WO2001076278A1 - Model train control system - Google Patents

Model train control system Download PDF

Info

Publication number
WO2001076278A1
WO2001076278A1 PCT/US2000/014605 US0014605W WO0176278A1 WO 2001076278 A1 WO2001076278 A1 WO 2001076278A1 US 0014605 W US0014605 W US 0014605W WO 0176278 A1 WO0176278 A1 WO 0176278A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
model railroad
client program
commands
external controlling
Prior art date
Application number
PCT/US2000/014605
Other languages
French (fr)
Inventor
Matthew A. Katzer
Original Assignee
Katzer Matthew A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katzer Matthew A filed Critical Katzer Matthew A
Priority to AU2000257239A priority Critical patent/AU2000257239A1/en
Publication of WO2001076278A1 publication Critical patent/WO2001076278A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H19/00Model railways
    • A63H19/24Electric toy railways; Systems therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H19/00Model railways
    • A63H19/24Electric toy railways; Systems therefor
    • A63H2019/243Anti-collision systems

Definitions

  • the present invention relates to a system for controlling a model railroad.
  • Model railroads have traditionally been constructed with of a set of interconnected sections of train track, electric switches between different sections of the train track, and other electrically operated devices, such as train engines and draw bridges.
  • Train engines receive their power to travel on the train track by electricity provided by a controller through the track itself.
  • the -speed and direction of the train engine is controlled by the level and polarity, respectively, of the electrical power supplied to the train track.
  • the operator manually pushes buttons or pulls levers to cause the switches or other electrically operated devices to function, as desired.
  • Such model railroad sets are suitable for a single operator, but unfortunately they lack the capability of adequately controlling multiple trains independently.
  • such model railroad sets are not suitable for being controlled by multiple operators, especially if the operators are located at different locations distant from the model railroad, such as different cities .
  • DDC digital command control
  • Each device the operator desires to control such as a train engine, includes an individually addressable digital decoder.
  • a digital command station (DCS) is electrically connected to the train track to provide a- command in the form of a ,set of encoded digital bits to a particular device that includes a digital decoder.
  • the digital command station is typically controlled by a personal computer.
  • a suitable standard for the digital command control system is the NMRA DCC Standards, issued March 1997, and is incorporated herein by. reference . While providing the ability to individually control different devices of the railroad set, the DCC system still fails to provide the capability for multiple operators to control the railroad devices, especially if the operators are remotely located from the railroad set and each other.
  • DigiToys Systems of Lawrenceville, Georgia has developed a software program for controlling a model railroad set from a remote location.
  • the software includes an interface which allows the operator to select desired changes to devices of the railroad set that include a digital decoder, such as increasing the speed of a train or switching a switch.
  • the software issues a command locally or through a network, such as the internet, to a digital command station at the railroad set which executes the command.
  • the protocol used by the software is based on Cobra from Open Management Group where the software issues a command to a communication interface and awaits confirmation that the command was executed by the digital command station. When the software receives confirmation that the command executed, the software program sends the next command through the communication interface to the digital command station.
  • the technique used by the software to control the model railroad is analogous to an inexpensive printer where commands are sequentially issued to the printer after the previous command has been executed.
  • the present invention overcomes the aforementioned drawbacks of the prior art, in a first aspect, by providing a system for operating a digitally controlled model railroad that includes transmitting a first command from a first client program to a resident external controlling interface through a first communications transport.
  • a second command is transmitted from a second client program to the resident external controlling interface through a second communications transport.
  • the first command and the second command are received by the resident external controlling interface which queues the first and second commands.
  • the resident external controlling interface sends third and fourth commands representative of the first and second commands, respectively, to a digital command station for execution on the digitally controlled model railroad.
  • Incorporating a communications transport between the multiple client program and the resident external controlling interface permits multiple operators of the model railroad at locations distant from the physical model railroad and each other.
  • the operators In the environment of a model railroad club where the members want to simultaneously control devices of the same model railroad layout, which preferably includes multiple trains operating thereon, the operators each provide commands to the resistant external controlling interface, and hence the model railroad.
  • queuing by commands at a single resident external controlling interface permits controlled execution of the commands by the digitally controlled model railroad, would may otherwise conflict with one another.
  • the first command is selectively processed and sent to one of a plurality of digital command stations for execution on the digitally controlled model railroad based upon information contained therein.
  • the second command is also selectively processed and sent to one of the plurality of digital command stations for execution on the digitally controlled model railroad based upon information contained therein.
  • the resident external controlling interface also preferably includes a command queue to maintain the order of the commands .
  • the command queue also allows the sharing of multiple devices, multiple clients to communicate with the same device (locally or remote) in a controlled manner, and multiple clients to communicate with different devices.
  • the command queue permits the proper execution in the cases of: (1) one client to many devices, (2) many clients to one device, and (3) many clients to many devices.
  • the first command is transmitted from a first client program to a first processor through a first communications transport .
  • the first command is received at the first processor.
  • the first processor provides an acknowledgement to the first client program through the first communications transport indicating that the first command has properly executed prior to execution of commands related to the first command by the digitally controlled model railroad.
  • the communications transport is preferably a COM or DCOM interface.
  • the model railroad application involves the use of extremely slow real-time interfaces between the digital command stations and the devices of the model railroad.
  • the resident external controller interface receives the command and provides an acknowledgement to the client program in a timely manner before the execution of the command by the digital command stations.
  • the execution of commands provided by the resident external controlling interface to the digital command stations occur in a synchronous manner, such as a first-in-first-out manner.
  • the COM and DCOM communications transport between the client program and the resident external controlling interface is operated in an asynchronous manner, namely providing an acknowledgement thereby releasing the communications transport to accept further communications prior to the actual execution of the command.
  • the combination of the synchronous and the asynchronous data communication for the commands provides the benefit that the operator considers the commands to occur nearly instantaneously while permitting the resident external controlling interface to verify that the command is proper and cause the commands to execute in a controlled manner by the digital command stations, all without additional highspeed communication networks.
  • FIG. 1 is a block diagram of an exemplary embodiment of a model train control system.
  • FIG. 2 is a more detailed block diagram of the model train control system of FIG. 1 including external device control logic.
  • FIG. 3 is a block diagram of the external device control logic of FIG. 2.
  • FIG. 4 is an illustration of a track and signaling arrangement.
  • FIG. 5 is an illustration of a manual block signaling arrangement.
  • FIG. 6 is an illustration of a track circuit.
  • FIGS. 7A and 7B are illustrations of block signaling and track capacity.
  • FIG. 8 is an illustration of different types of signals .
  • FIGS. 9A and 9B are illustrations of speed signaling in approach to a junction.
  • FIG. 10 is a further embodiment of the system including a dispatcher.
  • FIG. 11 is an exemplary embodiment of a command queue .
  • a model train control system 10 includes a communications transport 12 interconnecting a client program 14 and a resident external controlling interface 16.
  • the client program 14 executes on the model railroad operator's computer and may include any suitable system to permit the operator to provide desired commands to the resident external controlling interface 16.
  • the client program 14 may include a graphical interface representative of the model railroad layout where the operator issues commands to the model railroad by making changes to the graphical interface.
  • the client program 14 also defines a set of Application Programming Interfaces (API's), described in detail later, which the operator accesses using the graphical interface or other programs such as Visual Basic, C++, Java, or browser based applications.
  • API's Application Programming Interfaces
  • the communications transport 12 provides an interface between the client program 14 and the resident external controlling interface 16.
  • the communications transport 12 may be any suitable communications medium for the transmission of data, such as the internet, local area network, satellite links, or multiple processes operating on a single computer.
  • the preferred interface to the communications transport 12 is a COM or DCOM interface, as developed for the Windows operating system available from Microsoft Corporation.
  • the communications transport 12 also determines if the resident external controlling interface 16 is system resident or remotely located on an external system.
  • the communications transport 12 may also use private or public communications protocol as a medium for communications.
  • the client program 14 provides commands and the resident external controlling interface 16 responds to the communications transport 12 to exchange information.
  • a description of COM (common object model) and DCOM (distributed common object model) is provided by Chappel in a book entitled Understanding ActiveX and OLE,
  • Incorporating a communications transport 12 between the client program (s) 14 and the resident external controlling interface 16 permits multiple operators of the model railroad at locations distant from the physical model railroad and each other.
  • the operators In the environment of a model railroad club where the members want to simultaneously control devices of the same model railroad layout, which preferably includes multiple trains operating thereon, the operators each provide commands to the resistant external controlling interface, and hence the model railroad.
  • the manner in which commands are executed for the model railroad under COM and DCOM may be as follows.
  • the client program 14 makes requests in a synchronous manner using COM/DCOM to the resident external interface controller 16.
  • the synchronous manner of the request is the technique used by COM and DCOM to execute commands .
  • the communications transport 12 packages the command for the transport mechanism to the resident external controlling interface 16.
  • the resident external controlling interface 16 then passes the command to the digital command stations 18 which in turn executes the command.
  • an acknowledgement is passed back to the resident external controlling interface 16 which in turn passes an acknowledgement to the client program 14.
  • the communications transport 12 Upon receipt of the acknowledgement by the client program 14, the communications transport 12 is again available to accept another command.
  • the train control system 10 without more, permits execution of commands by the digital command stations 18 from multiple operators, but like the DigiToys Systems' software the execution of commands is slow.
  • the present inventor came to the realization that unlike traditional distributed systems where the commands passed through a communications transport are executed nearly instantaneously by the server and then an acknowledgement is returned to the client, the model railroad application involves the use of extremely slow real-time interfaces between the digital command stations and the devices of the model railroad.
  • the present inventor came to the further realization that in order to increase the apparent speed of execution to the client, other than using high-speed communication interfaces, the resident external controller interface 16 should receive the command and provide an acknowledgement to the client program 12 in a timely manner before the execution' of the command by the digital command stations 18. Accordingly, the execution of commands provided by the resident external controlling interface 16 to the digital command stations 18 occur in a synchronous manner, such as a first-in-first-out manner.
  • the COM and DCOM communications transport 12 between the client program 14 and the resident external controlling interface 16 is operated in an asynchronous manner, namely providing an acknowledgement thereby releasing the communications transport 12 to accept further communications prior to the actual execution of the command.
  • the combination of the synchronous and the asynchronous data communication for the commands provides the benefit that the operator considers the commands to occur nearly instantaneously while permitting the resident external controlling interface 16 to verify that the command is proper and cause the commands to execute in a controlled manner by the digital command stations 18, all without additional high-speed communication networks.
  • there is no motivation to provide an acknowledgment prior to the execution of the command because the command executes quickly and most commands are sequential in nature.
  • the execution of the next command is dependent upon proper execution of the prior command so there would be no motivation to provide an acknowledgment prior to its actual execution.
  • other devices such as digital devices, may be controlled in a manner as described for model railroads.
  • the client program 14 sends a command over the communications transport 12 that is received by an asynchronous command processor 100.
  • the asynchronous command processor 100 queries a local database storage 102 to determine if it is necessary to package a command to be transmitted to a command queue 104.
  • the local database storage 102 primarily contains the state of the devices of the model railroad, such as for example, the speed of a train, the direction of a train, whether a draw bridge is up or down, whether a light is turned on or off, and the configuration of the model railroad layout. If the command received by the asynchronous command processor 100 is a query of the state of a device, then the asynchronous command processor 100 retrieves such information from the local database storage 102 and provides the information to an asynchronous response processor 106. The asynchronous response processor 106 then provides a response to the client program 14 indicating the state of the device and releases the communications transport 12 for the next command.
  • the asynchronous command processor 100 also verifies, using the configuration information in the local database storage 102, that the command received is a potentially valid operation. If the command is invalid, the asynchronous command processor 100 provides such information to the asynchronous response processor 106, which in turn returns an error indication to the client program 14.
  • the asynchronous command processor 100 may determine that the necessary information is not contained in the local database storage 102 to provide a response to the client program 14 of the device state or that the command is a valid action. Actions may include, for example, an increase in the train's speed, or turning on/off of a device. In either case, the valid unknown state or action command is packaged and forwarded to the command queue 104. The packaging of the command may also include additional information from the local database storage 102 to complete the client program 14 request, if necessary. Together with packaging the command for the command queue 104, the asynchronous command processor 100 provides a command to the asynchronous request processor 106 to provide a response to the client program 14 indicating that the event has occurred, even though such an event has yet to occur on the physical railroad layout .
  • the combination of the asynchronous command processor 100 and the asynchronous response processor 106 both verifies the validity of the command and provides a response to the client program 14 thereby freeing up the communications transport 12 for additional commands.
  • Each command in the command queue 104 is fetched by a synchronous command processor 110 and processed.
  • the synchronous command processor 110 queries a controller database storage 112 for additional information, as necessary, and determines if the command has already been executed based on the state of the devices in the controller database storage 112. In the event that the command has already been executed, as indicated by the controller database storage 112, then the synchronous command processor 110 passes information to the command queue 104 that the command has been executed or the state of the device.
  • the asynchronous response processor 106 fetches the information from the command cue 104 and provides a suitable response to the client program 14, if necessary, and updates the local database storage 102 to reflect the updated status of the railroad layout devices.
  • the external device control logic 114 processes the command from the synchronous command processor 110 and issues appropriate control commands to the interface of the particular external device 116 to execute the command on the device and ensure that an appropriate response was received in response.
  • the external device is preferably a digital command control device that transmits digital commands to decoders using the train track. There are several different manufacturers of digital command stations, each of which has a different set of input commands, so each external device is designed for a particular digital command station. In this manner, the system is compatible with different digital command stations.
  • the digital command stations 18 of the external devices 116 provide a response to the external device control logic 114 which is checked for validity and identified as to which prior command it corresponds to so that the controller database storage 112 may be updated properly.
  • the process of transmitting commands to and receiving responses from the external devices 116 is slow.
  • the synchronous command processor 110 is notified of the results from the external control logic 114 and, if appropriate, forwards the results to the command queue 104.
  • the asynchronous response processor 100 clears the results from the command queue 104 and updates the local database storage 102 and sends an asynchronous response to the client program 14, if needed.
  • the response updates the client program 14 of the actual state of the railroad track devices, if I
  • the use of two separate database storages each of which is substantially a mirror image of the other, provides a performance enhancement by a fast acknowledgement to the client program 14 using the local database storage 102 and thereby freeing up the communications transport 12 for additional commands.
  • the number of commands forwarded to the external device control logic 114 and the external devices 116 which are relatively slow to respond, is minimized by maintaining information concerning the state and configuration of the model railroad.
  • the .use of two separate database tables 102 and 112 allows more efficient multi-threading on multi-processor computers.
  • the command queue 104 is implemented as a named pipe, as developed by Microsoft for Windows.
  • the queue 104 allows both portions to be separate from each other, where each considers the other to be the destination device.
  • the command queue maintains the order of operation which is important to proper operation of the system.
  • the use of a single command queue 104 allows multiple instantrations of the asynchronous functionality, with one for each different client.
  • the single command queue 104 also allows the sharing of multiple devices, multiple clients to communicate with the same device (locally or remote) in a controlled manner, and multiple clients to communicate with different devices.
  • the command queue 104 permits the proper execution in the cases of: (1) one client to many devices, (2) many clients to one device, and (3) many clients to many devices.
  • the present inventor came to the realization that the digital command stations provided by the different vendors have at least three different techniques for communicating with the digital decoders of the model railroad set.
  • the first technique is a synchronous communication where a command is transmitted, executed, and a response is received therefrom prior to the transmission of the next sequentially received command.
  • the DCS may execute multiple commands in this transaction.
  • the second technique is a cache with out of order execution where a command is executed and a 'response received therefrom prior to the execution of the next command, but the order of execution is not necessarily the same as the order that the commands were provided to the command station.
  • the third technique is a local-area-network model where the commands are transmitted and received simultaneously. In the LAN model there is no requirement to wait until a response is received for a particular command prior to sending the next command. Accordingly, the LAN model may result in many commands being transmitted by the command station that have yet to be executed. In addition, some digital command stations use two or more of these techniques.
  • an external command processor 200 receives the validated command from the synchronous command processor 110.
  • the external command processor 200 determines which device the command should be directed to, the particular type of command it is, and builds state information for the command.
  • the state information includes, for example, the address, type, port, variables, and type of commands to be sent out.
  • the state information includes a command set for a particular device on a particular port device.
  • a copy of the original command is maintained for verification purposes.
  • the constructed command is forwarded to the command sender 202 which is another queue, and preferably a circular queue.
  • the command sender 202 receives the command and transmits commands within its queue in a repetitive nature until the command is removed from its queue.
  • a command response processor 204 receives all the commands from the command stations and passes the commands to the validation function 206.
  • the validation function 206 compares the received command against potential commands that are in the queue of the command sender 202 that could potentially provide such a result.
  • the validation function 206 determines one of four potential results from the comparison. First, the results could be simply bad data that is discarded.
  • the results could be partially executed commands which are likewise normally discarded.
  • the results could be valid responses but not relevant to any command sent . Such a case could result from the operator manually changing the state of devices on the model railroad or from another external device, assuming a shared interface to the DCS. Accordingly, the results are validated and passed to the result processor 210.
  • the results could be valid responses relevant to a command sent. The corresponding command is removed from the command sender 202 and the results passed to the result processor 210.
  • the commands in the queue of the command sender 202, as a result of the validation process 206, are retransmitted a predetermined number of times, then if error still occurs the digital command station is reset, which if the error still persists then the command is removed and the operator is notified of the error.
  • the tutorial shows the complete code for a simple Visual BASIC program that controls all the major functions of a locomotive. This program makes use of many of the commands described in the reference section.
  • the IDL Command Reference describes each command in detail .
  • the following application is created using the Visual BASIC source code in the next section. It controls all major locomotive functions such as speed, direction, and auxiliary functions.
  • Ports -> are logical ids where Decoders are assigned to. Train ServerT Interface supports a limited number of logical ports. You can also think of ports as mapping to a command station type. This allows you to move decoders between command station without losing any information about the decoder
  • DIGIT_DCS100 5 Digitrax direct drive support using DCS100
  • EASYDCC 12 // NMRA Serial interface MRK6050 13 // 6050 Marklin interface
  • ZTC 15 // ZTC Systems ltd DIGIT_PR1 16 // Digitrax direct drive support using PR1
  • iLogicalPort 1 ' Select Logical port 1 for communications
  • iController 1 'Select controller from the list above .
  • iComPort 0 ' use COM1 ; 0 means coml (Digitrax must use Coml or Com2) 'Digitrax Baud rate requires 16.4K! 'Most COM ports above Com2 do not support 16.4K. Check with the 'manufacture of your smart com card for the baud rate . Keep in mind that 'Dumb com cards with serial port support Coml - Com4 can only support 2 com ports (like coml/com2 or com3/com4)
  • 'TrainTools interface is a caching interface.
  • KamPortPutConfig (iLogicalPort , 6 iPortData, 0) ' setting PORT_DATABITS
  • Digitrax control codes displayed are encrypted.
  • the information that you determine from the control codes is that information is sent (S) and a response is ' received (R)
  • iDebugMode 130
  • iValue Value.
  • Text' Display value for reference iError EngCmd.
  • KamPortPutConfig iLogicalPort , 7, iDebug, iValue) ' setting PORT_DEBUG
  • iError EngCmd.
  • KamPortPutMapController iLogicalPort , iController, iComPort
  • iError EngCmd.
  • KamCmdConnect iLogicalPort
  • iError EngCmd.
  • KamOprPutTurnOnStation iLogicalPort
  • MsgBox (“Address must be greater then 0 and less then 128")
  • the Train Server DCOM server may reside locally or on a network node This server handles all the background details of controlling your railroad. You write simple, front end programs in a variety of languages such as BASIC, Java, or C++ to provide the visual interface to the user while the server handles the details of communicating with the command station, etc.
  • Data is passed to and from the IDL interface using a several primitive data types. Arrays of these simple types are also used. The exact type passed to and from your program depends on the programming language your are using.
  • a long /DecoderObj ect/D value is returned by the KamDecoderPutAdd call if the decoder is successfully registered with the server. This unique opaque ID should be used for all subsequent calls to reference this decoder.
  • KamCVGetValue takes the decoder object ID and configuration variable (CV) number as parameters. It sets the memory pointed to by pCWalue to the value of the server copy of the configuration variable . 0KamCVPutValue
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamCVPutValue takes the decoder object ID, configuration variable (CV) number, and a new CV value as parameters. It sets the server copy of the specified decoder CV to iCWalue .
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamCVGetEnable takes the decoder object ID, configuration variable (CV) number, and a pointer to store the enable flag as parameters. It sets the location pointed to by pEnable .
  • iError 0 for success.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamCVPutEnable takes the decoder object ID, configuration variable (CV) number, and a new enable state as parameters. It sets the server copy of the CV bit mask to iEnable .
  • KamCVGetName takes a configuration variable (CV) number as a parameter. It sets the memory pointed to by pbsCV-VameString to the name of the CV as defined in NMRA Recommended Practice RP 9.2.2.
  • KamCVGetMinRegister takes a decoder object ID as a parameter. It sets the memory pointed to by pMinRegister to the minimum possible CV register number for the specified decoder.
  • KamCVGetMaxRegister takes a decoder object ID as a parameter. It sets the memory pointed to by pMaxRegister to the maximum possible CV register number for the specified decoder.
  • This section describes the commands read and write decoder configuration variables (CVs) .
  • CVs decoder configuration variables
  • PROGRAM_MODE_ADDRESS 2 PROGRAM_MODE_REGISTER
  • KamProgram take the decoder object ID, logical programming port ID, and programming mode as parameters. It changes the command station mode from normal operation
  • PROGRAM_MODE_NONE to the specified programming mode. Once in programming modes, any number of programming commands may be called. When done, you must call KamProgram with a parameter of PROGRAM_MODE_NONE to return to normal operation.
  • PROGRAM_MODE_ADDRESS 2 PROGRAM_MODE_REGISTER
  • KamProgramGetMode take the decoder object ID, logical programming port ID, and pointer to a place to store the programming mode as parameters. It sets the memory pointed to by piProgMode to the present programming mode .
  • KamProgramGetStatus take the decoder object ID and pointer to a place to store the OR'd decoder programming status as parameters. It sets the memory pointed to by piProgMode to the present programming mode. OKamProgramReadCV
  • KamProgramCV takes the decoder object ID, configuration variable (CV) number as parameters. It reads the specified CV variable value to the server database.
  • KamProgramCV takes the decoder object ID, configuration variable (CV) number, and a new CV value as parameters.
  • KamProgramDecoderFromDataBase takes the decoder object ID as a parameter. It programs (writes) all enabled decoder CV values using the server copy of the CVs as source data.
  • This section describes the commands that all decoder types. These commands do things such getting the maximum address a given type of decoder supports, adding decoders to the database, etc.
  • KamDecoderGetMaxModels takes no parameters. It sets the memory pointed to by piMaxModels to the maximum decoder type ID .
  • KamPortGetModelName takes a decoder type ID and a pointer to a string as parameters. It sets the memory pointed to by pbsModelName to a BSTR containing the decoder name .
  • KamDecoderSetModelToObj takes a decoder ID and decoder object ID as parameters. It sets the decoder model type of the decoder at address lDecoderObjectlD to the type specified by iModel .
  • KamDecoderGetMaxAddress takes a decoder type ID and a pointer to store the maximum address as parameters. It sets the memory pointed to by piMaxAddress to the maximum address supported by the specified decoder. OKamDecoderChangeOldNewAddr
  • KamDecoderChangeOldNewAddr takes an old decoder object ID and a new decoder address as parameters. It moves the specified locomotive or accessory decoder to iNewAddr and sets the memory pointed to by plNewObjID to the new object ID. The old object ID is now invalid and should no longer be used. OKamDecoderMovePort
  • KamDecoderMovePort takes a decoder object ID and logical port ID as parameters. It moves the decoder specified by lDecoderObjectlD to the controller specified by i Logi cal Por t ID.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamDecoderMovePort takes a decoder object ID and pointer to a logical port ID as parameters. It sets the memory pointed to by piLogicalPortlD to the logical port ID associated with lDecoderObjectlD.
  • KamMiscGetErrorMsg IDS_ERR_ADDRESSEXIST returned if call succeeded but the address exists.
  • KamDecoderCheckAddrlnUse takes a decoder address, logical port, and decoder class as parameters. It returns zero if the address is not in use. It will return IDS_ERR_ADDRESSEXIST if the call succeeds but the address already exists. It will return the appropriate non zero error number if the calls fails.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamDecoderGetModelFromObj takes a decoder object ID and pointer to a decoder type ID as parameters. It sets the memory pointed to by piModel to the decoder type ID associated with iDCCAddr.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamDecoderGetModelFacility takes a decoder object ID and pointer to a decoder facility mask as parameters. It sets the memory pointed to by pdwFacili ty to the decoder facility mask associated with iDCCAddr.
  • KamDecoderGetObj Count takes a decoder class and a pointer to an address count as parameters. It sets the memory pointed to by piObjCount to the count of active decoders of the type given by iDecoderClass .
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamDecoderGetObj Count takes a decoder index, decoder class, and a pointer to an object ID as parameters. It sets the memory pointed to by plDecoderObjectlD to the selected object ID.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamDecoderPutAdd takes a decoder object ID, command logical port, programming logical port, clear flag, decoder model ID, and a pointer to a decoder object ID as parameters. It creates a new locomotive object in the locomotive database and sets the memory pointed to by plDecoderObjectlD to the decoder object ID used by the server as a key.
  • KamDecoderPutDel takes a decoder object ID and clear flag as parameters. It deletes the locomotive object specified by lDecoderObjectlD from the locomotive database.
  • KamDecoderGetMfgName takes a decoder object ID and pointer to a manufacturer name string as parameters . It sets the memory pointed to by pbsMfgName to the name of the decoder manufacturer. OKamDecoderGetPowerMode
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamDecoderGetPowerMode takes a decoder object ID and a pointer to the power mode string as parameters. It sets the memory pointed to by pbsPowerMode to the decoder power mode .
  • KamDecoderGetMaxSpeed takes a decoder object ID and a pointer to the maximum supported speed step as parameters. It sets the memory pointed to by piSpeedStep to the maximum speed step supported by the decoder.
  • KamDecoderPutAdd . 2 Speed range is dependent on whether the decoder is set to 14,18, or 128 speed steps and matches the values defined by NMRA S9.2 and RP 9.2.1. 0 is stop and 1 is emergency stop for all modes.
  • KamEngGetSpeed takes the decoder object ID and pointers to locations to store the locomotive speed and direction as parameters. It sets the memory pointed to by IpSpeed to the locomotive speed and the memory pointed to by lpDirection to the locomotive direction.
  • Speed range is dependent on whether the decoder is set to 14,18, or 128 speed steps and matches the values defined by NMRA S9.2 and RP 9.2.1. 0 is stop and 1 is emergency stop for all modes.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamEngPutSpeed takes the decoder object ID, new locomotive speed, and new locomotive direction as parameters. It sets the locomotive database speed to iSpeed and the locomotive database direction to iDirection . Note: This command only changes the locomotive database. The data is not sent to the decoder until execution of the KamCmdCommand command. Speed is set to the maximum possible for the decoder if iSpeed exceeds the decoders range.
  • KamEngGetSpeedSteps takes the decoder object ID and a pointer to a location to store the number of speed steps as a parameter. It sets the memory pointed to by
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamEngPutSpeedSteps takes the decoder object ID and a new number of speed steps as a parameter. It sets the number of speed steps in the locomotive database to iSpeedSteps . Note: This command only changes the locomotive database. The data is not sent to the decoder until execution of the KamCmdCommand command. KamDecoderGetMaxSpeed returns the maximum possible speed for the decoder. An error is generated if an attempt is made to set the speed steps beyond this value.
  • KamEngGetFunction takes the decoder object ID, a function ID, and a pointer to the location to store the specified function state as parameters. It sets the memory pointed to by lpFunction to the specified function state. OKamEngPutFunction
  • KamEngPutFunction takes the decoder object ID, a function ID, and a new function state as parameters. It sets the specified locomotive database function state to iFunction . Note: This command only changes the locomotive database. The data is not sent to the decoder until execution of the KamCmdCommand command.
  • KamEngGetFunctionMax takes a decoder object ID and a pointer to the maximum function ID as parameters. It sets the memory pointed to by piMaxFunction to the maximum possible function number for the specified decoder. 0KamEngGetName
  • KamEngGetName takes a decoder object ID and a pointer to the locomotive name as parameters. It sets the memory pointed to by pbsEngName to the name of the locomotive.
  • KamEngPutName takes a decoder object ID and a BSTR as parameters. It sets the symbolic locomotive name to bsEngName .
  • KamEngGetFuncntionName takes a decoder object ID, function ID, and a pointer to the function name as parameters. It sets the memory pointed to by pbsFcnNameString to the symbolic name of the specified function. 0KamEngPutFunctionName
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamEngPutFunctionName takes a decoder object ID, function ID, and a BSTR as parameters. It sets the specified symbolic function name to bsFcnNameString. 0KamEngGetConsistMax
  • KamEngGetConsistMax takes the decoder object ID and a pointer to a location to store the maximum consist as parameters. It sets the location pointed to by piMaxConsist to the maximum number of locomotives that can but placed in a command station controlled consist . Note that this command is designed for command station consisting. CV consisting is handled using the CV commands .
  • KamEngPutConsistParent takes the parent object ID and an alias address as parameters. It makes the decoder specified by IDCCParentObj ID the consist parent referred to by iDCCAliasAddr . Note that this command is designed for command station consisting. CV consisting is handled using the CV commands. If a new parent is defined for a consist; the old parent becomes a child in the consist. To delete a parent in a consist without deleting the consist, you must add a new parent then delete the old parent using KamEngPutConsistRemoveObj . 0KamEngPutConsistChild
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamEngPutConsistChild takes the decoder parent object ID and decoder object ID as parameters. It assigns the decoder specified by IDCCObjID to the consist identified by IDCCParentObj ID. Note that this command is designed for command station consisting. CV consisting is handled using the CV commands. Note: This command is invalid if the parent has not been set previously using KamEngPutConsistParent . OKamEngPutConsistRemoveObj
  • KamEngPutConsistRemoveObj takes the decoder object ID as a parameter. It removes the decoder specified by lDecoderObjectlD from the consist. Note that this command is designed for command station consisting. CV consisting is handled using the CV commands. Note: If the parent is removed, all children are removed also.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamAccGetFunction takes the decoder object ID, a function ID, and a pointer to the location to store the specified function state as parameters. It sets the memory pointed to by lpFunction to the specified function state.
  • KamAccGetFunctionAll takes the decoder object ID and a pointer to a bit mask as parameters. It sets each bit in the memory pointed to by piValue to the corresponding function state.
  • KamAccPutFunction takes the decoder object ID, a function ID, and a new function state as parameters. It sets the specified accessory database function state to iFunction . Note: This command only changes the accessory database. The data is not sent to the decoder until execution of the KamCmdCommand command.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamAccPutFunctionAll takes the decoder object ID and a bit mask as parameters. It sets all decoder function enable states to match the state bits in iValue. The possible enable states are TRUE and FALSE. The data is not sent to the decoder until execution of the
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamAccGetFunctionMax takes a decoder object ID and pointer to the maximum function number as parameters. It sets the memory pointed to by piMaxFunction to the maximum possible function number for the specified decoder.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamAccGetName takes a decoder object ID and a pointer to a string as parameters. It sets the memory pointed to by pbsAccNameString to the name of the accessory.
  • KamAccPutName takes a decoder object ID and a BSTR as parameters. It sets the symbolic accessory name to bsAccName .
  • KamAccGetFuncntionName takes a decoder object ID, function ID, and a pointer to a string as parameters. It sets the memory pointed to by pbsFcnNameString to the symbolic name of the specified function. 0KamAccPutFunctionName
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamAccPutFunctionName takes a decoder object ID, function ID, and a BSTR as parameters. It sets the specified symbolic function name to bsFcnNameString . OKamAccRegFeedback
  • KamAccRegFeedback takes a decoder object ID, node name string, and function ID, as parameters. It registers interest in the function given by iFunctionID by the method given by the node name string bsAccNode . bsAccNode identifies the server application and method to call if the function changes state. Its format is
  • KamAccRegFeedbackAll takes a decoder object ID and node name string as parameters . It registers interest in all functions by the method given by the node name string bsAccNode . bsAccNode identifies the server application and method to call if the function changes state. Its format is " ⁇ Server ⁇ ⁇ ⁇ App ⁇ . ⁇ Method ⁇ " where ⁇ Server ⁇ is the server name, ⁇ App ⁇ is the application name, and ⁇ Method ⁇ is the method name.
  • KamAccDelFeedback takes a decoder object ID, node name string, and function ID, as parameters. It deletes interest in the function given by iFunctionID by the method given by the node name string bsAccNode .
  • bsAccNode identifies the server application and method to call if the function changes state. Its format is " ⁇ Server) ⁇ ⁇ App ⁇ . ⁇ Method ⁇ " where ⁇ Server ⁇ is the server name, ⁇ App ⁇ is the application name, and ⁇ Method ⁇ is the method name.
  • KamAccDelFeedbackAll takes a decoder object ID and node name string as parameters. It deletes interest in all functions by the method given by the node name string bsAccNode .
  • bsAccNode identifies the server application and method to call if the function changes state. Its format is " ⁇ ⁇ Server ⁇ ⁇ App ⁇ . ⁇ Method ⁇ " where ⁇ Server ⁇ is the server name, ⁇ App ⁇ is the application name, and ⁇ Method ⁇ is the method name.
  • This section describes the commands . that control the command station. These commands do things such as controlling command station power. The steps to control a given command station vary depending on the type of command station.
  • KamOprPutTurnOnStation takes a logical port ID as a parameter. It performs the steps necessary to turn on the command station. This command performs a combination of other commands such as KamOprPutStartStation, KamOprPutClearStation, and KamOprPutPowerOn.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamOprPutStartStation takes a logical port ID as a parameter. It performs the steps necessary to start the command station.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamOprPutClearStation takes a logical port ID as a parameter. It performs the steps necessary to clear the command station queue. OKamOprPutStopStation
  • Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by KamPortGetMaxLogPorts . Return Value Type Range Description iError short 1 Error flag
  • KamOprPutStopStation takes a logical port ID as a parameter. It performs the steps necessary to stop the command station.
  • KamOprPutPowerOn takes a logical port ID as a parameter.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamOprPutPowerOff takes a logical port ID as a parameter. It performs the steps necessary to remove power from the track. OKamOprPutHardReset
  • KamOprPutHardReset takes a logical port ID as a parameter. It performs the steps necessary to perform a hard reset of the command station.
  • KamOprPutEmergencyStop takes a logical port ID as a parameter. It performs the steps necessary to broadcast an emergency stop command to all decoders .
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamOprGetStationStatus takes a logical port ID and a pointer to a string as parameters. It set the memory pointed to by pbsCmdStat to the command station status. The exact format of the status BSTR is vendor dependent.
  • This section describes the commands that configure the command station communication port. These commands do things such as setting BAUD rate.
  • commands do things such as setting BAUD rate.
  • Several of the commands in this section use the numeric controller ID (iControllerlD) to identify a specific type of command station controller.
  • the following table shows the mapping between the controller ID (iControllerlD) and controller name (bsControllerName) for a given type of command station controller.
  • iControllerlD bsControllerName Description
  • Bit 1 sends messages to debug file.
  • Bit 2 sends messages to the screen.
  • Bit 3 shows queue data.
  • Bit 4 shows UI status.
  • Bit 5 is reserved.
  • Bit 6 shows semaphore and critical sections.
  • Bit 7 shows miscellaneous messages.
  • Bit 8 shows comm port activity. 130 decimal is recommended for debugging . 8 PARALLEL
  • KamPortPutConfig takes a logical port ID, configuration index, configuration value, and key as parameters. It sets the port parameter specified by ilndex to the value specified by iValue.
  • the debug file path is C : ⁇ Temp ⁇ Debug ⁇ PORT ⁇ . txt where ⁇ PORT ⁇ is the physical comm port ID.
  • OKamPortGetConfig
  • Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID ilndex int 2 In Configuration type index piValue int * 2 Out Pointer to configuration value 1 Maximum value for this server given by KamPortGetMaxLogPorts .
  • KamPortGetConfig takes a logical port ID, configuration index, and a pointer to a configuration value as parameters. It sets the memory pointed to by piValue to the specified configuration value.
  • OKamPortGetName a logical port ID, configuration index, and a pointer to a configuration value as parameters. It sets the memory pointed to by piValue to the specified configuration value.
  • KamPortGetName takes a physical port ID number and a pointer to a port name string as parameters . It sets the memory pointed to by pbsPortName to the physical port name such as "COMM1.”
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamPortPutMapController takes a logical port ID, a command station type ID, and a physical communications port ID as parameters. It maps iLogicalPortID to iCommPortlD for the type of command station specified by i Con trol 1 erID .
  • KamPortGetMaxLogPorts takes a pointer to a logical port ID as a parameter. It sets the memory pointed to by piMaxLogicalPorts to the maximum logical port ID.
  • KamPortGetMaxPhysical takes a pointer to the number of physical ports, the number of serial ports, and the number of parallel ports as parameters. It sets the memory pointed to by the parameters to the associated values
  • Type Range Direction Description* iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by KamPortGetMaxLogPorts . Ret ⁇ rn Value Type Range Description iError short 1 Error flag
  • KamCmdConnect takes a logical port ID as a parameter. It connects the server to the specified command station.
  • KamCmdDisConnect takes a logical port ID as a parameter. It disconnects the server to the specified command station.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamCmdCommand takes the decoder object ID as a parameter. It sends all state changes from the server database to the specified locomotive or accessory decoder.
  • This section describes commands that control the cabs attached to a command station.
  • KamCabGetMessage takes a cab address and a pointer to a message string as parameters. It sets the memory pointed to by pbsMsg to the present cab message. OKamCabPutMessage
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamCabPutMessage takes a cab address and a BSTR as parameters. It sets the cab message to bsMsg.
  • KamCabGetCabAddr takes a decoder object ID and a pointer to a cab address as parameters. It set the memory pointed to by piCabAddress to the address of the cab attached to the specified decoder.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamCabPutAddrToCab takes a decoder object ID and cab address as parameters. It attaches the decoder specified by iDCCAddr to the cab specified by iCabAddress .
  • iDCCAddr the decoder specified by iDCCAddr
  • iCabAddress the decoder specified by iCabAddress.
  • This section describes miscellaneous commands that do not fit into the other categories.
  • KamMiscGetErrorMsg takes an error flag as a parameter.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamMiscGetClockTime takes the port ID, the time mode, and pointers to locations to store the day, hours, minutes, and fast clock ratio as parameters. It sets the memory pointed to by piDay to the fast clock day, sets pointed to by piHours to the fast clock hours, sets the memory pointed to by piMinutes to the fast clock minutes, and the memory pointed to by piRatio to the fast clock ratio.
  • the servers local time will be returned if the command station does not support a fast clock.
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamMiscPutClockTime takes the fast clock logical port, the fast clock day, the fast clock hours, the fast clock minutes, and the fast clock ratio as parameters. It sets the fast clock using specified parameters.
  • KamMiscGetlnterfaceVersion takes a pointer to an interface version string as a parameter. It sets the memory pointed to by pbsInterfaceVersion to the interface version string.
  • the version string may contain multiple lines depending on the number of interfaces supported. OKamMiscSaveData
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamMiscSaveData takes no parameters. It saves all server data to permanent storage. This command is run automatically whenever the server stops running. Demo versions of the program cannot save data and this command will return an error in that case.
  • KamMiscGetControllerName takes a logical port ID and a pointer to a command station type name as parameters. It sets the memory pointed to by pbsName to the command station type name for that logical port .
  • Nonzero is an error number (see KamMiscGetErrorMsg) .
  • KamMiscGetCommandStationValue takes the controller ID, logical port, value array index, and a pointer to the location to store the selected value. It sets the memory pointed to by piValue to the specified command station miscellaneous data value.
  • Parameter List Type Range Direction Description iControllerlD int 1-65535 1 In Command station type ID iLogicalPortID int 1-65535 2 In Logical port ID ilndex int 3 In Command station array index iValue int 0 - 65535 In Command station value
  • KamMiscSetCommandStationValue takes the controller ID, logical port, value array index, and new miscellaneous data value. It sets the specified command station data to the value given by piValue.
  • KamMiscGetErrorMsg (see KamMiscGetErrorMsg) .
  • KamMiscGetCommandStationlndex takes the controller ID, logical port, and a pointer to the location to store the maximum index. It sets the memory pointed to by pilndex to the specified command station maximum miscellaneous data index.
  • KamMiscMaxControllerlD takes a pointer to the maximum controller ID as a parameter. It sets the memory pointed to by piMaxControllerlD to the maximum controller type ID.
  • KamMiscGetControllerFacility takes the controller ID and a pointer to the location to store the selected controller facility mask. It sets the memory pointed to by pdwFacility to the specified command station facility mask.
  • the digital command stations 18 program the digital devices, such as a locomotive and switches, of the railroad layout.
  • a locomotive may include several different registers that control the horn, how the light blinks, speed curves for operation, etc. In many such locomotives there are 106 or more programable values. Unfortunately, it may take 1-10 seconds per byte wide word if a valid register or control variable (generally referred to collectively as registers) and two to four minutes to error out if an invalid register to program such a locomotive or device, either of which may contain a decoder. With a large number of byte wide words in a locomotive its takes considerable time to fully program the locomotive.
  • the time necessary to program the railroad layout is substantially reduced. For example, if the command would duplicate the current state of the device then no command needs to be forwarded to the digital command stations 18. This prevents redundantly programming the devices of the model railroad, thereby freeing up the operation of the model railroad for other activities.
  • the system of the present invention may encounter "conflicting" commands that attempt to write to and read from the devices of the model railroad. For example, the "conflicting" commands may inadvertently program the same device in an inappropriate manner, such as the locomotive to speed up to maximum and the locomotive to stop.
  • a user that desires to read the status of the entire model railroad layout will monopolize the digital decoders and command stations for a substantial time, such as up to two hours, thereby preventing the enjoyment of the model railroad for the other users.
  • a user that programs an extensive number of devices will likewise monopolize the digital decoders and command stations for a substantial time thereby preventing the enjoyment of the model railroad for other users.
  • the write cache contains those commands yet to be programmed by the digital command stations 18. Valid commands from each user are passed to a queue in the write cache. In the event of multiple commands from multiple users (depending on user permissions and security) or the same user for the same event or action, the write cache will concatenate the two commands into a single command to be programmed by the digital command stations 18. In the event of multiple commands from multiple users or the same user for different events or actions, the write cache will concatenate the two commands into a single command to be programmed by the digital command stations 18. The write cache may forward either of the commands, such as the last received command, to the digital command station.
  • the users are updated with the actual command programmed by the digital command station, as necessary.
  • the read cache contains the state of the different devices of the model railroad. After a command has been written to a digital device and properly acknowledged, if necessary, the read cache is updated with the current state of the model railroad. In addition, the read cache is updated with the state of the model railroad when the registers of the devices of the model railroad are read.
  • the data in the write cache Prior to sending the commands to be executed by the digital command stations 18 the data in the write cache is compared against the data in the read cache. In the event that the data in the read cache indicates that the data in the write cache does not need to be programmed, the command is discarded. In contrast, if the data in the read cache indicates that the data in the write cache needs to be programmed, then the command is programmed by the digital command station.
  • the read cache After programming the command by the digital command station the read cache is updated to reflect the change in the model railroad.
  • the use of a write cache and a read cache permits a decrease in the number of registers that need to be programmed, thus speeding up the apparent operation of the model railroad to the operator.
  • the present inventor further determined that errors in the processing of the commands by the railroad and the initial unknown state of the model railroad should be taken into account for a robust system.
  • the state of the relevant data of the read cache is marked as unknown. The unknown state merely indicates that the state of the register has some ambiguity associated therewith.
  • the unknown state may be removed by reading the current state of the relevant device or the data rewritten to the model railroad without an error occurring.
  • the command may be re- transmitted to the digital command station in an attempt to program the device properly. If desirable, multiple commands may be automatically provided to the digital command stations to increase the likelihood of programming the appropriate registers.
  • the initial state of a register is likewise marked with an unknown state until data becomes available regarding its state .
  • the command should be sent to the digital command station because the state is not known. In this manner the state will at least become known, even if the data in the registers is not actually changed.
  • the present inventor further determined a particular set of data that is useful for a complete representation of the state of the registers of the devices of the model railroad.
  • An invalid representation of a register indicates that the particular register is not valid for both a read and a write operation. This permits the system to avoid attempting to read from and write to particular registers of the model railroad. This avoids the exceptionally long error out when attempting to access invalid registers.
  • An in use representation of a register indicates that the particular register is valid for both a read and a write operation. This permits the system to read from and write to particular registers of the model railroad. This assists in accessing valid registers where the response time is relatively fast.
  • a read error (unknown state) representation of a register indicates that each time an attempt to read a particular register results in an error.
  • a read dirty representation of a register indicates that the data in the read cache has not been validated by reading its valid from the decoder. If both the read error and the read dirty representations are clear then a valid read from the read cache may be performed. A read dirty representation may be cleared by a successful write operation, if desired.
  • a read only representation indicates that the register may not be written to. If this flag is set then a write error may not occur.
  • a write error (unknown state) representation of a register indicates that each time an attempt to write to a particular register results in an error .
  • a write dirty representation of a register indicates that the data in the write cache has not been written to the decoder yet . For example, when programming the decoders the system programs the data indicated by the write • dirty. If both the write error and the write dirty representations are clear then the state is represented by the write cache. This assists in keeping track of the programming without excess overhead.
  • a write only representation indicates that the register may not be read from. If this flag is set then a read error may not occur .
  • the system constructs a set of representations of the model railroad devices and the model railroad itself indicating the invalid registers, read errors, and write errors which may increases the efficiently of programing and changing the states of the model railroad. This permits the system to avoid accessing particular registers where the result will likely be an error.
  • the present inventor came to the realization that the valid registers of particular devices is the same for the same device of the same or different model railroads. Further, the present inventor came to the realization that a template may be developed for each particular device that may be applied to the representations of the data to predetermine the valid registers. In addition, the template may also be used to set the read error and write error, if desired.
  • the template may include any one or more of the following representations, such as invalid, in use, read error, write only, read dirty, read only, write error, and write dirty for the possible registers of the device.
  • the predetermination of the state of each register of a particular device avoids the time consuming activity of receiving a significant number of errors and thus constructing the caches. It is to be noted that the actual read and write cache may be any suitable type of data structure.
  • FIG. 4 illustrates the organization of train dispatching by "timetable and train order" (T&TO) techniques .
  • T&TO timetable and train order
  • Many of the rules governing T&TO operation are related to the superiority of trains which principally is which train will take siding at the meeting point. Any misinterpretation of these rules can be the source of either hazard or delay. For example, misinterpreting the rules may result in one train colliding with another train.
  • T&TO operation must rely upon time spacing and flag protection to keep each train a sufficient distance apart. For example, a train may not leave a station less than five minutes after the preceding train has departed. Unfortunately, there is no assurance that such spacing will be retained , as the trains move along the line, so the flagman (rear brakeman) of a train slowing down or stopping will light and throw off a five-minute red flare which may not be passed by the next train while lit. If a train has to stop, a flagman trots back along the line with a red flag or lantern a sufficient distance to protect the train, and remains there until the train is ready to move at which time he is called back to the train. A flare and two track torpedoes provide protection as the flagman scrambles back and the train resumes speed. While this type of system works, it depends upon a series of human activities .
  • Block signal systems prevent a train from ramming the train ahead of it by dividing the main line into segments, otherwise known as blocks, and allowing only one train in a block at a time, with block signals indicating whether or not the block ahead is occupied.
  • the signals are set by a human operator. Before clearing the signal, he must verify that any train which has previously entered the block is now clear of it, a written record is kept of the status of each block, and a prescribed procedure is used in communicating with the next operator.
  • the degree to which a block frees up operation depends on whether distant signals (as shown in FIG. 5) are provided and on the spacing of open stations, those in which an operator is on duty. If as is usually the case it is many miles to the next block station and thus trains must be equally spaced. Nevertheless, manual block does afford a high degree of safety.
  • the block signaling which does the most for increasing line capacity is automatic block signals (ABS) , in which the signals are controlled by the trains themselves.
  • ABS automatic block signals
  • the presence or absence of a train is determined by a track circuit.
  • the track circuit's key feature is that it is fail-safe. As can be seen in FIG. 6, if the battery or any wire connection fails, or a rail is broken, the relay can't pick up, and a clear signal will not be displayed.
  • the track circuit is also an example of what is designated in railway signaling practice as a vital circuit, one which can give an unsafe indication if some of its components malfunction in certain ways. The track circuit is fail-safe, but it could still give a false clear indication should its relay stick in the closed or picked-up position.
  • Vital circuit relays therefore, are built to very stringent standards: they are large devices; rely on gravity (no springs) to drop their armature; and use special non-loading contacts which will not stick together if hit by a large surge of current (such as nearby lightning) .
  • the principal improvement in the basic circuit has been to use slowly-pulsed DC so that the relay drops out and must be picked up again continually when a block is unoccupied. This allows the use of a more sensitive relay which will detect a train, but additionally work in track circuits twice as long before leakage between the rails begins to threaten reliable relay operation.
  • FIGS. 7A and 7B the situations determining the minimum block length for the standard two-block, three-indication ABS system.
  • Swivel block must be as long as the longest stopping distance for any train on the route, traveling at its maximum authorized speed.
  • the three-block, four-indication signaling shown in FIG. 7 reduces the excess train spacing by 50% with warning two blocks to the rear and signal spacing need be only 1/2 the braking distance.
  • four-block, four-indication signaling may be provided and advanced approach, approach medium, approach and stop indications give a minimum of three-block warning, allowing further block-shortening and keeps things moving .
  • FIG. 8 uses aspects of upper quadrant semaphores to illustrate block signaling. These signals use the blade rising 90 degrees to give the clear indication.
  • FIG. 8 Some of the systems that are currently developed by different railroads are shown in FIG. 8. With the general rules discussed below, a railroad is free to establish the simplest and most easily maintained system of aspects and indications that will keep traffic moving safely and meet any special requirements due to geography, traffic pattern, or equipment. Aspects such as flashing yellow for approach medium, for example, may be used to provide an extra indication without an extra signal head. This is safe because a stuck flasher will result in either a steady yellow approach or a more restrictive light-out aspect. In addition, there are provisions for interlocking so the trains may branch from one track to another.
  • FIGS. 9A and 9B show typical signal aspects and indications as they would appear to an engineer.
  • route locking is used to insure that nothing can be changed to reduce the route's speed capability from the time the train approaching it is admitted to enter until it has cleared the last switch.
  • Additional refinements to the basic system to speed up handling trains in rapid sequence include sectional route locking which unlocks portions of the route as soon as the train has cleared so that other routes can be set up promptly.
  • Interlocking signals also function as block signals to provide rear-end protection.
  • an automatic interlocking can respond to the approach of a train by clearing the route if there are no opposing movements cleared or in progress. Automatic interlocking returns everything to stop after the train has passed.
  • the movement of multiple trains among the track potentially involves a series of interconnected activities and decisions which must be performed by a controller, such as a dispatcher.
  • a controller such as a dispatcher.
  • the dispatcher controls the operation of the trains and permissions may be set by computer control, thereby controlling the railroad.
  • the dispatcher fails to obey the rules as put in place, traffic collisions may occur.
  • the controller In the context of a model railroad the controller is operating a model railroad layout including an extensive amount of track, several locomotives (trains), and additional functionality such as switches.
  • the movement of different objects, such as locomotives and entire trains, may be monitored by a set of sensors.
  • the operator issues control commands from his computer console, such as in the form of permissions and class warrants for the time and track used.
  • a single operator from a single terminal may control the system effectively.
  • the present inventor has observed that in a multi-user environment where several clients are attempting to simultaneously control the same model railroad layout using their terminals, collisions periodically nevertheless occur.
  • significant delay is observed between the issuance of a command and its eventual execution.
  • the present inventor has determined that unlike full scale railroads where the track is controlled by a single dispatcher, the use of multiple dispatchers each having a different dispatcher console may result in conflicting information being sent to the railroad layout.
  • the system is designed as a computer control system to implement commands but in no manner can the dispatcher consoles control the actions of users. For example, a user input may command that an event occur resulting in a crash.
  • a user may override the block permissions or class warrants for the time and track used thereby causing a collision.
  • two users may inadvertently send conflicting commands to the same or different trains thereby causing a collision.
  • each user is not aware of the intent and actions of other users aside from any feedback that may be displayed on their terminal.
  • the feedback to their dispatcher console may be delayed as the execution of commands issued by one or more users may take several seconds to several minutes to be executed.
  • the client program 14 preferably includes a control panel 300 which provides a graphical interface (such as a personal computer with software thereon or a dedicated hardware source) for computerized control of the model railroad 302.
  • the graphical interface may take the form of those illustrated in FIGS. 5-9, or any other suitable command interface to provide control commands to the model railroad 302. Commands are issued by the client program 14 to the controlling interface using the control panel 300. The commands are received from the different client programs 14 by the controlling interface 16. The commands control the operation of the model railroad 302, such as switches, direction, and locomotive throttle.
  • the controlling interface 16 accepts all of the commands and provides an acknowledgment to free up the communications transport for subsequent commands.
  • the acknowledgment may take the form of a response indicating that the command was executed thereby updating the control panel 300.
  • the response may be subject to updating if more data becomes available indicating the previous response is incorrect.
  • the command may have yet to be executed or verified by the controlling interface 16.
  • the controlling interface 16 passes the command (in a modified manner, if desired) to a dispatcher controller 310.
  • the dispatcher controller 310 includes a rule-based processor together with the layout of the railroad 302 and the status of objects thereon.
  • the objects may include properties such as speed, location, direction, length of the train, etc.
  • the dispatcher controller 310 processes each received command to determine if the execution of such a command would violate any of the rules together with the layout and status of objects thereon. If the command received is within the rules, then the command may be passed to the model railroad 302 for execution. If the received command violates the rules, then the command may be rejected and an appropriate response is provided to update the clients display. If desired, the invalid command may be modified in a suitable manner and still be provided to the model railroad 302. In addition, if the dispatcher controller 310 determines that an event should occur, such as stopping a model locomotive, it may issue the command and update the control panels 300 accordingly. If necessary, an update command is provided to the client program 14 to show the update that occurred.
  • the controlling interface 16 may accept the command, validate it quickly by the dispatcher controller, and provide an acknowledgment to the client program 14. In this manner, the client program 14 will not require updating if the command is not valid.
  • the control panel 300 of all client programs 14 should be updated to show the status of the model railroad 302.
  • a manual throttle 320 may likewise provide control over devices, such as the locomotive, on the model railroad 302. The commands issued by the manual throttle 320 may be passed first to the dispatcher controller 310 for validation in a similar manner to that of the client programs 14. Alternatively, commands from the manual throttle 320 may be directly passed to the model railroad 302 without first being validated by the dispatcher controller 302.
  • a response will be provided to the controlling interface 16 which in response may check the suitability of the command, if desired. If the command violates the layout rules then a suitable correctional command is issued to the model railroad 302. If the command is valid then no correctional command is necessary. In either case, the status of the model railroad 302 is passed to the client programs 14 (control panels 300) .
  • the event driven dispatcher controller 310 maintains the current status of the model railroad 302 so that accurate validation may be performed to minimize conflicting and potentially damaging commands.
  • the control panel 300 is updated in a suitable manner, but in most cases, the communication transport 12 is freed up prior to execution of the command by the model railroad 302.
  • the computer dispatcher may also be distributed across the network, if desired.
  • the computer architecture described herein supports different computer interfaces at the client program 14.
  • the present inventor has observed that periodically the commands in the queue to the digital command stations or the buffer of the digital command station overflow resulting in a system crash or loss of data. In some cases, the queue fills up with commands and then no additional commands may be accepted.
  • the apparent solution is to incorporate a buffer model in the interface 16 to provide commands to the digital command station at a rate no faster than the ability of the digital command station to execute the commands together with an exceptionally large computer buffer. For example, the command may take 5 ms to be transmitted from the interface 16 to the command station, 100 ms for processing by the command station, 3 ms to transfer to the digital device, such as a model train.
  • the digital device may take 10 ms to execute the command, for example, and another 20 ms to transmit back to the digital command station which may again take 100 ms to process, and 5 ms to send the processed result to interface 16.
  • the delay may be on the order of 243 ms which is extremely long in comparison to the ability of the interface 16 to receive commands and transmit commands to the digital command station.
  • a command queue is based on a further realization that many of the commands to operate a model railroad are "lossy" in nature which is highly unusual for a computer based queue system. In other words, if some of the commands in the command queue are never actually executed, are deleted from the command queue, or otherwise simply changed, the operation of the model railroad still functions properly. Normally a queuing system inherently requires that all commands are executed in some manner at some point in time, even if somewhat delayed. Initially the present inventor came to the realization that when multiple users are attempting to control the same model railroad, each of them may provide the same command to the model railroad.
  • the digital command station would receive both commands from the interface 16, process both commands, transmit both commands to the model railroad, receive both responses therefrom (typically) , and provide two acknowledgments to the interface 16.
  • the execution of commands occurs nearly instantaneously the re-execution of commands does not pose a significant problem and may be beneficial for ensuring that each user has the appropriate commands executed in the order requested.
  • all of this activity requires substantial time to complete thereby slowing down the responsiveness of the system. Commands tend to build up waiting for execution which decreases the user perceived responsiveness of control of the model railroad. The user perceiving no response continues to request commands be placed in the queue thereby exacerbating the perceived responsiveness problem.
  • the responsiveness problem is more apparent as processor speeds of the client computer increase. Since there is but a single model railroad, the 1 apparent speed with which commands are executed is important for user satisfaction.
  • the present inventor determined that duplicate commands residing in the command queue of the interface 16 should be removed. Accordingly, if different users issue the same command to the model railroad then the duplicate commands are not executed (execute one copy of the command) . In addition, this alleviates the effects of a single user requesting that the same command is executed multiple times .
  • the removal of duplicate commands will increase the apparent responsiveness of the model railroad because the time required to re-execute a command already executed will be avoided. In this manner, other commands that will change the state of the model railroad may be executed in a more timely manner thereby increasing user satisfaction. Also, the necessary size of the command queue on the computer is reduced.
  • the present inventor After further consideration of the particular environment of a model railroad the present inventor also determined that many command sequences in the command queue result in no net state change to the model railroad, and thus should likewise be removed from the command queue. For example, a command in the command queue to increase the speed of the locomotive, followed by a command in the command queue to reduce the speed of the locomotive to the initial speed results in no net state change to the model railroad. Any perceived increase and decrease of the locomotive would merely be the result of the time differential. It is to be understood that the comparison may be between any two or more commands . Another example may include a command to open a switch followed by a command to close a switch, which likewise results in no net state change to the model railroad.
  • a command in the command queue increases the speed of the locomotive by 5 units
  • another command in the command queue decreases the speed of the locomotive by 3 units
  • the two commands may be replaced by a single command that increases the speed of the locomotive by 2 units.
  • a reduction in the number of commands in the command queue is accomplished while at the same time effectuating the net result of the commands.
  • this decreases the time required to actually program the device to the net state thereby increasing user satisfaction.
  • the command queue structure may include a stack of commands to be executed.
  • Each of the commands may include a type indicator and control information as to what general type of command they are. For example, an A command may be speed commands, a B command may be switches, a C command may be lights, a D command may be query status, etc.
  • the commands may be sorted based on their type indicator for assisting the determination as to whether or not any redundancies may be eliminated or otherwise reduced.
  • a first-in-first-out command queue provides a fair technique for the allocation of resources, such as execution of commands by the digital command station, but the present inventor determined that for slow-real-time model railroad devices such a command structure is not the most desirable.
  • model railroads execute commands that are (1) not time sensitive, (2) only somewhat time sensitive, and (3) truly time sensitive.
  • Non-time sensitive commands are merely query commands that inquire as to the status of certain devices .
  • Somewhat time sensitive commands are generally related to the appearance of devices and do not directly impact other devices, such as turning on a light.
  • Truly time sensitive commands need to be executed in a timely fashion, such as the speed of the locomotive or moving' switches.
  • Another technique that may be used to prioritize the commands in the command queue is to assign a priority to each command. As an example, a priority of 0 would be indicative of "don't care" with a priority of
  • the command queue would then place new commands in the command queue in the order of priority or otherwise provide the next command to the command station that has the highest priority within the command queue .
  • the computer may assign that value to the command so that it is next to be executed. by the digital command station.
  • emergency commands may include, for example, emergency stop and power off.
  • the system may remove commands from the command queue based on its order of priority, thereby alleviating an overflow condition in a manner less destructive to the model railroad.
  • a different priority number may be assigned to each, so therefore when removing or deciding which to execute ' next, the priority number of each may be used to further classify commands within a given type. This provides a convenient technique of prioritizing commands.
  • An additional technique suitable for model railroads in combination with relatively slow real time devices is that when the system knows that there is an outstanding valid request made to the digital command station, then there is no point in making another request to the digital command station nor adding another such command to the command queue. This further removes a particular category of commands from the command queue. It is to be understood that this queue system may be used in any system, such as, for example, one local machine without a network, COM, DCOM, COBRA, internet protocol, sockets, etc.

Abstract

A system (10) operates a digitally controlled model railroad by transmitting a first command from a first client program (14) to a resident external controlling interface (16) through a first communications transport (12). A second command is transmitted from a second client program (14) to the resident external controlling interface (16) through a second communications transport (12). The first command and the second command are received by the resident external controlling interface (16), which queues the first and second commands. The resident external controlling interface (16) sends third and fourth commands representative of the first and second commands, respectively, to a digital command station (18) for execution on the digital controlled model railroad.

Description

MODEL TRAIN CONTROL SYSTEM
TECHNICAL FIELD The present invention relates to a system for controlling a model railroad.
BACKGROUND ART Model railroads have traditionally been constructed with of a set of interconnected sections of train track, electric switches between different sections of the train track, and other electrically operated devices, such as train engines and draw bridges. Train engines receive their power to travel on the train track by electricity provided by a controller through the track itself. The -speed and direction of the train engine is controlled by the level and polarity, respectively, of the electrical power supplied to the train track. The operator manually pushes buttons or pulls levers to cause the switches or other electrically operated devices to function, as desired. Such model railroad sets are suitable for a single operator, but unfortunately they lack the capability of adequately controlling multiple trains independently. In addition, such model railroad sets are not suitable for being controlled by multiple operators, especially if the operators are located at different locations distant from the model railroad, such as different cities .
A digital command control (DDC) system has been developed to provide additional controllability of individual train engines and other electrical devices.
Each device the operator desires to control, such as a train engine, includes an individually addressable digital decoder. A digital command station (DCS) is electrically connected to the train track to provide a- command in the form of a ,set of encoded digital bits to a particular device that includes a digital decoder. The digital command station is typically controlled by a personal computer. A suitable standard for the digital command control system is the NMRA DCC Standards, issued March 1997, and is incorporated herein by. reference . While providing the ability to individually control different devices of the railroad set, the DCC system still fails to provide the capability for multiple operators to control the railroad devices, especially if the operators are remotely located from the railroad set and each other. DigiToys Systems of Lawrenceville, Georgia has developed a software program for controlling a model railroad set from a remote location. The software includes an interface which allows the operator to select desired changes to devices of the railroad set that include a digital decoder, such as increasing the speed of a train or switching a switch. The software issues a command locally or through a network, such as the internet, to a digital command station at the railroad set which executes the command. The protocol used by the software is based on Cobra from Open Management Group where the software issues a command to a communication interface and awaits confirmation that the command was executed by the digital command station. When the software receives confirmation that the command executed, the software program sends the next command through the communication interface to the digital command station. In other words, the technique used by the software to control the model railroad is analogous to an inexpensive printer where commands are sequentially issued to the printer after the previous command has been executed.
Unfortunately, it has been observed that the response of the model railroad to the operator appears slow, especially over a distributed network such as the internet. One technique to decrease the response time is to use high-speed network connections but unfortunately such connections are expensive. What is desired, therefore, is a system for controlling a model railroad that effectively provides a high-speed connection without the additional expense associated therewith.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings .
DISCLOSURE OF THE INVENTION The present invention overcomes the aforementioned drawbacks of the prior art, in a first aspect, by providing a system for operating a digitally controlled model railroad that includes transmitting a first command from a first client program to a resident external controlling interface through a first communications transport. A second command is transmitted from a second client program to the resident external controlling interface through a second communications transport. The first command and the second command are received by the resident external controlling interface which queues the first and second commands. The resident external controlling interface sends third and fourth commands representative of the first and second commands, respectively, to a digital command station for execution on the digitally controlled model railroad.
Incorporating a communications transport between the multiple client program and the resident external controlling interface permits multiple operators of the model railroad at locations distant from the physical model railroad and each other. In the environment of a model railroad club where the members want to simultaneously control devices of the same model railroad layout, which preferably includes multiple trains operating thereon, the operators each provide commands to the resistant external controlling interface, and hence the model railroad. In addition by queuing by commands at a single resident external controlling interface permits controlled execution of the commands by the digitally controlled model railroad, would may otherwise conflict with one another.
In another aspect of the present invention the first command is selectively processed and sent to one of a plurality of digital command stations for execution on the digitally controlled model railroad based upon information contained therein. Preferably, the second command is also selectively processed and sent to one of the plurality of digital command stations for execution on the digitally controlled model railroad based upon information contained therein. The resident external controlling interface also preferably includes a command queue to maintain the order of the commands .
The command queue also allows the sharing of multiple devices, multiple clients to communicate with the same device (locally or remote) in a controlled manner, and multiple clients to communicate with different devices. In other words, the command queue permits the proper execution in the cases of: (1) one client to many devices, (2) many clients to one device, and (3) many clients to many devices.
In yet another aspect of the present invention the first command is transmitted from a first client program to a first processor through a first communications transport . The first command is received at the first processor. The first processor provides an acknowledgement to the first client program through the first communications transport indicating that the first command has properly executed prior to execution of commands related to the first command by the digitally controlled model railroad. The communications transport is preferably a COM or DCOM interface. The model railroad application involves the use of extremely slow real-time interfaces between the digital command stations and the devices of the model railroad. In order to increase the apparent speed of execution to the client, other than using high-speed communication interfaces, the resident external controller interface receives the command and provides an acknowledgement to the client program in a timely manner before the execution of the command by the digital command stations. Accordingly, the execution of commands provided by the resident external controlling interface to the digital command stations occur in a synchronous manner, such as a first-in-first-out manner. The COM and DCOM communications transport between the client program and the resident external controlling interface is operated in an asynchronous manner, namely providing an acknowledgement thereby releasing the communications transport to accept further communications prior to the actual execution of the command. The combination of the synchronous and the asynchronous data communication for the commands provides the benefit that the operator considers the commands to occur nearly instantaneously while permitting the resident external controlling interface to verify that the command is proper and cause the commands to execute in a controlled manner by the digital command stations, all without additional highspeed communication networks. Moreover, for traditional distributed software execution there is no motivation to provide an acknowledgment prior to the execution of the command because the command executes quickly and most commands are sequential in nature. In other words, the execution of the next command is dependent upon proper execution of the prior command so there would be no motivation to provide an acknowledgment prior to its actual execution. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an exemplary embodiment of a model train control system.
FIG. 2 is a more detailed block diagram of the model train control system of FIG. 1 including external device control logic.
FIG. 3 is a block diagram of the external device control logic of FIG. 2.
FIG. 4 is an illustration of a track and signaling arrangement.
FIG. 5 is an illustration of a manual block signaling arrangement.
FIG. 6 is an illustration of a track circuit. FIGS. 7A and 7B are illustrations of block signaling and track capacity.
FIG. 8 is an illustration of different types of signals .
FIGS. 9A and 9B are illustrations of speed signaling in approach to a junction. FIG. 10 is a further embodiment of the system including a dispatcher.
FIG. 11 is an exemplary embodiment of a command queue .
BEST MODES FOR CARRYING OUT THE INVENTION
Referring to FIG. 1, a model train control system 10 includes a communications transport 12 interconnecting a client program 14 and a resident external controlling interface 16. The client program 14 executes on the model railroad operator's computer and may include any suitable system to permit the operator to provide desired commands to the resident external controlling interface 16. For example, the client program 14 may include a graphical interface representative of the model railroad layout where the operator issues commands to the model railroad by making changes to the graphical interface. The client program 14 also defines a set of Application Programming Interfaces (API's), described in detail later, which the operator accesses using the graphical interface or other programs such as Visual Basic, C++, Java, or browser based applications. There may be multiple client programs interconnected with the resident external controlling interface 16 so that multiple remote operators may simultaneously provide control commands to the model railroad. The communications transport 12 provides an interface between the client program 14 and the resident external controlling interface 16. The communications transport 12 may be any suitable communications medium for the transmission of data, such as the internet, local area network, satellite links, or multiple processes operating on a single computer. The preferred interface to the communications transport 12 is a COM or DCOM interface, as developed for the Windows operating system available from Microsoft Corporation. The communications transport 12 also determines if the resident external controlling interface 16 is system resident or remotely located on an external system. The communications transport 12 may also use private or public communications protocol as a medium for communications. The client program 14 provides commands and the resident external controlling interface 16 responds to the communications transport 12 to exchange information. A description of COM (common object model) and DCOM (distributed common object model) is provided by Chappel in a book entitled Understanding ActiveX and OLE,
Microsoft Press, and is incorporated by reference herein.
Incorporating a communications transport 12 between the client program (s) 14 and the resident external controlling interface 16 permits multiple operators of the model railroad at locations distant from the physical model railroad and each other. In the environment of a model railroad club where the members want to simultaneously control devices of the same model railroad layout, which preferably includes multiple trains operating thereon, the operators each provide commands to the resistant external controlling interface, and hence the model railroad.
The manner in which commands are executed for the model railroad under COM and DCOM may be as follows. The client program 14 makes requests in a synchronous manner using COM/DCOM to the resident external interface controller 16. The synchronous manner of the request is the technique used by COM and DCOM to execute commands . The communications transport 12 packages the command for the transport mechanism to the resident external controlling interface 16. The resident external controlling interface 16 then passes the command to the digital command stations 18 which in turn executes the command. After the digital command station 18 executes the command an acknowledgement is passed back to the resident external controlling interface 16 which in turn passes an acknowledgement to the client program 14. Upon receipt of the acknowledgement by the client program 14, the communications transport 12 is again available to accept another command. The train control system 10, without more, permits execution of commands by the digital command stations 18 from multiple operators, but like the DigiToys Systems' software the execution of commands is slow.
The present inventor came to the realization that unlike traditional distributed systems where the commands passed through a communications transport are executed nearly instantaneously by the server and then an acknowledgement is returned to the client, the model railroad application involves the use of extremely slow real-time interfaces between the digital command stations and the devices of the model railroad. The present inventor came to the further realization that in order to increase the apparent speed of execution to the client, other than using high-speed communication interfaces, the resident external controller interface 16 should receive the command and provide an acknowledgement to the client program 12 in a timely manner before the execution' of the command by the digital command stations 18. Accordingly, the execution of commands provided by the resident external controlling interface 16 to the digital command stations 18 occur in a synchronous manner, such as a first-in-first-out manner. The COM and DCOM communications transport 12 between the client program 14 and the resident external controlling interface 16 is operated in an asynchronous manner, namely providing an acknowledgement thereby releasing the communications transport 12 to accept further communications prior to the actual execution of the command. The combination of the synchronous and the asynchronous data communication for the commands provides the benefit that the operator considers the commands to occur nearly instantaneously while permitting the resident external controlling interface 16 to verify that the command is proper and cause the commands to execute in a controlled manner by the digital command stations 18, all without additional high-speed communication networks. Moreover, for traditional distributed software execution there is no motivation to provide an acknowledgment prior to the execution of the command because the command executes quickly and most commands are sequential in nature. In other words, the execution of the next command is dependent upon proper execution of the prior command so there would be no motivation to provide an acknowledgment prior to its actual execution. It is to be understood that other devices, such as digital devices, may be controlled in a manner as described for model railroads. Referring to FIG. 2, the client program 14 sends a command over the communications transport 12 that is received by an asynchronous command processor 100. The asynchronous command processor 100 queries a local database storage 102 to determine if it is necessary to package a command to be transmitted to a command queue 104. The local database storage 102 primarily contains the state of the devices of the model railroad, such as for example, the speed of a train, the direction of a train, whether a draw bridge is up or down, whether a light is turned on or off, and the configuration of the model railroad layout. If the command received by the asynchronous command processor 100 is a query of the state of a device, then the asynchronous command processor 100 retrieves such information from the local database storage 102 and provides the information to an asynchronous response processor 106. The asynchronous response processor 106 then provides a response to the client program 14 indicating the state of the device and releases the communications transport 12 for the next command.
The asynchronous command processor 100 also verifies, using the configuration information in the local database storage 102, that the command received is a potentially valid operation. If the command is invalid, the asynchronous command processor 100 provides such information to the asynchronous response processor 106, which in turn returns an error indication to the client program 14.
The asynchronous command processor 100 may determine that the necessary information is not contained in the local database storage 102 to provide a response to the client program 14 of the device state or that the command is a valid action. Actions may include, for example, an increase in the train's speed, or turning on/off of a device. In either case, the valid unknown state or action command is packaged and forwarded to the command queue 104. The packaging of the command may also include additional information from the local database storage 102 to complete the client program 14 request, if necessary. Together with packaging the command for the command queue 104, the asynchronous command processor 100 provides a command to the asynchronous request processor 106 to provide a response to the client program 14 indicating that the event has occurred, even though such an event has yet to occur on the physical railroad layout .
As such, it can be observed that whether or not the command is valid, whether or not the information requested by the command is available to the asynchronous command processor 100, and whether or not the command has executed, the combination of the asynchronous command processor 100 and the asynchronous response processor 106 both verifies the validity of the command and provides a response to the client program 14 thereby freeing up the communications transport 12 for additional commands.
Without the asynchronous nature of the resident external controlling interface 16, the response to the client program 14 would be, in many circumstances, delayed thereby resulting in frustration to the operator that the model railroad is performing in a slow and painstaking manner. In this manner, the railroad operation using the asynchronous interface appears to the operator as nearly instantaneously responsive .
Each command in the command queue 104 is fetched by a synchronous command processor 110 and processed. The synchronous command processor 110 queries a controller database storage 112 for additional information, as necessary, and determines if the command has already been executed based on the state of the devices in the controller database storage 112. In the event that the command has already been executed, as indicated by the controller database storage 112, then the synchronous command processor 110 passes information to the command queue 104 that the command has been executed or the state of the device. The asynchronous response processor 106 fetches the information from the command cue 104 and provides a suitable response to the client program 14, if necessary, and updates the local database storage 102 to reflect the updated status of the railroad layout devices.
If the command fetched by the synchronous command processor 110 from the command queue 104 requires execution by external devices, such as the train engine, then the command is posted to one of several external device control logic 114 blocks. The external device control logic 114 processes the command from the synchronous command processor 110 and issues appropriate control commands to the interface of the particular external device 116 to execute the command on the device and ensure that an appropriate response was received in response. The external device is preferably a digital command control device that transmits digital commands to decoders using the train track. There are several different manufacturers of digital command stations, each of which has a different set of input commands, so each external device is designed for a particular digital command station. In this manner, the system is compatible with different digital command stations. The digital command stations 18 of the external devices 116 provide a response to the external device control logic 114 which is checked for validity and identified as to which prior command it corresponds to so that the controller database storage 112 may be updated properly. The process of transmitting commands to and receiving responses from the external devices 116 is slow.
The synchronous command processor 110 is notified of the results from the external control logic 114 and, if appropriate, forwards the results to the command queue 104. The asynchronous response processor 100 clears the results from the command queue 104 and updates the local database storage 102 and sends an asynchronous response to the client program 14, if needed. The response updates the client program 14 of the actual state of the railroad track devices, if I
13 changed, and provides an error message to the client program 14 if the devices actual state was previously improperly reported or a command did not execute properly. The use of two separate database storages, each of which is substantially a mirror image of the other, provides a performance enhancement by a fast acknowledgement to the client program 14 using the local database storage 102 and thereby freeing up the communications transport 12 for additional commands. In addition, the number of commands forwarded to the external device control logic 114 and the external devices 116, which are relatively slow to respond, is minimized by maintaining information concerning the state and configuration of the model railroad. Also, the .use of two separate database tables 102 and 112 allows more efficient multi-threading on multi-processor computers.
In order to achieve the separation of the asynchronous and synchronous portions of the system the command queue 104 is implemented as a named pipe, as developed by Microsoft for Windows. The queue 104 allows both portions to be separate from each other, where each considers the other to be the destination device. In addition, the command queue maintains the order of operation which is important to proper operation of the system.
The use of a single command queue 104 allows multiple instantrations of the asynchronous functionality, with one for each different client. The single command queue 104 also allows the sharing of multiple devices, multiple clients to communicate with the same device (locally or remote) in a controlled manner, and multiple clients to communicate with different devices. In other words, the command queue 104 permits the proper execution in the cases of: (1) one client to many devices, (2) many clients to one device, and (3) many clients to many devices. The present inventor came to the realization that the digital command stations provided by the different vendors have at least three different techniques for communicating with the digital decoders of the model railroad set. The first technique, generally referred to as a transaction (one or more operations) , is a synchronous communication where a command is transmitted, executed, and a response is received therefrom prior to the transmission of the next sequentially received command. The DCS may execute multiple commands in this transaction. The second technique is a cache with out of order execution where a command is executed and a 'response received therefrom prior to the execution of the next command, but the order of execution is not necessarily the same as the order that the commands were provided to the command station. The third technique is a local-area-network model where the commands are transmitted and received simultaneously. In the LAN model there is no requirement to wait until a response is received for a particular command prior to sending the next command. Accordingly, the LAN model may result in many commands being transmitted by the command station that have yet to be executed. In addition, some digital command stations use two or more of these techniques.
With all these different techniques used to communicate with the model railroad set and the system 10 providing an interface for each different type of command station, there exists a need for the capability of matching up the responses from each of the different types of command stations with the particular command issued for record keeping purposes. Without matching up the responses from the command stations, the databases can not be updated properly. Validation functionality is included within the external device control logic 114 to accommodate all of the different types of command stations. Referring to FIG. 3, an external command processor 200 receives the validated command from the synchronous command processor 110. The external command processor 200 determines which device the command should be directed to, the particular type of command it is, and builds state information for the command. The state information includes, for example, the address, type, port, variables, and type of commands to be sent out. In other words, the state information includes a command set for a particular device on a particular port device. In addition, a copy of the original command is maintained for verification purposes. The constructed command is forwarded to the command sender 202 which is another queue, and preferably a circular queue. The command sender 202 receives the command and transmits commands within its queue in a repetitive nature until the command is removed from its queue. A command response processor 204 receives all the commands from the command stations and passes the commands to the validation function 206. The validation function 206 compares the received command against potential commands that are in the queue of the command sender 202 that could potentially provide such a result. The validation function 206 determines one of four potential results from the comparison. First, the results could be simply bad data that is discarded.
Second, the results could be partially executed commands which are likewise normally discarded. Third, the results could be valid responses but not relevant to any command sent . Such a case could result from the operator manually changing the state of devices on the model railroad or from another external device, assuming a shared interface to the DCS. Accordingly, the results are validated and passed to the result processor 210. Fourth, the results could be valid responses relevant to a command sent. The corresponding command is removed from the command sender 202 and the results passed to the result processor 210. The commands in the queue of the command sender 202, as a result of the validation process 206, are retransmitted a predetermined number of times, then if error still occurs the digital command station is reset, which if the error still persists then the command is removed and the operator is notified of the error.
APPLICATION PROGRAMMING INTERFACE
Train ToolsTM Interface Description
Building your own visual interface to a model railroad Copyright 1992-1998 KAM Industries.
Computer Dispatcher, Engine Commander, The Conductor,
Train Server, and Train Tools are Trademarks of KAM
Industries, all Rights Reserved.
Questions concerning the product can be EMAILED to: traintools@kam.rain.com
You can also mail questions to:
KAM Industries
2373 NW 185th Avenue Suite 416
Hillsboro, Oregon 97124 FAX - (503) 291-1221
Table of contents
1. OVERVIEW
1.1 System Architecture
2. TUTORIAL
2.1 Visual BASIC Throttle Example Application
2.2 Visual BASIC Throttle Example Source Code 3. IDL COMMAND REFERENCE
3.1 Introduction
3.2 Data Types
3.3 Commands to access the server configuration variable database KamCVGetValue
KamCVPutValue
KamCVGetEnable
KamCVPutEnab1e
KamCVGet ame KamCVGetMinRegister
KamCVGetMaxRegister
3.4 Commands to program configuration variables
KamProgram KamProgramGetMode KamProgramGetStatus
KamProgramReadCV KamProgramCV
KamProgramReadDecoderToDataBase KamProgramDecoderFromDataBase 3.5 Commands to control all decoder types
KamDecoderGetMaxModels KamDecoderGetModelName KamDecoderSetModelToObj KamDecoderGetMaxAddress KamDecoderChangeOldNewAddr
KamDecoderMovePort KamDecoderGetPort KamDecoderCheckAddrlnUse KamDecoderGetModelFromObj KamDecoderGetModelFacility
KamDecoderGetObj Count
KamDecoderGetObjAtIndex
KamDecoderPutAdd
KamDecoderPutDel ' KamDecoderGetMfgName
KamDecoderGetPowerMode
KamDecoderGetMaxSpeed 3.6 Commands to control locomotive decoders
KamEngGetSpeed KamEngPutSpeed
KamEngGetSpeedSteps
KamEngPutSpeedSteps
KamEngGetFunction
KamEngPutFunction KamEngGetFunctionMax
KamEngGetName KamEngPutName KamEngGetFunctioriName KamEngPutFunctionName KamEngGetConsistMax KamEngPutConsistParent
KamEngPutConsistChild KamEngPutConsistRemoveObj .7 Commands to control accessory decoders
KamAccGetFunction KamAccGetFunctionAll
KamAccPutFunction
KamAccPutFunctionAll
KamAccGetFunctionMax
KamAccGetName KamAccPutName
KamAccGetFunctionName
KamAccPutFunctionName
KamAccRegFeedback
KamAccRegFeedbackAll KamAccDelFeedback
KamAccDelFeedbackAll
3.8 Commands to control the command station
KamOprPutTurnOnStation KamOprPutStartStation KamOprPutClearstation
KamOprPutStopStation KamOprPutPowerOn KamOprPutPowerOff KamOprPutHardReset KamOprPutEmergencyStop
KamOprGetStationStatus
3.9 Commands to configure the command station communication port
KamPortPutConfig KamPortGetConfig
KamPortGetName
KamPortPutMapController
KamPortGetMaxLogPorts
KamPortGetMaxPhysical 3.10 Commands that control command flow to the command station
KamCmdConnect
KamCmdDisConnect
KamCmdCommand 3.11 Cab Control Commands
KamCabGetMessage
KamCabPutMessage
KamCabGetCabAddr
KamCabPutAddrToCab 3.12 Miscellaneous Commands
KamMiscGetErrorMsg
KamMiscGetClockTime
KamMiscPutClockTime
KamMiscGetlnterfaceVersion KamMiscSaveData
KamMiscGetControllerName KamMiscGetControllerNameAtPort
KamMiscGetCommandStationValue
KamMiscSetCommandStationValue
KamMiscGetCommandStationlndex
KamMiscMaxControllerlD
KamMiscGetControllerFacility
I . OVERVIEW
This document is divided into two sections, the Tutorial, and the IDL Command Reference. The tutorial shows the complete code for a simple Visual BASIC program that controls all the major functions of a locomotive. This program makes use of many of the commands described in the reference section. The IDL Command Reference describes each command in detail .
I . TUTORIAL
A. Visual BASIC Throttle Example Application
The following application is created using the Visual BASIC source code in the next section. It controls all major locomotive functions such as speed, direction, and auxiliary functions.
A. Visual BASIC Throttle Example Source Code
Copyright 1998, KAM Industries. All rights reserved.
This is a demonstration program showing the integration of VisualBasic and Train Server (tm) interface. You may use this application for non commercial usage.
$Date: $ $Author : $ $Revision: $ $Log: $
Engine Commander, Computer Dispatcher, Train Server, Train Tools, The Conductor and kamind are registered Trademarks of KAM Industries. All rights reserved.
This first command adds the reference to the Train ServerT Interface object Dim EngCmd As New EngComlfc
Engine Commander uses the term Ports, Devices and
Controllers
Ports -> These are logical ids where Decoders are assigned to. Train ServerT Interface supports a limited number of logical ports. You can also think of ports as mapping to a command station type. This allows you to move decoders between command station without losing any information about the decoder
Devices -> These are communications channels configured in your computer.
You may have a single device (coml) or multiple devices
(COM 1 - COM8, LPT1, Other) . You are required to map a port to a device to access a command station. Devices start from ID 0 -> max id (FYI; devices do not necessarily have to be serial channel . Always check the name of the device before you use it as well as the maximum number of devices supported. The Command
EngCmd.KamPortGetMaxPhysical (IMaxPhysical, lSerial, iParallel) provides means that... IMaxPhysical = lSerial + IParallel + lOther
Controller - These are command the command station like LENZ, Digitrax
Northcoast, EasyDCC, Marklin... It is recommend that you check the command station ID before you use it .
Errors - All commands return an error status. If ' the error value is non zero, then the other return arguments are invalid. In general , non zero errors means command was not executed. To get the error message, you need to call KamMiscErrorMessage and ' supply the error number
To Operate your layout you will need to perform a mapping between a Port (logical reference) , Device (physical communications channel) and a Controller ' (command station) for the program to work. All references uses the logical device as the reference device for access.
Addresses used are an object reference. To use an ' address you must add the address to the command station using KamDecoderPutAdd ... One of the return values from this operation is an object reference that is used for control . ' We need certain variables as global objects; since the information is being used multiple times
Dim iLogicalPort , iController, iComPort
Dim iPortRate, iPortParity, iPortStop, iPortRetrans, iPortWatchdog, iPortFlow, iPortData
Dim lEngineObject As Long, iDecoderClass As Integer, iDecoderType As Integer
Dim lMaxController As Long
Dim IMaxLogical As Long, IMaxPhysical As Long, IMaxSerial As Long, IMaxParallel As Long
I ******************************** 'Form load function
1 - Turn of the initial buttons
1 - Set he interface information
1 ********************************
Private Sub Form_load()
Dim strVer As String, strCom As String, strCntrl As
String Dim iError As Integer
'Get the interface version information SetButtonState (False) iError = EngCmd. KamMiscGetlnterfaceVersion (strVer) If (iError) Then
MsgBox (("Train Server not loaded. Check DCOM-95") ) iLogicalPort = 0
LogPort . Caption = iLogicalPort
ComPort .Caption = "???"
Controller . Caption = "Unknown" Else
MsgBox ( ("Simulation (C0M1) Train Server -- " & strVer) )
'Configuration information; Only need to change these values to use a different controller.
UNKNOWN 0 // Unknown control type SIMULAT 1 // Interface simulator LENZ_lx 2 // Lenz serial support module LENZ_2x 3 // Lenz serial support module DIGIT_DT200 4 // Digitrax direct drive support using DT200
DIGIT_DCS100 5 // Digitrax direct drive support using DCS100
MASTERSERIES 6 // North Coast engineering master Series
SYSTEMONE 7 // System One RAMFIX 8 // RAMFIxx system DYNATROL 9 // Dynatrol system Northcoast binary 10 // North Coast binary SERIAL 11 // NMRA Serial interface
EASYDCC 12 // NMRA Serial interface MRK6050 13 // 6050 Marklin interface
(AC and DC)
MRK6023 14 // 6023 Marklin hybrid interface (AC)
ZTC 15 // ZTC Systems ltd DIGIT_PR1 16 // Digitrax direct drive support using PR1
DIRECT 17 // Direct drive interface routine iLogicalPort = 1 ' Select Logical port 1 for communications iController = 1 'Select controller from the list above . iComPort = 0 ' use COM1 ; 0 means coml (Digitrax must use Coml or Com2) 'Digitrax Baud rate requires 16.4K! 'Most COM ports above Com2 do not support 16.4K. Check with the 'manufacture of your smart com card for the baud rate . Keep in mind that 'Dumb com cards with serial port support Coml - Com4 can only support 2 com ports (like coml/com2 or com3/com4)
If you change the controller, do not forget to change the baud rate to 'match the command station. See your 'user manual for details
I ********************************************************
0: // Baud rate is 300
1: // Baud rate is 1200
2: // Baud rate is 2400
3: // Baud rate is 4800
4: // Baud rate is 9600
5: // Baud rate is 14.4
6: // Baud rate is 16.4
7: // Baud rate is 19.2 iPortRate = 4 ' Parity values 0-4 -> no, odd, even, mark, space iPortParity = 0 ' Stop bits 0,1,2 > 1, 1.5, iPortStop = 0 iPortRetrans = 10 iPortWatchdog = 2048 iPortFlow = 0 ' Data bits 0 - > 7 Bits, l-> 8 bits iPortData = 1
'Display the port and controller information iError = EngCmd. KamPortGetMaxLogPorts (IMaxLogical) iError = EngCmd. KamPortGetMaxPhysical (IMaxPhysical, IMaxSerial, lMaxParallel)
' Get the port name and do some checking... iError = EngCmd. KamPortGetName (iComPort, strCom) SetError (iError) If (iComPort > IMaxSerial) Then MsgBox ("Com port our of range") iError =
EngCmd. KamMiscGetControllerName (iController, strCntrl) If (iLogicalPort > IMaxLogical) Then MsgBox ("Logical port out of range") SetError (iError) End If
'Display values in Throttle.. LogPort .Caption = iLogicalPort ComPort .Caption = strCom Controller . Caption = strCntrl
End Sub
I ****************************** 'Send Command ■Note:
' Please follow the command order. Order is important ' ' for the application to work!
I ****************************** Private Sub Command_Click ()
' Send the command from the interface to the command station, use the engineObject Dim iError, iSpeed As Integer If Not Connect .Enabled Then 'TrainTools interface is a caching interface.
'This means that you need to set up the CV's or 'other operations first; then execute the ' command . iSpeed = Speed. Text iError =
EngCmd. KamEngPutFunction (lEngineObject, 0, F0. Value) iError =
EngCmd . KamEngPutFunction ( lEngineObj ect , 1 , FI. Value) iError =
EngCmd. KamEngPutFunction (lEngineObject, 2 ,
F2.Value) iError =
EngCmd . KamEngPutFunction (lEngineObj ect , 3 , F3.Value) iError = EngCmd. KamEngPutSpeed (lEngineObject , iSpeed, Direction.Value) If iError = 0 Then iError = EngCmd . KamCmdCommand (lEngineObj ect) SetError (iError)
End If
End Sub i******************************
'Connect Controller
■ ******************************
Private Sub Connect_Click () Dim iError As Integer 'These are the index values for setting up the port for use PORT_RETRANS 0 // Retrans index
PORT_RATE 1 // Retrans index
PORT_PARITY 2 // Retrans index
PORT_STOP 3 // Retrans index
PORT_WATCHDOG 4 // Retrans index
PORT_FLOW 5 // Retrans index
PORT_DATABITS 6 // Retrans index
PORTJDEBUG 7 // Retrans index
PORT PARALLEL 8 // Retrans index
These are the index values for setting up the port for use
PORT_RETRANS 0 // Retrans index
PORT_RATE 1 // Retrans index
PORT_PARITY 2 // Retrans index
PORT_STOP 3 // Retrans index
PORT_WATCHDOG 4 // Retrans index
PORT_FLOW 5 // Retrans index
PORT_DATABITS 6 // Retrans index
PORT_DEBUG 7 // Retrans index
PORT PARALLEL 8 // Retrans index iError = EngCmd. KamPortPutConfig (iLogicalPort , 0 iPortRetrans, 0) ' setting PORT_RETRANS iError = EngCmd. KamPortPutConfig (iLogicalPort , 1 iPortRate, 0) ' setting PORT_RATE iError = EngCmd. KamPortPutConfig (iLogicalPort , 2 iPortParity, 0) ' setting PORT_PARITY iError = EngCmd. KamPortPutConfig (iLogicalPort , 3 iPortStop, 0) ' setting PORT_STOP iError = EngCmd. KamPortPutConfig (iLogicalPort , 4 iPortWatchdog, 0) ' setting PORT_WATCHDOG iError = EngCmd. KamPortPutConfig (iLogicalPort , 5 iPortFlow, 0) ' setting PORT_FLOW iError = EngCmd. KamPortPutConfig (iLogicalPort , 6 iPortData, 0) ' setting PORT_DATABITS
We need to set the appropriate debug mode for display. this command can only be sent if the following is true
-Controller is not connected
-port has not been mapped
-Not share ware version of application (Shareware always set to 130) Write Display Log Debug
File Win Level Value
1 + 2 + 4 = 7 -> LEVEL1 -- put packets into queues
1 + 2 + 8 = 11 -> LEVEL2 -- Status messages send to window
1 + 2 + 16 = 19 -> LEVEL3 --
1 + 2 + 32 = 35 -> LEVEL4 -- All system semaphores/critical sections
1 + 2 + 64 = 67 -> LEVEL5 -- detailed debugging information
+ 2 + 128 = 131 -> COMMONLY -- Read comm write comm ports You probably only want to use values of 130. This will give you a display what is read or written to the controller. If you want to write the information to disk, use 131. The other information is not valid for end users .
Note: 1. This does effect the performance of you system; 130 is a save value for debug display. Always set the key to 1, a value ' of 0 will disable debug
2. The Digitrax control codes displayed are encrypted. The information that you determine from the control codes is that information is sent (S) and a response is ' received (R) iDebugMode = 130 iValue = Value. Text' Display value for reference iError = EngCmd. KamPortPutConfig (iLogicalPort , 7, iDebug, iValue) ' setting PORT_DEBUG
'Now map the Logical Port, Physical device, Command station and Controller iError = EngCmd. KamPortPutMapController (iLogicalPort , iController, iComPort) iError = EngCmd. KamCmdConnect (iLogicalPort) iError = EngCmd. KamOprPutTurnOnStation (iLogicalPort)
If (iError) Then
SetButtonState (False) Else
SetButtonState (True) End If SetError (iError) 'Displays the error message and error number
End Sub
I ******************************
' Set the address button
I ****************************** Private Sub DCCAddr_Click ()
Dim iAddr, iStatus As Integer
' All addresses must be match to a logical port to operate iDecoderType = 1 ' Set the decoder type to an NMRA baseline decoder ( 1 - 8 reg) iDecoderClass = 1 ' Set the decoder class to Engine decoder (there are only two classes of decoders;
Engine and Accessory 'Once we make a connection, we use the lEngineObject 'as the reference object to send control information If (Address. Text > 1) Then iStatus = EngCmd . KamDecoderPutAdd (Address . Text , iLogicalPort, iLogicalPort, 0, iDecoderType, lEngineObject)
SetError (iStatus) If (lEngineObject) Then
Command. Enabled = True 'turn on the control
(send) button
Throttle. Enabled = True ' Turn on the throttle Else
MsgBox ("Address not set, check error message")
End If Else
MsgBox ("Address must be greater then 0 and less then 128")
End If
End Sub i ******************* 'Disconenct button
I *******************
Private Sub Disconnect_Click ()
Dim iError As Integer iError = EngCmd. KamCmdDisConnect (iLogicalPort )
SetError (iError)
SetButtonState (False) End Sub
I ********************** 'Display error message I **********************
Private Sub SetError (iError As Integer) Dim szError As String Dim iStatus ' This shows how to retrieve a sample error message from the interface for the status received. iStatus = EngCmd. KamMiscGetErrorMsg (iError, szError) ErrorMsg. Caption = szError Result . Caption = Str (iStatus) End Sub
I **************************
' Set the Form button state
I **************************
Private Sub SetButtonState (iState As Boolean) 'We set the state of the buttons; either connected or disconnected If (iState) Then
Connect .Enabled = False
Disconnect .Enabled = True ONCmd. Enabled = True
OffCmd. Enabled = True
DCCAddr. Enabled = True
UpDownAddress .Enabled = True 'Now we check to see if the Engine Address has been 'set; if it has we enable the send button If (lEngineObject > 0) Then
Command. Enabled = True
Throttle.Enabled = True Else
Command. Enabled = False
Throttle. Enabled = False End If Else
Connect .Enabled = True
Disconnect .Enabled = False
Command. Enabled = False
ONCmd. Enabled = False OffCmd. Enabled = False
DCCAddr. Enabled = False
UpDownAddress .Enabled = False
Throttle. Enabled = False
End If End Sub
1 *******************
'Power Off function
Private Sub OffCmd_Click () Dim iError As Integer iError = EngCmd. KamOprPutPowerOff (iLogicalPort) SetError (iError) End Sub 'Power On function
Private Sub ONCmd_Click () Dim iError As Integer iError = EngCmd. KamOprPutPowerOn (iLogicalPort) SetError (iError)
End Sub
'Throttle slider control i************************
Private Sub Throttle_Click () If (lEngineObject) Then
If (Throttle.Value > 0) Then Speed. Text = Throttle .Value End If
End If End Sub
I. IDL COMMAND REFERENCE
A. Introduction
This document describes the IDL interface to the KAM Industries Engine Commander Train Server. The Train Server DCOM server may reside locally or on a network node This server handles all the background details of controlling your railroad. You write simple, front end programs in a variety of languages such as BASIC, Java, or C++ to provide the visual interface to the user while the server handles the details of communicating with the command station, etc.
A. Data Types
Data is passed to and from the IDL interface using a several primitive data types. Arrays of these simple types are also used. The exact type passed to and from your program depends on the programming language your are using.
The following primitive data types are used:
IDL Type BASIC Type C++ Type Java Type Description short short short short Short signed integer int int int int Signed integer
BSTR BSTR BSTR BSTR Text string long long long long Unsigned 32 bit value Name ID CV Range Valid CV's Functions Address Range Speed Steps.
NMRA Compatible 0 None None 2 1-99 14 Baseline 1 1-8 1-8 9 1-127 14 Extended 2 1-106 1-9, 17, 18, 19, 23, 24, 29, 30, 49, 66-95 9 1-10239 14,28,128
All Mobile 3 1-106 1-106 9 1-10239 14,28,128
Name ID CV Range Valid CV's Functions Address Range Accessory 4 513-593 513-593 8 0-511 All Stationary 5 513-1024 513-1024 8 0-511
A long /DecoderObj ect/D value is returned by the KamDecoderPutAdd call if the decoder is successfully registered with the server. This unique opaque ID should be used for all subsequent calls to reference this decoder.
A. Commands to access the server configuration variable database
This section describes the commands that access the server configuration variables (CV) database. These CVs are stored in the decoder and control many of its characteristics such as its address. For efficiency, a copy of each CV value is also stored in the server database. Commands such as KamCVGetValue and KamCVPutValue communicate only with the server, not the actual decoder. You then use the programming commands in the next section to transfer CVs to and from the decoder. OKamCVGetValue
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCVRegint 1-1024 2 In CV register pCWalue int * 3 Out Pointer to CV value
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Range is 1-1024. Maximum CV for this decoder is given by KamCVGetMaxRegister . 3 CV Value pointed to has a range of 0 to 255.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamCVGetValue takes the decoder object ID and configuration variable (CV) number as parameters. It sets the memory pointed to by pCWalue to the value of the server copy of the configuration variable . 0KamCVPutValue
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCVRegint 1-1024 2 In CV register iCWalue int 0-255 In CV value 1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum CV is 1024. Maximum CV for this decoder is given by KamCVGetMaxRegister.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamCVPutValue takes the decoder object ID, configuration variable (CV) number, and a new CV value as parameters. It sets the server copy of the specified decoder CV to iCWalue .
0KamCVGetEnab1e
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCVRegint 1-1024 2 In CV number pEnable int * 3 Out Pointer to CV bit mask
1 Opaque object ID handle returned by KamDecoderPutAdd. 2 Maximum CV is 1024. Maximum CV for this decoder is given by KamCVGetMaxRegister.
3 0x0001 - SET_CV_INUSE 0x0002 - SET_CV_READ_DIRTY 0x0004 - SET_CV_WRITE_DIRTY 0x0008 -
SET_CV_ERROR_READ 0x0010 - SET_CV_ERROR_WRITE
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamCVGetEnable takes the decoder object ID, configuration variable (CV) number, and a pointer to store the enable flag as parameters. It sets the location pointed to by pEnable .
0KamCVPutEnab1e Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCVRegint 1-1024 2 In CV number iEnableint 3 In CV bit mask
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum CV is 1024. Maximum CV for this decoder is given by KamCVGetMaxRegister.
3 0x0001 - SET_CV_INUSE 0x0002 - SET_CV_READ_DIRTY 0x0004 - SET_CV_WRITE_DIRTY 0x0008 - SET_CV_ERROR_READ
0x0010 - SET_CV_ERROR_WRITE Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamCVPutEnable takes the decoder object ID, configuration variable (CV) number, and a new enable state as parameters. It sets the server copy of the CV bit mask to iEnable .
0KamCVGetName
Parameter List Type Range Direction Description iCV int 1-1024 In CV number pbsCVNameString BSTR * 1 Out Pointer to CV name string
1 Exact return type depends on language. It is
Cstring * for C++. Empty string on error. Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamCVGetName takes a configuration variable (CV) number as a parameter. It sets the memory pointed to by pbsCV-VameString to the name of the CV as defined in NMRA Recommended Practice RP 9.2.2.
OKamCVGetMinRegister
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID pMinRegister int * 2 Out Pointer to min CV register number
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Normally 1-1024. 0 on error or if decoder does not support CVs .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamCVGetMinRegister takes a decoder object ID as a parameter. It sets the memory pointed to by pMinRegister to the minimum possible CV register number for the specified decoder.
OKamCVGetMaxRegister Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID pMaxRegister int * 2 Out Pointer to max CV register number
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Normally 1-1024. 0 on error or if decoder does not support CVs . Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamCVGetMaxRegister takes a decoder object ID as a parameter. It sets the memory pointed to by pMaxRegister to the maximum possible CV register number for the specified decoder.
A. Commands to program configuration variables
This section describes the commands read and write decoder configuration variables (CVs) . You should initially transfer a copy of the decoder CVs to the server using the KamProgramReadDecoderToDataBase command. You can then read and modify this server copy of the CVs. Finally, you can program one or more CVs into the decoder using the KamProgramCV or KamProgramDecoderFromDataBase command. Not that you must first enter programming mode by issuing the KamProgram command before any programming can be done .
0KamProgram
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iProgLogPort int 1-65535 2 In Logical programming port ID lProgMode int 3 In Programming mode
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Maximum value for this server given by KamPortGetMaxLogPorts .
3 0 - PROGRAM_MODE_NONE
1 - PROGRAM_MODE_ADDRESS 2 PROGRAM_MODE_REGISTER
3 - PROGRAM_MODE_PAGE
4 - PROGRAM_MODE_DIRECT
5 - DCODE_PRGMODE_OPS_SHORT
6 - PROGRAM MODE OPS LONG Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamProgram take the decoder object ID, logical programming port ID, and programming mode as parameters. It changes the command station mode from normal operation
(PROGRAM_MODE_NONE) to the specified programming mode. Once in programming modes, any number of programming commands may be called. When done, you must call KamProgram with a parameter of PROGRAM_MODE_NONE to return to normal operation.
OKamProgramGetMode Parameter List Type Range Direction Description iDecoderObj ectID long 1 In Decoder obj ect ID iProgLogPort int 1-65535 2 In Logical programming port ID piProgMode int * 3 Out Programming mode
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum value for this server given by KamPortGetMaxLogPorts .
3 0 - PROGRAM_MODE_NONE
1 - PROGRAM_MODE_ADDRESS 2 PROGRAM_MODE_REGISTER
3 - PROGRAM_MODE_PAGE
4 - PROGRAM_MODE_DIRECT
5 - DCODE_PRGMODE_OPS_SHORT
6 - PROGRAM_MODE_OPS_LONG
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamProgramGetMode take the decoder object ID, logical programming port ID, and pointer to a place to store the programming mode as parameters. It sets the memory pointed to by piProgMode to the present programming mode .
OKamProgramGetStatus
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCVRegint 0-1024 2 In CV number piCVAllStatus int * 3 Out Or ' d decoder programming status
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 0 returns OR'd value for all CVs Other values return status for just that CV.
3 0x0001 - SET_CV_INUSE 0x0002 - SET_CV_READ_DIRTY 0x0004 - SET_CV_WRITE_DIRTY 0x0008 - SET_CV_ERROR_READ 0x0010 - SET CV ERROR WRITE Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamProgramGetStatus take the decoder object ID and pointer to a place to store the OR'd decoder programming status as parameters. It sets the memory pointed to by piProgMode to the present programming mode. OKamProgramReadCV
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCVRegint 2 In CV number
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Maximum CV is 1024. Maximum CV for this decoder is given by KamCVGetMaxRegister.
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamProgramCV takes the decoder object ID, configuration variable (CV) number as parameters. It reads the specified CV variable value to the server database.
0KamProgramCV
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCVRegint 2 In CV number iCWalue int 0-255 In CV value
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum CV is 1024. Maximum CV for this decoder is given by KamCVGetMaxRegister. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamProgramCV takes the decoder object ID, configuration variable (CV) number, and a new CV value as parameters.
It programs (writes) a single decoder CV using the specified value as source data.
OKamProgramReadDecoderToDataBase Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID
1 Opaque object ID handle returned by
KamDecoderPutAdd .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamProgramReadDecoderToDataBase takes the decoder object
ID as a parameter. It reads all enabled CV values from the decoder and stores them in the server database. OKamProgramDecoderFromDataBase
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID 1 Opaque object ID handle returned by KamDecoderPutAdd.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamProgramDecoderFromDataBase takes the decoder object ID as a parameter. It programs (writes) all enabled decoder CV values using the server copy of the CVs as source data.
A. Commands to control all decoder types
This section describes the commands that all decoder types. These commands do things such getting the maximum address a given type of decoder supports, adding decoders to the database, etc.
OKamDecoderGetMaxModels Parameter List Type Range Direction Description piMaxModels int * 1 Out Pointer to Max model ID
1 Normally 1-65535 0 on error. Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success, Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderGetMaxModels takes no parameters. It sets the memory pointed to by piMaxModels to the maximum decoder type ID .
OKamDecoderGetModelName Parameter List Type Range Direction Description iModel int 1-65535 1 In Decoder type ID pbsModelName BSTR * 2 Out Decoder name string
1 Maximum value for this server given by KamDecoderGetMaxModels .
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamPortGetModelName takes a decoder type ID and a pointer to a string as parameters. It sets the memory pointed to by pbsModelName to a BSTR containing the decoder name . OKamDecoderSetModelToObj
Parameter List Type Range Direction Description iModel int 1 In Decoder model ID lDecoderObjectlD long 1 In Decoder object ID 1 Maximum value for this server given by
KamDecoderGetMaxModels .
2 Opaque object ID handle returned by
KamDecoderPutAdd .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamDecoderSetModelToObj takes a decoder ID and decoder object ID as parameters. It sets the decoder model type of the decoder at address lDecoderObjectlD to the type specified by iModel .
OKamDecoderGetMaxAddress
Parameter List Type Range Direction Description iModel int 1 In Decoder type ID piMaxAddress int * 2 Out Maximum decoder address 1 Maximum value for this server given by KamDecoderGetMaxModels . 2 Model dependent. 0 returned on error.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamDecoderGetMaxAddress takes a decoder type ID and a pointer to store the maximum address as parameters. It sets the memory pointed to by piMaxAddress to the maximum address supported by the specified decoder. OKamDecoderChangeOldNewAddr
Parameter List Type Range Direction Description lOldObjID long 1 In Old decoder object ID iNewAddr int 2 In New decoder address plNewObj ID long * 1 Out New decoder object ID 1 Opaque object ID handle returned by
KamDecoderPutAdd .
2 1-127 for short locomotive addresses. 1-10239 for long locomotive decoders. 0-511 for accessory decoders. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamDecoderChangeOldNewAddr takes an old decoder object ID and a new decoder address as parameters. It moves the specified locomotive or accessory decoder to iNewAddr and sets the memory pointed to by plNewObjID to the new object ID. The old object ID is now invalid and should no longer be used. OKamDecoderMovePort
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iLogicalPortID int 1-65535 2 In Logical port ID 1 Opaque object ID handle returned by
KamDecoderPutAdd.
2 Maximum value for this server given by
KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamDecoderMovePort takes a decoder object ID and logical port ID as parameters. It moves the decoder specified by lDecoderObjectlD to the controller specified by i Logi cal Por t ID.
OKamDecoderGetPort
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID piLogicalPortlD int * 1-65535 2 Out Pointer to logical port ID
1 Opaque object ID handle returned by
KamDecoderPutAdd. 2 Maximum value for this server given by
KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderMovePort takes a decoder object ID and pointer to a logical port ID as parameters. It sets the memory pointed to by piLogicalPortlD to the logical port ID associated with lDecoderObjectlD.
OKamDecoderCheckAddrlnUse
Parameter List Type Range Direction Description iDecoderAddress int 1 In Decoder address iLogicalPortID int 2 In Logical Port ID iDecoderClass int 3 In Class of decoder
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Maximum value for this server given by KamPortGetMaxLogPorts . 3 1 - DECODER_ENGINE_TYPE ,
2 - DECODER_SWITCH_TYPE,
3 - DECODER_SENSOR_TYPE .
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for successful call and address not in use. Nonzero is an error number (see
KamMiscGetErrorMsg) . IDS_ERR_ADDRESSEXIST returned if call succeeded but the address exists. KamDecoderCheckAddrlnUse takes a decoder address, logical port, and decoder class as parameters. It returns zero if the address is not in use. It will return IDS_ERR_ADDRESSEXIST if the call succeeds but the address already exists. It will return the appropriate non zero error number if the calls fails.
OKamDecoderGetModelFromObj
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID piModelint * 1-65535 2 Out Pointer to decoder type ID
1 Opaque object ID handle returned by
KamDecoderPutAdd. 2 Maximum value for this server given by
KamDecoderGetMaxModels .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderGetModelFromObj takes a decoder object ID and pointer to a decoder type ID as parameters. It sets the memory pointed to by piModel to the decoder type ID associated with iDCCAddr.
OKamDecoderGetModelFacility
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID pdwFacility long * 2 Out Pointer to decoder facility mask
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 0 - DCODE_PRGMODE_ADDR
I - DCODE_PRGMODE_REG 2 - DCODE_PRGMODE_PAGE
3 - DCODE_PRGMODE_DIR
4 - DCODE_PRGMODE_FLYSHT
5 - DCODE_PRGMODE_FLYLNG
6 - Reserved 7 - Reserved
8 - Reserved
9 - Reserved
10 - Reserved
II - Reserved 12 - Reserved
13 - DCODE_FEAT_DIRLIGHT
14 - DCODE_FEAT_LNGADDR
15 - DCODE_FEAT_CVENABLE
16 - DCODE_FEDMODE_ADDR 17 - DCODE_FEDMODE_REG
18 - DCODE_FEDMODE_PAGE
19 - DCODE_FEDMODE_DIR
20 - DCODE_FEDMODE_FLYSHT
21 - DCODE FEDMODE FLYLNG Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderGetModelFacility takes a decoder object ID and pointer to a decoder facility mask as parameters. It sets the memory pointed to by pdwFacili ty to the decoder facility mask associated with iDCCAddr.
0KamDecoderGetObj Count
Parameter List Type Range Direction Description iDecoderClass int 1 In Class of decoder piObjCount int * 0-65535 Out Count of active decoders
1 1 - DECODER_ENGINE_TYPE,
2 - DECODER_SWITCH_TYPE,
3 - DECODER_SENSOR_TYPE . Return Value Type Range Description* iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamDecoderGetObj Count takes a decoder class and a pointer to an address count as parameters. It sets the memory pointed to by piObjCount to the count of active decoders of the type given by iDecoderClass .
OKamDecoderGetObjAtIndex
Parameter List Type Range Direction Description* iIndex int 1 In Decoder array index iDecoderClass int 2 In Class of decoder plDecoderObjectlD long * 3 Out Pointer to decoder object ID
1 0 to (KamDecoderGetAddressCount - 1) .
2 1 - DECODER_ENGINE_TYPE,
2 - DECODER_SWITCH_TYPE,
3 - DECODER_SENSOR_TYPE .
3 Opaque object ID handle returned by KamDecoderPutAdd.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderGetObj Count takes a decoder index, decoder class, and a pointer to an object ID as parameters. It sets the memory pointed to by plDecoderObjectlD to the selected object ID.
OKamDecoderPutAdd
Parameter List Type Range Direction Description iDecoderAddress int 1 In Decoder address iLogicalCmdPortID int 1-65535 2 In Logical command port ID iLogicalProgPortID int 1-65535 2 In Logical programming port ID iClearState int 3 In Clear state flag iModel int 4 In Decoder model type ID plDecoderObj ectID long * 5 Out Decoder object ID 1 1-127 for short locomotive addresses. 1-10239 for long locomotive decoders. 0-511 for accessory decoders. 2 Maximum value for this server given by KamPortGetMaxLogPorts .
3 0 - retain state, 1 - clear state.
4 Maximum value for this server given by KamDecoderGetMaxModels . 5 Opaque object ID handle. The object ID is used to reference the decoder.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderPutAdd takes a decoder object ID, command logical port, programming logical port, clear flag, decoder model ID, and a pointer to a decoder object ID as parameters. It creates a new locomotive object in the locomotive database and sets the memory pointed to by plDecoderObjectlD to the decoder object ID used by the server as a key.
OKamDecoderPutDel Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iClearState int 2 In Clear state flag 1 Opaque object ID handle returned by KamDecoderPutAdd . 2 0 - retain state, 1 - clear state.
Return Value Type Range Description* iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamDecoderPutDel takes a decoder object ID and clear flag as parameters. It deletes the locomotive object specified by lDecoderObjectlD from the locomotive database.
OKamDecoderGetMfgName Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID pbsMfgName BSTR * 2 Out Pointer to manufacturer name
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamDecoderGetMfgName takes a decoder object ID and pointer to a manufacturer name string as parameters . It sets the memory pointed to by pbsMfgName to the name of the decoder manufacturer. OKamDecoderGetPowerMode
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID pbsPowerMode BSTR * 2 Out " Pointer to decoder power mode
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error. Return Value Type Range Description* iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderGetPowerMode takes a decoder object ID and a pointer to the power mode string as parameters. It sets the memory pointed to by pbsPowerMode to the decoder power mode .
OKamDecoderGetMaxSpeed Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID piSpeedStep int' * 2 Out Pointer to max speed step
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 14, 28, 56, or 128 for locomotive decoders. 0 for accessory decoders.
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamDecoderGetMaxSpeed takes a decoder object ID and a pointer to the maximum supported speed step as parameters. It sets the memory pointed to by piSpeedStep to the maximum speed step supported by the decoder.
A. Commands to control locomotive decoders This section describes the commands that control locomotive decoders. These commands control things such as locomotive speed and direction. For efficiency, a copy of all the engine variables such speed is stored in the server. Commands such as KamEngGetSpeed communicate only with the server, not the actual decoder.
You should first make any changes to the server copy of the engine variables. You can send all changes to the engine using the KamCmdCommand command.
OKa EngGetSpeed
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID
IpSpeed int * 2 Out Pointer to locomotive speed lpDirection int * 3 Out Pointer to locomotive direction
1 Opaque object ID handle returned by
KamDecoderPutAdd . 2 Speed range is dependent on whether the decoder is set to 14,18, or 128 speed steps and matches the values defined by NMRA S9.2 and RP 9.2.1. 0 is stop and 1 is emergency stop for all modes.
3 Forward is boolean TRUE and reverse is boolean FALSE .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamEngGetSpeed takes the decoder object ID and pointers to locations to store the locomotive speed and direction as parameters. It sets the memory pointed to by IpSpeed to the locomotive speed and the memory pointed to by lpDirection to the locomotive direction.
OKamEngPutSpeed
Parameter List Type Range Direction Description* lDecoderObjectlD long 1 In Decoder object ID iSpeed int 2 In Locomotive speed iDirection int 3 In Locomotive direction
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Speed range is dependent on whether the decoder is set to 14,18, or 128 speed steps and matches the values defined by NMRA S9.2 and RP 9.2.1. 0 is stop and 1 is emergency stop for all modes.
3 Forward is boolean TRUE and reverse is boolean FALSE .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamEngPutSpeed takes the decoder object ID, new locomotive speed, and new locomotive direction as parameters. It sets the locomotive database speed to iSpeed and the locomotive database direction to iDirection . Note: This command only changes the locomotive database. The data is not sent to the decoder until execution of the KamCmdCommand command. Speed is set to the maximum possible for the decoder if iSpeed exceeds the decoders range.
OKamEngGetSpeedSteps Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID
IpSpeedSteps int * 14,28,128 Out Pointer to number of speed steps
1 Opaque object ID handle returned by KamDecoderPutAdd.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamEngGetSpeedSteps takes the decoder object ID and a pointer to a location to store the number of speed steps as a parameter. It sets the memory pointed to by
IpSpeedSteps to the number of speed steps . OKamEngPutSpeedSteps
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iSpeedSteps int 14,28,128 In Locomotive speed steps 1 Opaque object ID handle returned by
KamDecoderPutAdd .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamEngPutSpeedSteps takes the decoder object ID and a new number of speed steps as a parameter. It sets the number of speed steps in the locomotive database to iSpeedSteps . Note: This command only changes the locomotive database. The data is not sent to the decoder until execution of the KamCmdCommand command. KamDecoderGetMaxSpeed returns the maximum possible speed for the decoder. An error is generated if an attempt is made to set the speed steps beyond this value.
0KamEngGetFunction
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iFunctionID int 0-8 2 In Function ID number lpFunction int * 3 Out Pointer to function value ,
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 FL is 0. F1-F8 are 1-8 respectively. Maximum for this decoder is given by KamEngGetFunctionMax. 3
Function active is boolean TRUE and inactive is boolean FALSE . Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an ' error number (see KamMiscGetErrorMsg) . KamEngGetFunction takes the decoder object ID, a function ID, and a pointer to the location to store the specified function state as parameters. It sets the memory pointed to by lpFunction to the specified function state. OKamEngPutFunction
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iFunctionID int 0-8 2 In Function ID number iFunction int 3 In Function value 1 Opaque object ID handle returned by KamDecoderPutAdd .
2 FL is 0. F1-F8 are 1-8 respectively. Maximum for this decoder is given by KamEngGetFunctionMax.
3 Function active is boolean TRUE and inactive is boolean FALSE.
Return Value Type Range Description* iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamEngPutFunction takes the decoder object ID, a function ID, and a new function state as parameters. It sets the specified locomotive database function state to iFunction . Note: This command only changes the locomotive database. The data is not sent to the decoder until execution of the KamCmdCommand command.
0KamEngGetFunctionMax
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID piMaxFunction int * 0-8 Out Pointer to maximum function number
1 Opaque object ID handle returned by
KamDecoderPutAdd .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamEngGetFunctionMax takes a decoder object ID and a pointer to the maximum function ID as parameters. It sets the memory pointed to by piMaxFunction to the maximum possible function number for the specified decoder. 0KamEngGetName
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID pbsEngName BSTR * 2 Out Pointer to locomotive name
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamEngGetName takes a decoder object ID and a pointer to the locomotive name as parameters. It sets the memory pointed to by pbsEngName to the name of the locomotive.
0KamEngPutName
Parameter List Type Range Direction Description* lDecoderObjectlD long 1 In Decoder object ID bsEngName BSTR 2 Out Locomotive name
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Exact parameter type depends on language. It is LPCSTR for C++.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamEngPutName takes a decoder object ID and a BSTR as parameters. It sets the symbolic locomotive name to bsEngName .
0KamEngGetFunctionName Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iFunctionID int 0-8 2 In Function ID number pbsFcnNameString BSTR * 3 Out Pointer to function name 1 Opaque object ID handle returned by
KamDecoderPutAdd .
2 FL is 0. F1-F8 are 1-8 respectively. Maximum for this decoder is given by KamEngGetFunctionMax. 3 Exact return type depends on language. It is Cstring * for C++. Empty string on error.
Return Value Type Range Description iError short 1 Error flag
1 iError* = 0 for success . Nonzero is an error number
(see KamMiscGetErrorMsg) . KamEngGetFuncntionName takes a decoder object ID, function ID, and a pointer to the function name as parameters. It sets the memory pointed to by pbsFcnNameString to the symbolic name of the specified function. 0KamEngPutFunctionName
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iFunctionID int 0-8 2 In Function ID number bsFcnNameString BSTR 3 In Function name
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 FL is 0. F1-F8 are 1-8 respectively. Maximum for this decoder is given by KamEngGetFunctionMax. 3 Exact parameter type depends on language. It is LPCSTR for C++.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamEngPutFunctionName takes a decoder object ID, function ID, and a BSTR as parameters. It sets the specified symbolic function name to bsFcnNameString. 0KamEngGetConsistMax
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID piMaxConsist int * 2 Out Pointer to max consist number 1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Command station dependent .
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamEngGetConsistMax takes the decoder object ID and a pointer to a location to store the maximum consist as parameters. It sets the location pointed to by piMaxConsist to the maximum number of locomotives that can but placed in a command station controlled consist . Note that this command is designed for command station consisting. CV consisting is handled using the CV commands .
OKamEngPutConsistParent
Parameter List Type Range Direction Description lDCCParentObj ID long 1 In Parent decoder object ID iDCCAliasAddr int 2 In Alias decoder address
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 1-127 for short locomotive addresses. 1-10239 for long locomotive decoders. Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamEngPutConsistParent takes the parent object ID and an alias address as parameters. It makes the decoder specified by IDCCParentObj ID the consist parent referred to by iDCCAliasAddr . Note that this command is designed for command station consisting. CV consisting is handled using the CV commands. If a new parent is defined for a consist; the old parent becomes a child in the consist. To delete a parent in a consist without deleting the consist, you must add a new parent then delete the old parent using KamEngPutConsistRemoveObj . 0KamEngPutConsistChild
Parameter List Type Range Direction Description
IDCCParentObj ID long 1 In Parent decoder object ID
IDCCObjID long 1 In Decoder object ID 1 Opaque object ID handle returned by
KamDecoderPutAdd .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamEngPutConsistChild takes the decoder parent object ID and decoder object ID as parameters. It assigns the decoder specified by IDCCObjID to the consist identified by IDCCParentObj ID. Note that this command is designed for command station consisting. CV consisting is handled using the CV commands. Note: This command is invalid if the parent has not been set previously using KamEngPutConsistParent . OKamEngPutConsistRemoveObj
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID 1 Opaque object ID handle returned by KamDecoderPutAdd . Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamEngPutConsistRemoveObj takes the decoder object ID as a parameter. It removes the decoder specified by lDecoderObjectlD from the consist. Note that this command is designed for command station consisting. CV consisting is handled using the CV commands. Note: If the parent is removed, all children are removed also.
A. Commands to control accessory decoders
This section describes the commands that control accessory decoders. These commands control things such as accessory decoder activation state. For efficiency, a copy of all the engine variables such speed is stored in the server. Commands such as KamAccGetFunction communicate only with the server, not the actual decoder. You should first make any changes to the server copy of the engine variables . You can send all changes to the engine using the KamCmdCommand command . OKamAccGetFunction
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iFunctionID int 0-31 2 In Function ID number lpFunction int * 3 Out Pointer to function value
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Maximum for this decoder is given by KamAccGetFunctionMax. 3 Function active is boolean TRUE and inactive is boolean FALSE.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamAccGetFunction takes the decoder object ID, a function ID, and a pointer to the location to store the specified function state as parameters. It sets the memory pointed to by lpFunction to the specified function state.
0KamAccGetFunctionAl1
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID piValue int * 2 Out Function bit mask 1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Each bit represents a single function state. Maximum for this decoder is given by KamAccGetFunctionMax . Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success . Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamAccGetFunctionAll takes the decoder object ID and a pointer to a bit mask as parameters. It sets each bit in the memory pointed to by piValue to the corresponding function state.
0KamAccPutFunction Parameter List Type Range Direction Description lDecoderObj ectID long 1 In Decoder object ID iFunctionID int 0-31 2 In Function ID number iFunction int 3 In Function value
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum for this decoder is given by KamAccGetFunctionMax.
3 Function active is boolean TRUE and inactive is boolean FALSE. Return Value Type Range Description* iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamAccPutFunction takes the decoder object ID, a function ID, and a new function state as parameters. It sets the specified accessory database function state to iFunction . Note: This command only changes the accessory database. The data is not sent to the decoder until execution of the KamCmdCommand command.
0KamAccPutFunctionAl1
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iValue int 2 In Pointer to function state array
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Each bit represents a single function state. Maximum for this decoder is given by
KamAccGetFunctionMax.
Return Value Type Range Description* iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamAccPutFunctionAll takes the decoder object ID and a bit mask as parameters. It sets all decoder function enable states to match the state bits in iValue. The possible enable states are TRUE and FALSE. The data is not sent to the decoder until execution of the
KamCmdCommand command .
OKamAccGetFunctionMax
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID piMaxFunction int * 0-31 2 Out Pointer to maximum function number 1 Opaque object ID handle returned by KamDecoderPutAdd . 2 Maximum for this decoder is given by
KamAccGetFunctionMax.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamAccGetFunctionMax takes a decoder object ID and pointer to the maximum function number as parameters. It sets the memory pointed to by piMaxFunction to the maximum possible function number for the specified decoder.
OKamAccGetName
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID pbsAccNameString BSTR * 2 Out Accessory name 1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success . Nonzero is an error number (see KamMiscGetErrorMsg) .
KamAccGetName takes a decoder object ID and a pointer to a string as parameters. It sets the memory pointed to by pbsAccNameString to the name of the accessory.
0KamAccPutName
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID bsAccNameString BSTR 2 In Accessory name
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Exact parameter type depends on language . It is LPCSTR for C++.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamAccPutName takes a decoder object ID and a BSTR as parameters. It sets the symbolic accessory name to bsAccName .
OKamAccGetFunctionName Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iFunctionID int 0-31 2 In Function ID number pbsFcnNameString BSTR * 3 Out Pointer to function name 1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum for this decoder is given by KamAccGetFunctionMax.
3 Exact return type depends on language. It is Cstring * for C++. Empty string on error.
Return Value Type Range Description* iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamAccGetFuncntionName takes a decoder object ID, function ID, and a pointer to a string as parameters. It sets the memory pointed to by pbsFcnNameString to the symbolic name of the specified function. 0KamAccPutFunctionName
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iFunctionID int 0-31 2 In Function ID number bsFcnNameString BSTR 3 In Function name 1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Maximum for this decoder is given by KamAccGetFunctionMax. 3 Exact parameter type depends on language. It is LPCSTR for C++.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamAccPutFunctionName takes a decoder object ID, function ID, and a BSTR as parameters. It sets the specified symbolic function name to bsFcnNameString . OKamAccRegFeedback
Parameter List Type Range Direction Description* lDecoderObjectlD long 1 In Decoder object ID bsAccNode BSTR 1 In Server node name iFunctionID int 0-31 3 In Function ID number 1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Exact parameter type depends on language. It is LPCSTR for C++.
3 Maximum for this decoder is given by KamAccGetFunctionMax.
Return Value Type Range Description iError short 1 Error flag
1 iError* = 0 for success . Nonzero is an error number (see KamMiscGetErrorMsg) . KamAccRegFeedback takes a decoder object ID, node name string, and function ID, as parameters. It registers interest in the function given by iFunctionID by the method given by the node name string bsAccNode . bsAccNode identifies the server application and method to call if the function changes state. Its format is
" \\{ Server) \ {App}. {Method} " where {Server} is the server name, {App} is the application name, and {Method} is the method name . OKamAccRegFeedbackAll
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID bsAccNode BSTR 2 In Server node name
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Exact parameter type depends on language. It is LPCSTR for C++.
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamAccRegFeedbackAll takes a decoder object ID and node name string as parameters . It registers interest in all functions by the method given by the node name string bsAccNode . bsAccNode identifies the server application and method to call if the function changes state. Its format is " \\{ Server} \ {App} . {Method} " where {Server} is the server name, {App} is the application name, and {Method} is the method name.
OKamAccDelFeedback
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID bsAccNode BSTR 2 In Server node name iFunctionID int 0-31 3 In Function ID number
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Exact parameter type depends on language. It is LPCSTR for C++.
3 Maximum for this decoder is given by KamAccGetFunctionMax.
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamAccDelFeedback takes a decoder object ID, node name string, and function ID, as parameters. It deletes interest in the function given by iFunctionID by the method given by the node name string bsAccNode . bsAccNode identifies the server application and method to call if the function changes state. Its format is " \\{ Server) \ {App} . {Method} " where {Server} is the server name, {App} is the application name, and {Method} is the method name.
OKamAccDelFeedbackAll
Parameter List Type Range Direction Description* lDecoderObjectlD long 1 In Decoder object ID bsAccNode BSTR 2 In Server node name
1 Opaque object ID handle returned by KamDecoderPutAdd.
2 Exact parameter type depends on language. It is LPCSTR for C++. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an- error number
(see KamMiscGetErrorMsg) .
KamAccDelFeedbackAll takes a decoder object ID and node name string as parameters. It deletes interest in all functions by the method given by the node name string bsAccNode . bsAccNode identifies the server application and method to call if the function changes state. Its format is "\\ { Server}\ {App} . {Method} " where {Server} is the server name, {App} is the application name, and {Method} is the method name. A. Commands to control the command station
This section describes the commands . that control the command station. These commands do things such as controlling command station power. The steps to control a given command station vary depending on the type of command station.
OKamOprPutTurnOnStation Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamOprPutTurnOnStation takes a logical port ID as a parameter. It performs the steps necessary to turn on the command station. This command performs a combination of other commands such as KamOprPutStartStation, KamOprPutClearStation, and KamOprPutPowerOn.
OKamOprPutStartStation Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by KamPortGetMaxLogPorts . Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamOprPutStartStation takes a logical port ID as a parameter. It performs the steps necessary to start the command station.
OKamOprPutClearstation
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by
KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag
1 iError - 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamOprPutClearStation takes a logical port ID as a parameter. It performs the steps necessary to clear the command station queue. OKamOprPutStopStation
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by KamPortGetMaxLogPorts . Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamOprPutStopStation takes a logical port ID as a parameter. It performs the steps necessary to stop the command station.
0KamOprPutPowerOn Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamOprPutPowerOn takes a logical port ID as a parameter.
It performs the steps necessary to apply power to the track.
OKamOprPutPowerOff
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by
KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamOprPutPowerOff takes a logical port ID as a parameter. It performs the steps necessary to remove power from the track. OKamOprPutHardReset
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID
1 Maximum value for this server given by
KamPortGetMaxLogPorts . Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamOprPutHardReset takes a logical port ID as a parameter. It performs the steps necessary to perform a hard reset of the command station.
0KamOprPutEmergencyStop
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamOprPutEmergencyStop takes a logical port ID as a parameter. It performs the steps necessary to broadcast an emergency stop command to all decoders .
OKamOprGetStationStatus Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID pbsCmdStat BSTR * 2 Out Command station status string
1 Maximum value for this server given by KamPortGetMaxLogPorts .
2 Exact return type depends on language. It is Cstring * for C++.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamOprGetStationStatus takes a logical port ID and a pointer to a string as parameters. It set the memory pointed to by pbsCmdStat to the command station status. The exact format of the status BSTR is vendor dependent.
A. Commands to configure the command station communication port
This section describes the commands that configure the command station communication port. These commands do things such as setting BAUD rate. Several of the commands in this section use the numeric controller ID (iControllerlD) to identify a specific type of command station controller. The following table shows the mapping between the controller ID (iControllerlD) and controller name (bsControllerName) for a given type of command station controller. iControllerlD bsControllerName Description
0 UNKNOWN Unknown controller type
1 SIMULAT Interface simulator
2 LENZ_lx Lenz version 1 serial support module
3 LENZ_2x Lenz version 2 serial support module
4 DIGITJDT200 Digitrax direct drive support using
DT200
5 DIGIT_DCS100 Digitrax direct drive support using
DCS100
6 MASTERSERIES North coast engineering master series
7 SYSTEMONE System one
8 RAMFIX RAMFIxx system
9 SERIAL NMRA serial interface
10 EASYDCC CVP Easy DCC
11 MRK6050 Marklin 6050 interface (AC and DC)
12 MRK6023 Marklin 6023 interface (AC) 13 DIGIT PR1 Digitrax direct drive using PR1
14 DIRECT Direct drive interface routine
15 ZTC ZTC system ltd
16 TRIX TRIX controller ilndex Name iValue Values
0 RETRANS 10-255
1 RATE 0 - 300 BAUD, 1 - 1200 BAUD, 2 - 2400 BAUD,
3 - 4800 BAUD, 4 - 9600 BAUD, 5 - 14400 BAUD, 6 - 16400 BAUD, 7 - 19200 BAUD
2 PARITYO - NONE, 1 - ODD, 2 - EVEN, 3 - MARK,
4 - SPACE
3 STOP 0 - 1 bit, 1 - 1.5 bits, 2 - 2 bits
4 WATCHDOG 500 - 65535 milliseconds. Recommended value 2048
5 FLOW 0 - NONE, 1 - XON/XOFF, 2 - RTS/CTS, 3 BOTH
6 DATA 0 - 7 bits, 1 - 8 bits
7 DEBUGBit mask. Bit 1 sends messages to debug file. Bit 2 sends messages to the screen. Bit 3 shows queue data. Bit 4 shows UI status. Bit 5 is reserved. Bit 6 shows semaphore and critical sections. Bit 7 shows miscellaneous messages. Bit 8 shows comm port activity. 130 decimal is recommended for debugging . 8 PARALLEL
OKamPortPutConfig
Parameter List Type Range Direction Description* iLogicalPortID int 1-65535 1 In Logical port ID ilndex int 2 In Configuration type index iValue int 2 In Configuration value iKey int 3 In Debug key
1 Maximum value for this server given by
KamPortGetMaxLogPorts . 2 See Figure 7: Controller configuration Index values for a table of indexes and values.
3 Used only for the DEBUG ilndex value. Should be set to 0.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamPortPutConfig takes a logical port ID, configuration index, configuration value, and key as parameters. It sets the port parameter specified by ilndex to the value specified by iValue. For the DEBUG ilndex value, the debug file path is C : \Temp\Debug{PORT} . txt where {PORT} is the physical comm port ID. OKamPortGetConfig
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID ilndex int 2 In Configuration type index piValue int * 2 Out Pointer to configuration value 1 Maximum value for this server given by KamPortGetMaxLogPorts .
2 See Figure 7 : Controller configuration Index values for a table of indexes and values.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamPortGetConfig takes a logical port ID, configuration index, and a pointer to a configuration value as parameters. It sets the memory pointed to by piValue to the specified configuration value. OKamPortGetName
Parameter List Type Range Direction Description iPhysicalPortID int 1-65535 1 In Physical port number pbsPortName BSTR * 2 Out Physical port name 1 Maximum value for this server given by
KamPortGetMaxPhysical .
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamPortGetName takes a physical port ID number and a pointer to a port name string as parameters . It sets the memory pointed to by pbsPortName to the physical port name such as "COMM1."
OKamPortPutMapController
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID iControllerlD int 1-65535 2 In Command station type ID iCommPortID int 1-65535 3 In Physical comm port ID 1 Maximum value for this server given by
KamPortGetMaxLogPorts .
2 See Figure 6 : Controller ID to controller name mapping for values. Maximum value for this server is given by KamMiscMaxControllerlD. 3 Maximum value for this server given by
KamPortGetMaxPhysical .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamPortPutMapController takes a logical port ID, a command station type ID, and a physical communications port ID as parameters. It maps iLogicalPortID to iCommPortlD for the type of command station specified by i Con trol 1 erID .
OKamPortGetMaxLogPorts Parameter List Type Range Direction Description* piMaxLogicalPorts int * 1 Out Maximum logical port ID
1 Normally 1 - 65535. 0 returned on error. Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamPortGetMaxLogPorts takes a pointer to a logical port ID as a parameter. It sets the memory pointed to by piMaxLogicalPorts to the maximum logical port ID.
OKamPortGetMaxPhysical Parameter List Type Range Direction Description pMaxPhysical int * 1 Out Maximum physical port ID pMaxSerial int * Out Maximum serial port ID pMaxParallel int * Out Maximum parallel port ID
1 Normally 1 - 65535 0 returned on error . Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success Nonzero is an error number (see KamMiscGetErrorMsg) .
KamPortGetMaxPhysical takes a pointer to the number of physical ports, the number of serial ports, and the number of parallel ports as parameters. It sets the memory pointed to by the parameters to the associated values
A. Commands that control command flow to the command • station This section describes the commands that control the command flow to the command station. These commands do things such as connecting and disconnecting from the command station. OKamCmdConnect
Parameter List Type Range Direction Description* iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by KamPortGetMaxLogPorts . Retμrn Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamCmdConnect takes a logical port ID as a parameter. It connects the server to the specified command station.
0KamCmdDisConnect Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID 1 Maximum value for this server given by KamPortGetMaxLogPorts .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamCmdDisConnect takes a logical port ID as a parameter. It disconnects the server to the specified command station.
0KamCmdCommand
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID 1 Opaque object ID handle returned by KamDecoderPutAdd .
Return Value Type Range Description iError short 1 Error flag
1 iError - 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamCmdCommand takes the decoder object ID as a parameter. It sends all state changes from the server database to the specified locomotive or accessory decoder.
A. Cab Control Commands
This section describes commands that control the cabs attached to a command station.
OKamCabGetMessage
Parameter List Type Range Direction Description iCabAddress int 1-65535 1 In Cab address pbsMsg BSTR * 2 Out Cab message string 1 Maximum value is command station dependent.
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error. Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamCabGetMessage takes a cab address and a pointer to a message string as parameters. It sets the memory pointed to by pbsMsg to the present cab message. OKamCabPutMessage
Parameter List Type Range Direction Description iCabAddress int 1 In Cab address bsMsg BSTR 2 Out Cab message string 1 Maximum value is command station dependent .
2 Exact parameter type depends on language. It is LPCSTR for C++.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamCabPutMessage takes a cab address and a BSTR as parameters. It sets the cab message to bsMsg.
0KamCabGetCabAddr
Parameter List Type Range Direction Description* lDecoderObjectlD long 1 In Decoder object ID piCabAddress int * 1-65535 2 Out Pointer to Cab address
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum value is command station dependent. Return Value Type Range Descriptioni Error short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamCabGetCabAddr takes a decoder object ID and a pointer to a cab address as parameters. It set the memory pointed to by piCabAddress to the address of the cab attached to the specified decoder.
0KamCabPutAddrToCab
Parameter List Type Range Direction Description lDecoderObjectlD long 1 In Decoder object ID iCabAddress int 1-65535 2 In Cab address
1 Opaque object ID handle returned by KamDecoderPutAdd .
2 Maximum value is command station dependent. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamCabPutAddrToCab takes a decoder object ID and cab address as parameters. It attaches the decoder specified by iDCCAddr to the cab specified by iCabAddress . A. Miscellaneous Commands
This section describes miscellaneous commands that do not fit into the other categories.
OKamMiscGetErrorMsg
Parameter List Type Range Direction Description iError int 0-65535 1 In Error flag
1 iError = 0 for success. Nonzero indicates an error.
Return Value Type Range Description bsErrorString BSTR 1 Error string
1 Exact return type depends on language. It is
Cstring for C++. Empty string on error.
KamMiscGetErrorMsg takes an error flag as a parameter.
It returns a BSTR containing the descriptive error message associated with the specified error flag.
OKamMiscGetClockTime Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID iSelectTimeMode int 2 In Clock source piDay int * 0-6 Out Day of week piHours int * 0-23 Out Hours piMinutes int * 0-59 Out Minutes piRatio int * 3 Out Fast clock ratio
1 Maximum value for this server given by KamPortGetMaxLogPorts .
2 0 - Load from command station and sync server.
1 - Load direct from server. 2 - Load from cached server copy of command station time.
3 Real time clock ratio.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamMiscGetClockTime takes the port ID, the time mode, and pointers to locations to store the day, hours, minutes, and fast clock ratio as parameters. It sets the memory pointed to by piDay to the fast clock day, sets pointed to by piHours to the fast clock hours, sets the memory pointed to by piMinutes to the fast clock minutes, and the memory pointed to by piRatio to the fast clock ratio. The servers local time will be returned if the command station does not support a fast clock.
OKamMiscPutClockTime Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID iDay int 0-6 In Day of week iHours int 0-23 In Hours iMinutes int 0-59 In Minutes iRatio int 2 In Fast clock ratio
1 Maximum value for this server given by KamPortGetMaxLogPorts. 2 Real time clock ratio. Return Value Type Range Description iError short 1 Error flag
1 'iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamMiscPutClockTime takes the fast clock logical port, the fast clock day, the fast clock hours, the fast clock minutes, and the fast clock ratio as parameters. It sets the fast clock using specified parameters.
OKamMiscGetinterfaceVersion Parameter List Type Range Direction Description pbsInterfaceVersion BSTR * 1 Out Pointer to interface version string
1 Exact return type depends on language. It is
Cstring * for C++. Empty string on error. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success . Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamMiscGetlnterfaceVersion takes a pointer to an interface version string as a parameter. It sets the memory pointed to by pbsInterfaceVersion to the interface version string. The version string may contain multiple lines depending on the number of interfaces supported. OKamMiscSaveData
Parameter List Type Range Direction Description NONE
Return Value Type Range Description iError short 1 Error flag
1 iError - 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamMiscSaveData takes no parameters. It saves all server data to permanent storage. This command is run automatically whenever the server stops running. Demo versions of the program cannot save data and this command will return an error in that case.
OKamMiscGetControllerName Parameter List Type Range Direction Description iControllerlD int 1-65535 1 In Command station type ID pbsName BSTR * 2 Out Command station type name 1 See Figure 6: Controller ID to controller name mapping for values. Maximum value for this server is given by KamMiscMaxControllerlD.
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error. Return Value Type Range Description bsName BSTR 1 Command station type name Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamMiscGetControllerName takes a command station type ID and a pointer to a type name string as parameters. It sets the memory pointed to by pbsName to the command station type name.
OKamMiscGetControllerNameAtPort
Parameter List Type Range Direction Description iLogicalPortID int 1-65535 1 In Logical port ID pbsName BSTR * 2 Out Command station type *~ name
1 Maximum value for this server given by KamPortGetMaxLogPorts .
2 Exact return type depends on language. It is Cstring * for C++. Empty string on error. Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamMiscGetControllerName takes a logical port ID and a pointer to a command station type name as parameters. It sets the memory pointed to by pbsName to the command station type name for that logical port .
OKamMiscGetCommandstationValue Parameter List Type Range Direction Description iControllerlD int 1-65535 1 In Command station type ID iLogicalPortID int 1-65535 2 In Logical port ID ilndex int 3 In Command station array index piValue int * 0 - 65535 Out Command station value
1 See Figure 6: Controller ID to controller name mapping for values. Maximum value for this server is given by KamMiscMaxControllerlD.
2 Maximum value for this server given by KamPortGetMaxLogPorts.
3 0 to KamMiscGetCommandStationlndex .
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) .
KamMiscGetCommandStationValue takes the controller ID, logical port, value array index, and a pointer to the location to store the selected value. It sets the memory pointed to by piValue to the specified command station miscellaneous data value. OKamMiscSetCommandStationValue
Parameter List Type Range Direction Description iControllerlD int 1-65535 1 In Command station type ID iLogicalPortID int 1-65535 2 In Logical port ID ilndex int 3 In Command station array index iValue int 0 - 65535 In Command station value
1 See Figure 6: Controller ID to controller name mapping for values-. Maximum value for this server is given by KamMiscMaxControllerlD.
2 Maximum value for this server given by KamPortGetMaxLogPorts. 3 0 to KamMiscGetCommandStationlndex. Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamMiscSetCommandStationValue takes the controller ID, logical port, value array index, and new miscellaneous data value. It sets the specified command station data to the value given by piValue.
OKamMiscGetCommandStationlndex Parameter List Type Range Direction Description iControllerlD int 1-65535 1 In Command station type ID iLogicalPortID int 1-65535 2 In Logical port ID pilndex int 0-65535 Out Pointer to maximum index
1 See Figure 6: Controller ID to controller name mapping for values. Maximum value for this server is given by KamMiscMaxControllerlD.
2 Maximum value for this server given by KamPortGetMaxLogPorts.
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) . KamMiscGetCommandStationlndex takes the controller ID, logical port, and a pointer to the location to store the maximum index. It sets the memory pointed to by pilndex to the specified command station maximum miscellaneous data index.
OKamMiscMaxControllerID
Parameter List Type Range Direction Description piMaxControllerID int * 1-65535 1 Out Maximum controller type ID 1 See Figure 6: Controller ID to controller name mapping for a list of controller ID values. 0 returned on error.
Return Value Type Range Description iError short 1 Error flag 1 iError = 0 for success. Nonzero is an error number
(see KamMiscGetErrorMsg) .
KamMiscMaxControllerlD takes a pointer to the maximum controller ID as a parameter. It sets the memory pointed to by piMaxControllerlD to the maximum controller type ID.
0KamMiscGetControllerFacility
Parameter List Type Range Direction Description iControllerlD int 1-65535 1 In Command station type ID pdwFacility long * 2 Out Pointer to command station facility mask
1 See Figure 6: Controller ID to controller name mapping for values. Maximum value for this server is given by KamMiscMaxControllerlD.
2 0 - CMDSDTA_PRGMODE_ADDR
1 - CMDSDTA_PRGMODE_REG
2 - CMDSDTA_PRGMODE_PAGE 3 - CMDSDTA_PRGMODE_DIR
4 - CMDSDTA_PRGMODE_FLYSHT
5 - CMDSDTA_PRGMODE_FLYLNG
6 - Reserved
7 - Reserved 8 - Reserved
9 - Reserved
10 - CMDSDTA_SUPPORT_CONSIST
11 - CMDSDTA_SUPPORT_LONG
12 - CMDSDTA_SUPPORT_FEED 13 - CMDSDTA__SUPP0RT_2TRK
14 - CMDSDTA_PROGRAM_TRACK
15 - CMDSDTA_PROGMAIN_POFF
16 - CMDSDTA_FEDMODE_ADDR
17 - CMDSDTA_FEDMODE_REG 18 - CMDSDTA_FEDMODE_PAGE
19 - CMDSDTA_FEDMODE_DIR
20 - CMDSDTA__FEDMODE_FLYSHT
21 - CMDSDTA_FEDMODE_FLYLNG 30 - Reserved 31 - CMDSDTA_SUPPORT_FASTCLK
Return Value Type Range Description iError short 1 Error flag
1 iError = 0 for success. Nonzero is an error number (see KamMiscGetErrorMsg) . KamMiscGetControllerFacility takes the controller ID and a pointer to the location to store the selected controller facility mask. It sets the memory pointed to by pdwFacility to the specified command station facility mask.
The digital command stations 18 program the digital devices, such as a locomotive and switches, of the railroad layout. For example, a locomotive may include several different registers that control the horn, how the light blinks, speed curves for operation, etc. In many such locomotives there are 106 or more programable values. Unfortunately, it may take 1-10 seconds per byte wide word if a valid register or control variable (generally referred to collectively as registers) and two to four minutes to error out if an invalid register to program such a locomotive or device, either of which may contain a decoder. With a large number of byte wide words in a locomotive its takes considerable time to fully program the locomotive. Further, with a railroad layout including many such locomotives and other programmable devices, it takes a substantial amount of time to completely program all the devices of the model railroad layout . During the programming of the railroad layout, the operator is sitting there not enjoying the operation of the railroad layout, is frustrated, loses operating enjoyment, and will not desire to use digital programmable devices. In addition, to reprogram the railroad layout the operator must reprogram all of the devices of the entire railroad layout which takes substantial time. Similarly, to determine the state of all the devices of the railroad layout the operator must read the registers of each device likewise taking substantial time. Moreover, to reprogram merely a few bytes of a particular device requires the operator to previously know the state of the registers of the device which is obtainable by reading the registers of the device taking substantial time, thereby still frustrating the operator. The present inventor came to the realization that for the operation of a model railroad the anticipated state of the individual devices of the railroad, as programmed, should be maintained during the use of the model railroad and between different uses of the model railroad. By maintaining data representative of the current state of the device registers of the model railroad determinations may be made to efficiently program the devices. When the user designates a command to be executed by one or more of the digital command stations 18, the software may determine which commands need to be sent to one or more of the digital command stations 18 of the model railroad. By only updating those registers of particular devices that are necessary to implement the commands of a particular user, the time necessary to program the railroad layout is substantially reduced. For example, if the command would duplicate the current state of the device then no command needs to be forwarded to the digital command stations 18. This prevents redundantly programming the devices of the model railroad, thereby freeing up the operation of the model railroad for other activities. Unlike a single-user single-railroad environment, the system of the present invention may encounter "conflicting" commands that attempt to write to and read from the devices of the model railroad. For example, the "conflicting" commands may inadvertently program the same device in an inappropriate manner, such as the locomotive to speed up to maximum and the locomotive to stop. In addition, a user that desires to read the status of the entire model railroad layout will monopolize the digital decoders and command stations for a substantial time, such as up to two hours, thereby preventing the enjoyment of the model railroad for the other users. Also, a user that programs an extensive number of devices will likewise monopolize the digital decoders and command stations for a substantial time thereby preventing the enjoyment of the model railroad for other users.
In order to implement a networked selective updating technique the present inventor determined that it is desirable to implement both a write cache and a read cache. The write cache contains those commands yet to be programmed by the digital command stations 18. Valid commands from each user are passed to a queue in the write cache. In the event of multiple commands from multiple users (depending on user permissions and security) or the same user for the same event or action, the write cache will concatenate the two commands into a single command to be programmed by the digital command stations 18. In the event of multiple commands from multiple users or the same user for different events or actions, the write cache will concatenate the two commands into a single command to be programmed by the digital command stations 18. The write cache may forward either of the commands, such as the last received command, to the digital command station. The users are updated with the actual command programmed by the digital command station, as necessary. The read cache contains the state of the different devices of the model railroad. After a command has been written to a digital device and properly acknowledged, if necessary, the read cache is updated with the current state of the model railroad. In addition, the read cache is updated with the state of the model railroad when the registers of the devices of the model railroad are read. Prior to sending the commands to be executed by the digital command stations 18 the data in the write cache is compared against the data in the read cache. In the event that the data in the read cache indicates that the data in the write cache does not need to be programmed, the command is discarded. In contrast, if the data in the read cache indicates that the data in the write cache needs to be programmed, then the command is programmed by the digital command station.
After programming the command by the digital command station the read cache is updated to reflect the change in the model railroad. As becomes apparent, the use of a write cache and a read cache permits a decrease in the number of registers that need to be programmed, thus speeding up the apparent operation of the model railroad to the operator. The present inventor further determined that errors in the processing of the commands by the railroad and the initial unknown state of the model railroad should be taken into account for a robust system. In the event that an error is received in response to an attempt to program (or read) a device, then the state of the relevant data of the read cache is marked as unknown. The unknown state merely indicates that the state of the register has some ambiguity associated therewith. The unknown state may be removed by reading the current state of the relevant device or the data rewritten to the model railroad without an error occurring. In addition, if an error is received in response to an attempt to program (or read) a device, then the command may be re- transmitted to the digital command station in an attempt to program the device properly. If desirable, multiple commands may be automatically provided to the digital command stations to increase the likelihood of programming the appropriate registers. In addition, the initial state of a register is likewise marked with an unknown state until data becomes available regarding its state .
When sending the commands to be executed by the digital command stations 18 they are preferably first checked against the read cache, as previously mentioned.
In the event that the read cache indicates that the state is unknown, such as upon initialization or an error, then the command should be sent to the digital command station because the state is not known. In this manner the state will at least become known, even if the data in the registers is not actually changed.
The present inventor further determined a particular set of data that is useful for a complete representation of the state of the registers of the devices of the model railroad.
An invalid representation of a register indicates that the particular register is not valid for both a read and a write operation. This permits the system to avoid attempting to read from and write to particular registers of the model railroad. This avoids the exceptionally long error out when attempting to access invalid registers.
An in use representation of a register indicates that the particular register is valid for both a read and a write operation. This permits the system to read from and write to particular registers of the model railroad. This assists in accessing valid registers where the response time is relatively fast.
A read error (unknown state) representation of a register indicates that each time an attempt to read a particular register results in an error.
A read dirty representation of a register indicates that the data in the read cache has not been validated by reading its valid from the decoder. If both the read error and the read dirty representations are clear then a valid read from the read cache may be performed. A read dirty representation may be cleared by a successful write operation, if desired.
A read only representation indicates that the register may not be written to. If this flag is set then a write error may not occur.
A write error (unknown state) representation of a register indicates that each time an attempt to write to a particular register results in an error .
A write dirty representation of a register indicates that the data in the write cache has not been written to the decoder yet . For example, when programming the decoders the system programs the data indicated by the write • dirty. If both the write error and the write dirty representations are clear then the state is represented by the write cache. This assists in keeping track of the programming without excess overhead.
A write only representation indicates that the register may not be read from. If this flag is set then a read error may not occur .
Over time the system constructs a set of representations of the model railroad devices and the model railroad itself indicating the invalid registers, read errors, and write errors which may increases the efficiently of programing and changing the states of the model railroad. This permits the system to avoid accessing particular registers where the result will likely be an error.
The present inventor came to the realization that the valid registers of particular devices is the same for the same device of the same or different model railroads. Further, the present inventor came to the realization that a template may be developed for each particular device that may be applied to the representations of the data to predetermine the valid registers. In addition, the template may also be used to set the read error and write error, if desired. The template may include any one or more of the following representations, such as invalid, in use, read error, write only, read dirty, read only, write error, and write dirty for the possible registers of the device. The predetermination of the state of each register of a particular device avoids the time consuming activity of receiving a significant number of errors and thus constructing the caches. It is to be noted that the actual read and write cache may be any suitable type of data structure.
Many model railroad systems include computer interfaces to attempt to mimic or otherwise emulate the operation of actual full-scale railroads. FIG. 4 illustrates the organization of train dispatching by "timetable and train order" (T&TO) techniques . Many of the rules governing T&TO operation are related to the superiority of trains which principally is which train will take siding at the meeting point. Any misinterpretation of these rules can be the source of either hazard or delay. For example, misinterpreting the rules may result in one train colliding with another train.
For trains following each other, T&TO operation must rely upon time spacing and flag protection to keep each train a sufficient distance apart. For example, a train may not leave a station less than five minutes after the preceding train has departed. Unfortunately, there is no assurance that such spacing will be retained, as the trains move along the line, so the flagman (rear brakeman) of a train slowing down or stopping will light and throw off a five-minute red flare which may not be passed by the next train while lit. If a train has to stop, a flagman trots back along the line with a red flag or lantern a sufficient distance to protect the train, and remains there until the train is ready to move at which time he is called back to the train. A flare and two track torpedoes provide protection as the flagman scrambles back and the train resumes speed. While this type of system works, it depends upon a series of human activities .
It is perfectly possible to operate a railroad safely without signals. The purpose of signal systems is not so much to increase safety as it is to step up the efficiency and capacity of the line in- handling traffic. Nevertheless, it's convenient to discuss signal system principals in terms of three types of collisions that signals are designed to prevent, namely, rear-end, side- on, and head-on.
Block signal systems prevent a train from ramming the train ahead of it by dividing the main line into segments, otherwise known as blocks, and allowing only one train in a block at a time, with block signals indicating whether or not the block ahead is occupied.
In many blocks, the signals are set by a human operator. Before clearing the signal, he must verify that any train which has previously entered the block is now clear of it, a written record is kept of the status of each block, and a prescribed procedure is used in communicating with the next operator. The degree to which a block frees up operation depends on whether distant signals (as shown in FIG. 5) are provided and on the spacing of open stations, those in which an operator is on duty. If as is usually the case it is many miles to the next block station and thus trains must be equally spaced. Nevertheless, manual block does afford a high degree of safety.
The block signaling which does the most for increasing line capacity is automatic block signals (ABS) , in which the signals are controlled by the trains themselves. The presence or absence of a train is determined by a track circuit. Invented by Dr. William Robinson in 1872, the track circuit's key feature is that it is fail-safe. As can be seen in FIG. 6, if the battery or any wire connection fails, or a rail is broken, the relay can't pick up, and a clear signal will not be displayed. The track circuit is also an example of what is designated in railway signaling practice as a vital circuit, one which can give an unsafe indication if some of its components malfunction in certain ways. The track circuit is fail-safe, but it could still give a false clear indication should its relay stick in the closed or picked-up position. Vital circuit relays, therefore, are built to very stringent standards: they are large devices; rely on gravity (no springs) to drop their armature; and use special non-loading contacts which will not stick together if hit by a large surge of current (such as nearby lightning) .
Getting a track circuit to be absolutely reliable is not a simple matter. The electrical leakage between the rails is considerable, and varies greatly with the seasons of the year and the weather. The joints and bolted-rail track are by-passed with bond wire to assure low resistance at all times, but the total resistance still varies. It is lower, for example, when cold weather shrinks the rails and they pull tightly on the track bolts or when hot weather expands to force the ends tightly together. Battery voltage is typically limited to one or two volts, requiring a fairly sensitive relay. Despite this, the direct current track circuit can be adjusted to do an excellent job and false-clears are extremely rare . The principal improvement in the basic circuit has been to use slowly-pulsed DC so that the relay drops out and must be picked up again continually when a block is unoccupied. This allows the use of a more sensitive relay which will detect a train, but additionally work in track circuits twice as long before leakage between the rails begins to threaten reliable relay operation. Referring to FIGS. 7A and 7B, the situations determining the minimum block length for the standard two-block, three-indication ABS system.
Since the train may stop with its rear car just inside the rear boundary of a block, a following train will first receive warning just one block-length away. No allowance may be made for how far the signal indication may be seen by the engineer. Swivel block must be as long as the longest stopping distance for any train on the route, traveling at its maximum authorized speed.
From this standpoint, it is important to allow trains to move along without receiving any approach indications which will force them to slow down. This requires a train spacing of two block lengths, twice the stopping distance, since the signal can't clear until the train ahead is completely out of the second block. When fully loaded trains running at high speeds, with their stopping distances, block lengths must be long, and it is not possible to get enough trains over the line to produce appropriate revenue.
The three-block, four-indication signaling shown in FIG. 7 reduces the excess train spacing by 50% with warning two blocks to the rear and signal spacing need be only 1/2 the braking distance. In particularly congested areas such as downgrades where stopping distances are long and trains are likely to bunch up, four-block, four-indication signaling may be provided and advanced approach, approach medium, approach and stop indications give a minimum of three-block warning, allowing further block-shortening and keeps things moving .
FIG. 8 uses aspects of upper quadrant semaphores to illustrate block signaling. These signals use the blade rising 90 degrees to give the clear indication.
Some of the systems that are currently developed by different railroads are shown in FIG. 8. With the general rules discussed below, a railroad is free to establish the simplest and most easily maintained system of aspects and indications that will keep traffic moving safely and meet any special requirements due to geography, traffic pattern, or equipment. Aspects such as flashing yellow for approach medium, for example, may be used to provide an extra indication without an extra signal head. This is safe because a stuck flasher will result in either a steady yellow approach or a more restrictive light-out aspect. In addition, there are provisions for interlocking so the trains may branch from one track to another.
To take care of junctions where trains are diverted from one route to another, the signals must control train speed. The train traveling straight through must be able to travel at full speed. Diverging routes will require some limit, depending on the turnout members and the track curvature, and the signals must control train speed to match. One approach is to have signals indicate which route has been set up and cleared for the train. In the American approach of speed signaling, in which the signal indicates not where the train is going but rather what speed is allowed through the interlocking. If this is less than normal speed, distant signals must also give warning so the train can be brought down to the speed in time. FIGS. 9A and 9B show typical signal aspects and indications as they would appear to an engineer. Once a route is established and the signal cleared, route locking is used to insure that nothing can be changed to reduce the route's speed capability from the time the train approaching it is admitted to enter until it has cleared the last switch. Additional refinements to the basic system to speed up handling trains in rapid sequence include sectional route locking which unlocks portions of the route as soon as the train has cleared so that other routes can be set up promptly. Interlocking signals also function as block signals to provide rear-end protection. In addition, at isolated crossings at grade, an automatic interlocking can respond to the approach of a train by clearing the route if there are no opposing movements cleared or in progress. Automatic interlocking returns everything to stop after the train has passed. As can be observed, the movement of multiple trains among the track potentially involves a series of interconnected activities and decisions which must be performed by a controller, such as a dispatcher. In essence, for a railroad the dispatcher controls the operation of the trains and permissions may be set by computer control, thereby controlling the railroad. Unfortunately, if the dispatcher fails to obey the rules as put in place, traffic collisions may occur.
In the context of a model railroad the controller is operating a model railroad layout including an extensive amount of track, several locomotives (trains), and additional functionality such as switches. The movement of different objects, such as locomotives and entire trains, may be monitored by a set of sensors. The operator issues control commands from his computer console, such as in the form of permissions and class warrants for the time and track used. In the existing monolithic computer systems for model railroads a single operator from a single terminal may control the system effectively. Unfortunately, the present inventor has observed that in a multi-user environment where several clients are attempting to simultaneously control the same model railroad layout using their terminals, collisions periodically nevertheless occur. In addition, significant delay is observed between the issuance of a command and its eventual execution. The present inventor has determined that unlike full scale railroads where the track is controlled by a single dispatcher, the use of multiple dispatchers each having a different dispatcher console may result in conflicting information being sent to the railroad layout. In essence, the system is designed as a computer control system to implement commands but in no manner can the dispatcher consoles control the actions of users. For example, a user input may command that an event occur resulting in a crash. In addition, a user may override the block permissions or class warrants for the time and track used thereby causing a collision. In addition, two users may inadvertently send conflicting commands to the same or different trains thereby causing a collision. In such a system, each user is not aware of the intent and actions of other users aside from any feedback that may be displayed on their terminal. Unfortunately, the feedback to their dispatcher console may be delayed as the execution of commands issued by one or more users may take several seconds to several minutes to be executed.
One potential solution to the dilemma of managing several users ' attempt to simultaneously control a single model railroad layout is to develop a software program that is operating on the server which observes what is occurring. In the event that the software program determines that a collision is imminent, a stop command is issued to the train overriding all other commands to avoid such a collision. However, once the collision is avoided the user may, if desired, override such a command thereby restarting the train and causing a collision. Accordingly, a software program that merely oversees the operation of track apart from the validation of commands to avoid imminent collisions is not a suitable solution for operating a model railroad in a multi-user distributed environment. The present inventor determined that prior validation is important because of the delay in executing commands on the model railroad and the potential for conflicting commands. In addition, a hardware throttle directly connected to the model railroad layout may override all such computer based commands thereby resulting in the collision. Also, this implementation provides a suitable security model to use for validation of user actions. Referring to FIG. 10, the client program 14 preferably includes a control panel 300 which provides a graphical interface (such as a personal computer with software thereon or a dedicated hardware source) for computerized control of the model railroad 302. The graphical interface may take the form of those illustrated in FIGS. 5-9, or any other suitable command interface to provide control commands to the model railroad 302. Commands are issued by the client program 14 to the controlling interface using the control panel 300. The commands are received from the different client programs 14 by the controlling interface 16. The commands control the operation of the model railroad 302, such as switches, direction, and locomotive throttle. Of particular importance is the throttle which is a state which persists for an indefinite period of time, potentially resulting in collisions if not accurately monitored. The controlling interface 16 accepts all of the commands and provides an acknowledgment to free up the communications transport for subsequent commands. The acknowledgment may take the form of a response indicating that the command was executed thereby updating the control panel 300. The response may be subject to updating if more data becomes available indicating the previous response is incorrect. In fact, the command may have yet to be executed or verified by the controlling interface 16. After a command is received by the controlling interface 16, the controlling interface 16 passes the command (in a modified manner, if desired) to a dispatcher controller 310. The dispatcher controller 310 includes a rule-based processor together with the layout of the railroad 302 and the status of objects thereon. The objects may include properties such as speed, location, direction, length of the train, etc. The dispatcher controller 310 processes each received command to determine if the execution of such a command would violate any of the rules together with the layout and status of objects thereon. If the command received is within the rules, then the command may be passed to the model railroad 302 for execution. If the received command violates the rules, then the command may be rejected and an appropriate response is provided to update the clients display. If desired, the invalid command may be modified in a suitable manner and still be provided to the model railroad 302. In addition, if the dispatcher controller 310 determines that an event should occur, such as stopping a model locomotive, it may issue the command and update the control panels 300 accordingly. If necessary, an update command is provided to the client program 14 to show the update that occurred.
The "asynchronous" receipt of commands together with a "synchronous" manner of validation and execution of commands from the multiple control panels 300 permits a simplified dispatcher controller 310 to be used together with a minimization of computer resources, such as com ports. In essence, commands are managed independently from the client program 14. Likewise, a centralized dispatcher controller 310 working in an "off-line" mode increases the likelihood that a series of commands that are executed will not be conflicting resulting in an error. This permits multiple model railroad enthusiasts to control the same model railroad in a safe and efficient manner. Such concerns regarding the interrelationships between multiple dispatchers does not occur in a dedicated non-distributed environment . When the command is received or validated all of the control panels 300 of the client programs 14 may likewise be updated to reflect the change. Alternatively, the controlling interface 16 may accept the command, validate it quickly by the dispatcher controller, and provide an acknowledgment to the client program 14. In this manner, the client program 14 will not require updating if the command is not valid. In a likewise manner, when a command is valid the control panel 300 of all client programs 14 should be updated to show the status of the model railroad 302. i A manual throttle 320 may likewise provide control over devices, such as the locomotive, on the model railroad 302. The commands issued by the manual throttle 320 may be passed first to the dispatcher controller 310 for validation in a similar manner to that of the client programs 14. Alternatively, commands from the manual throttle 320 may be directly passed to the model railroad 302 without first being validated by the dispatcher controller 302. After execution of commands by the external devices 18, a response will be provided to the controlling interface 16 which in response may check the suitability of the command, if desired. If the command violates the layout rules then a suitable correctional command is issued to the model railroad 302. If the command is valid then no correctional command is necessary. In either case, the status of the model railroad 302 is passed to the client programs 14 (control panels 300) .
As it can be observed, the event driven dispatcher controller 310 maintains the current status of the model railroad 302 so that accurate validation may be performed to minimize conflicting and potentially damaging commands. Depending on the particular implementation, the control panel 300 is updated in a suitable manner, but in most cases, the communication transport 12 is freed up prior to execution of the command by the model railroad 302.
The computer dispatcher may also be distributed across the network, if desired. In addition, the computer architecture described herein supports different computer interfaces at the client program 14.
The present inventor has observed that periodically the commands in the queue to the digital command stations or the buffer of the digital command station overflow resulting in a system crash or loss of data. In some cases, the queue fills up with commands and then no additional commands may be accepted. After further consideration of the slow real-time manner of operation of digital command stations, the apparent solution is to incorporate a buffer model in the interface 16 to provide commands to the digital command station at a rate no faster than the ability of the digital command station to execute the commands together with an exceptionally large computer buffer. For example, the command may take 5 ms to be transmitted from the interface 16 to the command station, 100 ms for processing by the command station, 3 ms to transfer to the digital device, such as a model train. The digital device may take 10 ms to execute the command, for example, and another 20 ms to transmit back to the digital command station which may again take 100 ms to process, and 5 ms to send the processed result to interface 16. In total, the delay may be on the order of 243 ms which is extremely long in comparison to the ability of the interface 16 to receive commands and transmit commands to the digital command station. After consideration of the timing issues- and the potential solution of simply slowing down the transmission of commands to the digital command station and incorporating a large buffer, the present inventor came to the realization that a queue management system should be incorporated within the interface 16 to facilitate apparent increased responsiveness of the digital command station to the user. The particular implementation of a command queue is based on a further realization that many of the commands to operate a model railroad are "lossy" in nature which is highly unusual for a computer based queue system. In other words, if some of the commands in the command queue are never actually executed, are deleted from the command queue, or otherwise simply changed, the operation of the model railroad still functions properly. Normally a queuing system inherently requires that all commands are executed in some manner at some point in time, even if somewhat delayed. Initially the present inventor came to the realization that when multiple users are attempting to control the same model railroad, each of them may provide the same command to the model railroad. In this event, the digital command station would receive both commands from the interface 16, process both commands, transmit both commands to the model railroad, receive both responses therefrom (typically) , and provide two acknowledgments to the interface 16. In a system where the execution of commands occurs nearly instantaneously the re-execution of commands does not pose a significant problem and may be beneficial for ensuring that each user has the appropriate commands executed in the order requested. However, in the real-time environment of a model railroad all of this activity requires substantial time to complete thereby slowing down the responsiveness of the system. Commands tend to build up waiting for execution which decreases the user perceived responsiveness of control of the model railroad. The user perceiving no response continues to request commands be placed in the queue thereby exacerbating the perceived responsiveness problem. The responsiveness problem is more apparent as processor speeds of the client computer increase. Since there is but a single model railroad, the1 apparent speed with which commands are executed is important for user satisfaction.
Initially, the present inventor determined that duplicate commands residing in the command queue of the interface 16 should be removed. Accordingly, if different users issue the same command to the model railroad then the duplicate commands are not executed (execute one copy of the command) . In addition, this alleviates the effects of a single user requesting that the same command is executed multiple times . The removal of duplicate commands will increase the apparent responsiveness of the model railroad because the time required to re-execute a command already executed will be avoided. In this manner, other commands that will change the state of the model railroad may be executed in a more timely manner thereby increasing user satisfaction. Also, the necessary size of the command queue on the computer is reduced.
After further consideration of the particular environment of a model railroad the present inventor also determined that many command sequences in the command queue result in no net state change to the model railroad, and thus should likewise be removed from the command queue. For example, a command in the command queue to increase the speed of the locomotive, followed by a command in the command queue to reduce the speed of the locomotive to the initial speed results in no net state change to the model railroad. Any perceived increase and decrease of the locomotive would merely be the result of the time differential. It is to be understood that the comparison may be between any two or more commands . Another example may include a command to open a switch followed by a command to close a switch, which likewise results in no net state change to the model railroad. Accordingly, it is desirable to eliminate commands from the command queue resulting in a net total state change of zero. This results in a reduction in the depth of the queue by removing elements from the queue thereby potentially avoiding overflow conditions increasing user satisfaction and decreasing the probability that the user will resend the command. This results in better overall system response. In addition to simply removing redundant commands from the command queue, the present inventor further determined that particular sequences of commands in the command queue result in a net state change to the model railroad which may be provided to the digital command station as a single command. For example, if a command in the command queue increases the speed of the locomotive by 5 units, another command in the command queue decreases the speed of the locomotive by 3 units, the two commands may be replaced by a single command that increases the speed of the locomotive by 2 units. In this manner a reduction in the number of commands in the command queue is accomplished while at the same time effectuating the net result of the commands. This results in a reduction in the depth of the queue by removing elements from the queue thereby potentially avoiding overflow conditions. In addition, this decreases the time required to actually program the device to the net state thereby increasing user satisfaction.
With the potential of a large number of commands in the command queue taking several minutes or more to execute, the present inventor further determined that a priority based queue system should be implemented. Referring to FIG. 11, the command queue structure may include a stack of commands to be executed. Each of the commands may include a type indicator and control information as to what general type of command they are. For example, an A command may be speed commands, a B command may be switches, a C command may be lights, a D command may be query status, etc. As such, the commands may be sorted based on their type indicator for assisting the determination as to whether or not any redundancies may be eliminated or otherwise reduced.
Normally a first-in-first-out command queue provides a fair technique for the allocation of resources, such as execution of commands by the digital command station, but the present inventor determined that for slow-real-time model railroad devices such a command structure is not the most desirable. In addition, the present inventor realized that model railroads execute commands that are (1) not time sensitive, (2) only somewhat time sensitive, and (3) truly time sensitive. Non-time sensitive commands are merely query commands that inquire as to the status of certain devices . Somewhat time sensitive commands are generally related to the appearance of devices and do not directly impact other devices, such as turning on a light. Truly time sensitive commands need to be executed in a timely fashion, such as the speed of the locomotive or moving' switches. These truly time sensitive commands directly impact the perceived performance of the model railroad and therefore should be done in an out-of-order fashion. In particular, commands with a type indicative of a level of time sensitiveness may be placed into the queue in a location ahead of those that have less time sensitiveness. In this manner, the time sensitive commands may be executed by the digital command station prior to those that are less time sensitive. This provides the appearance to the user that the model railroad is operating more efficiently and responsively .
Another technique that may be used to prioritize the commands in the command queue is to assign a priority to each command. As an example, a priority of 0 would be indicative of "don't care" with a priority of
255 "do immediately," with the intermediate numbers in between being of numerical-related importance. The command queue would then place new commands in the command queue in the order of priority or otherwise provide the next command to the command station that has the highest priority within the command queue . In addition, if a particular number such as 255 is used only for emergency commands that must be executed next, then the computer may assign that value to the command so that it is next to be executed. by the digital command station. Such emergency commands may include, for example, emergency stop and power off. In the event that the command queue still fills, then the system may remove commands from the command queue based on its order of priority, thereby alleviating an overflow condition in a manner less destructive to the model railroad. In addition for multiple commands of the same type a different priority number may be assigned to each, so therefore when removing or deciding which to execute 'next, the priority number of each may be used to further classify commands within a given type. This provides a convenient technique of prioritizing commands.
An additional technique suitable for model railroads in combination with relatively slow real time devices is that when the system knows that there is an outstanding valid request made to the digital command station, then there is no point in making another request to the digital command station nor adding another such command to the command queue. This further removes a particular category of commands from the command queue. It is to be understood that this queue system may be used in any system, such as, for example, one local machine without a network, COM, DCOM, COBRA, internet protocol, sockets, etc.
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features
shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims

WE CLAIM :
1. A method of operating a digitally controlled model railroad comprising the steps of : (a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to said resident external controlling interface through a second communications transport;
(c) receiving said first command and said second command at said resident external controlling interface;
(d) said resident external controlling interface queuing said first and second commands and deleting one of said first and second commands if they are the same; and
(e) said resident external controlling interface sending a third command representative of said one of said first and second commands not deleted to a digital command station for execution on said digitally controlled model railroad.
2. The method of claim 1, further comprising the steps of : (a) providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command; and (b) providing an acknowledgment to said second client program in response to receiving said second command by said resident external controlling interface that said second command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said second command.
3. The method of claim 1, further comprising the steps of selectively sending said third command to one of a plurality of digital command stations.
4. The method of claim 1, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said digital command station and validating said responses regarding said interaction.
5. The method of claim 1 wherein said first and second commands relate to the speed of locomotives.
6. The method of claim 2, further comprising the step of updating said successful validation to at least one of said first and second client programs of at least one of said first and second commands with an indication that at least one of said first and second commands was unsuccessfully validated.
7. The method of claim 1, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
8. The method of claim 7 wherein said validation is performed by an event driven dispatcher.
9. The method of claim 7 wherein said one of said first and second command, and said third command are the same command .
10. A method of operating a digitally controlled model railroad comprising the steps of: (a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) receiving said first command at said resident external controlling interface;
(c) queuing said first command in a command queue if said first command is different than all other commands in said command queue ; and (d) said resident external controlling interface selectively sending a second command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and second commands.
11. The method of claim 10, further comprising the steps of:
(a) transmitting a third command from a second client program to said resident external controlling interface through a second communications transport; (b) receiving said third command at said resident external controlling interface; (c) queuing said third command in a command queue if said third command is different than all other commands in said command queue ; and (d) said resident external controlling interface selectively sending a fourth command representative of said third command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said third and fourth commands .
12. The method of claim 11 wherein said first communications transport is at least one of a COM interface, a DCOM interface, and a COBRA interface.
13. The method of claim 11 wherein said first communications transport and said second communications transport are DCOM interfaces .
14. The method of claim 10 wherein said first client program and said resident external controlling interface are operating on the same computer.
15. The method of claim 11 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
16. The method of claim 10, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
17. The method of claim 16, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station and validating said responses regarding said interaction.
18. The method of claim 17, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
19. The method of claim 16, further comprising the step of updating validation of said first command based on data received from said digital command stations .
20. The method of claim 19, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon command station responses representative of said state of said digitally controlled model railroad.
21. The method of claim 20, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
22. The method of claim 10 wherein said resident external controlling interface communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations.
23. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport; (b) transmitting a second command from a second client program to a resident external controlling interface through a second communications transport;
(c) receiving said first command at said resident external controlling interface;
(d) receiving said second command at said resident external controlling interface;
(e) queuing said first and second commands, and deleting one of said first and second commands if they are the same; and
(f) said resident external controlling interface sending a third and fourth command representative of said first command and said second command, respectively, to the same digital command station for execution on said digitally controlled model railroad.
24. The .method of claim 23 wherein said resident external controlling interface communicates in an asynchronous manner with said first and second client programs while communicating in a synchronous manner with said digital command station.
25. The method of claim 23 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
26. The method of claim 23 wherein said first communications transport and said second communications transport are DCOM interfaces .
27. The method of claim 23 wherein said first client program and said resident external controlling interface are operating on the same computer.
28. The method of claim 23 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
29. The method of claim 23, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command.
30. The method of claim 29, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
31. The method of claim 30, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
32. The method of claim 31, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
33. The method of claim 32, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
34. The method of claim 23 wherein said validation is performed by an event driven dispatcher.
35. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a first processor through a first communications transport;
(b) receiving said first command at said first processor;
(c) queuing said first command in a command queue that is not a first-in-first-out command queue; and
(d) said first processor providing an acknowledgment to said first client program through said first communications transport indicating that said first command has been validated against permissible actions regarding the interaction between a plurality of objects of said model railroad and properly executed prior to execution of commands related to said first command by said digitally controlled model railroad.
36. The method of claim 35, further comprising the step of sending said first command to a second processor which processes said first command into a state suitable for a digital command station for execution on said digitally controlled model railroad.
37. The method of claim 36, further comprising the step of said second process queuing a plurality of commands received.
38.. The method of claim 35, further comprising the steps of:
(a) transmitting a second command from a second client program to said first processor through a second communications transport;
(b) receiving said second command at said first processor; and
(c) said first processor selectively providing an acknowledgment to said second client program through said second communications transport indicating that said second command has been validated against permissible actions regarding the interaction between a plurality of objects of said model railroad and properly executed prior to execution of commands related to said second command by said digitally controlled model railroad.
39. The method of claim 38, further comprising the steps of:
(a) sending a third command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and third commands; and (b) sending a fourth command representative of said second command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said second and fourth commands .
40. The method of claim 35 wherein said first communications transport is at least one of a COM interface and a DCOM interface .
41. The method of claim 38 wherein said first communications transport and said second communications transport are DCOM interfaces .
42. The method of claim 35 wherein said first client program and said first processor are operating on the same computer.
43. The method of claim 38 wherein said first client program, said second client program, and said first processor are all operating on different computers.
44. The method of claim 35, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
45. The method of claim 35, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
46. The method of claim 45, further comprising the step of updating said successful validation to said first client program in response to receiving said first ' command by first processor together with state information from said database related to said first command .
47. The method of claim 43 wherein said first processor communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations .
48. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport; (b) transmitting a second command from a second client program to said resident external controlling interface through a second communications transport;
(c) receiving said first command and said second command at said resident external controlling interface;
(d) said resident external controlling interface queuing said first and second commands ; (e) comparing said first and second commands to one another to determine if the result of executing said first and second commands would result in no net state change of said model railroad and the execution of one of said first and second command would result in a net state change of said model railroad; and (f) said resident external controlling interface sending third and fourth commands representative of said first and second commands, respectively, to a digital command station for execution on said digitally controlled model railroad if as a result of said comparing a net state change of said model railroad would result .
49. The method of claim 48, further comprising the steps of:
(a) providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command; and
(b) providing an acknowledgment to said second client program in response to receiving said second command by said resident external controlling interface that said second command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said second command.
50. The method of claim 48, further comprising the steps of selectively sending said third command to one of a plurality of digital command stations.
51. The method of claim 48, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said digital command station and validating said responses regarding said interaction.
52. The method of claim 48 wherein said first and second commands relate to the speed of locomotives.
53. The method of claim 49, further comprising the step of updating said successful validation to at least one of said first and second client programs of at least one of said first and second commands with an indication that at least one of said first and second commands was unsuccessfully validated.
54. The method of claim 48, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
55. The method of claim 54 wherein said validation is performed by an event driven dispatcher.
56. The method of claim 54 wherein one of said first and second command and said third command are the same command, and said second command and said fourth command are the same command.
57. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport; (b) receiving said first command at said resident external controlling interface;
(c) comparing said first command against other commands in a command queue to determine if the result of executing said first command and said other commands would result in no net state change of said model railroad and the execution of said first command would result in a net state change of said model railroad; and
(d) said resident external controlling interface selectively sending a second command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and second commands.
58. The method of claim 57, further comprising the steps of :
(a) transmitting a third command from a second client program to said resident external controlling interface through a second communications transport;
(b) receiving said third command at said resident external controlling interface;
(c) comparing said third command against other commands in said command queue to determine if the result of executing said third command and said other commands would result in no net state change of said model railroad and the execution of said third command would result in a net state change of said model railroad; and
(d) said resident external controlling interface selectively sending a fourth command representative of said third command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said third and fourth commands .
59. The method of claim 58 wherein said first communications transport is at least one of a COM interface and a DCOM interface .
60. The method of claim 58 wherein said first communications transport and said second communications transport are DCOM interfaces.
61. The method of claim 57 wherein said first client program and said resident external controlling interface are operating on the same computer.
62. The method of claim 58 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
63. The method of claim 57, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
64. The method of claim 63, further comprising the step of receiving command station responses representative of' the state of said digitally controlled model railroad from said of digital command station and validating said responses regarding said interaction.
65. The method of claim 64, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
66. The method of claim 63, further comprising the step of updating validation of said first command based on data received from said digital command stations .
67. The method of claim 66, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon command station responses representative of said state of said digitally controlled model railroad.
68. The method of claim 67, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
69. The method of claim 57 wherein said resident external controlling interface communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations.
70. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to a resident external controlling interface through a second communications transport;
(c) receiving said first command at said resident external controlling interface;
(d) receiving said second command at said resident external controlling interface;
(e) comparing said first and second commands to one another to determine if the result of executing said first and second commands would result in no net state change of said model railroad and the execution of one of said first command and said second command would result in a net state change of said model railroad; and
(f) said resident external controlling interface sending a third and fourth command representative of said first command and said second command, respectively, to the same digital command station for execution on said digitally controlled model railroad if as a result of said comparing a net state change of said model railroad would result.
71. The method of claim 70 wherein said resident external controlling interface communicates in an asynchronous manner with said first and second client programs while communicating in a synchronous manner with said digital command station.
72. The method of claim 70 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
73. The method of claim 70 wherein said first communications transport and said second communications transport are DCOM interfaces .
74. The method of claim 70 wherein said first client program and said resident external controlling interface are operating on the same computer.
75. The method of claim 70 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
76. The method of claim 70, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command.
77. The method of claim 76, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
78. The method of claim 77, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
79. The method of claim 78, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
80. The method of claim 79, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
81. The method of claim 70 wherein said validation is performed by an event driven dispatcher.
82. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a first processor through a first communications transport;
(b) receiving said first command at said first processor;
(c) comparing said first command against other commands in a command queue to determine if the result of executing said first command and at least one of said other commands would result in no net state change of said model railroad and the execution of said first command would result in a net state change of said model railroad; and (d) said first processor providing an acknowledgment to said first client program through said first communications transport indicating that said first command has been executed.
83. The method of claim 82, further comprising the step of sending said first command to a second processor which processes said first command into a state suitable for a digital command station for execution on said digitally controlled model railroad.
84. The method of claim 83, further comprising the step of said second process queuing a plurality of commands received.
85. The method of claim 82, further comprising the steps of :
(a) transmitting a second command from a second client program to said first processor through a second communications transport;
(b) receiving said second command at said first processor; and
(c) said first processor selectively providing an acknowledgment to said second client program through said second communications transport indicating that said second command has been executed.
86. The method of claim 85, further comprising the steps of:
(a) sending a third command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and third commands; and
(b) sending a fourth command representative of said second command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said second and fourth commands .
87. The method of claim 82 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
88. The method of claim 85 wherein said first communications transport and said second communications transport are DCOM interfaces .
89. The method of claim 82 wherein said first client program and said first processor are operating on the same computer.
90. The method of claim 85 wherein said first client program, said second client program, and said first processor are all operating on different computers.
91. The method of claim 82, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
92. The method of claim 82, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
93. The method of claim 92, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by first processor together with state information from said database related to said first command .
94. The method of claim 90 wherein said first processor communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations .
95. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to said resident external controlling interface through a second communications transport;
(c) receiving said first command and said second command at said resident external controlling interface; (d) said resident external controlling interface queuing said first and second commands ;
(e) comparing said first and second commands to one another to determine if the result of executing said first and second commands would result in a net state change of said model railroad that would also result from a single different command, and the execution of one of said first and second commands would result in a net state change of said model railroad; and
(f) said resident external controlling interface sending said single different command representative of the net state change of said first and second commands to a digital command station for execution on said digitally controlled model railroad.
96. The method of claim 95, further comprising the steps of :
(a) providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command; and (b) providing an acknowledgment to said second client program in response to receiving said second command by said resident external controlling interface that said second command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said second command.
i
97. The method of claim 95, further comprising the steps of selectively sending said single different command to one of a plurality of digital command stations .
98. The method of claim 95, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said digital command station and validating said responses regarding said interaction.
99. The method of claim 95 wherein said first and second commands relate to the speed of locomotives.
100. The method of claim 96, further comprising the step of updating said successful validation to at least one of said first and second client programs of at least one of said first and second commands with an indication that at least one of said first and second commands was unsuccessfully validated.
101. The method of claim 95, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
102. The method of claim 101 wherein said validation is performed by an event driven dispatcher.
103. The method of claim 101 wherein said first command and said third command are the same command, and said second command and said fourth command are the same command .
104. A method of operating a digitally controlled model railroad comprising the steps of :
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) receiving said first command at said resident external controlling interface; (c) comparing said first command against other commands in a command queue to determine if the result of executing said first and second commands would result in a net state change of said model railroad that would also result from a single different command, and the execution of said first command would result in a net state change of said model railroad; and (d) said resident external controlling interface selectively sending said single different command to one of a plurality of digital command stations for execution on said digitally controlled model railroad.
105. The method of claim 104, further comprising the steps of:
(a) transmitting a third command from a second client program to said resident external controlling interface through a second communications transport; (b) receiving said third command at said resident external controlling interface;
(c) validating said third command against permissible actions regarding the interaction between a plurality of objects of said model railroad; and
(d) said resident external controlling interface selectively sending a fourth command representative of said third command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said third and fourth commands .
106. The method of claim 105 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
107. The method of claim 105 wherein said first communications transport and said second communications transport are DCOM interfaces.
108. The method of claim 104 wherein said first client program and said resident external controlling interface are operating on the same computer.
109. The method of claim 105 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
110. The method of claim 104, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
111. The method of claim 110, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station and validating said responses regarding said interaction.
112. The method of claim 111, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
113. The method of claim 110, further comprising the step of updating validation of said first command based on data received from said digital command stations.
114. The method of claim 113, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon command station responses representative of said state of said digitally controlled model railroad.
115. The method of claim 114, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
116. The method of claim 104 wherein said resident external controlling interface communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations.
117. A method of operating a digitally controlled model railroad comprising the steps of :
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to a resident external controlling interface through a second communications transport; (c) receiving said first command at said resident external controlling interface;
(d) receiving said second command at said resident external controlling interface;
(e) comparing said first and second commands to one another to determine if the result of executing said first and second commands would result in a net state change of said model railroad that would also result from a single different command, and the execution of one of said first and second commands would result in a net state change of said model railroad; and (f) said resident external controlling interface sending said single different command to a digital command station for execution on said digitally controlled model railroad if as a result of said comparing such a single different command exists .
118. The method of claim 117 wherein said resident external controlling interface communicates in an asynchronous manner with said first and second client programs while communicating in a synchronous manner with said digital command station.
~~' 119. The method of claim 117 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
120. The method of claim 117 wherein said first communications transport and said second communications transport are DCOM interfaces.
121. The method of claim 117 wherein said first client program and said resident external controlling interface are operating on the same computer.
122. The method of claim 117 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
123. The method of claim 117, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command.
124. The method of claim 123, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
125. The method of claim 124, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
126. The method of claim 125, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
127. The method of claim 126, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
128. The method of claim 117 wherein said validation is performed by an event driven dispatcher.
129. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a first processor through a first communications transport;
(b) receiving said first command at said first processor;
(c) comparing said first command against other commands in a command queue to determine if the result of executing said first command and at least one of said other commands would result in net state change of said model railroad that would also result from a single different command, and the execution of said first command would result in a net state change of said model railroad; and
(d) said first processor providing an acknowledgment to said first client program through said first communications transport indicating that said first command has been executed.
130. The method of claim 129, further comprising the step of sending said first command to a second processor which processes said first command into a state suitable for a digital command station for execution on said digitally controlled model railroad.
131. The method of claim 130, further comprising the step of said second process queuing a plurality of commands received.
132. The method of claim 129, further comprising the steps of:
(a) transmitting a second command from a second client program to said first processor through a second communications transport; (b) receiving said second command at said first processor; and (c) said first processor selectively providing an acknowledgment to said second client program through said second communications transport indicating that said second command has been executed.
133. The method of claim 132, further comprising the steps of:
(a) sending a third command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and ■third commands; and (b) sending a fourth command representative of said second command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said second and fourth commands .
134. The method of claim 129 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
135. The method of claim 132 wherein said first communications transport and said second communications transport are DCOM interfaces .
136. The method of claim 129 wherein said first client program and said first processor are operating on the same computer.
137. The method of claim 132 wherein said first client program, said second client program, and said first processor are all operating on different computers.
138. The method of claim 129, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
139. The method of claim 129, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
140. The method of claim 139, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by first processor together with state information from said database related to said first command.
141. The method of claim 137 wherein said first processor communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations .
142. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to said resident external controlling interface through a second communications transport;
(c) receiving said first command and said second command at said resident external controlling interface;
(d) said resident external controlling interface queuing said first and second commands ,-
(e) queuing said first and second commands in a command queue based on a non- first-in- first-out prioritization; and (f) said resident external controlling interface sending third and fourth commands representative of said first and second commands, respectively, to a digital command station for execution on said digitally controlled model railroad based upon said prioritization.
143. The method of claim 142, further comprising the steps of: (a) providing an acknowledgment to said first client program- in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command; and (b) providing an acknowledgment to said second client program in response to receiving said second command by said resident external controlling interface that said second command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said second command.
144. The method of claim 142, further comprising the steps of selectively sending said third command to one of a plurality of digital command stations .
145. The method of claim 142, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said digital command station and validating said responses regarding said interaction.
146. The method of claim 142 wherein said first and second commands relate to the speed of locomotives.
147. The method of claim 143, further comprising the step of updating said successful validation to at least one of said first and second client programs of at least one of said first and second commands with an indication that at least one of said first and second commands was unsuccessfully validated.
148. The method of claim 142, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
149. The method of claim 148 wherein said validation is performed by an event driven dispatcher.
150. The method of claim 148 wherein said first command and said third command are the same command, and said second command and said fourth command are the same command .
151. A method of operating a digitally controlled model railroad comprising the steps of: (a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) receiving said first command at said resident external controlling interface;
(c) queuing said first command in a command queue based on a non-first-in-first-out prioritization; and
(d) said resident external controlling interface selectively sending a second command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and second commands and said prioritization.
152. The method of claim 151, further comprising the steps of:
(a) transmitting a third command from a second client program to said resident external controlling interface through a second communications transport; (b) receiving said third command at said resident external controlling interface; (c) queuing said third command in said command queue based on a non-first-in-first-out prioritization; and (d) said resident external controlling interface selectively sending a fourth command representative of said third command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said third and fourth commands and said prioritization.
153. The method of claim 152 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
154. The method of claim 152 wherein said first communications transport and said second communications transport are DCOM interfaces .
155. The method of claim 151 wherein said first client program and said resident external controlling interface are operating on the same computer.
156. The method of claim 152 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
157. The method of claim 151, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
158. The method of claim 157, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station and validating said responses regarding said interaction.
159. The method of claim 158, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
160. The method of claim 157, further comprising the step of updating validation of said first command based on data received from said digital command stations .
161. The method of claim 160, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon command station responses representative of said state of said digitally controlled model railroad.
162. The method of claim 151, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
163. The method of claim 151 wherein said resident external controlling interface communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations.
164. A method of operating a digitally controlled model railroad comprising the steps ,of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to a resident external controlling interface through a second communications transport;
(c) receiving said first command at said resident external controlling interface;
(d) receiving said second command at said resident external controlling interface;
(e) queuing said first and second commands in a command queue based on a non- first -in- first-out prioritization; and
(f) said resident external controlling interface sending a third and fourth command representative of said first command and said second command, respectively, to the same digital command station for execution on said digitally controlled model railroad based upon said prioritization.
165. The method of claim 164 wherein said resident external controlling interface communicates in an asynchronous manner with said first and second client programs while communicating in a synchronous manner with said digital command station.
166. The method of claim 164 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
167. The method of claim 164 wherein said first communications transport and said second communications transport are DCOM interfaces .
168. The method of claim 164 wherein said first client program and said resident external controlling interface are operating on the same computer.
169. The method of claim 164 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
170. The method of claim 164, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command.
171. The method of claim 170, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
172. The method of claim 171, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
173. The method of claim 172, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
174. The method of claim 173, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
175. The method of claim 164 wherein said validation is performed by an event driven dispatcher.
176. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a first processor through a first communications transport;
(b) receiving said first command at said first processor;
(c) queuing said first command in a command queue based on a non-first-in-first-out prioritization; and
(d) said first processor providing an acknowledgment to said first client program through said first communications transport indicating that said first command has been executed.
177. The method of claim 176, further comprising the step of sending said first command to a second processor which processes said first command into a state suitable for a digital command station for execution on said digitally controlled model railroad.
178. The method of claim 177, further comprising the step of said second process queuing a plurality of commands received.
179. The method of claim 176, further comprising the steps of:
(a) transmitting a second command from a second client program to said first processor through a second communications transport ; (b) receiving said second command at said first processor; and
(c) said first processor selectively providing an acknowledgment to said second client program through said second communications transport indicating that said second command has been executed.
180. The method of claim 179, further comprising the steps of : (a) sending a third command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and third commands; and (b) sending a fourth command representative of said second command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said second and fourth commands .
181. The method of claim 176 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
182. The method of claim 179 wherein said first communications transport and said second communications transport are DCOM interfaces.
183. The method of claim 176 wherein said first client program and said first processor are operating on the same computer.
184. The method of claim 179 wherein said first client program, said second client program, and said first processor are all operating on different computers.
185. The method of claim 176, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
186. The method of claim 176, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
187. The method of claim 186, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by first processor together with state information from said database related to said first command.
188. The method of claim 184 wherein said first processor communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations .
189. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport; (b) transmitting a second command from a second client program to said resident external controlling interface through a second communications transport;
(c) receiving said first command and said second command at said resident external controlling interface;
(d) said resident external controlling interface queuing said first and second commands ; (e) queuing said first and second commands in a command queue having the characteristic that valid commands in said command queue are removed from said command queue without being executed by said model railroad; and
(f) said resident external controlling interface sending third and fourth commands representative of said first and second commands, respectively, to a digital command station for execution on said digitally controlled model railroad if not said removed.
190. The method of claim 189, further comprising the steps of:
(a) providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said first command; and
(b) providing an acknowledgment to said second client program in response to receiving said second command by said resident external controlling interface that said second command was successfully validated against permissible actions regarding the interaction between a plurality of objects of said model railroad prior to validating said second command.
191. The method of claim 189, further comprising the steps of selectively sending said third command to one of a plurality of digital command stations .
192. The method of claim 189, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said digital command station and validating said responses regarding said interaction.
193. The method of claim 189 wherein said first and second commands relate to the speed of locomotives.
194. The method of claim 190, further comprising the step of updating said successful validation to at least one of said first and second client programs of at least one of said first and second commands with an indication that at least one of said first and second commands was unsuccessfully validated.
195. The method of claim 189, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
196. The method of claim 195 wherein said validation is performed by an event driven dispatcher.
197. The method of claim 195 wherein said first command and said third command are the same command, and said second command and said fourth command are the same command .
198. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport; (b) receiving said first command at said resident external controlling interface; (c) queuing said first command in a command queue having the characteristics that valid commands in said command queue are removed from said command queue without being executed by said model railroad; and
(d) said resident external controlling interface selectively sending a second command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and second commands if not said removed.
199. The method of claim 198, further comprising the steps of:
(a) transmitting a third command from a second client program to said resident external controlling interface through a second communications transport;
(b) receiving said third command at said resident external controlling interface;
(c) queuing said third command in said command queue ; and
(d) said resident external controlling interface selectively sending a fourth command representative of said third command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said third and fourth commands if not said removed.
200. The method of claim 199 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
201. The method of claim 199 wherein said first communications transport and said second communications transport are DCOM interfaces .
202. The method of claim 198 wherein said first client program and said resident external controlling interface are operating on the same computer.
203. The method of claim 199 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
204. The method of claim 198, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
205. The method of claim 204, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station and validating said responses regarding said interaction.
206. The method of claim 205, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
207. The method of claim 204, further comprising the step of updating validation of said first command based on data received from said digital command stations .
208. The method of claim 207, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon command station responses representative of said state of said digitally controlled model railroad.
209. The method of claim 208, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
210. The method of claim 204 wherein said resident external controlling interface communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations.
211. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to a resident external controlling interface through a second communications transport; (c) receiving said first command at said resident external controlling interface; (d) receiving said second command at said resident external controlling interface;
(e) queuing said first and second commands in a command queue having the characteristic that valid commands in said command queue are removed from said command queue without being executed by said model railroad; and
(f) said resident external controlling interface sending a third and fourth command representative of said first command and said second command, respectively, to the same digital command station for execution on said digitally controlled model railroad if not said removed .
212. The method of claim 211 wherein said resident external controlling interface communicates in an asynchronous manner with said first and second client programs while communicating in a synchronous manner with said digital command station.
213. The method of claim 211 wherein said first communications transport is at least one of a COM interface and a DCOM interface .
214. The method of claim 211 wherein said first communications transport and said second communications transport are DCOM interfaces.
215. The method of claim 211 wherein said first client program and said resident external controlling interface are operating on the same computer.
216. The method of claim 211 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
217. The method of claim 211, further comprising the step of providing an acknowledgment to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
218. The method of claim 217, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
219. The method of claim 218, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
220. The method of claim 219, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.,
221. The method of claim 220, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
222. The method of claim 211 wherein said validation is performed by an event driven dispatcher.
223. A method of operating a digitally controlled model railroad comprising the steps of :
(a) transmitting a first command from a first client program to a first processor through a first communications transport;
(b) receiving said first command at said first processor;
(c) queuing said first command in a command queue having the characteristic that valid commands in said command queue are removed from said command queue without being executed by said model railroad; and
(d) said first processor providing an acknowledgment to said first client program through said first communications transport indicating that said first command has been executed if not said removed .
224. The method of claim 223, further comprising the step of sending said first command to a second processor which processes said first command into a state suitable for a digital command station for execution on said digitally controlled model railroad.
225. The method of claim 224, further comprising the step of said second process queuing a plurality of commands received.
226. The method of claim 223, further comprising the steps of:
(a) transmitting a second command from a second client program to said first processor through a second communications transport ;
(b) receiving said second command at said first processor; and
(c) said first processor selectively providing an acknowledgment to said second client program through said second communications transport indicating that said second command has been executed if not said removed .
227. The method of claim 226, further comprising the steps of:
(a) sending a third command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and third commands if not said removed; and (b) sending a fourth command representative of said second command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said second and fourth commands if not said removed .
228. The method of claim 223 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
229. The method of claim 226 wherein said first communications transport and said second communications transport are DCOM interfaces .
230. The method of claim 223 wherein said first client program and said first processor are operating on the same computer.
231. The method of claim 226 wherein said first client program, said second client program, and said first processor are all operating on different computers.
232., The method of claim 223, further comprising the step of receiving command station ' responses representative of the state of said digitally controlled model railroad from said of digital command station.
233. The method of claim 223, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
234. The method of claim 233, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by first processor together with state information from said database related to said first command.
235. The method of claim 231 wherein said first processor communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations .
236. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) transmitting a second command from a second client program to said resident external controlling interface through a second communications transport;
(c) receiving said first command and said second command at said resident external controlling interface;
(d) said resident external controlling interface queuing said first and second commands ;
(e) validating said first and second commands against permissible actions regarding the interaction between a plurality of objects of said model railroad; and
(f) said resident external controlling interface sending third and fourth commands representative of said first and second commands, respectively, to a digital command station, each of which upon successful validation of step (e) , for execution on said digitally controlled model railroad.
237. The method of claim 236, further comprising the steps of:
(a) providing an acknowledgement to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated prior to validating said first command; and (b) providing an acknowledgement to said second client program in response to receiving said second command by said resident external controlling interface that said second command was successfully validated prior to validating said second command .
238. The method of claim 236, further comprising the steps of:
(a) selectively sending said third command to one of a plurality of digital command stations; and
(b) selectively sending said fourth command to one of said plurality of digital command stations.
239. The method of claim 236, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said digital command station and validating said responses regarding said interaction.
240. The method of claim 236 wherein said first and second commands relate to the speed of locomotives.
241. The method of claim 237, further comprising the step of updating said successful validation to at least one of said first and second client prograrms of at least one of said first and second commands with an indication that at least one of said first and second commands was unsuccessfully validated.
242. The method of claim 236, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
243. The method of claim 242 wherein said validation is performed by an event driven dispatcher.
244. The method of claim 242 wherein said first command and said third command are the same command, and said second command and said fourth command are the same command .
245. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport;
(b) receiving said first command at said resident external controlling interface;
(c) validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad; and
(d) said resident external controlling interface selectively sending a second command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and second commands.
246. The method of claim 245, further comprising the steps of:
(a) transmitting a third command from a second client program to said resident external controlling interface through a second communications transport;
(b) receiving said third command at said resident external controlling interface;
(c) queuing said third command command queue if said third command is different than all other commands in said command queue ; and
(d) said resident external controlling interface selectively sending a fourth command representative of said third command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said third and fourth commands .
247. The method of claim 246 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
248. The method of claim 246 wherein said first communications transport and said second communications transport are DCOM interfaces .
249. The method of claim 245 wherein said first client program and said resident external controlling interface are operating on the same computer.
250. The method of claim 246 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
251. The method of claim 245, further comprising the step of providing an acknowledgement to said first client program in response to receiving said first command by said resident external controlling interface prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
252. The method of claim 245, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station and validating said responses regarding said interaction.
253. The method of claim 252, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
254. The method of claim 245, further comprising the step of updating validation of said first command based on data received from said digital command stations.
255. The method of claim 254, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon command station responses representative of said state of said digitally controlled model railroad.
256. The method of claim 255, further comprising the step of updating said successful validation to said first client program .in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
257. The method of claim 245 wherein said resident external controlling interface communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations.
258. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a resident external controlling interface through a first communications transport; (b) transmitting a second command from a second client program to a resident external controlling interface through a second communications transport;
(c) receiving said first command at said resident external controlling interface;
(d) receiving said second command at said resident external controlling interface;
(e) queuing said first and second commands and deleting one of said first and second commands if they are the same; and
(f) said resident external controlling interface sending a third and fourth command representative of said first command and said second command, respectively, to the same digital command station for execution on said digitally controlled model railroad.
259. The method of claim 258 wherein said resident external controlling interface communicates in an asynchronous manner with said first and second client programs while communicating in a synchronous manner with said digital command station.
260. The method of claim 258 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
261. The method of claim 258 wherein said first communications transport and said second communications transport are DCOM interfaces .
262. The method of claim 258 wherein said first client program and said resident external controlling interface are operating on the same computer.
263. The method of claim 258 wherein said first client program, said second client program, and said resident external controlling interface are all operating on different computers.
264. The method of claim 258, further comprising the step of providing an acknowledgement to said first client program in response to receiving said first command by said resident external controlling interface that said first command was successfully validated prior to validating said first command against permissible actions regarding the interaction between a plurality of objects of said model railroad.
265. The method of claim 264, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
266. The method of claim 265, further comprising the step of comparing said command station responses to previous commands sent to said digital command station to determine which said previous commands it corresponds with.
267. The method of claim 266, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
268. The method of claim 267, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by said resident external controlling interface together with state information from said database related to said first command.
269. The method of claim 258 wherein said validation is performed by an event driven dispatcher.
270. A method of operating a digitally controlled model railroad comprising the steps of:
(a) transmitting a first command from a first client program to a first processor through a first communications transport;
(b) receiving said first command at said first processor; and
(c) said first processor providing an acknowledgement to said first client program through said first communications transport indicating that said first command has been validated against permissible actions regarding the interaction between a plurality of objects of said model railroad and properly executed prior to execution of commands related to said first command by said digitally controlled model railroad.
271. The method of claim 270, further comprising the step of sending said first command to a second processor which processes said first command into a state suitable for a digital command station for execution on said digitally controlled model railroad.
272. The method of claim 271, further comprising the step of said second process queuing a plurality of commands received.
273. The method of claim 270, further comprising the steps of:
(a) transmitting a second command from a second client program to said first processor through a second communications transport;
(b) receiving said second command at said first processor; and
(c) said first processor selectively providing an acknowledgement to said second client program through said second communications transport indicating that said second command has been validated against permissible actions regarding the interaction between a plurality of objects of said model railroad and properly executed prior to execution of commands related to said second command by said digitally controlled model railroad.
274. The method of claim 273, further comprising the steps of:
(a) sending a third command representative of said first command to one of a plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said first and third commands; and (b) sending a fourth command representative of said second command to one of said plurality of digital command stations for execution on said digitally controlled model railroad based upon information contained within at least one of said second and fourth commands .
275. The method of claim 270 wherein said first communications transport is at least one of a COM interface and a DCOM interface.
276. The method of claim 273 wherein said first communications transport and said second communications transport are DCOM interfaces .
277. The method of claim 270 wherein said first client program and said first processor are operating on the same computer.
278. The method of claim 273 wherein said first client program, said second client program, and said first processor are all operating on different computers.
279. The method of claim 270, further comprising the step of receiving command station responses representative of the state of said digitally controlled model railroad from said of digital command station.
280. The method of claim 270, further comprising the step of updating a database of the state of said digitally controlled model railroad based upon said receiving command station responses representative of said state of said digitally controlled model railroad.
281. The method of claim 280, further comprising the step of updating said successful validation to said first client program in response to receiving said first command by first processor together with state information from said database related to said first command.
282. The method of claim 278 wherein said first processor communicates in an asynchronous manner with said first client program while communicating in a synchronous manner with said plurality of digital command stations.
PCT/US2000/014605 2000-04-03 2000-05-24 Model train control system WO2001076278A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2000257239A AU2000257239A1 (en) 2000-04-03 2000-05-24 Model train control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/541,926 2000-04-03
US09/541,926 US6270040B1 (en) 2000-04-03 2000-04-03 Model train control system

Publications (1)

Publication Number Publication Date
WO2001076278A1 true WO2001076278A1 (en) 2001-10-11

Family

ID=24161664

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2000/014605 WO2001076278A1 (en) 2000-04-03 2000-05-24 Model train control system
PCT/US2001/011153 WO2001076281A1 (en) 2000-04-03 2001-04-03 Model train control system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2001/011153 WO2001076281A1 (en) 2000-04-03 2001-04-03 Model train control system

Country Status (3)

Country Link
US (8) US6270040B1 (en)
AU (2) AU2000257239A1 (en)
WO (2) WO2001076278A1 (en)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6997418B1 (en) * 1997-11-05 2006-02-14 Ge-Harris Raliway Electronics, L.L.C. Methods and apparatus for testing a train control system
US6270040B1 (en) * 2000-04-03 2001-08-07 Kam Industries Model train control system
US6065406A (en) * 1998-06-24 2000-05-23 Katzer; Matthew A. Model train control system
US6530329B2 (en) 2001-05-15 2003-03-11 Matthew A. Katzer Model train control system
US7212957B2 (en) * 2001-05-08 2007-05-01 Ez Switch Corp. Model railroad control and display system
JP3527900B2 (en) * 2001-07-17 2004-05-17 コナミ株式会社 Remote control system, transmitter and driving device thereof
JP3673192B2 (en) * 2001-07-17 2005-07-20 コナミ株式会社 Transmitter used for remote control system
JP4136382B2 (en) * 2002-01-25 2008-08-20 株式会社コナミデジタルエンタテインメント Remotely operated toy system and accessory equipment used therefor
JP3673225B2 (en) * 2002-01-25 2005-07-20 コナミ株式会社 Remote operation system and transmitter and peripheral device used in the system
US10569792B2 (en) 2006-03-20 2020-02-25 General Electric Company Vehicle control system and method
US9233696B2 (en) 2006-03-20 2016-01-12 General Electric Company Trip optimizer method, system and computer software code for operating a railroad train to minimize wheel and track wear
US20070225878A1 (en) * 2006-03-20 2007-09-27 Kumar Ajith K Trip optimization system and method for a train
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US9733625B2 (en) 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US6609049B1 (en) * 2002-07-01 2003-08-19 Quantum Engineering, Inc. Method and system for automatically activating a warning device on a train
US8924049B2 (en) 2003-01-06 2014-12-30 General Electric Company System and method for controlling movement of vehicles
US7398140B2 (en) * 2003-05-14 2008-07-08 Wabtec Holding Corporation Operator warning system and method for improving locomotive operator vigilance
US8154227B1 (en) * 2003-11-26 2012-04-10 Liontech Trains Llc Model train control system
US20060090667A1 (en) * 2004-10-29 2006-05-04 Liebman John R Model railroad system
US20060100982A1 (en) * 2004-11-08 2006-05-11 International Business Machines Corporation Storage configuration loader with automatic error recovery
US20060100753A1 (en) * 2004-11-10 2006-05-11 Katzer Matthew A Model train control
JP4259456B2 (en) * 2004-11-11 2009-04-30 トヨタ自動車株式会社 Data recording apparatus and data recording method
US7549610B1 (en) * 2005-12-21 2009-06-23 A. J. Ireland Control expansion for conventionally powered model railroads
US8229582B1 (en) * 2005-12-30 2012-07-24 Anthony John Ireland Sound definition language method with inline modifiers
US7871568B2 (en) * 2006-01-23 2011-01-18 Quidel Corporation Rapid test apparatus
US8473127B2 (en) 2006-03-20 2013-06-25 General Electric Company System, method and computer software code for optimizing train operations considering rail car parameters
US20080167766A1 (en) * 2006-03-20 2008-07-10 Saravanan Thiyagarajan Method and Computer Software Code for Optimizing a Range When an Operating Mode of a Powered System is Encountered During a Mission
US8370006B2 (en) * 2006-03-20 2013-02-05 General Electric Company Method and apparatus for optimizing a train trip using signal information
US9266542B2 (en) * 2006-03-20 2016-02-23 General Electric Company System and method for optimized fuel efficiency and emission output of a diesel powered system
US8768543B2 (en) 2006-03-20 2014-07-01 General Electric Company Method, system and computer software code for trip optimization with train/track database augmentation
US8290645B2 (en) 2006-03-20 2012-10-16 General Electric Company Method and computer software code for determining a mission plan for a powered system when a desired mission parameter appears unobtainable
US8126601B2 (en) 2006-03-20 2012-02-28 General Electric Company System and method for predicting a vehicle route using a route network database
US8788135B2 (en) 2006-03-20 2014-07-22 General Electric Company System, method, and computer software code for providing real time optimization of a mission plan for a powered system
US9156477B2 (en) 2006-03-20 2015-10-13 General Electric Company Control system and method for remotely isolating powered units in a vehicle system
US8370007B2 (en) 2006-03-20 2013-02-05 General Electric Company Method and computer software code for determining when to permit a speed control system to control a powered system
US9201409B2 (en) 2006-03-20 2015-12-01 General Electric Company Fuel management system and method
US8249763B2 (en) 2006-03-20 2012-08-21 General Electric Company Method and computer software code for uncoupling power control of a distributed powered system from coupled power settings
US8401720B2 (en) 2006-03-20 2013-03-19 General Electric Company System, method, and computer software code for detecting a physical defect along a mission route
US9527518B2 (en) 2006-03-20 2016-12-27 General Electric Company System, method and computer software code for controlling a powered system and operational information used in a mission by the powered system
DE102006023132B4 (en) * 2006-05-17 2012-11-15 Stadlbauer Marketing und Vertrieb GmbH Controlling additional functions of toy vehicles in a digital control system
US20080099633A1 (en) * 2006-10-31 2008-05-01 Quantum Engineering, Inc. Method and apparatus for sounding horn on a train
US7873586B2 (en) * 2008-01-08 2011-01-18 International Business Machines Corporation Risk assessment in a gate area of an airport
US7885909B2 (en) * 2008-01-09 2011-02-08 International Business Machines Corporation Risk assessment between airports
US7885908B2 (en) * 2008-01-09 2011-02-08 International Business Machines Corporation Risk assessment within an aircraft
US7895144B2 (en) * 2008-01-09 2011-02-22 International Business Machines Corporation Risk assessment in a pre/post security area within an airport
US7870085B2 (en) 2008-01-09 2011-01-11 International Business Machines Corporation Risk assessment between aircrafts
US7895143B2 (en) * 2008-01-09 2011-02-22 International Business Machines Corporation Risk assessment in an area external to an airport
US8237583B2 (en) * 2008-11-05 2012-08-07 General Electric Company Method and system for vital display systems
US9834237B2 (en) 2012-11-21 2017-12-05 General Electric Company Route examining system and method
US8234023B2 (en) * 2009-06-12 2012-07-31 General Electric Company System and method for regulating speed, power or position of a powered vehicle
US9523454B2 (en) * 2009-10-21 2016-12-20 Brasscraft Manufacturing Company Anti-rotation gripper ring
US9494268B2 (en) * 2009-10-21 2016-11-15 Brasscraft Manufacturing Company Supply stop with connection verification
US9464743B2 (en) * 2009-10-21 2016-10-11 Brass-Craft Manufacturing Company Bias release cartridge
US8894020B2 (en) * 2011-02-28 2014-11-25 Harvey J. Rosener Block module for model train layout control
US8543774B2 (en) 2011-04-05 2013-09-24 Ansaldo Sts Usa, Inc. Programmable logic apparatus employing shared memory, vital processor and non-vital communications processor, and system including the same
JP5899897B2 (en) * 2011-12-20 2016-04-06 富士通株式会社 Information processing apparatus, information processing method, and program
JP6169615B2 (en) 2012-01-27 2017-07-26 マーベル ワールド トレード リミテッド Method, integrated circuit and system for dynamically managing FIFO command queue of system controller
US20160164976A1 (en) * 2012-09-24 2016-06-09 Suitable Technologies, Inc. Systems and methods for remote presence
US20140143376A1 (en) * 2012-11-19 2014-05-22 Ryan Directional Services, Inc. Method of Data Acquisition and Multi Directional Prioritized Data Dispersal for a Remote Drilling Site
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method
WO2016082107A1 (en) * 2014-11-25 2016-06-02 华为技术有限公司 Interface sharing method and terminal device
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
DE202019000093U1 (en) 2019-01-08 2019-02-13 Christoph Edeler Identification, management and execution of interactive game courses involving digital model railways and remote-controlled models (RC models)
US20210138356A1 (en) * 2019-11-08 2021-05-13 James Bevan LEWIS Led scene controller for a model train system and related methods
CN113997982B (en) * 2021-11-30 2023-07-21 中车青岛四方机车车辆股份有限公司 Auxiliary parking area setting method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307302A (en) * 1977-07-18 1981-12-22 Russell Jack A Electronic control system
US5493642A (en) * 1994-04-26 1996-02-20 Jocatek, Inc. Graphically constructed control and scheduling system
US5896017A (en) * 1984-11-16 1999-04-20 Severson; Frederick E. Model train locomotive with doppler shifting of sound effects
US5940005A (en) * 1984-11-16 1999-08-17 Severson; Frederick E. Method and apparatus for storing and utilizing a unique power down state in a model railroad system
US5952797A (en) * 1996-06-03 1999-09-14 Roessler; Elfriede Model vehicle, particularly model railway vehicle

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US586017A (en) * 1897-07-06 Closure for bottles
US3944986A (en) * 1969-06-05 1976-03-16 Westinghouse Air Brake Company Vehicle movement control system for railroad terminals
US3976272A (en) * 1974-11-18 1976-08-24 General Signal Corporation Control system for railroads
DE2601790A1 (en) 1976-01-20 1977-07-21 Bastian Dipl Ing Ingbert Control system for model electric railway - has pulsed DC which controls speed and direction of trains drawn by three different locomotives
US4853883A (en) 1987-11-09 1989-08-01 Nickles Stephen K Apparatus and method for use in simulating operation and control of a railway train
FR2644420B1 (en) * 1989-03-17 1991-07-05 Aigle Azur Concept SYSTEM FOR CONTROLLING THE PROGRESS OF SEVERAL RAIL CONVEYS ON A NETWORK
US5475818A (en) 1992-03-18 1995-12-12 Aeg Transportation Systems, Inc. Communications controller central processing unit board
US5463552A (en) * 1992-07-30 1995-10-31 Aeg Transportation Systems, Inc. Rules-based interlocking engine using virtual gates
US5456604A (en) 1993-10-20 1995-10-10 Olmsted; Robert A. Method and system for simulating vehicle operation using scale models
US5828979A (en) * 1994-09-01 1998-10-27 Harris Corporation Automatic train control system and method
CA2140398A1 (en) 1994-11-16 1996-05-17 Gregory S. Balukin Apparatus to enable controlling a throttle controller from a remote host
US5696689A (en) * 1994-11-25 1997-12-09 Nippondenso Co., Ltd. Dispatch and conveyer control system for a production control system of a semiconductor substrate
DE19622132A1 (en) 1996-06-01 1997-12-04 Josef Duell PC-controlled model railway
US5681015A (en) 1996-12-20 1997-10-28 Westinghouse Air Brake Company Radio-based electro-pneumatic control communications system
US6275739B1 (en) * 1997-10-14 2001-08-14 Anthony John Ireland Attached logic module technique for control and maintenance in a distributed and networked control system
US6281606B1 (en) * 1998-04-07 2001-08-28 Mike's Train House Plural output electric train control station
US6065406A (en) * 1998-06-24 2000-05-23 Katzer; Matthew A. Model train control system
US6270040B1 (en) * 2000-04-03 2001-08-07 Kam Industries Model train control system
US6441570B1 (en) * 1999-06-14 2002-08-27 Lionel, Llc. Controller for a model toy train set
US6729584B2 (en) 1999-07-15 2004-05-04 Anthony John Ireland Model railroad occupancy detection equipment
US6220552B1 (en) 1999-07-15 2001-04-24 Anthony John Ireland Model railroad detection equipment
US6460467B2 (en) * 2000-04-17 2002-10-08 Matthew A. Katzer Model train control method
US6530329B2 (en) * 2001-05-15 2003-03-11 Matthew A. Katzer Model train control system
US6320346B1 (en) * 2000-08-11 2001-11-20 Atlas Model Railroad Company, Incorporated DCC decoder for model railroad
US6457681B1 (en) 2000-12-07 2002-10-01 Mike's Train House, Inc. Control, sound, and operating system for model trains
US6539292B1 (en) 2001-06-09 2003-03-25 Stanley R. Ames, Jr. Using location-influenced behavior to control model railroads
US20040239268A1 (en) 2002-11-27 2004-12-02 Grubba Robert A. Radio-linked, Bi-directional control system for model electric trains
US7142954B2 (en) * 2004-06-14 2006-11-28 Neiser Robert C Model train controller interface device
US20060226298A1 (en) 2005-03-30 2006-10-12 Lionel L.L.C. Graphical method and system for model vehicle and accessory control
US20060256593A1 (en) 2005-05-11 2006-11-16 Lionel L.L.C. Voltage controller with true RMS indicator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307302A (en) * 1977-07-18 1981-12-22 Russell Jack A Electronic control system
US5896017A (en) * 1984-11-16 1999-04-20 Severson; Frederick E. Model train locomotive with doppler shifting of sound effects
US5940005A (en) * 1984-11-16 1999-08-17 Severson; Frederick E. Method and apparatus for storing and utilizing a unique power down state in a model railroad system
US5493642A (en) * 1994-04-26 1996-02-20 Jocatek, Inc. Graphically constructed control and scheduling system
US5952797A (en) * 1996-06-03 1999-09-14 Roessler; Elfriede Model vehicle, particularly model railway vehicle

Also Published As

Publication number Publication date
US20080086245A1 (en) 2008-04-10
US20070051857A1 (en) 2007-03-08
US6702235B2 (en) 2004-03-09
US6877699B2 (en) 2005-04-12
US6494408B2 (en) 2002-12-17
WO2001076281A1 (en) 2001-10-11
US7216836B2 (en) 2007-05-15
US20030001050A1 (en) 2003-01-02
US7970504B2 (en) 2011-06-28
US7711458B2 (en) 2010-05-04
US6270040B1 (en) 2001-08-07
US20020113171A1 (en) 2002-08-22
AU2001253185A1 (en) 2001-10-15
US20080091312A1 (en) 2008-04-17
US20050092868A1 (en) 2005-05-05
AU2000257239A1 (en) 2001-10-15
US20040069908A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US7970504B2 (en) Model train control system
US7856296B2 (en) Model train control system
US6530329B2 (en) Model train control system
US6460467B2 (en) Model train control method
US3163125A (en) Sempahore for electric toy trains
US2038308A (en) Train control means for toy electric trains

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP