WO2002010696A1 - Vorrichtung zur messung des füllstands eines füllguts in einem behälter - Google Patents

Vorrichtung zur messung des füllstands eines füllguts in einem behälter Download PDF

Info

Publication number
WO2002010696A1
WO2002010696A1 PCT/EP2001/008570 EP0108570W WO0210696A1 WO 2002010696 A1 WO2002010696 A1 WO 2002010696A1 EP 0108570 W EP0108570 W EP 0108570W WO 0210696 A1 WO0210696 A1 WO 0210696A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
measuring
container
level
conductive element
Prior art date
Application number
PCT/EP2001/008570
Other languages
English (en)
French (fr)
Inventor
Joachim Neuhaus
Michael Krause
Udo Grittke
Gerd Wartmann
Original Assignee
Endress + Hauser Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress + Hauser Gmbh + Co. Kg filed Critical Endress + Hauser Gmbh + Co. Kg
Priority to AU2001277551A priority Critical patent/AU2001277551A1/en
Priority to JP2002516576A priority patent/JP3806405B2/ja
Priority to CA002424036A priority patent/CA2424036C/en
Priority to EA200300210A priority patent/EA005706B1/ru
Priority to EP01955368A priority patent/EP1305581A1/de
Publication of WO2002010696A1 publication Critical patent/WO2002010696A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves

Definitions

  • the invention relates to a device for measuring the filling level of a filling material in a container.
  • measuring systems are used which measure different physical quantities.
  • the desired information about the fill level is subsequently derived on the basis of these variables.
  • capacitive, conductive or hydrostatic measuring probes are used, as are detectors that work on the basis of ultrasound, microwaves or radioactive radiation.
  • the capacitive probe and container wall form the electrodes of a capacitor. If the container wall is not conductive, a separate second electrode must be provided inside or outside the container. Depending on the fill level of the medium in the container, there is either air or medium between the two electrodes, which is reflected in a change in the measuring capacitance due to the different dielectric constants of the two substances. Furthermore, the measuring capacity is of course also dependent on the respective fill level of the medium in the container, since the two variables' fill level 1 and 'measuring capacity' are functionally dependent on one another. Capacitive probes can therefore be used both for point level detection and for continuous level determination.
  • a capacitive level probe is e.g. B. become known from DE 195 36 199 C2.
  • the measurement signals are coupled onto a conductive element or a waveguide and by means of the Waveguide in the container in which the contents are stored, be introduced.
  • the known variants are suitable as waveguides: surface waveguides according to Sommerfeld or Goubau or Lecher waveguides.
  • this measuring method takes advantage of the effect that at the interface between two different media, e.g. air and oil or air and water, part of the high-frequency pulses or respectively, due to the sudden change (discontinuity) in the dielectric constant of both media the reflected microwaves are reflected and passed back via the conductive element into a receiving device.
  • two different media e.g. air and oil or air and water
  • the reflected microwaves are reflected and passed back via the conductive element into a receiving device.
  • the proportion (- useful echo signal) is greater, the greater the difference in the dielectric constant of the two media.
  • the distance to the surface of the filling material can be determined on the basis of the transit time of the reflected portion of the high-frequency pulses or the CW signals (echo signals).
  • a direct comparison between a capacitive measuring system and a measuring system with guided electromagnetic measuring signals shows certain advantages, but also disadvantages compared to the other method: Measurements of a capacitive sensor are almost insensitive to a moving surface of the medium. Furthermore, the measurements are not significantly influenced by foaming filling goods or by the formation of deposits on the capacitive sensor. However, in order to be able to carry out the level measurement with high precision, calibration of the capacitive measuring system at at least two water levels is required - which, depending on the container size and the contents, can be very time-consuming or, in extreme cases, preclude the use of a capacitive sensor. Another disadvantage of capacitive measuring systems can be seen in the fact that the measurement in the case of a non-conductive filling material is dependent on the respective dielectric constant.
  • the interference signals are caused, for example, by reflections of the measurement signals in the area of the coupling of the measurement signals onto the conductive element, or they occur as a result of the interaction of the measurement signals with one Nozzle in which the measuring system is attached (upper block distance).
  • Another interference signal that limits the possible measuring range occurs at the free end of the conductive element (lower block distance).
  • measuring systems with guided high-frequency measuring signals that they deliver highly precise measuring results and that usually no adjustment, in particular no two-point adjustment as with capacitive measuring systems, is necessary. Furthermore, the measurement by means of guided measurement signals is largely independent of the respective dielectric constant of the medium; in addition, a measuring system with guided high-frequency measuring signals works sufficiently well even with relatively low dielectric constants.
  • the invention is based on the object of proposing a device which allows optimized level determination and / or level monitoring in a container.
  • the device comprises a sensor and a control / evaluation unit, the sensor being designed in such a way that it is operated in connection with at least two different measuring methods or in that the sensor operates in at least two different operating modes, wherein the control / evaluation unit operates the sensor in each case according to one of the two measurement methods or in one of the two operating modes, and the control / evaluation unit uses the measurement data of the sensor, which are supplied via at least one measurement method or during at least one operating mode Level of the filling material in the container determined.
  • the solution according to the invention provides that the measured values are obtained either alternately, with any time offset, or simultaneously, that is to say quasi in parallel, using the capacitive measuring method or the method with guided high-frequency measuring signals.
  • an optimized adaptation of the measuring system to the properties of the product to be measured can be achieved; furthermore, it is possible to use the measuring system to obtain the measured values that delivers the best measurement results under the given conditions.
  • the measured values from the capacitive measuring system and the measuring system with guided measuring signals close together in time a plausibility check can even be carried out.
  • the device according to the invention is characterized in particular by the fact that high-precision fill level measurements are possible over the entire container height, the measurement values used in each case being almost unaffected by the nature and type of the fill substance to be measured.
  • the highly precise measurements over the entire container height are made possible by the fact that one method is or can be replaced by the other method whenever the disadvantages of the other system come into play.
  • the senor is at least one conductive element that extends into the container.
  • the conductive element can be, for example, at least one rod or at least one rope.
  • the at least one conductive element is optionally used to carry out a capacitive measuring method or a transit time method, in the case of the capacitive measuring method the at least one conductive element forming an electrode and, in the case of the transit time method, high-frequency measurement signals along of the at least one conductive element.
  • an input / output unit via which the respectively desired operating mode of the sensor is entered.
  • the operating personnel can therefore optimally adapt the measuring system used to the nature of the medium to be measured or monitored.
  • a switching unit is provided, via which the sensor can be switched from one to the other operating mode.
  • the switching unit is an electronic switch, preferably a MOSFET transistor.
  • one or the other measuring system can be activated alternately via the switch, so that the measured values of one or the other measuring system can be used for level determination / level monitoring.
  • a preferred development of the device according to the invention proposes that a program for controlling the sensor is stored in the control / evaluation unit, via which the sensor is switched alternately or according to a predetermined circuit diagram into the at least two different operating modes.
  • the control / evaluation unit carries out a plausibility check on the basis of the fill level values, which are determined according to at least two different measuring methods.
  • the senor is controlled in such a way that the measurement data determined using the at least two measurement methods are measured or made available simultaneously or almost simultaneously.
  • FIG. 1 The invention is explained in more detail with reference to the following drawing, FIG. 1.
  • a filling material 12 is located in the container 11.
  • This filling material 12 is either a liquid or a solid.
  • the sensor 3 which in an opening 13, for. B. is fixed in a nozzle in the lid 14 of the container 11.
  • An essential part of the sensor 2 is the conductive element 3.
  • the conductive element 3 is designed either as a rope or as a rod.
  • the conductive element 3 preferably extends over the entire height of the container 11.
  • the sensor 2 is designed in such a way that, alternately or in parallel, it supplies both level measurement values which are obtained via a capacitance measurement and also provides level measurement values which are determined by measuring the transit time of high-frequency measurement signals. If the sensor 3 operates in the operating mode 'runtime method', the high-frequency measurement signals are conducted along the conductive element 3 into the container 11 and out of the container 11.
  • the level measurement values are optionally provided via one of the two possible measurement methods.
  • the alternating activation takes place via the control / evaluation unit 4 and the switching unit 7.
  • the control circuit 5 for the capacitive sensor is just connected to the sensor 2 via the switching unit 7, i. H. the
  • Level measurements are obtained via a capacity measurement. After a predetermined time has elapsed, for example controlled by the control / evaluation unit 4, the control circuit 6 for the sensor 2 is connected to the guided measurement signals via the switching unit 7 with the sensor 2. Now the level of the filling material 12 in the container 11 is determined by measuring the transit time of the guided high-frequency measurement signals.
  • a plausibility check can be carried out. If the deviation between the two measured values falls outside a predetermined tolerance range, a corresponding message can be output to the operating personnel, for example, via the input / output unit 10. An alarm can also be activated.
  • the two measuring systems so that one compensates for the weaknesses of the other.
  • the capacitive measuring system it is possible for the capacitive measuring system to be compared by means of the measuring system with guided measuring signals. It is also provided that fill level values which occur in the area of the block distance of the measuring system with guided measuring signals are determined via the capacitive measuring system.
  • sensor 2 it is also possible to use sensor 2 as a kind of universal sensor. Since the two measuring methods - capacitive measuring method and measuring method via the runtime determination of guided high-frequency measuring signals - complement each other perfectly, one or the other measuring method will deliver better measuring results depending on the application. For example, depending on the product 12 to be measured, the sensor 2 can be operated specifically according to one of the two possible measurement methods. The • desired function of the sensor 2 can be set by the operating personnel via the input / output unit 10.

Abstract

Die Erfindung bezieht sich auf eine Vorrichtung zur Messung des Füllstands eines Füllguts (12) in einem Behälter (11) mit einem Sensor (2) und einer Regel-/Auswerteeinheit (4). Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung vorzuschlagen, die eine optimierte Füllstandsbestimmung und/oder Füllstandsüberwachung in einem Behälter (11) erlaubt. Die Aufgabe wird dadurch gelöst, daß der Sensor (2) so ausgebildet ist, daß er in Verbindung mit zumindest zwei unterschiedlichen Meßverfahren betrieben wird bzw. daß der Sensor (2) in zumindest zwei unterschiedlichen Betriebsmoden arbeitet, daß die Regel-/Auswerteeinheit (4) den Sensor (2) jeweils nach zumindest einem der beiden Meßverfahren bzw. zumindest in einem der beiden Betriebsmoden betreibt und daß die Regel-/Auswerteeinheit (4) anhand der Meßdaten des Sensors (2), die über zumindest ein Meßverfahren bzw. während zumindest eines Betriebsmodus' geliefert werden, den Füllstand des Füllguts (12) in dem Behälter (11) bestimmt.

Description

Vorrichtung zur Messung des Füllstands eines Füllguts in einem Behälter
Die Erfindung bezieht sich auf eine Vorrichtung zur Messung des Füllstands eines Füllguts in einem Behälter.
Zur Bestimmung des Füllstands eines Füllguts in einem Behälter werden Meßsysteme eingesetzt, die unterschiedliche physikalische Größen messen. Anhand dieser Größen wird nachfolgend die gewünschte Information über den Füllstand abgeleitet. Neben mechanischen Abtastern werden kapazitive, konduktive oder hydrostatische Meßsonden eingesetzt, ebenso wie Detektoren, die auf der Basis von Ultraschall, Mikrowellen oder radioaktiver Strahlung arbeiten.
Bei kapazitiven Verfahren zur Bestimmung des Füllstandes eines Füllguts in einem Behälter bilden kapazitive Sonde und Behälterwand die Elektroden eines Kondensators. Falls die Behälterwand nicht leitfähig ist, muß eine separate zweite Elektrode innerhalb oder außerhalb des Behälters vorgesehen sein. Zwischen den beiden Elektroden befindet sich -je nach Füllstand des Mediums in dem Behälter - entweder Luft oder Medium, was sich aufgrund der unterschiedlichen Dielektrizitätskonstanten beider Substanzen in einer Änderung der Meßkapazität niederschlägt. Weiterhin ist die Meß- kapazität natürlich auch abhängig von dem jeweiligen Füllstand des Mediums in dem Behälter, da die beiden Größen 'Füllstand1 und 'Meß kapazität' funktional voneinander abhängen. Kapazitive Sonden lassen sich daher sowohl bei der Grenzstanddetektion als auch bei einer kontinuierliche Füllstandsbestimmung einsetzen. Eine kapazitive Füllstandssonde ist z. B. aus der DE 195 36 199 C2 bekannt geworden.
Bei' Laufzeitverfahren mit geführten elektromagnetischen Hochfrequenzpulsen (TDR-Verfahren oder Puls-Radar-Verfahren) oder mit kontinuierlichen, frequenzmodulierte Mikrowellen (z. B. FMCW-Radar-Verfahren) werden die Meßsignale auf ein leitfähiges Element bzw. einen Wellenleiter eingekoppelt und mittels des Wellenleiters in den Behälter, in dem das Füllgut gelagert ist, hineingeführt werden. Als Wellenleiter kommen die bekannten Varianten: Oberflächenwellenleiter nach Sommerfeld oder Goubau oder Lecher- wellenleiter in Frage.
Physikalisch gesehen wird bei dieser Meßmethode der Effekt ausgenutzt, daß an der Grenzfläche zwischen zwei verschiedenen Medien, z, B. Luft und Öl oder Luft und Wasser, infolge der sprunghaften Änderung (Diskontinuität) der Dielektrizitätszahlen beider Medien ein Teil der geführten Hochfrequenz- Impulse bzw. der geführten Mikrowellen reflektiert und über das leitfähige Element zurück in eine Empfangsvorrichtung geleitet wird. Der reflektierte
Anteil (- Nutzechosignal) ist dabei um so größer, je größer der Unterschied in den Dielektrizitätszahlen der beiden Medien ist. Anhand der Laufzeit des reflektierten Anteils der Hochfrequenz-Impulse bzw. der CW-Signale (Echosignale) läßt sich die Entfernung zur Oberfläche des Füllguts bestimmen.
Im direkten Vergleich zwischen einem kapazitiven Meßsystem und einem Meßsystem mit geführten elektromagnetischen Meßsignalen zeigen sich gewisse Vorteile, aber auch Nachteile gegenüber der jeweils anderen Methode: Messungen eines kapazitiven Sensors sind nahezu unempfindlich gegenüber einer bewegten Oberfläche des Füllguts. Weiterhin werden die Messungen weder durch schäumende Füllgüter noch durch die Bildung von Ansatz an dem kapazitiven Sensor in nennenswerter Weise beeinflußt. Allerdings ist - um die Füllstandsmessung hoch genau durchzuführen zu können - eine Eichung des kapazitiven Meßsystems bei zumindest zwei Pegelständen erforderlich - was je nach Behältergröße und Füllgut sehr zeitaufwendig sein kann oder im Extremfall den Einsatz eines kapazitiven Sensors ausschließt. Ein weiterer Nachteil kapazitiver Meßsysteme ist darin zu sehen, daß die Messung bei einem nicht-leitfähigen Füllgut abhängig ist von der jeweiligen Dielektrizitätskonstanten.
Kritisch bei einem Meßsystem mit geführten hochfrequenten Meßsignalen ist, daß Füllstandsmessungen im Bereich der sog. Blockdistanz nicht möglich sind, da hier die Nutzechosignale in Störsignalen verschwinden. Die Störsignale werden beispielsweise durch Reflexionen der Meßsignale im Bereich der Einkopplung der Meßsignale auf das leitfähige Element verursacht, oder sie treten auf als Folge der Wechselwirkung der Meßsignale mit einem Stutzen, in dem das Meßsystem befestigt ist (obere Blockdistanz). Ein weiteres den möglichen Meßbereich einschränkendes Störsignal tritt am freien Ende des leitfähigen Elements auf (untere Blockdistanz).
Sehr vorteilhaft bei Meßsystemen mit geführten hochfrequenten Meßsignalen ist hingegen, daß sie hochgenaue Meßergebnisse liefern und daß üblicherweise kein Abgleich, insbesondere kein Zwei-Punkt-Abgleich wie bei kapazitiven Meßsystemen, notwendig ist. Weiterhin ist die Messung mittels geführter Meßsignale weitgehend unabhängig von der jeweiligen Dielektrizitäts- konstanten des Füllguts; darüber hinaus funktioniert ein Meßsystem mit geführten hochfrequenten Meßsignalen selbst noch bei relativ kleinen Dielektrizitätskonstanten hinreichend gut.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung vorzuschlagen, die eine optimierte Füllstandsbestimmung und/oder Füllstandsüberwachung in einem Behälter erlaubt.
Die Aufgabe wird dadurch gelöst, daß die Vorrichtung einen Sensor und eine Regel-/Auswerteeinheit umfaßt, wobei der Sensor so ausgebildet ist, daß er in Verbindung mit zumindest zwei unterschiedlichen Meßverfahren betrieben wird bzw. daß der Sensor in zumindest zwei unterschiedlichen Betriebsmoden arbeitet, wobei die Regel-/Auswerteeinheit den Sensor jeweils nach einem der beiden Meßverfahren bzw. in einem der beiden Betriebsmoden betreibt und wobei die Regel-/Auswerteeinheit anhand der Meßdaten des Sensors, die über zumindest ein Meßverfahren bzw. während zumindest eines Betriebsmodus' geliefert werden, den Füllstand des Füllguts in dem Behälter bestimmt. Die erfindungsgemäße Lösung sieht vor, daß die Meßwerte über das kapazitive Meßverfahren bzw. über das Verfahren mit geführten hochfrequenten Meßsignalen entweder alternierend, zeitlich beliebig versetzt oder gleichzeitig, also quasi parallel gewonnen werden. So läßt sich beispielsweise eine optimierte Anpassung des Meßsystems an die Eigenschaften des jeweils zu messenden Füllguts erzielen; weiterhin ist es möglich, jeweils das Meßsystem zur Meßwertgewinnung heranzuziehen, das unter den gegebenen Bedingungen die besten Meßergebnisse liefert. Liegen die Meßwerte, die von dem kapazitiven Meßsystem und dem Meßsystem mit geführten Meßsignalen zeitlich dicht zusammen, so läßt sich darüber hinaus sogar ein Plausibilitäts- check durchführen.
Die erfindungsgemäße Vorrichtung zeichnet sich insbesondere dadurch aus, daß hochgenaue Füllstandsmessungen über die gesamte Behälterhöhe möglich sind, wobei die jeweils herangezogenen Meßwerte nahezu unbeeinflußt sind von der Beschaffenheit und der Art des jeweils zu messenden Füllguts. Die hochgenauen Messungen über die gesamte Behälterhöhe werden dadurch möglich, daß das eine Verfahren immer dann durch das jeweils andere Verfahren ersetzt wird oder werden kann, wenn die Nachteile des jeweils anderen Systems zum Tragen kommen. Weiterhin ist es möglich, die Meßwerte, die das eine System liefert, anhand der Meßwerte, die das andere Meßsystem liefert, zu korrigieren. Weiterhin eröffnet sich die Möglichkeit, beispielsweise den Abgleich des kapazitiven Meßsystems über die Meßwerte vorzunehmen, die das Meßsystem mit geführten Meßsignalen liefert.
Gemäß einer bevorzugten Weiterbildung der erfindungsgemäßen Vorrichtung handelt es sich bei dem Sensor um zumindest ein leitfähiges Element, das sich in den Behälter hineinerstreckt. Bei dem leitfähigen Element kann es sich beispielsweise um zumindest eine Stange oder um zumindest ein Seil handeln.
Eine vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung sieht vor, daß das zumindest eine leitfähige Element wahlweise zur Durchführung eines kapazitiven Meßverfahrens oder eines Laufzeitverfahrens verwendet wird, wobei im Falle des kapazitiven Meßverfahrens das zumindest eine leitfähige Element eine Elektrode bildet und wobei im Falle des Laufzeitverfahrens hochfrequente Meßsignale entlang des zumindest einen leitfähigen Elements geführt werden.
Gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung wird eine Eingabe-/Ausgabeeinheit vorgeschlagen, über die der jeweils gewünschte Betriebsmodus des Sensors eingegeben wird. Das Bedien- personal kann also das eingesetzte Meßsystem optimal an die Beschaffenheit des zu messenden oder zu überwachenden Füllguts anpassen. Alternativ ist eine Schalteinheit vorgesehen, über die der Sensor von dem einen in den anderen Betriebsmodus schaltbar ist. Insbesondere handelt es sich bei der Schalteinheit um einen elektronischen Schalter, vorzugsweise um einen MOSFET-Transistor. Wie bereits erwähnt, kann über den Schalter abwechselnd das eine oder das andere Meßsystem aktiviert werden, so daß die Meßwerte des einen oder des anderen Meßsystems zur Füllstandsbestimmung/Füllstandsüberwachung herangezogen werden können.
Eine bevorzugte Weiterbildung der erfindungsgemäßen Vorrichtung schlägt vor, daß in der Regel-/Auswerteeinheit ein Programm zur Ansteuerung des Sensors abgelegt ist, über das der Sensor alternierend oder nach einem vorgegebenen Schaltschema in die zumindest zwei unterschiedlichen Betriebsmoden geschaltet wird. Insbesondere ist vorgesehen, daß die Regel- /Auswerteeinheit anhand der Füllstandswerte, die nach zumindest zwei unterschiedlichen Meßverfahren ermittelt werden, einen Plausibilitätscheck durchführt.
Darüber hinaus wird gemäß einer vorteilhaften Ausführungsform der erfindungsgemäßen Vorrichtung der Sensor derart ansteuert, daß die nach den zumindest zwei Meßverfahren ermittelten Meßdaten gleichzeitig bzw. nahezu gleichzeitig gemessen bzw. bereitgestellt werden.
Die Erfindung wird anhand der nachfolgenden Zeichnung Fig. 1 näher erläutert.
Fig. 1 zeigt eine schematische Darstellung der erfindungsgemäßen Vorrichtung 1. Ein Füllgut 12 befindet sich in dem Behälter 11. Bei diesem Füllgut 12 handelt es sich entweder um eine Flüssigkeit oder um einen Feststoff. In den Behälter 11 hinein erstreckt sich der Sensor 3, der in einer Öffnung 13, z. B. in einem Stutzen, im Deckel 14 des Behälters 11 befestigt ist. Wesentlicher Teil des Sensors 2 ist das leitfähige Element 3. Das leitfähige Element 3 ist entweder als Seil oder als Stange ausgebildet. Bevorzugt erstreckt sich das leitfähige Element 3 über die gesamte Höhe des Behälters 11. Der Sensor 2 ist derart ausgestaltet, daß er alternierend oder parallel sowohl Füllstandsmeßwerte liefert, die über eine Kapazitätsmessung gewonnen werden, als auch Füllstandsmeßwerte bereitstellt, die über die Messung der Laufzeit von hochfrequenten Meßsignalen ermittelt werden. Arbeitet der Sensor 3 im Betriebsmodus 'Laufzeitverfahren', so werden die hochfrequenten Meßsignale an dem leitfähigen Element 3 entlang in den Behälter 11 und aus dem Behälter 11 geführt.
Bei dem in der Fig. 1 dargestellten Ausführungsbeispiel der erfindungsgemäßen Vorrichtung 1 erfolgt die Bereitstellung der Füllstandsmeßwerte wahlweise über eines der beiden möglichen Meßverfahren. Die alternierende Ansteuerung erfolgt über die Regel-/Auswerteeinheit 4 und die Schalteinheit 7. Im dargestellten Fall ist gerade die Steuerschaltung 5 für den kapazitiven Sensor über die Schalteinheit 7 mit dem Sensor 2 verbunden, d. h. die
Füllstandsmeßwerte werden über eine Kapazitätsmessung gewonnen. Nach Ablauf einer vorgegebenen Zeit wird, beispielsweise gesteuert von der Regel- /Auswerteeinheit 4, die Steuerschaltung 6 für den Sensor 2 mit den geführten Meßsignalen über die Schalteinheit 7 mit dem Sensor 2 verbunden. Nunmehr erfolgt die Ermittlung des Füllstandes des Füllguts 12 in dem Behälter 11 über die Messung der Laufzeit der geführten hochfrequenten Meßsignale.
Kommen beide Meßverfahren abwechselnd oder aber gleichzeitig zum Einsatz, so läßt sich ein Plausibilitätscheck durchführen. Fällt die Abweichung zwischen den beiden Meßwerten aus einem vorgegebenen Toleranzrahmen heraus, kann beispielsweise über die Eingabe-/Ausgabeeinheit 10 eine entsprechende Mitteilung an das Bedienpersonal ausgegeben werden. Zusätzlich kann ein Alarm aktiviert werden.
Weiterhin ist es vorgesehen, die beiden Meßsysteme so einzusetzen, daß das eine die Schwächen des jeweils anderen ausgleicht. So ist es beispielsweise möglich, daß der Abgleich des kapazitiven Meßsystems mittels des Meßsystems mit geführten Meßsignalen durchgeführt wird. Weiterhin ist vorgesehen, daß Füllstandswerte, die im Bereich der Blockdistanz des Meßsystems mit geführten Meßsignalen auftreten, über das kapazitive Meßsystem bestimmt werden. Selbstverständlich ist es auch möglich, den Sensor 2 quasi als Universalsensor einzusetzen. Da die beiden Meßverfahren - kapazitives Meßverfahren und Meßverfahren über die Laufzeitbestimmung von geführten hochfrequenten Meßsignalen - sich hervorragend gegenseitig ergänzen, wird je nach Anwendungsfall das eine oder das andere Meßverfahren bessere Meßergebnisse liefern. So kann beispielsweise ganz gezielt in Abhängigkeit von dem jeweils zu messenden Füllgut 12 der Sensor 2 ausschließlich nach einem der beiden möglichen Meßverfahren betrieben werden. Die gewünschte Funktion des Sensors 2 kann vom Bedienpersonal über die Eingabe-/Ausgabeeinheit 10 eingestellt werden.
Bezugszeichenliste
erfindungsgemäße Vorrichtung
Sensor
Leitfähiges Element
Regel-/Auswerteeinheit
Steuerschaltung für kapazitiven Sensor
Steuerschaltung für Sensor mit geführten Meßsignalen
Schalteinheit
Verbindungsleitung
Einkopplung
Eingabe-/Ausgabeeinheit
Behälter
Füllgut
Öffnung
Deckel

Claims

Patentansprüche
1. Vorrichtung zur Messung des Füllstands eines Füllguts in einem Behälter mit einem Sensor und einer Regel-/Auswerteeinheit, dadurch gekennzeichnet, daß der Sensor (2) so ausgebildet ist, daß er in Verbindung mit zumindest zwei unterschiedlichen Meßverfahren betrieben wird bzw. daß der Sensor (2) in zumindest zwei unterschiedlichen Betriebsmoden arbeitet, daß die Regel-/Auswerteeinheit (4) den Sensor (2) jeweils nach zumindest einem der beiden Meßverfahren bzw. zumindest in einem der beiden
Betriebsmoden betreibt und daß die Regel-/Auswerteeinheit (4) anhand der Meßdaten des Sensors (2), die über zumindest ein Meßverfahren bzw. während zumindest eines
Betriebsmodus' geliefert werden, den Füllstand des Füllguts (12) in dem
Behälter (11) bestimmt.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß es sich bei dem Sensor (2) um zumindest ein leitfähiges Element (3) handelt, das sich in den Behälter (11) hineinerstreckt.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet,
- daß es sich bei dem leitfähigen Element (3) um zumindest eine Stange oder um zumindest ein Seil handelt.
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das zumindest eine leitfähige Element (3) wahlweise für ein kapazitives Meßverfahren oder für ein Laufzeitverfahren verwendet wird, wobei im Falle des kapazitiven Meßverfahrens das zumindest eine leitfähige Element (3) eine Elektrode bildet und wobei im Falle des Laufzeitverfahrens hochfrequente Meßsignale entlang des zumindest einen leitfähigen Elements (3) geführt werden.
5. Vorrichtung nach Anspruch 1 , 2, 3 oder 4, dadurch gekennzeichnet, daß eine Eingabeeinheit (10) vorgesehen ist, über die der jeweils gewünschte Betriebsmodus des Sensors (2) eingegeben wird.
6. Vorrichtung nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, daß eine Schalteinheit (7) vorgesehen ist, über die der Sensor (2) von dem einen in den anderen Betriebsmodus schaltbar ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß es sich bei der Schalteinheit (7) um einen elektronischen Schalter, vorzugsweise um einen MOSFET-Transistor, handelt.
8. Vorrichtung nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß in der Regel-/Auswerteeinheit (4) ein Programm zur Ansteuerung des Sensors (2) vorgesehen ist, über das der Sensor (2) kontinuierlich, alternierend oder nach einem vorgegebenen Schaltschema in die zumindest zwei unterschiedlichen Betriebsmoden geschaltet wird.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Regel-/Auswerteeinheit (4) anhand der Füllstandswerte, die nach zumindest zwei unterschiedlichen Meßverfahren ermittelt werden, einen
Plausibilitätscheck durchführt.
10. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Regel-/Auswerteeinheit (4) den Sensor (2) derart ansteuert, daß die nach den zumindest zwei Meßverfahren ermittelten Meßdaten gleichzeitig bzw. nahezu gleichzeitig gemessen werden.
PCT/EP2001/008570 2000-08-02 2001-07-25 Vorrichtung zur messung des füllstands eines füllguts in einem behälter WO2002010696A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001277551A AU2001277551A1 (en) 2000-08-02 2001-07-25 Device for measuring the level of a material in a container
JP2002516576A JP3806405B2 (ja) 2000-08-02 2001-07-25 容器内の充填物の充填レベルを測定するための測定装置
CA002424036A CA2424036C (en) 2000-08-02 2001-07-25 Device for measuring the filling level of a filling material in a container
EA200300210A EA005706B1 (ru) 2000-08-02 2001-07-25 Устройство для измерения уровня загружаемого материала в резервуаре
EP01955368A EP1305581A1 (de) 2000-08-02 2001-07-25 Vorrichtung zur messung des füllstands eines füllguts in einem behälter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10037715A DE10037715A1 (de) 2000-08-02 2000-08-02 Vorrichtung zur Messung des Füllstands eines Füllguts in einem Behälter
DE10037715.7 2000-08-02

Publications (1)

Publication Number Publication Date
WO2002010696A1 true WO2002010696A1 (de) 2002-02-07

Family

ID=7651107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/008570 WO2002010696A1 (de) 2000-08-02 2001-07-25 Vorrichtung zur messung des füllstands eines füllguts in einem behälter

Country Status (9)

Country Link
US (1) US6481276B2 (de)
EP (1) EP1305581A1 (de)
JP (1) JP3806405B2 (de)
CN (1) CN1222758C (de)
AU (1) AU2001277551A1 (de)
CA (1) CA2424036C (de)
DE (1) DE10037715A1 (de)
EA (1) EA005706B1 (de)
WO (1) WO2002010696A1 (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0200486L (sv) * 2002-02-18 2003-08-19 Hedson Technologies Ab Mätanordning
DE10240550A1 (de) * 2002-08-29 2004-03-18 Krohne S.A. Füllstandsmeßgerät
KR100517305B1 (ko) * 2002-12-09 2005-09-27 손덕수 전송선을 이용한 자동차 연료 게이지
US6948377B2 (en) 2003-12-08 2005-09-27 Honeywell International, Inc. Method and apparatus for detecting the strain levels imposed on a circuit board
US7162922B2 (en) 2003-12-23 2007-01-16 Freger David I Non-invasive method for detecting and measuring filling material in vessels
KR101260981B1 (ko) 2004-06-04 2013-05-10 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
EP1804038A1 (de) * 2005-12-29 2007-07-04 Endress + Hauser GmbH + Co. KG Verfahren zur Feststellung des Füllstandes einer ersten Flüssigkeit in einem Behälter und zur Feststellung des Vorhandenseins einer zweiten Flüssigkeit unter der ersten Flüssigkeit sowie Füllstandsmessvorrichtung zur Ausführung dieses Verfahrens
US20080129583A1 (en) * 2006-12-01 2008-06-05 Lars Ove Larsson Radar level detector
KR101519038B1 (ko) 2007-01-17 2015-05-11 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 프린팅­기반 어셈블리에 의해 제조되는 광학 시스템
DE102007007024A1 (de) * 2007-02-08 2008-08-21 KROHNE Meßtechnik GmbH & Co. KG Verwendung eines nach dem Radar-Prinzip arbeitenden Füllstandsmeßgeräts
DE102007042043A1 (de) 2007-09-05 2009-03-12 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und Überwachung des Füllstands eines Füllguts in einem Behälter
DE102007061573A1 (de) * 2007-12-18 2009-06-25 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und/oder Überwachung zumindest eines Füllstands von zumindest einem Medium in einem Behälter gemäß einer Laufzeitmessmethode und/oder einer kapazitiven Messmethode
DE102007061574A1 (de) * 2007-12-18 2009-06-25 Endress + Hauser Gmbh + Co. Kg Verfahren zur Füllstandsmessung
US8410948B2 (en) * 2008-05-12 2013-04-02 John Vander Horst Recreational vehicle holding tank sensor probe
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
WO2010042653A1 (en) 2008-10-07 2010-04-15 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
DE102008043252A1 (de) * 2008-10-29 2010-05-06 Endress + Hauser Gmbh + Co. Kg Füllstandsmessgerät
DE102008043412A1 (de) * 2008-11-03 2010-05-06 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
CN101551264B (zh) * 2009-04-28 2011-01-05 哈尔滨威帝电子股份有限公司 一种电容电子式燃油传感器
TWI592996B (zh) 2009-05-12 2017-07-21 美國伊利諾大學理事會 用於可變形及半透明顯示器之超薄微刻度無機發光二極體之印刷總成
US20110056289A1 (en) * 2009-09-07 2011-03-10 Senghaas Karl A Floatless Rain Gauge
EP2974673B1 (de) 2010-03-17 2017-03-22 The Board of Trustees of the University of Illionis Implantierbare biomedizinische vorrichtungen auf bioresorbierbaren substraten
US8701483B2 (en) 2010-12-16 2014-04-22 Vega Grieshaber Kg Device for emulsion measuring by means of a standpipe
JP5158218B2 (ja) * 2011-01-10 2013-03-06 株式会社デンソー 液面レベル計測装置
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
WO2012149521A2 (en) 2011-04-29 2012-11-01 Ametek, Inc. System for measuring material levels using capacitance and time domain reflectometry sensors
EP2712491B1 (de) 2011-05-27 2019-12-04 Mc10, Inc. Flexible elektronische struktur
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US9019367B2 (en) * 2011-06-10 2015-04-28 Wuerth Elektronik Ics Gmbh & Co. Kg Method for dynamically detecting the fill level of a container, container therefor, and system for dynamically monitoring the fill level of a plurality of containers
DE102011053407A1 (de) * 2011-09-08 2013-03-14 Beko Technologies Gmbh Füllstandsüberwachung
US9261395B2 (en) * 2012-02-13 2016-02-16 Goodrich Corporation Liquid level sensing system
WO2013149181A1 (en) 2012-03-30 2013-10-03 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
GB2505190A (en) * 2012-08-21 2014-02-26 Schrader Electronics Ltd Level sensing in a vehicle fuel tank using electromagnetic fields
US9228877B2 (en) * 2012-09-26 2016-01-05 Rosemount Tank Radar Ab Guided wave radar level gauge system with dielectric constant compensation through multi-frequency propagation
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US10113994B2 (en) 2013-02-06 2018-10-30 Ultimo Measurement Llc Non-invasive method for measurement of physical properties of free flowing materials in vessels
DE102013102055A1 (de) * 2013-03-01 2014-09-18 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Überwachung eines vorgegebenen Füllstands eines Mediums in einem Behälter
DE102013104781A1 (de) * 2013-05-08 2014-11-13 Endress + Hauser Gmbh + Co. Kg Verfahren zur Überwachung zumindest einer medienspezifischen Eigenschaft eines Mediums
RU2579634C2 (ru) * 2013-05-16 2016-04-10 ОАО "Теплоприбор" Радиолокационный волноводный уровнемер с волноводной парой
US9816848B2 (en) 2014-01-23 2017-11-14 Ultimo Measurement Llc Method and apparatus for non-invasively measuring physical properties of materials in a conduit
DE102014107927A1 (de) * 2014-06-05 2015-12-17 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Überwachung des Füllstandes eines Mediums in einem Behälter
KR20160019656A (ko) * 2014-08-12 2016-02-22 엘지전자 주식회사 공기조화기의 제어방법 그에 따른 공기조화기
AU2018366927A1 (en) * 2017-11-16 2020-04-23 Casale Sa A method and system for measuring a liquid level in a pressure vessel of a urea synthesis plant
CN109328620B (zh) * 2018-09-19 2020-04-24 农业部南京农业机械化研究所 一种谷物联合收割机的实时测产系统及方法
DE102020114108A1 (de) * 2020-05-26 2021-12-02 Endress+Hauser SE+Co. KG Füllstandsmessgerät
RU2757542C1 (ru) * 2021-02-19 2021-10-18 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения уровня диэлектрической жидкости в емкости

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510484A1 (de) * 1995-03-27 1996-10-02 Krohne Messtechnik Kg Füllstandsmesser
US6006604A (en) * 1997-12-23 1999-12-28 Simmonds Precision Products, Inc. Probe placement using genetic algorithm analysis

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169543A (en) * 1977-10-20 1979-10-02 Keystone International, Inc. Amplitude responsive detector
FR2514497A1 (fr) * 1981-10-08 1983-04-15 Jaeger Dispositif de detection numerique de niveau par fil chaud
US4601201A (en) * 1984-03-14 1986-07-22 Tokyo Tatsuno Co., Ltd. Liquid level and quantity measuring apparatus
DE3617223A1 (de) 1985-05-28 1986-12-04 Jakob 7954 Bad Wurzach Altvater Verfahren und transportfahrzeug zur behandlung von klaergas, deponiegas o. dgl.
US4799174A (en) * 1986-03-13 1989-01-17 Drexelbrook Controls, Inc. Multiple set point condition monitoring systems
US4739658A (en) * 1986-04-02 1988-04-26 Nuvatec, Inc. Level sensing system
DE3617234A1 (de) * 1986-05-22 1987-11-26 Meyer Fa Rud Otto Wasser- oder feuchtemelder
EP0289172B1 (de) * 1987-04-28 1992-06-10 Simmonds Precision Products Inc. Apparat und Methode zum Bestimmen einer Flüssigkeitsmenge
DE3904824A1 (de) * 1989-02-17 1990-08-23 Gok Gmbh & Co Kg Inhaltsanzeiger fuer fluessiggasbehaelter
GB2260235B (en) * 1991-09-26 1995-07-12 Schlumberger Ind Ltd Measurement of liquid level
DE4233324C2 (de) * 1992-10-05 1996-02-01 Krohne Messtechnik Kg Verfahren zur Messung des Füllstandes einer Flüssigkeit in einem Behälter nach dem Radarprinzip
JPH07128115A (ja) * 1993-10-28 1995-05-19 Yoshijirou Watanabe 静電容量式レベル検出装置
DE4405238C2 (de) * 1994-02-18 1998-07-09 Endress Hauser Gmbh Co Anordnung zur Messung des Füllstands in einem Behälter
JPH07294309A (ja) * 1994-04-26 1995-11-10 Yokogawa Uezatsuku Kk 水位計測システム
DE19536199C2 (de) 1995-09-28 1997-11-06 Endress Hauser Gmbh Co Verfahren zur Einstellung des Schaltpunktes bei einem kapazitiven Füllstandsgrenzschalter
US5827985A (en) * 1995-12-19 1998-10-27 Endress + Hauser Gmbh + Co. Sensor apparatus for process measurement
DE19646685A1 (de) * 1996-11-12 1998-05-14 Heuft Systemtechnik Gmbh Verfahren zur Bestimmung von Parametern, z. B. Füllstand, Druck, Gaszusammensetzung in verschlossenen Behältern
JP2000055712A (ja) * 1998-08-08 2000-02-25 Miura Co Ltd 液位検出器の異常検出方法および校正方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510484A1 (de) * 1995-03-27 1996-10-02 Krohne Messtechnik Kg Füllstandsmesser
US6006604A (en) * 1997-12-23 1999-12-28 Simmonds Precision Products, Inc. Probe placement using genetic algorithm analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OGLESBY W: "AUTOMATIC TANK GAUGING SYSTEMS COMPARED TO -PROCESS LEVEL INSTRUMENTATION -", ADVANCES IN INSTRUMENTATION AND CONTROL, INSTRUMENT SOCIETY OF AMERICA, RESEARCH TRIANGLE PARK, US, vol. 49, no. PART 2, 1994, pages 463 - 470, XP000491447, ISSN: 1054-0032 *

Also Published As

Publication number Publication date
EP1305581A1 (de) 2003-05-02
AU2001277551A1 (en) 2002-02-13
US6481276B2 (en) 2002-11-19
CN1222758C (zh) 2005-10-12
JP2004513330A (ja) 2004-04-30
CA2424036A1 (en) 2003-03-17
DE10037715A1 (de) 2002-02-14
JP3806405B2 (ja) 2006-08-09
CN1443302A (zh) 2003-09-17
CA2424036C (en) 2007-01-23
EA200300210A1 (ru) 2003-06-26
EA005706B1 (ru) 2005-04-28
US20020017131A1 (en) 2002-02-14

Similar Documents

Publication Publication Date Title
EP1305581A1 (de) Vorrichtung zur messung des füllstands eines füllguts in einem behälter
EP1972905B1 (de) Füllstandsmessvorrichtung
DE102007060579B4 (de) Verfahren zur Ermittlung und/oder zur Beurteilung des Befüllzustands eines mit zumindest einem Medium gefüllten Behälters
EP2223059B1 (de) Verfahren zur füllstandsmessung
EP0681184B1 (de) Analysengerät mit automatischer Justierung der Transporteinrichtung der Pipettiernadel
EP3080563B1 (de) Vorrichtung zur messung des füllstands eines füllguts in einem behälter
EP2223060B1 (de) VORRICHTUNG ZUR ERMITTLUNG UND/ODER ÜBERWACHUNG ZUMINDEST EINES FÜLLSTANDS VON ZUMINDEST EINEM MEDIUM IN EINEM BEHÄLTER GEMÄß EINER LAUFZEITMESSMETHODE UND/ODER EINER KAPAZITIVEN MESSMETHODE
DE102010038732B4 (de) Vorrichtung und Verfahren zur Sicherung der Befestigung eines koaxial um eine Messsonde angeordneten Rohres einer Messsondeneinheit eines Füllstandsmessgerätes an einem Prozessanschlusselement
EP3054271B1 (de) Grenzstandschalter mit integriertem Lagesensor
WO2019214924A1 (de) Tdr-messvorrichtung zur bestimmung der dielektrizitätskonstanten
DE10325267A1 (de) Anordnung und Verfahren zur Füllstandsmessung
EP1454117B1 (de) Vorrichtung zur bestimmung und/oder überwachung des füllstandes eines füllguts in einem behälter
EP1083412A1 (de) Vorrichtung zur Bestimmung einer physikalischen Grösse eines flüssigen oder festen Mediums
EP1128169A1 (de) Verfahren und Vorrichtung zur Bestimmung des Grenzfüllstandes eines Füllguts in einem Behälter
EP1191315A2 (de) Vorrichtung und Verfahren zur Ermittlung der Positionen der Grenzfläche unterschiedlicher Medien
DE102005015548B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Füllstandes eines Mediums
DE19516789B4 (de) Blutreservoirfüllstand-Überwachungsvorrichtung
EP3447456A1 (de) Tdr-füllstandmessgerät und verfahren zum betreiben eines tdr-füllstandmessgeräts
DE19934041C2 (de) Füllstand-Sensorvorrichtung
EP1004858A1 (de) Füllstandsmessgerät
EP3837509B1 (de) Füllstandsmessgerät
DE10196640B4 (de) Verbesserte Schwellenwerteinstellung für einen Radar-Pegeltransmitter
DE102019124825B4 (de) Messgerät zur Bestimmung eines Dielelektrizitätswertes
DE102015202448A1 (de) Auswerteverfahren für einen TDR-Grenzstandschalter
EP4196775A1 (de) Temperaturkompensiertes dielektrizitätswert-messgerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001955368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018131700

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002516576

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200300210

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2424036

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2001955368

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642