WO2002026169A2 - Mobile bearing knee prosthesis - Google Patents

Mobile bearing knee prosthesis Download PDF

Info

Publication number
WO2002026169A2
WO2002026169A2 PCT/US2001/030009 US0130009W WO0226169A2 WO 2002026169 A2 WO2002026169 A2 WO 2002026169A2 US 0130009 W US0130009 W US 0130009W WO 0226169 A2 WO0226169 A2 WO 0226169A2
Authority
WO
WIPO (PCT)
Prior art keywords
insert
post
knee prosthesis
tray
tibial
Prior art date
Application number
PCT/US2001/030009
Other languages
French (fr)
Other versions
WO2002026169A3 (en
Inventor
Robert Brosnahan
Christopher P. Carson
David Evans
Greg Marik
Albert Pothier
Michael Ries
Original Assignee
Smith & Nephew, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smith & Nephew, Inc. filed Critical Smith & Nephew, Inc.
Priority to JP2002530000A priority Critical patent/JP4746257B2/en
Priority to DE60127275T priority patent/DE60127275T2/en
Priority to EP01975375A priority patent/EP1322262B1/en
Priority to CA2423439A priority patent/CA2423439C/en
Priority to AU2001294709A priority patent/AU2001294709A1/en
Publication of WO2002026169A2 publication Critical patent/WO2002026169A2/en
Publication of WO2002026169A3 publication Critical patent/WO2002026169A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3886Joints for elbows or knees for stabilising knees against anterior or lateral dislocations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3868Joints for elbows or knees with sliding tibial bearing

Definitions

  • the present invention relates to orthopaedic prosthetic devices, and more particularly to an improved rotating platform, mobile knee prosthesis that incorporates anterior stabilization along with the ability to constrain the movement of the articular surface from rotation and translation, to rotation only.
  • Femoral rollback is believed to improve range of motion and extensor mechanism leverage so as to improve efficiency and more accurately replicate natural kinematics.
  • Conventional mobile bearing designs may lack the desired effect of femoral rollback, particularly in the absence of the posterior cruciate ligament.
  • PS fixed bearing designs provide femoral rollback by articulating a cam on the femoral component with a post on the tibial articular insert during flexion.
  • PS fixed bearing designs do not have the advantages of mobile bearing designs with regards to enhanced range of motion, reduced rehabilitation time, improved patellofemoral alignment, increased contact area, and reduced bone- implant interface shear forces.
  • any type of posterior stabilized design (fixed bearing or mobile bearing)
  • one of the most problematic failure modes of the polyethylene is the fracture of the central post of the insert. This failure can be attributed to "notching" the anterior side of the central post with the anterior most inner-condylar area of the femoral component.
  • any mechanism to reduce the probability for impingement of the femoral component against the anterior side of the tibial central post in hyper- extension would reduce the probability for tibial insert post failure due to "notching" and ultimately breaking.
  • US 5,879,392 provides a tibial baseplate with a fixed post that extrudes through the stem of the tibial baseplate and through the bearing component and articulates with a recess within the femoral component.
  • EP 0916321 A2 provides a femoral component with transverse flanges on the medial and lateral surfaces of the posterior stabilized box that articulates with projections from the medial and lateral surfaces of the post.
  • WO 95/35484 provides a bearing component with a post that articulates with a recess within the femoral component.
  • the bearing component is limited in rotational, anterior, and posterior movement with respect to the tibial component.
  • the present invention has as an object a tibial prosthesis and mating articular insert with specially configured stabilization posts.
  • the invention enables for the surgeon to convert a mobile bearing articular surface from a fixed to a rotating only or translating only.
  • the prosthesis can also provide rotation and translation simultaneously.
  • Rotational freedom has more benefit than translational freedom in reducing the potential for fatigue wear.
  • a post on the proximal tibial base plate can be positioned with an offset with respect to an oval hole in the articular insert to provide anterior stabilization in the total knee prosthesis.
  • the prosthesis of the present invention will be used as part of a total knee surgery when the surgeon chooses to use a prosthesis that incorporates a particular, selected relative motion between tibial tray and tibial insert.
  • This present invention consists of a posterior stabilized PS post which is secured to the mobile bearing tibial baseplate allowing only rotational movement.
  • the PS post captures a bearing component to the tibial baseplate through an elongated slot in the bearing component.
  • the elongated slot in the bearing component allows it to translate anteriorly and posteriorly with respect to the posterior stabilized post.
  • the bearing component may also rotate with respect to the tibial baseplate in conjunction with the PS post.
  • the bearing component has two concave surfaces that are articulate with the convex surfaces of the femoral component, and that are roughly congruent with the convex surfaces of the femoral component at zero degrees of flexion or full extension.
  • the PS post articulates with a recess or cam of the femoral component to provide femoral rollback.
  • the PS post should allow for posterior translation, in addition to rotational movement. This posterior movement would allow the post to translate instead of impinging upon the inner-condylar notch area of the femoral component in hyper-extension.
  • the PS post has a flat distal surface that articulates with the tibial baseplate.
  • a T-slot is located on the distal end and articulates with a T-post on the tibial baseplate.
  • a through hole in the PS post is located such that a rotation peg can capture the PS post to the tibial baseplate while the T-slot of the PS is engaged with the T-post of the tibial baseplate.
  • the rotation peg allows only rotational freedom of the PS post with respect to the tibial baseplate.
  • the PS post has a flange on the medial and lateral surfaces that capture the bearing component through a counterbore on the medial and lateral sides of an elongated slot of the bearing component.
  • the elongated slot of the bearing component is larger than the PS post in the anterior-posterior direction such that the bearing component has limited translational with respect to the PS post.
  • the bearing component may also rotate with respect to the tibial baseplate in conjunction with the PS post.
  • the bearing component has two concave surfaces that are congruent to the convex surfaces of the femoral component.
  • a cam mechanism on the femoral component can be a concave cylinder that can be congruent to the convex posterior surface of the PS post.
  • the internal/external rotation of the PS post with the femoral component can maintain this congruency throughout the range of motion unlike designs with a fixed PS post.
  • the addition of the posterior translation can occur with an anterior to posterior "A P" slot instead of a hole as seen in the inferior view above. This slot would allow for posterior translation of the post relative to the insert/baseplate.
  • the PS post may engage the tibial baseplate through a pin means or through a boss of a configuration other than a T-post.
  • the PS post may secure the bearing component through the use of slots or other means of capture.
  • the PS post may articulate with a closed recess within the femoral component rather than a cam mechanism.
  • the means of PS post capture may be with the use of a retaining ring or a cross pin.
  • the PS post may not require capture with the fixed bearing articular insert.
  • the present invention also provides an improved knee prosthesis apparatus that includes a tibial prosthesis that is configured to be surgically implanted on a patient's transversely cut proximal tibia and a femoral component.
  • the femoral component articulate with a tibial insert having a proximal surface that engages the femoral component, the insert having a distal surface that fits against and articulates with the proximal surface of the tibial prosthesis.
  • a constraining mechanism joins the tibial insert to the tibial prosthesis in a selective fashion that enables a number of different possible relative motions between the insert and the tibial prosthesis, including anterior to posterior translation with rotation, or rotation only.
  • the tibial prosthesis can have a fixator for holding the tibial prosthesis on a patient's proximal tibia such as for example, a stem, spike, cement, etc.
  • the proximal surface of the insert can have one or more concavities for articulating with the femoral component.
  • the femoral component can include an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
  • a knee prosthesis apparatus comprising: a) a tibial component configured to be surgically implanted on a patient's transversely cut proximal tibia; b) a femoral component; c) a fixator for holding the tibial component on the patient's proximal tibia; d) a tibial insert having a proximal surface that is shaped to engage the femoral component, the insert having a distal surface that fits against and articulates with the proximal surface of the tibial component; e) a constraining mechanism that joins the tibial insert to the tibial component in a selective fashion that enables a number of different possible relative motions between the insert and tibial component including anterior to posterior translation with rotation, or rotation only; and f) wherein all or part of the constraining mechanism is separate from the tibial components and selective removal of all or part of the constraining mechanism will take place.
  • a knee prosthesis for replacing all or part of a patient's knee joint at the joint between the patient's femur and tibia, comprising: a) a tibial component adapted to be surgically implanted on a patient's transversely cur proximal tibia; b) a fixator for holding the tibial component on the patient's proximal tibia; c) a tibial insert having a distal surface that fits against and articulates with the proximal surface of the tibial component and a proximal femoral articulating surface; d) a femoral component that articulates with the tibial prosthesis at the proximal articulating surface of the tibial insert, the tibial insert having condylar surfaces that engage but not substantially constrain the condylar surfaces of the femoral component; e) a constraining mechanism that enables a selective connection
  • a knee prosthesis apparatus comprising: a) a tibial component including a tibial tray portion configured to be surgically implanted on a patient's transversely cut proximal tibia; b) a fixator for holding the tibial component on the patient's proximal tibia; c) a tibia insert having first and second removably connectable members, including a peripheral member having a central opening and a central member that connects to the central opening the insert having a distal surface that fits against and articulates with the proximal surface of the tibial component; d) a femoral component; e) a constraining mechanism that joins the insert to the tibial tray portion during use in a selective fashion that enables a number of different possible relative motions between the insert and tibial tray including anterior to posterior translation and rotation or rotation only; and f) wherein all or part of the constraining mechanism is
  • the femur For knee flexion to be optimized, the femur must roll back on the tibia. This means that the contact point between the femoral and tibial components moves posteriorly.
  • roll back is caused by the contact of the bar of the femoral component on the post of the tibial insert. This contact tends to push the insert forward (relative to the tibia).
  • the bar and post design In order for normal roll back (with respect to the tibia) to occur, the bar and post design must compensate by causing the femur to roll back on the surface of the tibial insert (the contact point moves posteriorly on the insert). Movement of the contact point causes the stress levels to fluctuate and can lead to fatigue and adhesive wear of the polyethylene.
  • the post does not translate, but the insert does. This allows the insert to move posteriorly with the femoral component as the bar/post interaction dictates. However, since the insert moves with the femoral component, the contact point does not move posteriorly on the tibial insert. This provides a more consistent stress level and reduces the tendency for fatigue and adhesive wear.
  • Fig. 1 is a perspective, exploded view of the preferred embodiment of the apparatus of the present invention
  • Fig. 2 is a partial sectional of the preferred embodiment of the apparatus of the present invention illustrating the locking member portion thereof;
  • Fig. 3 is a top, fragmentary view of the preferred embodiment of the apparatus of the present invention illustrating the locking member portion thereof;
  • Fig. 4 is a partial, elevational view of the preferred embodiment of the apparatus of the present invention illustrating the locking member portion thereof;
  • Fig. 5 is a rear, elevational and exploded view of the preferred embodiment of the apparatus of the present invention illustrating the articular polymeric insert and tray portions thereof;
  • Fig. 6 is a sectional, elevational view of the preferred embodiment of the apparatus of the present invention shown with the locking member removed;
  • Fig. 7 is another sectional, elevational view of the preferred embodiment of the apparatus of the present invention illustrating the locking member in operating position when only rotational movement is desired;
  • Fig. 8 is a partial top view of the preferred embodiment of the apparatus of the present invention showing the polymeric insert
  • Fig. 9 is a partial, bottom view of the preferred embodiment of the apparatus of the present invention showing the polymeric insert
  • Fig. 10 is partial rear view of the preferred embodiment of the apparatus of the present invention showing the polymeric insert
  • Fig. 11 is a partial sectional view of the preferred embodiment of the apparatus of the present invention taken along lines 11-11 of Fig.8;
  • Fig. 12 is a sectional view of the preferred embodiment of the apparatus of the present invention taken along lines 12-12 of Fig. 8;
  • Fig. 13 is a partial top view of the preferred embodiment of the apparatus of the present invention illustrating the tray or baseplate;
  • Fig. 14 is a sectional view of the preferred embodiment of the apparatus of the present invention taken along lines 14-14 of Fig. 13;
  • Fig. 15 is a top view of the preferred embodiment of the apparatus of the present invention illustrating the insert and tray portions thereof in operating position with the locking member;
  • Fig. 16 is a top side view of the preferred embodiment of the apparatus of the present invention illustrating the insert, tray and locking member portions thereof in operating position;
  • Fig. 17 is a top view of the preferred embodiment of the apparatus of the present invention illustrating rotation of the insert relative to the tray;
  • Figs. 18 - 21 are fragmentary perspective views of an alternate embodiment of the apparatus of the present invention illustrating constructions for the post portion and illustrating the connection between the post and the tray;
  • Figs. 22 - 25 are schematic plan views of alternate constructions of the tibial insert to be used respectively with the post constructions of Figs. 18 -21 ;
  • Fig. 26 is a top view of the second alternate embodiment of the apparatus of the present invention illustrating the tray portion thereof;
  • Fig. 27 is an elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the tray portion thereof;
  • Fig. 28 is a bottom view of the second alternate embodiment of the apparatus of the present invention illustrating the tray portion thereof;
  • Fig. 29 is a plan view of the second embodiment of the apparatus of the present invention illustrating the polymeric insert portions thereof;
  • Fig. 30 is a frontal elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the plastic insert portion thereof;
  • Fig. 31 is a bottom view of the plastic insert portion of the second alternate embodiment of the apparatus of the present invention.
  • Fig. 32 is a fragmentary view of the second alternate embodiment illustrating the locking plug member portions thereof;
  • Fig. 33 is a sectional view taken along lines 33 - 33 of Fig. 32;
  • Fig. 34 is a sectional view taken along lines 34 - 34 of Fig. 26;
  • Fig. 35 is a sectional view taken along lines 35 - 35 of Fig. 29;
  • Fig. 36 is a sectional view taken along lines 36 - 36 of Fig. 29;
  • Fig. 37 is an elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the cap and set screw separated from the insert and tray portions thereof;
  • Fig. 38 is a partial sectional elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the mobile insert moving with respect to the tray;
  • Fig. 39 is a perspective exploded view of a third alternate embodiment of the apparatus of the present invention.
  • Fig. 40 is a partial top view of the third alternate embodiment of the apparatus of the present invention illustrating the insert portion thereof;
  • Fig. 41 is a side view of the insert portion of the third alternate embodiment of the apparatus of the present invention.
  • Fig. 42 is a perspective view of the insert portion of the third alternate embodiment of the apparatus of the present invention
  • Fig. 43 is a posterior view of the insert portion of the third alternate embodiment of the apparatus of the present invention
  • Fig. 44 is a bottom view of the tray portion of the third alternate embodiment of the apparatus of the present invention.
  • Fig. 45 is a side view of the tray portion of the third alternate embodiment of the apparatus of the present invention.
  • Fig. 46 is a perspective view of the tray portion of the third alternate embodiment of the apparatus of the present invention.
  • Fig. 47 is a posterior view of the tray portion of the third alternate embodiment of the apparatus of the present invention
  • Figs. 48 - 49 are fragmentary views of the third alternate embodiment of the apparatus of the present invention illustrating one of the plug portions thereof;
  • Figs. 50 -51 are side and top views of a second plug portion that is used with the third alternate embodiment of the apparatus of the present invention.
  • Fig. 52 is a perspective, exploded view of a fourth alternative embodiment of the apparatus of the present invention
  • Fig. 53 is a sectional, elevational view of the fourth alternative embodiment shown in Fig. 52, shown with the locking member removed;
  • Fig. 54 is another sectional, elevational view of the fourth alternative embodiment shown in Fig. 52, illustrating the locking member in operating position when only rotational movement is desired;
  • Fig. 55 is a partial top view of the fourth alternative embodiment of the apparatus shown in Fig. 52 illustrating the tray;
  • Fig. 56 is a sectional view of the fourth alternative embodiment of the apparatus shown in Fig. 52 taken along lines 56 - 56 of Fig. 55;
  • Fig. 57 is a perspective view of a fifth alternate embodiment of the apparatus of the present invention.
  • Fig. 58 is a side, elevational view of a fifth alternate embodiment of the apparatus of the present invention.
  • Fig. 59 is a posterior elevation view of a fifth alternate embodiment of the apparatus of the present invention.
  • Fig. 60 is a side elevation view of a fifth alternate embodiment of the apparatus of the present invention showing the knee in an extended position;
  • Fig. 61 is a side elevation view of a fifth alternate embodiment of the apparatus of the present invention showing the knee in a flexed position;
  • Fig. 62 is a fragmentary anterior elevation view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert
  • Fig. 63 is a fragmentary posterior elevation view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert
  • Fig. 64 is a fragmentary side sectional elevation view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert
  • Fig. 65 is a fragmentary plan view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert
  • Fig. 66 is a fragmentary bottom view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert
  • Fig. 67 is a fragmentary perspective view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert
  • Fig. 68 is a top view of the fifth alternate embodiment of the apparatus of the present invention.
  • Fig. 69 is a top view of the sixth alternate embodiment of the apparatus of the present invention
  • Fig. 70 is a fragmentary bottom view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions
  • Fig. 71 is a fragmentary top view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
  • Fig. 72 is a fragmentary frontal elevation view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
  • Fig. 73 is a fragmentary rear elevation view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
  • Fig. 74 is a fragmentary side sectional elevation view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions
  • Fig. 75 is a fragmentary perspective view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions
  • Fig. 76 is a side elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
  • Fig. 77 is a fragmentary rear elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
  • Fig. 78 is a fragmentary bottom elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
  • Fig. 79 is a fragmentary frontal elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions
  • Fig. 80 is a fragmentary plan view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions
  • Fig. 81 is a fragmentary perspective view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
  • Figs. 1 -7 show generally the preferred embodiment of the apparatus of the present invention designated generally by the numeral 10 in Figs. 1 , 6 and 7.
  • Mobile bearing knee prosthesis (10) is placed upon a patient's surgically cut proximal tibia (11) at a surgically cut proximal surface (12) that is preferably flat.
  • a tray (13) to be mounted to the proximal tibia (11) at surface (12) as shown in Figs. 6 - 7.
  • Tray (13) has a flat proximal surface (14) and a generally flat distal surface (15) that mates with and faces the surgically prepared surface (12) as shown in Figs. 6 - 7.
  • the tray (13) can provide a plurality of spikes (16) and a stem (17) for enhancing implantation to the patient's proximal tibia (11).
  • tray (13) provides a post (18) having an internally threaded socket (19).
  • Post (18) is comprised of a generally cylindrically-shaped smaller diameter section (20) and an enlarged flange (21) that mounts to the top of cylindrically-shaped (20) as shown in Figs. 5 and 13-14.
  • Tray (13) has periphery (22).
  • a recess (23) is provided in between the proximal surface (14) of tray (13) and flange (21).
  • a locking member (24) forms a removable connection with the socket (19).
  • Locking member (24) has an externally cylindrical section (25) that provides threads that correspond to the threads of internally threaded socket (19) so that the locking member (24) can be threaded into the socket (19) as shown in Fig. 7.
  • Locking member (24) includes an enlarged cylindrically-shaped head (26) having a tool receptive socket (27) such as a hexagonal socket for example.
  • An insert (28) provides a vertical channel (33) that can be placed in communication with post (18) as shown in Figs. 6 - 7.
  • Insert (28) provides a preferably flat distal surface (29) that communicates with the flat proximal surface (14) of tray (13).
  • a pair of spaced apart concavities (30, 31) are provided for defining articulation surfaces that cooperate with correspondingly shaped articulating surface on a patient's femur or femoral implant.
  • the insert (28) has a periphery (32) that generally corresponds in shape to the periphery (22) of tray (13).
  • Insert (28) can be polymeric or metallic or of a composite construction, such as metallic with a polymeric articulating surface(s) or polymeric with a metallic articulating surface(s).
  • Vertical channel (33) is comprised of a number of sections that are specially shaped to interact with the post (18) and locking member (24).
  • Vertical channel (33) thus includes a proximal, cylindrically-shaped section (34), an oval shaped slot (35), and a distal opening (36).
  • the distal opening (36) includes a generally oval section (37) and a somewhat half oval section (38).
  • the oval section (38) can track any of three directions including a pure anterior to posterior direction, a direction that is at an angle to a pure anterior to posterior direction; or a direction that is an arcuate or curved path that pivots or rates about a point that is not located along the A/P centreline of the insert.
  • Flat surfaces (39, 40) are positioned at the top of and at the bottom of the oval shaped slot (35) as best seen in Figs 8 - 11.
  • the cylindrically-shaped head (26) of locking member (24) closely fits the cylindrically-shaped section (36).
  • the apparatus (10) is shown in an assembled position wherein the fastener (24) has been removed so that the insert (28) can move in a translation and rotation and rotation fashion relative to tray (13).
  • the fastener (24) has been threadably attached to the internally threaded socket (19) and is in operating position.
  • the insert (28) can rotate relative to the tray (13) through an angle (41).
  • the apparatus (10) of the present invention provides a mating mechanism between post (18) and the fastener (24) and the insert (28) that defines a constraining mechanism so that the insert (28) may be constrained for rotation only relative to the tray (13).
  • Figs. 18 - 21 and 22 - 25 there is seen various alternate constructions of the post that can be used instead of post 18 when the selected post is fitted to the tibial tray (13).
  • Figs. 22 - 25 an alternate construction of the insert (28) is shown with an illustration of the various types of relative motion between the insert and the tibial tray that can be selectively provided to a surgeon.
  • a post (42) has a cylindrical outer surface (43) and a circular top (44).
  • Post (42) has a rectangular base (45) with a generally flat undersurface and a plurality of four inclined surfaces (46) which provides a means of attaching the post to the tray or the post may be permanently attached to the tray.
  • the rectangular base (45) fits tray (13A) socket (47) at its inclied surfaces (48) with a taper lock type connection for example.
  • Other types of connections could be used to join post (42) to tray (13A) at socket (47).
  • post (49) includes a plurality of four vertical side walls (50) and a plurality of inclined surfaces (51).
  • a rectangular flat top (52) is provided opposite a generally flat undersurface of post (49).
  • the inclined surfaces (51) of post (49) fit similarly configured inclined surfaces (48) of socket (47) in tray (13A).
  • post (53) is generally rectangularly shaped providing a pair of opposed flat larger vertical side walls (54) and a pair of opposed flat smaller end walls (55) with a flat top (56).
  • Post (53) has a base (57) that includes four inclined surfaces (58).
  • the inclined surfaces (58) form a taper lock connection with four similarly configured inclined surfaces (48) of socket (47) of tray (13A).
  • post (59) has a hexagonal shape providing a hexagonally shaped flat top (60).
  • Hexagonal post (59) also has a plurality of vertical side walls (61) and a rectangular base (62).
  • the base (62) has inclined surfaces (63) that form a taper lock connection with inclined surfaces (48) of tray socket (47) of tray (13A).
  • insert (28A) provides a square opening (64) that exactly fits peg (49). In Fig. 22, there is no relative motion between insert (28A) and tray (13A). In Fig. 23, rotational motion only is indicated by arrow (65) between insert (28A) and tray (13A) when peg (42) is used.
  • the rectangular peg (53) enables only translational movement between the insert (28A) and tray (13A) as indicated by arrow (66).
  • the hexagonal peg (59) enables both rotational motion as indicated by arrow (65) and translational motion as indicated by arrow (66) between insert (28A) and tray (13A).
  • FIG. 37 An alternate embodiment of mobile bearing knee apparatus (110) is shown generally in Fig. 37.
  • the prosthesis (110) is shown positioned upon a patient's proximal tibia (111), specifically upon a flat surgically cut proximal surface (112) as shown.
  • tibial tray (113) which can be of metallic construction such as titanium alloy, for example.
  • Tray (113) has a flat proximal surface (114) and a flat distal surface (115).
  • a plurality of mechanical fasteners such as spikes (116) on surface (115) can be used to enhance fixation of tibial tray (113) to the patient's proximal tibial (111).
  • Chemical fasteners e.g. cement
  • a stem (117) can also be used to facilitate attachment of prosthesis (110) to the patient's tibia (111) at the tibial intramedually canal.
  • the flat proximal surface (114) of tray (113) has a round post (118) with a hollow bore or socket (119).
  • the post (118) is spaced inwardly from the periphery (120) of tray (113) as shown in Figs. 26 - 27.
  • the post (118) is preferably positioned with an offset with respect to oval slot (126) in the articular insert to provide anterior stabilization in the total knee prosthesis.
  • Insert (121) portion of the present invention, typically a polymeric plastic insert that fits tray (113).
  • Insert (121) has a flat distal surface (122) and a proximal surface (123) that includes curved portions. These curved portions are in the form of concavities (124, 125) receive shaped surfaces of a femoral prosthesis after total knee replacement surgery is completed.
  • the flat distal surface (122) of insert (121) has an anterior to posterior extending generally oval shaped slot
  • the slot (126) receives post (118) during use, enabling the insert (121) to slide in an anterior to posterior direction relative to tray (113).
  • the present invention provides a rotating platform, mobile knee prosthesis (110) that incorporates anterior stabilization along with the ability to selectively constrain the movement of he articular surface from rotation and translation to rotation only. This is accomplished by using an opening (136) in insert (121) that communicates with slot (126) as shown in Figs. 29 -31 and 35 - 38.
  • the opening includes a frustoconical portion (137) that corresponds in shape to a similar frustoconically-shaped enlarged annular surface (134) of locking plug member (127).
  • Locking plug member (127) includes a lower frustoconical surface (128).
  • the frustoconical outer surface (128) of locking member (127) below annular reference line (138) is sized and shaped to fit and form a taper lock connection with surface (139) of frustoconical socket (119) of post (118).
  • the enlarged annular should has a frustoconical shape as shown in Fig. 32 that corresponds generally to the size and shape of frustoconical portion (137) of opening (136) as shown in Fig. 36.
  • a locking connection is formed between the frustoconical outer surface (128) of locking member (127) and the frustoconical surface (139) of post (118).
  • This connection can be a taper lock type connection.
  • Locking screw (131) can be used to engage a correspondingly sized and shaped internally threaded opening (1 * 32) of tray (113) if desired.
  • the locking screw (131) can include a head (140) that is enlarged so that the head (140) is retained by annular should (133) of locking member (137) as shown in Figs. 33 and 37.
  • arrows (141) indicate sliding movement of insert (121) relative to tray (113) as occurs when locking plug member (127) is removed. In such a situation, the insert (121) is free with respect to tray
  • the second alternate embodiment of the present invention provides a rotating platform, mobile knee prosthesis (110) that incorporates anterior stabilization along with the ability to constrain movement of the articular surface from rotation and translation to rotation only.
  • FIGs. 39 and 40 - 51 show a third alternate embodiment of the apparatus of the present invention designated generally by the numeral 142 in Fig. 39.
  • Mobile bearing knee prosthesis (142) includes a tray (143) that can be attached to a patient's surgically cut proximal tibia using a stem (146) for example that occupies the patient's intramedullary canal.
  • the tray (143) has a proximal surface (144) that receives an insert (159) and a distal surface (145) that registers upon the proximal tibia after the tibia has been surgically prepared to conform to the underside or distal surface (145) of tray (143).
  • the proximal (144) surface of tray (143) provides a frustoconically- shaped socket (147) that can receive either of two selected plugs (148 or 154) (or any of the plug embodiments shown in Figs. 18 - 21).
  • the first plug (148) is designed to provide rotational movement only between insert (159) and tray (143).
  • the plug (148) has a frustoconical surface (149), cylindrical surface (150), bevelled annular surface (151), and a pair of opposed generally parallel flat end surfaces (152, 153).
  • the second plug (154) is designed to provide both anterior to posterior translational movement between the insert (159) and tray (153) as well as rotational movement between the insert (159) and tray (153).
  • the plug (154) has a frustoconical surface (155), a reduced diameter cylindrical surface (156), and flat end surfaces (157, 158).
  • a surgeon selects either of the plugs (148 or 154).
  • the frustoconical surfaces (149 or 155) form a tight taper lock fit with a correspondingly shaped frustoconical socket (147) that communicates with the proximal (144) surface of tray (143).
  • the insert (159) is placed on the selected plug (148 or 154).
  • the shape of the plug (148 or 154) that is selected determines whether or not the insert (159) can achieve only rotational movement relative to tray (143) or both rotational and anterior to posterior translational movement.
  • plug (148) In the case of the plug (148), only rotational movement between the insert (159) and the tray (143) can be attained.
  • the plug (148) is shorter and thus only communicates with the cylindrically-shaped opening (164) on the bottom or distal surface (162) of insert (159).
  • Plug (148) once inserted in socket (147) only enables a rotational movement of the insert (159) on the tray (143).
  • the cylindrical surface (150) of plug (148) corresponds in size and shape to the circular opening (164) to accomplish a relatively close fit between cylindrical surface (150) of plug (148) and cylindrical opening (164) on insert (159).
  • plug When both rotational and translational anterior to posterior movement are desired, the surgeon selects the plug (154).
  • the plug (154) is placed in socket (147) so that frustoconical surface (155) forms a taper lock fit with a correspondingly sized and shaped socket (147) of tray (143).
  • the smaller cylindrically-shaped portion (156) of plug (154) is taller in a proximal to distal direction than the cylindrically-shape portion (150) of plug (148).
  • the portion (156) fits elongated slot (163) so that the insert (159) can translate in an anterior to posterior direction as the reduced diameter cylindrical portion (156) travels anterior to posterior in the direction of arrow (165) in Fig. 44.
  • Insert can also translate along the path (165) that curved, or along a path (165) that forms an angle with a purely anterior to posterior direction line.
  • the line (165) in Fig. 44 shows such a purely anterior to posterior line as the direction of travel.
  • Insert (159) also provides proximal concavities (160, 161) for receiving a femoral component of a knee implant.
  • Figs. 52 - 56 disclose a fourth alternate embodiment of this invention identified as prosthesis (210), comprising a tibial tray (213), a polymeric insert (28), and a locking member (24).
  • insert (28) and locking member (24) are the same as described above, but flange (221) is generally D-shaped, having a periphery extending laterally in the medial, lateral, and anterior directions from the out surface of cylindrical section (220), thereby creating recess (223) on the medial, lateral and anterior sides of section (220) (see Figs. 55 - 56).
  • the assembly of prosthesis (210) is essentially identical to that of prosthesis (10) except for the shape of flange (221).
  • Locking member (24) forms a removable connection with the socket
  • Locking member (24) has an externally cylindrical section (25) that provides threads that correspond to the threads of internally socket (219) so that the locking member (24) can be threaded into the socket (219) as shown in Fig. 54.
  • insert (28) In order to assemble insert (28) to tray (213), the distal surface (29) of insert (28) is placed next to and generally parallel to the proximal surface
  • Figs. 57 - 67 show a fifth alternate embodiment of the apparatus of the present invention designated generally by the numeral 200 in Figs. 57 - 61. It should be understood that the embodiment of Figs. 57 - 61 disclose an alternate construction for a polymeric insert (202) that interconnects with the same tibial tray (13) and stem (17) shown in Figs. 1 , 5 - 7 and 14 - 16 of the preferred embodiment. In Figs.
  • mobile bearing knee prosthesis (200) is shown as including tray (13), polymeric insert (202), and femoral component (236).
  • Fig. 58 the femoral component (236) is shown attached to a patient's surgically cut distal demur (201).
  • Polymeric insert (202) (see Figs. 62-67) has a flat distal surface (203) and a proximal surface with a pair of concavities (204, 205). Insert (202) also has periphery (206) and vertical channel (207).
  • the vertical channel (207) can be a slotted arrangement such as that shown in the preferred embodiment of Figs. 1 - 17 and designated generally by the numeral 33.
  • the connection between post (18) of tray (13) and insert (202) can be the same connection that is shown and described with respect to the preferred embodiment of Figs. 1 -17 and shown particularly in Figs. 1 - 7 and 15 - 17, or as shown in Figs. 52 -56.
  • Vertical channel (207) can include a proximal cylindrically-shaped section (208), an oval shaped slot (209), and a distal opening (224).
  • the distal opening (224) can include an oval section (226) and a half oval section (227) as shown in Fig. 66.
  • Flat surface (225) extends posteriorly of vertical channel (207) more particularly posteriorly of the proximal cylindrically-shaped section (208), as shown in Figs. 64 - 65.
  • Flat surfaces (228, 229) register with the flange (21) of post (18), respectively above and below the flange (21) to thereby prevent separation of polymeric insert (202) from post (18) unless the post (18) is aligned with oval section (226) of distal opening (224).
  • insert (202) can be separated from tray (13).
  • insert (202) provides a central post (230).
  • Post (230) has proximal surface (231), anterior surface (232), posterior surface (233), and sides (234, 235).
  • Femoral component (236) is shown in Figs. 57 -61.
  • Femoral component (236) has anterior portion (237), a pair of posterior condylar portions (238, 239) and distal condylar portions (240, 241).
  • Femoral component (236) has central opening (242) and a horizontal bar cam (243) that extends between posterior condylar portions (238, 239) as best seen in Figs. 59 and 68.
  • a pair of vertical walls (244, 245) extend along opposing sides of central opening (242) and connect to both of the posterior condylar portions (238, 239) and to horizontal bar (243).
  • the vertical walls (230, 231) also extend to and connect to surfaces (248, 249, 250).
  • the vertical walls (244, 245) can be generally parallel.
  • Femoral component (236) provides a plurality of flat surfaces that register against and conform to surgically cut flat surfaces that are provided on the patient's distal femur (201) as shown in Fig. 58.
  • These flat surfaces include flat surface (246) is an anterior surface, surface (247) which is a diagonally extending anterior surface that spans between anterior surface (246) and distal surface (248).
  • Distal surface (248) spans between diagonal surface (247) and posterior diagonal surface (249).
  • Posterior surface (250) is generally parallel to anterior flat surface (246).
  • These five flat surfaces (246 - 250) of femoral component (236) register against and conform to five surgically cut surfaces on a patient's distal femur (201).
  • Femoral component (236) can be securely fashioned to the patient's femur (201) using bone cement for example.
  • Figs. 60 - 61 a range of motion for the patient's knee fitted with mobile bearing knee prosthesis (200) as illustrated with arrows (252, 253).
  • the patient's central longitudinal axis (251) of the distal femur (201) is shown rotating posteriorly in the direction of arrow (253).
  • the anterior surface (237) of femoral component (236) is shown rotating in the direction of arrow (252).
  • Fig. 60 shows an extended position of the patient's knee wherein the longitudinal axis (251) of the femur (201) is generally aligned with the central longitudinal axis of the patient's tibia (11).
  • the knee is shown in a flexed position.
  • central post (230) In this position, horizontal bar cam (243) of femoral component (222) registers against the posterior surface (233) of central post (230) of polymeric insert (202). In this position, the central post (230) causes femoral roll back on the tibia articular insert (202).
  • the posterior aspect of the tibia articular surface at (233) provides a lift that is created by generally following the curvature of the femoral component (236) in extension. This will provide a high degree of surface contact, conformity, subsequently providing low contact stress, in extension, where most of gait occurs.
  • the post (230) can have a square or rectangular base that fits snugly within the central opening (242) of the femoral component (236).
  • the horizontal bar cam (243) acts as a cam on the femoral component (236) to engage the post (230) at surface (233) on the tibial component (202), causing the femoral posterior condyles (238, 239) to roll back onto the tibial articular concavity surfaces (204, 205).
  • This "roll back” coupled with “climbing” the posterior aspect of the tibial articular surface at (233), causes the femoral component (236) to be located out of the lowest aspect of the tibial articular surfaces (204, 205).
  • any type of varus/valgus loading of the joint will cause one of the femoral condyles to apply higher downward loads than the opposing condyle.
  • the tibial component (202) With a differential in loads, the tibial component (202) will freely spin until the higher loaded condyle displaces to the low point of the tibial articular surface.
  • the central tibial post (216) forces the opposite condyle out of the posterior aspect of the tibial articular surface, thus creating a spin out.
  • the present invention allows for a free, unlimited rotation of the tibial insert (202) relative to its baseplate (13). All of the rotational constraints occurs between the femoral component (236) and the insert (202).
  • the present invention builds conformity of the central post (230) of the insert (202) relative to the box of the femur in rotation, but allowing for varus/valgus tilting.
  • the present invention produces a generally trapezoidal insert post (230).
  • a mobile bearing knee prosthesis features a two-part polymeric insert that includes first member (255) shown in Figs. 69 -75 and a second member (264) shown in Figs. 69 and 76 - 81.
  • Polymeric insert (255) (see Figs. 70 - 75) has a central opening (256) that is bordered by a pair of spaced apart, generally parallel shoulders (257, 258) upon which second member (264) slides fore and aft.
  • the insert (255) has a periphery (259) a proximal surface with a pair of concavities (260, 261).
  • the insert member (255) includes a flat distal surface (262).
  • the second insert member (264) has a proximal surface (265), a distal surface (267) and a passageway (263) that extends between the surfaces (265, 267).
  • a pair of spaced apart, generally parallel shoulders (268, 269) are provided on opposing sides of insert 9264) as shown in Figs. 77, 79 and 81.
  • Flat surfaces (270, 271) are also provided on opposing sides of insert member (264).
  • the surface (270) is generally perpendicular to shoulder (268).
  • the surface (277) is generally perpendicular to the shoulder (267) as shown in Fig. 79.
  • Insert member (264) provides a post (272).
  • Post (272) has flat, proximal surface (273), anterior surface (274), posterior surface (275), and sides (276, 277).
  • the member (264) provides a curved anterior surface (278) that is correspondingly shaped to and fits against the correspondingly shaped concave surface (279) of member (255) at opening (256).
  • insert member (264) During use, the shoulders (268, 269) of insert member (264) fit against and slide upon the shoulders (257, 258) of insert member (255). Flat surfaces (270, 271) of insert member (264) engage and slide against flat surfaces (280, 281) of insert (255).
  • the insert member (264) slides upon the insert member (255) in an anterior to posterior direction because the opening (256) is longer than the insert member (264).
  • the opening (256) is larger in an anterior to posterior direction than the length of the insert member (264) measured from an anterior to posterior direction such as between surfaces (278) and (280).
  • the present invention includes a posterior stabilizing post (272) secured to the central insert member (264).
  • the posterior stabilized post (272) captures or is captured by bearing insert component (255) to the tibial baseplate (13) through an elongated slot or opening (256) in the bearing component (255).
  • the elongated opening or slot (256) in the bearing component member (255) allows it to translate anteriorly and posteriorly with respect to the posterior stabilized post (272) of the insert member (264).
  • the bearing component (255) may also rotate with respect to the tibial baseplate (13) in conjunction with the posterior stabilized post (272).
  • the bearing component (255) has two concave surfaces (260, 261) that are configured to articulate with the convex surfaces [condylar portions](240, 241) of the femoral component (236) at full extension.
  • the posterior stabilized post (272) articulates with a horizontal bar cam (243) of the femoral component (236) to provide femoral roll back.
  • the bearing design of the present invention thus consists of a bearing articular insert (255) with a separate posterior stabilized post component (264) that may have one or more degrees of freedom.
  • the bearing articular insert (251) has two concave surfaces (260, 261) that articulate with the convex surfaces [condylar portions](240, 241) of the femoral component (236) at full extension.
  • the posterior stabilized post (272) articulates with a recess or cam (243) of the femoral component (236) to provide femoral roll back.
  • the rotational freedom of the posterior stabilized post (272) maintains contact with the femoral bar cam (243) during external or internal rotation of femoral component (236).
  • the posterior stabilized member (255) has a flat distal surface (262) that articulates with the tibial baseplate (13).
  • a tee slot (266) is located n the distal surface (267) and articulates with a tee post (18) on the tibial baseplate (13) (see Figs. 1 -17 for such a tee slot and tee post connection).
  • a through hole (263) in the component (264) is located such that a rotation peg (such as peg (24) in Figs. 1 - 7) can capture the component (264) to the tibial baseplate (13) while the tee slot of the insert component (264) is engaged with a tee post (18) of the tibial baseplate.
  • Rotation peg (24) allows only rotational freedom of the insert component (264) with respect to the tibial baseplate (13).
  • the elongated slot (256) of the bearing component (255) is larger than the posterior stabilized post carrying component (255) in the anterior-posterior direction such that the bearing component has limited translation with respect to the posterior stabilized post.
  • the bearing component (255) may also rotate with respect to the tibial baseplate (13) in conjunction with posterior stabilized post component (264).
  • Horizontal bar cam mechanism (243) on the femoral component (236) is preferably a concavely shaped cylinder as shown in Figs. 59 and 68, that registers against and engages the convex posterior surface (275) of the posterior stabilized post (272).
  • the internal/external rotation of the posterior stabilized post component (264) with the femoral component (236) maintains this contact throughout the range of motion.
  • the second (central) insert member (264) could rotate only with respect to the tibial prosthesis, and the first (peripheral) insert member could both rotate and translate with respect to the tray.

Abstract

A mobile bearing knee prosthesis enables a surgeon to convert a mobile bearing insert having articular surfaces, supported by a tibial baseplate or tray from a rotating and translating prosthesis to one that rotates only. This conversion is accomphished with a fastener or locking member that connects through an opening in the insert to the tibial baseplate. This proximal can be used as part of a total knee surgery when the surgeon chooses to use a prosthesis that incorporates a movable articular surface. In one embodiment, a projecting portion extends proximally from the insert and cooperates with a cam on the femoral component. The projecting can be a post extending up from the proximal surface of the insert and the femoral component includes an intercondylar surface that may contact the post to constrain the relative motion between the femoral component and the insert. In another embodiment, the insert is a two part assembly that includes a larger member with a central opening and a smaller member that fits the opening.

Description

MOBILE BEARING KNEE PROSTHESIS
The present invention relates to orthopaedic prosthetic devices, and more particularly to an improved rotating platform, mobile knee prosthesis that incorporates anterior stabilization along with the ability to constrain the movement of the articular surface from rotation and translation, to rotation only.
Femoral rollback is believed to improve range of motion and extensor mechanism leverage so as to improve efficiency and more accurately replicate natural kinematics. Conventional mobile bearing designs may lack the desired effect of femoral rollback, particularly in the absence of the posterior cruciate ligament.
Posterior Stabilized (PS) fixed bearing designs provide femoral rollback by articulating a cam on the femoral component with a post on the tibial articular insert during flexion. However, PS fixed bearing designs do not have the advantages of mobile bearing designs with regards to enhanced range of motion, reduced rehabilitation time, improved patellofemoral alignment, increased contact area, and reduced bone- implant interface shear forces.
In fixed bearing designs, excessive wear of the PS post can occur during articulation with the femoral cam. Internal-external rotation of the femoral component reduces the PS post-femoral can congruency which increases contact stresses. The increased contact stresses can lead to excessive polyethylene wear and component failure. Allowing the PS post to rotate within a fixed articular insert will maintain femoral cam-PS post congruency during internal-external rotation of the femoral component.
Further, in any type of posterior stabilized design (fixed bearing or mobile bearing), one of the most problematic failure modes of the polyethylene is the fracture of the central post of the insert. This failure can be attributed to "notching" the anterior side of the central post with the anterior most inner-condylar area of the femoral component. Thus, any mechanism to reduce the probability for impingement of the femoral component against the anterior side of the tibial central post in hyper- extension would reduce the probability for tibial insert post failure due to "notching" and ultimately breaking.
Previous rotating platform designs have incorporated rotating only, or rotation and translation through the use of different prostheses. An example of a prosthesis that rotates and translates is shown in British publication 2219942, entitled "Knee Prosthesis". US 5,906,643 provides a tibial baseplate with a post that protrudes through a meniscal component and articulates with a cam on a femoral component. The post is an integral part of the tibial baseplate.
US 5,879,392 provides a tibial baseplate with a fixed post that extrudes through the stem of the tibial baseplate and through the bearing component and articulates with a recess within the femoral component.
EP 0916321 A2 provides a femoral component with transverse flanges on the medial and lateral surfaces of the posterior stabilized box that articulates with projections from the medial and lateral surfaces of the post.
WO 95/35484 provides a bearing component with a post that articulates with a recess within the femoral component. The bearing component is limited in rotational, anterior, and posterior movement with respect to the tibial component.
The following patents relate to other orthopaedic prosthetic devices, many of the listed patents pertaining to a knee prosthesis: Patent # Issue Date Title
3,899,796 08/19/75 Metacarpophalangeal Joint
4,016,606 04/12/77 Knee Joint Prosthesis
4,094,017 06/13/78 Knee Joint Prosthesis with Patellar-Femoral Contact
4,216,549 08/12/80 Semi-Stable Total Knee Prosthesis
4,224,697 09/30/80 Constrained Prosthetic Knee
4,257,129 03/24/81 Prosthetic Knee Joint Tibial Implant
4,340,978 07/27/82 New Jersey Meniscal Bearing Knee Replacement
4,673,407 06/16/87 Joint-Replacement Prosthetic Device
4,822,366 04/18/89 Modular Knee Prosthesis
4,936,853 06/26/90 Modular Knee Prosthesis
4,950,297 08/21/90 Knee Prosthesis
4,959,071 09/25/90 Partially Stabilized Knee Prosthesis
5,007,933 04/16/91 Modular Knee Prosthesis System
5,032,132 07/16/91 Glenoid Component
5,071 ,438 12/10/91 Tibial Prosthesis With Pivoting Articulating Surface
5,116,375 05/23/92 Knee Prosthesis
5,271 ,747 12/21/93 Meniscus Platform for an Artificial Knee Joint
5,282,868 02/01/94 Prosthetic Arrangement for a Complex Joint, Especially Knee Joint
5,314,483 05/24/94 Meniscus Platform for an Artificial Knee Joint
5,344,460 09/06/94 Prosthesis System
5,370,699 12/06/94 Modular Knee Joint Prosthesis
5,387,240 02/07/95 Floating Bearing Prosthetic Knee 5,395,401 03/07/95 Prosthetic Device for a Complex Joint
5,404,398 04/11/95 Prosthetic Knee With Posterior Stabilized Femoral Component
5,413,604 05/09/95 Prosthetic Knee Implant for an Anterior Cruciate Ligament Deficient Total Knee Replacement
5,413,608 05/09/95 Knee Joint Endoprosthesis for Replacing the Articular Surfaces of the Tibia
5,549,686 08/27/96 Knee Prosthesis Having a Tapered Cam
5,609,639 03/11/97 Prosthesis for Knee Replacement
5,658,342 08/19/97 Stabilized Prosthetic Knee
5,702,466 12/30/97 Rotational and Translational Bearing Combination in Biological Joint Replacement
5,782,925 07/21/98 Knee Implant Rotational Alignment Apparatus
5,871 ,543 02/16/99 Tibial Prosthesis With Mobile Bearing Member
5,871 ,545 02/16/99 Prosthetic Knee Joint Device
5,935,173 08/10/99 Knee Prosthesis
The present invention has as an object a tibial prosthesis and mating articular insert with specially configured stabilization posts. The invention enables for the surgeon to convert a mobile bearing articular surface from a fixed to a rotating only or translating only. The prosthesis can also provide rotation and translation simultaneously.
Translation only does not mimic the natural motion of the knee, there however, may be exceptions to the rule. The normal knee translates and rotates. In use of a mobile bearing knee replacement, there are times when the secondary soft tissue structure is compromised so that use of an insert that allows both translation and rotation results in unacceptable instability. In that case an insert with rotation only is preferred because rotation serves to reduce shear stress at the fixation surface and reduce contact stress at the articular surface, but there is more stability due to the anterioposterior constraint.
In most knee designs rotational malalignment at the articular surface results in a higher contact stress than pure translational malalignment. Rotational freedom has more benefit than translational freedom in reducing the potential for fatigue wear.
These conversions are accomplished with special locking members or plugs that connect to the tibial base special plate. The plugs can be secured to the baseplate with a taper lock or a threaded connection for example.
A post on the proximal tibial base plate can be positioned with an offset with respect to an oval hole in the articular insert to provide anterior stabilization in the total knee prosthesis.
The prosthesis of the present invention will be used as part of a total knee surgery when the surgeon chooses to use a prosthesis that incorporates a particular, selected relative motion between tibial tray and tibial insert.
This present invention consists of a posterior stabilized PS post which is secured to the mobile bearing tibial baseplate allowing only rotational movement. The PS post captures a bearing component to the tibial baseplate through an elongated slot in the bearing component. The elongated slot in the bearing component allows it to translate anteriorly and posteriorly with respect to the posterior stabilized post. The bearing component may also rotate with respect to the tibial baseplate in conjunction with the PS post. The bearing component has two concave surfaces that are articulate with the convex surfaces of the femoral component, and that are roughly congruent with the convex surfaces of the femoral component at zero degrees of flexion or full extension. The PS post articulates with a recess or cam of the femoral component to provide femoral rollback.
In addition to the above described design, the PS post should allow for posterior translation, in addition to rotational movement. This posterior movement would allow the post to translate instead of impinging upon the inner-condylar notch area of the femoral component in hyper-extension.
The PS post has a flat distal surface that articulates with the tibial baseplate. A T-slot is located on the distal end and articulates with a T-post on the tibial baseplate. A through hole in the PS post is located such that a rotation peg can capture the PS post to the tibial baseplate while the T-slot of the PS is engaged with the T-post of the tibial baseplate. The rotation peg allows only rotational freedom of the PS post with respect to the tibial baseplate. The PS post has a flange on the medial and lateral surfaces that capture the bearing component through a counterbore on the medial and lateral sides of an elongated slot of the bearing component. The elongated slot of the bearing component is larger than the PS post in the anterior-posterior direction such that the bearing component has limited translational with respect to the PS post. The bearing component may also rotate with respect to the tibial baseplate in conjunction with the PS post. The bearing component has two concave surfaces that are congruent to the convex surfaces of the femoral component. A cam mechanism on the femoral component can be a concave cylinder that can be congruent to the convex posterior surface of the PS post. The internal/external rotation of the PS post with the femoral component can maintain this congruency throughout the range of motion unlike designs with a fixed PS post. The addition of the posterior translation can occur with an anterior to posterior "A P" slot instead of a hole as seen in the inferior view above. This slot would allow for posterior translation of the post relative to the insert/baseplate.
The PS post may engage the tibial baseplate through a pin means or through a boss of a configuration other than a T-post. The PS post may secure the bearing component through the use of slots or other means of capture. The PS post may articulate with a closed recess within the femoral component rather than a cam mechanism.
With the fixed bearing design, the means of PS post capture may be with the use of a retaining ring or a cross pin. The PS post may not require capture with the fixed bearing articular insert.
The present invention also provides an improved knee prosthesis apparatus that includes a tibial prosthesis that is configured to be surgically implanted on a patient's transversely cut proximal tibia and a femoral component. The femoral component articulate with a tibial insert having a proximal surface that engages the femoral component, the insert having a distal surface that fits against and articulates with the proximal surface of the tibial prosthesis.
A constraining mechanism joins the tibial insert to the tibial prosthesis in a selective fashion that enables a number of different possible relative motions between the insert and the tibial prosthesis, including anterior to posterior translation with rotation, or rotation only.
All or part of the constraining mechanism is separable from the tibial prosthesis, and selective removal of all or part of the constraining mechanism determines which of the said possible relative motions will take place. The tibial prosthesis can have a fixator for holding the tibial prosthesis on a patient's proximal tibia such as for example, a stem, spike, cement, etc.
The proximal surface of the insert can have one or more concavities for articulating with the femoral component.
The femoral component can include an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
According to the present invention there is provided a knee prosthesis apparatus comprising: a) a tibial component configured to be surgically implanted on a patient's transversely cut proximal tibia; b) a femoral component; c) a fixator for holding the tibial component on the patient's proximal tibia; d) a tibial insert having a proximal surface that is shaped to engage the femoral component, the insert having a distal surface that fits against and articulates with the proximal surface of the tibial component; e) a constraining mechanism that joins the tibial insert to the tibial component in a selective fashion that enables a number of different possible relative motions between the insert and tibial component including anterior to posterior translation with rotation, or rotation only; and f) wherein all or part of the constraining mechanism is separate from the tibial components and selective removal of all or part of the constraining mechanism will take place.
Also according to the present invention there is provide a knee prosthesis for replacing all or part of a patient's knee joint at the joint between the patient's femur and tibia, comprising: a) a tibial component adapted to be surgically implanted on a patient's transversely cur proximal tibia; b) a fixator for holding the tibial component on the patient's proximal tibia; c) a tibial insert having a distal surface that fits against and articulates with the proximal surface of the tibial component and a proximal femoral articulating surface; d) a femoral component that articulates with the tibial prosthesis at the proximal articulating surface of the tibial insert, the tibial insert having condylar surfaces that engage but not substantially constrain the condylar surfaces of the femoral component; e) a constraining mechanism that enables a selective connection to be made between the insert to the tibial component during use, to thereby define a number of relative motions between the tibial component and the tibial insert including rotation only or anterior to posterior translation or anterior to posterior translation coupled with rotation; and f) wherein the constraining mechanism includes a removable locking member that is connectable to or disconnectable from the tibial component, wherein the insert is further constrained relative to the tibial component when the removable locking member is connected to the tibial component.
In a further embodiment of the present invention there is provided a knee prosthesis apparatus comprising: a) a tibial component including a tibial tray portion configured to be surgically implanted on a patient's transversely cut proximal tibia; b) a fixator for holding the tibial component on the patient's proximal tibia; c) a tibia insert having first and second removably connectable members, including a peripheral member having a central opening and a central member that connects to the central opening the insert having a distal surface that fits against and articulates with the proximal surface of the tibial component; d) a femoral component; e) a constraining mechanism that joins the insert to the tibial tray portion during use in a selective fashion that enables a number of different possible relative motions between the insert and tibial tray including anterior to posterior translation and rotation or rotation only; and f) wherein all or part of the constraining mechanism is separate from the tray and selective removal of all or part of the constraining mechanism determines which of the said possible relative motions will take place.
For knee flexion to be optimized, the femur must roll back on the tibia. This means that the contact point between the femoral and tibial components moves posteriorly. In a one-piece mobile bearing PS design, roll back is caused by the contact of the bar of the femoral component on the post of the tibial insert. This contact tends to push the insert forward (relative to the tibia). In order for normal roll back (with respect to the tibia) to occur, the bar and post design must compensate by causing the femur to roll back on the surface of the tibial insert (the contact point moves posteriorly on the insert). Movement of the contact point causes the stress levels to fluctuate and can lead to fatigue and adhesive wear of the polyethylene.
In a two piece tibial insert design, the post does not translate, but the insert does. This allows the insert to move posteriorly with the femoral component as the bar/post interaction dictates. However, since the insert moves with the femoral component, the contact point does not move posteriorly on the tibial insert. This provides a more consistent stress level and reduces the tendency for fatigue and adhesive wear.
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
Fig. 1 is a perspective, exploded view of the preferred embodiment of the apparatus of the present invention;
Fig. 2 is a partial sectional of the preferred embodiment of the apparatus of the present invention illustrating the locking member portion thereof; Fig. 3 is a top, fragmentary view of the preferred embodiment of the apparatus of the present invention illustrating the locking member portion thereof;
Fig. 4 is a partial, elevational view of the preferred embodiment of the apparatus of the present invention illustrating the locking member portion thereof;
Fig. 5 is a rear, elevational and exploded view of the preferred embodiment of the apparatus of the present invention illustrating the articular polymeric insert and tray portions thereof; Fig. 6 is a sectional, elevational view of the preferred embodiment of the apparatus of the present invention shown with the locking member removed;
Fig. 7 is another sectional, elevational view of the preferred embodiment of the apparatus of the present invention illustrating the locking member in operating position when only rotational movement is desired;
Fig. 8 is a partial top view of the preferred embodiment of the apparatus of the present invention showing the polymeric insert;
Fig. 9 is a partial, bottom view of the preferred embodiment of the apparatus of the present invention showing the polymeric insert; Fig. 10 is partial rear view of the preferred embodiment of the apparatus of the present invention showing the polymeric insert;
Fig. 11 is a partial sectional view of the preferred embodiment of the apparatus of the present invention taken along lines 11-11 of Fig.8;
Fig. 12 is a sectional view of the preferred embodiment of the apparatus of the present invention taken along lines 12-12 of Fig. 8;
Fig. 13 is a partial top view of the preferred embodiment of the apparatus of the present invention illustrating the tray or baseplate;
Fig. 14 is a sectional view of the preferred embodiment of the apparatus of the present invention taken along lines 14-14 of Fig. 13; Fig. 15 is a top view of the preferred embodiment of the apparatus of the present invention illustrating the insert and tray portions thereof in operating position with the locking member; Fig. 16 is a top side view of the preferred embodiment of the apparatus of the present invention illustrating the insert, tray and locking member portions thereof in operating position;
Fig. 17 is a top view of the preferred embodiment of the apparatus of the present invention illustrating rotation of the insert relative to the tray;
Figs. 18 - 21 are fragmentary perspective views of an alternate embodiment of the apparatus of the present invention illustrating constructions for the post portion and illustrating the connection between the post and the tray; Figs. 22 - 25 are schematic plan views of alternate constructions of the tibial insert to be used respectively with the post constructions of Figs. 18 -21 ;
Fig. 26 is a top view of the second alternate embodiment of the apparatus of the present invention illustrating the tray portion thereof; Fig. 27 is an elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the tray portion thereof;
Fig. 28 is a bottom view of the second alternate embodiment of the apparatus of the present invention illustrating the tray portion thereof;
Fig. 29 is a plan view of the second embodiment of the apparatus of the present invention illustrating the polymeric insert portions thereof;
Fig. 30 is a frontal elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the plastic insert portion thereof;
Fig. 31 is a bottom view of the plastic insert portion of the second alternate embodiment of the apparatus of the present invention;
Fig. 32 is a fragmentary view of the second alternate embodiment illustrating the locking plug member portions thereof;
Fig. 33 is a sectional view taken along lines 33 - 33 of Fig. 32;
Fig. 34 is a sectional view taken along lines 34 - 34 of Fig. 26; Fig. 35 is a sectional view taken along lines 35 - 35 of Fig. 29;
Fig. 36 is a sectional view taken along lines 36 - 36 of Fig. 29; Fig. 37 is an elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the cap and set screw separated from the insert and tray portions thereof;
Fig. 38 is a partial sectional elevational view of the second alternate embodiment of the apparatus of the present invention illustrating the mobile insert moving with respect to the tray;
Fig. 39 is a perspective exploded view of a third alternate embodiment of the apparatus of the present invention;
Fig. 40 is a partial top view of the third alternate embodiment of the apparatus of the present invention illustrating the insert portion thereof;
Fig. 41 is a side view of the insert portion of the third alternate embodiment of the apparatus of the present invention;
Fig. 42 is a perspective view of the insert portion of the third alternate embodiment of the apparatus of the present invention; Fig. 43 is a posterior view of the insert portion of the third alternate embodiment of the apparatus of the present invention;
Fig. 44 is a bottom view of the tray portion of the third alternate embodiment of the apparatus of the present invention;
Fig. 45 is a side view of the tray portion of the third alternate embodiment of the apparatus of the present invention;
Fig. 46 is a perspective view of the tray portion of the third alternate embodiment of the apparatus of the present invention;
Fig. 47 is a posterior view of the tray portion of the third alternate embodiment of the apparatus of the present invention; Figs. 48 - 49 are fragmentary views of the third alternate embodiment of the apparatus of the present invention illustrating one of the plug portions thereof;
Figs. 50 -51 are side and top views of a second plug portion that is used with the third alternate embodiment of the apparatus of the present invention;
Fig. 52 is a perspective, exploded view of a fourth alternative embodiment of the apparatus of the present invention; Fig. 53 is a sectional, elevational view of the fourth alternative embodiment shown in Fig. 52, shown with the locking member removed;
Fig. 54 is another sectional, elevational view of the fourth alternative embodiment shown in Fig. 52, illustrating the locking member in operating position when only rotational movement is desired;
Fig. 55 is a partial top view of the fourth alternative embodiment of the apparatus shown in Fig. 52 illustrating the tray;
Fig. 56 is a sectional view of the fourth alternative embodiment of the apparatus shown in Fig. 52 taken along lines 56 - 56 of Fig. 55; Fig. 57 is a perspective view of a fifth alternate embodiment of the apparatus of the present invention;
Fig. 58 is a side, elevational view of a fifth alternate embodiment of the apparatus of the present invention;
Fig. 59 is a posterior elevation view of a fifth alternate embodiment of the apparatus of the present invention;
Fig. 60 is a side elevation view of a fifth alternate embodiment of the apparatus of the present invention showing the knee in an extended position;
Fig. 61 is a side elevation view of a fifth alternate embodiment of the apparatus of the present invention showing the knee in a flexed position;
Fig. 62 is a fragmentary anterior elevation view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert;
Fig. 63 is a fragmentary posterior elevation view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert;
Fig. 64 is a fragmentary side sectional elevation view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert; Fig. 65 is a fragmentary plan view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert; Fig. 66 is a fragmentary bottom view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert;
Fig. 67 is a fragmentary perspective view of a fifth alternate embodiment of the apparatus of the present invention showing polymeric insert;
Fig. 68 is a top view of the fifth alternate embodiment of the apparatus of the present invention;
Fig. 69 is a top view of the sixth alternate embodiment of the apparatus of the present invention; Fig. 70 is a fragmentary bottom view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
Fig. 71 is a fragmentary top view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
Fig. 72 is a fragmentary frontal elevation view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
Fig. 73 is a fragmentary rear elevation view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
Fig. 74 is a fragmentary side sectional elevation view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions; Fig. 75 is a fragmentary perspective view of the sixth alternate embodiment of the apparatus of the present invention showing one of the polymeric insert portions;
Fig. 76 is a side elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions; Fig. 77 is a fragmentary rear elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
Fig. 78 is a fragmentary bottom elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
Fig. 79 is a fragmentary frontal elevation view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions; Fig. 80 is a fragmentary plan view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
Fig. 81 is a fragmentary perspective view of the sixth alternate embodiment of the apparatus of the present invention illustrating one of the polymeric insert portions;
Figs. 1 -7 show generally the preferred embodiment of the apparatus of the present invention designated generally by the numeral 10 in Figs. 1 , 6 and 7.
Mobile bearing knee prosthesis (10) is placed upon a patient's surgically cut proximal tibia (11) at a surgically cut proximal surface (12) that is preferably flat. This enables a tray (13) to be mounted to the proximal tibia (11) at surface (12) as shown in Figs. 6 - 7. Tray (13) has a flat proximal surface (14) and a generally flat distal surface (15) that mates with and faces the surgically prepared surface (12) as shown in Figs. 6 - 7. The tray (13) can provide a plurality of spikes (16) and a stem (17) for enhancing implantation to the patient's proximal tibia (11). However, any other known attachment can be used to affix tray (13) to a patient's proximal tibia such as chemical (e.g. element) or mechanical fasteners (fastener). The proximal surface (14) of tray (13) provides a post (18) having an internally threaded socket (19). Post (18) is comprised of a generally cylindrically-shaped smaller diameter section (20) and an enlarged flange (21) that mounts to the top of cylindrically-shaped (20) as shown in Figs. 5 and 13-14. Tray (13) has periphery (22). A recess (23) is provided in between the proximal surface (14) of tray (13) and flange (21).
A locking member (24) forms a removable connection with the socket (19). Locking member (24) has an externally cylindrical section (25) that provides threads that correspond to the threads of internally threaded socket (19) so that the locking member (24) can be threaded into the socket (19) as shown in Fig. 7. Locking member (24) includes an enlarged cylindrically-shaped head (26) having a tool receptive socket (27) such as a hexagonal socket for example.
An insert (28) provides a vertical channel (33) that can be placed in communication with post (18) as shown in Figs. 6 - 7. Insert (28) provides a preferably flat distal surface (29) that communicates with the flat proximal surface (14) of tray (13). A pair of spaced apart concavities (30, 31) are provided for defining articulation surfaces that cooperate with correspondingly shaped articulating surface on a patient's femur or femoral implant. The insert (28) has a periphery (32) that generally corresponds in shape to the periphery (22) of tray (13). Insert (28) can be polymeric or metallic or of a composite construction, such as metallic with a polymeric articulating surface(s) or polymeric with a metallic articulating surface(s).
Vertical channel (33) is comprised of a number of sections that are specially shaped to interact with the post (18) and locking member (24). Vertical channel (33) thus includes a proximal, cylindrically-shaped section (34), an oval shaped slot (35), and a distal opening (36). The distal opening (36) includes a generally oval section (37) and a somewhat half oval section (38). The oval section (38) can track any of three directions including a pure anterior to posterior direction, a direction that is at an angle to a pure anterior to posterior direction; or a direction that is an arcuate or curved path that pivots or rates about a point that is not located along the A/P centreline of the insert. Flat surfaces (39, 40) are positioned at the top of and at the bottom of the oval shaped slot (35) as best seen in Figs 8 - 11. The cylindrically-shaped head (26) of locking member (24) closely fits the cylindrically-shaped section (36).
In order to assemble insert (28) to tray (13), the distal surface of (29) of insert (28) is placed next to and generally parallel to the proximal surface
(14) of tray (13). Post (18) is aligned with vertical channel (33) of insert
(28). During assembly of insert (28) to tray (13), the post (18) is shaped to enter the oval opening portion (37) of distal opening (36). Once the distal surface (29) of insert (28) meets proximal surface (14) of tray (13), flange (21) aligns with oval shaped slot (35) of vertical channel (33). After such assembly, insert (28) is held in position by post (18). This retention of insert
(28) by post (18) occurs when flange (21) engages flat surface (40) to prevent separation if any rotation (see arrow (41) of Fig. 17) at all occurs between insert (28) and tray (13). if no rotation has occurred between insert (28) and tray (13) (see Fig. 15), the oval shaped circular section (37) is sized to allow post (18) to be inserted into or withdrawn from channel
(33).
In Fig. 15, the apparatus (10) is shown in an assembled position wherein the fastener (24) has been removed so that the insert (28) can move in a translation and rotation and rotation fashion relative to tray (13). In Fig. 16, the fastener (24) has been threadably attached to the internally threaded socket (19) and is in operating position. In Fig. 17, the insert (28) can rotate relative to the tray (13) through an angle (41). However, because of the attachment of fastener (24), only rotation and not translation is permitted in Fig. 17. Thus, in Fig. 17, the apparatus (10) of the present invention provides a mating mechanism between post (18) and the fastener (24) and the insert (28) that defines a constraining mechanism so that the insert (28) may be constrained for rotation only relative to the tray (13).
In Figs. 18 - 21 and 22 - 25, there is seen various alternate constructions of the post that can be used instead of post 18 when the selected post is fitted to the tibial tray (13). In Figs. 22 - 25, an alternate construction of the insert (28) is shown with an illustration of the various types of relative motion between the insert and the tibial tray that can be selectively provided to a surgeon.
In Figs. 18 - 21 , four different constructions of the post are provided. In Fig. 18, a post (42) has a cylindrical outer surface (43) and a circular top (44). Post (42) has a rectangular base (45) with a generally flat undersurface and a plurality of four inclined surfaces (46) which provides a means of attaching the post to the tray or the post may be permanently attached to the tray. The rectangular base (45) fits tray (13A) socket (47) at its inclied surfaces (48) with a taper lock type connection for example. Other types of connections could be used to join post (42) to tray (13A) at socket (47).
In Fig. 19, post (49) includes a plurality of four vertical side walls (50) and a plurality of inclined surfaces (51). A rectangular flat top (52) is provided opposite a generally flat undersurface of post (49). The inclined surfaces (51) of post (49) fit similarly configured inclined surfaces (48) of socket (47) in tray (13A).
In Fig. 20, post (53) is generally rectangularly shaped providing a pair of opposed flat larger vertical side walls (54) and a pair of opposed flat smaller end walls (55) with a flat top (56). Post (53) has a base (57) that includes four inclined surfaces (58). The inclined surfaces (58) form a taper lock connection with four similarly configured inclined surfaces (48) of socket (47) of tray (13A). In Fig. 21 , post (59) has a hexagonal shape providing a hexagonally shaped flat top (60). Hexagonal post (59) also has a plurality of vertical side walls (61) and a rectangular base (62). The base (62) has inclined surfaces (63) that form a taper lock connection with inclined surfaces (48) of tray socket (47) of tray (13A).
In Fig. 22, insert (28A) provides a square opening (64) that exactly fits peg (49). In Fig. 22, there is no relative motion between insert (28A) and tray (13A). In Fig. 23, rotational motion only is indicated by arrow (65) between insert (28A) and tray (13A) when peg (42) is used.
In Fig. 24, the rectangular peg (53) enables only translational movement between the insert (28A) and tray (13A) as indicated by arrow (66). In Fig. 25, the hexagonal peg (59) enables both rotational motion as indicated by arrow (65) and translational motion as indicated by arrow (66) between insert (28A) and tray (13A).
An alternate embodiment of mobile bearing knee apparatus (110) is shown generally in Fig. 37. In Fig. 37, the prosthesis (110) is shown positioned upon a patient's proximal tibia (111), specifically upon a flat surgically cut proximal surface (112) as shown.
In Figs. 26 - 28, tibial tray (113) is shown, which can be of metallic construction such as titanium alloy, for example. Tray (113) has a flat proximal surface (114) and a flat distal surface (115). A plurality of mechanical fasteners such as spikes (116) on surface (115) can be used to enhance fixation of tibial tray (113) to the patient's proximal tibial (111). Chemical fasteners (e.g. cement) can also be used for fixation. A stem (117) can also be used to facilitate attachment of prosthesis (110) to the patient's tibia (111) at the tibial intramedually canal. The flat proximal surface (114) of tray (113) has a round post (118) with a hollow bore or socket (119). The post (118) is spaced inwardly from the periphery (120) of tray (113) as shown in Figs. 26 - 27. The post (118) is preferably positioned with an offset with respect to oval slot (126) in the articular insert to provide anterior stabilization in the total knee prosthesis.
Figs. 29 - 31 show the insert (121) portion of the present invention, typically a polymeric plastic insert that fits tray (113). Insert (121) has a flat distal surface (122) and a proximal surface (123) that includes curved portions. These curved portions are in the form of concavities (124, 125) receive shaped surfaces of a femoral prosthesis after total knee replacement surgery is completed. The flat distal surface (122) of insert (121) has an anterior to posterior extending generally oval shaped slot
(126) as shown in Fig. 31.
The slot (126) receives post (118) during use, enabling the insert (121) to slide in an anterior to posterior direction relative to tray (113).
The present invention provides a rotating platform, mobile knee prosthesis (110) that incorporates anterior stabilization along with the ability to selectively constrain the movement of he articular surface from rotation and translation to rotation only. This is accomplished by using an opening (136) in insert (121) that communicates with slot (126) as shown in Figs. 29 -31 and 35 - 38. The opening includes a frustoconical portion (137) that corresponds in shape to a similar frustoconically-shaped enlarged annular surface (134) of locking plug member (127). The locking plug member
(127) is shown more particularly in Figs. 32 - 33 and 37.
Locking plug member (127) includes a lower frustoconical surface (128). The frustoconical outer surface (128) of locking member (127) below annular reference line (138) is sized and shaped to fit and form a taper lock connection with surface (139) of frustoconical socket (119) of post (118). Above annular reference line (138), the enlarged annular should has a frustoconical shape as shown in Fig. 32 that corresponds generally to the size and shape of frustoconical portion (137) of opening (136) as shown in Fig. 36.
When the locking member (127) is first placed through opening (136) of insert (121) and then into frustoconical socket (119) of post (118), a locking connection is formed between the frustoconical outer surface (128) of locking member (127) and the frustoconical surface (139) of post (118). This connection can be a taper lock type connection.
Locking screw (131) can be used to engage a correspondingly sized and shaped internally threaded opening (1*32) of tray (113) if desired. The locking screw (131) can include a head (140) that is enlarged so that the head (140) is retained by annular should (133) of locking member (137) as shown in Figs. 33 and 37.
In Fig. 38, arrows (141) indicate sliding movement of insert (121) relative to tray (113) as occurs when locking plug member (127) is removed. In such a situation, the insert (121) is free with respect to tray
(113). The distal surface (122) of insert (121) slides upon the flat proximal surface (114) of tray (113). Post (118) slides relative to slot (126).
When locking member (127) is inserted through opening (136) and into socket (119) of post (118), sliding movement is prevented. The enlarged annular (134) of locking member (127) engages the frustoconical portion (137) of opening (136) disallowing a sliding action of insert (121) relative to tray (113). However, the enlarged annular shoulder (134) of locking member (127) is slightly spaced from frustoconical portion (137) of opening (136), so that rotational movement of insert (121) relative to tray (113) is permitted. The second alternate embodiment of the present invention provides a rotating platform, mobile knee prosthesis (110) that incorporates anterior stabilization along with the ability to constrain movement of the articular surface from rotation and translation to rotation only.
Figs. 39 and 40 - 51 show a third alternate embodiment of the apparatus of the present invention designated generally by the numeral 142 in Fig. 39. Mobile bearing knee prosthesis (142) includes a tray (143) that can be attached to a patient's surgically cut proximal tibia using a stem (146) for example that occupies the patient's intramedullary canal. The tray (143) has a proximal surface (144) that receives an insert (159) and a distal surface (145) that registers upon the proximal tibia after the tibia has been surgically prepared to conform to the underside or distal surface (145) of tray (143).
The proximal (144) surface of tray (143) provides a frustoconically- shaped socket (147) that can receive either of two selected plugs (148 or 154) (or any of the plug embodiments shown in Figs. 18 - 21). The first plug (148) is designed to provide rotational movement only between insert (159) and tray (143). The plug (148) has a frustoconical surface (149), cylindrical surface (150), bevelled annular surface (151), and a pair of opposed generally parallel flat end surfaces (152, 153).
The second plug (154) is designed to provide both anterior to posterior translational movement between the insert (159) and tray (153) as well as rotational movement between the insert (159) and tray (153). The plug (154) has a frustoconical surface (155), a reduced diameter cylindrical surface (156), and flat end surfaces (157, 158).
During use, a surgeon selects either of the plugs (148 or 154). The frustoconical surfaces (149 or 155) form a tight taper lock fit with a correspondingly shaped frustoconical socket (147) that communicates with the proximal (144) surface of tray (143). Once the selected plug (148 or 154) has been inserted into frustoconical socket (147), the insert (159) is placed on the selected plug (148 or 154). The shape of the plug (148 or 154) that is selected determines whether or not the insert (159) can achieve only rotational movement relative to tray (143) or both rotational and anterior to posterior translational movement.
In the case of the plug (148), only rotational movement between the insert (159) and the tray (143) can be attained. The plug (148) is shorter and thus only communicates with the cylindrically-shaped opening (164) on the bottom or distal surface (162) of insert (159). Plug (148) once inserted in socket (147) only enables a rotational movement of the insert (159) on the tray (143). The cylindrical surface (150) of plug (148) corresponds in size and shape to the circular opening (164) to accomplish a relatively close fit between cylindrical surface (150) of plug (148) and cylindrical opening (164) on insert (159).
When both rotational and translational anterior to posterior movement are desired, the surgeon selects the plug (154). The plug (154) is placed in socket (147) so that frustoconical surface (155) forms a taper lock fit with a correspondingly sized and shaped socket (147) of tray (143). The smaller cylindrically-shaped portion (156) of plug (154) is taller in a proximal to distal direction than the cylindrically-shape portion (150) of plug (148). The portion (156) fits elongated slot (163) so that the insert (159) can translate in an anterior to posterior direction as the reduced diameter cylindrical portion (156) travels anterior to posterior in the direction of arrow (165) in Fig. 44. However, the insert can also translate along the path (165) that curved, or along a path (165) that forms an angle with a purely anterior to posterior direction line. The line (165) in Fig. 44 shows such a purely anterior to posterior line as the direction of travel. Because the slot (163) is at least as wide as the diameter of cylindrical portion (156) and tray (143). Insert (159) also provides proximal concavities (160, 161) for receiving a femoral component of a knee implant. Figs. 52 - 56 disclose a fourth alternate embodiment of this invention identified as prosthesis (210), comprising a tibial tray (213), a polymeric insert (28), and a locking member (24). In this embodiment, insert (28) and locking member (24) are the same as described above, but flange (221) is generally D-shaped, having a periphery extending laterally in the medial, lateral, and anterior directions from the out surface of cylindrical section (220), thereby creating recess (223) on the medial, lateral and anterior sides of section (220) (see Figs. 55 - 56). As evidenced by the following description, the assembly of prosthesis (210) is essentially identical to that of prosthesis (10) except for the shape of flange (221).
Locking member (24) forms a removable connection with the socket
(219). Locking member (24) has an externally cylindrical section (25) that provides threads that correspond to the threads of internally socket (219) so that the locking member (24) can be threaded into the socket (219) as shown in Fig. 54.
In order to assemble insert (28) to tray (213), the distal surface (29) of insert (28) is placed next to and generally parallel to the proximal surface
(214) of tray (213). Post (218) is aligned with vertical channel (33) of insert
(28). During assembly of insert (28) to tray (213), the post (218) is oriented to enter the oval opening portion (37) of distal opening (36). Once the distal surface (29) of insert (28) meets proximal surface (214) of tray (213), flange (221) aligns with oval shaped slot (35) of vertical channel (33). After such assembly, insert (28) is held in position by post (218). This retention of insert (228) by post (218) occurs when flange (221) engages flat surface
(40) to prevent separation if any rotation at all occurs between insert (28) and tray (213). If no rotation has occurred between insert (28) and tray (213), the oval shaped circular section (37) is sized to allow post (218) to be inserted into or withdrawn from channel (33). Figs. 57 - 67 show a fifth alternate embodiment of the apparatus of the present invention designated generally by the numeral 200 in Figs. 57 - 61. It should be understood that the embodiment of Figs. 57 - 61 disclose an alternate construction for a polymeric insert (202) that interconnects with the same tibial tray (13) and stem (17) shown in Figs. 1 , 5 - 7 and 14 - 16 of the preferred embodiment. In Figs. 57 - 59, mobile bearing knee prosthesis (200) is shown as including tray (13), polymeric insert (202), and femoral component (236). In Fig. 58, the femoral component (236) is shown attached to a patient's surgically cut distal demur (201).
Polymeric insert (202) (see Figs. 62-67) has a flat distal surface (203) and a proximal surface with a pair of concavities (204, 205). Insert (202) also has periphery (206) and vertical channel (207). The vertical channel (207) can be a slotted arrangement such as that shown in the preferred embodiment of Figs. 1 - 17 and designated generally by the numeral 33. Thus, the connection between post (18) of tray (13) and insert (202) can be the same connection that is shown and described with respect to the preferred embodiment of Figs. 1 -17 and shown particularly in Figs. 1 - 7 and 15 - 17, or as shown in Figs. 52 -56.
Vertical channel (207) can include a proximal cylindrically-shaped section (208), an oval shaped slot (209), and a distal opening (224). The distal opening (224) can include an oval section (226) and a half oval section (227) as shown in Fig. 66. Flat surface (225) extends posteriorly of vertical channel (207) more particularly posteriorly of the proximal cylindrically-shaped section (208), as shown in Figs. 64 - 65. Flat surfaces (228, 229) register with the flange (21) of post (18), respectively above and below the flange (21) to thereby prevent separation of polymeric insert (202) from post (18) unless the post (18) is aligned with oval section (226) of distal opening (224). When the flange (21) of post (18) aligns with oval section (226) of distal opening (224), insert (202) can be separated from tray (13). In the embodiment of Figs. 57 - 68, insert (202) provides a central post (230). Post (230) has proximal surface (231), anterior surface (232), posterior surface (233), and sides (234, 235).
Femoral component (236) is shown in Figs. 57 -61. Femoral component (236) has anterior portion (237), a pair of posterior condylar portions (238, 239) and distal condylar portions (240, 241). Femoral component (236) has central opening (242) and a horizontal bar cam (243) that extends between posterior condylar portions (238, 239) as best seen in Figs. 59 and 68. A pair of vertical walls (244, 245) extend along opposing sides of central opening (242) and connect to both of the posterior condylar portions (238, 239) and to horizontal bar (243). The vertical walls (230, 231) also extend to and connect to surfaces (248, 249, 250). The vertical walls (244, 245) can be generally parallel.
Femoral component (236) provides a plurality of flat surfaces that register against and conform to surgically cut flat surfaces that are provided on the patient's distal femur (201) as shown in Fig. 58. These flat surfaces include flat surface (246) is an anterior surface, surface (247) which is a diagonally extending anterior surface that spans between anterior surface (246) and distal surface (248). Distal surface (248) spans between diagonal surface (247) and posterior diagonal surface (249). Posterior surface (250) is generally parallel to anterior flat surface (246). These five flat surfaces (246 - 250) of femoral component (236) register against and conform to five surgically cut surfaces on a patient's distal femur (201). Femoral component (236) can be securely fashioned to the patient's femur (201) using bone cement for example.
In Figs. 60 - 61 , a range of motion for the patient's knee fitted with mobile bearing knee prosthesis (200) as illustrated with arrows (252, 253). For purpose of reference, the patient's central longitudinal axis (251) of the distal femur (201) is shown rotating posteriorly in the direction of arrow (253). The anterior surface (237) of femoral component (236) is shown rotating in the direction of arrow (252). Fig. 60 shows an extended position of the patient's knee wherein the longitudinal axis (251) of the femur (201) is generally aligned with the central longitudinal axis of the patient's tibia (11). In Fig. 61 , the knee is shown in a flexed position. In this position, horizontal bar cam (243) of femoral component (222) registers against the posterior surface (233) of central post (230) of polymeric insert (202). In this position, the central post (230) causes femoral roll back on the tibia articular insert (202). The posterior aspect of the tibia articular surface at (233) provides a lift that is created by generally following the curvature of the femoral component (236) in extension. This will provide a high degree of surface contact, conformity, subsequently providing low contact stress, in extension, where most of gait occurs. The post (230) can have a square or rectangular base that fits snugly within the central opening (242) of the femoral component (236).
By providing the posterior stabilized design with the central post (230), as the knee is flexed, the horizontal bar cam (243) acts as a cam on the femoral component (236) to engage the post (230) at surface (233) on the tibial component (202), causing the femoral posterior condyles (238, 239) to roll back onto the tibial articular concavity surfaces (204, 205). This "roll back" coupled with "climbing" the posterior aspect of the tibial articular surface at (233), causes the femoral component (236) to be located out of the lowest aspect of the tibial articular surfaces (204, 205). With this condition, any type of varus/valgus loading of the joint will cause one of the femoral condyles to apply higher downward loads than the opposing condyle. With a differential in loads, the tibial component (202) will freely spin until the higher loaded condyle displaces to the low point of the tibial articular surface. The central tibial post (216) forces the opposite condyle out of the posterior aspect of the tibial articular surface, thus creating a spin out. The present invention allows for a free, unlimited rotation of the tibial insert (202) relative to its baseplate (13). All of the rotational constraints occurs between the femoral component (236) and the insert (202). The present invention builds conformity of the central post (230) of the insert (202) relative to the box of the femur in rotation, but allowing for varus/valgus tilting. The present invention produces a generally trapezoidal insert post (230).
A sixth alternate embodiment of the apparatus of the present invention is shown in Figs. 69 - 81. In the embodiment of Figs. 69 -81 , a mobile bearing knee prosthesis (254) features a two-part polymeric insert that includes first member (255) shown in Figs. 69 -75 and a second member (264) shown in Figs. 69 and 76 - 81. Polymeric insert (255) (see Figs. 70 - 75) has a central opening (256) that is bordered by a pair of spaced apart, generally parallel shoulders (257, 258) upon which second member (264) slides fore and aft. The insert (255) has a periphery (259) a proximal surface with a pair of concavities (260, 261). The insert member (255) includes a flat distal surface (262).
The second insert member (264) has a proximal surface (265), a distal surface (267) and a passageway (263) that extends between the surfaces (265, 267). A pair of spaced apart, generally parallel shoulders (268, 269) are provided on opposing sides of insert 9264) as shown in Figs. 77, 79 and 81. Flat surfaces (270, 271) are also provided on opposing sides of insert member (264). The surface (270) is generally perpendicular to shoulder (268). The surface (277) is generally perpendicular to the shoulder (267) as shown in Fig. 79.
Insert member (264) provides a post (272). Post (272) has flat, proximal surface (273), anterior surface (274), posterior surface (275), and sides (276, 277). The member (264) provides a curved anterior surface (278) that is correspondingly shaped to and fits against the correspondingly shaped concave surface (279) of member (255) at opening (256).
During use, the shoulders (268, 269) of insert member (264) fit against and slide upon the shoulders (257, 258) of insert member (255). Flat surfaces (270, 271) of insert member (264) engage and slide against flat surfaces (280, 281) of insert (255). The insert member (264) slides upon the insert member (255) in an anterior to posterior direction because the opening (256) is longer than the insert member (264). The opening (256) is larger in an anterior to posterior direction than the length of the insert member (264) measured from an anterior to posterior direction such as between surfaces (278) and (280).
The present invention includes a posterior stabilizing post (272) secured to the central insert member (264). The posterior stabilized post (272) captures or is captured by bearing insert component (255) to the tibial baseplate (13) through an elongated slot or opening (256) in the bearing component (255). The elongated opening or slot (256) in the bearing component member (255) allows it to translate anteriorly and posteriorly with respect to the posterior stabilized post (272) of the insert member (264). The bearing component (255) may also rotate with respect to the tibial baseplate (13) in conjunction with the posterior stabilized post (272).
The bearing component (255) has two concave surfaces (260, 261) that are configured to articulate with the convex surfaces [condylar portions](240, 241) of the femoral component (236) at full extension. The posterior stabilized post (272) articulates with a horizontal bar cam (243) of the femoral component (236) to provide femoral roll back.
The bearing design of the present invention thus consists of a bearing articular insert (255) with a separate posterior stabilized post component (264) that may have one or more degrees of freedom. The bearing articular insert (251) has two concave surfaces (260, 261) that articulate with the convex surfaces [condylar portions](240, 241) of the femoral component (236) at full extension. The posterior stabilized post (272) articulates with a recess or cam (243) of the femoral component (236) to provide femoral roll back. The rotational freedom of the posterior stabilized post (272) maintains contact with the femoral bar cam (243) during external or internal rotation of femoral component (236).
The posterior stabilized member (255) has a flat distal surface (262) that articulates with the tibial baseplate (13). A tee slot (266) is located n the distal surface (267) and articulates with a tee post (18) on the tibial baseplate (13) (see Figs. 1 -17 for such a tee slot and tee post connection). A through hole (263) in the component (264) is located such that a rotation peg (such as peg (24) in Figs. 1 - 7) can capture the component (264) to the tibial baseplate (13) while the tee slot of the insert component (264) is engaged with a tee post (18) of the tibial baseplate. Rotation peg (24) allows only rotational freedom of the insert component (264) with respect to the tibial baseplate (13). The elongated slot (256) of the bearing component (255) is larger than the posterior stabilized post carrying component (255) in the anterior-posterior direction such that the bearing component has limited translation with respect to the posterior stabilized post. The bearing component (255) may also rotate with respect to the tibial baseplate (13) in conjunction with posterior stabilized post component (264).
Horizontal bar cam mechanism (243) on the femoral component (236) is preferably a concavely shaped cylinder as shown in Figs. 59 and 68, that registers against and engages the convex posterior surface (275) of the posterior stabilized post (272). The internal/external rotation of the posterior stabilized post component (264) with the femoral component (236) maintains this contact throughout the range of motion. As an alternate construction, the second (central) insert member (264) could rotate only with respect to the tibial prosthesis, and the first (peripheral) insert member could both rotate and translate with respect to the tray.
PARTS LIST
The following is a list of suitable parts and materials for the various elements of the preferred embodiment of the present invention.
Part Number Description
10 mobile bearing knee prosthesis
11 tibia
12 surgically cut proximal surface
13 tray
13A tray
14 flat proximal surface
15 flat distal surface
16 spike
17 stem
18 post
19 internally threaded socket
20 cylindrically-shaped section
21 flange
22 periphery
23 recess
24 fastener
25 externally threaded section
26 head
27 tool receptive socket
28 insert
29 flat distal surface
30 concavity
31 concavity
32 periphery
33 vertical channel
34 proximal, cylindrically-shaped section
35 oval shaped slot
36 distal opening
37 oval section 38 half oval section
39 flat surface
40 flat surface
41 arrow/angle
42 post
43 cylindrical surface
44 circular top
45 rectangular base
46 inclined side wall
47 tray socket
48 inclined surface
49 post
50 vertical side wall
51 inclined surface
52 flat top
53 post
54 vertical side wall
55 vertical end wall
56 flat top
57 rectangular base
58 inclined surface
59 post
60 flat top
61 vertical side wall
62 rectangular base
63 inclined surface
64 insert opening
65 arrow
66 arrow
110 mobile bearing knee prosthesis
111 tibia
112 surgically cut proximal surface
113 tray
114 flat proximal surface
114A opening
115 flat distal surface
116 spike
117 stem
118 post
119 socket
120 periphery of tray
121 insert
122 flat distal surface
123 proximal surface 124 concavity
125 concavity
126 slot
127 locking plug member
128 frustoconical outer surface
129 socket
130 threaded bore
131 locking screw
132 internally threaded opening
133 annular shoulder
134 enlarged annular shoulder
135 periphery of insert
136 opening
137 frustoconical portion
138 annular reference line
139 frustoconical surface
140 enlarged head
141 arrows
142 mobile bearing knee prosthesis
143 tray
144 proximal surface
145 distal surface
146 stem
147 frustoconical socket
148 plug
149 frustoconical surface
150 cylindrical surface
151 bevelled annular surface
152 flat end surface
153 flat end surface
154 plug
155 frustoconical surface
156 reduced diameter cylindrical surface
157 flat end surface
158 flat end surface
159 insert
160 proximal concavity
161 proximal concavity
162 flat distal surface
163 elongated slot
164 cylindrical opening
165 arrow
200 mobile bearing knee prosthesis
201 surgically cut femur 202 polymeric insert
203 flat distal surface
204 concavity
205 concavity
206 periphery
207 vertical channel
208 proximal cylindrically-shaped section
209 oval shaped slot
210 mobile bearing knee prosthesis
213 tray
214 flat proximal surface
215 flat distal surface
216 spike
217 stem
218 post
219 internally threaded socket
220 cylindrically-shaped section
221 flange
222 periphery
223 recess
224 distal opening
225 flat surface
226 oval section
227 half oval section
228 flat surface
229 flat surface
230 central post
231 proximal surface
232 anterior surface
233 posterior surface
234 side
235 side
236 femoral component
237 anterior portion
238 posterior condylar portion
239 posterior condylar portion
240 distal condylar portion
241 distal condylar portion
242 central opening
243 horizontal bar cam
244 vertical wall
245 vertical wall
246 flat surface
247 flat surface 248 flat surface
249 flat surface
250 flat surface
251 central longitudinal axis
252 arrow
253 arrow
254 mobile bearing knee prosthesis
255 polymeric insert bearing component
256 central opening
257 shoulder
258 shoulder
259 periphery
260 concavity
261 concavity
262 distal surface
263 through hole
264 central insert component
265 proximal surface
266 tee slot
267 distal surface
268 shoulder
269 shoulder
270 flat surface
271 flat surface
272 post
273 flat proximal surface
274 anterior surface of post
275 posterior surface of post
276 side
277 side
278 curved anterior surface
279 concave surface
280 posterior surface
281 flat surface
282 flat surface
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.

Claims

1. A knee prosthesis apparatus comprising: a. a tibial component configured to be surgically implanted on a patient's transversely cut proximal tibia; b. a femoral component; c. a fixator for holding the tibial component on the patient's proximal tibia; d. a tibial insert having a proximal surface that is shaped to engage the femoral component, the insert having a distal surface that fits against and articulates with the proximal surface of the tibial component. e. a constraining mechanism that joins the tibial insert to the tibial component in a selective fashion that enables a number of different possible relative motions between the insert and tibial component, including anterior to posterior translation with rotation, or rotation only; and f. wherein all or part of the constraining mechanism is separable from the tibial component, and selective removal of all or part of the constraining mechanism determines which of the said possible relative motions will take place.
2. A knee prosthesis of claim 1 wherein the tibial prosthesis has a fixator for holding the tibial component on the patient's proximal tibia.
3. A knee prosthesis of claim 1 wherein the proximal surface of the insert has one or more concavities for articulating with the femoral component.
4. A knee prosthesis of claim 1 wherein there are two concavities that define articulation surfaces on the proximal surface of the tibial insert.
5. A knee prosthesis of claim 1 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial insert.
6. A knee prosthesis of claim 5 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
7. A knee prosthesis of claim 5 wherein the post has a socket and the constraining mechanism includes a locking member that is connectable to the socket on the post.
8. A knee prosthesis of claim 1 wherein the constraining mechanism includes a post extending up from the proximal surface of the insert, a slot on the distal surface of the insert, an opening on the proximal surface of the insert that communicates with the slot and a locking plug member that can access and connect to the post from the proximal surface of the insert via the opening.
9. A knee prosthesis of claim 8 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
10. A knee prosthesis of claim 8 wherein the constraining mechanism includes a socket on the post that receives the locking member, wherein the locking plug member is attached to the post for further defining movement between the insert and tray.
11. A knee prosthesis of claim 10 wherein the locking member includes a plug.
12. A knee prosthesis of claim 8 wherein the opening is defined by an annular surface that fits closely to the locking plug member when the locking plug member is connected to the pot.
13. A knee prosthesis of claim 1 wherein the constraining mechanism includes an opening that extends from the proximal to the distal surface of the insert and a variety of connectable portions which are selectively attachable to or separable from the tray, and wherein the geometry of the various connectable portions relative to the opening enables a user to determine which of the relative motions will take place.
14. A knee prosthesis of claim 1 wherein the tibial insert has a post.
15. A knee prosthesis of claim 1 wherein a slot extends through the insert, communicating with both the proximal and distal surfaces of the insert, the slot enabling both anterior to posterior translation and rotation of the insert relative to the tibial component.
16. A knee prosthesis of claim 1 wherein the slot has an elongated section that communicates with the distal surface of the insert.
17. A knee prosthesis of claim 1 wherein the slot has a generally cylindrically-shaped section that communicates with the proximal surface of the insert.
18. A knee prosthesis of claim 15 wherein the slot has a larger transverse cross section at the distal surface of the insert and a smaller transverse cross section at the proximal surface of the insert.
19. A knee prosthesis of claim 1 or 18 wherein the tibial insert has a post.
20. A knee prosthesis of claim 1 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial insert.
21. A knee prosthesis of claim 20 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
22. A knee prosthesis apparatus comprising: a. wherein the tibial component that includes a tibial tray portion adapted to be surgically implanted on a patient's transversely cut proximal tibia; b. wherein the femoral component that engages the tibial component; c. a post mounted on the proximal surface of the tray, the post having a socket; d. a tibial insert having an articulation surface for articulating with the femoral component, the insert having a distal surface that fits against and moves on the proximal surface of the tray; e. a generally vertical channel at the central portion of the insert that extends through the insert, the opening including an elongated slot portion that extends a partial distance through the insert, beginning at the distal surface of the insert and terminating at a position intermediate the proximal and distal surfaces of the insert, the slot extending generally along an anterior to posterior line; f. the slot removably connecting to and sliding with respect to the post of the tray; and g. a locking member for selectively locking the insert and tray together with a rotational connection, the member extending through the insert to connect with the post on the tray; h. the insert and tray being configured to enable selected relative motion between the insert and tray by respectively connecting or disconnecting the plug, wherein the insert is rotatable relative to the tray when the plug connects to the post; and i. wherein the insert is slidable and rotatable relative to the tray when the plug is disassembled from the post.
23. A knee prosthesis of claim 19 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial insert.
24. A knee prosthesis of claim 23 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
25. A knee prosthesis of claim 22 wherein the post has a socket that receives the locking plug member.
26. A knee prosthesis of claim 22 wherein the slot extends through the insert, communicating with both the proximal and distal surfaces of the insert.
27. A knee prosthesis of claim 22 wherein the slot has a larger transverse cross section at the distal surface of the insert and a smaller transverse cross section at the proximal surface of the insert.
28. A knee prosthesis of claim 22 wherein the channel extends completely through the insert and the locking member extends through the insert from the proximal surface of the insert to connect with the post.
29. A knee prosthesis of claim 27 wherein the channel closely conforms to the locking member at the proximal surface of the insert.
30. A knee prosthesis apparatus as claimed in claim 1 wherein the tibial component has a tibial tray portion configured to be surgically implanted on a patient's transversely cut proximal tibia such that the fixator holds the tray on the patient's proximal tibia and wherein the proximal surface of the tibial insert, includes medial and lateral concavities and a projecting member positioned in between said concavities, the insert having a distal surface that fits against and articulates with the proximal surface of the tray
31. A knee prosthesis of claim 30 wherein the proximal surface of the insert has one or more concavities for articulating with the femoral component.
32. A knee prosthesis of claim 30 wherein there are two concavities that define the articulation surface.
33. A knee prosthesis of claim 30 wherein the constraining mechanism includes a post extending superiorly from the proximal surface of the tibial insert.
34. A knee prosthesis of claim 30 wherein the post has a socket and the constraining mechanism includes a locking member that is connectable to the socket on the post.
35. A knee prosthesis of claim 34 wherein the locking member includes a plug.
36. A knee prosthesis of claim 30 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
37. A knee prosthesis of claim 30 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial tray, a slot on the distal surface of the insert, an opening on the proximal surface of the insert that communicates with the slot and a locking plug member that can access and connect to the post from the proximal surface of the insert via the opening.
38. A knee prosthesis of claim 30 wherein the constraining mechanism includes a socket on the post that receives the locking plug member, wherein the locking plug member is attached to the post for further defining movement between the insert and tray.
39. A knee prosthesis of claim 30 wherein the opening is defined by an annular surface that fits closely to the locking plug member when the locking plug member is connected to the post.
40. A knee prosthesis of claim 30 wherein the constraining mechanism includes an opening that extends from the proximal to the distal surface of the insert and a variety of connectable portions which are selectively attachable to or separable from the tray, and wherein the geometry of the various connectable portions relative to the opening enables a user to determine which of the relative motions will take place.
41. A knee prosthesis of claim 30 wherein the tibial insert has a posterior projecting portion.
42. A knee prosthesis apparatus as claimed in claim 1 in which the tibial component includes a tibial tray portion adapted to be surgically implanted on a patient's transversely cut proximal tibia; and the femoral component engages the tibial component; further comprising a post mounted at the central portion of the proximal surface of the tray, the post having a socket; further wherein the tibial insert having a proximal surface that engages the femoral component, the proximal surface including medial and lateral concavities and a projecting member positioned in between said concavities, the insert having a distal surface that fits against and articulates with the proximal surface of the tray; also comprising a generally vertical channel at the central portion of the insert that extends through the insert, the opening including an elongated slot portion that extends a partial distance through the insert, beginning at the distal surface of the insert and terminating at a position intermediate the proximal and distal surfaces of the insert, the slot extending generally along an anterior to posterior line; the slot removable connecting to and sliding with respect to the post of the tray; and a locking member for selectively locking the insert and tray together with rotational connection, the plug member extending through the insert to connect with the post on the tray; the insert and tray being configured to enable selected relative motion between the insert and tray by respectively connecting or disconnecting the plug, wherein the insert is rotatable relative to the tray when the plug connects to the post; and wherein the insert is slidable and rotatable relative to the tray when the plug is disassembled from the post.
43. A knee prosthesis of claim 42 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
44. A knee prosthesis of claim 42 wherein the tibial insert has a post.
45. A knee prosthesis of claim 42 wherein the post has a socket that receives the locking plug member.
46. A knee prosthesis of claim 42 wherein the slot extends through the insert, communicating with both the proximal and distal surfaces of the insert.
47. A knee prosthesis of claim 42 wherein the slot has a larger transverse cross section at the distal surface of the insert and a smaller transverse cross section at the proximal surface of the insert.
48. A knee prosthesis of claim 42 wherein the channel extends completely through the insert and the locking member extends through the insert at the proximal surface of the insert to connect with the post.
49. A knee prosthesis of claim 42 wherein the channel closely conforms to the locking member at the proximal surface of the insert.
50. A knee prosthesis apparatus comprising: a. a tibial component including a tibial tray portion configured to be surgically implanted on a patient's transversely cut proximal tibia; b. a fixator for holding the tibial component on the patient's proximal tibia; c. a tibia insert having first and second removably connectable members, including a peripheral member having a central opening and a central member that connects to the central opening the insert having a distal surface that fits against and articulates with the proximal surface of the tibial component; d. a femoral component; e. a constraining mechanism that joins the insert to the tibial tray portion during use in a selective fashion that enables a number of different possible relative motions between the insert and tibial tray including anterior to posterior translation and rotation or rotation only; and f. wherein all or part of the constraining mechanism is separate from the tray and selective removal of all or part of the constraining mechanism determines which of the said possible relative motions will take place.
51. A knee prosthesis of claim 50 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial insert.
52. A knee prosthesis of claim 51 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
53. A knee prosthesis of claim 50 wherein the central member slidably connects to the peripheral member.
54. A knee prosthesis of claim 50 wherein the central member connects to the tray and the peripheral member connects to the central member.
55. A knee prosthesis of claim 50 wherein the proximal surface of the insert has one or more concavities for articulating with femoral component.
56. A knee prosthesis of claim 50 wherein there are two concavities that define the articulation surface.
57. A knee prosthesis of claim 50 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial tray.
58. A knee prosthesis of claim 57 wherein the central member connects to the post.
59. A knee prosthesis of claim 50 wherein the post has a socket and the constraining mechanism includes a locking plug member that is connectable to the socket on the post.
60. A knee prosthesis of claim 50 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial tray, a slot on the distal surface of the insert, an opening on the proximal surface of the insert that communicates with the slot and a locking plug member that can access and connect to the post from the proximal surface of the insert via the opening.
61. A knee prosthesis of claim 60 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
62. A knee prosthesis of claim 50 wherein the constraining mechanism includes a socket on the post that receives the locking plug member, wherein the locking plug member is attached to the post for further defining movement between the insert and tray.
63. A knee prosthesis of claim 50 wherein the opening is defined by an annular surface that fits closely to the locking plug member when the locking plug member is connected to the post.
64. A knee prosthesis of claim 50 wherein the constraining mechanism includes an opening that extends from the proximal to the distal surface of the insert and a variety of connectable portions which are selectively attachable to or separable from the tray, and wherein the geometry of the various connectable portions relative to the opening enables a user to determine which of the relative motions will take place.
65. A knee prosthesis apparatus as claimed in claim 50 further comprising: a. a post mounted at the central portion of the proximal surface of the tray, the post having a socket; b. a generally vertical channel at the central portion of the insert that extends through the insert, the opening including an elongated slot portion that extends a partial distance through the insert, beginning at the distal surface of the insert and terminating at a position intermediate the proximal and distal surfaces of the insert, the slot extending generally along an anterior to posterior line; c. the slot removably connecting to and sliding with respect to the post of the tray; and d. a locking member for selectively locking the insert and tray together with a rotational connection, the locking member extending through the insert to connect with the post on the tray; wherein e. the insert and tray being configured to enable selected relative motion between the insert and tray by respectively connecting or disconnecting the locking member wherein the insert is rotatable relative to the tray when the locking member connects to the post; and f. wherein the insert includes first and second connectable members being rotatable relative to the tray when the locking member is assembled the post.
66. A knee prosthesis of claim 65 wherein the constraining mechanism includes a post extending up from the proximal surface of the tibial insert.
67. A knee prosthesis of claim 66 wherein the femoral component includes an intercondylar surface that is positioned to contact the post, enabling relative motion between the femoral component and the insert to be constrained.
68. A knee prosthesis of claim 65 wherein the tibial insert has a post.
69. A knee prosthesis of claim 65 wherein the post has a socket that receives the locking plug member.
70. A knee prosthesis of claim 65 wherein the slot extends through the insert, communicating with both the proximal and distal surfaces of the insert.
71. A knee prosthesis of claim 69 wherein the slot has a larger transverse cross section at the distal surface of the insert and a smaller transverse cross section at the proximal surface of the insert.
72. A knee prosthesis of claim 69 wherein the channel extends completely through the insert and the locking member extends through the insert at the proximal surface of the insert to connect with the post.
73. A knee prosthesis of claim 67 wherein the channel closely conforms to the locking plug at the proximal surface of the insert.
74. A knee prosthesis of claim 67 wherein the first and second connectable members are slidably connected during use.
75. A knee prosthesis of claim 50 in which the femoral component articulates with the insert.
76. A knee prosthesis of claim 65 in which the femoral component engages the tibial component.
PCT/US2001/030009 2000-09-26 2001-09-26 Mobile bearing knee prosthesis WO2002026169A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002530000A JP4746257B2 (en) 2000-09-26 2001-09-26 Mobile support knee prosthesis
DE60127275T DE60127275T2 (en) 2000-09-26 2001-09-26 KNEE PROSTHESIS WITH MOVABLE BEARING
EP01975375A EP1322262B1 (en) 2000-09-26 2001-09-26 Mobile bearing knee prosthesis
CA2423439A CA2423439C (en) 2000-09-26 2001-09-26 Mobile bearing knee prosthesis
AU2001294709A AU2001294709A1 (en) 2000-09-26 2001-09-26 Mobile bearing knee prosthesis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/670,186 2000-09-26
US09/670,186 US6428577B1 (en) 1998-05-20 2000-09-26 Mobile bearing knee prosthesis

Publications (2)

Publication Number Publication Date
WO2002026169A2 true WO2002026169A2 (en) 2002-04-04
WO2002026169A3 WO2002026169A3 (en) 2002-09-26

Family

ID=24689349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/030009 WO2002026169A2 (en) 2000-09-26 2001-09-26 Mobile bearing knee prosthesis

Country Status (10)

Country Link
US (1) US6428577B1 (en)
EP (2) EP1322262B1 (en)
JP (2) JP4746257B2 (en)
AT (2) ATE356597T1 (en)
AU (1) AU2001294709A1 (en)
CA (1) CA2423439C (en)
DE (1) DE60127275T2 (en)
ES (1) ES2282296T3 (en)
PT (1) PT1322262E (en)
WO (1) WO2002026169A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042132A1 (en) * 2007-09-27 2009-04-01 Finsbury (Development) Limited Tibial prosthesis comprising a mobile bearing
GB2525044A (en) * 2014-04-11 2015-10-14 Biomet Uk Ltd Prosthesis with fixed or mobile bearing

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050209703A1 (en) * 1999-04-02 2005-09-22 Fell Barry M Surgically implantable prosthetic system
US20050033424A1 (en) * 1999-05-10 2005-02-10 Fell Barry M. Surgically implantable knee prosthesis
US7297161B2 (en) * 1999-05-10 2007-11-20 Fell Barry M Surgically implantable knee prosthesis
US7338524B2 (en) * 1999-05-10 2008-03-04 Fell Barry M Surgically implantable knee prosthesis
US7491235B2 (en) * 1999-05-10 2009-02-17 Fell Barry M Surgically implantable knee prosthesis
US6558426B1 (en) 2000-11-28 2003-05-06 Medidea, Llc Multiple-cam, posterior-stabilized knee prosthesis
US6485519B2 (en) 2001-01-29 2002-11-26 Bristol-Myers Squibb Company Constrained prosthetic knee with rotating bearing
US6719800B2 (en) * 2001-01-29 2004-04-13 Zimmer Technology, Inc. Constrained prosthetic knee with rotating bearing
US9155626B2 (en) 2012-09-10 2015-10-13 Acumed Llc Radial head prosthesis with floating articular member
DE10200263B4 (en) * 2002-01-07 2007-01-25 Plus Orthopedics Ag Tibial component of a knee joint endoprosthesis
US20040034432A1 (en) * 2002-02-11 2004-02-19 Dean Hughes Mobile bearing tibial base prosthetic devices employing oxidized zirconium surfaces
EP1476097A4 (en) 2002-02-20 2010-12-08 Zimmer Inc Knee arthroplasty prosthesis and method
US6923832B1 (en) * 2002-03-21 2005-08-02 Trigon Incorporated Revision tibial component
WO2004037119A2 (en) 2002-10-23 2004-05-06 Mako Surgical Corp. Modular femoral component for a total knee joint replacement for minimally invasive implantation
ES2465090T3 (en) * 2002-12-20 2014-06-05 Smith & Nephew, Inc. High performance knee prostheses
US7452381B2 (en) * 2003-01-30 2008-11-18 Mayo Foundation For Medical Education And Research Radial head replacement system
WO2004069105A1 (en) * 2003-02-04 2004-08-19 Zimmer Austin, Inc. Rotating/non-rotating tibia plate/insert system
WO2005037147A1 (en) 2003-10-17 2005-04-28 Smith & Nephew, Inc. High flexion articular insert
US20050197713A1 (en) * 2004-03-01 2005-09-08 Catlin Mark G. Ternary single-phase ceramic medical devices
EP1574185B1 (en) * 2004-03-09 2012-05-23 Zimmer Technology, Inc. Tibial knee component with a mobile bearing
US20050203632A1 (en) * 2004-03-09 2005-09-15 Daniels Michael E. Tibial implant with a through post
JP3915989B2 (en) * 2004-03-17 2007-05-16 徹 勝呂 Artificial knee joint
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8002777B2 (en) * 2005-06-09 2011-08-23 Biomet Manufacturing Corp. Instrumentation and method for implanting a curved stem tibial tray
US20070100460A1 (en) * 2005-10-27 2007-05-03 Rhodes James M Orthopaedic implant systems with anti-abrasion studs
US8216319B2 (en) 2005-10-27 2012-07-10 Depuy Products, Inc. Method of repairing a knee joint
US8308807B2 (en) * 2005-11-09 2012-11-13 Zimmer, Gmbh Implant with differential anchoring
US9241800B2 (en) * 2005-12-21 2016-01-26 Orthopaedic International Inc. Tibial component with a conversion module for a knee implant
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
CA2930222A1 (en) 2006-06-30 2008-01-10 Smith & Nephew, Inc. Anatomical motion hinged prosthesis
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US7947082B2 (en) * 2006-11-09 2011-05-24 Consensus Orthopedics, Inc. System and method for joint arthroplasty
US8328874B2 (en) * 2007-03-30 2012-12-11 Depuy Products, Inc. Mobile bearing assembly
US8147557B2 (en) * 2007-03-30 2012-04-03 Depuy Products, Inc. Mobile bearing insert having offset dwell point
US8764841B2 (en) * 2007-03-30 2014-07-01 DePuy Synthes Products, LLC Mobile bearing assembly having a closed track
US8142510B2 (en) * 2007-03-30 2012-03-27 Depuy Products, Inc. Mobile bearing assembly having a non-planar interface
US8147558B2 (en) * 2007-03-30 2012-04-03 Depuy Products, Inc. Mobile bearing assembly having multiple articulation interfaces
US8632600B2 (en) * 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US8128703B2 (en) 2007-09-28 2012-03-06 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US9204967B2 (en) * 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
US8267973B2 (en) * 2008-02-27 2012-09-18 Shoulder Options, Inc. Fixable suture anchor plate and method for tendon-to-bone repair
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US8828086B2 (en) 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US9168145B2 (en) 2008-06-30 2015-10-27 Depuy (Ireland) Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US9119723B2 (en) 2008-06-30 2015-09-01 Depuy (Ireland) Posterior stabilized orthopaedic prosthesis assembly
GB0812631D0 (en) * 2008-07-10 2008-08-20 Imp Innovations Ltd Modular knee implants
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US8894715B2 (en) 2009-05-28 2014-11-25 Biomet Manufacturing, Llc Knee prosthesis
US8568485B2 (en) * 2009-08-11 2013-10-29 Imds Corporation Articulating trials for prosthetic implants
US8998997B2 (en) 2009-08-11 2015-04-07 Michael D. Ries Implantable mobile bearing prosthetics
US9095453B2 (en) * 2009-08-11 2015-08-04 Michael D. Ries Position adjustable trial systems for prosthetic implants
US8382848B2 (en) * 2009-08-11 2013-02-26 Imds Corporation Position adjustable trial systems for prosthetic implants
US8496666B2 (en) 2009-08-11 2013-07-30 Imds Corporation Instrumentation for mobile bearing prosthetics
US9011547B2 (en) 2010-01-21 2015-04-21 Depuy (Ireland) Knee prosthesis system
CA2788462C (en) 2010-01-29 2020-09-01 Nathaniel M. Lenz Cruciate-retaining knee prosthesis
US8764840B2 (en) 2010-07-24 2014-07-01 Zimmer, Inc. Tibial prosthesis
CA2806326C (en) 2010-07-24 2020-01-07 Zimmer, Inc. Asymmetric tibial components for a knee prosthesis
EP2613739B1 (en) 2010-09-10 2017-06-07 Zimmer, Inc. Motion facilitating tibial components for a knee prosthesis
US8317870B2 (en) 2010-09-30 2012-11-27 Depuy Products, Inc. Tibial component of a knee prosthesis having an angled cement pocket
US8287601B2 (en) 2010-09-30 2012-10-16 Depuy Products, Inc. Femoral component of a knee prosthesis having an angled cement pocket
US8603101B2 (en) 2010-12-17 2013-12-10 Zimmer, Inc. Provisional tibial prosthesis system
US9861372B2 (en) * 2011-05-27 2018-01-09 Howmedica Osteonics Corp. Prosthetic implant and associated instruments
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US8858643B2 (en) 2011-11-18 2014-10-14 Zimmer, Inc. Tibial bearing component for a knee prosthesis with improved articular characteristics
ES2585838T3 (en) 2011-11-21 2016-10-10 Zimmer, Inc. Tibial base plate with asymmetric placement of fixing structures
CA2863375C (en) 2012-01-30 2019-07-16 Mary S.S. Wentorf Asymmetric tibial components for a knee prosthesis
US8734523B2 (en) 2012-05-31 2014-05-27 Howmedica Osteonics Corp. Limited motion tibial bearing
US8740985B1 (en) 2012-11-30 2014-06-03 Smith & Nephew, Inc. Knee prosthesis
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9925052B2 (en) 2013-08-30 2018-03-27 Zimmer, Inc. Method for optimizing implant designs
EP3197402B1 (en) * 2014-09-23 2019-10-02 Tecres S.P.A. Constrained spacer device for the knee joint
WO2017053196A1 (en) 2015-09-21 2017-03-30 Zimmer, Inc. Prosthesis system including tibial bearing component
US9763792B2 (en) 2015-10-01 2017-09-19 Acumed Llc Radial head prosthesis with rotate-to-lock interface
CN110402123B (en) 2017-03-10 2022-02-08 捷迈有限公司 Tibial prosthesis with tibial bearing component fastening features
CN110636818B (en) 2017-05-12 2021-06-04 捷迈有限公司 Femoral prosthesis with size augmentation and size reduction capabilities
US10603180B2 (en) * 2017-07-17 2020-03-31 Aaron MARLOW Tapered fixation device for a knee replacement
US11426282B2 (en) 2017-11-16 2022-08-30 Zimmer, Inc. Implants for adding joint inclination to a knee arthroplasty
US10835380B2 (en) 2018-04-30 2020-11-17 Zimmer, Inc. Posterior stabilized prosthesis system
WO2023081319A1 (en) * 2021-11-03 2023-05-11 Actuos, LLC Unicompartmental knee arthroplasty systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899796A (en) 1973-07-19 1975-08-19 Sulzer Ag Metacarpophalangeal joint
US4016606A (en) 1975-07-14 1977-04-12 Research Corporation Knee joint prosthesis
US4094017A (en) 1977-02-16 1978-06-13 Larry Stanford Matthews Knee joint prosthesis with patellar-femoral contact
GB2219942A (en) 1988-06-22 1989-12-28 John Polyzoides Knee prosthesis
WO1995035484A1 (en) 1994-06-17 1995-12-28 Westinghouse Electric Corporation Microwave system and method for monitoring turbine blade vibration
US5879392A (en) 1996-05-08 1999-03-09 Mcminn; Derek James Wallace Knee prosthesis
EP0916321A2 (en) 1997-11-18 1999-05-19 Michael J. Pappas Prosthetic knee joint with enhanced posterior stabilization and dislocation prevention features
US5906643A (en) 1994-07-28 1999-05-25 Walker; Peter Stanley Stabilised mobile bearing knee

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216549A (en) 1977-06-02 1980-08-12 Purdue Research Foundation Semi-stable total knee prosthesis
US4209861A (en) * 1978-02-22 1980-07-01 Howmedica, Inc. Joint prosthesis
US4224697A (en) 1978-09-08 1980-09-30 Hexcel Corporation Constrained prosthetic knee
US4340978A (en) 1979-07-02 1982-07-27 Biomedical Engineering Corp. New Jersey meniscal bearing knee replacement
GB8432267D0 (en) 1984-12-20 1985-01-30 Thackray C F Ltd Knee prosthesis
US4673407A (en) 1985-02-20 1987-06-16 Martin Daniel L Joint-replacement prosthetic device
US5007933A (en) 1989-01-31 1991-04-16 Osteonics Corp. Modular knee prosthesis system
US5032132A (en) 1990-01-22 1991-07-16 Boehringer Mannheim Corporation Glenoid component
US5116375A (en) 1990-08-27 1992-05-26 Hofmann Aaron A Knee prosthesis
US5370701A (en) 1990-09-28 1994-12-06 Arch Development Corporation Rotating/sliding contrained prosthetic knee
US5071438A (en) 1990-11-07 1991-12-10 Intermedics Orthopedics, Inc. Tibial prothesis with pivoting articulating surface
CA2078228C (en) * 1990-11-14 2000-04-11 Lawrence Pottenger Improved floating bearing prosthetic knee
GB9102348D0 (en) 1991-02-04 1991-03-20 Inst Of Orthopaedics The Prosthesis for knee replacement
US5609639A (en) 1991-02-04 1997-03-11 Walker; Peter S. Prosthesis for knee replacement
FR2672798B1 (en) 1991-02-19 1998-01-30 Erato KNEE PROSTHESIS.
EP0576671B1 (en) 1991-03-01 1998-12-09 Hitachi Telecom Technologies, Ltd. Telephone exchange system
US5395401A (en) 1991-06-17 1995-03-07 Bahler; Andre Prosthetic device for a complex joint
CH686401A5 (en) 1992-01-14 1996-03-29 Wehrli Ueli Dr Meniscus platform for an artificial knee joint.
NZ243181A (en) 1992-04-23 1994-10-26 Michael John Pappas Prosthetic joint with guide means to limit articulation of a first element and bearing means to two degrees of freedom
US5658342A (en) 1992-11-16 1997-08-19 Arch Development Stabilized prosthetic knee
FR2698265B1 (en) 1992-11-24 1995-02-10 Corum Ste Civile Total knee endoprosthesis and test elements for its placement.
US5370699A (en) 1993-01-21 1994-12-06 Orthomet, Inc. Modular knee joint prosthesis
DE4308563A1 (en) 1993-03-18 1994-09-22 Alphanorm Medizintechnik Gmbh Knee-joint prosthesis
GB9314832D0 (en) * 1993-07-16 1993-09-01 Walker Peter S Prostheses for knee replacement
IT1264820B1 (en) 1993-07-28 1996-10-10 Cremascoli G Srl TOTAL KNEE PROSTHESIS TOTAL KNEE PROSTHESIS
WO1995017860A1 (en) 1993-12-30 1995-07-06 Plus Endoprothetik Ag Knee endoprosthesis
US5549686A (en) 1994-06-06 1996-08-27 Zimmer, Inc. Knee prosthesis having a tapered cam
GB9418492D0 (en) 1994-09-14 1994-11-02 Goodfellow John W Prosthetic knee joint device
AUPN089495A0 (en) 1995-02-03 1995-03-02 Denupo Pty. Ltd. Knee prosthesis
US5871543A (en) 1996-02-23 1999-02-16 Hofmann; Aaron A. Tibial prosthesis with mobile bearing member
GB9611060D0 (en) * 1996-05-28 1996-07-31 Howmedica Tibial element for a replacment knee prosthesis
ATE226053T1 (en) * 1996-05-28 2002-11-15 Howmedica Internat S De R L TIBIAL PART FOR A KNEE PROSTHESIS
CA2217844C (en) * 1996-10-09 2006-05-16 Michael J. Pappas Prosthetic knee joint with enhanced posterior stabilization
US6039764A (en) * 1997-08-18 2000-03-21 Arch Development Corporation Prosthetic knee with adjusted center of internal/external rotation
US6123728A (en) * 1997-09-17 2000-09-26 Smith & Nephew, Inc. Mobile bearing knee prosthesis
ATE259194T1 (en) * 1997-10-28 2004-02-15 Ct Pulse Orthopedics Ltd KNEE JOINT PROSTHESIS
US5782925A (en) 1997-11-06 1998-07-21 Howmedica Inc. Knee implant rotational alignment apparatus
US6080195A (en) * 1998-07-08 2000-06-27 Johnson & Johnson Professional, Inc. Rotatable and translatable joint prosthesis with posterior stabilization
CA2279660C (en) * 1998-08-05 2004-02-24 Biomedical Engineering Trust I Knee joint prosthesis with spinout prevention
US6165223A (en) * 1999-03-01 2000-12-26 Biomet, Inc. Floating bearing knee joint prosthesis with a fixed tibial post
US6210444B1 (en) * 1999-10-26 2001-04-03 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing
US6217618B1 (en) * 1999-10-26 2001-04-17 Bristol-Myers Squibb Company Tibial knee component with a mobile bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899796A (en) 1973-07-19 1975-08-19 Sulzer Ag Metacarpophalangeal joint
US4016606A (en) 1975-07-14 1977-04-12 Research Corporation Knee joint prosthesis
US4094017A (en) 1977-02-16 1978-06-13 Larry Stanford Matthews Knee joint prosthesis with patellar-femoral contact
GB2219942A (en) 1988-06-22 1989-12-28 John Polyzoides Knee prosthesis
WO1995035484A1 (en) 1994-06-17 1995-12-28 Westinghouse Electric Corporation Microwave system and method for monitoring turbine blade vibration
US5906643A (en) 1994-07-28 1999-05-25 Walker; Peter Stanley Stabilised mobile bearing knee
US5879392A (en) 1996-05-08 1999-03-09 Mcminn; Derek James Wallace Knee prosthesis
EP0916321A2 (en) 1997-11-18 1999-05-19 Michael J. Pappas Prosthetic knee joint with enhanced posterior stabilization and dislocation prevention features

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042132A1 (en) * 2007-09-27 2009-04-01 Finsbury (Development) Limited Tibial prosthesis comprising a mobile bearing
GB2525044A (en) * 2014-04-11 2015-10-14 Biomet Uk Ltd Prosthesis with fixed or mobile bearing
CN106659570A (en) * 2014-04-11 2017-05-10 英国巴奥米特有限公司 Prosthesis with fixed or mobile bearing
CN106659570B (en) * 2014-04-11 2019-02-12 英国巴奥米特有限公司 Prosthese with fixed or mobile supporting member
US10524920B2 (en) 2014-04-11 2020-01-07 Biomet Uk Limited Prosthesis with fixed or mobile bearing

Also Published As

Publication number Publication date
EP1741412A2 (en) 2007-01-10
ATE356597T1 (en) 2007-04-15
CA2423439A1 (en) 2002-04-04
US6428577B1 (en) 2002-08-06
EP1322262B1 (en) 2007-03-14
ES2282296T3 (en) 2007-10-16
DE60127275T2 (en) 2007-08-30
EP1741412B1 (en) 2011-12-21
EP1741412A3 (en) 2007-08-22
JP4746257B2 (en) 2011-08-10
WO2002026169A3 (en) 2002-09-26
EP1322262A2 (en) 2003-07-02
AU2001294709A1 (en) 2002-04-08
JP5216824B2 (en) 2013-06-19
JP2004509700A (en) 2004-04-02
ATE537782T1 (en) 2012-01-15
CA2423439C (en) 2010-06-08
DE60127275D1 (en) 2007-04-26
JP2011015981A (en) 2011-01-27
PT1322262E (en) 2007-06-25

Similar Documents

Publication Publication Date Title
CA2423439C (en) Mobile bearing knee prosthesis
US6660039B1 (en) Mobile bearing knee prosthesis
AU2003214923A1 (en) Mobile bearing knee prosthesis
AU735429B2 (en) Mobile bearing knee prosthesis
US6413279B1 (en) Floating bearing knee joint prosthesis with a fixed tibial post
EP1292243B1 (en) Floating bearing knee joint prosthesis with a fixed tibial post
US8715358B2 (en) PCL retaining ACL substituting TKA apparatus and method
US8545571B2 (en) Stabilized knee prosthesis
AU2006203781C1 (en) Mobile bearing knee prosthesis
AU2008202313B2 (en) Mobile bearing knee prosthesis
CN111513896A (en) Orthopaedic prosthesis system for a rotary articulated knee prosthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001294709

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2423439

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002530000

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001975375

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001975375

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001975375

Country of ref document: EP