WO2002005357A1 - Led-modul, verfahren zu dessen herstellung und dessen verwendung - Google Patents

Led-modul, verfahren zu dessen herstellung und dessen verwendung Download PDF

Info

Publication number
WO2002005357A1
WO2002005357A1 PCT/DE2001/002565 DE0102565W WO0205357A1 WO 2002005357 A1 WO2002005357 A1 WO 2002005357A1 DE 0102565 W DE0102565 W DE 0102565W WO 0205357 A1 WO0205357 A1 WO 0205357A1
Authority
WO
WIPO (PCT)
Prior art keywords
led module
substrate
semiconductor components
module according
glass
Prior art date
Application number
PCT/DE2001/002565
Other languages
English (en)
French (fr)
Inventor
Bernhard Bachl
Günter KIRCHBERGER
Franz Schellhorn
Martin Weigert
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to EP01953900A priority Critical patent/EP1299910A1/de
Publication of WO2002005357A1 publication Critical patent/WO2002005357A1/de
Priority to US10/345,442 priority patent/US6860621B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/13Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to an LED module with a substrate, on the top of which one or more radiation-emitting semiconductor components are attached.
  • the invention further relates to a method for producing the LED module.
  • the invention relates to the use of the LED module.
  • Optoelectronic modules are known in which one or more radiation-emitting semiconductor components, for example light-emitting diodes or laser diodes, are attached to a substrate.
  • the substrate has only a very low thermal capacity and a high thermal resistance or poor thermal conductivity. The heat generated during the operation of the radiation-emitting semiconductor components can therefore be dissipated only poorly, as a result of which the semiconductor components heat up accordingly.
  • the known optoelectronic modules have the disadvantage that they can only be operated with a relatively low current of about 10-50 mA due to the heating. Therefore, the amount of light emitted by the known modules is very limited, making them, for example, poorly suited for coupling light into a light guide from the side. The known optoelectronic modules therefore do not have sufficient brightness.
  • the aim of the present invention is therefore to provide an LED module whose radiation-emitting semiconductor components can be operated with a high current.
  • the invention specifies an LED module with a good heat-conducting substrate, on the top of which one or more radiation-emitting semiconductor components are attached.
  • the underside of the substrate is fastened to a carrier body which has a high heat capacity.
  • the component fastening between the semiconductor components and the substrate like the substrate fastening between the substrate and the carrier body, is carried out with good thermal conductivity. This ensures that the heat generated in the semiconductor components during operation is dissipated essentially via the carrier body. Of course, this does not exclude that part of the heat can also be removed by radiation or convection.
  • a high heat capacity is to be understood in particular as the heat capacity of a metallic carrier.
  • carriers with high heat capacity are carriers based on semiconductors, for example carriers containing silicon or gallium arsenide, as well as ceramic carriers and metal-ceramic composite carriers. Such materials suitable for heat sinks are known per se and are not described further here.
  • the LED module according to the invention has the advantage that due to the good heat conduction between the radiation-emitting semiconductor components and the carrier body with high heat capacity, the heat generated during operation of the radiation-emitting semiconductor components is dissipated particularly well.
  • the radiation-emitting semiconductor components can be operated with a particularly high current of up to 500 mA, which results in a correspondingly large current Brightness of the radiation emitted by the LED module results.
  • the radiation-emitting semiconductor components can be, for example, vertically emitting light-emitting diodes or vertically emitting laser diodes.
  • Such diodes have the advantage that the radiation leaves the LED module perpendicular to the substrate without further measures, as a result of which the radiation emitted by the module can be coupled particularly easily into further components, for example light guides.
  • an LED module is particularly advantageous in which the carrier body is a metallic carrier, a contact pin electrically insulated from the carrier body being arranged in the carrier body.
  • a metallic carrier has the advantage that it has a particularly high thermal capacity and good thermal conductivity. As a result, the heat generated during the operation of the radiation-emitting semiconductor components can be dissipated particularly well. With the help of the electrically insulated contact pin, the metallic carrier is also suitable as a plug-in connection element for the electrical supply to the LED module.
  • the carrier body can have a TO design, which has the advantage that the commercially available, readily available TO designs can be used without the in-house development of a special carrier and without aftertreatment.
  • Such TO designs can also be installed particularly easily in common housings, so that the LED module according to the invention does not require any special adaptations to the existing housings.
  • an LED module is particularly advantageous in which the semiconductor components each have a first connection surface on their underside. This connection surface can be contacted via the component fastening with one contact surface arranged on the substrate, whereby one of the two necessary electrical contacts to the semiconductor component is produced.
  • the contact area arranged on the substrate can particularly advantageously have a free-standing contact area section, which is still accessible from the outside even when the semiconductor component is already attached to the contact area, so that, for example, a bonding wire can be attached there for further contacting.
  • a bonding wire can be attached there for further contacting.
  • an LED module in which the substrate consists of silicon is particularly advantageous.
  • Silicon is an easily and relatively inexpensively available material which has excellent heat conduction and is therefore very well suited for the purpose of the LED module according to the invention.
  • the top of the substrate is additionally at least partially covered by a glass body attached to the substrate.
  • This glass body has at least one recess exposing the substrate surface, in which the semiconductor components are arranged on the substrate surface.
  • the glass body arranged on the substrate has the advantage that, depending on requirements, it can be designed as a reflector for the light emitted by the semiconductor components or as a cavity for a sealing compound to be subsequently applied to the substrate. As a result, either the radiation characteristic or the shape of the potting compound or the lenses produced by the potting compound can be optimized.
  • a plurality of semiconductor components can be in one recess in the glass body or, if the glass body has several recesses, in each recess Semiconductor component can be arranged. From these possibilities, the person skilled in the art will select appropriately, depending on the requirements placed on the LED module, for example geometric dimensions or special radiation characteristics.
  • the shape of the glass body having depressions can be produced particularly advantageously by anisotropic, wet-chemical etching.
  • Such a wet chemical etching process has the advantage that it is very easy to control and that it provides particularly smooth side edges for the depressions.
  • Anodic bonding is an easy process that provides a mechanically particularly stable connection.
  • an LED module in which the glass body has two conductor surfaces insulated from one another is particularly advantageous.
  • the semiconductor components each have a second connection surface corresponding to the first connection surface on their upper side.
  • the first conductor surface on the top of the glass body is the second connection surface on the top of the
  • the arrangement according to the invention has the advantage that long bonding wires, which would have to bridge the glass body and would therefore easily tear off, in particular on sharp edges of the glass body, can be dispensed with on the upper side of the second connection surfaces arranged with the contact pin.
  • the LED module according to the invention can be designed particularly advantageously by the inner surfaces of the recesses in the glass body being shaped as reflectors, the reflector deflecting the radiation emitted by the semiconductor components arranged in the respective recess such that the radiation is emitted perpendicular to the substrate by the module ,
  • Such inner surfaces shaped as reflectors allow the use of laterally emitting light-emitting diodes or laterally emitting laser diodes as radiation-emitting semiconductor components.
  • the radiation characteristic for example the beam width, can be varied as desired within wide limits by suitable design of the inner surfaces or of the reflector.
  • the inner surfaces of the depressions in the glass body can be designed particularly advantageously as reflectors by being covered by a metal layer, for example a thin chrome layer.
  • a metal layer for example a thin chrome layer.
  • Such a chrome layer can be applied to the inner surfaces particularly easily by vapor deposition.
  • an LED module is particularly advantageous in which the upper side of the substrate is encapsulated with a covering that encloses the semiconductor components.
  • a cladding has the advantage that the semiconductor components and possibly also the bonding wires used for contacting are shielded from external influences.
  • the cladding In order for the radiation to be able to penetrate outward from the semiconductor components, the cladding must be transparent in the corresponding wavelength range. By appropriate shaping of the envelope it can be achieved that an additional lens effect for optimizing the radiation characteristics of the LED module is achieved.
  • This covering can be realized, for example, by casting the module with a resin (for example an epoxy resin). Instead, a glazed cap can also be welded onto the top of the substrate.
  • the space between the cap and the components can additionally be encapsulated, as a result of which the outcoupling of light from the semiconductor component is improved due to the reduced refractive index jump, firstly from the semiconductor to the resin and also from the resin to the air.
  • a higher component temperature can be set by dispensing with the potting with a resin, since in this case there is no longer any dependence on the glass point of the resin. It would also be possible to screw on a glazed cap in addition to casting the module.
  • light-emitting diodes which are connected in series to one another are attached to the substrate, the type and number of light-emitting diodes being selected such that the total voltage dropping during operation corresponds to the operating voltage of a motor vehicle electrical system. It can e.g. For example, six LEDs with a voltage drop of 2 V can be used for a 12 V electrical system. However, 2 LEDs with 5 V and one LED with 2 V voltage drop can also be used. This principle can of course also be applied to on-board networks with 42 V operating voltage. In any case, the operating voltage of the vehicle electrical system drops off at the light-emitting diodes, which enables the LED module according to the invention to be used in the motor vehicle, without a series resistor that cannot be used to produce heat.
  • the invention specifies a method for producing the LED module according to the invention, wherein initially two metal surfaces which are insulated from one another are placed on a glass pane. be brought. These metal surfaces are suitable as an etching mask for anisotropic wet chemical etching and can consist, for example, of an alloy of chromium and gold.
  • the glass pane is then structured by anisotropic wet chemical etching to produce a glass body, an etching process using an etching mixture which contains hydrofluoric acid, nitric acid and / or ammonium fluoride being particularly suitable.
  • This etching method is described in detail in WO 98/42628, which is hereby incorporated into the disclosure of this invention.
  • the glass body is then attached to a silicon substrate by anodic bonding, the current required for the anodic bonding being impressed through the metal surfaces applied at the start of the production process.
  • the semiconductor component is attached to the substrate in any order and the substrate is attached to the carrier body.
  • the method according to the invention for producing the LED module has the advantage that the current impressions during anodic bonding are improved by the metal surfaces.
  • the metal surfaces suitable as an etching mask are applied and structured using methods customary in semiconductor technology.
  • Borosilicate glass (BF 33) or a similar glass which is adapted to the coefficient of expansion of the silicon substrate is particularly suitable as the glass pane.
  • the method according to the invention can be configured particularly advantageously by using each metal surface as a conductor surface for contacting the semiconductor components with the carrier body or the contact pin.
  • This has the advantage that it is possible to dispense with specially applied conductor surfaces for contacting the semiconductor components.
  • the invention specifies a method for producing the LED module according to the invention, which allows several substrates with glass bodies attached to them to be produced in parallel (etching process).
  • a masking surface suitable as an etching mask is applied to a glass pane such that a plurality of etching masks, each belonging to a glass body, are present on the glass pane in a chessboard-like arrangement.
  • the etching masks do not necessarily have to be square, but they can also be rectangular or round. The only thing that matters is that they form a regular, repeating pattern on the glass pane.
  • all glass bodies provided on the glass pane are structured at the same time, as a result of which several interconnected glass bodies are produced.
  • Such a simultaneous structuring can be done, for example, by immersing the glass pane in the etching solution described above.
  • the glass pane is attached to a surface of a silicon wafer, whereby a silicon-glass wafer is produced.
  • the silicon wafer was possibly processed before attaching the glass pane by applying contact surfaces for the components.
  • the flat mounting of the glass pane on the silicon wafer can be carried out, for example, by anodic or eutectic bonding or also by gluing.
  • radiation-emitting semiconductor components are fastened in the depressions belonging to a glass body on the corresponding silicon wafer section.
  • the semiconductor components can, for example, be glued on using conductive silver adhesive or fastened using laser soldering.
  • Laser soldering additionally requires a gold-tin layer on the underside of the semiconductor component, which improves the thermal conductivity of the component attachment.
  • the silicon-glass wafer is cut, specifically perpendicular to the wafer plane, along lines that separate the individual glass bodies from one another. This creates a so-called submount, which is attached to a carrier body, for example a T08 header, in a subsequent step.
  • This attachment can be realized, for example, by a thermally highly conductive adhesive.
  • the method according to the invention for producing the LED module has the advantage that it allows the simultaneous production of many glass bodies required for the module. As a result, large quantities of the module according to the invention can be produced in a short time.
  • all of the depressions on the submount can be equipped with semiconductor components. After sawing the silicon glass wafer, a large number of LED modules can be produced in a short time by cutting out and sucking in the submounts with a suction needle and then mounting them on a carrier body.
  • the invention specifies the use of the LED module for the lateral coupling of light into a light guide. Due to the particularly high brightness of the radiation emitted by the LED module, the LED module is particularly suitable for the lateral coupling of light into the end face of light guides.
  • Figure 1 shows an example of an inventive LED module in a schematic cross section.
  • Figure 2 shows an example of a substrate equipped with a vitreous in a schematic cross section.
  • Figure 3 shows the substrate of Figure 2 in plan view.
  • FIG. 4 shows, by way of example, a further substrate equipped with a glass body in a schematic cross section.
  • Figure 5 shows the assembled substrate from Figure 4 in plan view.
  • FIG. 1 shows a substrate 1 on which a plurality of radiation-emitting semiconductor components 2 are attached.
  • the component attachment 4 of the semiconductor components 2 is implemented using a conductive adhesive.
  • the substrate 1 is also attached to a carrier body 3.
  • the substrate attachment 5 is carried out by means of a highly thermally conductive adhesive, for example by means of a silver conductive adhesive.
  • the upper side of the substrate 1 is partially covered by a glass body 9 which has a depression 10 which partially exposes the substrate 1.
  • a first conductor surface 11 is arranged on the top side of the glass body 9 and is contacted by means of bond wires 16 with second connection surfaces 13 arranged on the top side of the semiconductor components 2.
  • the first conductor surface 11 is in turn contacted with a contact pin 6 arranged on the carrier body 3 and insulated from it.
  • the inner surfaces 14 of the glass body 9 are designed as reflectors which allow the light emitted laterally by the semiconductor components 2 to be deflected and focused in such a way that it leaves the LED module perpendicular to the substrate 1.
  • FIG. 2 shows a substrate 1 equipped with a glass body 9 and two semiconductor components 2 fastened on the surface of the substrate 1.
  • the glass body 9 has two depressions 10, in each of which a semiconductor component 2 is arranged.
  • the inner surfaces 14 of the depressions 10 can each be adapted to the radiation characteristic of the semiconductor components 2.
  • the top sides of the semiconductor components 2 are connected to the first conductor surface 11 arranged on the top side of the glass body 9 by means of bonding wires 16.
  • the upper side of the substrate 1 also has a contact surface 7, which is connected to first connection surfaces arranged on the underside of the semiconductor components 2 or to a second conductor surface arranged on the upper side of the glass body 9 (cf. FIG. 3).
  • FIG 3 two further depressions 10 of the glass body 9 shown in Figure 2 can be seen.
  • the glass body 9 has four depressions 10, in each of which a semiconductor component 2 is arranged.
  • the substrate 1 has contact areas 7 which contact the semiconductor components 2 from the underside and which are additionally provided with a free-standing contact area section 8 which allows the contacting of the contact areas 7 from the outside.
  • Each of the semiconductor components 2 is connected from the top with a respective connection surface 13 to the first conductor surface 11 on the glass body 9 by means of bonding wires 16.
  • the first conductor surface 11 is in turn connected by means of a "bonding wire 16 to a contact pin 6 which extends through the support body. 3 portions by the free-standing Druckflachen- 8, the contact areas 7 of the individual semiconductor elements 2 are joined together, so that a single bonding wire is sufficient 16 in order to contact all semiconductor components 2 on their underside with the second conductor surface 12 animals, which in turn is contacted by means of a bonding wire 16 with the carrier body 3.
  • FIG. 4 shows an assembled substrate 1 with a glass body 9 and two semiconductor components 2 fastened on the surface of the substrate 1.
  • the top sides of the semiconductor components 2 are connected to a first conductor surface 11 arranged on the top side of the glass body 9 by bonding wires 16.
  • only one depression 10 is provided, in which a plurality of semiconductor components 2 are arranged.
  • the top of the substrate 1 also has a contact surface 7, which is arranged with first connection surfaces arranged on the underside of the semiconductor components 2 or with one on the
  • FIG. 5 shows two further semiconductor components 2 of the substrate 1 shown in FIG. 4.
  • the substrate 1 has contact surfaces 7 which contact the semiconductor components 2 from the underside and which are additionally provided with a free-standing contact surface section 8, which contacts the contact surfaces 7 allowed from the outside.
  • Each of the semiconductor components 2 is connected from the top to the first conductor surface 11 on the glass body 9 by means of bond wires 16.
  • the first conductor surface 11 is in turn connected by means of a bonding wire 16 to a contact pin 6 which projects through the carrier body 3.
  • the free-standing contact surface sections 8 connect the contact surfaces 7 of the individual semiconductor components 2 to one another, so that a single bond wire 16 is sufficient to contact all of the semiconductor components on their underside with the second conductor surface 12, which in turn is connected to the carrier body 3 by means of a bond wire 16 is contacted.
  • the invention is not limited to the exemplary embodiments shown by way of example, but is defined in its most general form by patent claim 1, patent claim 16 and patent claim 18.

Abstract

Die Erfindung betrifft ein LED-Modul mit einem gut wärmeleitenden Substrat (1), auf dessen Oberseite ein oder mehrere strahlungemittierende Halbleiterbauelemente (2) befestigt sind und dessen Unterseite auf einem Trägerkörper (3) hoher Wärmekapazität befestigt ist, bei dem die Bauelementbefestigung (4) zwischen den Halbleiterbauelementen (2) und dem Substrat (1) und die Substratbefestigung (5) zwischen dem Substrat (1) und dem Tragerkörper (3) gut wärmeleitend ausgeführt ist. Ferner betrifft die Erfindung ein Verfahren zur Herstellung des LED-Moduls, bei dem als Ätzmaske geeignete Metallflächen das Einprägen des beim anodischen Bonden benötigten Stroms verbessern und gleichzeitig als Kontaktflächen zur Kontaktierung der strahlungemittierenden Halbleiterbauelemente (2) verwendet werden. Ferner betrifft die Erfindung die Verwendung des LED-Moduls. Das erfindungsgemäße LED-Modul hat den Vorteil, daß durch die hohe Wärmekapazität des Trägerkörpers die Halbleiterbauelemente höher bestromt werden können.

Description

Beschreibung
LED-Modul, Verfahren zu dessen Herstellung und dessen Verwendung
Die Erfindung betrifft ein LED-Modul mit einem Substrat, auf dessen Oberseite ein oder mehrere Strahlung emittierende Halbleiterbauelemente befestigt sind. Ferner betrifft die Erfindung ein Verfahren zur Herstellung des LED-Moduls. Darüber hinaus betrifft die Erfindung die Verwendung des LED-Moduls.
Es sind optoelektronische Module bekannt, bei denen auf einem Substrat ein oder mehrere Strahlung emittierende Halbleiterbauelemente, beispielsweise Leuchtdioden oder Laserdioden, befestigt sind. Dabei weist das Substrat nur eine sehr geringe Wärmekapazität und einen hohen Wärmewiderstand beziehungsweise eine schlechte Wärmeleitfähigkeit auf. Somit kann die beim Betrieb der Strahlung emittierenden Halbleiterbauelemente erzeugte Wärme nur schlecht abgeführt werden, wo- durch sich die Halbleiterbauelemente entsprechend erhitzen.
Die bekannten optoelektronischen Module haben den Nachteil, daß sie aufgrund der Erwärmung nur mit einem relativ geringen Strom von etwa 10-50 mA betrieben werden können. Daher ist die Menge des von den bekannten Modulen abgestrahlten Lichts sehr beschränkt, wodurch diese beispielsweise nur schlecht zum seitlichen Einkoppeln von Licht in einen Lichtleiter geeignet sind. Die bekannten optoelektronischen Module weisen somit eine nicht ausreichende Helligkeit auf.
Ziel der vorliegenden Erfindung ist es daher, ein LED-Modul bereitzustellen, dessen Strahlung emittierenden Halbleiterbauelemente mit einem hohen Strom betrieben werden können.
Dieses Ziel wird erfindungsgemäß durch ein LED-Modul nach Anspruch 1 erreicht. Weitere Ausgestaltungen der Erfindung, ein Verfahren zur Herstellung des LED-Moduls und die Verwendung des LED-Moduls sind den weiteren Ansprüchen zu entnehmen.
Die Erfindung gibt ein LED-Modul an mit einem gut wärmelei- tenden Substrat, auf dessen Oberseite ein oder mehrere Strahlung emittierende Halbleiterbauelemente befestigt sind. Die Unterseite des Substrats ist auf einem Trägerkörper befestigt, der eine hohe Wärmekapazität aufweist. Die Bauelementbefestigung zwischen den Halbleiterbauelementen und dem Sub- strat ist ebenso wie die Substratbefestigung zwischen dem Substrat und dem Trägerkörper gut wärmeleitend ausgeführt. Damit wird erreicht, daß die im Betrieb in den Halbleiterbauelementen entstehende Wärme im wesentlichen über den Trägerkörper abgeführt wird. Dies schließt selbstverständlich nicht aus, daß ein Teil der Wärme auch durch Abstrahlung oder Kon- vektion abgeführt werden kann.
Aufgrund der hohen Wärmekapazität des Trägerkörpers werden dabei Temperaturänderungen des Bauelements und damit einher- gehende thermische bedingte Verspannungen gering gehalten.
Unter einer hohen Wärmekapazität ist insbesondere die Wärmekapazität eines metallischen Träger zu verstehen. Weiterhin sind als Träger mit hoher Wärmekapazität Träger auf Halbleiterbasis, beispielsweise Silizium oder Galliumarsenid enthal- tende Träger, sowie keramische Träger und Metall-Keramik-Verbundträger geeignet . Derartige für Wärmesenken geeignete Materialien sind an sich bekannt und werden hier nicht weiter beschrieben.
Das erfindungsgemäße LED-Modul hat den Vorteil, daß durch die gute Wärmeleitung zwischen den Strahlung emittierenden Halbleiterbauelementen und dem Trägerkörper mit hoher Wärmekapazität die beim Betrieb der Strahlung emittierenden Halbleiterbauelemente erzeugte Wärme besonders gut abgeführt wird. Dadurch können die Strahlung emittierenden Halbleiterbauelemente je nach Typ mit einem besonders hohen Strom von bis zu 500 mA betrieben werden, wodurch sich eine entsprechend große Helligkeit der von dem LED-Modul ausgesandten Strahlung ergibt .
Die Strahlung emittierenden Halbleiterbauelemente können bei- spielsweise vertikal emittierende Leuchtdioden oder vertikal emittierende Laserdioden sein. Solche Dioden haben den Vorteil, daß die Strahlung ohne weitere Maßnahmen das LED-Modul senkrecht zum Substrat verläßt, wodurch die vom Modul abgegebene Strahlung besonders leicht in weitere Komponenten, bei- spielsweise Lichtleiter, eingekoppelt werden kann.
Ferner ist ein LED-Modul besonders vorteilhaft, bei dem der Trägerkörper ein metallischer Träger ist, wobei in dem Tr gerkorper ein vom Trägerkörper elektrisch isolierter Kontakt- stift angeordnet ist. Ein metallischer Träger hat den Vorteil, daß er eine besonders hohe Wärmekapazität und eine gute Wärmeleitfähigkeit besitzt. Dadurch kann die beim Betrieb der Strahlung emittierenden Halbleiterbauelemente erzeugte Wärme besonders gut abgeleitet werden. Mit Hilfe des elektrisch isolierten Kontaktstifts ist der metallische Träger zugleich als steckbares Anschlußelement für die elektrische Zuleitung zum LED-Modul geeignet.
Der Trägerkörper kann in einer besonders vorteilhaften Aus- fuhrungsform eine TO-Bauform aufweisen, was den Vorteil hat, daß die käuflich erhältlichen, leicht verfügbaren TO-Baufor- men ohne Eigenentwicklung eines speziellen Trägers und ohne Nachbehandlung verwendet werden können. Solche TO-Bauformen können auch besonders leicht in gängige Gehäuse eingebaut werden, so daß das erfindungsgemäße LED-Modul keine speziellen Anpassungen der vorhandenen Gehäuse benötigt .
Desweiteren ist ein LED-Modul besonders vorteilhaft, bei dem die Halbleiterbauelemente auf ihrer Unterseite jeweils eine erste Anschlußfläche aufweisen. Diese Anschlußfläche kann über die Bauelementbefestigung mit jeweils einer auf dem Substrat angeordneten Kontaktfläche kontaktiert werden, wodurch einer der beiden notwendigen elektrischen Kontakte zum Halbleiterbauelement hergestellt wird.
Die auf dem Substrat angeordnete Kontaktfläche kann besonders vorteilhaft einen freistehenden Kontaktflächenabschnitt aufweisen, der auch bei auf der Kontaktfläche bereits befestigtem Halbleiterbauelement noch von außen zugänglich ist, so daß dort beispielsweise ein Bonddraht zur weiteren Kontaktie- rung angebracht werden kann. Selbstverständlich ist in diesem Fall darauf zu achten, daß die Bauelementbefestigung neben einer guten Wärmeleitung auch eine gute elektrische Leitfähigkeit aufweist.
Darüber hinaus ist ein LED-Modul besonders vorteilhaft, bei dem das Substrat aus Silizium besteht. Silizium ist ein leicht und relativ preiswert verfügbarer Werkstoff, der eine hervorragende Wärmeleitung aufweist und daher für den Zweck des erfindungsgemäßen LED-Moduls sehr gut geeignet ist.
Ferner ist es vorteilhaft, wenn auf dem LED-Modul zusätzlich die Oberseite des Substrats wenigstens teilweise von einem auf dem Substrat befestigten Glaskörper abgedeckt ist. Dieser Glaskörper weist wenigstens eine die Substratoberfläche freilegende Vertiefung auf, in der die Halbleiterbauelemente auf der Substratoberfläche angeordnet sind.
Der auf dem Substrat angeordnete Glaskörper hat den Vorteil, daß er, je nach Anforderung, als Reflektor für das von den Halbleiterbauelementen emittierte Licht oder als Kavität für eine nachträglich auf dem Substrat aufzubringende Vergußmasse gestaltet werden kann. Dadurch kann entweder die AbstrahlCharakteristik oder die Form der Vergußmasse beziehungsweise der durch die Vergußmasse erzeugten Linsen optimiert werden.
Es können bei dem LED-Modul mehrere Halbleiterbauelemente in einer Vertiefung des Glaskörpers oder, falls der Glaskörper mehrere Vertiefungen aufweist, auch in jeder Vertiefung ein Halbleiterbauelement angeordnet sein. Aus diesen Möglichkeiten wird der Fachmann je nach den Anforderungen, die an das LED-Modul gestellt werden, beispielsweise geometrische Abmessungen oder spezielle Abstrahlcharakteristik, geeignet aus- wählen.
Die Form des Vertiefungen aufweisenden Glaskörpers kann besonders vorteilhaft durch anisotropes, naßchemisches Ätzen hergestellt werden. Ein solcher naßchemischer Ätzprozeß hat den Vorteil, daß er sehr gut zu kontrollieren ist und er besonders glatte Seitenkanten für die Vertiefungen liefert.
Für den Fall, daß ein Substrat aus Silizium Verwendung findet, ist es besonders vorteilhaft, den Glaskörper durch an- odisches Bonden auf dem Substrat zu befestigen. Anodisches Bonden ist ein leicht durchführbares Verfahren, das eine mechanisch besonders stabile Verbindung liefert.
Es ist darüber hinaus ein LED-Modul besonders vorteilhaft, bei dem der Glaskörper auf seiner Oberseite zwei voneinander isolierte Leiterflächen aufweist. Zudem weisen die Halbleiterbauelemente auf ihrer Oberseite jeweils eine der ersten Anschlußfläche entsprechende zweite Anschlußfläche auf. Die erste Leiterfläche auf der Oberseite des Glaskörpers ist da- bei mit den zweiten Anschlußflächen auf der Oberseite der
Halbleiterbauelemente einerseits und mit dem Kontaktstift des metallischen Trägers andererseits kontaktiert. Diese Kontak- tierung kann beispielsweise mittels Bonden erfolgen.
Im Gegensatz zu einer direkten Kontaktierung der auf der
Oberseite der Halbleiterbauelemente angeordneten zweiten Anschlußflächen mit dem Kontaktstift hat die erfindungsgemäße Anordnung den Vorteil, daß auf lange Bonddrähte, die den Glaskörper zu überbrücken hätten und daher insbesondere an scharfen Kanten des Glaskörpers leicht abreißen würden, verzichtet werden kann. Das erfindungsgemäße LED-Modul kann besonders vorteilhaft ausgestaltet sein, indem die Innenflächen der Vertiefungen des Glaskörpers als Reflektor geformt sind, wobei der Reflektor die von den in der jeweiligen Vertiefung angeordneten Halbleiterbauelementen emittierte Strahlung so umlenkt, daß die Strahlung senkrecht zum Substrat vom Modul abgestrahlt wird.
Solche als Reflektoren geformte Innenflächen erlauben die Verwendung von seitlich emittierenden Leuchtdioden beziehungsweise seitlich emittierenden Laserdioden als Strahlung emittierende Halbleiterbauelemente. Ferner kann durch geeignete Gestaltung der Innenflächen beziehungsweise des Reflektors die Abstrahlcharakteristik, beispielsweise die Strahl- breite, innerhalb weiter Grenzen beliebig variiert werden.
Die Innenflächen der Vertiefungen des Glaskörpers können besonders vorteilhaft als Reflektoren ausgestaltet sein, indem sie durch eine Metallschicht, beispielsweise eine dünne Chromschicht, bedeckt sind. Eine solche Chromschicht kann besonders leicht durch Aufdampfen auf die Innenflächen aufgebracht werden.
Desweiteren ist ein LED-Modul besonders vorteilhaft, bei dem die Oberseite des Substrats mit einer die Halbleiterbauelemente umschließenden Umhüllung vergossen ist. Eine solche Umhüllung hat den Vorteil, daß die Halbleiterbauelemente und eventuell auch die zur Kontaktierung verwendeten Bonddrähte von äußeren Einflüssen abgeschirmt sind. Damit die Strahlung von den Halbleiterbauelementen nach außen dringen kann, muß die Umhüllung in dem entsprechenden Wellenlängenbereich transparent sein. Durch eine entsprechende Formgebung der Umhüllung kann erreicht werden, daß ein zusätzlicher Linseneffekt zur Optimierung Abstrahlcharakteristik des LED-Moduls erreicht wird. Diese Umhüllung kann beispielsweise durch Vergießen des Moduls mit einem Harz (beispielsweise ein Epoxidharz) realisiert werden. Statt dessen kann aber auch eine verglaste Kappe auf der Oberseite des Substrats aufgeschweißt werden. Im Falle einer verglasten Kappe kann zusätzlich der Zwischenraum zwischen der Kappe und den Bauelementen vergossen werden, wodurch die Lichtauskopplung aus dem Halbleiterbauelement aufgrund des reduzierten Brechungsindexsprungs, einmal vom Halbleiter zum Harz und außerdem vom Harz zur Luft, ver- bessert ist.
Andererseits kann im Fall der verglasten Kappe durch den Verzicht auf das Vergießen mit einem Harz eine höhere Bauelementetemperatur eingestellt werden kann, da in diesem Fall keine Abhängigkeit mehr von dem Glaspunkt des Harzes besteht. Es wäre darüber hinaus auch möglich, zusätzlich zum Vergießen des Moduls eine verglaste Kappe aufzuschrauben.
In einer besonders vorteilhaften Ausfuhrungsform der Erfin- düng sind in Reihe zueinander verschaltete Leuchtdioden auf dem Substrat befestigt, wobei Art und Anzahl der Leuchtdioden so gewählt sind, daß die im Betrieb an ihnen abfallende Gesamtspannung der Betriebsspannung eines Kraftfahrzeug-Bordnetzes entspricht. Es können z. B. sechs Leuchtdioden mit ei- nem Spannungsabfall von 2 V für ein 12 V-Bordnetz verwendet werden. Es können aber auch 2 Leuchtdioden mit 5 V und eine Leuchtdiode mit 2 V Spannungsabfall verwendet werden. Dieses Prinzip kann selbstverständlich auch auf Bordnetze mit 42 V Betriebsspannung angewendet werden. In jedem Fall fällt an den Leuchtdioden die Betriebsspannung des Bordnetzes ab, was den Einsatz des erfindungsgemäßen LED-Moduls im Kfz unter Verzicht auf einen nicht nutzbare Wärme produzierenden Vorwiderstand ermöglicht.
Ferner gibt die Erfindung ein Verfahren zur Herstellung des erfindungsgemäßen LED-Moduls an, wobei zunächst zwei voneinander isolierte Metallflächen auf einer Glasscheibe aufge- bracht werden. Diese Metallflächen sind als Ätzmaske für anisotropes naßchemisches Ätzen geeignet und können beispielsweise aus einer Legierung von Chrom und Gold bestehen. Danach wird die Glasscheibe durch anisotropes naßchemisches Ätzen zur Herstellung eines Glaskörpers strukturiert, wobei insbesondere ein Ätzprozeß mittels eines Ätzgemisches, das Flußsäure, Salpetersäure und/oder Ammoniumfluorid aufweist, in Frage kommt. Dieses Ätzverfahren ist in der WO 98/42628, die hiermit in die Offenbarung dieser Erfindung einbezogen werden soll, ausführlich beschrieben.
Anschließend wird der Glaskörper auf einem Siliziumsubstrat durch anodisches Bonden befestigt, wobei der für das anodische Bonden benötigte Strom durch die zu Beginn des Herstel- lungsverfahrens aufgebrachten Metallflächen eingeprägt wird.
Schließlich wird in beliebiger Reihenfolge das Halbleiterbauelement auf dem Substrat befestigt und das Substrat auf dem Tragerkorper befestigt.
Das erfindungsgemäße Verfahren zur Herstellung des LED-Moduls hat den Vorteil, daß durch die Metallflächen die Stromeinprägung beim anodischen Bonden verbessert wird. Die als Ätzmaske geeigneten Metallflächen werden mittels in der Halbleiter- technologie üblichen Verfahren aufgebracht und strukturiert. Als Glasscheibe kommt insbesondere Borsilikatglas (BF 33) oder ein ähnliches Glas, das an den Ausdehnungskoeffizienten des Siliziumsubstrats angepaßt ist, in Frage.
Das erfindungsgemäße Verfahren kann besonders vorteilhaft ausgestaltet werden, indem jede Metallfläche als Leiterfläche zur Kontaktierung der Halbleiterbauelemente mit dem Tragerkorper beziehungsweise dem Kontaktstift verwendet wird. Dadurch ergibt sich der Vorteil, daß auf eigens aufgebrachte Leiterflächen zur Kontaktierung der Halbleiterbauelemente verzichtet werden kann. Ferner gibt die Erfindung ein Verfahren zur Herstellung des erfindungsgemäßen LED-Moduls an, das es erlaubt, mehrere Substrate mit darauf befestigten Glaskörpern parallel herzustellen (Ätzprozeß) . Dazu wird eine als Ätzmaske geeignete Mas- kierungsflache so auf eine Glasscheibe aufgebracht, daß mehrere jeweils zu einem Glaskörper gehörende Ätzmasken in einer schachbrettartigen Anordnung auf der Glasscheibe vorliegen. Die Ätzmasken müssen dabei nicht notwendigerweise quadratisch sein, sondern sie können auch rechteckig oder rund sein. Ent- scheidend ist lediglich, daß sie auf der Glasscheibe ein regelmäßiges, sich wiederholendes Muster bilden.
In einem nächsten Schritt werden alle auf der Glasscheibe vorgesehenen Glaskörper gleichzeitig strukturiert, wodurch mehrere zusammenhängende Glaskörper hergestellt werden. Eine solche gleichzeitige Strukturierung kann beispielsweise durch Eintauchen der Glasscheibe in die weiter oben beschriebene Ätzlösung geschehen.
Im einem nächsten Schritt wird die Glasscheibe auf einem Si- liziumwafer flächig befestigt, wodurch ein Silizium-Glas-Wa- fer hergestellt wird. Der Siliziumwafer wurde vor dem Befestigen der Glasscheibe eventuell durch Aufbringen von Kontaktflächen für die Bauelemente prozessiert. Das flächige Be- festigen der Glasscheibe auf dem Siliziumwafer kann beispielsweise durch anodisches oder eutektisches Bonden oder auch durch Verkleben durchgeführt werden.
Anschließend werden strahlungemittierende Halbleiterbauele- mente in den zu einem Glaskörper gehörenden Vertiefungen auf dem entsprechenden Siliziumwaferabschnitt befestigt. Die Halbleiterbauelemente können beispielsweise durch Silberleitkleber aufgeklebt oder durch Laserlδten befestigt werden. Beim Laserlöten wird zusätzlich eine Gold-Zinn-Schicht auf der Unterseite des Halbleiterbauelements benötigt, welche die Wärmeleitfähigkeit der Bauelementbefestigung verbessert. In einem darauffolgenden Schritt wird der Silizium-Glas-Wafer zerschnitten und zwar senkrecht zur Waferebene entlang von Linien, die die einzelnen Glaskörper voneinander trennen. Dadurch wird ein sogenanntes Submount hergestellt, welches in einem darauffolgenden Schritt auf einem Trägerkörper, beispielsweise einem T08-Header, befestigt wird. Diese Befestigung kann beispielsweise durch einen thermisch gut leitfähigen Kleber realisiert werden.
Das erfindungsgemäße Verfahren zur Herstellung des LED-Moduls hat den Vorteil, daß es die gleichzeitige Herstellung vieler für das Modul benötigter Glaskörper erlaubt. Dadurch können in kurzer Zeit große Stückzahlen des erfindungsgemäßen Moduls hergestellt werden.
In einer besonders vorteilhaften Ausführung des Herstellungsverfahrens können sämtliche Vertiefungen auf dem Submount mit Halbleiterbauelementen bestückt werden. Nach dem Zersägen des Silizium-Glas-Wafers können durch Ausstechen und Ansaugen der Submounts mit einer Saugnadel und anschließendes Montieren auf einem Trägerkörper eine Vielzahl von LED-Modulen in kurzer Zeit hergestellt werden.
Ferner gibt die Erfindung die Verwendung des LED-Moduls zum seitlichen Einkoppeln von Licht in einen Lichtleiter an. Aufgrund der besonders hohen Helligkeit der von dem LED-Modul emittierten Strahlung ist das LED-Modul besonders zum seitlichen Einkoppeln von Licht in die Stirnfläche von Lichtleitern geeignet .
Im folgenden wird die Erfindung anhand von Ausführungsbei- spielen und den dazugehörigen Figuren näher erläutert.
Figur 1 zeigt beispielhaft ein erfindungsgemäßes LED-Modul im schematischen Querschnitt. Figur 2 zeigt beispielhaft ein mit einem Glaskörper bestücktes Substrat im schematischen Querschnitt.
Figur 3 zeigt das Substrat aus Figur 2 in Draufsicht .
Figur 4 zeigt beispielhaft ein weiteres mit einem Glaskörper bestücktes Substrat im schematischen Querschnitt .
Figur 5 zeigt das bestückte Substrat aus Figur 4 in Draufsicht .
Figur 1 zeigt ein Substrat 1, auf dem mehrere Strahlung emittierende Halbleiterbauelemente 2 befestigt sind. Die Bauele- mentbefestigung 4 der Halbleiterbauelemente 2 ist dabei durch einen Leitkleber realisiert. Das Substrat 1 ist ferner auf einem Trägerkörper 3 befestigt. Die Substratbefestigung 5 erfolgt mittels eines gut wärmeleitfähigen Klebers, beispielsweise mittels eines Silberleitklebers. Die Oberseite des Sub- strats 1 ist teilweise von einem Glaskörper 9 abgedeckt, der eine das Substrat 1 teilweise freilegende Vertiefung 10 aufweist .
Auf der Oberseite des Glaskörpers 9 ist eine erste Leiterflä- ehe 11 angeordnet, die mittels Bonddrähten 16 mit auf der Oberseite der Halbleiterbauelemente 2 angeordneten zweiten Anschlußflächen 13 kontaktiert ist. Die erste Leiterfläche 11 ist wiederum mit einem am Trägerkörper 3 angeordneten, von diesem isolierten Kontaktstift 6 kontaktiert. Die Innenflä- chen 14 des Glaskörpers 9 sind als Reflektoren gestaltet, die es erlauben, das von den Halbleiterbauelementen 2 seitlich abgestrahlte Licht so umzulenken und zu fokussieren, daß es das LED-Modul senkrecht zum Substrat 1 verläßt.
Zum Schutz der Halbleiterbauelemente 2 ist der Trägerkörper 3 mit einer Umhüllung 15 aus Epoxidharz vergossen. Figur 2 zeigt ein mit einem Glaskörper 9 bestücktes Substrat 1 und zwei auf der Oberfläche des Substrats 1 befestigten Halbleiterbauelementen 2. In Figur 2 ist zu erkennen, daß der Glaskörper 9 zwei Vertiefungen 10 aufweist, in denen jeweils ein Halbleiterbauelement 2 angeordnet ist . Somit können die Innenflächen 14 der Vertiefungen 10 jeweils auf die Abstrahl- charakteristik der Halbleiterbauelemente 2 angepaßt werden.
Die Oberseiten der Halbleiterbauelemente 2 sind wie in Figur 1 mit der auf der Oberseite des Glaskörpers 9 angeordneten ersten Leiterfläche 11 durch Bonddrähte 16 verbunden. Die Oberseite des Substrats 1 weist ferner eine Kontaktfläche 7 auf, die mit auf der Unterseite der Halbleiterbauelemente 2 angeordneten ersten Anschlußflächen bzw. mit einer auf der Oberseite des Glaskörpers 9 angeordneten zweiten Leiterfläche verbunden ist (vgl. Fig. 3) .
In Figur 3 sind zwei weitere Vertiefungen 10 des in Figur 2 dargestellten Glaskörpers 9 zu erkennen. Insgesamt weist der Glaskörper 9 vier Vertiefungen 10 auf, in denen jeweils ein Halbleiterbauelement 2 angeordnet ist. Das Substrat 1 weist Kontaktflächen 7 auf, die die Halbleiterbauelemente 2 von der Unterseite her kontaktieren und die zusätzlich mit einem freistehenden Kontaktflächenabschnitt 8 versehen sind, der die Kontaktierung der Kontaktflächen 7 von außen her erlaubt. Jedes der Halbleiterbauelemente 2 ist von der Oberseite mit jeweils einer Anschlußfläche 13 her mit der ersten Leiterfläche 11 auf dem Glaskörper 9 mittels Bonddrähten 16 verbunden.
Die erste Leiterfläche 11 wiederum ist mittels eines" Bonddrahts 16 mit einem Kontaktstift 6 verbunden, der durch den Trägerkörper 3 ragt. Durch die freistehenden Kontaktflachen- abschnitte 8 sind die Kontaktflächen 7 der einzelnen Halbleiterbauelemente 2 miteinander verbunden, so daß ein einziger Bonddraht 16 genügt, um sämtliche Halbleiterbauelemente 2 auf ihrer Unterseite mit der zweiten Leiterfläche 12 zu kontak- tieren, welche wiederum mittels eines Bonddrahts 16 mit dem Trägerkörper 3 kontaktiert ist .
Figur 4 zeigt ein bestücktes Substrat 1 mit einem Glaskörper 9 und zwei auf der Oberfläche des Substrats 1 befestigten Halbleiterbauelementen 2. Die Oberseiten der Halbleiterbauelemente 2 sind wie in Figur 1 mit einer auf der Oberseite des Glaskörpers 9 angeordneten ersten Leiterfläche 11 durch Bonddrähte 16 verbunden. Im Gegensatz zur Figur 2 ist nur eine Vertiefung 10 vorgesehen, in der mehrere Halbleiterbauelemente 2 angeordnet sind.
Die Oberseite des Substrats 1 weist ferner eine Kontaktfläche 7 auf, die mit auf der Unterseite der Halbleiterbauelemente 2 angeordneten ersten Anschlußflächen bzw. mit einer auf der
Oberseite des Glaskörpers 9 angeordneten zweiten Leiterfläche verbunden ist (vgl. Fig. 5) .
Figur 5 zeigt zwei weitere Halbleiterbauelemente 2 des in Fi- gur 4 dargestellten Substrats 1. Das Substrat 1 weist Kontaktflächen 7 auf, die die Halbleiterbauelemente 2 von der Unterseite her kontaktieren und die zusätzlich mit einem freistehenden Kontaktflächenabschnitt 8 versehen sind, der die Kontaktierung der Kontaktflächen 7 von außen her erlaubt.
Jedes der Halbleiterbauelemente 2 ist von der Oberseite her mit der ersten Leiterfläche 11 auf dem Glaskörper 9 mittels Bonddrähten 16 verbunden. Die erste Leiterfläche 11 wiederum ist mittels eines Bonddrahts 16 mit einem Kontaktstift 6 ver- bunden, der durch den Trägerkörper 3 ragt. Durch die freistehenden Kontaktflächenabschnitte 8 sind die Kontaktflächen 7 der einzelnen Halbleiterbauelemente 2 miteinander verbunden, so daß ein einziger Bonddraht 16 genügt, um sämtliche Halbleiterbauelemente auf ihrer Unterseite mit der zweiten Lei- terflache 12 zu kontaktieren, welche wiederum mittels eines Bonddrahts 16 mit dem Tragerkorper 3 kontaktiert ist. Die Erfindung beschränkt sich nicht auf die beispielhaft gezeigten Ausführungsbeispiele, sondern wird in ihrer allgemeinsten Form durch Patentanspruch 1, Patentanspruch 16 und Patentanspruch 18 definiert.

Claims

Patentansprüche
1. LED-Modul für Beleuchtungsanlagen oder Signalanlagen mit einem wärmeleitenden Substrat (1) mit einer Oberseite und einer Unterseite, wobei auf der Oberseite des Substrats ein oder mehrere Strahlungsemittierende Halbleiterbauelemente (2) befestigt sind und die Unterseite des Substrats (1) auf einem Trägerkörper (3) hoher Wärmekapazität befestigt ist, und eine Bauelementbefestigung (4) zwischen den Halbleiterbauelementen (2) und dem Substrat (1) und eine Substratbefestigung (5) zwischen dem Substrat (1) und dem Trägerkörper (3) gut wärmeleitend ausgeführt ist, derart, daß die im Betrieb entstehende Wärme über den Tragerkorper abgeführt wird.
2. LED-Modul nach Anspruch 1, bei dem die Halbleiterbauelemente (2) Leuchtdioden, Laserdioden oder Leuchtdiodenchips oder Laserdiodenchips sind.
3. LED-Modul nach Anspruch 1 oder 2, bei dem die Halbleiterbauelemente (2) vertikal emittierende Halbleiterbauelemente sind.
4. LED-Modul nach einem der Ansprüche 1 bis 3 , bei dem der Trägerkörper (3) ein metallischer Träger ist, in dem ein vom Trägerkörper (3) elektrisch isolierter Kontaktstift (6) angeordnet ist.
5. LED-Modul nach Anspruch 4, bei dem der Trägerkörper (3) eine TO-Bauform aufweist.
6. LED-Modul nach Anspruch 1 bis 5, bei dem die Halbleiterbauelemente (2) auf ihrer Unter- seite jeweils eine erste Anschlußfläche aufweisen, die über die Bauelementbefestigung (4) mit je einer auf dem Substrat angeordneten Kontaktfläche (7) kontaktiert ist, die einen freistehenden Kontaktflächenabschnitt (8) aufweist .
7. LED-Modul nach Anspruch 1 bis 6, bei dem das Substrat (1) aus Silizium besteht.
8. LED-Modul nach Anspruch 7, bei dem die Oberseite des Substrats (1) teilweise von einem darauf befestigten Glaskörper (9) abgedeckt ist, der wenigstens eine die Substratoberfläche freilegende Vertiefung (10) aufweist, in der die Halbleiterbauelemente (2) angeordnet sind.
9. LED-Modul nach Anspruch 8, bei dem der Glaskörper (9) mehrere Vertiefungen (10) aufweist, in denen jeweils ein Halbleiterbauelement (2) angeordnet ist.
10. LED-Modul nach Anspruch 8 oder 9, bei dem der Glaskörper (9) durch anisotropes, naßchemisches Ätzen geformt ist.
11. LED-Modul nach Anspruch 8 bis 10, bei dem der Glaskörper (9) durch anodisches Bonden auf dem Substrat (1) befestigt ist.
12. LED-Modul nach Anspruch 8 bis 11, bei dem der Glaskörper (9) auf seiner Oberseite zwei voneinander isolierte Leiterflächen (11, 12) aufweist, bei dem die Halbleiterbauelemente (2) auf ihrer Oberseite je- weils eine zweite Anschlußfläche (13) aufweisen, bei dem die erste Leiterfläche (11) mit den zweiten Anschlußflächen (13) und dem Kontaktstift (6) und die zweite Leiterfläche (13) mit den freistehenden Kontakflächenabschnit- ten (8) und dem Trägerkörper (3) kontaktiert ist.
13. LED-Modul nach Anspruch 8 bis 12, bei dem die Halbleiterbauelemente (2) seitlich emittierende Leuchtdioden oder Laserdioden sind und bei dem die Innenflächen (14) der Vertiefungen (10) des Glaskörpers (9) als Reflektor geformt sind, der die von den in der jeweiligen Vertiefung (10) angeordneten Halbleiterbauelementen (2) emittierte Strahlung so umlenkt, daß sie das Modul senkrecht zum Substrat (1) verläßt.
14. LED-Modul nach Anspruch 8 bis 13, bei dem die Innenflächen (14) der Vertiefungen (10) des Glaskörpers (9) mit einer Metallschicht bedeckt sind.
15. LED-Modul nach Anspruch 1 bis 14, bei dem die Oberseite des Substrats (1) mit einer die Halbleiterbauelemente (2) umschließenden Umhüllung (15) vergossen ist .
16. LED-Modul nach Anspruch 1 bis 15 bei dem in Reihe zueinander verschaltete Leuchtdioden auf dem Substrat (1) befestigt sind, wobei Art und Anzahl der Leuchtdioden so gewählt sind, daß die im Betrieb an ihnen abfallende GesamtSpannung der Betriebsspannung eines
Kraftfahrzeug-Bordnetzes entspricht .
17. Verfahren zur Herstellung eines LED-Moduls nach Anspruch 8 bis 16 mit folgenden Schritten: a) Aufbringen von zwei voneinander isolierten, als Ätz- maske geeigneten Metallflächen auf einer Glasscheibe b) Strukturieren der Glasscheibe durch anisotropes naßchemisches Ätzen zur Herstellung eines Glaskörpers (9) c) Befestigen des Glaskörpers (9) auf einem Substrat (1) aus Silizium durch anodisches Bonden, wobei der für das anodische Bonden benötigte Strom durch die Metallflächen eingeprägt wird d) Befestigen von Halbleiterbauelementen (2) auf dem Sub- strat (1) und Befestigen des Substrats (1) auf dem Trägerkörper (3) .
18. Verfahren zur Herstellung eines LED-Moduls nach Anspruch 11 bis 15 gemäß Anspruch 16, wobei jede Metallfläche als Leiterfläche (11, 12) zur Kontaktierung der Halbleiterbauelemente (2) mit dem Tragerkorper (3) bzw. dem Kontaktstift (6) verwendet wird.
19. Verfahren zur Herstellung eines LED-oduls nach Anspruch 8 bis 16 mit folgenden Schritten: a) Aufbringen von mehreren, als Ätzmaske geeigneten Maskierungsflächen so auf einer Glasscheibe, daß mehrere jeweils zu einem Glaskörper (9) gehörende Ätzmasken in einer schachbrettartigen Anordnung auf der Glasscheibe vorliegen b) gleichzeitiges Strukturieren aller auf der Glasscheibe vorgesehenen Glaskörper (9) zur Herstellung mehrerer zusammenhängender Glaskörper (9) c) Flächiges Befestigen der Glasscheibe auf einem Siliziumwafer zur Herstellung eines Silizium-Glas-Wafers d) Befestigen von Halbleiterbauelementen (2) in den zu einem Glaskörper (9) gehörenden Vertiefungen (10) auf dem entsprechenden Siliziumwaferabschnitt e) Zerschneiden des Silizium-Glas-Wafers senkrecht zur Waferebene entlang von die Glaskörper (9) voneinander trennenden Linien f) Befestigen des die Halbleiterbauelemente (2) aufweisenden Siliziumwaferabschnitts auf einem Tragerkorper (3) .
20. Verwendung eines LED-Moduls nach Anspruch 1 bis 16 zum seitlichen Einkoppeln von Licht in einen Lichtleiter.
PCT/DE2001/002565 2000-07-10 2001-07-10 Led-modul, verfahren zu dessen herstellung und dessen verwendung WO2002005357A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01953900A EP1299910A1 (de) 2000-07-10 2001-07-10 Led-modul, verfahren zu dessen herstellung und dessen verwendung
US10/345,442 US6860621B2 (en) 2000-07-10 2003-01-10 LED module and methods for producing and using the module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10033502.0 2000-07-10
DE10033502A DE10033502A1 (de) 2000-07-10 2000-07-10 Optoelektronisches Modul, Verfahren zu dessen Herstellung und dessen Verwendung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/345,442 Continuation US6860621B2 (en) 2000-07-10 2003-01-10 LED module and methods for producing and using the module

Publications (1)

Publication Number Publication Date
WO2002005357A1 true WO2002005357A1 (de) 2002-01-17

Family

ID=7648433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002565 WO2002005357A1 (de) 2000-07-10 2001-07-10 Led-modul, verfahren zu dessen herstellung und dessen verwendung

Country Status (4)

Country Link
US (1) US6860621B2 (de)
EP (1) EP1299910A1 (de)
DE (1) DE10033502A1 (de)
WO (1) WO2002005357A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086972A1 (en) * 2001-04-23 2002-10-31 Plasma Ireland Limited Illuminator
EP1482567A1 (de) * 2002-03-05 2004-12-01 Rohm Co., Ltd. Lichtemissionsbauelement mit einem led-chip und verfahren zur herstellung dieses bauelements
AT501081B1 (de) * 2003-07-11 2006-06-15 Guenther Dipl Ing Dr Leising Led sowie led-lichtquelle
EP2237328A1 (de) * 2009-03-31 2010-10-06 OSRAM Opto Semiconductors GmbH Verfahren zur Herstellung einer Vielzahl von optoelektronischen Halbleiterkomponenten und optoelektronische Halbleiterkomponente
WO2013015862A1 (en) * 2011-07-22 2013-01-31 Guardian Industries Corp. Improved led lighting systems and/or methods of making the same
US8540394B2 (en) 2011-07-22 2013-09-24 Guardian Industries Corp. Collimating lenses for LED lighting systems, LED lighting systems including collimating lenses, and/or methods of making the same
US8742655B2 (en) 2011-07-22 2014-06-03 Guardian Industries Corp. LED lighting systems with phosphor subassemblies, and/or methods of making the same
US9845943B2 (en) 2011-07-22 2017-12-19 Guardian Glass, LLC Heat management subsystems for LED lighting systems, LED lighting systems including heat management subsystems, and/or methods of making the same

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245930A1 (de) * 2002-09-30 2004-04-08 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Bauelement-Modul
AU2003297588A1 (en) * 2002-12-02 2004-06-23 3M Innovative Properties Company Illumination system using a plurality of light sources
JP3910144B2 (ja) * 2003-01-06 2007-04-25 シャープ株式会社 半導体発光装置およびその製造方法
JP2004304041A (ja) * 2003-03-31 2004-10-28 Citizen Electronics Co Ltd 発光ダイオード
EP1614299A1 (de) * 2003-04-16 2006-01-11 Upstream Engineering Oy Projektor für 2d/3d-daten
FI20030583A (fi) * 2003-04-16 2004-10-17 Upstream Engineering Oy Dataprojektori
US6869812B1 (en) * 2003-05-13 2005-03-22 Heng Liu High power AllnGaN based multi-chip light emitting diode
US7391153B2 (en) * 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
US7915085B2 (en) * 2003-09-18 2011-03-29 Cree, Inc. Molded chip fabrication method
US20050116235A1 (en) * 2003-12-02 2005-06-02 Schultz John C. Illumination assembly
US7329887B2 (en) * 2003-12-02 2008-02-12 3M Innovative Properties Company Solid state light device
US7250611B2 (en) 2003-12-02 2007-07-31 3M Innovative Properties Company LED curing apparatus and method
US20050116635A1 (en) * 2003-12-02 2005-06-02 Walson James E. Multiple LED source and method for assembling same
US7403680B2 (en) * 2003-12-02 2008-07-22 3M Innovative Properties Company Reflective light coupler
US7456805B2 (en) * 2003-12-18 2008-11-25 3M Innovative Properties Company Display including a solid state light device and method using same
US6998280B2 (en) * 2004-02-10 2006-02-14 Mei-Hung Hsu Wafer packaging process of packaging light emitting diode
US7964883B2 (en) * 2004-02-26 2011-06-21 Lighting Science Group Corporation Light emitting diode package assembly that emulates the light pattern produced by an incandescent filament bulb
KR100623024B1 (ko) * 2004-06-10 2006-09-19 엘지전자 주식회사 고출력 led 패키지
JP2006049442A (ja) * 2004-08-02 2006-02-16 Sharp Corp 半導体発光装置およびその製造方法
JP4547569B2 (ja) * 2004-08-31 2010-09-22 スタンレー電気株式会社 表面実装型led
US7217583B2 (en) * 2004-09-21 2007-05-15 Cree, Inc. Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension
US7745832B2 (en) 2004-09-24 2010-06-29 Epistar Corporation Semiconductor light-emitting element assembly with a composite substrate
US20060139575A1 (en) * 2004-12-23 2006-06-29 Upstream Engineering Oy Optical collection and distribution system and method
US7316488B2 (en) * 2005-02-07 2008-01-08 Philips Lumileds Lighting Company, Llc Beam shutter in LED package
US7284882B2 (en) 2005-02-17 2007-10-23 Federal-Mogul World Wide, Inc. LED light module assembly
DE102005011857B4 (de) * 2005-03-15 2007-03-22 Alcan Technology & Management Ag Flächige Beleuchtungseinrichtung
EP1861876A1 (de) * 2005-03-24 2007-12-05 Tir Systems Ltd. Halbleiter-beleuchtungseinrichtungs-gehäuse
EP1872401B1 (de) * 2005-04-05 2018-09-19 Philips Lighting Holding B.V. Elektronische bauelementekapselung mit integriertem evaporator
JP4836230B2 (ja) 2005-06-17 2011-12-14 株式会社小糸製作所 発光デバイス及びこれを用いた光源装置
US20070063979A1 (en) * 2005-09-19 2007-03-22 Available For Licensing Systems and methods to provide input/output for a portable data processing device
EP1963743B1 (de) * 2005-12-21 2016-09-07 Cree, Inc. Beleuchtungsvorrichtung
US8044412B2 (en) 2006-01-20 2011-10-25 Taiwan Semiconductor Manufacturing Company, Ltd Package for a light emitting element
US7683475B2 (en) * 2006-03-31 2010-03-23 Dicon Fiberoptics, Inc. LED chip array module
US8969908B2 (en) * 2006-04-04 2015-03-03 Cree, Inc. Uniform emission LED package
US7906794B2 (en) 2006-07-05 2011-03-15 Koninklijke Philips Electronics N.V. Light emitting device package with frame and optically transmissive element
US7943952B2 (en) * 2006-07-31 2011-05-17 Cree, Inc. Method of uniform phosphor chip coating and LED package fabricated using method
KR20080013127A (ko) * 2006-08-07 2008-02-13 삼성전자주식회사 백라이트 유닛 및 이를 포함한 액정표시장치
AU2007283578A1 (en) * 2006-08-10 2008-02-14 Upstream Engineering Oy Illuminator method and device
KR101484488B1 (ko) * 2006-10-31 2015-01-20 코닌클리케 필립스 엔.브이. 조명 장치 패키지
US10295147B2 (en) * 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
US20080129964A1 (en) * 2006-11-30 2008-06-05 Upstream Engineering Oy Beam shaping component and method
US20080137042A1 (en) * 2006-11-30 2008-06-12 Upstream Engineering Oy Beam shaping method and apparatus
US8232564B2 (en) * 2007-01-22 2012-07-31 Cree, Inc. Wafer level phosphor coating technique for warm light emitting diodes
US9024349B2 (en) * 2007-01-22 2015-05-05 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
US9159888B2 (en) * 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
WO2008137076A1 (en) * 2007-05-02 2008-11-13 Luminator Holding, L.P. Lighting method and system
TWM328763U (en) * 2007-05-21 2008-03-11 Univ Nat Taiwan Structure of heat dissipation substrate
US20090008662A1 (en) * 2007-07-05 2009-01-08 Ian Ashdown Lighting device package
US9401461B2 (en) * 2007-07-11 2016-07-26 Cree, Inc. LED chip design for white conversion
US10505083B2 (en) * 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same
DE102008021618A1 (de) * 2007-11-28 2009-06-04 Osram Opto Semiconductors Gmbh Chipanordnung, Anschlussanordnung, LED sowie Verfahren zur Herstellung einer Chipanordnung
US8167674B2 (en) * 2007-12-14 2012-05-01 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
US9041285B2 (en) 2007-12-14 2015-05-26 Cree, Inc. Phosphor distribution in LED lamps using centrifugal force
DE102008014121A1 (de) * 2007-12-20 2009-06-25 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips und Halbleiterchip
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
US8304660B2 (en) * 2008-02-07 2012-11-06 National Taiwan University Fully reflective and highly thermoconductive electronic module and method of manufacturing the same
US8637883B2 (en) * 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
US8877524B2 (en) 2008-03-31 2014-11-04 Cree, Inc. Emission tuning methods and devices fabricated utilizing methods
US8240875B2 (en) * 2008-06-25 2012-08-14 Cree, Inc. Solid state linear array modules for general illumination
US20100002286A1 (en) * 2008-07-01 2010-01-07 Koenraad Maenhout Method to provide a display panel
DE102008045653B4 (de) * 2008-09-03 2020-03-26 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
DE102008045925A1 (de) * 2008-09-04 2010-03-11 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil und Verfahren zur Herstellung eines optoelektronischen Bauteils
US8611057B2 (en) * 2008-09-09 2013-12-17 Inshore Holdings, Llc LED module for sign channel letters and driving circuit
CN102203689B (zh) 2008-09-24 2014-06-25 照明器控股有限公司 用于维持发光二极管的发光强度的方法和系统
US8184440B2 (en) * 2009-05-01 2012-05-22 Abl Ip Holding Llc Electronic apparatus having an encapsulating layer within and outside of a molded frame overlying a connection arrangement on a circuit board
US20100284201A1 (en) * 2009-05-06 2010-11-11 Upstream Engineering Oy Illuminator using non-uniform light sources
US9322973B2 (en) * 2009-07-16 2016-04-26 Koninklijke Philips N.V. Lighting device with light sources positioned near the bottom surface of a waveguide
US8264155B2 (en) * 2009-10-06 2012-09-11 Cree, Inc. Solid state lighting devices providing visible alert signals in general illumination applications and related methods of operation
US8350500B2 (en) * 2009-10-06 2013-01-08 Cree, Inc. Solid state lighting devices including thermal management and related methods
DE102010029227A1 (de) * 2010-05-21 2011-11-24 Osram Gesellschaft mit beschränkter Haftung Leuchtvorrichtung
US10546846B2 (en) 2010-07-23 2020-01-28 Cree, Inc. Light transmission control for masking appearance of solid state light sources
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
TW201312807A (zh) 2011-07-21 2013-03-16 Cree Inc 光發射器元件封裝與部件及改良化學抵抗性的方法與相關方法
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
US8558252B2 (en) 2011-08-26 2013-10-15 Cree, Inc. White LEDs with emission wavelength correction
KR101817807B1 (ko) 2011-09-20 2018-01-11 엘지이노텍 주식회사 발광소자 패키지 및 이를 포함하는 조명시스템
DE102011083691B4 (de) 2011-09-29 2020-03-12 Osram Gmbh Optoelektronisches halbleiterbauteil
US9496466B2 (en) * 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
TWI481083B (zh) * 2012-10-16 2015-04-11 Lextar Electronics Corp 發光二極體結構
US9528667B1 (en) 2015-09-03 2016-12-27 Osram Sylvania Inc. Thermoforming a substrate bearing LEDs into a curved bulb enclosure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2315709A1 (de) * 1973-03-29 1974-10-10 Licentia Gmbh Strahlung abgebende halbleiteranordnung mit hoher strahlungsleistung
WO1992015458A1 (en) * 1991-03-04 1992-09-17 Eastman Kodak Company Leaf-spring assembly for led printhead
GB2276032A (en) * 1993-03-08 1994-09-14 Prp Optoelectronics Limited A Radiation source
US5479029A (en) * 1991-10-26 1995-12-26 Rohm Co., Ltd. Sub-mount type device for emitting light
US5528474A (en) * 1994-07-18 1996-06-18 Grote Industries, Inc. Led array vehicle lamp
WO1997037385A1 (en) * 1996-04-03 1997-10-09 Pressco Technology, Inc. High-density solid-state lighting array for machine vision applications
US5782555A (en) * 1996-06-27 1998-07-21 Hochstein; Peter A. Heat dissipating L.E.D. traffic light
WO1998042628A1 (de) * 1997-03-26 1998-10-01 Siemens Aktiengesellschaft Verfahren zum herstellen eines glaskörpers mit mindestens einer ausnehmung
DE19714659A1 (de) * 1997-04-09 1998-10-15 Siemens Ag Optoelektronisches Bauelement
US5836676A (en) * 1996-05-07 1998-11-17 Koha Co., Ltd. Light emitting display apparatus
EP0921568A2 (de) * 1997-11-25 1999-06-09 Matsushita Electric Works, Ltd. Leuchte mit lichtemittierenden Dioden
WO2001047039A1 (en) * 1999-12-22 2001-06-28 Lumileds Lighting, U.S., Llc Method of making a iii-nitride light-emitting device with increased light generating capability

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399453A (en) * 1981-03-23 1983-08-16 Motorola, Inc. Low thermal impedance plastic package
JPH03209896A (ja) * 1990-01-12 1991-09-12 Mitsubishi Electric Corp 半導体レーザ素子用サブマウント
DE4219132A1 (de) 1992-06-11 1993-12-16 Suess Kg Karl Verfahren zum Herstellen von Silizium/Glas- oder Silizium/Silizium-Verbindungen
US5917245A (en) * 1995-12-26 1999-06-29 Mitsubishi Electric Corp. Semiconductor device with brazing mount
JPH11163419A (ja) * 1997-11-26 1999-06-18 Rohm Co Ltd 発光装置
US6428189B1 (en) * 2000-03-31 2002-08-06 Relume Corporation L.E.D. thermal management
JP2002314139A (ja) * 2001-04-09 2002-10-25 Toshiba Corp 発光装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2315709A1 (de) * 1973-03-29 1974-10-10 Licentia Gmbh Strahlung abgebende halbleiteranordnung mit hoher strahlungsleistung
WO1992015458A1 (en) * 1991-03-04 1992-09-17 Eastman Kodak Company Leaf-spring assembly for led printhead
US5479029A (en) * 1991-10-26 1995-12-26 Rohm Co., Ltd. Sub-mount type device for emitting light
GB2276032A (en) * 1993-03-08 1994-09-14 Prp Optoelectronics Limited A Radiation source
US5528474A (en) * 1994-07-18 1996-06-18 Grote Industries, Inc. Led array vehicle lamp
WO1997037385A1 (en) * 1996-04-03 1997-10-09 Pressco Technology, Inc. High-density solid-state lighting array for machine vision applications
US5836676A (en) * 1996-05-07 1998-11-17 Koha Co., Ltd. Light emitting display apparatus
US5782555A (en) * 1996-06-27 1998-07-21 Hochstein; Peter A. Heat dissipating L.E.D. traffic light
WO1998042628A1 (de) * 1997-03-26 1998-10-01 Siemens Aktiengesellschaft Verfahren zum herstellen eines glaskörpers mit mindestens einer ausnehmung
DE19714659A1 (de) * 1997-04-09 1998-10-15 Siemens Ag Optoelektronisches Bauelement
EP0921568A2 (de) * 1997-11-25 1999-06-09 Matsushita Electric Works, Ltd. Leuchte mit lichtemittierenden Dioden
WO2001047039A1 (en) * 1999-12-22 2001-06-28 Lumileds Lighting, U.S., Llc Method of making a iii-nitride light-emitting device with increased light generating capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISH F ET AL: "High luminous flux wafer-bonded AlGaInP/GaP emitters", ELECTRONICS LETTERS, 1994, vol. 30, pages 1790 - 1792, XP000476415, ISSN: 0013-5194 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995405B2 (en) 2001-04-23 2006-02-07 Plasma Ireland Limited Illuminator
WO2002086972A1 (en) * 2001-04-23 2002-10-31 Plasma Ireland Limited Illuminator
EP1482567A1 (de) * 2002-03-05 2004-12-01 Rohm Co., Ltd. Lichtemissionsbauelement mit einem led-chip und verfahren zur herstellung dieses bauelements
EP1482567A4 (de) * 2002-03-05 2010-03-31 Rohm Co Ltd Lichtemissionsbauelement mit einem led-chip und verfahren zur herstellung dieses bauelements
AT501081B1 (de) * 2003-07-11 2006-06-15 Guenther Dipl Ing Dr Leising Led sowie led-lichtquelle
TWI420619B (zh) * 2009-03-31 2013-12-21 Osram Opto Semiconductors Gmbh 用於製造複數個光電半導體元件之方法及光電半導體元件
EP2237328A1 (de) * 2009-03-31 2010-10-06 OSRAM Opto Semiconductors GmbH Verfahren zur Herstellung einer Vielzahl von optoelektronischen Halbleiterkomponenten und optoelektronische Halbleiterkomponente
WO2010112383A1 (en) * 2009-03-31 2010-10-07 Osram Opto Semiconductors Gmbh Method for producing a plurality of optoelectronic semiconductor components and optoelectronic semiconductor component
CN102257644A (zh) * 2009-03-31 2011-11-23 欧司朗光电半导体有限公司 用于产生多个光电子半导体元件的方法以及光电子半导体元件
CN102257644B (zh) * 2009-03-31 2014-04-30 欧司朗光电半导体有限公司 用于产生多个光电子半导体元件的方法以及光电子半导体元件
WO2013015862A1 (en) * 2011-07-22 2013-01-31 Guardian Industries Corp. Improved led lighting systems and/or methods of making the same
US8540394B2 (en) 2011-07-22 2013-09-24 Guardian Industries Corp. Collimating lenses for LED lighting systems, LED lighting systems including collimating lenses, and/or methods of making the same
US8742655B2 (en) 2011-07-22 2014-06-03 Guardian Industries Corp. LED lighting systems with phosphor subassemblies, and/or methods of making the same
US8992045B2 (en) 2011-07-22 2015-03-31 Guardian Industries Corp. LED lighting systems and/or methods of making the same
US9450162B2 (en) 2011-07-22 2016-09-20 Guardian Industries Corp. LED lighting systems with phosphor subassemblies, and/or methods of making the same
US9845943B2 (en) 2011-07-22 2017-12-19 Guardian Glass, LLC Heat management subsystems for LED lighting systems, LED lighting systems including heat management subsystems, and/or methods of making the same

Also Published As

Publication number Publication date
DE10033502A1 (de) 2002-01-31
EP1299910A1 (de) 2003-04-09
US6860621B2 (en) 2005-03-01
US20030142500A1 (en) 2003-07-31

Similar Documents

Publication Publication Date Title
WO2002005357A1 (de) Led-modul, verfahren zu dessen herstellung und dessen verwendung
DE10204386B4 (de) Leuchtdiode und Verfahren zu ihrer Herstellung
EP0985235B1 (de) Verfahren zur herstellung eines lichtemittierenden bauelementes
DE19600306C1 (de) Halbleiter-Bauelement, insb. mit einer optoelektronischen Schaltung bzw. Anordnung
EP0905797B1 (de) Halbleiterlichtquelle und Verfahren zu ihrer Herstellung
EP2281316B1 (de) Optoelektronisches halbleiterbauteil
EP0731509A1 (de) Optoelektronischer Wandler und Herstellverfahren
DE2829548C2 (de) Vorrichtung für die Einkopplung des von einer elektrolumineszierenden Halbleiterdiode emittierten Lichts in eine optische Signalfaser
WO2008014771A1 (de) Beleuchtungsanordnung
DE10019665A1 (de) Lumineszenzdiodenchip und Verfahren zu dessen Herstellung
WO2009092362A1 (de) Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements und eines wafers
DE10017336C2 (de) verfahren zur Herstellung von strahlungsemittierenden Halbleiter-Wafern
DE102009015963A1 (de) Optoelektronisches Bauelement
DE2721250A1 (de) Optoelektronisch gekoppelte halbleiteranordnung
EP1271047A2 (de) Leuchte für Fahrzeuge und Verfahren zur Herstellung derselben
DE102015116968A1 (de) Halbleiterlaser und Halbleiterlaseranordnung
WO2017178424A1 (de) Lichtemittierender halbleiterchip, lichtemittierendes bauelement und verfahren zur herstellung eines lichtemittierenden bauelements
DE102017130764B4 (de) Vorrichtung mit Halbleiterchips auf einem Primärträger und Verfahren zur Herstellung einer solchen Vorrichtung
DE3009985A1 (de) Montageverfahren zur herstellung von leuchtdiodenzeilen
DE19905526A1 (de) LED-Herstellverfahren
WO2022248247A1 (de) Optoelektronisches halbleiterbauteil und paneel
DE102021133724A1 (de) Lichtemittierendes modul und verfahren zum herstellen eines lichtemittierenden moduls
EP2619807B1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
DE102018131775A1 (de) Elektronisches Bauelement und Verfahren zur Herstellung eines elektronischen Bauelements
DE10321257A1 (de) Metallträger (Leadframe) zur Aufnahme und Kontaktierung elektrischer und/oder optoelektronischer Bauelemente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001953900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10345442

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001953900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2003119079

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F