WO2002000546A1 - Reacteur de reformage de combustible et son procede de production - Google Patents

Reacteur de reformage de combustible et son procede de production Download PDF

Info

Publication number
WO2002000546A1
WO2002000546A1 PCT/JP2001/005528 JP0105528W WO0200546A1 WO 2002000546 A1 WO2002000546 A1 WO 2002000546A1 JP 0105528 W JP0105528 W JP 0105528W WO 0200546 A1 WO0200546 A1 WO 0200546A1
Authority
WO
WIPO (PCT)
Prior art keywords
reformer
steel material
fuel
oxide layer
fuel reformer
Prior art date
Application number
PCT/JP2001/005528
Other languages
English (en)
French (fr)
Inventor
Masatoshi Ueda
Masataka Kadowaki
Akira Fuju
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US10/069,912 priority Critical patent/US6936567B2/en
Priority to AU67846/01A priority patent/AU6784601A/en
Publication of WO2002000546A1 publication Critical patent/WO2002000546A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00309Controlling the temperature by indirect heat exchange with two or more reactions in heat exchange with each other, such as an endothermic reaction in heat exchange with an exothermic reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0281Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a fuel reformer and a method for producing the same, and more particularly, to a fuel reformer for reforming a hydrocarbon-based fuel into a hydrogen-rich gas and a method for producing the same.
  • the operating temperature of the reformer is about 700 ° C (exit temperature of the reforming catalyst layer). It is estimated that the surface temperature of the material that constitutes the reformer is about 100,000 or more.
  • the surface is steam-oxidized to form a rough, porous, and brittle iron oxide layer (considered mainly Fea0a) (hereinafter referred to as a red scale) on the surface, and the red scale is It has a tendency to progress to the inside, There was a problem that the corrosion of the steel material further progressed when the red scale was separated from the substrate. Increasing the thickness of the steel material can reduce the material destruction due to corrosion, but increases the weight, makes it difficult to process, and raises the cost. Was.
  • An object of the present invention is to solve the conventional problem, and even when placed in an atmosphere having a low oxygen concentration and / or a high steam concentration at a high temperature, the surface of the steel material constituting the reformer is steam-oxidized to red.
  • An object of the present invention is to provide a fuel reformer that is lightweight, inexpensive, inexpensive, reliable, and has a long life without generating scale. Disclosure of the invention
  • a fuel reformer according to claim 1 is a fuel reformer for reforming a hydrocarbon-based fuel into a hydrogen-rich gas, and a steel material constituting the reformer.
  • a Cr oxide layer is formed on at least a part of the surface.
  • the fuel reformer according to claim 2 wherein the Cr oxide layer is formed on a surface of a fuel on a combustion gas flow path side in the fuel reformer according to claim 1. It is characterized by
  • the fuel reformer according to claim 3 is the fuel reformer according to claim 1, wherein the Cr oxide layer supplies a mixed gas of the raw fuel for reforming and steam to the reformer. It is characterized in that it is formed on the surface of the mixed gas flow path from the gas to the reforming catalyst filling section.
  • the fuel reformer according to claim 4 is the fuel reformer according to claim 1, wherein the Cr oxide layer is formed on a combustion gas flow path side surface of the reformer. It is characterized in that it is formed on the surface of a mixed gas flow path from a fuel supply section that supplies a mixed gas of raw fuel for reforming and steam to the reformer to a charging section of the reforming catalyst.
  • the fuel reformer according to claim 5 is the fuel reformer according to claim 1, wherein the average thickness of the Cr oxide layer is 5 to 100 ⁇ m. And features.
  • the fuel reformer according to claim 6 is the fuel reformer according to any one of claims 1 to 5, wherein the surface of the steel material constituting the reformer is higher than the Cr concentration of the base material. It is characterized in that a Cr oxide layer formed by forming a thin film having a Cr concentration and then performing a heat treatment is formed.
  • Claim 7 forms a Cr oxide layer on the surface of the raw steel material by heat-treating the raw steel material in an oxidizing atmosphere at 600 to 100 ° C.
  • a method for manufacturing a fuel reformer comprising manufacturing a reformer using the raw steel material having the Cr oxide layer formed thereon.
  • the surface of the raw steel material is heat-treated in an oxidizing atmosphere at 600 to 100 ° C. by heating the fuel reformer manufactured using the raw steel material. Characterized in that a Cr oxide layer is formed on This is a method for manufacturing a fuel reformer.
  • a fuel reforming method is characterized in that a Cr oxide layer is formed on the surface of the raw steel material, and a reformer is manufactured using the raw steel material on which the Cr oxide layer is formed. This is the method of manufacturing the porcelain.
  • Claim 10 is that after forming a thin film having a Cr concentration higher than the Cr concentration of the base material on the surface of the raw steel material, the fuel reformer manufactured by using the raw steel material is replaced by a 35 A method for producing a fuel reformer, characterized in that a Cr oxide layer is formed on the surface of the raw steel material by heat treatment in an oxidizing atmosphere at 0 to 65 ° C. is there.
  • a Cr oxide layer is formed on the surface of the raw steel material by heat treatment in an oxidizing atmosphere at 0 to 65 ° C.
  • the Cr oxide layer is formed on at least a part of the surface of the steel material constituting the fuel reformer.
  • the C r oxide layer is specifically Ri spinel oxide layer der of F e 0 ⁇ C r 2 0 3 or C r 2 0 3 as a main the C r, the steel material of the underlying at ⁇ tight It has excellent adhesion, has few lattice defects, significantly reduces the diffusion of metal ions and oxygen ions, and prevents steam oxidation. Accordingly, the generation of red scale is suppressed, and the heat resistance is improved, thereby improving the life and reliability of the fuel reformer.
  • the Cr oxide layer preferably has an average thickness in the range of 5 to 100 zm.
  • the average thickness is 5 to 100 111 and the oxide layer has good adhesion to the surface of the underlying steel material and is dense and resistant to steam oxidation. Is excellent. If the length is less than 5 m, the Cr oxide layer may be partially lost, and a uniform and dense Cr oxide layer may not be formed. It takes a long time to form the refuse, which is uneconomical.
  • the surface of the steel material constituting the reformer is coated with a C higher than the Cr concentration of the base material by a method such as squeezing or chrome plating.
  • a method such as squeezing or chrome plating.
  • heat treatment is performed to form a Cr oxide layer. You. By doing so, the heat treatment temperature can be lowered, so that it is possible to reduce the amount of energy without any trouble and save energy, and the Cr oxide layer formed by the heat treatment becomes dense.
  • the raw steel material is heat-treated in an oxidizing atmosphere at 600 to 1000 ° C., so that the surface of the raw steel material is Cr-oxidized.
  • a fuel reformer is manufactured using the raw steel material on which the Cr oxide layer is formed.
  • the surface of the raw steel material is Fe 0. can and this to form a C r 2 0 3 or spinel oxide layer of C r 2 0 3 as a main the C r.
  • the temperature at which the raw steel material is heat-treated is below 800 ° C, a Cr oxide layer may not be formed, and an expensive heater is required to perform the heat treatment above 100 ° C. Therefore, the amount of energy input to the heater also increases, which is uneconomical. Therefore, it is preferable to set the temperature in the range of 600 ° C. to 100 ° C. If the heat treatment time is less than 30 minutes, a uniform and dense Cr oxide layer may not be formed.If the heat treatment time exceeds 10 hours, the amount of energy input for the heat treatment increases, which is uneconomical. . Therefore, the heat treatment time is preferably in the range of 30 minutes to 10 hours.
  • the fuel reformer itself manufactured using the raw steel material is heat-treated in an oxidizing atmosphere at 600 to 100 ° C.
  • a Cr oxide layer is formed on the surface of the raw steel material.
  • the heat treatment of the fuel reformer itself in an oxidizing atmosphere at 600 ° C. to 100 ° C., preferably for 30 minutes to 10 hours, can also be used as a raw material steel.
  • a spinel oxide layer of Cr mainly composed of Fe 0 ⁇ Cra 03 or Cr 2 O 3 can be formed on the surface of the material.
  • a thin film having a Cr concentration higher than the Cr concentration of the base material is formed on the surface of the raw steel material by a method such as chrome plating or chrome plating. (Chromium alloy thin film, Chromium thin film, etc., average thickness of about 1 to 100 m).
  • chrome plating or chrome plating Chromium alloy thin film, Chromium thin film, etc., average thickness of about 1 to 100 m.
  • a thin film having a higher Cr concentration than the base material is previously formed on the surface of the steel material constituting the reformer, even if the base material has a low Cr concentration, the surface is dense.
  • a simple Cr oxide layer can be formed in a short time. After forming a thin film having a Cr concentration higher than that of the base metal on the surface of the raw steel material, heat treatment was performed in an oxidizing atmosphere at 350 to 650 ° C to form a Cr oxide layer.
  • a fuel reformer can be manufactured by assembling or welding with steel materials. The processing temperature is 350 to 650 ° C. If the temperature is lower than 350 ° C, the Cr oxide layer may not be formed, and if it exceeds 650 ° C, the amount of energy also increases, making it uneconomical for the effect. Becomes
  • a thin film having a Cr concentration higher than that of the base material (a thin film of a chromium alloy, a thin film of a chromium, etc.) is formed on the surface of the raw steel material.
  • the fuel reformer manufactured using this steel material is heat-treated in an oxidizing atmosphere at 350-650 ° C.
  • a Cr oxide layer is formed on the surface of the raw steel material. Since the heat treatment is performed in an oxidizing atmosphere at 350 to 650 ° C, no energy is required, the energy amount can be reduced, energy can be saved, and the Cr oxide layer formed by the heat treatment becomes dense.
  • a fuel reformer having improved life and reliability can be manufactured by the invention according to the present invention.
  • FIG. 1 is an explanatory sectional view of one embodiment of the fuel reformer of the present invention.
  • FIG. 2 is an explanatory sectional view of another fuel reformer of the present invention.
  • FIG. 3 is an explanatory sectional view of another fuel reformer of the present invention.
  • FIG. 1 is an explanatory sectional view of an embodiment of the fuel reformer of the present invention.
  • a fuel reformer 1A of the present invention comprises a reforming tube outer tube 2, a reforming tube inner tube 3, a reforming tube inner tube upper plate 4, a reforming tube outer tube upper plate 5, and a reforming tube outer plate 5. It has a raw fuel inlet 6, a reformed gas outlet 7, etc., provided on the cylinder upper plate 5, and a heating unit 8, which introduces combustion gas for heating into a hollow part provided in the center of the reformer. Between the reforming tube 9, the catalyst tube 10 installed inside the reforming tube 9, and the reforming tube inner tube 3 and the catalyst tube 1.0, and on the reforming tube inner tube upper plate 4.
  • gas fuel and air are introduced into a parner 15 to burn the gas fuel, and the combustion gas is guided to a heating section 8 through a combustion gas pipe 14 as indicated by a dashed arrow to form a reforming catalyst 1.
  • the flue gas is discharged from the flue gas outlet 12 through the space between the reformer tube 2 and the flue gas tube 13.
  • a hydrocarbon-based fuel for example, methane
  • a hydrocarbon-based fuel for example, methane
  • water vapor is introduced into the fuel reformer 1A from the raw fuel inlet 6 as shown by the arrow, and is brought into contact with the heated reforming catalyst 11. Reform.
  • the operation temperature of the fuel reformer 1A is controlled to about 700 ° C. (outlet temperature of the reforming catalyst 11).
  • about 75% of hydrogen, about 10% of carbon monoxide, and about 10% of carbon dioxide can be obtained.
  • the reformed gas containing the remaining methane gas is discharged from the reformed gas outlet 7 through the space between the outer tube 2 of the reforming tube and the catalyst tube 10 as shown by the arrow.
  • the fuel reformer 1A is made by heat-treating the raw steel material in an oxidizing atmosphere at 600 ° 100 ° C. for 30 minutes to 10 hours.
  • Bold lines such as the combustion gas pipes 14 that constitute 1 A, the flue gas pipes 13, the flue gas outlets 12, the reforming pipe outer cylinder 2, the reforming pipe inner cylinder 3, and the reforming pipe inner cylinder upper plate 4 are shown.
  • a Cr oxide layer is formed on the surface of the steel material that composes these parts on the side where the combustion gas contacts and flows.
  • the side where the combustion gas flows in contact with the combustion gas at the location indicated by the bold line including the heating section 8 of the fuel reformer 1A is in an atmosphere of high temperature, low oxygen concentration and easy to generate steam oxidation.
  • the Cr oxide layer in advance on the gas flow path side surface, water vapor oxidation on the surface is prevented, the generation of red scale is prevented, and heat resistance is improved. You. This will improve the life and reliability of the reformer.
  • FIG. 2 is an explanatory sectional view of another fuel reformer of the present invention.
  • the fuel reformer 1B of the present invention is used for reforming, such as the upper part of the reforming tube outer cylinder 5, the raw fuel inlet 6, and a part of the upper part of the catalyst tube 10 shown by a thick line.
  • the Cr oxide layer is previously formed on a surface of a flow path from which a mixed gas flows and comes into contact, from a fuel supply unit that supplies a mixed gas of raw fuel and steam to a charging unit of the reforming catalyst 11.
  • the configuration is the same as that of the fuel reformer 1A shown in FIG.
  • the mixed gas flow path from the fuel supply section that supplies the mixed gas to the fuel reformer 1B to the filling section of the reforming catalyst 11 is in an atmosphere where steam oxidation is likely to occur at high temperature and high steam concentration.
  • the Cr oxide layer is formed on the surface of the mixed gas flow path, steam oxidation on the surface is prevented, red scale is prevented from being generated, and heat resistance is improved. This will improve the life and reliability of the reformer.
  • FIG. 3 is an explanatory sectional view of another fuel reformer of the present invention.
  • FIG. 3 a combustion gas pipe 14, a combustion exhaust gas pipe 13, a combustion exhaust gas outlet 12, a reforming pipe outer cylinder 2, a reforming pipe inner cylinder 3, and a reforming pipe inside the fuel reformer 1 C of the present invention are shown.
  • the Cr oxide layer is formed on the surface of the steel material that constitutes the side where the combustion gas contacts and flows, such as those indicated by the bold line, such as ⁇ 4 on the cylinder, and the reforming pipe indicated by the bold line. From the fuel supply section that supplies the mixed gas of raw fuel for reforming and steam to the charging section of the reforming catalyst 11, such as the outer cylinder upper plate 5, raw fuel inlet 6, and a part above the catalyst tube 10. Except that the Cr oxide layer is formed on the surface of the mixed gas flow path, the structure is the same as that of the fuel reformers 1A and IB shown in FIGS. 1 and 2.
  • the combustion gas flow path including the heating section 8 of the fuel reformer 1 C In a low oxygen concentration atmosphere where steam oxidation is likely to occur, and the mixed gas flow path from the fuel supply unit that supplies the mixed gas to the fuel reformer 1C to the charging unit of the reforming catalyst 11 has a high temperature. And the atmosphere is apt to generate steam oxidation at a high steam concentration, so that the Cr oxide layer is formed on the combustion gas channel side surface and the mixed gas channel surface, so that both surfaces are formed. The oxidation of steam at the surface is prevented, the generation of red scale is prevented, and the heat resistance is improved. This improves the service life and reliability of the reformer.
  • the fuel reformer of the present invention is not limited to the fuel reformers of the types shown in FIGS. 1 to 3, but may be, for example, a multi-tube fuel reformer, a flat plate fuel reformer, or the like.
  • the reformers described in FIGS. 1 and 3 of Japanese Patent No. 2703831 and the reformers described in FIGS. 2 to 8 of Japanese Patent Application Laid-Open No. 6-13096 are disclosed.
  • the reformer, the reformer described in FIGS. 1 to 3 of JP-A-6-56401, and the reformer described in FIGS. 1, 4, and 7 of JP-A-7-109105 The reformer, the reformer described in FIGS. 1 and 3 of JP-A-7-232801, the reformer described in FIG.
  • the fuel reformer according to claim 1 of the present invention has a reduced surface area of the steel material constituting the reformer without increasing the thickness of the reformer as in the prior art.
  • the Cr oxide layer is formed in advance, so that the steel material constituting the reformer can be used even in an atmosphere with a low oxygen concentration and / or a high steam concentration at high temperatures.
  • the remarkable effect of high heat resistance, light weight, low cost and low cost, high reliability and long life is not generated by red oxidation due to steam oxidation on the surface. Plays.
  • the fuel reformer according to claim 3 of the present invention is a fuel reformer, comprising: a mixed gas from a fuel supply section for supplying a mixed gas to a charging section for a reforming catalyst, which is in a high-temperature and high-steam-concentration atmosphere in which steam oxidation is likely to occur. Since the Cr oxide layer is previously formed on the surface of the flow path, steam oxidation on this surface is prevented, red scale is prevented from being generated, heat resistance is improved, the weight is reduced, and the cost is reduced. It has a remarkable effect that it is inexpensive, reliable, and has a long life.
  • the fuel reformer according to claim 4 of the present invention has a combustion gas flow path side surface in an atmosphere in which water vapor oxidation is likely to occur at high temperature and low oxygen concentration, and steam oxidation easily occurs at high temperature and high steam concentration. Since the Cr oxide layer is previously formed on the surface of the mixed gas flow path from the fuel supply section supplying the mixed gas to the filling section of the reforming catalyst in the atmosphere, the water vapor on these surfaces is formed. Prevents oxidation, prevents red scale from occurring, improves heat resistance, is lightweight, costs less, and is inexpensive It has a remarkable effect of high reliability and long life.
  • the Cr oxide layer is formed on the surface of the underlying steel material. It has a remarkable effect that it has good adhesion, is dense and has excellent steam oxidation resistance.
  • the Cr material having a higher Cr concentration than the Cr concentration of the base material is formed on the surface of the steel material constituting the reformer by a method such as chroming and chrome plating.
  • a method such as chroming and chrome plating.
  • the heat treatment temperature can be reduced, and the energy consumption can be reduced without any labor and energy saving.
  • the Cr oxide layer formed by the heat treatment becomes denser, and a thin film having a Cr concentration higher than that of the base metal on the surface of the steel material composing the reformer. Since the Cr layer is formed in advance, a remarkable effect is achieved that a dense Cr oxide layer can be formed on the surface in a short time even if the Cr concentration of the base material is low.
  • the Cr oxide layer can be easily formed on the surface of the raw steel material before manufacturing the fuel reformer of the present invention, After the Cr oxide layer is formed on the surface of the material, a remarkable effect that the fuel reformer of the present invention can be easily manufactured by assembling or welding using the Cr oxide layer. Is played.
  • the fuel reformer composed of the raw steel material on which the Cr oxide layer is not formed is processed to form the Cr oxide on the surface of the raw steel material.
  • the production method of claim 9 of the present invention after forming a thin film having a Cr concentration higher than the Cr concentration of the base material on the surface of the raw steel material, it is oxidized at 350 to 65 ° C. Heat treatment in the atmosphere forms a Cr oxide layer, and the reformer is manufactured using the raw steel material on which the Cr oxide layer has been formed.
  • the Cr oxide layer formed by heat treatment becomes denser and the surface of the steel material constituting the reformer has a higher Cr concentration than the Cr concentration of the base metal. Since a thin film having a high concentration is formed in advance, there is a remarkable effect that a dense Cr oxide layer can be formed on the surface in a short time even if the Cr concentration of the base material is low.
  • a thin film having a Cr concentration higher than that of the base metal is formed on the surface of the raw steel material, and then the raw steel material is used for manufacturing.
  • a Cr oxide layer is formed on the surface of the raw steel material, so that no hassle is required. Energy consumption can be reduced and energy savings can be achieved, the Cr oxide layer formed by heat treatment becomes denser, and the Cr concentration of the base metal on the surface of the steel material constituting the reformer 'is improved. Since a thin film having a higher Cr concentration is formed in advance, there is a remarkable effect that a dense Cr oxide layer can be formed on the surface in a short time even if the Cr concentration of the base material is low.
  • the present invention relates to a fuel reformer for reforming a hydrocarbon-based fuel into a hydrogen-rich gas and a method for producing the same.
  • the surface of the steel material that composes the reformer remains steam even if it is placed in an atmosphere of Z or high steam concentration. It is not oxidized to red scale, has high heat resistance, is lightweight, is inexpensive, inexpensive, has high reliability, has a long service life, and is manufactured according to the present invention. Since the method makes it possible to easily manufacture a low-cost, high-reliability, long-life fuel reformer at a low cost, its industrial value is extremely large.

Description

明 細 書 燃料改質器およびその製造方法 技術分野
本発明は、 燃料改質器およびその製造方法に関し、 さ らに詳し く は炭化水素系燃料を水素リ ツ チなガスに改質するための燃料改 質器およびその製造方法に関する。 背景技術
炭化水素系燃料、 例えばメ タ ン と水蒸気の混合ガス [例えば、 スチーム Z炭素 (モル比) = 2 . 5程度] を改質器に供給して水 蒸気改質して水素リ ツ チなガスに改質する (吸熱反応) 場合、 改 質器の運転温度はおよそ 7 0 0 °C (改質触媒層の出口温度) であ るが、 改質器の加熱部近傍においては、 改質器を構成する材料の 表面温度はおよそ 1 0 0 0 以上になっている こ とが推測され 高温下で、 低酸素濃度および または高水蒸気濃度の雰囲気 置かれると、 改質器を構成する鉄鋼材料の表面が水蒸気酸化され て、 表面に粗で多孔質の脆い鉄酸化物層 ( F e a 0 a が主体と考 えられる) (以下、 赤ス ケールと称す) が形成され、 そして赤ス ケールは下地内部までどんどん進行する傾向がある と ともに、 下 地から剝がれ易い性質があり、 赤スケールが下地から剝離する と さ らに鉄鋼材料の腐食が進行する という問題があつ た。 鉄鋼材料 の肉厚を厚くする と、 腐食による材料の破壊は軽減できるものの 、 重量が増加し、 加工し難 く な り、 コ ス ト高になる問題があつ た。
従来の燃料改質器は、 C r : 2 0質量%、 N i : 1 8質量%以 上の耐熱合金 ( S U S 3 1 0 Sなど) または超合金 ( I n c o 1 o y 8 0 0など) が使用されていたが、 超合金を用いた改質器で あつても例えば加熱部を含む燃焼ガス流路側表面には赤スケール が発生する問題があった。
C 0. l w t %以下、 C r l 7〜 2 3 w t %、 N i 8〜 2 9 w t %、 N b O . 1〜 0. 4 w t %を含有し、 T i 、 Z r の内が ら選んだ 1種または 2種 0. 0 5〜 0. 3 w t %を含有し、 さ ら に、 N 0. 0 2〜 0. 0 5 w t %、 B 0. 0 0 3〜 0. O l w t %、 を含有し、 残部 F eおよび不可避不純物からなる燃料改質 器材料が提案されている (特開平 5 — 3 3 9 6 7 9号公報) が、 赤スケールの発生については考慮されていなかった。
本発明の目的は、 従来の問題を解決し、 高温下で低酸素濃度お よび/または高水蒸気濃度の雰囲気に置かれても、 改質器を構成 する鉄鋼材料の表面が水蒸気酸化されて赤スケールが発生する こ とがな く、 軽量で、 コ ス トがかからず安価で、 信頼性が高く 、 長 寿命の燃料改質器を提供するこ とである。 発明の開示
上記課題を解決するため請求項 1 の燃料改質器は、 炭化水素系 燃料を水素リ ッ チなガスに改質するための燃料改質器であって、 その改質器を構成する鉄鋼材料の表面の少な く とも一部に、 C r 酸化物層が形成されている こ とを特徴とするものである。
請求項 2の燃料改質器は、 請求項 1記載の燃料改質器において 、 前記 C r酸化物層が、 燃料の燃焼ガス流路側表面に形成されて いる こ とを特徴とする。
請求項 3 の燃料改質器は、 請求項 1 記載の燃料改質器におい て、 前記 C r酸化物層が、 改質器へ改質用原燃料と水蒸気の混合 ガスを供給する燃料供給部から改質触媒充塡部までの混合ガス流 路表面に形成されているこ とを特徴とする。
請求項 4 の燃料改質器は、 請求項 1 記載の燃料改質器におい て、 前記 C r酸化物層が、 改質器の燃焼ガス流路側表面に形成さ れていると と もに、 改質器へ改質用原燃料と水蒸気の混合ガスを 供給する燃料供給部から改質触媒充塡部までの混合ガス流路表面 に形成されている こ とを特徴とする。
請求項 5の燃料改質器は、 請求項 1 から請求項 4のいずれかに 記載の燃料改質器において、 前記 C r酸化物層の平均厚さが 5〜 1 0 0 〃 mである こ とを特徴とする。
請求項 6の燃料改質器は、 請求項 1 から請求項 5のいずれかに 記載の燃料改質器において、 改質器を構成する'鉄鋼材料の表面に 母材の C r濃度よ り高い C r濃度を有する薄膜を形成した後、 熱 処理して形成された C r酸化物層が形成されている こ とを特徴と する。
請求項 7は、 原料鉄鋼材料を、 6 0 0〜 1 0 0 0 °Cの酸化雰囲 気中で熱処理するこ とによ り、 前記原料鉄鋼材料の表面に C r酸 化物層を形成し、 この C r酸化物層が形成された原料鉄鋼材料を 用いて改質器を製造するこ とを特徴とする燃料改質器の製造方法 である。
請求項 8は、 原料鉄鋼材料を用いて製造された燃料改質器を、 6 0 0〜 1 0 0 0 °Cの酸化雰囲気中で熱処理する こ とによ り、 前 記原料鉄鋼材料の表面に C r酸化物層を形成する こ とを特徴とす る燃料改質器の製造方法である。
請求項 9は、 原料鉄鋼材料の表面に母材の C r濃度より高い C r濃度を有する薄膜を形成した後、 3 5 0〜 6 5 0 °Cの酸化雰囲 気中で熱処理するこ とによ り、 前記原料鉄鋼材料の表面に C r酸 化物層を形成し、 この C r酸化物層が形成された原料鉄鋼材料を 用いて改質器を製造するこ とを特徴とする燃料改質器の製造方法 である。
請求項 1 0 は、 原料鉄鋼材料の表面に母材の C r濃度よ り高い C r濃度を有する薄膜を形成した後、 この原料鉄鋼材料を用いて 製造された燃料改質器を、 3 5 0〜 6 5 0 °Cの酸化雰囲気中で熱 処理するこ とによ り、 前記原料鉄鋼材料の表面に C r酸化物層を 形成するこ とを特徴とする燃料改質器の製造方法である。 以下、 本発明の実施の形態を詳細に説明する。
本発明の請求項 1 に係わる燃料改質器によれば、 燃料改質器を 構成する鉄鋼材料の表面の少な く とも一部に C r酸化物層が形成 されている。 この C r酸化物層は具体的には F e 0 · C r 2 0 3 または C r 2 0 3 を主とした C r のスピネル酸化物層であ り、 緻 密で下地の鉄鋼材料との密着性に優れ、 格子欠陥が少な く 金属ィ オンおよび酸素イ オンの拡散を著し く 減少させ、 水蒸気酸化を防 止する こ とができ る。 し たがって、 赤ス ケールの発生が抑制さ れ、 耐熱性が向上し、 これによ り燃料改質器の寿命、 信頼性が向 上する。
前記 C r酸化物層はその平均厚さが 5〜 1 0 0 z mの範囲にあ るこ とが好ま しい。 平均厚さが 5〜 1 0 0 111でぁる 0 1~酸化物 層は下地の鉄鋼材料の表面に密着性がよ く緻密で耐水蒸気酸化性 に優れている。 5 m未満である と部分的に C r酸化物層が欠損 する箇所が発生し、 均一で緻密な C r酸化物層が形成されない恐 れがあり、 1 00 mを超えると C r酸化物層を形成するための 時間がかかり不経済となる。
請求項 6に係わる燃料改質器によれば、 改質器を構成する鉄鋼 材料の表面にク 口マイ ジ ングゃク ロ ム メ ッ キなどの方法によって 母材の C r濃度よ り高い C r濃度を有する薄膜 (ク ロ ム合金の薄 膜、 ク ロ ム の薄膜など。 平均厚さ約 l〜 1 00 zm程度) を事前 に形成した後、 熱処理して C r酸化物層が形成される。 こ のよ う にすると、 熱処理温度を低く する こ とができ るので手間がかから ずエネルギー量を低減でき省エネルギーとなる上、 熱処理によ り 形成された C r酸化物層が緻密になる。 また、 改質器を構成する 鉄鋼材料の表面に母材の C r濃度よ り高い C r濃度を有する薄膜 を事前に形成する ので、 母材の C r濃度が低く ても、 表面に緻密 な C r酸化物層を短時間に形成できる。
本発明の請求項 7に係わる燃料改質器によれば、 原料鉄鋼材料 を 600〜 1 00 0 °Cの酸化雰囲気中で熱処理する こ とによ り 、 前記原料鉄鋼材料の表面に C r酸化物層を形成し、 こ の C r酸化 物層が形成された原料鉄鋼材料を用いて燃料改質器を製造する。 上記のように原料鉄鋼材料を 600〜 1 0 00 °Cの酸化雰囲気 中で、 好まし く は 3 0分〜 1 0時間熱処理する こ とによ り、 原料 鉄鋼材料の表面に F e 0 · C r 2 03 または C r 2 03 を主と し た C rのス ピネル酸化物層を形成する こ とができる。
従って、 原料鉄鋼材料の表面に前記 C r酸化物層を形成した後 、 その鉄鋼材料を用いて組み立てたり、 溶接したり して燃料改質 器を製造する こ とができ る。
なお、 原料鉄鋼材料を熱処理する温度は、 8 0 0 °C未満では C r酸化物層が形成されない恐れがあり、 また 1 0 0 0 °Cを超える 熱処理を行うためには高価なヒータが必要とな り またヒータに投 入するエネルギー量も増大し、 不経済であるので、 6 0 0 °C ~ 1 0 0 0 °Cの範囲とするこ とが好ましい。 また、 熱処理の時間が 3 0分未満では均一で緻密な C r酸化物層が形成されない恐れがあ り、 1 0時間を超える と熱処理のための投入エ ネルギー量が増大 し、 不経済となる。 従って、 熱処理の時間は 3 0分間〜 1 0時間 の範囲とする こ とが好ましい。
また、 請求項 8に係わる燃料改質器によれば、 原料鉄鋼材料を 用いて製造された燃料改質器自体を 6 0 0〜 1 0 0 0 °Cの酸化雰 囲気中で熱処理する こ と によ り原料鉄鋼材料の表面に C r酸化物 層を形成している。 こ のよ う に燃料改質器自体を 6 0 0〜 : 1 0 0 0 °Cの酸化雰囲気中で、 好まし く は 3 0分〜 1 0時間熱処理する こ とによつても、 原料鉄鋼材料の表面に F e 0 · C r a 0 3 また は C r 2 O 3 を主と した C r のス ピネル酸化物層を形成する こ と ができ る。
従って、 本請求項に係わる発明によっても寿命、 信頼性が向上 した燃料改質器を製造する こ とができる。
請求項 9に係わる燃料改質器によれば、 原料鉄鋼材料の表面に ク ロマイ ジ ングゃク ロ ム メ ツ キなどの方法によって母材の C r濃 度よ り高い C r濃度を有する薄膜 (ク ロ ム合金の薄膜、 ク ロ ム の 薄膜など。 平均厚さ約 1〜 1 0 0 m程度) を形成した後、 3 5 0〜 6 5 0。Cの酸化雰囲気中で熱処理する こ と によ り、 C r酸化 物層を形成し、 こ の C r酸化物層が形成された原料鉄鋼材料を用 いて改質器を製造する。 350〜650 °Cの酸化雰囲気中で熱処 理するので手間がかからずエネルギー量を低減でき省エネルギ一 となる上、 熱処理によ り形成された C r酸化物層が緻密になる。 また、 改質器を構成する鉄鋼材料の表面に母材の C r濃度よ り高 い C r濃度を有する薄膜を事前に形成するので、 母材の C r濃度 が低く ても、 表面に緻密な C r酸化物層を短時間に形成でき る。 原料鉄鋼材料の表面に母材の C r濃度より高い C r濃度を有す る薄膜を形成した後、 350〜650 °Cの酸化雰囲気中で熱処理 して C r酸化物層を形成し、 その鉄鋼材料を用いて組み立てた り、 溶接したり して燃料改質器を製造するこ とができ る。 処理温 度は 350〜 650 °Cであり、 350 °C未満では C r酸化物層が 形成されない恐れがあり、 また 650 °Cを超える とエネルギー量 も増大し、 効果の割り には不経済,となる。
請求項 1 0に係わる燃料改質器によれば、 原料鉄鋼材料の表面 に母材の C r濃度よ り高い C r濃度を有する薄膜 (ク ロ ム合金の 薄膜、 ク ロ ムの薄膜など。 平均厚さ約 l ~ 1 00 /z m程度) を形 成した後、 こ の原料鉄鋼材料を用いて製造された燃料改質器を、 350〜650°Cの酸化雰囲気中で熱処理する こ とにより、 前記 原料鉄鋼材料の表面に C r酸化物層を形成する。 350〜650 °Cの酸化雰囲気中で熱処理するので手間がかからずエ ネルギー量 を低減でき省エネルギーとなる上、 熱処理.によ り形成された C r 酸化物層が緻密になる。 また、 改質器を構成する鉄鋼材料の表面 に母材の C r濃度よ り高い C r濃度を有する薄膜を事前に形成す るので、 母材の C r濃度が低く ても、 表面に緻密な C r酸化物層 を短時間に形成でき る。 処理温度は 350〜 6 50でであ り、 3 50 °C未満では C r酸化物層が形成されない恐れがあ り、 また 6 5 0。Cを超えるとエ ネルギー量も増大し、 効果の割りには不経済 となる。
本請求項に係わる発明によっても寿命、 信頼性が向上した燃料 改質器を製造することができる。 図面の簡単な説明 ,
図 1 は、 本発明の燃料改質器の一実施例の断面説明図である。 図 2は、 本発明の他の燃料改質器の.断面説明図である。 図 3は、 本発明の他の燃料改質器の断面説明図である。 発明を実施するための最良な形態
以下、 本発明の実施の形態を図面により説明する。
図 1 は本発明の燃料改質器の一実施例の断面説明図である。 図 1 において、 本発明の燃料改質器 1 Aは、 改質管外筒 2、 改 質管内筒 3、 改質管内筒上扳 4、 改質管外筒上板 5、 この改質管 外筒上板 5に設けられた原燃料入口 6、 改質ガス出口 7などを備 えるとともに、 その中央に設けられた中空部に加熱するための燃 焼ガスを導入する加熱部 8を備えた改質管 9 と、 改質管 9の内部 に装着された触媒管 1 0 と、 改質管内筒 3 と触媒管 1. 0との間に 充塡されるとともに改質管内筒上板 4の上にも配設された改質触 媒 1 1 (例えば、 アル ミ ナに担持した N i 、 ルテニ ウ ム触媒など ) と、 改質管 9の外部に燃焼排ガスを接触させて導いた後、 燃焼 排ガス出口 1 2から外部に排出する燃焼排ガス管 1 3 と、 加熱部 8内に燃焼ガスを導入するために延在して挿入された燃焼ガス管 1 4と、 燃焼ガス管 1 4下部に設けられたガス燃料を燃焼させる パーナ 1 5などを備えている。 図 1 において、 パーナ 1 5へガス燃料と空気を導入してガス燃 料を燃焼させ、 燃焼ガスを破線矢印で示したように燃焼ガス管 1 4を経て加熱部 8へ導いて改質触媒 1 1 を加熱した後、 燃焼排ガ スは改質管外筒 2 と燃焼排ガス管 1 3 の間を通って燃焼排ガス出 口 1 2から排出される。 一方、 原燃料入口 6から炭化水素系燃料 、 例えば、 メ タ ンを水蒸気と ともに矢印で示したように燃料改質 器 1 A内に導入して加熱された改質触媒 1 1 に接触させて改質す る。 燃料改質器 1 Aの運転温度はおよそ 7 0 0 °C (改質触媒 1 1 の出口温度) に制御されて運転される。 生成した改質ガス (ス チ ーム /炭素 (モル比) = 2 . 5程度の原料を改質すると、 水素約 7 5 % , 一酸化炭素約 1 0数%、 二酸化炭素約 1 0数%程度、 残 部メ タ ン ガスを含有する改質ガスが得られる) は矢印で示したよ うに改質管外筒 2 と触媒管 1 0 と の間を通って改質ガス出口 7か ら排出される。
図 1 において、 燃料改質器 1 Aは、 原料鉄鋼材料を 6 0 0 ^ 1 0 0 0 °Cの酸化雰囲気中で 3 0分〜 1 0時間熱処理するこ と に よ り、 燃料改質器 1 Aを構成する燃焼ガス管 1 4、 燃焼排ガス管 1 3、 燃焼排ガス出口 1 2、 改質管外筒 2、 改質管内筒 3、 改質管 内筒上板 4などの太線で示した箇所の燃焼ガスが接触して流れる 側のこれらを構成する鉄鋼材料の表面に、 C r酸化物層が形成さ れている。
燃料改質器 1 Aの加熱部 8を含む前記太線で示した箇所の燃焼 ガスが接触して流れる側は、 高温でかつ低酸素濃度で水蒸気酸化 の発生し易い雰囲気にあるが、 これら の燃焼ガス流路側表面に前 記 C r酸化物層が予め形成されている こ とによ り、 表面での水蒸 気酸化が防止され赤スケールの発生が防止され、 耐熱性が向上す る。 これにより改質器の寿命、 信頼性が向上する。
図 2は本発明の他の燃料改質器の断面説明図である。
図 2において、 本発明の燃料改質器 1 Bは、 太線で示した改質 管外筒上扳 5、 原燃料入口 6、 触媒管 1 0 の上方の一部など、 す なわち改質用原燃料と水蒸気の混合ガスを供給する燃料供給部か ら改質触媒 1 1 の充塡部までの、 混合ガスが流れて接触する流路 の表面に前記 C r酸化物層が予め形成されている こ と以外は、 図 1 に示した燃料改質器 1 Aと同様になつている。
燃料改質器 1 Bへ混合ガスを供給する燃料供給部から改質触媒 1 1 の充塡部までの混合ガス流路は、 高温でかつ高水蒸気濃度で 水蒸気酸化の発生し易い雰囲気にあるが、 この混合ガス流路表面 に前記 C r酸化物層が形成されている こ と によ り表面での水蒸気 酸化が防止され赤ス ケールの発生が防止され、 耐熱性が向上す る。 これによ り改質器の寿命、 信頼性が向上する。
図 3は本発明の他の燃料改質器の断面説明図である。
図 3において、 本発明の燃料改質器 1 Cを構成する燃焼ガス管 1 4、 燃焼排ガス管 1 3、 燃焼排ガス出口 1 2、 改質管外筒 2、 改質管内筒 3、 改質管内筒上扳 4などの太線で示した箇所の燃焼 ガスが接触して流れる側のこれらを構成する鉄鋼材料の表面に C r酸化物層が形成されている と ともに、 太線で示した改質管外筒 上板 5、 原燃料入口 6、 触媒管 1 0の上方の一部など、 改質用原 燃料と水蒸気の混合ガスを供給する燃料供給部から改質触媒 1 1 の充塡部までの混合ガス流路表面に前記 C r酸化物層が形成され ているこ と以外は、 図 1 や図 2に示した燃料改質器 1 A、 I B と 同様になつている。
燃料改質器 1 Cの加熱部 8を含む燃焼ガス流路側は、 高温でか つ低酸素濃度で水蒸気酸化の発生し易い雰囲気にあり、 また燃料 改質器 1 Cへ混合ガスを供給する燃料供給部から改質触媒 1 1の 充塡部までの混合ガス流路は、 高温でかつ高水蒸気濃度で水蒸気 酸化の発生し易い雰囲気にあるので、 この燃焼ガス流路側表面お よび前記混合ガス流路表面に前記 C r酸化物層が形成されている こ とによ り両表面での水蒸気酸化が防止され赤スケールの発生が 防止され、 耐熱性が向上する。 これによ り改質器の寿命、 信頼性 が向上する。
上記実施例の説明は、 本発明を説明するためのものであって、 特許請求の範囲に記載の発明を限定し、 或は範囲を減縮するもの ではない。 又、 本発明の各部構成は上記実施例に限らず、 特許請 求の範囲に記載の技術的範囲内で種々の変形が可能である。
すなわち、 本発明の燃料改質器は図 1〜図 3に記載の型式の燃 料改質器に限定されず、 例えば、 多管式燃料改質器、 平板式燃料 改質器などであってもよ く、 他の例としては具体的には、 特許第 270383 1号公報の図 1、 図 3に記載の改質器、 特開平 6— 1 3096号公報の図 2〜図 8に記載の改質器、 特開平 6— 5 6 40 1号公報の図 1〜図 3に記載の改質器、 特開平 7— 1 09 1 0 5号公報の図 1、 図 4、 図 7に記載の改質器、 特開平 7— 2 2 3 80 1号公報の図 1、 図 3に記載の改質器、 特開平 7— 33 5 238号公報の図 1に記載の改質器、 特開平 9— 24 1 0 02号 公報の図 1、 図 3に記載の改質器、 特開平 9— 3 06553号公 報の図 1に記載の改質器、 特開平 1 0— 1 253 42号公報の図 1 ~図 4に記載の改質器などを挙げるこ とができる。
本発明の請求項 1の燃料改質器は、 従来のように改質器の肉厚 を厚くするこ とな く、 改質器を構成する鉄鋼材料の表面の少な く とも一部に C r酸化物層が予め形成されている こ とによ り、 高温 下で低酸素濃度および/または高水蒸気濃度の雰囲気に置かれて も、 改質器を構成する鉄鋼材料の表面が水蒸気酸化されて赤スケ ールが発生する こ とがな く、 耐熱性が高く、 軽量で、 コ ス トがか からず安価で、 信頼性が高く、 長寿命であるという顕著な効果を 奏する。
本発明の請求項 2 の燃料改質器は、 高温でかつ低酸素濃度で水 蒸気酸化の発生し易い雰囲気にある燃焼ガス流路側表面に前記 C r酸化物層が予め形成されているので、 こ の表面での水蒸気酸化 が防止され、 赤スケールめ発生が防止され、 耐熱性が向上し、 軽 量で、 コ ス トがかからず安価で、 信頼性が高く 、 長寿命である と いう顕著な効果を奏する。
本発明の請求項 3の燃料改質器は、 高温でかつ高水蒸気濃度で 水蒸気酸化の発生し易い雰囲気にある、 混合ガスを供給する燃料 供給部から改質触媒の充塡部までの混合ガス流路表面に前記 C r 酸化物層が予め形成されているので、 こ の表面での水蒸気酸化が 防止され赤スケールの発生が防止され、 耐熱性が向上し、 軽量で 、 コ ス トがかからず安価で、 信頼性が高く 、 長寿命である という 顕著な効果を奏する。
本発明の請求項 4 の燃料改質器は、 高温でかつ低酸素濃度で水 蒸気酸化の発生し易い雰囲気にある燃焼ガス流路側表面および、 高温でかつ高水蒸気濃度で水蒸気酸化の発生し易い雰囲気にある 、 混合ガスを供給する燃料供給部から改質触媒の充填部までの混 合ガス流路表面にいずれも前記 C r酸化物層が予め形成されてい るので、 これらの表面での水蒸気酸化が防止され赤スケールの発 生が防止され、 耐熱性が向上し、 軽量で、 コ ス ト がかからず安価 で、 信頼性が高く 、 長寿命であるという顕著な効果を奏する。 本発明の請求項 5 の燃料改質器は、 前記 C r酸化物層の平均厚 さが 5〜 1 0 0 mであ るので、 こ の C r酸化物層は下地の鉄鋼 材料の表面に密着性がよ く 緻密で耐水蒸気酸化性に優れている と いう顕著な効果を奏する。
本発明の請求項 6 の燃料改質器は、 改質器を構成する鉄鋼材料 の表面にク ロマイ ジ ングゃク ロ ム メ ツ キなどの方法によって母材 の C r濃度よ り高い C r濃度を有する薄膜を事前に形成した後、 熱処理して C r酸化物層が形成されるので、 熱処理温度を低 ぐす るこ とができ、 手間がかからずエネルギー量を低減でき省エネル ギ一となる上、 熱処理によ り形成された C r酸化物層が緻密にな り、 また、 改質器を構成する鉄鋼材料の表面に母材の C r濃度よ り高い C r濃度を有する薄膜を事前に形成するので、 母材の C r 濃度が低く ても、 表面に緻密な C r酸化物層を短時間に形成でき る という顕著な効果を奏する。
本発明の請求項 7 の製造方法によ り、 本発明の燃料改質器を製 造する前の原料鉄鋼材料の表面に前記 C r酸化物層を容易に形成 するこ とができ、 原料鉄鋼材料の表面に前記 C r酸化物層を形成 した後、 それを用いて組み立てたり、 溶接した り して本発明の燃 料改質器を容易に製造する こ とがで き る という顕著な効果を奏す る。
本発明の請求項 8 の製造方法によ り、 前記 C r酸化物層が形成 されていない原料鉄鋼材料から構成される燃料改質器を処理して 、 原料鉄鋼材料の表面に前記 C r酸化物層を形成して本発明の燃 料改質器を容易に製造するこ とができ る という顕著な効果を奏す る。 本発明の請求項 9の製造方法によ り、 原料鉄鋼材料の表面に母 材の C r濃度よ り高い C r濃度を有する薄膜を形成した後、 3 5 0〜 6 5 0 °Cの酸化雰囲気中で熱処理する こ とによ り、 C r酸化 物層を形成し、 この C r酸化物層が形成された原料鉄鋼材料を用 いて改質器を製造するので、 手間がかからずエネルギー量を低減 でき省エネルギーとなる上、 熱処理によ り形成された C r酸化物 層が緻密になり、 また、 改質器を構成する鉄鋼材料の表面に母材 の C r 濃度よ り高い C r 濃度を有する薄膜を事前に形成するの で、 母材の C r濃度が低く ても、 表面に緻密な C r酸化物層を短 時間に形成でき る という顕著な効果を奏する。
本発明の請求項 1 0 の製造方法によ り、 原料鉄鋼材料の表面に 母材の C r濃度よ り高い C r濃度を有する薄膜を形成した後、 こ の原料鉄鋼材料を用いて製造された燃料改質器を、 3 5 0〜 6 5 0 °Cの酸化雰囲気中で熱処理する こ とによ り、 前記原料鉄鋼材料 の表面に C r酸化物層を形成するので手間がかからずエネルギー 量を低減でき省ヱネルギ一となる上、 熱処理によ り形成された C r酸化物層が緻密になり、 また、 改質器'を構成する鉄鋼材料の表 面に母材の C r濃度よ り高い C r濃度を有する薄膜を事前に形成 するので、 母材の C r濃度が低く ても、 表面に緻密な C r酸化物 層を短時間に形成できるという顕著な効果を奏する。 産業上の利用可能性
本発明は、 炭化水素系燃料を水素リ ッ チなガスに改質するため の燃料改質器およびその製造方法に関するものであ り、 本発明の 燃料改質器は高温下で低酸素濃度および Zまたは高水蒸気濃度の 雰囲気に置かれても、 改質器を構成する鉄鋼材料の表面が水蒸気 酸化されて赤スケールが発生するこ とがな く 、 耐熱性が高 く 、 軽 量で、 コ ス トがかからず安価で、 信頼性が高く、 長寿命であ り、 そして本発明の製造方法によ り安価で、 信頼性が高く 、 長寿命の 燃料改質器を低コ ス ト で容易に製造できるので、 その産業上の利 用価値は甚だ大きい。

Claims

請求の範囲
1 . 炭化水素系燃料を水素リ ッ チなガスに改質するための燃料改 質器であって、 その改質器を構成する鉄鋼材料の表面の少な く と も一部に、 C r酸化物層が形成されている こ とを特徴とする燃料 改質器。
2 . 前記 C r酸化物層が、 燃料の燃焼ガス流路側表面に形成され ているこ とを特徴とする請求項 1記載の燃料改質器。
3 . 前記 C r酸化物層が、 改質器へ改質用原燃料と水蒸気の混合 ガスを供給する燃料供給部から改質触媒充塡部までの混合ガス流 路表面に形成されているこ とを特徴とする請求項 1記載の燃料改 . 前記 C r酸化物層が、 改質器の燃焼ガス流路側表面に形成さ れていると ともに、 改質器へ改質用原燃料と水蒸気の混合ガスを 供給する燃料供給部から改質触媒充塡部までの混合ガス流路表面 に形成されているこ とを特徴とする請求項 1記載の燃料改質器。 5 . 前記 C r酸化物層の平均厚さが 5〜 1 0 0 w mである こ とを 特徴とする請求項 1 から請求項 4 のいずれかに記載の燃料改質
6 . 改質器を構成する鉄鋼材料の表面に母材の C r濃度よ り高い C r濃度を有する薄膜を形成した後、 熱処理して形成された C r 酸化物層が形成されている こ とを特徴とする請求項 1 から請求項 5 のいずれかに記載の燃料改質器。
7 . 原料鉄鋼材料を、 6 0 0〜 1 0 0 0 °Cの酸化雰囲気中で熱処 理するこ と によ り、 前記原料鉄鋼材料の表面に C r酸化物層を形 成し、 こ の C r酸化物層が形成された原料鉄鋼材料を用いて改質 器を製造する こ とを特徴とする燃料改質器の製造方法。
8. 原料鉄鋼材料を用いて製造された燃料改質器を、 600〜 1 000 °Cの酸化雰囲気中で熱処理するこ と によ り、 前記原料鉄鋼 材料の表面に C r酸化物層を形成するこ とを特徴とする燃料改質 器の製造方法。
9. 原料鉄鋼材料の表面に母材の C r濃度よ り高い C r濃度を有 する薄膜を形成した後、 350〜650 °Cの酸化雰囲気中で熱処 理する こ とによ り、 前記原料鉄鋼材料の表面に C r酸化物層を形 成し、 この C r酸化物層が形成された原料鉄鋼材料を用いて改質 器を製造する こ とを特徴とする燃料改質器の製造方法。
1 0. 原料鉄鋼材料の表面に母材の C r濃度よ り高い C r濃度を 有する薄膜を形成した後、 こ の原料鉄鋼材料を用いて製造された 燃料改質器を、 350〜650°Cの酸化雰囲気中で熱処理する こ とによ り、 前記原料鉄鋼材料の表面に C r酸化物層を形成する こ とを特徴とする燃料改質器の製造方法。
PCT/JP2001/005528 2000-06-28 2001-06-27 Reacteur de reformage de combustible et son procede de production WO2002000546A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/069,912 US6936567B2 (en) 2000-06-28 2001-06-27 Fuel reformer and manufacturing method of the same
AU67846/01A AU6784601A (en) 2000-06-28 2001-06-27 Fuel reforming reactor and method for manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000194265 2000-06-28
JP2000-194265 2000-06-28

Publications (1)

Publication Number Publication Date
WO2002000546A1 true WO2002000546A1 (fr) 2002-01-03

Family

ID=18693122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005528 WO2002000546A1 (fr) 2000-06-28 2001-06-27 Reacteur de reformage de combustible et son procede de production

Country Status (3)

Country Link
US (1) US6936567B2 (ja)
AU (1) AU6784601A (ja)
WO (1) WO2002000546A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272211A (ja) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd 燃料改質器
WO2011039468A1 (fr) 2009-09-30 2011-04-07 Valeo Equipements Electriques Moteur Agencement de redressement de courant pour machine electrique tournante, notamment alternateur pour vehicule automobile, et machine electrique tournante comportant un tel agencement
WO2011039480A2 (fr) 2009-09-30 2011-04-07 Valeo Equipements Electriques Moteur Machine electrique tournante polyphasee a capot de protection, notamment alternateur pour vehicule automobile

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7165393B2 (en) * 2001-12-03 2007-01-23 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines
US7082753B2 (en) * 2001-12-03 2006-08-01 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines using pulsed fuel flow
EP1563169A1 (en) * 2002-11-15 2005-08-17 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
DE602004031845D1 (de) * 2003-06-10 2011-04-28 Sumitomo Metal Ind Ng
US8006484B2 (en) * 2005-02-14 2011-08-30 Eaton Corporation Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass
JP5428103B2 (ja) * 2007-02-21 2014-02-26 国立大学法人 大分大学 低温水素製造用触媒及びその製造方法と水素製造方法
WO2009036386A1 (en) * 2007-09-13 2009-03-19 Chellappa Anand S A method and apparatus for reformation of fuels at low temperatures
US20170069917A1 (en) * 2015-09-08 2017-03-09 Institute Of Nuclear Energy Research, Atomic Energy Council, Executive Yuan Growing method of layers for protecting metal interconnects of solid oxide fuel cells
JP6624017B2 (ja) * 2016-11-10 2019-12-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
DK180247B1 (en) 2018-11-20 2020-09-14 Blue World Technologies Holding ApS Fuel cell system, its use and method of its operation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066696A (en) * 1979-12-13 1981-07-15 Toyo Engineering Corp Apparatus for high- temperature treatment of hydrocarbon-containing materials
JPS5743989A (en) * 1980-08-28 1982-03-12 Sumitomo Metal Ind Ltd Carburizing preventing method for heat resistant steel
JPS59140392A (ja) * 1983-01-31 1984-08-11 Nippon Steel Corp ステンレス薄板の製造法
WO1992015653A1 (en) * 1991-03-08 1992-09-17 Chevron Research And Technology Company Low-sulfur reforming processes
WO1995018849A1 (en) * 1994-01-04 1995-07-13 Chevron Chemical Company Cracking processes
JP2000169103A (ja) * 1998-12-09 2000-06-20 Mitsubishi Materials Corp 改質器およびその改質反応部品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923696A (en) * 1973-08-22 1975-12-02 Int Nickel Co Catalyst structure
GB1471138A (en) * 1974-05-06 1977-04-21 Atomic Energy Authority Uk Supports for catalyst materials
FR2507920B1 (fr) * 1981-06-22 1986-05-16 Rhone Poulenc Spec Chim Support de catalyseur, notamment de catalyseur de post-combustion et procede de fabrication de ce support
NL8204477A (nl) * 1982-11-18 1984-06-18 Bekaert Sa Nv Katalysator, alsmede werkwijze ter vervaardiging van deze katalysator en haar toepassing.
DE3663652D1 (en) * 1985-03-05 1989-07-06 Ici Plc Steam reforming hydrocarbons
US4752599A (en) * 1986-03-31 1988-06-21 Nippon Steel Corporation Method for producing a base of a catalyst carrier for automobile exhaust gas-purification
JP2703831B2 (ja) 1991-03-27 1998-01-26 東京瓦斯株式会社 燃料改質器
JPH0613096A (ja) 1992-06-25 1994-01-21 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置における改質方法及び装置
JPH0656401A (ja) 1992-08-05 1994-03-01 Hitachi Ltd 燃料改質器
JP3202442B2 (ja) 1993-10-08 2001-08-27 東京瓦斯株式会社 水素製造装置
US5362454A (en) * 1993-06-28 1994-11-08 The M. W. Kellogg Company High temperature heat exchanger
JPH07223801A (ja) 1994-02-16 1995-08-22 Fuji Electric Co Ltd 燃料改質器
JP3440551B2 (ja) 1994-06-09 2003-08-25 三菱電機株式会社 燃料改質装置及び燃料改質装置の運転方法
JPH09241002A (ja) 1996-03-11 1997-09-16 Fuji Electric Co Ltd 燃料電池発電装置の燃料改質器
JPH09306553A (ja) 1996-05-08 1997-11-28 Kagaku Gijutsu Shinko Jigyodan 光電変換型二次電池
US5851948A (en) * 1996-08-20 1998-12-22 Hydrocarbon Technologies, Inc. Supported catalyst and process for catalytic oxidation of volatile organic compounds
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
JP3842352B2 (ja) 1996-10-17 2006-11-08 株式会社東芝 燃料改質器
US6139810A (en) * 1998-06-03 2000-10-31 Praxair Technology, Inc. Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2066696A (en) * 1979-12-13 1981-07-15 Toyo Engineering Corp Apparatus for high- temperature treatment of hydrocarbon-containing materials
JPS5743989A (en) * 1980-08-28 1982-03-12 Sumitomo Metal Ind Ltd Carburizing preventing method for heat resistant steel
JPS59140392A (ja) * 1983-01-31 1984-08-11 Nippon Steel Corp ステンレス薄板の製造法
WO1992015653A1 (en) * 1991-03-08 1992-09-17 Chevron Research And Technology Company Low-sulfur reforming processes
WO1995018849A1 (en) * 1994-01-04 1995-07-13 Chevron Chemical Company Cracking processes
JP2000169103A (ja) * 1998-12-09 2000-06-20 Mitsubishi Materials Corp 改質器およびその改質反応部品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272211A (ja) * 2004-03-25 2005-10-06 Aisin Seiki Co Ltd 燃料改質器
JP4527426B2 (ja) * 2004-03-25 2010-08-18 アイシン精機株式会社 燃料改質器
WO2011039468A1 (fr) 2009-09-30 2011-04-07 Valeo Equipements Electriques Moteur Agencement de redressement de courant pour machine electrique tournante, notamment alternateur pour vehicule automobile, et machine electrique tournante comportant un tel agencement
WO2011039480A2 (fr) 2009-09-30 2011-04-07 Valeo Equipements Electriques Moteur Machine electrique tournante polyphasee a capot de protection, notamment alternateur pour vehicule automobile

Also Published As

Publication number Publication date
US6936567B2 (en) 2005-08-30
US20020121461A1 (en) 2002-09-05
AU6784601A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
WO2002000546A1 (fr) Reacteur de reformage de combustible et son procede de production
JP5209320B2 (ja) 電気接点用のペロブスカイトまたはスピネルの表面被膜を形成するストリップ製品
US20140030632A1 (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
JP4123934B2 (ja) 燃料改質器
AU2008222848B2 (en) Method for reducing formation of electrically resistive layer on ferritic stainless steels
US20090253020A1 (en) Interconnector for a fuel cell stack and method for production
US4043945A (en) Method of producing thin layer methanation reaction catalyst
JP3910419B2 (ja) アルコール系燃料改質器用フェライト系ステンレス鋼
JP2001220106A (ja) 改質器
JP3886785B2 (ja) 石油系燃料改質器用フェライト系ステンレス鋼
JP2005002411A (ja) セパレータ用耐食金属クラッド材料及びその製造方法
JP2003160842A (ja) 炭化水素系燃料改質器用フェライト系ステンレス鋼
TWI246940B (en) Method for forming platinum coating catalyst layer in reaction furnace for generating water gas
JP3918443B2 (ja) 改質器用オーステナイト系合金ならびに耐熱用鋼材およびそれを用いた改質器
JP2012020888A (ja) 改質装置及びその製造方法
KR20020001561A (ko) 수소회수용 가스개질장치
JP6015238B2 (ja) 水素製造用触媒、その製造方法および水素製造方法
JP3886786B2 (ja) 石油系燃料改質器用オーステナイト系ステンレス鋼
JP5773514B2 (ja) 水素生成用ニッケルクロム合金触媒およびその製造方法
JP2000169103A (ja) 改質器およびその改質反応部品
JP3871858B2 (ja) 水素回収装置
JP2005166482A (ja) 固体酸化物形燃料電池用燃料ガス管および固体酸化物形燃料電池ならびにそのガス管使用方法
JP5761903B2 (ja) 優れた高温耐久性を有する燃料電池改質器用触媒コンバータ
JP2008074657A (ja) 低温における自己熱改質反応の起動方法
JP2000169104A (ja) 改質器およびその改質反応部品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10069912

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase