X in FIG. 6). Direction or Y direction).
  • the temperature of the object 30 to be processed is lower than when the entire surface is supplied.
  • the energy of the active species 10 OA and the intensity of the electromagnetic waves 20 OA can be increased while suppressing the rise.
  • the temperature of the object 30 to be processed is increased, so that the type of the object to be processed 30 may be damaged by heat.
  • the MOS element may be damaged due to the formation of an oxide film or the diffusion of impurities, which may cause deterioration of the semiconductor device. Conceivable.
  • the regions 30a and 30b partial it is possible to suppress a rise in the temperature of the target object due to the irradiation of the electromagnetic wave.
  • the intensity of the electromagnetic wave 200 A and the energy of the active species 100 A are set in consideration of the temperature rise of the object to be processed, the composition of the ceramic, and the like as described above.
  • FIG. 7A and 7B show a modification of the film forming method of the present invention.
  • FIG. 7A shows a plane of the base body 10
  • FIG. 7B shows a cross section taken along line AA of FIG. 7A.
  • the base 10 is formed on the first base 12 and the first base 12. It has a film forming part 14 and a non-film forming part 16 formed.
  • the film forming portion 14 is made of a material having high chemical or physical affinity with the ceramics formed on the base 10, for example, a material having good wettability with respect to ceramic raw materials or reactive species.
  • the non-film forming portion 16 is formed of a material that has low chemical or physical affinity with the ceramic to be formed, and has low wettability with respect to the ceramic raw material or reactive species, for example.
  • iridium oxide can be used as the material of the film forming portion 14 and a fluorine-based compound can be used as the material of the non-film forming portion 16.
  • the method for producing ceramics according to the present embodiment can be applied to various ceramics including ferroelectrics, but can be suitably used particularly for layered perovskites.
  • oxygen particularly radicals (atomic oxygen)
  • atomic oxygen is liable to diffuse in a direction perpendicular to the C-axis. Therefore, migration of radicals from the side surface of the ceramic film 20 in a heating process for crystallization is performed. Is easily performed.
  • the perovskite has less oxygen deficiency, the polarization characteristics are improved, and the deterioration of the fatage characteristics and imprint characteristics is suppressed.
  • FIG. 8 shows an example of a semiconductor device (ferroelectric memory device 500) using a ferroelectric obtained by the manufacturing method according to the present invention.
  • the ferroelectric memory device 500 has a ⁇ 1 ⁇ 03 area scale 1 and a capacitor area R 2 formed on the CMOS area R 1.
  • the ⁇ 103 region 11 has a known configuration. That is, the CMOS region Rl has a semiconductor substrate 1, an element isolation region 2 and a MOS transistor 3 formed in the semiconductor substrate 1, and an interlayer insulating layer 4.
  • the capacitor region R 2 is connected to the capacitor C 100 composed of the lower electrode 5, the ferroelectric film 6 and the upper electrode 7, the wiring layer 8 a connected to the lower electrode 5, and the upper electrode 7. Wiring layer 8 b and an insulating layer 9. Then, impurity diffusion of the MOS transistor 3
  • the layer 3a and the lower electrode 5 forming the capacitor C100 are connected by a contact layer 11 made of polysilicon or a tungsten plug.
  • the ferroelectric (PZT, SBT) film 6 forming the capacitor C 100 has a temperature lower than that of a normal ferroelectric, In the case of SBT, it can be formed at a temperature lower than 500 ° C, and in the case of SBT, it can be formed at a temperature lower than 600 ° C. Therefore, since damage to the CMOS region R1 due to heat can be suppressed, the capacitor C100 can be applied to a highly integrated ferroelectric memory device.
  • ferroelectric (PZT, SBT) film 6 can be formed at a temperature lower than that of a normal ferroelectric, a wiring layer (not shown) of the CMOS region R 1 and an electrode portion forming the capacitor C 100 are formed. Even if expensive materials such as iridium and platinum are not used as the materials 5 and 7, there is no deterioration of wiring or electrodes. Therefore, an inexpensive aluminum alloy can be used as a material for these wiring layers and electrode portions, and the cost can be reduced. Furthermore, in semiconductor devices such as CMOS, it is customary to isolate the semiconductor process from the capacitor process in order to prevent contamination by ferroelectrics (PZT, SBT).
  • the process temperature of the ferroelectric can be lowered, so that the capacitor can be formed continuously after the multilayer wiring step which is the final step of the normal semiconductor process. Therefore, the number of processes to be isolated can be reduced, and the process can be simplified. Furthermore, the manufacturing method of the present invention does not require isolation between the semiconductor process and the capacitor process, and is advantageous for manufacturing a semiconductor device in which logic, analog, and the like are mixed.
  • the dielectric formed by the manufacturing method of the present invention is not limited to the above-mentioned ferroelectric memory device.
  • a high dielectric constant paraelectric material such as BST is used to increase the size of the capacitor. The capacity can be increased.
  • the dielectric formed by the manufacturing method of the present invention can be applied to other uses, for example, a piezoelectric element of a piezoelectric element used for an actuator.
  • the nitride (silicon nitride, titanium nitride) formed by the manufacturing method of the present invention can be applied to, for example, a passivation film, a mouth interconnect film, and the like of a semiconductor device.

Description

明 細 書 セラミックスの製造方法およびその製造装置、 ならびに半導体装置および圧電素子 [技術分野]
本発明は、 酸化膜、 窒化膜および強誘電体膜などのセラミックスの製造方法および その製造装置、 ならびに強誘電体膜を用いた半導体装置および圧電素子に関する。
[背景技術]
強誘電体材料である P Z T ( P b ( Z r , T i ) 03) や S B T ( S r B i 2 T a 209) などを形成する場合には、 高いプロセス温度を必要とする。 たとえば、 通常、 P Z T の成膜においては 6 0 0〜7 0 0 :、 S B Tの成膜においては 6 5 0〜8 0 0 °Cの温 度を必要とする。 これらの強誘電体の特性は、 その結晶性に依存し、 結晶性が高いほ ど一般的に優れた特性を有する。
強誘電体膜を含むキャパシタ (強誘電体キャパシタ) を備えた半導体装置、 たとえ ば強誘電体メモリ装置においては、 強誘電体の結晶性が各特性、 たとえば残留分極特 性、 抗電界特性、 ファティーグ特性およびインプリント特性などに顕著に影響を与え る。 そして、 結晶性のよい強誘電体を得るためには、 強誘電体が多元系でかつ複雑な 構造を有するベロブスカイト結晶構造を有するため、 原子が高いマイグレーションェ ネルギ一を必要とする。 その結果、 強誘電体の結晶化には、 高いプロセス温度を必要 とする。
しかしながら、 強誘電体膜のプロセス温度が高いと、 強誘電体メモリ装置にダメ一 ジを与えやすい。 すなわち、 強誘電体は結晶化のために酸素雰囲気での高温処理が必 要となる。 その高温処理の際に、 ポリシリコンや電極材料が酸化し絶縁層が形成され ると、 この絶縁層によって強誘電体キャパシタの特性が劣化し、 さらに、 熱により半 導体側のトランジスタ特性が劣化する。 また、 P Z Tあるいは S B Tの構成元素であ る P b, B iは拡散しやすく、 これらの元素が半導体デバイス側に拡散することによ リ、 その劣化を招く。 これらの劣化は、 強誘電体膜のプロセス温度が高いほど顕著で あり、 かつ高集積化された半導体装置 (たとえば 1 Mビット以上の集積度の半導体装 置) であるほど顕著となる。
そのため、 現状では、 強誘電体キャパシタは、 強誘電体膜のプロセス温度が高くて も比較的影響の少ない集積度 (たとえば 1〜 2 5 6 kビット) の半導体装置に適用し ている。 しかし、 現在、 D R AM , フラッシュメモリ等では、 すでに 1 6 Mビットか ら Gビットの集積度が要求され、 そのため、 強誘電体メモリ装置の適用分野が限定さ れている。 一方、 強誘電体のプロセス温度を低くして、 上述したような高温の酸素雰 囲気によるデバイスの劣化を防止すると、強誘電体膜の結晶性が低下する。その結果、 強誘電体キャパシタの残留分極特性が低下し、 ファティーグ特定、 インプリント特性 ならびにリテンション特性なども低下する。
[発明の開示]
本発明の目的は、 プロセス温度を低下させながら、 結晶性などの特性が高いセラミ ックスを得ることができる製造方法、 およびセラミックスの製造装置を提供すること にある。
本発明の他の目的は、 本発明の方法によって得られたセラミックスを用いた半導体 装置ならびに圧電素子を提供することにある。
( A ) 第 1の製造方法
本発明に係る第 1の製造方法は、 少なくともセラミックスの原材料の一部となる物 質の活性種と、 電磁波とを、 所定領域に供給しながら、 セラミックス膜を形成するェ 程を含む。
この製造方法によれば、 前記活性種と前記電磁波とを膜に照射することにより、 膜 のマイグレーションエネルギーを相乗的に高めることができ、 優れた膜質のセラミッ クスを形成することができる。 さらに、 所定領域に電磁波を供給することにより、 活 性種のマイグレーションエネルギーの増大だけではなく、 活性種の密度を増加するこ とができる。 その結果、 活性種および電磁波を供給しない場合に比べて、 低温のプロ セス温度でセラミックスを形成できる。 たとえば、 強誘電体の形成においては、 好ま しくは 6 0 0 °Cより低い温度、 より好ましくは 4 5 0 °C以下のプロセス温度を適用で きる。
以上の作用効果は、 以下に述べる本発明でも同様である。
第 1の製造方法においては、 さらに、 以下の態様をとることができる。
( 1 ) 少なくともセラミックスの原材料の一部となる物質の活性種と、 電磁波と、 さらにセラミックスの原材料の他の反応種を所定領域に供給することができる。 この 製造方法では、 セラミックスの成膜と同時にその結晶化を行うことができる。
この製造方法では、 図 1に示すように、 基体 1 0上にセラミックス膜 20を形成す るために、 膜の形成領域に、 活性種 1 0 OAと、 他の反応種 300 Aと、 電磁波 20 OAとが供給される。 そして、 反応種 30 OAと活性種 1 0 OAとが反応することに より、 セラミックス膜 20が形成される。 この際、 電磁波 20 OAと活性種 1 0 OA は、 反応種 30 OAと活性種 1 0 OAとの反応を活性化し、 さらに膜中の原子のマイ グレーシヨンエナジーを高める効果を有する。 そして、 活性種 1 00 A、 電磁波 20 0 Aおよび反応種 300 Aは、 得ようとするセラミックスの組成、 結晶構造、 セラミ ックス材料の使用目的、 などによって選択される。
活性種 1 0 OAは、 活性種供給部 1 00によって生成され、 反応種 300 Aは反応 種供給部 300を介して供給され、 さらに電磁波 20 OAは電磁波発生部 200によ つて供給される。
(2) 前記所定領域にセラミックスの原材料の一部となる物質からなる膜を形成す ることができる。 この製造方法では、 上記 ( 1 ) の製造方法と同様に、 セラミックス の成膜と同時にその結晶化を行うことができる。 しかし、 この製造方法では、 セラミ ックスの原材料の一部の物質が成膜されている点で、 上記( 1 )の製造方法と異なる。 この製造方法では、 図 2に示すように、 基体 1 0上にセラミックスの原材料の一部 となる物質からなる膜 20 aが形成されている。 そして、 所定領域に活性種供給部 1 00によって活性種 1 0 OAを、 電磁波発生部 200によって電磁波 20 OAを供給 することにより、 膜 20 aと活性種 1 0 OAとを反応させてセラミックス膜を形成す る。 この際、 電磁波 20 OAと活性種 1 0 OAは、 膜 20 aと活性種 1 0 OAとの反 応を活性化し、さらに膜中の原子のマイダレ一シヨンエナジーを高める効果を有する。
(3) 活性種と電磁波とを、 第 1のセラミックス膜に供給して、 前記第 1のセラミ ックスと結晶構造の異なる第 2のセラミックス膜を形成する工程を含むことができる。 この製造方法によれば、 あらかじめ形成されたセラミックス膜の結晶化が行われる。 この製造方法においては、 図 2に示すように、 基体 1 0上の第 1のセラミックス膜 2 0 cに、 活性種供給部 1 0 0によって活性種 1 0 O Aを、 電磁波発生部 2 0 0によ つて電磁波 2 0 O Aを供給することにより、 第 1のセラミックス膜 2 0 cでの原子の マイグレーションエネルギーが高まり、 結晶性の高い第 2のセラミックス膜を形成す ることができる。
前記第 1のセラミックスは、 アモルファス状態あるいは結晶性の低いセラミックス であることが好ましい。 このような第 1のセラミックス膜は、 活性種 1 0 O Aおよび 電磁波 2 0 O Aの照射により、 膜での原子のマイグレーションエネルギーが大きくな リ、 高い結晶性を有する第 2のセラミックスとなる。
以上述べた第 1の製造方法での作用効果は、 本発明に係る他の製造方法においても 同様である。
本発明においては、 前記セラミックス膜あるいは第 2のセラミックス膜は、 厚さが 5〜3 0 n mであることが望ましい。 膜の厚さがこの範囲であることにより、 前記電 磁波および前記活性種による原子のマイグレーションェネルギ一の増大効果が膜全体 において得られる。 膜の厚さが 5 n mより小さいと、 膜の組成にばらつきを生じやす い。 また、 膜の厚さが 3 0 n mょリ大きいと、 原子のマイグレーションエネルギーの 増大効果が膜全体において得られにくい。
( B ) 第 2の製造方法
本発明に係る第 2の製造方法は、 前述した第 1の製造方法を適用して所定厚さのセ ラミックスの薄膜を形成する工程を、 複数回繰リ返して行うことにより、 所定厚さの セラミックス膜を製造できる。 このような製造方法としては、 次のような態様をとる ことができる。
( 1 )上記(A ) ( 1 ) と同様に、 少なくともセラミックスの原材料の一部となる物 質の活性種および電磁波の少なくとも一方を、 所定領域に供給しながら、 所定厚さの セラミックス膜を形成する工程を、 複数回繰り返して行い、 所定厚さを有する膜を形 成することができる。 ( 2 )上記(A ) ( 2 ) と同様に、 前記所定領域にセラミックスの原材料の一部とな る物質からなる膜を形成することができる。
( 3 )第 1のセラミックス膜を形成する第 1の工程と、 上記 (A ) ( 3 ) と同様に、 活性種および電磁波の少なくとも一方を前記第 1のセラミックス膜に供給して、 前記 第 1のセラミックス膜と結晶構造の異なる第 2のセラミックス膜を形成する第 2のェ 程とを含み、 前記第 1および第 2の工程を交互に行い、 所定厚さを有する膜を形成す ることができる。
この製造方法では、 図 3に示すように、 成膜装置 2 0 0 0において、 基体 1 0上に 第 1のセラミックス膜 2 0 aが形成される。 ついで、 第 1のセラミックス膜 2 0 aが 成膜された基体 1 0は、/ ½晶化装置 1 0 0 0に移される。 結晶化装置 1 0 0 0では、 活性種供給部 1 0 0か 活性種 1 0 0 Aが、 電磁波発生部 2 0 0から電磁波 2 0 0 A が、 第 1のセラミックス膜 2 0 aに供給され、 第 1のセラミックス膜 2 0 aは結晶化 されて第 2のセラミックス膜 2 0となる。 以上の成膜および結晶化工程が繰り返し行 われる。
この第 2の製造方法においても、 第 1の製造方法と同様に、 前記セラミックス膜あ るいは第 2のセラミックス膜の厚さは、 5〜 3 0 n mであることが望ましい。
( C ) 第 3の製造方法
この製造方法においては、セラミックス膜の形成領域が基体に対して全面的でなく、 部分的すなわち微少な領域で行われる。 この製造方法においては、 以下の態様をとる ことができる。
( 1 ) セラミックス膜の形成領域が基体に対して部分的であって、
少なくともセラミックスの原材料の一部となる物質の活性種および電磁波の少なく とも一方を、 所定領域に供給しながら、 セラミックス膜を形成する工程を含むことが できる。
( 2 )前述した (A ) ( 2 ) と同様に、 前記所定領域にセラミックスの原材料の一部 となる物質からなる膜を形成することができる。
( 3 ) セラミックス膜の形成領域が基体に対して部分的であって、
活性種および電磁波の少なくとも一方を、 第 1のセラミックス膜に供給しながら、 前記第 1のセラミックスと結晶構造の異なる第 2のセラミックス膜を形成する工程を 含むことができる。
( 4 ) セラミックス膜を基体に対して部分的に形成する方法として、 以下の方法が 好ましい。 すなわち、 前記基体の表面に、 成膜されるセラミックスに対して親和性を 有する膜形成部と、 成膜されるセラミックスに対して親和性を有しない非膜形成部と を形成し、 自己整合的に前記膜形成部にセラミックス膜を形成する工程を含むことが できる。
( D ) 本発明に係る製造方法の他の態様
本発明の製造方法は、 以下の態様をとることができる。
( 1 ) 前記セラミックスの原材料の一部となる物質の活性種は、 酸素または窒素を 含む物質を活性化させて得られるラジカルまたはイオンである。 すなわち、 活性種と しては、 酸化物の場合には酸素のラジカル、 イオンまたはオゾンを、 窒化物の場合に は窒素のラジカルやイオンを用いることができる。 ラジカルあるいはイオンの発生方 法としては、 公知の方法、 たとえば、 R F (高周波)、 マイクロ波、 E C R (電子サイ クロトン共鳴)、 ォゾナ一、 等を用いた活性種生成方法を例示できる。
前記電磁波は、 セラミックスの組成、 反応種、 活性種などによって選択される。 電 磁波は、 エキシマレ一ザ、 ハロゲンランプ、 ヤングレーザ (高調波) などの発生源を 用いることができる。 また、 電磁波として、 酸素または窒素を解離できるものを選択 すれば、 活性種の濃度を高めることができる。
( 2 ) 前記活性種に加えて、 さらに、 不活性ガス (キセノン、 アルゴン) を活性化 させて得られるラジカルまたはイオンを所定領域に供給することができる。たとえば、 キセノンを用いると、 マイクロ波を用いた酸素の活性種 (酸素ラジカル) の生成にお いて、 その濃度が増加する。
( E ) 本発明に係る製造装置
本発明の製造装置としては、 以下の態様をとることができる。
( 1 ) セラミックスが形成される基体の配置部と、 加熱部と、 少なくともセラミツ クスの原材料の一部となる物質の活性種を供給するための活性種供給部と、 電磁波を 供給するための電磁波発生部と、 を含み、 セラミックスの形成領域に、 活性種および 電磁波の少なくとも一方を供給できる。
(2) 上記 ( 1 ) の製造装置において、 同じチャンバ内に、 さらに、 セラミックス の原材料の一部となる物質からなる膜、 またはセラミックス膜を成膜するための成膜 装置を有することができる。
(3) セラミックスが形成される基体の配置部と、 加熱部と、 少なくともセラミツ クスの原材料の一部となる物質の活性種を供給するための活性種供給部と、 電磁波を 供給するための電磁波発生部と、 を含み、 セラミックスの形成領域に、 活性種および 電磁波の少なくとも一方を供給できる、 結晶化装置と、
前記結晶化装置と別のチャンパからなる成膜装置と、 を含むことができる。
(4) 上記 (3) の製造装置において、 前記結晶化装置と前記成膜装置との間に口
―ドロック装置を有することができる。
(5) 上記 ( 1 ) 〜 (4) の製造装置において、 前記基体の配置部は、 前記加熱部 を構成することができる。
(6) 上記 ( 1 ) 〜 (5) の製造装置において、 前記活性種供給部および前記電磁 波発生部の少なくとも一方は、 活性種および電磁波の少なくとも一方を前記基体に対 して部分的に供給できる。
(7) 上記 ( 1 ) 〜 (6) の製造装置において、 前記活性種および前記電磁波の少 なくとも一方は、 前記基体に対して相対的に移動する状態で供給できる。
(8) 上記 (3) の製造装置において、 前記成膜装置は、 塗布法、 L SMCD法、 CVD法またはスパッタ法によって成膜を実施することができる。
(9) 上記 (2) の製造装置において、 前記成膜装置は、 L SMCD法または CV D法によって成膜を実施することができる。
(F) 本発明に係る製造方法によって得られたセラミックスは、 各種の用途に利用 できる。 以下に、 代表的な用途の装置を挙げる。
( 1 ) 本発明の製造方法によって形成された誘電体膜を含むキャパシタを有する、 半導体装置。 このような半導体装置としては、 誘電体膜として本発明の製造方法によ つて得られた常誘電体を用いた DRAM、 強誘電体メモリ (F e RAM)装置がある。
( 2 ) 本発明の製造方法によって形成された誘電体膜を含む圧電素子。 [図面の簡単な説明]
図 1は、 本発明の製造方法の一例を模式的に示す図である。
図 2は、 本発明の製造方法の一例を模式的に示す図である。
図 3は、 本発明の製造方法の一例を模式的に示す図である。
図 4は、 本発明の製造方法および製造装置に係る第 1の実施の形態を模式的に示す 図である。
図 5は、 本発明の製造方法および製造装置に係る第 2のの実施の形態を模式的に示 す図である。
図 6は、 本発明の製造方法および製造装置に係る第 3の実施の形態を模式的に示す 図である。
図 7は、 本発明の製造方法および製造装置に係る第 4の実施の形態を模式的に示す 図である。
図 8は、 本発明の第 5の実施の形態に係る半導体装置を模式的に示す図である。
[発明を実施するための最良の形態]
[第 1の実施の形態]
図 4は、 本実施の形態に係るセラミックスの製造方法およびその製造装置を模式的 に示す図である。 図 4に示す製造装置は、 成膜装置 2000と、 結晶化装置 1 000 と、 ロードロック装置 3000とを有する。 そして、 被処理体 30は、 ロードロック 装置 3000を介して、 成膜装置 2000と結晶化装置 1 000との間を往復移動可 能に配置されている。
成膜装置 2◦ 00は、 基体 1 0上に第 1のセラミックス膜 20 aが形成される装置 であれば特に制限されない。 本実施の形態においては L SMC D (L i q u i d S o u r c e M i s t e d D e p o s i t i o n) が可能な L SMC D装置を用い ている。 成膜装置 2000は、 有機金属などのセラミックス材料が収容される原料タ ンク 4 1 0と、 原料をミスト化するミスト化部 420と、 キャリアガスを供給するガ ス供給部 4 3 0と、 ミスト化された原材料およびガスを載置部 (配置部) 4 0上に載 置された基体 1 0上の所定領域に供給するための原料供給部 4 5 0とを有する。 原料 供給部 4 5 0の先端にはメッシュ 4 6 0が設けられている。 また、 基体 1 0と原料供 給部 4 5 0との間には必要に応じて、 形成される第 1のセラミックス膜 2 0 aを所定 パターンにするためのマスク 4 7 0が配置されている。 載置部 4 0は、 基体 1 0を所 定温度に加熱するための加熱部を有する。
この成膜装置 2 0 0 0によれば、 以下の手順で第 1のセラミックス膜 2 0 aが形成 される。
まず原料タンク 4 1 0からミスト化部 4 2 0に供給された原料は、 たとえば超音波 によって、 0 . 1〜0 . 2 mの径を有するミストとなる。 ミスト化部 4 2 0で形成 されたミストと、 ガス供給部 4 3 0から供給されたガスとは、 原料供給部 4 5 0に送 られる。 そして、原料供給部 4 5 0から基体 1 0に向けて原料種 3 0 O Aが供給され、 基体 1 0上にアモルファス状態の第 1のセラミックス膜 2 0 aが形成される。
原料に有機金属を用いる場合には、 アモルファス状態の第 1のセラミックス膜 2 0 aは、 基体 1 0を加熱して有機金属錯体を分解 (いわゆる脱脂) させることで得られ る。 なお、 この脱脂は、 別室で R T Aやファーネスを用いておこなってもよい。
L S M C D法を用いて形成された第 1のセラミックス膜 2 0 aは、 膜内に微細で適 度な分布の空乏を有するため、 原子がマイグレーションしゃすい状態を有する点で結 晶化に有利である。 また、 第 1のセラミックス膜 2 0 aは、 次の結晶化工程において 結晶化を効果的に行うために、 たとえば 5〜 3 0 n mの厚さで形成されることが好ま しい。 第 1のセラミックス膜 2 0 aの厚さがこの範囲にあることにより、 前述したよ うに、 結晶化処理によって、 組成のばらつきがなく、 結晶のグレインサイズを小さく することができ、 高い結晶性を有するセラミックスを得ることができる。
結晶化装置 1 0 0 0は、 活性種供給部 1 0 0と、 電磁波発生部 2 0 0とを有する。 活性種供給部 1 0 0で形成された活性種 1 0 0 Aは、 供給路 1 1 0を介して基体 1 0 の所定領域に供給される。 また、 電磁波発生部 2 0 0によって発生した電磁波 2 0 0 Aも、 活性種 1 0 O Aが供給される領域に照射される。 活性種供給部 1 0 0および電 磁波発生部 2 0 0の配置は、 活性種 1 0 O Aおよび電磁波 2 0 O Aの供給を妨げない ように、 適宜設定される。
結晶化装置 1 0 0 0においては、 成膜装置 2 0 0 0で形成されたアモルファス状態 の第 1のセラミックス膜 2 0 aに活性種 1 0 O Aと電磁波 2 0 O Aとが照射されるこ とにより、 第 1のセラミックス膜 2 0 aでの原子のマイグレーションエネルギーが増 大する。 その結果、 比較的低温で、 具体的には 6 0 0 °Cょリ低い温度、 より好ましく は 4 5 0 °C以下の温度で、 結晶化が行われ、 高い結晶性を有する第 2のセラミックス 膜 2 0 bが形成される。
成膜装置 2 0 0 0での第 1のセラミックス膜 2 0 aの形成、 および結晶化装置 1 0 0 0での結晶性セラミックス膜 2 0 cの形成は、 所定の厚さのセラミックス膜を得る ために、 複数回繰り返して行うことができる。
特に、 S B Tを成膜する際には、 S B Tが層状べ口ブスカイトのため、 結晶方位に より成長速度が異なり、 その結果、 多結晶では好ましくない溝ゃ孔ができやすい。 し かし、 本実施の形態のように薄膜を繰り返して積層することにより、 前述した溝ゃ孔 を埋めた状態で、 均質な膜を得ることができる。
本実施の形態によれば、 成膜装置 2 0 0 0において、 L S M C D法を用いることに よリ、 微細で適度な空乏を有することによリ原子がマイダレ一ションしゃすい状態の 第 1のセラミックス膜 2 0 aを得ることができる。 そして、 結晶化装置 1 0 0 0にお いて、 第 1のセラミックス膜 2 0 aに、 活性種 1 0 0 Aと電磁波 2 0 0 Aとを照射す ることにより、 原子に大きなマイグレーションエネルギーを付与でき、 その結果、 従 来の装置に比べて低温で良好な結晶化を行うことができる。
[第 2の実施の形態]
図 5は、 本実施の形態に係る成膜装置 4 0 0 0を模式的に示す図である。 成膜装置 4 0 0 0は、 成膜と、 膜の結晶化とを同時に行うことができる装置の例である。 本実 施の形態では、 成膜は M O C V D法によって行われ、 これに本発明の結晶化方法が組 み合わされている。
成膜装置 4 0 0 0は、 原料を供給するシステムとして、 原料タンク 5 1 0、 ミスト 化部 5 2 0、 加熱器 5 4 0および原料供給部 5 5 0を有する。 原料タンク 5 1 0およ びミスト化部 5 2 0は、 第 1の実施の形態で説明した原料タンク 4 1 0およびミスト 化部 420と同様であるため、 説明を省略する。 加熱器 540は、 ミスト化された原 材料を加熱して気化させるものである。 そして、 原料供給部 550からは、 基体 1 0 の所定領域に反応種 30 OAが供給される。
載置台 40の上方には、 反応種 30 OAの供給を妨げない位置に、 活性種供給部 1 00と、 電磁波発生部 200とが配置されている。 そして、 活性種供給部 1 00から は基体 1 0の所定領域に活性種 1 00 Aが、 一方電磁波発生部 200からは電磁波 2 0 OAが照射される。
電磁波の波長は、 PZT, S ΒΤなどの酸化物を形成する場合、 1 93〜300 η mが好ましい。 この波長の電磁波を用いると、 酸化物での原子のマイグレーションが 高まる。 また、 電磁波として 1 93 nmの Ar Fを用いると、 酸素を解離し、 活性種 の濃度を高めることができる。
本実施の形態に係る成膜装置 4000によれば、 MOC VD法によってセラミック ス膜を成膜すると同時に、 活性種 1 0 OAおよび電磁波 20 OAによって膜の結晶化 が行われ、 セラミックス膜 20が形成される。 そして、 成膜装置 4000において、 成膜と同時に、 セラミックス膜に活性種 1 0 OAと電磁波 20 OAとを照射すること により、 原子に大きなマイグレーションエネルギーを付与でき、 その結果、 従来の装 置に比べて低温で良好な結晶化を行うことができる。
[第 3の実施の形態]
図 6は、 活性種 1 0 OAおよび電磁波 20 OAの供給方法の例を示す図である。 本 実施の形態においては、 活性種 1 0 OAおよび電磁波 20 OAの少なくとも一方、 好 ましくは両者または少なくとも電磁波 20 OAは、 被処理体 30のセラミックス形成 領域に部分的に供給される。
具体的には、 活性種 1 0 OAおよび電磁波 20 OAは、 図 6に示すように、 ライン 状の領域 30 aあるいはスポット状の領域 30 bに供給される。 そして、 活性種 1 0 OAおよび電磁波 20 OAが供給される領域 30 a, 30 bは、 被処理体 30に対し て相対的に移動できるように設定される。 領域 30 a, 30 bを被処理体 30に対し て相対的に移動させるには、 被処理体 30を移動させる方法、 領域 30 a, 30 bを 移動させる方法、 両者を移動させる方法のいずれでもよい。 また、 領域 30 a, 30 bを被処理体 3 0に対して相対的に移動させるには、 活性種 1 0 0 Aおよび電磁波 2 0 O Aがライン状に供給される場合には、 両者の少なくとも一方はライン状の領域と 直交する方向 (たとえば図 6の X方向) に移動され、 活性種 1 0 O Aおよび電磁波 2 0 O Aがスポット状に供給される場合には、 両者の少なくとも一方は一方向 (たとえ ば図 6の X方向または Y方向) に移動される。
活性種 1 0 O Aおよび電磁波 2 0 O Aの少なくとも一方が供給される領域 3 0 a、 3 0 bが部分的であることにより、 全面に供給される場合に比べて、 被処理体 3 0の 温度上昇を抑えながら、 活性種 1 0 O Aのエネルギーおよび電磁波 2 0 O Aの強度を 大きくすることができる。
電磁波 2 0 0 Aの強度を大きくすると、 被処理体 3 0の温度が高くなるので、 被処 理体 3 0の種類によっては熱によるダメージを受けることがある。 たとえば、 被処理 体 3 0の基体に半導体装置が形成されている場合には、 酸化膜が形成されたリ、 不純 物の拡散にょリ M O S素子がダメージを受け、 半導体装置の劣化を招くことが考えら れる。 しかし、 本実施の形態によれば、 領域 3 0 a , 3 0 bを部分的にすることで、 電磁波の照射による被処理体の温度上昇を抑えることができる。
電磁波 2 0 O Aの強度および活性種 1 0 0 Aのエネルギーは、 上記のような被処理 体の温度上昇、 セラミックスの組成、 などを考慮して設定される。
[第 4の実施の形態]
図 7 Aおよび図 7 Bは、 本発明の成膜方法の変形例を示す。 図 7 Aは、 基体 1 0の 平面を示し、 図 7 Bは、 図 7 Aの A— A線に沿った断面を示す。
本実施の形態においては、 セラミックスを基体 1 0上に部分的に成膜する例を示し ている。 このようにセラミックスを成膜する領域を部分的にすることで、 全面的にセ ラミックスを形成する場合に比べて加熱を必要とする部分の容量が相対的に小さくな るため、 加熱処理に要するエネルギーを少なくすることができる。 その結果、 加熱プ 口セスの温度を相対的に下げることができる。 したがって、 この実施の形態によれば、 活性種および電磁波の供給によるプロセス温度の低下に加えて、 さらにプロセス温度 の低下を達成できる。
本実施の形態においては、 基体 1 0は、 第 1の基体 1 2と、 第 1の基体 1 2上に形 成された、 膜形成部 1 4および非膜形成部 1 6とを有する。
膜形成部 1 4は、 基体 1 0上に形成されるセラミックスと化学的または物理的に親 和性の高い材料、 たとえばセラミックスの原料または反応種に対して濡れ性がよい材 料で構成される。 これに対し、 非膜形成部 1 6は、 成膜されるセラミックスと化学的 または物理的に親和性が悪く、 たとえばセラミックスの原料または反応種に対して濡 れ性が小さい材料で形成される。 このように基体 1 0の表面を構成することにより、 セラミックス膜を形成したい領域に膜形成部 1 4を配置することによリ、 所定パター ンのセラミックス膜 2 0が形成される。
たとえば、 セラミックス膜として強誘電体膜を形成する場合には、 膜形成部 1 4の 材料として酸化イリジウムを用い、 非膜形成部 1 6の材料としてフッ素系化合物を用 いることができる。
本実施の形態に係るセラミックスの製造方法は、 強誘電体をはじめとする各種セラ ミックスに適用することができるが、 特に層状ぺロブスカイ卜に好適に用いることが できる。 層状ぺロブスカイトは、 C軸に対して直角方向において、 酸素特にラジカル (原子状酸素) が拡散しやすいため、 結晶化のための加熱プロセスにおいてセラミツ クス膜 2 0の側面からのラジカルのマイグレ一ションが容易に行われる。 その結果、 ぺロブスカイトの酸素欠損が少なくなリ、 分極特性が向上し、 ファテーグ特性、 イン プリント特性などの劣化が抑制される。
[第 5の実施の形態]
図 8は、 本発明に係る製造方法によって得られた強誘電体を用いた半導体装置 (強 誘電体メモリ装置 5 0 0 0 ) の例を示す。
強誘電体メモリ装置 5 0 0 0は、 〇1^ 0 3領域尺 1 と、 この C M O S領域 R 1上に 形成されたキャパシタ領域 R 2と、 を有する。 〇1 0 3領域1 1は、 公知の構成を有 する。 すなわち、 C M O S領域R lは、 半導体基板 1 と、 この半導体基板 1に形成さ れた素子分離領域 2および M O Sトランジスタ 3と、 層間絶縁層 4とを有する。 キヤ パシタ領域 R 2は、 下部電極 5、 強誘電体膜 6および上部電極 7から構成されるキヤ パシタ C 1 0 0と、 下部電極 5と接続された配線層 8 aと、 上部電極 7と接続された 配線層 8 bと、 絶縁層 9とを、 有する。 そして、 M O Sトランジスタ 3の不純物拡散 層 3 aと、 キャパシタ C 1 00を構成する下部電極 5とは、 ポリシリコンまたはタン ダステンプラグからなるコンタクト層 1 1によって接続されている。
本実施の形態に係る強誘電体メモリ装置 5000においては、 キャパシタ C 1 00 を構成する強誘電体 (PZT、 SBT) 膜 6は、 通常の強誘電体よリ低い温度、 たと えば Ρ ΖΤの場合には 500°C以下、 S BTの場合には 600°Cより低い温度で形成 できる。 したがって、 CMO S領域 R 1に対して熱によるダメージの発生を抑制でき るので、 キャパシタ C 1 00は、 高集積度の強誘電体メモリ装置に適用できる。 また、 強誘電体 (PZT、 SBT) 膜 6は、 通常の強誘電体よリ低い温度で形成できること から、 CMO S領域 R 1の配線層 (図示せず) およびキャパシタ C 100を構成する 電極部 5, 7の材料としてイリジウムや白金などの高価な材料を用いなくとも、 配線 あるいは電極部の劣化がない。 そのため、 これらの配線層および電極部の材料として、 安価なアルミニウム合金を用いることができ、 コストの低減を図ることができる。 さらに、 CMO Sなどの半導体装置においては、 強誘電体 (PZT、 S BT) によ る汚染を防ぐために、 通常、 半導体プロセスとキャパシタプロセスとを隔離すること が行われている。 しかし、 本発明の製造方法によれば、 強誘電体のプロセス温度を低 くできるので、 通常の半導体プロセスの最終工程である多層配線工程後に、 連続して キャパシタの形成ができる。 そのため、 隔離するプロセスを少なくでき、 プロセスの 簡易化を図ることができる。 さらに、 本発明の製造方法は、 半導体プロセスとキャパ シタプロセスとの隔離を必要としないので、 ロジック、 アナログなどが混載された半 導体装置の製造に有利である。
本発明の製造方法によって形成される誘電体は、 上記強誘電体メモリ装置に限定さ れず、 各種半導体装置、 たとえば DRAMでは B S Tのような高誘電率の常誘電体を 用いることにより、 キャパシタの大容量化を図ることができる。
また、 本発明の製造方法によって形成される誘電体は、 他の用途、 たとえば、 ァク チユエ一タに用いる圧電素子の圧電体などに適用できる。
さらに、 本発明の製造方法によって形成される窒化物(窒化シリコン、 窒化チタン) は、 たとえば、 半導体装置のパッシベ一シヨン膜、 口一カルインタ一コネクタ膜など に適用できる。

Claims

請 求 の 範 囲
1 . 少なく ともセラミックスの原材料の一部となる物質の活性種と、 電磁波とを、 所 定領域に供給しながら、 セラミックス膜を形成する工程を含む、 セラミックスの製造 方法。
2 . 請求項 1において、
前記所定領域にセラミックスの原材料の一部となる物質からなる膜が形成されてい る、 セラミックスの製造方法。
3 . 活性種と電磁波とを、 第 1のセラミックス膜に供給して、 前記第 1のセラミック ス膜と結晶構造の異なる第 2のセラミックス膜を形成する工程を含む、 セラミックス の製造方法。
4 · 請求項 3おいて、
前記第 1のセラミックス膜は、 アモルファス状態のセラミックスからなる、 セラミ ックスの製造方法。
5 . 請求項 3において、
前記第 1のセラミックス膜は、 結晶性の低いセラミックスからなる、 セラミックス の製造方法。
6 . 請求項 1 または 2において、
前記セラミックスの原材料の一部となる物質の活性種は、 酸素または窒素を含む物 質を活性化させて得られるラジカル、 イオンまたはオゾンである、 セラミックスの製 造方法。
7 . 請求項 3〜 5のいずれかにおいて、
前記活性種は、 酸素または窒素を含む物質を活性化させて得られるラジカルまたは イオンである、 セラミックスの製造方法。
8 . 請求項 1〜 7のいずれかにおいて、
前記活性種に加えて、 さらに、 不活性ガスを活性化させて得られるイオンを所定領 域に供給する、 セラミックスの製造方法。
9 . 請求項 1 または 2において、 前記セラミックス膜の厚さは、 5〜 3 0 nmである、 セラミックスの製造方法。
1 0. 請求項 3〜5のいずれかにおいて、
前記第 2のセラミックス膜の厚さは、 5〜 3 0 nmである、 セラミックスの製造方 法。
1 1. 少なく ともセラミックスの原材料の一部となる物質の活性種および電磁波の少 なくとも一方を、 所定領域に供給しながら、 所定厚さのセラミックス膜を形成するェ 程を、 複数回繰り返して行い、 所定厚さを有する膜を形成する、 セラミックスの製造 方法。
1 2. 請求項 1 1において、
前記所定領域にセラミックスの原材料の一部となる物質からなる膜が形成されてい る、 セラミックスの製造方法。
1 3. 請求項 1 1 または 1 2において、
前記セラミックス膜の厚さは、 5〜 3 0 nmである、 セラミックスの製造方法。
1 4. 請求項 1 1〜 1 3のいずれかにおいて、
前記セラミックス膜は、 基体に対して部分的に形成される、 セラミックスの製造方 法。
1 5. 第 1のセラミックス膜を形成する第 1の工程と、
活性種および電磁波の少なく とも一方を前記第 1のセラミックス膜に供給して、 前 記第 1のセラミックス膜と結晶構造の異なる第 2のセラミックス膜を形成する第 2の 工程とを含み、
前記第 1および第 2の工程を交互に行い、 所定厚さを有する膜を形成する、 セラミ ックスの製造方法。
1 6. 請求項 1 5において、
前記第 1のセラミックス膜の厚さは、 5〜30 nmである、 セラミックスの製造方 法。
1 7. 請求項 1 5または 1 6において、
前記第 1のセラミックス膜は、 基体に対して部分的に形成される、 セラミックスの 製造方法。
1 8 . 請求項 1 5おいて、
前記第 1のセラミックス膜は、 アモルファス状態のセラミックスからなる、 セラミ ックスの製造方法。
1 9 . 請求項 1 5において、
前記第 1のセラミックス膜は、 結晶性の低いセラミックスからなる、 セラミックス の製造方法。
2 0 . 請求項 1 1〜 1 4のいずれかにおいて、
前記セラミックスの原材料の一部となる物質の活性種は、 酸素または窒素を含む物 質を活性化させて得られるラジカル、 イオンまたはオゾンである、 セラミックスの製 造方法。
2 1 . 請求項 1 5〜; I 9のいずれかにおいて、
前記活性種は、 酸素または窒素を含む物質を活性化させて得られるラジカル、 ィォ ンまたはオゾンである、 セラミックスの製造方法。
2 2 . 請求項 1 1〜 2 1のいずれかにおいて、
前記活性種に加えて、 さらに、 不活性ガスを活性化させて得られるイオンを所定領 域に供給する、 セラミックスの製造方法。
2 3 . セラミックス膜の形成領域が基体に対して部分的であって、
少なくともセラミックスの原材料の一部となる物質の活性種および電磁波の少なく とも一方を、 所定領域に供給しながら、 セラミックス膜を形成する工程を含む、 セラ ミックスの製造方法。
2 4 . 請求項 2 3において、
前記所定領域にセラミックスの原材料の一部となる物質からなる膜が形成された、 セラミックスの製造方法。
2 5 . セラミックス膜の形成領域が基体に対して部分的であって、
活性種および電磁波の少なくとも一方を、 第 1のセラミックス膜に供給しながら、 前記第 1のセラミックスと結晶構造の異なる第 2のセラミックス膜を形成する工程を 含む、 セラミックスの製造方法。
2 6 . 請求項 2 3〜 2 5のいずれかにおいて、 前記基体の表面に、 成膜されるセラミックスに対して親和性を有する膜形成部と、 成膜されるセラミックスに対して親和性を有しない非膜形成部とを形成し、 自己整合 的に前記膜形成部にセラミックス膜を形成する工程を含む、セラミックスの製造方法。
2 7 . 請求項 2 5または 2 6おいて、
前記第 1のセラミックス膜は、 アモルファス状態のセラミックスからなる、 セラミ ックスの製造方法。
2 8 . 請求項 2 5または 2 6において、
前記第 1のセラミックス膜は、 結晶性の低いセラミックスからなる、 セラミックス の製造方法。
2 9 . 請求項 2 3または 2 4において、
前記セラミックスの原材料の一部となる物質の活性種は、 酸素または窒素を含む物 質を活性化させて得られるラジカル、 イオンまたはオゾンである、 セラミックスの製 造方法。
3 0 . 請求項 2 5〜 2 8のいずれかにおいて、
前記活性種は、 酸素または窒素を含む物質を活性化させて得られるラジカルまたは イオンである、 セラミックスの製造方法。
3 1 . 請求項 2 3〜 3 0のいずれかにおいて、
前記活性種に加えて、 さらに、 不活性ガスを活性化させて得られるイオンを所定領 - 域に供給する、 セラミックスの製造方法。
3 2 . 請求項 2 3または 2 4において、
前記セラミックス膜の厚さは、 5〜 3 0 n mである、 セラミックスの製造方法。
3 3 . 請求項 2 5〜 2 8のいずれかにおいて、
前記第 2のセラミックス膜の厚さは、 5〜 3 0 n mである、 セラミックスの製造方 法。
3 4 . 請求項 2 3〜 3 3のいずれかにおいて、
前記セラミックスを形成する工程は、 複数回繰り返して行われる、 セラミックスの 製造方法。
3 5 . 請求項 1〜 3 4のいずれかにおいて、 前記活性種および前記電磁波の少なくとも一方は、 基体に対して部分的に供給され る、 セラミックスの製造方法。
3 6 . 請求項 3 5において、
前記活性種および前記電磁波の少なくとも一方は、 前記基体に対して相対的に移動 する状態で供給される、 セラミックスの製造方法。
3 7 . 請求項 3〜 5, 1 5〜; I 9または 2 5において、
前記第 1のセラミックス膜は、 塗布法、 L S M C D法、 C V D法またはスパッタ法 によって形成される、 セラミックスの製造方法。
3 8 . 請求項 3 7において、
前記第 1のセラミックス膜は、 L S M C D法または C V D法によって形成される、 セラミックスの製造方法。
3 9 . 請求項 1〜 3 8のいずれかにおいて、
前記セラミックス膜または第 2のセラミックス膜は、 強誘電体からなる、 セラミツ クスの製造方法。
4 0 . 請求項 1〜 3 9のいずれかにおいて、
前記セラミックス膜または第 2のセラミックス膜は、 6 0 0 °Cより低い温度で形成 される、 セラミックスの製造方法。
4 1 . セラミックスが形成される基体の配置部と、 加熱部と、 少なくともセラミック スの原材料の一部となる物質の活性種を供給するための活性種供給部と、 電磁波を供 給するための電磁波発生部と、 を含み、 セラミックスの形成領域に、 活性種および電 磁波の少なくとも一方を供給できる、 セラミックスの製造装置。
4 2 . 請求項 4 1において、
同じチャンバ内に、 さらに、 セラミックスの原材料の一部となる物質からなる膜、 またはセラミックス膜を成膜するための成胰装置を有する、セラミックスの製造装置。
4 3 . セラミックスが形成される基体の配置部と、 加熱部と、 少なくともセラミック スの原材料の一部となる物質の活性種を供給するための活性種供給部と、 電磁波を供 給するための電磁波発生部と、 を含み、 セラミックスの形成領域に、 活性種および電 磁波の少なくとも一方を供給できる、 結晶化装置と、 前記結晶化装置と別のチャンバからなる成膜装置と、 を含む、 セラミックスの製造
44. 請求項 43において、
前記結晶化装置と前記成膜装置との間にロードロック装置を有する、 セラミックス の製造装置。
45. 請求項 4 1〜44のいずれかにおいて、
前記基体の配置部は、 前記加熱部を構成する、 セラミックスの製造装置。
46. 請求項 4 1〜 45のいずれかにおいて、
前記活性種供給部および前記電磁波発生部の少なくとも一方は、 活性種および電磁 波の少なくとも一方を前記基体に対して部分的に供給できる、 セラミックスの製造装 置。
47. 請求項 46において、
前記活性種および前記電磁波の少なくとも一方は、 前記基体に対して相対的に移動 する状態で供給される、 セラミックスの製造装置。
48. 請求項 43において、
前記成膜装置は、 塗布法、 L SMCD法、 CVD法またはスパッタ法によって成膜 を実施する、 セラミックスの製造装置。
49. 請求項 48において、
前記成膜装置は、 L SMCD法または C VD法によって成膜を実施する、 セラミツ クスの製造装置。
50. 請求項 1〜40に記載の製造方法によって形成された誘電体膜を含むキャパシ タを有する、 半導体装置。
5 1.請求項 1〜40に記載の製造方法によって形成された誘電体膜を含む圧電素子。 補正書の請求の範囲
[2001年 8月 23日 (23. 08. 01 ) 国際事務局受理:新しい請求の範囲 52— 55 が加えられた;他の請求の範囲は変更なし。 ( 2頁) ] 前記結晶化装置と別のチャンバからなる成膜装置と、 を含む, セラミックスの製造
44. 請求項 43において、
前記結晶化装置と前記成膜装置との間に口一ドロック装置を有する、 セラミックス の製造装置。
45. 請求項 4 1〜44のいずれかにおいて、
前記基体の配置部は、 前記加熱部を構成する、 セラミックスの製造装置。
46. 請求項 4 1〜45のいずれかにおいて、
前記活性種供給部および前記電磁波発生部の少なくとも一方は、 活性種および電磁 波の少なくとも一方を前記基体に対して部分的に供給できる、 セラミックスの製造装 置。
47. 請求項 46において、
前記活性種および前記電磁波の少なくとも一方は、 前記基体に対して相対的に移動 する状態で供給される、 セラミックスの製造装置。
48. 請求項 43において、
前記成膜装置は、 塗布法、 L SMCD法、 CVD法またはスパッタ法によって成膜 を実施する、 セラミックスの製造装置。
49. 請求項 48において、
前記成膜装置は、 L SMCD法または CVD法によって成胰を実施する、 セラミツ クスの製造装置。
50. 請求項 1〜40に記載の製造方法によって形成された誘電体膜を含むキャパシ タを有する、 半導体装置。
5 1.請求項 1〜40に記載の製造方法によって形成された誘電体膜を含む圧電素子。
52. (補正後)基体の表面に、成膜されるセラミックスに対して親和性を有する膜形 成部と、 成膜されるセラミックスに対して親和性を有しない非胰形成部とを形成する 工程と、
少なくともセラミックス膜の原材料の一部となる物質の微粒子を L SMCD法によ リ、前記親和性を有する膜形成部と前記親和性を有しない非膜形成部に対して供給し、 節正された^ S (条約 21/1 自己整合的に前記膜形成部にセラミックス膜を形成する工程と、
電磁波を前記セラミックス膜に供給しながら、 該セラミックス膜を結晶化する工程 と、 を含むセラミックスの製造方法。
5 3 . (補正後) 請求項 5 2において、
前記セラミックス膜を形成する工程および前記セラミックス膜を結晶化する工程 のいずれかにおいて、 前記セラミックス膜の原材料の一部となる物質の活性種を前記 セラミックス膜に供給する工程を含む、 セラミックスの製造方法。
5 4 . (補正後)基体の表面に、 成膜されるセラミックスに対して親和性を有する膜形 成部と、 成膜されるセラミックスに対して親和性を有しない非膜形成部とを形成する 工程と、
少なくともセラミックス膜の原材料の一部となる物質の微粒子を L S M C D法によ リ、前記親和性を有する膜形成部と前記親和性を有しない非膜形成部に対して供給し、 自己整合的に前記胰形成部にセラミックス膜を形成する工程と、
前記セラミックス膜の原材料の一部となる物質の活性種を前記セラミックス膜に供 給しながら、 該セラミックス膜を結晶化する工程と、 を含むセラミックスの製造方法。
5 5 . (補正後) 請求項 5 4において、
前記セラミックス膜を形成する工程および前記セラミックス膜を結晶化する工程 のいずれかにおいて、 電磁波を前記セラミックス膜に供給しながら、 該セラミックス 膜を結晶化する工程を含む、 セラミックスの製造方法。
補正された用紙 (条約第 19
PCT/JP2001/002631 2000-03-29 2001-03-29 Procede de production de ceramique et appareil pour sa production, dispositif a semi-conducteur et dispositif piezo-electrique WO2001073161A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01917596A EP1205575A4 (en) 2000-03-29 2001-03-29 METHOD AND DEVICE FOR PRODUCING CERAMICS, SEMICONDUCTOR COMPONENTS AND PIEZOELECTRICAL COMPONENTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-91603 2000-03-29
JP2000091603A JP3664033B2 (ja) 2000-03-29 2000-03-29 セラミックスの製造方法およびその製造装置

Publications (1)

Publication Number Publication Date
WO2001073161A1 true WO2001073161A1 (fr) 2001-10-04

Family

ID=18607050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002631 WO2001073161A1 (fr) 2000-03-29 2001-03-29 Procede de production de ceramique et appareil pour sa production, dispositif a semi-conducteur et dispositif piezo-electrique

Country Status (6)

Country Link
US (1) US20020031846A1 (ja)
EP (1) EP1205575A4 (ja)
JP (1) JP3664033B2 (ja)
KR (1) KR100449774B1 (ja)
CN (1) CN1302151C (ja)
WO (1) WO2001073161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083946A1 (fr) * 2002-03-29 2003-10-09 Seiko Epson Corporation Procede de formation de film ferroelectrique, memoire ferroelectrique et procede de production correspondant, dispositif semi-conducteur et procede de production correspondant

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730367B2 (en) * 2002-03-05 2004-05-04 Micron Technology, Inc. Atomic layer deposition method with point of use generated reactive gas species
JP2003298020A (ja) * 2002-03-29 2003-10-17 Seiko Epson Corp 強誘電体薄膜の形成方法、強誘電体メモリならびに強誘電体メモリの製造方法、および半導体装置ならびに半導体装置の製造方法
US20060255486A1 (en) * 2005-05-10 2006-11-16 Benson Olester Jr Method of manufacturing composite optical body containing inorganic fibers
JP2011124441A (ja) * 2009-12-11 2011-06-23 Utec:Kk 結晶化膜の製造方法及び結晶化装置
JP5951542B2 (ja) * 2013-03-28 2016-07-13 住友重機械工業株式会社 成膜装置
JP6704133B2 (ja) * 2015-12-24 2020-06-03 株式会社Flosfia ペロブスカイト膜の製造方法
CN114229962B (zh) * 2021-10-08 2022-12-06 同济大学 一种用于水处理的电化学管式陶瓷膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128531A (ja) * 1987-11-13 1989-05-22 Sharp Corp 酸化物薄膜の形成方法
JPH02200782A (ja) * 1989-01-31 1990-08-09 Matsushita Electric Ind Co Ltd チタン酸鉛薄膜の形成方法
JPH0353068A (ja) * 1989-07-20 1991-03-07 Matsushita Electric Ind Co Ltd レーザcvdによる膜の描画方法
JPH08124923A (ja) * 1994-10-24 1996-05-17 Hitachi Ltd 酸化物薄膜の熱処理方法および熱処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175529A (ja) * 1984-09-21 1986-04-17 Toshiba Corp ドライエツチング方法及び装置
JP2635021B2 (ja) * 1985-09-26 1997-07-30 宣夫 御子柴 堆積膜形成法及びこれに用いる装置
US5192393A (en) * 1989-05-24 1993-03-09 Hitachi, Ltd. Method for growing thin film by beam deposition and apparatus for practicing the same
JP3407204B2 (ja) * 1992-07-23 2003-05-19 オリンパス光学工業株式会社 強誘電体集積回路及びその製造方法
US5527731A (en) * 1992-11-13 1996-06-18 Hitachi, Ltd. Surface treating method and apparatus therefor
US6120846A (en) * 1997-12-23 2000-09-19 Advanced Technology Materials, Inc. Method for the selective deposition of bismuth based ferroelectric thin films by chemical vapor deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128531A (ja) * 1987-11-13 1989-05-22 Sharp Corp 酸化物薄膜の形成方法
JPH02200782A (ja) * 1989-01-31 1990-08-09 Matsushita Electric Ind Co Ltd チタン酸鉛薄膜の形成方法
JPH0353068A (ja) * 1989-07-20 1991-03-07 Matsushita Electric Ind Co Ltd レーザcvdによる膜の描画方法
JPH08124923A (ja) * 1994-10-24 1996-05-17 Hitachi Ltd 酸化物薄膜の熱処理方法および熱処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1205575A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083946A1 (fr) * 2002-03-29 2003-10-09 Seiko Epson Corporation Procede de formation de film ferroelectrique, memoire ferroelectrique et procede de production correspondant, dispositif semi-conducteur et procede de production correspondant

Also Published As

Publication number Publication date
US20020031846A1 (en) 2002-03-14
KR100449774B1 (ko) 2004-09-22
KR20020020897A (ko) 2002-03-16
JP2001279443A (ja) 2001-10-10
EP1205575A1 (en) 2002-05-15
CN1365400A (zh) 2002-08-21
JP3664033B2 (ja) 2005-06-22
EP1205575A4 (en) 2003-04-16
CN1302151C (zh) 2007-02-28

Similar Documents

Publication Publication Date Title
US6806183B2 (en) Methods for forming capacitors on semiconductor substrates
JP3670628B2 (ja) 成膜方法、成膜装置、および半導体装置の製造方法
KR20010052799A (ko) 유전체층을 형성하기 위한 방법 및 장치
KR19990014269A (ko) 복합 금속 산화물로 만들어진 유전체층을 포함하는 메모리 커패시터를 갖는 반도체 장치의 제조 방법
JP4051567B2 (ja) 強誘電体メモリ装置
US6936876B2 (en) Semiconductor device having ferroelectric thin film and fabricating method therefor
JP4230596B2 (ja) 薄膜形成方法
US20040241330A1 (en) Method of manufacturing ceramic film and pressure heat treatment device used therefor
JP3664033B2 (ja) セラミックスの製造方法およびその製造装置
US20070287248A1 (en) Method for manufacturing capacity element, method for manufacturing semiconductor device and semiconductor-manufacturing apparatus
US7811834B2 (en) Methods of forming a ferroelectric layer and methods of manufacturing a ferroelectric capacitor including the same
JP3596416B2 (ja) セラミックスの製造方法およびその製造装置
JP3676004B2 (ja) 酸化ルテニウム膜の形成方法および半導体装置の製造方法
JP4557144B2 (ja) セラミックスの製造方法
KR100315885B1 (ko) 전자부품에서사용하기위한유전체박막형성방법
JP3224293B2 (ja) 誘電体薄膜の製造方法
JP2007081410A (ja) 強誘電体膜及び強誘電体キャパシタ形成方法及び強誘電体キャパシタ
JP2001279443A5 (ja)
KR100382742B1 (ko) 반도체 소자의 커패시터 형성방법
JP4937771B2 (ja) 成膜方法及びキャパシタ形成方法
JP3531672B2 (ja) 金属酸化膜の形成方法
KR20010110063A (ko) 유전체 박막의 제조 방법 및 그 제조 장치
JP2004047633A (ja) 成膜方法及び成膜装置
JP2006161097A (ja) 薄膜の成膜方法及び薄膜の成膜装置
JPH1143328A (ja) 強誘電体薄膜およびその製造方法並びに製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800706.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017015256

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001917596

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017015256

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001917596

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017015256

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001917596

Country of ref document: EP