WO2002030007A1 - Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique - Google Patents

Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique Download PDF

Info

Publication number
WO2002030007A1
WO2002030007A1 PCT/FR2001/003020 FR0103020W WO0230007A1 WO 2002030007 A1 WO2002030007 A1 WO 2002030007A1 FR 0103020 W FR0103020 W FR 0103020W WO 0230007 A1 WO0230007 A1 WO 0230007A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
ground
database
network
atn
Prior art date
Application number
PCT/FR2001/003020
Other languages
English (en)
Inventor
Matthieu Borel
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP01974411A priority Critical patent/EP1228584B1/fr
Priority to US10/129,098 priority patent/US6931248B2/en
Priority to JP2002533503A priority patent/JP2004511175A/ja
Priority to AU93934/01A priority patent/AU782043B2/en
Priority to CA002392726A priority patent/CA2392726A1/fr
Publication of WO2002030007A1 publication Critical patent/WO2002030007A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service

Definitions

  • ATN aeronautical telecommunications network
  • ATC Air Traffic Control
  • AOC abbreviation of the Anglo-Saxon "Aeronautical Operational Communication
  • It comprises an aerial part made up of air-ground telecommunication means on board aircraft and a land part made up of ground stations equipped with air-ground telecommunication means enabling them to communicate with aircraft crossing their coverage areas and routing means enabling them to route communications exchanged with aircraft to air traffic control centers or airline management centers.
  • Ground stations are planned to eventually form a terrestrial network with a mesh covering the surface of the globe.
  • the ground-air telecommunication means ensuring the connection between an aircraft and a ground station of the aeronautical telecommunication network ATN constitute what is called a subnetwork. They can use various digital communication methods including:
  • VHF direct air-to-ground digital communication mode
  • VDL mode 2 a direct air-to-ground digital communication mode with a secondary radar according to a specific protocol known as "Mode S”
  • HF DL mode a digital air-ground HF telecommunication mode according to a specific protocol called "HF DL mode” (abbreviation of the English expression “High Frequency Data Link”)
  • AEEC Anglo-Saxon abbreviation of "Airline Electronic Engineering Committee” under the authority of POACI.
  • ICAO issued recommendations defining the protocol exchanges to establish a VDL Mode 2 connection between an aircraft and a ground station ATN aeronautical telecommunication network, maintaining an established connection, perform data exchange "within a connection establish and break a connection but does not impose any constraint in terms of the choices, by an aircraft, of a VDL mode 2 ground station used to access the terrestrial ATN network and of the subnetwork (s) used for the air- ground with the ground station chosen as the access door to the terrestrial ATN network, its normative documents only specifying that the terminal on board the aircraft includes a decision-making body ensuring these choices.
  • a ground VDL station In order for a ground VDL station to be chosen as the access door to the terrestrial ATN network, the aircraft must be in its coverage area and be available. It may also happen that several ground VDL stations are available simultaneously so that the decision-making body on board the aircraft may still have to choose between several ground VDL stations. The availability criterion is then insufficient and must be supplemented by another criterion called quality of service or QOS (English abbreviation for "Quality Of Service”) which takes into account the qualities and costs of available ground stations and modes of air-ground communication that can be used with them.
  • QOS Quality of service
  • the quality criterion is generally implemented, using a rating system established by the company operating the aircraft according to its own parameters, link quality, cost of transmission mode, cost from the ground station service, etc.
  • This rating system is stored in a database on board the aircraft and consulted by the decision-making body which directs its choice towards the available ground VDL station and the air-ground communication mode or modes authorized by this ground station, having the best scores preferably.
  • the on-board database used by the decision-making body to take account of preferences of the company managing the aircraft, in the choice of a ground station and the air-to-ground mode (s) of communication to enter into contact with the elected ground station tends to grow and occupy an increasingly large memory space .
  • it must be updated fairly frequently, which complicates ground maintenance operations of the aircraft.
  • the object of the present invention is a method of selecting a ground station, in particular VDL, within an aeronautical telecommunication network which satisfies, for the preferences of the company operating the aircraft, relative to the ground stations, a base relatively limited data with a simple, almost automatic, means of updating. It also aims at a method of selecting a ground station within an aeronautical telecommunication network which allows automatic operation of the decision-making body while leaving great facility for modifying the preferences of the company operating the aircraft, relating to ground stations and the air-ground communication modes that can be used with the latter.
  • the subject of the invention is a method for selecting a ground station within an aeronautical telecommunication network comprising a terrestrial network accessible by a set of ground stations characterized in that it consists in: during the preparation of a flight plan of an aircraft and after determining the route of the aircraft, - select, among the ground stations, those whose coverage areas are within range of the aircraft route defined by the flight plan,
  • - establish a database having, for elements, preference notes associated with identifiers identifying pairs each formed from a selected ground station and from one or more air-ground communication modes compatible with the equipment of the aircraft and those of the ground station considered, - establish a classification on the elements of the database based, for each element, on the position of the coverage area of the ground station it concerns, in relation to the route of the 'aircraft defined by the flight plan, said classification being manifested by addressing the elements of the database as a function of the geographic position of the aircraft along the route defined by its flight plan,
  • the invention starts from the principle that the only ground stations worthy of interest for an aircraft are those which are likely to be available and which therefore have a coverage area crossed by the route of the aircraft, to reduce the on-board database giving the preferences of the operating company to these ground stations only and to the air-ground communication modes that can be used with them.
  • the selection, during the preparation of a flight, of the elements of the on-board database relating to the preferences of the operating company concerning the ground stations whose coverage area is crossed by the route of the aircraft and the modes of communication ground-air usable with them is an additional operation which hardly complicates the preparation of a flight since it can be carried out, once the flight plan is known, by an automaton operating on a database centralizing on the ground l set of preferences of the operating company, available in a management center on the ground and constantly updated.
  • this selection operation at each flight preparation guarantees a systematic renewal of the on-board database and therefore automatic monitoring of updates to the preferences of the operating company which need only be carried out once. on a centralized database.
  • FIG. 1 shows diagrammatically the aeronautical telecommunication network ATN
  • FIG. 2 shows schematically an on-board router of the ATN aeronautical telecommunications network.
  • the ATN aeronautical telecommunication network aims to provide reliable, high-speed digital ground-to-board links for the exchange of information between aircraft on the ground or in flight and centers on the ground, whether these centers are assigned to an activity of air traffic control, the information exchanged with air traffic control authorities being called ATC, or in an aircraft operating activity, the information exchanged with the company or companies operating the aircraft being called AOC, the distinction between the two types information justified by different transmission constraints in terms of security and reliability. It is designed to use the various possible media for air-ground links (HF, VHF, mode S radar, UHF by satellite) and for using on the ground specialized or non-switched data transmission networks, switched or not, by cable or radio waves, relayed or not by satellite, in order to send the information transmitted to the destination.
  • the aeronautical telecommunication network ATN comprises an aerial part 1 on board each connected aircraft 2 and a land part 3.
  • the aerial part 1 is made up of various transceiver equipment on board an aircraft 2 and adapted to the different media usable for air-ground communications. These transceiver equipment and their ground correspondents constitute transmission subnetworks.
  • FIG. 1 shows an aircraft 2 with an aerial part 1 of the aeronautical ATN transmission network comprising several transceivers including a transceiver 10 constituting a head of VDL mode transmission subnetwork 2 operating in VHF according to a protocol specific standard, a transceiver 1 1 constituting a head of HF DL mode transmission sub-network operating in HF according to another specific standard protocol, a transceiver 12 constituting a head of mode S transmission sub-network operating in UHF in collaboration with a secondary radar according to another protocol also standardized and a transceiver 13 constituting a head of communication sub-network AMSS (abbreviation of the Anglo-Saxon "Aeronautical Mobile Satellite System”) Satcom data 3 mode operating in UHF with a satellite relay 4, according to yet another standardized protocol.
  • ATN is made up of ground stations 5, 6. These ground stations 5, 6 are equipped with ground-air communication means, HF-VHF transceivers 7, mode S radar 8, satellite earth station 9, enabling them to communicate with aircraft passing in their vicinity using one or more of the communication modes provided: Satcom Data 3 subnetwork, VDL mode 2 subnetwork, Mode S subnetwork or HF DL mode subnetwork and connected to each other and to various ground centers 15, 16 interested in exchanging information with aircraft, by networks 17 for digital transmission of specialized data or not, switched or not, using cable or radio waves relayed or not by satellite.
  • An air-to-ground information exchange takes place on the initiative of an aircraft.
  • an aircraft When an aircraft has to communicate with the ground, its router transmits, by one of the available communication subnets of the aircraft, a request for application connection for access to the ATN terrestrial network known as "CM- Logon.request "(CM from the English abbreviation” Context Management ") which contains the identity of the requesting router in the form of an ISH signal (abbreviation of the Anglo-Saxon” Intermediate Signal Hello ”) and some of its useful characteristics for the configuration of an air-ground connection.
  • CM- Logon.request (CM from the English abbreviation” Context Management ") which contains the identity of the requesting router in the form of an ISH signal (abbreviation of the Anglo-Saxon” Intermediate Signal Hello ”) and some of its useful characteristics for the configuration of an air-ground connection.
  • ISH signal abbreviation of the Anglo-Saxon” Intermediate Signal Hello
  • the router of an aircraft can receive one or more proposals for access connection from ground stations with one or more several possibilities of sub-networks for the air-ground connection.
  • the on-board router of an aircraft must be able to make choices both at the level of the ground station to be used to access the ATN terrestrial network when several ground stations offer their services, only at the level of the subnetwork (s) to be used when several are offered to access the same ground station.
  • the choice of the ground station is thus made through the SN-SME module.
  • FIG. 2 schematically illustrates an example of hardware and software architecture for an on-board router of the aeronautical telecommunications network ATN.
  • a router consists of a specialized computer comprising in particular: a central processing unit 20, a memory, and various input-output interfaces.
  • the memory has different parts, mainly:
  • ATN stack with registers whose manipulation by the central unit 20 allows the setting application of ATN network transmission protocols both to generate the data flow transmitted from the edge to the ground from the information to be transmitted and the service information used to establish, maintain and conclude a connection within from the ATN network, only for the extraction of information contained in the data flow received from the ground during a connection and their redirects to the on-board equipment concerned,
  • the input-output interfaces connect the on-board router with various aircraft equipment, which are essentially:
  • the equipment 29 of the aircraft that may be required to use the ATN network to exchange information with the ground, and
  • an on-board router is provided with various software modules executed in time shared by its central unit 20. Among these software modules, the main ones are: - a management software module 31 and task distribution managing the activities of the different transmitters -embedded receivers 25, 26, 27, 28 which can serve as head of the communication sub-network,
  • an IDRP software module 33 responsible more specifically for routing
  • an "ATC apps” software module 34 responsible for the execution of air traffic control tasks
  • AOC apps responsible for the execution of tasks relating to the management of the aircraft.
  • an ATN address called NSAP (abbreviation of the Anglo-Saxon expression "Network Service Access Point”) consists of a binary word coded according to a hierarchical tree structure with several fields of information allowing routing to be carried out. within the ATN topology including, in prefix, the address of the ground station serving as access to the ATN network.
  • the IDRP software module When there are several NSAP addresses proposed by the IDRP software module, as is the case when several communication subnets or several ground stations are available, the SN-SME software module must choose one of them . For this choice, the SN-SME software module can call on the pilot, but this is in addition to the other tasks already at his charge.
  • This database which is the one stored in the memory part 23, contains information relating to the ground stations and the air-ground communication sub-networks which they accept, in particular:
  • this database tends to grow and occupy a memory space more and more important. In addition, it must be updated frequently enough to follow the evolution of the ATN network and the commercial offers of the access providers.
  • this selection operation can be made of fully automatic by an automaton specially programmed for this purpose.
  • the renewal, at each flight plan preparation, of the on-board database relating to the ATN network allows an operating company to transfer all the updates to a single global and centralized reference database and, possibly, a few replicas, which can be interrogated remotely and which are located in its operating centers.
  • the selection operation reduces the volume of the on-board database dedicated to the ATN network, which reduces the memory capacity requirements of an on-board router.
  • the classification of information from the on-board database relating to the ATN network as a function of the position of the aircraft on its planned route in the flight plan gives a rapid means of knowing, from the position of the aircraft provided by its navigation equipment, all ground stations actually having the possibility of being available. Thanks to it, the program for choosing the address of the ground station of the SN-SME software module having direct access to the addresses of the ground stations normally available since the aircraft is then in their coverage areas, it is even conceivable to delete the recognition step between the router on board the aircraft with the ground routers and to attempt a direct call to the NSAP address having the best preference score. Indeed, a failure is improbable insofar as the centralized database is correctly updated since it is ensured that the aircraft is in its coverage area.
  • the method is based on an exchange of information between the navigation equipment of the aircraft such as an FMS flight management system (abbreviation of the Anglo-Saxon "Flight Management System”) and the router.
  • FMS flight management system abbreviation of the Anglo-Saxon "Flight Management System”
  • On-board ATN containing the software controlling the air-ground communication system and on the use of an on-board database containing a configuration file mastered by the aircraft operator, making it possible to define ground stations, with an order preferably, to be chosen according to the position of the aircraft, as an access point to the ATN terrestrial network. This simplifies the connection establishment procedures while allowing the operator of the aircraft great autonomy.
  • the on-board database relating to the ATN network consists of a file making the correspondence between the geographical situation and the ground stations which it is possible to choose and assigned a preference score assigned by the operator of the aircraft.
  • the file is defined during the preparation of the flight plan from the route planned for the aircraft and from a global file gathering the preferences of the aircraft operator on the ground stations of the ATN network and the sub- communication networks that can be used to communicate with each of them. It gives, for each geographic position of the aircraft along its route, the accessible ground stations, that is to say containing this geographic position in their coverage areas, classified according to an order of preference. Once defined, it is loaded before the departure of the aircraft into the aircraft router, preferably when the flight plan is loaded into the flight management system.
  • MO abbreviation of the Anglo-Saxon "Managed Object
  • SN-SME software module router introduced into the communication stack has messages defined in the standards of the ATN and for notifying a change of ground station.
  • connection attempt aborts itself in the absence of a response from the station and the choice is carried over to the next ground station appearing in the list provided by the database listed in order of preference. If there are none, several options are possible, connection test with a previous ground station by fictitiously delaying the position of the aircraft on its route or with a future ground station by fictitiously advancing the position of the aircraft on its way, waiting to enter the coverage area of another ground station if the messages to be sent to the ground do not present any particular emergency. It must however be seen that the case of a ground station becoming unavailable unexpectedly is highly improbable because it means that all of its air-ground communication means by the various sub-networks suddenly becomes unavailable.

Abstract

L'invention concerne le réseau aéronautique de télécommunication ATN. Elle est relative plus particulièrement à la sélection, des stations sol donnant accès au réseau terrestre ATN, par un aéronef en cours de mission. Elle consiste à doter le routeur embarqué d'une base de données relative au réseau ATN contenant un fichier de stations sol classées en fonction de la position géographique de l'aéronef sur sa route préparée lors de la confection du plan de vol et à prévoir une liaison entre le routeur embarqué et les équipements de navigation de l'aéronef, permettant au routeur embarqué de connaître la position de l'aéronef sur sa route et d'utiliser cette position pour sélectionner dans la base de données les stations sol ayant l'aéronef dans leurs zones de couverture, avec un ordre de préférence déterminé par la compagnie exploitant l'aéronef. Cela accélère le choix d'une station sol pour accéder au réseau terrestre ATN tout en laissant une entière maîtrise de ce choix à la compagnie exploitante.

Description

PROCEDE DE SELECTION D'UNE STATION SOL AU SEIN D'UN RESEAU DE TELECOMMUNICATION AERONAUTIQUE
Pour les échanges d'informations entre un aéronef et le sol, un nouveau réseau aéronautique de télécommunication dit ATN (abréviation de l'expression anglo-saxonne " Aeronautical Télécommunication Network ") défini et normalisé par l'OACI (sigle désignant l'Organisation de l'Aviation Civile Internationale) est en train d'être mis progressivement en place à la surface du globe. Ce réseau aéronautique de télécommunication ATN est un réseau de transmission de données numériques dédié aux échanges d'informations entre les aéronefs et le sol pour des activités à la fois de contrôle aérien dites ATC (abréviation de l'anglo-saxon " Air Traffic Control ") avec les autorités assurant le contrôle et la régulation du trafic aérien, et de gestion de flotte dites AOC (abréviation de l'anglo-saxon " Aeronautical Operational Communication ") avec les compagnies aériennes exploitant les aéronefs. Il comporte une partie aérienne constituée de moyens de télécommunication air-sol embarqués à bord des aéronefs et une partie terrestre constituée de stations sol équipées de moyens de télécommunication air-sol leur permettant d'entrer en communication avec les aéronefs traversant leurs zones de couverture et de moyens de routage leur permettant d'acheminer les communications échangées avec les aéronefs vers des centres de contrôle aérien ou des centres de gestion des compagnies aériennes. Les stations sol sont prévues pour former à terme, un réseau terrestre avec un maillage couvrant la surface du globe.
Les moyens de télécommunication sol-air assurant la liaison entre un aéronef et une station sol du réseau aéronautique de télécommunication ATN constituent ce que l'on appelle un sous-réseau. Ils peuvent faire appel à divers modes de communication numériques dont :
- un mode de communication numérique air-sol indirect par satellites de télécommunication fonctionnant en UHF selon un protocole spécifique dit " Satcom Data 3 ",
- un mode de communication numérique air-sol en vue directe, par VHF, selon un protocole spécifique dit " VDL mode 2 ", - un mode de communication numérique air-sol en vue directe avec un radar secondaire selon un protocole spécifique dit " Mode S ",
- un mode de télécommunication numérique air-sol en HF selon un protocole spécifique dit " mode H F DL " (abréviation de l'expression anglo-saxonne " High Fréquence Data Link "), les différents protocoles ayant été définis et normalisés à l'occasion de conférences organisées par l'AEEC (abréviation anglo-saxonne de " Airline Electronic Engineering Committee ") sous l'autorité de POACI. L'OACI a émis des recommandations définissant les échanges protocolaires destinés à établir une connexion VDL Mode 2 entre un aéronef et une station sol du réseau aéronautique de télécommunication ATN, maintenir une connexion établie, réaliser des échanges de données au "sein d'une connexion établie et rompre une connexion mais n'impose aucune contrainte au niveau des choix, par un aéronef, d'une station VDL mode 2 sol lui servant d'accès au réseau ATN terrestre et du ou des sous-réseaux utilisés pour la liaison air-sol avec la station sol choisie comme porte d'accès au réseau ATN terrestre, ses documents normatifs précisant seulement que le terminal embarqué à bord de l'aéronef comporte un organe de décision assurant ces choix.
Pour qu'une station VDL sol puisse être choisie comme porte d'accès au réseau ATN terrestre, il faut que l'aéronef se trouve dans sa zone de couverture et qu'elle soit disponible. Il peut également arriver que plusieurs stations VDL sol soient disponibles simultanément de sorte que l'organe de décision embarqué à bord de l'aéronef peut encore avoir à choisir entre plusieurs station VDL sol. Le critère de disponibilité est alors insuffisant et doit être complété par un autre critère dit de qualité de service ou QOS (abréviation anglo-saxonne de " Quality Of Service ") qui prend en compte les qualités et coûts des stations sol disponibles et des modes de communication air-sol qu'il est possible d'utiliser avec elles.
La mise en œuvre du critère de qualité se fait en général, à partir d'un système de notation établi par la compagnie exploitant l'aéronef en fonction de paramètres qui lui sont propres, qualité de la liaison, coût du mode de transmission, coût du service de la station sol, etc. Ce système de notations est mémorisé dans une base de données embarquée à bord de l'aéronef et consultée par l'organe de décision qui oriente son choix vers la station VDL sol disponible et le ou les modes de communication air-sol autorisés par cette station sol, ayant les meilleures notes de préférence.
Comme le réseau de communication aéronautique ATN est dans une phase évolutive, avec un renforcement permanent du nombre des stations sol et donc de la concurrence entre les fournisseurs d'accès, la base de données embarquées utilisée par l'organe de décision pour tenir compte des préférences de la compagnie gérant l'aéronef, dans le choix d'une station sol et du ou des modes de transmission air-sol pour entrer en liaison avec la station sol élue a tendance à grossir et occuper un espace mémoire de plus en plus important. En outre, elle doit être remise à jour de manière assez fréquente, ce qui complique les opérations de maintenance au sol de l'aéronef. ' '
La présente invention a pour but un procédé de sélection d'une station sol notamment VDL au sein d'un réseau de télécommunication aéronautique qui se satisfasse, pour les préférences de la compagnie exploitant l'aéronef, relatives aux stations sol , d'une base de données relativement restreinte avec un moyen simple, quasiment automatique, de mise à jour. Elle a également pour but un procédé de sélection d'une station sol au sein d'un réseau de télécommunication aéronautique qui permette un fonctionnement automatique de l'organe de décision tout en laissant une grande facilitée de modification des préférences de la compagnie exploitant l'aéronef, relatives aux stations sol et aux modes de communication air-sol utilisables avec ces dernières.
Elle a également pour but d'accélérer le processus de choix d'une station sol.
L'invention a pour objet un procédé de sélection d'une station sol au sein d'un réseau aéronautique de télécommunication comportant un réseau terrestre accessible par un ensemble de stations sol caractérisé en ce qu'il consiste à : lors de la préparation d'un plan de vol d'un aéronef et après détermination de la route de l'aéronef, - sélectionner, parmi les stations sol, celles dont les zones de couverture sont à portée de la route de l'aéronef définie par le plan de vol,
- établir une base de données ayant, pour éléments, des notes de préférence associées à des identifiants repérant des couples formés chacun d'une station sol sélectionnée et d'un ou plusieurs modes de communication air-sol compatibles avec les équipements de l'aéronef et ceux de la station sol considérée, - établir une classification sur les éléments de la base de données basée, pour chaque élément, sur la position de la zone de couverture de la station sol qu'il concerne, par rapport à la route de l'aéronef définie par le plan de vol, ladite classification se manifestant par un adressage des éléments de la base de données fonction de la position géographique de l'aéronef le long de la route définie par son plan de vol,
- charger cette base de données à bord de l'aéronef pour son utilisation ultérieure par un organe de décision embarqué ayant pour fonction de sélectionner la station sol choisie pour accéder au réseau terrestre et le ou les modes de communication air-sol utilisés avec la station sol choisie et, lors de l'exécution du plan de vol par un système de gestion du vol équipant l'aéronef et donnant périodiquement la position de l'aéronef sur la route définie par le plan de vol, - faire sélectionner, par l'organe de décision, dans la base de données chargée à bord de l'aéronef, l'un des couples ou le couple station sol mode de communication air-sol ayant la meilleure note de préférence parmi ceux dont les identifiants figurent dans la base de données à l'adresse correspondant à la dernière position de l'aéronef communiquée par son système de gestion du vol.
L'invention part du principe que les seules stations sol dignes d'intérêt pour un aéronef sont celles qui sont susceptibles d'être disponibles et qui donc, ont une zone de couverture traversée par la route de l'aéronef, pour réduire la base de données embarquée donnant les préférences de la compagnie exploitante à ces seules stations sol et aux modes de communication air-sol utilisables avec elles. La sélection, lors de la préparation d'un vol, des éléments de la base de données embarquée relative aux préférences de la compagnie exploitante concernant les stations sol dont la zone de couverture est traversée par la route de l'aéronef et les modes de communication sol-air utilisables avec elles est une opération supplémentaire qui ne complique que très peu la préparation d'un vol puisqu'elle peut être effectuée, une fois connu le plan de vol, par un automate opérant sur une base de données centralisant au sol l'ensemble des préférences de la compagnie exploitante, disponible dans un centre de gestion au sol et constamment mise à jour. En outre, cette opération de sélection à chaque préparation de vol garantit un renouvellement systématique de la base de données embarquée et donc un suivi automatique des mises à jour des préférences de la compagnie exploitante qui n'ont plus à être effectuées qu'une seule fois sur une base de données centralisée.
D'autres caractéristiques et avantages de l'invention ressortiront de la description ci-après, d'un mode de réalisation donnée à titre d'exemple. Cette description sera faite en regard du dessin dans lequel :
- une figure 1 schématise le réseau aéronautique de télécommunication ATN, et
- une figure 2 schématise un routeur embarqué de réseau aéronautique de télécommunication ATN.
Le réseau aéronautique de télécommunication ATN vise à assurer des liaisons numériques sol-bord, fiables et à haut débit pour des échanges d'informations entre des aéronefs au sol ou en vol et des centres au sol, que ces centres soient affectés à une activité de contrôle aérien, les informations échangées avec les autorités du contrôle aérien étant dites ATC, ou à une activité d'exploitation de l'aéronef, les informations échangées avec la ou les compagnies exploitant l'aéronef étant dites AOC, la distinction entre les deux types d'informations se justifiant par des contraintes de transmission différentes au niveau de la sécurité et de la fiabilité. Il est conçu pour utiliser les différents médias envisageables pour des liaisons air-sol (HF, VHF, radar mode S, UHF par satellite) et pour utiliser au sol des réseaux de transmission de données spécialisés ou non, commutés ou non, par câble ou ondes hertziennes, relayées ou non par satellite, afin de faire parvenir les informations transmises à destination.
Comme représenté à la figure 1 , le réseau aéronautique de télécommunication ATN comporte une partie aérienne 1 à bord de chaque aéronef 2 raccordé et une partie terrestre 3.
La partie aérienne 1 se compose de divers équipements émetteurs-récepteurs embarqués sur un aéronef 2 et adaptés aux différents médias utilisables pour les communications air-sol. Ces équipements émetteurs-récepteurs et leurs correspondants au sol constituent des sous- réseaux de transmission. Sur la figure 1 , est représenté un aéronef 2 avec une partie aérienne 1 de réseau aéronautique de transmission ATN comportant plusieurs émetteurs-récepteurs dont un émetteur-récepteur 10 constituant une tête de sous-réseau de transmission mode VDL 2 opérant en VHF selon un protocole spécifique normalisé, un émetteur-récepteur 1 1 constituant une tête de sous-réseau de transmission mode HF DL opérant en HF selon un autre protocole spécifique normalisé, un émetteur-récepteur 12 constituant une tête de sous-réseau de transmission mode S opérant en UHF en collaboration avec un radar secondaire selon un autre protocole également normalisé et un émetteur-récepteur 13 constituant une tête de sous-réseau de communication AMSS (abréviation de l'anglo-saxon " Aeronautical Mobile Satellite System ") mode Satcom data 3 opérant en UHF avec un relais satellitaire 4, selon encore un autre protocole normalisé. Ces divers émetteurs-récepteurs 10, 11 , 12, 13 peuvent présenter des parties communes de sorte que les différents sous-réseaux peuvent ne pas être tous disponibles simultanément. Ils peuvent même ne pas être présents au complet sur un aéronef, cela dépendant du degré d'équipement de l'aéronef considéré. Ils sont gérés à bord d'un aéronef par un automate 14 dit routeur qui, en plus de leur gestion, assure, par manipulation d'une pile mémoire dans laquelle transitent les données à échanger avec le sol, l'initialisation, le maintien et l'achèvement d'une communication applicative sous le contrôle d'un module logiciel dit CMA (abréviation de l'expression anglo-saxonne " Context Management Agent "), le maintien et l'achèvement d'une connexion sous-réseau sous le contrôle d'un module logiciel dit SN- SME (abréviation de l'expression anglo-saxonne " Sub-Network System Management Entity "), le routage d'une communication sous le contrôle d'un module logiciel dit IDRP (abréviation de l'anglo-saxon " Inter Domain Routing Policy "), l'exécution d'applications préchargées de contrôle aérien comme la communication périodique de la position de l'aéronef au contrôle au sol sous le contrôle d'un module logiciel dit " Applis ATC " et l'exécution d'applications préchargées de gestion de flotte comme le suivi de la consommation de l'aéronef sous le contrôle d'un module logiciel dit " Applis AOC ". La partie terrestre du réseau aéronautique de télécommunication
ATN se compose de stations sol 5, 6. Ces stations sol 5, 6 sont équipées de moyens de communication sol-air, émetteurs-récepteurs HF-VHF 7, radar mode S 8, station terrestre de communication par satellite 9, leur permettant de communiquer avec les aéronefs passant dans leurs voisinages selon un ou plusieurs des modes de communication prévus : sous-réseau Satcom Data 3, sous-réseau VDL mode 2, sous-réseau Mode S ou sous-réseau mode HF DL et reliées entre elles et à divers centres au sol 15, 16 intéressés par des échanges d'informations avec les aéronefs, par des réseaux 17 de transmission numérique de données spécialisés ou non, commutés ou non, utilisant le câble ou les ondes hertziennes relayées ou non par satellite.
Un échange d'informations air-sol se fait sur l'initiative d'un aéronef. Lorsqu'un aéronef a à communiquer avec le sol, son routeur émet, par l'un des sous-réseaux de communication disponibles de l'aéronef, une requête de connexion applicative d'accès au réseau terrestre ATN dite " CM- Logon.request " (CM provenant de l'abréviation anglo-saxonne " Context Management ") qui renferme l'identité du routeur demandeur sous la forme d'un signal ISH (abréviation de l'anglo-saxon " Intermediate Signal Hello ") et certaines de ses caractéristiques utiles pour la configuration d'une liaison air- sol. Cela impose qu'au préalable, un lien ait été établi au niveau du sous- réseau. Pour se faire, l'aéronef scrute en permanence la disponibilité des sous-réseaux avec lesquels il est apte à communiquer. Lorsqu'une information de connectivité de sous-réseau arrive au routeur, elle est transmise au module SN-SME qui devra décider de l'établissement d'un lien.
En effet, le routeur d'un aéronef peut recevoir une ou plusieurs propositions de connexion d'accès de la part de stations sol avec une ou plusieurs possibilités de sous-réseaux pour la liaison air-sol. Ainsi, lors de l'initialisation d'une connexion, le routeur embarqué d'un aéronef, doit être capable d'effectuer des choix aussi bien au niveau de la station sol à utiliser pour accéder au réseau terrestre ATN lorsque plusieurs stations sol proposent leurs services, qu'au niveau du ou des sous-réseaux à utiliser lorsque plusieurs sont proposés pour accéder à une même station sol. Par exemple, dans le cas du sous-réseau VDL Mode 2 (abréviation de l'expression anglo-saxonne VHF Data-Link) le choix de la station sol se fait ainsi au travers du module SN-SME. Pour départager les différentes solutions d'accès au réseau terrestre ATN qui peuvent se présenter simultanément au routeur d'un aéronef, il est convenu de pourvoir le routeur de l'aéronef d'une base de données mémorisée, renfermant, pour chaque station sol du réseau ATN et, au niveau d'une station sol, pour chaque sous-réseau susceptible d'être utilisé avec elle :
- les consignes du pilote,
- les consignes de la compagnie exploitant l'aéronef,
- le coût,
- les performances, la sécurité, fiabilité, - la configuration avion, c'est-à-dire les têtes de sous-réseau effectivement installées,
- la disponibilité en dynamique, et de doter son module logiciel SN-SME d'un programme de notation engendrant une note de préférence pour chaque couple constitué d'une station sol disponible associée à un sous-réseau susceptible d'être utilisé avec elle, et d'un programme de sélection élisant le couple station sol- sous- réseau de communication ayant la meilleure note de préférence.
La figure 2 illustre, de manière schématique, un exemple d'architecture matérielle et logicielle pour un routeur embarqué de réseau aéronautique de télécommunication ATN. Un tel routeur est constitué d'un calculateur spécialisé comportant notamment : une unité centrale 20, une mémoire, et différentes interfaces d'entrée-sortie.
La mémoire comporte différentes parties dont, principalement, :
- une partie 21 dite pile ATN avec des registres dont la manipulation par l'unité centrale 20 permet la mise en application des protocoles de transmission du réseau ATN aussi bien pour engendrer le flux de données émis du bord vers le sol à partir des informations à transmettre et des informations de service utilisées pour l'établissement, le maintien et la conclusion d'une liaison au sein du réseau ATN, que pour l'extraction des informations contenues dans le flux de données reçues du sol au cours d'une liaison et leurs redirections vers les équipements embarqués concernés,
- une partie 22 utilisée pour le stockage de différents modules de programmes, et
- une partie 23 utilisée pour le stockage d'une base de données ATN sur les différentes stations sol et les sous-réseaux de communication qu'elles admettent. " '
Les interfaces d'entrée-sortie relient le routeur embarqué avec différents équipements de l'aéronef qui sont essentiellement :
- les différents systèmes émetteurs-récepteurs 25, 26, 27, 28 de l'aéronef pouvant jouer le rôle de têtes de sous-réseaux de communication air-sol pour le réseau ATN,
- les équipements 29 de l'aéronef pouvant être amenés à utiliser le réseau ATN pour échanger des informations avec le sol, et
- au moins une interface homme-machine IHM 30 telle que, par exemple, le MCDU, permettant un dialogue du routeur embarqué avec l'équipage de l'aéronef pour que celui-ci puisse donner ses consignes au routeur et en retirer diverses informations sur l'état des liaisons établies au travers du réseau ATN. Comme indiqué précédemment, un routeur embarqué est doté de différents modules logiciels exécutés en temps partagés par son unité centrale 20. Parmi ces modules logiciels, les principaux sont : - un module logiciel de gestion 31 et de répartition de tâches gérant les activités des différents émetteurs-récepteurs embarqués 25, 26, 27, 28 pouvant servir de tête de sous- réseau de communication,
- un module logiciel CMA 32 chargé de l'initialisation, du maintien et de la coupure d'une liaison applicative, - un module logiciel SN-SME 36 chargé de l'initialisation, du maintien et de la coupure d'une liaison sous-réseau,
- un module logiciel IDRP 33 chargé plus spécifiquement du routage, - un module logiciel "Applis ATC" 34 chargé de l'exécution des tâches relevant du contrôle aérien, et
- un module logiciel "Applis AOC" 35 chargé de l'exécution des tâches relevant de la gestion de l'aéronef.
Ces différents modules logiciels ne seront pas détaillés car ils ne font pas partie de l'invention. Ils sont conçus par des spécialistes du génie logicielle en tenant compte à la fois des spécificités des équipements embarqués à bord de l'aéronef, des protocoles normalisés du réseau ATN et des desiderata des autorités de contrôle du trafic aérien et de la compagnie exploitant l'aéronef. A l'heure actuelle, une fois que le module logiciel CMA a déterminé la nécessité d'une liaison avec le sol par l'intermédiaire du réseau ATN, il active le module logiciel de routage IDRP qui effectue une reconnaissance des stations sol disponibles et de leurs possibilités en sous- réseaux de communication air-sol selon une procédure normalisée et établit, en fonction des résultats de cette reconnaissance, l'adresse ou les adresses possibles, dans le réseau ATN, du correspondant à contacter. En effet, une adresse ATN dite NSAP (abréviation de l'expression anglo-saxonne " Network Service Access Point ") est constituée d'un mot binaire codée suivant une structure hiérarchique arborescente à plusieurs champs d'informations permettant d'effectuer le routage au sein de la topologie ATN dont, en préfixe, l'adresse de la station sol servant d'accès au réseau ATN. Lorsqu'il y a plusieurs adresses NSAP proposées par le module logiciel IDRP, comme c'est le cas lorsque plusieurs sous-réseaux de communication ou plusieurs stations sol sont disponibles, le module logiciel SN-SME doit choisir l'une d'entre elles. Pour ce choix, le module logiciel SN-SME peut faire appel au pilote mais cela s'ajoute aux autres tâches déjà à sa charge. Aussi on a cherché à automatiser ce choix dotant le module logiciel SN-SME d'un programme de choix d'adresse NSAP en cas de possibilité multiple établissant, pour chaque adresse NSAP possibles, une note de préférence tirée d'informations sur le réseau ATN stockée dans une base de données embarquée et choisissant l'adresse NSAP ayant obtenu la meilleure note de préférence.
Cette base de données, qui est celle stockée dans la partie de mémoire 23, renferme des informations relatives aux stations sol et aux sous-réseaux de communication air-sol qu'elles admettent, notamment, :
- les consignes du pilote,
- les consignes de la compagnie aérienne exploitant l'aéronef,
- les coûts,
- les performances, - la sécurité, fiabilité,
- l'appartenance de la station sol à tel ou tel fournisseur d'accès,
- la nationalité de la station sol, etc. - " '
Comme le réseau ATN est dans une phase évolutive, avec un renforcement permanent du nombre de stations sol et donc de la concurrence entre fournisseurs d'accès au réseau terrestre, cette base de données a tendance à grossir et occuper un espace mémoire de plus en plus important. En outre, elle doit être remise à jour de manière assez fréquente pour suivre l'évolution du réseau ATN et des offres commerciales des fournisseurs d'accès.
Pour remédier à ces problèmes, on propose de limiter la couverture de la base de données embarquée rassemblant les informations sur le réseau ATN aux seules stations sol placées sur la route ou à proximité de la route prévue dans le plan de vol de l'aéronef et même de munir cette base de données d'un classement de ses informations en fonction de la disponibilité des stations sol retenues eu égard à la position de l'aéronef sur sa route prévue. Cette limitation et cette classification sont faciles à mettre en œuvre si la base de données embarquée relative au réseau ATN est construite lors de la préparation du plan de vol. En effet, lors de cette préparation, il est facile, une fois que la route prévue pour l'aéronef est connue, d'utiliser cette route pour sélectionner les stations sol dont elle traverse la zone de couverture au sein d'une base de données centralisant au sol l'ensemble des préférences de la compagnie exploitante sur les stations sol du réseau ATN, leurs localisations géographiques et leurs zones individuelles de couverture, cette opération de sélection pouvant être faite de manière entièrement automatique par un automate spécialement programmé à cet effet.
Le renouvellement, à chaque préparation de plan de vol, de la base de données embarquée relative au réseau ATN permet à une compagnie exploitante de reporter toutes les mises à jour sur une seule base de données globale et centralisée de référence et, éventuellement quelques répliques, qui peuvent être interrogées à distance et qui sont situées dans ses centres d'exploitation.
L'opération de sélection réduit le volume de la base de données embarquée consacrée au réseau ATN, ce qui diminue les exigences en capacité mémoire d'un routeur embarqué.
La classification des informations de la base de données embarquée relative au réseau ATN en fonction de la position de l'aéronef sur sa route prévue dans le plan de vol donne un moyen rapide de connaître, à partir de la position de l'aéronef fournie par ses équipements de navigation, l'ensemble des stations sol ayant réellement la possibilité d'être disponibles. Grâce à elle, le programme de choix d'adresse de la station sol du module logiciel SN-SME ayant directement accès aux adresses des stations sol normalement disponibles puisque l'aéronef se trouve alors dans leurs zones de couverture, il est même concevable de supprimer l'étape de reconnaissance entre le routeur embarqué à bord de l'aéronef avec les routeurs sol et de tenter un appel direct de l'adresse NSAP présentant la meilleure note de préférence. En effet, un échec est improbable dans la mesure où la base de données centralisée est correctement mise à jour puisque l'on est assuré que l'aéronef se trouve dans sa zone de couverture. Si malgré tout, la liaison ne peut s'établir par suite d'encombrement ou de dysfonctionnement de la station sol élue, on peut se rabattre sur l'adresse NSAP de rang immédiatement inférieur dans le classement par note de préférence délivrée par la base de donnée embarquée pour la position considérée de l'aéronef. Cette classification permet, par la prise en compte des informations de position délivrées par les équipements de navigation de l'aéronef, une accélération des procédures d'établissement d'une communication par le réseau ATN tout en laissant aux compagnies et au pilote toute liberté quant au choix de la station sol utilisée comme point d'accès au réseau terrestre ATN. L'architecture du routeur embarqué n'est pas rendue plus complexe pour autant puisqu'il est déjà interface avec les équipements de navigation de l'aéronef pour l'exécution de certaines tâches relevant du contrôle aérien par le un module logiciel "Applis ATC" 34 comme par exemple le signalement périodique de la position de l'aéronef estimée par ses équipements de navigation.
En résumé, le procédé repose sur un l'échange d'informations entre les équipements de navigation de l'aéronef tels qu'un système de gestion de vol FMS (abréviation de l'anglo-saxon "Flight Management System ") et le routeur ATN embarqué contenant les logiciels pilotant le système de communication air-sol et sur l'utilisation d'une base de données embarquée contenant un fichier de configuration maîtrisé par l'exploitant de l'aéronef, permettant de définir des stations sol, avec un ordre de préférence, à choisir en fonction de la position de l'aéronef, comme point d'accès au réseau terrestre ATN. Cela permet de simplifier les procédures d'établissement de connexion tout en laissant une grande autonomie à l'exploitant de l'aéronef.
Dans la pratique, la base de données embarquée relative au réseau ATN est constituée d'un fichier faisant la correspondance entre la situation géographique et les stations sol qu'il est possible de choisir affectées d'une note de préférence attribuée par l'exploitant de l'aéronef. Le fichier est défini lors de la préparation du plan de vol à partir de la route prévue pour l'aéronef et d'un fichier global rassemblant les préférences de l'exploitant de l'aéronef sur les stations sol du réseau ATN et les sous- réseaux de communication utilisables pour entrer en communication avec chacune d'elles. Il donne, pour chaque position géographique de l'aéronef le long de sa route, les stations sol accessibles, c'est-à-dire renfermant cette position géographique dans leurs zones de couverture, classées selon un ordre de préférence. Une fois défini, il est chargé avant le départ de l'aéronef dans le routeur de l'aéronef, préferablement, au moment où le plan de vol est chargé dans le système de gestion du vol.
Lorsque l'aéronef parcourt sa route, il lui arrive de changer de zone de couverture de station sol du réseau ATN. Il en est averti par la réception d'une information dite MO (abréviation de l'anglo-saxon "Managed Object "). cette information MO est utilisée par le module logiciel SN-SME du routeur embarqué pour :
- soit, pour des raisons définies dans les standards de normalisation, basculer sur une station sol imposée, - soit, consulter la position géographique donnée par les équipements de navigation, sélectionner les stations sol figurant dans la base de données embarquée relative au réseau ATN, à l'adresse correspondant à la position géographique obtenue et choisir parmi les stations sol sélectionnées, celle avec qui communiquer, en tenant compte de l'ordre de préférence déduit des informations mémorisées. Une fois déterminée la prochaine station sol avec laquelle entrer en communication, le module logiciel SN-SME du routeur introduit dans l'a pile de communication les messages définis dans les normes du réseau ATN et destinés à notifier un changement de station sol.
Au cours du vol de l'aéronef, le statut de fonctionnement de certaines stations sol du réseau ATN peut changer ou le plan de vol de l'aéronef être modifié. Les informations de la base de données embarquée concernant le réseau ATN deviennent alors caduques. Dans le cas d'une station sol devenant indisponible, la tentative de connexion avorte d'elle-même en l'absence de réponse de la station et le choix se reporte sur la prochaine station sol figurant dans la liste fournie par la base de données classée par ordre de préférence. S'il n'y en a pas, plusieurs options sont envisageables, essai de connexion avec une précédente station sol en retardant fictivement la position de l'aéronef sur sa route ou avec une station sol futur en avançant fictivement la position de l'aéronef sur sa route, attente de pénétration dans la zone de couverture d'une autre station sol si les messages à faire parvenir au sol ne présentent pas d'urgence particulière. Il faut cependant voir que le cas d'une station sol devenant indisponible de manière imprévue est hautement improbable car cela signifie que l'ensemble de ses moyens de communication air-sol par les différents sous-réseaux devient subitement indisponible.
Dans le cas ou le plan de vol est modifié en cours de route, deux possibilités se présentent, soit la base de données a été prévue suffisamment large en terme de paires de position géographique-adresse de station sol pour couvrir l'écart par rapport à la route initiale, soit la base de données ne couvre plus la position actuelle de l'aéronef, ce qui ne peut se produire que si l'écart par rapport au plan de vol est conséquent, supérieur à 300 Km, et le pilote rentre manuellement l'adresse d'une station sol à contacter. Dans le cadre des évolutions requises par l'OACI pour les communications air-sol, il est prévu que les messages concernant les modifications du plan de vol seront échangés avec les contrôleurs aériens. Ceux-ci pourront alors ajouter à la pile de communication de l'aéronef, une information de basculement automatique vers une station sol couvrant la zone dans laquelle se trouve l'aéronef.
Par rapport à une base de données embarquée classique, même incomplète, concernant le réseau ATN, le fait d'adopter une classification en fonction de la position géographique de l'aéronef accélère le processus de choix d'une station sol du réseau ATN car, lors d'un trajet survolant de nombreuses zones de couverture de stations sol, il n'est plus nécessaire de confronter l'information de disponibilité de station sol parvenant à l'aéronef avec l'ensemble des éléments contenus dans la base de données. D'autre part, cela laisse une entière maîtrise des communications à la compagnie exploitante qui de ce fait peut assurer un meilleur contrôle des coûts de communications.

Claims

REVENDICATION
1. Procédé de sélection d'une station sol (5, 6) au sein d'un réseau aéronautique de télécommunication comportant un réseau terrestre accessible par un ensemble de stations sol (5, 6) caractérisé en ce qu'il consiste à : lors de la préparation d'un plan de vol d'un aéronef et après détermination de la route de l'aéronef,
- sélectionner, parmi les stations sol (5, 6), celles qui sont à portée de la route de l'aéronef définie par le plan de vol,
- établir une base de données ayant, pour éléments, des notes de préférence associées à des identifiants repérant des couples formés chacun d'une station sol (5, 6) sélectionnée et d'un ou plusieurs modes de communication air-sol adaptés à la station considérée, - établir une classification sur les éléments de la base de données basée, pour chaque élément, sur la position de la zone de couverture de la station sol qu'il concerne, par rapport à la route de l'aéronef définie par le plan de vol, ladite classification se manifestant par un adressage des éléments de la base de données fonction de la position de l'aéronef sur la route définie par son plan de vol,
- charger cette base de données à bord de l'aéronef pour son utilisation ultérieure par un organe de décision embarqué ayant pour fonction de sélectionner la station sol choisie pour accéder au réseau terrestre et le ou les modes de communication air-sol utilisés avec la station sol choisie et, lors de l'exécution du plan de vol par un système de gestion du vol équipant l'aéronef et donnant périodiquement la position de l'aéronef sur la route définie par le plan de vol,
- faire sélectionner, par l'organe de décision, dans la base de données chargée à bord de l'aéronef, l'un des couples ou le couple station sol mode de communication air-sol et sol-air ayant la meilleure note de préférence parmi ceux dont les identifiants figurent dans la base de données à l'adresse correspondant à la dernière position de l'aéronef communiquée par son système de gestion du vol.
PCT/FR2001/003020 2000-10-03 2001-09-28 Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique WO2002030007A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01974411A EP1228584B1 (fr) 2000-10-03 2001-09-28 Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique
US10/129,098 US6931248B2 (en) 2000-10-03 2001-09-28 Method for selecting a ground station within an aeronautical telecommunications network
JP2002533503A JP2004511175A (ja) 2000-10-03 2001-09-28 航空通信ネットワーク網における地上局の選択方法
AU93934/01A AU782043B2 (en) 2000-10-03 2001-09-28 Method for selecting a ground station within an aeronautical telecommunication network
CA002392726A CA2392726A1 (fr) 2000-10-03 2001-09-28 Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/12605 2000-10-03
FR0012605A FR2814874B1 (fr) 2000-10-03 2000-10-03 Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique

Publications (1)

Publication Number Publication Date
WO2002030007A1 true WO2002030007A1 (fr) 2002-04-11

Family

ID=8854942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003020 WO2002030007A1 (fr) 2000-10-03 2001-09-28 Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique

Country Status (8)

Country Link
US (1) US6931248B2 (fr)
EP (1) EP1228584B1 (fr)
JP (1) JP2004511175A (fr)
AU (1) AU782043B2 (fr)
CA (1) CA2392726A1 (fr)
FR (1) FR2814874B1 (fr)
RU (1) RU2002118338A (fr)
WO (1) WO2002030007A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899405A1 (fr) * 2006-04-04 2007-10-05 Airbus France Sas Systeme de radiocommunication pour aeronef.
EP1841094A3 (fr) * 2004-06-11 2008-01-16 Geolink Système de communication mobile pour vaisseau utilisant une liaison satellitaire
FR2910124A1 (fr) * 2006-12-15 2008-06-20 Thales Sa Procede de creation et de mise a jour d'un plan de vol atc en temps reel pour la prise en compte de consignes de vol et dispositif de mise en oeuvre
FR2914802A1 (fr) * 2007-04-06 2008-10-10 Airbus France Sas Procede et dispositif de gestion de canaux de communication pour des echanges de donnees a partir d'un aeronef
EP2040392A2 (fr) 2007-09-20 2009-03-25 Honeywell International Inc. Système et méthode de routage sans fils de données d'un avion
FR3005774A1 (fr) * 2012-02-17 2014-11-21 Babacar Niang Seck Systeme de communications bidirectionnelles unique pour aeronefs offrant des transmissions de donnees optimisees hybrides multi-reseaux base sur les satellites, gsm, csd, gprs, edge, umts, cdma et wifi
FR3018622A1 (fr) * 2014-03-17 2015-09-18 Rockwell Collins France Procede de gestion de frequences et dispositif de communication dans une plateforme aeroportee
US9812019B2 (en) 2015-02-13 2017-11-07 Honeywell International Inc. Systems and methods for detecting if a datalink application is available at an airport

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7107062B2 (en) * 1992-03-06 2006-09-12 Aircell, Inc. System for managing call handoffs between an aircraft and multiple cell sites
US8060083B2 (en) 2000-10-11 2011-11-15 Gogo Llc System for managing an aircraft-oriented emergency services call in an airborne wireless cellular network
US8145208B2 (en) 2006-10-31 2012-03-27 Gogo Llc Air-to-ground cellular communication network terrestrial base station having multi-dimensional sectors with alternating radio frequency polarizations
US7113780B2 (en) 1992-03-06 2006-09-26 Aircell, Inc. System for integrating an airborne wireless cellular network with terrestrial wireless cellular networks and the public switched telephone network
US8914022B2 (en) * 1992-03-06 2014-12-16 Gogo Llc System for providing high speed communications service in an airborne wireless cellular network
US8081968B2 (en) 2000-10-11 2011-12-20 Gogo Llc System for creating an air-to-ground IP tunnel in an airborne wireless cellular network to differentiate individual passengers
FR2794597B1 (fr) * 1999-06-01 2001-10-05 Sextant Avionique Procede de recherche automatique par un aeronef d'une adresse de communication d'une entite au sol d'un reseau atn
US8185040B2 (en) * 1999-08-24 2012-05-22 Gogo Llc System for managing voice over internet protocol communications in a network
US8452276B2 (en) 2000-10-11 2013-05-28 Gogo Llc Differentiated services code point mirroring for wireless communications
US8457627B2 (en) 1999-08-24 2013-06-04 Gogo Llc Traffic scheduling system for wireless communications
US8078163B2 (en) 2000-10-11 2011-12-13 Gogo Llc System for customizing electronic content for delivery to a passenger in an airborne wireless cellular network
US8068829B2 (en) 2000-10-11 2011-11-29 Gogo Llc System for customizing electronic services for delivery to a passenger in an airborne wireless cellular network
US8081969B2 (en) * 2000-10-11 2011-12-20 Gogo Llc System for creating an aircraft-based internet protocol subnet in an airborne wireless cellular network
US7702328B2 (en) * 2000-10-11 2010-04-20 Aircell, Llc System for handoff of aircraft-based content delivery to enable passengers to receive the remainder of a selected content from a terrestrial location
US8995993B2 (en) 2000-10-11 2015-03-31 Gogo Llc System for managing mobile internet protocol addresses in an airborne wireless cellular network
FR2819964B1 (fr) * 2001-01-23 2003-04-11 Thomson Csf Procede de selection des applications activables au travers d'un reseau de communication aeronautique civil
US20040203803A1 (en) * 2001-11-06 2004-10-14 Taylor Scott P. Delivery policy tool
US8442519B2 (en) 2003-12-07 2013-05-14 Gogo Llc Spectrum sharing between an aircraft-based air-to-ground communication system and existing geostationary satellite services
FR2866171B1 (fr) * 2004-02-06 2006-06-30 Thales Sa Procede automatique de transmission des alertes de surveillance bord vers le sol
US7519733B1 (en) * 2004-05-13 2009-04-14 Cisco Technology, Inc. Arrangement in a router for establishing multicast group hierarchy and coalescence
US7242931B2 (en) * 2004-05-17 2007-07-10 The Boeing Company System and method for providing voice and data communications between persons onboard a mobile platform and a cellular base station
JP4574282B2 (ja) * 2004-08-20 2010-11-04 キヤノン株式会社 画像供給デバイス及び該デバイスの制御方法及び印刷システムと印刷制御方法
FR2877518B1 (fr) * 2004-11-02 2007-02-09 Airbus France Sas Systeme de communication radiofrequence pour aeronef
FR2879052B1 (fr) * 2004-12-07 2007-02-02 Thales Sa Architecture pour simulation d'abonnes sur un reseau atn
FR2884666B1 (fr) * 2005-04-19 2007-06-22 Thales Sa Procede et dispositif de determination d'une adresse au sein d'un reseau aeronautique de telecommunication
US20070092486A1 (en) * 2005-10-21 2007-04-26 Avigenics, Inc. Glycolated and glycosylated poultry derived therapeutic proteins
US7970401B2 (en) * 2006-07-05 2011-06-28 Cisco Technology, Inc. Associating a handoff address to a communication session
US7979200B2 (en) * 2006-11-20 2011-07-12 Lockheed Martin Corporation Managing an air-ground communications network with air traffic control information
US20080154444A1 (en) * 2006-12-22 2008-06-26 Boeing Company A Corporation Of Delaware Apparatus and method for cooperative employment with installed airborne application control system
US7729263B2 (en) * 2007-08-08 2010-06-01 Honeywell International Inc. Aircraft data link network routing
US20090058682A1 (en) * 2007-08-27 2009-03-05 Honeywell International Inc. Aircraft data network access for personal electronic devices
US8811265B2 (en) * 2007-10-19 2014-08-19 Honeywell International Inc. Ad-hoc secure communication networking based on formation flight technology
US9264126B2 (en) * 2007-10-19 2016-02-16 Honeywell International Inc. Method to establish and maintain an aircraft ad-hoc communication network
US8570990B2 (en) * 2007-12-04 2013-10-29 Honeywell International Inc. Travel characteristics-based ad-hoc communication network algorithm selection
US9467221B2 (en) * 2008-02-04 2016-10-11 Honeywell International Inc. Use of alternate communication networks to complement an ad-hoc mobile node to mobile node communication network
US20090258643A1 (en) * 2008-04-09 2009-10-15 Honeywell International Inc. Method for accessing air traffic control communications
US8190147B2 (en) * 2008-06-20 2012-05-29 Honeywell International Inc. Internetworking air-to-air network and wireless network
JP2010016665A (ja) * 2008-07-04 2010-01-21 Hitachi Kokusai Electric Inc 統合制御表示器及び無線機の設定方法
US8121593B2 (en) * 2008-10-07 2012-02-21 Honeywell International Inc. System and method for air-to-air communications using network formed between aircraft
US8193947B2 (en) * 2009-08-04 2012-06-05 Honeywell International Inc. Methods and systems for generating data link air traffic control center menus
US8280563B2 (en) * 2009-11-13 2012-10-02 Honeywell International Inc. Method and system to reduce impact of non-ATC data-link messages on ATC data-link messages on a shared air-ground communication link
EP2526506A1 (fr) * 2010-01-21 2012-11-28 Telcordia Technologies, Inc. Système et procédé de gestion d'équilibrage de charge et de transfert sur la base de plan de vol et de l'occupation des canaux
US8340663B2 (en) 2010-05-28 2012-12-25 Honeywell International Inc. Method and system for ground station signal handover for aircraft
DK2447929T3 (en) * 2010-10-26 2015-09-21 Selex Es Spa Earth station, network and approach to common ground-to-air and air-to-ground communication working in the VHF data link Mode 2 technology
US8930505B2 (en) * 2011-07-26 2015-01-06 The Boeing Company Self-configuring mobile router for transferring data to a plurality of output ports based on location and history and method therefor
US9380465B2 (en) * 2013-03-14 2016-06-28 Smartsky Networks LLC Network design in wireless communications
EP3224142B1 (fr) * 2015-07-16 2018-05-09 Guinault S.A. Unité de support au sol d'aéronef intelligente
US10512021B2 (en) 2015-09-08 2019-12-17 Kepler Communications Inc. System and method for providing continuous communications access to satellites in geocentric, non-geosynchronous orbits
US10375561B2 (en) * 2016-05-26 2019-08-06 International Business Machines Corporation Coordinating the use of independent radio receivers associated with multiple different transmitters
US10277514B2 (en) * 2016-07-21 2019-04-30 Viasat, Inc. Methods and systems for dynamic policy based traffic steering over multiple access networks
US11520054B2 (en) * 2017-03-13 2022-12-06 Nec Solution Innovators, Ltd. Position measuring system, position measuring method, and non-transitory program recording medium
US10263690B2 (en) * 2017-08-01 2019-04-16 Viasat, Inc. Handover based on predicted network conditions
JP6775649B1 (ja) * 2019-07-26 2020-10-28 株式会社インフォステラ 情報処理装置、情報処理方法、プログラム
CN111817771B (zh) * 2020-07-06 2022-02-01 中电科航空电子有限公司 一种支持多种网络服务的数据链地面网络架构系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787658A1 (fr) * 1998-12-18 2000-06-23 Sextant Avionique Procede de gestion de modes de communication pour un aeronef

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249303A (en) * 1991-04-23 1993-09-28 Goeken John D Continuous reception by a mobile receiver unit of program channels transmitted by a series of transmitters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787658A1 (fr) * 1998-12-18 2000-06-23 Sextant Avionique Procede de gestion de modes de communication pour un aeronef

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIGNORE T L ET AL: "THE AERONAUTICAL TELECOMMUNICATION NETWORK (ATN)", IEEE MILITARY COMMUNICATIONS CONFERENCE,US,NEW YORK, NY: IEEE, 19 October 1998 (1998-10-19), pages 40 - 44, XP000830503, ISBN: 0-7803-4507-X *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1841094A3 (fr) * 2004-06-11 2008-01-16 Geolink Système de communication mobile pour vaisseau utilisant une liaison satellitaire
FR2899405A1 (fr) * 2006-04-04 2007-10-05 Airbus France Sas Systeme de radiocommunication pour aeronef.
WO2007118972A1 (fr) * 2006-04-04 2007-10-25 Airbus France Systeme de radiocommunication pour aeronef
US8862071B2 (en) 2006-04-04 2014-10-14 Airbus Operations Sas Radiocommunication system for aircraft
FR2910124A1 (fr) * 2006-12-15 2008-06-20 Thales Sa Procede de creation et de mise a jour d'un plan de vol atc en temps reel pour la prise en compte de consignes de vol et dispositif de mise en oeuvre
US8849476B2 (en) 2006-12-15 2014-09-30 Thales Method of creating and updating an ATC flight plan in real time to take account of flight directives and implementation device
RU2474050C2 (ru) * 2007-04-06 2013-01-27 Эрбюс Операсьон (Сас) Способ и устройство управления каналами связи для обменов данными с борта летательного аппарата
WO2008139062A3 (fr) * 2007-04-06 2009-05-22 Airbus France Procede et dispositif de gestion de canaux de communication pour des echanges de donnees a partir d'un aeronef
US8676191B2 (en) 2007-04-06 2014-03-18 Airbus Method and device for managing communication channels for data exchange from an aircraft
FR2914802A1 (fr) * 2007-04-06 2008-10-10 Airbus France Sas Procede et dispositif de gestion de canaux de communication pour des echanges de donnees a partir d'un aeronef
EP2040392A3 (fr) * 2007-09-20 2012-05-09 Honeywell International Inc. Système et méthode de routage sans fils de données d'un avion
EP2040392A2 (fr) 2007-09-20 2009-03-25 Honeywell International Inc. Système et méthode de routage sans fils de données d'un avion
FR3005774A1 (fr) * 2012-02-17 2014-11-21 Babacar Niang Seck Systeme de communications bidirectionnelles unique pour aeronefs offrant des transmissions de donnees optimisees hybrides multi-reseaux base sur les satellites, gsm, csd, gprs, edge, umts, cdma et wifi
FR3018622A1 (fr) * 2014-03-17 2015-09-18 Rockwell Collins France Procede de gestion de frequences et dispositif de communication dans une plateforme aeroportee
EP2922218A3 (fr) * 2014-03-17 2015-10-21 Rockwell-Collins France Procédé de communication entre une plateforme aéroportée et une station au sol en utilisant le standard VDL mode 2 avec commutation sur une deuxième station au sol en cas de rupture de communication avec la première station.
US10382088B2 (en) 2014-03-17 2019-08-13 Rockwell Collins France Method of managing frequencies, and a communications device in an airborne platform
US9812019B2 (en) 2015-02-13 2017-11-07 Honeywell International Inc. Systems and methods for detecting if a datalink application is available at an airport

Also Published As

Publication number Publication date
RU2002118338A (ru) 2004-02-20
US6931248B2 (en) 2005-08-16
EP1228584B1 (fr) 2005-12-28
FR2814874B1 (fr) 2002-12-06
AU782043B2 (en) 2005-06-30
FR2814874A1 (fr) 2002-04-05
EP1228584A1 (fr) 2002-08-07
AU9393401A (en) 2002-04-15
US20020155833A1 (en) 2002-10-24
JP2004511175A (ja) 2004-04-08
CA2392726A1 (fr) 2002-04-11

Similar Documents

Publication Publication Date Title
EP1228584B1 (fr) Procede de selection d'une station sol au sein d'un reseau de telecommunication aeronautique
CA2320870A1 (fr) Procede de gestion de modes de communication pour un aeronef
EP2188974B1 (fr) Routeur acars pour applications avioniques distantes
CA2681434C (fr) Procede et dispositif de gestion de canaux de communication pour des echanges de donnees a partir d'un aeronef
EP3520449B1 (fr) Routage par des noeuds de réseau mobile
EP0618704B1 (fr) Procédé pour la transmission d'informations par voie hertzienne
EP2201703B1 (fr) Système de routage acars par profil de routage
WO2002060155A1 (fr) Procede de selection des applications activables au travers d"un reseau de communication aeronautique civil
WO2005086113A1 (fr) Procede automatique de transmission des alertes de surveillance d’un aeronef vers le sol
WO2006111477A1 (fr) Procede et dispositif de determination d'une adresse au sein d'un reseau aeronautique de telecommunication
FR2794597A1 (fr) Procede de recherche automatique par un aeronef d'une adresse de communication d'une entite au sol d'un reseau atn
KR20040041693A (ko) 전술 네트워크 라우팅 애플리케이션용 스마트브릿지
Longpre et al. Chapter Handling Transition from Legacy Aircraft Communication Services to New Ones–A Communication Service Provider's View

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10129098

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2392726

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2002 533503

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001974411

Country of ref document: EP

Ref document number: 93934/01

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2001974411

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 93934/01

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2001974411

Country of ref document: EP