WO2002031334A1 - Vehicule hybride - Google Patents

Vehicule hybride Download PDF

Info

Publication number
WO2002031334A1
WO2002031334A1 PCT/JP2001/008823 JP0108823W WO0231334A1 WO 2002031334 A1 WO2002031334 A1 WO 2002031334A1 JP 0108823 W JP0108823 W JP 0108823W WO 0231334 A1 WO0231334 A1 WO 0231334A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
vehicle
generator motor
power
Prior art date
Application number
PCT/JP2001/008823
Other languages
English (en)
French (fr)
Inventor
Shigeru Ibaraki
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18793693&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002031334(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to DE60133209T priority Critical patent/DE60133209T2/de
Priority to BR0114487-1A priority patent/BR0114487A/pt
Priority to EP01974728A priority patent/EP1326017B1/en
Priority to US10/398,168 priority patent/US7056251B2/en
Priority to AU2001294200A priority patent/AU2001294200B9/en
Priority to KR10-2003-7004686A priority patent/KR20030046481A/ko
Priority to CA002425427A priority patent/CA2425427A1/en
Priority to AU9420001A priority patent/AU9420001A/xx
Publication of WO2002031334A1 publication Critical patent/WO2002031334A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0604Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid vehicle including an internal combustion engine, a generator motor, and a Rankine cycle device.
  • Japanese Patent Application Laid-Open No. Hei 5-3 / 2007 discloses a Rankine cycle device that converts heat energy of exhaust gas of an internal combustion engine into mechanical energy and assists the driving force of a vehicle with the mechanical energy or drives a generator to obtain electric power. It is known from Japanese Patent Application Laid-Open No. 2004-241, Japanese Patent Application Laid-Open No. 56-101012.
  • an eight-hybrid vehicle that includes an internal combustion engine and a generator motor, assists the driving force of the internal combustion engine with the drive of the generator motor during acceleration or cruise, and charges the battery with the regenerative power of the generator motor during deceleration.
  • the present invention has been made in view of the above circumstances, and has as its object to reduce the fuel consumption of an internal combustion engine by maximizing the energy recovery efficiency in any operating state of a vehicle.
  • an internal combustion engine for generating a driving force for traveling a method for generating a driving force for traveling with electric power from a power storage means, and A generator motor that generates electric power for charging the vehicle, and a Rankine cycle device that operates by using waste heat during operation of the internal combustion engine to generate driving power for traveling.
  • a hybrid vehicle characterized by the following is proposed.
  • the run-in cycle device that operates by using the waste heat when the internal combustion engine is operated to generate the driving force for traveling is provided.
  • the Rankine cycle device can recover energy even when accelerating or cruising a vehicle that cannot perform regenerative braking.
  • the driving force of the internal combustion engine can be assisted by the driving force of the generator motor operated by the electric power of the power storage means and the driving force of the Rankine cycle device, and fuel consumption can be reduced.
  • an internal combustion engine that generates driving power for traveling, and generates electric power for generating driving power for traveling and electric power for charging the electric storage means using electric power from the electric storage means
  • a hybrid vehicle including a generator motor and a Rankine cycle device that operates by using waste heat during operation of the internal combustion engine to generate electric power for charging the electric storage means.
  • a Rankine cycle device that operates by using waste heat during operation of the internal combustion engine to generate electric power for charging the power storage means.
  • the storage means In addition to charging the storage means with the energy recovered by the regenerative braking of the generator motor when the vehicle decelerates, it also stores the energy recovered by the Rankine cycle device when accelerating or cruising a vehicle that cannot perform regenerative braking.
  • the means can be charged and the driving force of the internal combustion engine can be assisted by the driving force of the generator motor operated by the electric power of the power storage means, thereby reducing fuel consumption.
  • the Rankine cycle device when the generator motor is not generating power, the Rankine cycle device generates power for charging the storage means.
  • a featured hybrid vehicle is proposed.
  • the Rankine cycle device generates electric power for charging the power storage means when accelerating or cruising the vehicle in which the generator motor cannot generate regenerative electric power. Since the power storage means can be charged in all states during deceleration, the performance of the generator motor can be fully utilized.
  • the battery 8 in each embodiment corresponds to the power storage means of the present invention
  • the motive motor 2 and the first generator motor 2a of the second embodiment correspond to the generator motor of the present invention.
  • FIGS. 1 to 13 show a first embodiment of the present invention.
  • FIG. 1 is a diagram showing an entire configuration of a hybrid vehicle
  • FIG. 2 is a diagram showing a configuration of a Rankine cycle device
  • FIG. 3 is a flowchart of a main routine.
  • Fig. 4 is a flowchart of the stop processing routine
  • Fig. 5 is a flowchart of the acceleration routine
  • Fig. 6 is a flowchart of the cruise routine
  • Fig. 7 is a flowchart of the deceleration routine.
  • FIG. 8 is a diagram showing a map for judging stop, acceleration, cruise and deceleration
  • FIG. 8 is a diagram showing a map for judging stop, acceleration, cruise and deceleration
  • FIG. 9 is a diagram showing a map for judging the electric motor assist region, the internal combustion engine running region and the charging region, and FIG. FIG. 11 shows threshold values
  • FIG. 11 is a diagram showing a map for determining an internal combustion engine driving region, an electric motor driving region, and a charging region.
  • FIG. 12 is a time chart showing an example of a vehicle driving pattern.
  • 1 3 is a time chart showing another example of a travel pattern of the vehicle.
  • FIG. 14 is a diagram showing an overall configuration of a hybrid vehicle according to a second embodiment of the present invention.
  • the hybrid vehicle includes an internal combustion engine 1 that generates driving force for traveling, the internal combustion engine 1 and the generator motor 2 are connected in series via a clutch 3, and the generator motor 2 further includes a transmission 4, It is connected to drive wheels 7 via a clutch 5 and a differential 6. Therefore, if the internal combustion engine 1 is driven with the clutch 3 engaged, the driving force is transmitted to the drive wheels 7 via the clutch 3, the generator motor 2, the transmission 4, the clutch 5, and the differential device 6, and To run.
  • the generator motor 2 may be idle, but if the generator motor 2 is driven by the electric power from the battery 8, the driving force of the internal combustion engine 1 can be assisted by the driving force of the generator motor 2, or If the electric motor 2 is driven by the driving force of the internal combustion engine 1 to function as a generator, the battery 8 can be charged. Further, when the vehicle is decelerating, if the clutch 3 is disengaged and the generator motor 2 is driven by the driving force reversely transmitted from the drive wheels 7, the battery 8 can be charged with the regenerative electric power generated by the generator motor 2. .
  • the vehicle is provided with a Rankine cycle device 9 operated by waste heat of the internal combustion engine 1, and the driving force output from the Rankine cycle device 9 is input to the transmission 4 (see arrow a).
  • the transmission 4 integrates the driving force generated by the Rankine cycle device 9 and the driving force generated by the internal combustion engine 1 or the generator motor 2 using, for example, a planetary gear mechanism and transmits the driving force to the driving wheel 7. .
  • the Rankine cycle device 9 has a known structure.
  • the evaporator 10 generates waste heat of the internal combustion engine 1, for example, high-temperature high-pressure steam using exhaust gas as a heat source, and the high-temperature high-pressure steam.
  • Expander 11 that generates axial output by expansion of water, condenser 1 2 that condenses temperature-lowering steam discharged from expander 1 1 into water, and evaporator that evaporates water from condenser 12 And a water supply pump 13 for supplying water.
  • the internal combustion engine 1, the generator motor 2, and the Rankine cycle device 9 are controlled by an electronic control unit based on outputs of a vehicle speed sensor, a vehicle body acceleration sensor, a throttle opening sensor, a battery voltage sensor, a battery current sensor, and the like.
  • step S1 of the main routine in FIG. 3 the throttle opening is detected in step S2, and the vehicle speed and throttle are detected in step S3.
  • the required output of the vehicle is calculated from the opening. If the vehicle is in a stop state in the following step S4, the stop processing described below is executed in step S5, and if the vehicle is in an acceleration state in step S6, the acceleration processing described later is performed in step S7. If the vehicle is in a cruise state in step S8, the cruise process described later is executed in step S9. If the vehicle is in a deceleration state in step S10, the process will be described later in step S11. Execute deceleration processing.
  • step S12 the driving force control of the internal combustion engine 1, the generator motor 2 and the Rankine cycle device 9 in accordance with the above-mentioned stop-time processing, acceleration-time processing, cruise-time processing and deceleration-time processing is executed.
  • the horizontal axis represents the speed
  • the vertical axis represents the required output, on which a parabolic running resistance line is set. If the vehicle speed and the required output are both 0, it is determined that the vehicle is in a stopped state, and the vehicle speed If the required output is in the shaded area near the running resistance line, it is determined that the vehicle is in the cruise state. If the vehicle speed and the required output are above the shaded area, it is determined that the vehicle is in the accelerated state. If the required output is below the shaded area, it is determined that the vehicle is in a deceleration state.
  • the vehicle speed is substantially constant on an uphill road, it is considered that the vehicle is accelerating, and if the vehicle speed is approximately constant on a downhill road, it is considered that the vehicle is decelerating. If the absolute value of the deceleration is equal to or less than the predetermined value, it is considered that the vehicle is in a cruise state.
  • step S5 stop control
  • step S21 the output of the internal combustion engine 1 is set to 0 (stop), in step S22, the output of the generator motor 2 is set to 0, and in step S23, the output of the Rankine cycle device 9 is set.
  • the total output of the internal combustion engine 1, the generator motor 2 and the Rankine cycle device 9 is set to 0 in step S24.
  • step S7 acceleration control
  • step S31 the required driving force Ftr of the vehicle is calculated from the vehicle speed and the throttle opening, and in step S32, the remaining battery capacity Esoc is calculated from the battery voltage and the battery current.
  • step S33 the required driving force Ftr is applied to the map of FIG. 9 to determine whether the current operating state is in the motor assist area, the internal combustion engine running area, or the charging area.
  • the map in Fig. 9 shows the vehicle speed V car on the horizontal axis and the required driving force F tr on the vertical axis, where the first threshold F 1 (V car) and the second threshold F 2 (V car) is set.
  • step S33 If the required driving force Ftr is equal to or larger than the first threshold value F1 (Vcar) in step S33, it is determined that the motor is in the motor assist region, and in step S34, the assist permission flag AST-FLG is set. Set to “1”.
  • the assist permission flag ASTFLG power is set to "1".
  • the remaining battery capacity Es0c is equal to or more than the second threshold value E2 in FIG.
  • the assist amount Pm to be generated in the generator motor 2 in step S 37 is determined by a map search according to the required driving force F tr and the vehicle speed Vcar. If the remaining battery capacity E soc is equal to or less than the first threshold value E 1 in FIG. 10 and the driving force cannot be assisted by the generator motor 2 in step S38, the generator motor 2 generates the battery in step S39.
  • the power assist amount Pm is set to 0, and the assist permission flag AST—FLG is reset to “0”.
  • step S41 the power generation permission flag REG—FLG is set to “1 Set it to
  • step S42 when the power generation permission flag REG-FLG is set to "1" in step S43, the remaining battery capacity Es0c is equal to or more than the second threshold value E2 in FIG. If it is not necessary to charge the battery, the power generation amount Pm to be generated in the generator motor 2 is set to 0 in step S44, and the power generation permission flag REG-FLG is reset to "0".
  • step S45 when the remaining battery capacity Es0c is equal to or smaller than the first threshold value E1 in FIG. 10 and the battery 8 needs to be charged, the power generation amount Pm to be generated in the generator motor 2 in step S46. Is determined by a map search according to the required driving force F tr and the vehicle speed Vcar.
  • the Rankine cycle output P rc which is the output of the Rankine cycle device 9, is calculated from the operating state of the internal combustion engine 1, and in step S48, the assist amount Pm (or negative value) of the generator motor 2 is calculated from the required driving force F tr.
  • the target internal combustion engine output P e is calculated by subtracting the Rankine cycle output P rc from the power generation amount Pm of the generator motor 2) and the target internal combustion engine output P e with the minimum fuel consumption in step S49.
  • the rotation speed Ne of the internal combustion engine 1 to be obtained is calculated.
  • the driving force of the internal combustion engine 1 is assisted by the driving force of the generator motor 2 on condition that the remaining battery capacity E soc is sufficient. If the required driving force F tr is small during vehicle acceleration, Since the battery 8 is charged by driving the generator motor 2 with the driving force of the internal combustion engine 1 on condition that the battery 8 does not become overcharged, the acceleration performance of the vehicle is improved, and the battery 8 is used in preparation for cruise following acceleration. Can be charged.
  • step S9 (cruise control) will be described with reference to the flowchart of FIG.
  • step S51 the required output Ptr of the vehicle is calculated from the vehicle speed and the throttle opening, and in step S52, the remaining battery capacity Esoc is calculated from the battery voltage and the battery current. If the remaining battery capacity E s 0 c is equal to or larger than the second threshold value E 2 in FIG. 10 in the subsequent step S53, it is determined that traveling by the generator motor 2 is possible, and the discharge permission flag DCH—FLG is set in step S54. Set to “1”.
  • step S55 when the discharge permission flag DCH-FLG is set to "1", in step S56, the required output Ptr is equal to or less than the threshold P1 in FIG. If it is possible to run at step S57, the motor output Pm to be generated by the generator motor 2 in step S57 is set as the required output Ptr. If the required output Ptr exceeds the threshold value P1 shown in FIG. 11 in step S58 and it is impossible to run only with the output of the generator motor 2, the motor output Pm to be generated by the generator motor 2 in step S59. Is set based on the vehicle speed Vcar and the required output Ptr, and a value obtained by subtracting the motor output Pm from the required output Ptr is set as a target internal combustion engine output Pe.
  • step S60 If the remaining battery capacity Es0c is less than the first threshold value E1 in FIG. 10 in the subsequent step S60, it is determined that the internal combustion engine 1 needs to generate power, and in step S61, the power generation permission flag REG—FLG Is set to “1” and the discharge enable flag DCH — FLG is reset to “0”.
  • the power generation amount Pm to be generated in the generator motor 2 in step S64 is set to a value obtained by subtracting the required output P tr from the set value P bsfc, and the output of the internal combustion engine 1 is obtained.
  • the generator motor 2 is driven by the power generation amount Pm which is a part of the set value P bsfc to charge the battery 8.
  • Step S If the remaining battery capacity E soc is equal to or greater than the second threshold value E 2 in FIG. 10 and charging of the battery 8 is unnecessary in step 6, the power generation amount P m to be generated in the generator motor 2 in step S 66 is determined. Set to 0 and reset the power generation permission flag REG—FLG to “0”.
  • the Rankine cycle output P rc which is the output of the Rankine cycle device 9 is calculated from the operating state of the internal combustion engine 1, and in step S68, the motor output P m ( Alternatively, the target internal combustion engine output P e is calculated by subtracting the power generation amount P m of the generator motor 2 having a negative value and the Rankine cycle output P rc, and in step S 69, the target internal combustion engine output is calculated with the minimum fuel consumption.
  • the engine speed Ne of the internal combustion engine 1 for obtaining the engine output Pe is calculated.
  • step S11 control during deceleration
  • step S71 the required output of the vehicle, that is, the required regenerative output Ptr is calculated from the vehicle speed and the throttle opening, and in step S72, the remaining battery capacity Es0c is calculated from the battery voltage and the battery current. . If the remaining battery capacity Es0c is equal to or less than the third threshold value E3 in FIG. 10 in the following step S73, it is determined that the battery 8 can be charged by the regenerative power, and the charging permission flag is set in step S74. C HA—set FLG to “1”.
  • step S76 when the charge permission flag C HA—FLG is set to “1”, in step S76, the absolute value of the required regenerative output Ptr becomes the absolute value of the threshold value P2 in FIG. If the value is equal to or less than the value, the regeneration output Pm of the required regeneration output is directly used as the regeneration output Pm of the generator motor 2 in step S77. If the absolute value of the required regenerative output Ptr exceeds the absolute value of the threshold P2 in FIG. 11 in step S78, the step In S79, the regenerative output Pm of the generator motor 2 is set to the threshold value P2.
  • step S80 If the remaining battery capacity E s 0c exceeds the third threshold value E 3 in FIG. 10 in the subsequent step S80, it is determined that the battery 8 cannot be charged any more, and charging is permitted in step S81.
  • step S82 When the charge permission flag CHA-FLG is reset to "0" in the following step S82, and when the internal combustion engine 1 is operating in step S83, regenerative braking is performed in step S84. Decelerate the vehicle with the engine brake and the mechanical brake without performing the operation. If the internal combustion engine 1 is stopped in step S85, the vehicle is decelerated by the female brake in step S86.
  • the regenerative braking is executed by the generator motor 2 to charge the battery 8 with regenerative electric power, and the battery 8 becomes overcharged. If there is a danger, regenerative braking is prohibited and the vehicle is decelerated by the engine brake and mechanical brake.Therefore, it is possible to maximize the remaining battery capacity E soc while minimizing fuel consumption. it can.
  • Fig. 12 shows an example of the running pattern of a vehicle.
  • the vehicle travels using both the driving force of the internal combustion engine 1 and the driving force of the generator motor 2 during acceleration, and travels using the driving force of the internal combustion engine 1 during cruise and decelerates.
  • the internal combustion engine 1 is stopped and the battery 8 is charged with the regenerative power of the generator motor 2.
  • the driving force of the internal combustion engine 1 is assisted by the output of the Rankine cycle device 9.
  • Fig. 13 shows another example of the running pattern of the vehicle, using a generator motor 2 capable of outputting a large low-speed torque when the vehicle starts, running with the driving force of the internal combustion engine 1 during acceleration, and running during cruise.
  • the vehicle runs with the driving force of the generator motor 2, stops the internal combustion engine 1 during deceleration, and charges the battery 8 with the regenerative power of the generator motor 2.
  • the driving force of the internal combustion engine 1 is assisted by the output of the Rankine cycle device 9.
  • the generator motor 2 is provided between the internal combustion engine 1 and the transmission 4, but in the second embodiment, the first generator motor 2a driven by the battery 8 is a differential motor.
  • Second generator, motor 2 b connected to device 6 and driven by battery 8 Is connected to the internal combustion engine 1.
  • the first generator motor 2a is used for traveling with the driving force of only the first generator motor 2a, assisting the driving force of the internal combustion engine 1, and generating regenerative electric power
  • the second generator motor 2b is Used for starting the internal combustion engine 1 and generating electric power by the driving force of the internal combustion engine 1.
  • the driving force output from the Rankine cycle device 9 is input to the transmission 4 via driving force integrating means such as a planetary gear mechanism (see arrow a).
  • the shaft output of the Rankine cycle device 9 is directly used as a drive source for running the vehicle as shown by an arrow a in FIGS. It is possible to drive a generator (not shown) with the shaft output. As shown by the arrow b, the electric power generated by the generator is charged into the battery 8 and used to drive the generator motors 2, 2a, 2b.
  • the battery 8 When the vehicle is accelerating or cruising, regenerative power cannot be obtained by the generator motors 2 and 2a.At this time, the battery 8 is charged with the power generated by the Rankine cycle device 9, thereby driving the internal combustion engine 1 Without using the battery, the battery 8 can be charged with the power generated by the Rankine cycle device 9 or the regenerative power of the generator motors 2 and 2a in all cases of acceleration, cruise, and deceleration.
  • the performance of a and 2b can be fully utilized.
  • the generator motor 2 outputs an output corresponding to the Rankine cycle output Prc in the first and second embodiments as the motor output Pm.
  • the battery 8 is exemplified as the power storage means, but it is also possible to use a capacity instead of the battery 8.
  • the present invention can be applied to an existing hybrid vehicle equipped with an internal combustion engine and a generator motor, and further improving the energy recovery efficiency by adding a Rankine cycle device to the hybrid vehicle. And fuel consumption T that saves

Description

明 細 書 ハイブリッド車両
発明の分野
本発明は、 内燃機関、 発電電動機およびランキンサイクル装置を備えたハイブ リッド車両に関する。
背景技術
ランキンサイクル装置で内燃機関の排気ガスの熱エネルギーを機械エネルギー に変換し、 その機械エネルギーで車両の駆動力をアシストし、 あるいは発電機を 駆動して電力を得るものが、 日本特開平 5— 3 4 0 2 4 1号公報、 日本特開昭 5 6 - 1 0 1 0 1 2号公報により公知である。
また内燃機関および発電電動機を備え、 加速時やクルーズ時に発電電動機の駆 動力で内燃機関の駆動力をアシストし、 減速時に発電電動機の回生電力でバッテ リを充電する八イブリッド車両も 知である。
ところで、 ランキンサイクル装置を車両に搭載した場合、 車両の加速時やクル ーズ時に内燃機関の排気ガスの熱エネルギーを回収することは可能であるが、 ラ ンキンサイクル装置では車両の減速時に車体の運動エネルギーを回収することが できないという問題がある。 またハイブリッド車両では、 車両の減速時に車体の 運動エネルギーを発電電動機の回生電力として回収することは可能であるが、 車 両の加速時やクルーズ時に内燃機関の排気ガスの熱エネルギーを回収することが できないという問題がある。
発明の開示
本発明は前述の事情に鑑みてなされたもので、 車両がどのような運転状態にあ つても、 エネルギー回収効率を最大限に高めて内燃機関の燃料消費量を節減する ことを目的とする。
上記百的を達成するために、 本発明の第 1の特徴によれば、 走行用の駆動力を 発生する内燃機関と、 蓄電手段からの電力で走行用の駆動力を発生するとともに 前記蓄電手段を充電する電力を発生する発電電動機と、 内燃機関の運転時にその 廃熱で作動して走行用の駆動力を発生するランキンサイクル装置とを備えたこと を特徴とするハイプリッド車両が提案される。
上記構成によれば、 内燃機関および発電電動機を備えたハイプリッド車両にお いて、 内燃機関の運転時にその廃熱で作動して走行用の駆動力を発生するランキ ンサイクル装置を設けたので、 車両の減速時に発電電動機の回生制動により回収 したエネルギーで蓄電手段を充電できるのは勿論のこと、 回生制動を行えない車 両の加速時やクルーズ時にもランキンサイクル装置でエネルギ一回収を行うこと が可能となり、 蓄電手段の電力で作動する発電電動機の駆動力およびランキンサ ィクル装置の駆動力で内燃機関の駆動力をアシストして燃料消費量を節減するこ とができる。
また本発明の第 2の特徴によれば、 走行用の駆動力を発生する内燃機関と、 蓄 電手段からの電力で走行用の駆動力を発生するとともに前記蓄電手段を充電する 電力を発生する発電電動機と、 内燃機関の運転時にその廃熱で作動して蓄電手段 を充電する電力を発生するランキンサイクル装置とを備えたことを特徴とするハ ィブリッド車両が提案される。
上記構成によれば、 内燃機関および発電電動機を備えたハイプリッド車両にお いて、 内燃機関の運転時にその廃熱で作動して蓄電手段を充電する電力を発生す るランキンサイクル装置を設けたので、 車両の減速時に発電電動機の回生制動に より回収したエネルギーで蓄電手段を充電できるのは勿論のこと、 回生制動を行 えない車両の加速時やクルーズ時にもランキンサイクル装置で回収したエネルギ 一で蓄電手段を充電可能となり、 蓄電手段の電力で作動する発電電動機の駆動力 で内燃機関の駆動力をアシストして燃料消費量を節減することができる。
また本発明の第 3の特徴によれば、 上記第 2の特徴に加えて、 発電電動機が電 力を発生していないときに、 ランキンサイクル装匱は蓄電手段を充電する電力を 発生することを特徴とするハイプリッド車両が提案される。
上記構成によれば、 発電電動機が回生電力を発生することができない車両の加 速時やクルーズ時にランキンサイクル装置が蓄電手段を充電する電力を発生する ので、 車両の加速時、 クル一ズ時および減速時の全ての状態で蓄電手段を充電す ることが可能となつて発電電動機の性能を充分に生かすことができる。
尚、 各実施例のバッテリ 8は本発明の蓄電手段に対応し、 第 1実施例の発電電 動機 2および第 2実施例の第 1発電電動機 2 aは本発明の発電電動機に対応する 図面の簡単な説明
図 1〜図 1 3は本発明の第 1実施例を示すもので、 図 1はハイプリッド車両の 全体構成を示す図、 図 2はランキンサイクル装置の構成を示す図、 図 3はメイン ルーチンのフローチャート、 図 4は停止時処理ルーチンのフローチヤ一ト、 図 5 は加速時処理ルーチンのフローチヤ一ト、 図 6はクルーズ時処理ル一チンのフ口 —チャート、 図 7は減速時処理ルーチンのフローチャート、 図 8は停止、 加速、 クルーズおよび減速を判定するマップを示す図、 図 9は電動機アシスト領域、 内 燃機関走行領域および充電領域を判定するマップを示す図、 図 1 0はバッテリの 充電状態の各閾値を示す図、 図 1 1は内燃機関走行領域、 電動機走行領域および 充電領域を判定するマップを示す図、 図 1 2は車両の走行パターンの一例を示す タイムチャート、 図 1 3は車両の走行パターンの他の一例を示すタイムチャート である。 図 1 4は本発明の第 2実施例に係るハイプリッド車両の全体構成を示す 図である。
発明を実施するための最良の形態
先ず、 図 1〜図 1 3に基づいて本発明の第 1実施例を説明する。
図 1において、 ハイブリツド車両は走行用の駆動力を発生する内燃機関 1を備 えており、 内燃機関 1および発電電動機 2はクラッチ 3を介して直列に接続され 、 更に発電電動機 2は変速機 4、 クラッチ 5および差動装置 6を介して駆動輪 7 に接続される。 従って、 クラッチ 3を締結した状態で内燃機関 1を駆動すれば、 その駆動力がクラッチ 3、 発電電動機 2、 変速機 4、 クラッチ 5および差動装置 6を介して駆動輪 7に伝達されて車両を走行させる。 このとき、 発電電動機 2は 空転させても良いが、 バッテリ 8からの電力で発電電動機 2を駆動すれば内燃機 関 1の駆動力を発電電動機 2の駆動力でアシス卜することができ、 あるいは発電 電動機 2を内燃機関 1の駆動力で駆動して発電機として機能させればバッテリ 8 を充電することができる。 また車両の減速時に、 クラッチ 3を締結解除して駆動 輪 7から逆伝達される駆動力で発電電動機 2を駆動すれば、 その発電電動機 2が 発生する回生電力でバッテリ 8を充電することができる。 車両は内燃機関 1の廃熱で作動するランキンサイクル装置 9を備えており、 ラ ンキンサイクル装置 9が出力する駆動力は変速機 4に入力される (矢印 a参照) 。 変速機 4は、 ランキンサイクル装置 9が発生した駆動力と、 内燃機関 1あるい は発電電動機 2が発生した駆動力とを、 例えば遊星歯車機構を用いて統合して駆 動輪 7に伝達する。。
図 2に示すように、 ランキンサイクル装置 9は公知の構造を有するもので、 内 燃機関 1の廃熱、 例えば排気ガスを熱源として高温高圧蒸気を発生する蒸発器 1 0と、 その高温高圧蒸気の膨脹によって軸出力を発生する膨脹器 1 1と、 膨脹器 1 1から排出される降温降圧蒸気を凝縮させて水に戻す凝縮器 1 2と、 凝縮器 1 2からの水を蒸発器 1 0に供給する給水ポンプ 1 3とを有する。
次に、 内燃機関 1、 発電電動機 2およびランキンサイクル装置 9の制御をフロ —チャートを参照しながら説明する。 内燃機関 1、 発電電動機 2およびランキン サイクル装置 9は、 車速センサ、 車体加速度センサ、 スロットル開度センサ、 バ ッテリ電圧センサ、 バッテリ電流センサ等の出力に基づいて電子制御ュニッ卜に より制御される。
先ず、 図 3のメインル一チンのステップ S 1で車速および車速の変化 (車体加 速度および車体減速度) を検出し、 ステップ S 2でスロットル開度を検出し、 ス テツプ S 3で車速およびスロットル開度から車両の要求出力を算出する。 続くス テツプ S 4で車両が停止状態にあれば、 ステップ S 5で後述する停止時処理を実 行し、 ステップ S 6で車両が加速状態にあれば、 ステップ S 7で後述する加速時 処理を実行し、 ステップ S 8で車両がクルーズ状態にあれば、 ステップ S 9で後 述するクルーズ時処理を実行し、 ステップ S 1 0で車両が減速状態にあれば、 ス テツプ S 1 1で後述する減速時処理を実行する。 そしてステップ S 1 2で、 前記 停止時処理、 加速時処理、 クルーズ時処理および減速時処理に応じた内燃機関 1 、 発電電動機 2およびランキンサイクル装置 9の駆動力制御を実行する。
車両が停止状態、 加速状態、 クルーズ状態および減速状態の何れにあるかは、 図 8に示すマップに基づいて決定される。 図 8に示すマップは横軸に拿速をとり 、 縦軸に要求出力をとつたもので、 そこに放物線状の走行抵抗ラインが設定され る。 車速および要求出力が共に 0であれば車両が停止状態であると判定し、 車速 および要求出力が走行抵抗ラィンの近傍の斜線領域にあれば車両がクルーズ状態 であると判定し、 車速および要求出力が前記斜線領域の上側にあれば車両が加速 状態であると判定し、 車速および要求出力が前記斜線領域の下側にあれば車両が 減速状態であると判定する。 尚、 前記マップ以外に、 例えば登坂路において車速 が略一定であれば加速状態であると見做なされ、 降坂路において車速が略一定で あれば減速状態であると見做なされ、 車体加速度あるいは車体減速度の絶対値が 所定値以下の場合にはクルーズ状態である見做される。
次に、 図 4のフローチャートに基づいて前記ステップ S 5 (停止時制御) のサ ブル一チンを説明する。
先ず、 ステップ S 2 1で内燃機関 1の出力を 0に設定 (停止) し、 ステップ S 2 2で発電電動機 2の出力を 0に設定し、 ステップ S 2 3でランキンサイクル装 置 9の出力を 0に設定することにより、 ステップ S 2 4で内燃機関 1、 発電電動 機 2およびランキンサイクル装置 9のト一タルの出力を 0に設定する。 このよう に車両の停止時に内燃機関 1、 発電電動機 2およびランキンサイクル装置 9を全 て停止させることにより、 燃料消費量を節減することができる。 尚、 停止した内 燃機関 1を始動する際、 発電電動機 2がスタータモ一夕として使用される。
次に、 図 5のフローチャートに基づいて前記ステップ S 7 (加速時制御) のサ ブルーチンを説明する。
先ず、 ステップ S 3 1で車速およびスロットル開度から車両の要求駆動力 F t rを算出し、 ステップ S 3 2でバッテリ電圧およびバッテリ電流からバッテリ残 容量 E s o cを算出する。 続くステップ S 3 3で要求駆動力 F t rを図 9のマツ プに適用し、 現在の運転状態が電動機アシスト領域にあるか、 内燃機関走行領域 にあるか、 充電領域にあるかを判定する。 図 9のマップは横軸に車速 V c a rを とり、 縦軸に要求駆動力 F t rをとつたもので、 そこに右下がりの第 1閾値 F 1 (V c a r ) および第 2閾値 F 2 (V c a r ) が設定される。 そして、 前記ステ ップ S 3 3で要求駆動力 F t rが第 1閾値 F 1 (V c a r ) 以上であれば電動機 アシスト領域にあると判定し、 ステップ S 3 4でアシスト許可フラグ A S T— F L Gを 「1」 にセットする。
続くステップ S 3 5で前記アシスト許可フラグ A S T F L G力 「 1」 にセッ 卜されているとき、 つまり内燃機関 1だけでは要求駆動力 F t rを満たすことが できないとき、 ステップ S 36でバッテリ残容量 E s 0 cが図 10の第 2閾値 E 2以上であって発電電動機 2による駆動力のアシストが可能な場合には、 ステツ プ S 37で発電電動機 2に発生させるべきアシスト量 Pmを要求駆動力 F t rお よび車速 Vc a rに応じてマップ検索により決定する。 またステップ S 38でバ ッテリ残容量 E s o cが図 10の第 1閾値 E 1以下であって発電電動機 2による 駆動力のァシストが不能な場合には、 ステップ S 39で発電電動機 2に発生させ るべきアシスト量 Pmを 0に設定するとともに、 アシスト許可フラグ AST— F LGを 「0」 にリセットする。
続くステツプ S 40で要求駆動力 F t rが図 9に示す第 2閾値 F 2 (Vc a r ) 以下であれば充電領域にあると判定し、 ステップ S 41で発電許可フラグ RE G— FLGを 「1」 にセットする。
続くステップ S 42で前記発電許可フラグ REG— FLGが 「1」 にセットさ れているとき、 ステップ S 43でバッテリ残容量 E s 0 cが図 10の第 2閾値 E 2以上であってバッテリ 8の充電が不要である場合には、 ステップ S44で発電 電動機 2に発生させるべき発電量 Pmを 0に設定するとともに、 発電許可フラグ REG— FLGを 「0」 にリセットする。 またステップ S 45でバッテリ残容量 E s 0 cが図 10の第 1閾値 E 1以下であってバッテリ 8の充電が必要な場合に は、 ステップ S 46で発電電動機 2に発生させるべき発電量 Pmを要求駆動力 F t rおよび車速 Vc a rに応じてマップ検索により決定する。
続くステップ S 47でランキンサイクル装置 9の出力であるランキンサイクル 出力 P r cを内燃機関 1の運転状態から算出し、 ステップ S 48で要求駆動力 F t rから発電電動機 2のアシスト量 Pm (あるいは負値である発電電動機 2の発 電量 Pm) と、 ランキンサイクル出力 P r cとを減算して目標内燃機関出力 P e を算出し、 ステップ S 49で最小の燃料消費量で前記目標内燃機関出力 P eを得 るための内燃機関 1の回転数 N eを算出する。
このように、 車両の加速時に要求駆動力 F t rが大きい場合には、 バッテリ残 容量 E s o cが充分であることを条件に発電電動機 2の駆動力で内燃機関 1の駆 動力をアシストし、 また車両の加速時に要求駆動力 F t rが小さい場合には、 バ ッテリ 8が過充電にならないことを条件に内燃機関 1の駆動力で発電電動機 2を 駆動してバッテリ 8を充電するので、 車両の加速性能を高めるとともに、 加速に 続くクルーズに備えてバッテリ 8を充電することができる。
次に、 図 6のフローチャートに基づいて前記ステップ S 9 (クルーズ時制御) のサブルーチンを説明する。
先ず、 ステップ S 51で車速およびスロットル開度から車両の要求出力 P t r を算出し、 ステップ S 52でバッテリ電圧およびバッテリ電流からバッテリ残容 量 E s o cを算出する。 続くステップ S 53でバッテリ残容量 E s 0 cが図 10 の第 2閾値 E 2以上であれば発電電動機 2による走行が可能であると判定し、 ス テツプ S 54で放電許可フラグ DCH— FLGを 「1」 にセットする。
続くステップ S 55で前記放電許可フラグ DCH— F LGが 「1」 にセットさ れているとき、 ステップ S 56で要求出力 P t rが図 11の閾値 P 1以下であつ て発電電動機 2の出力だけで走行可能な場合には、 ステップ S 57で発電電動機 2に発生させるべき電動機出力 Pmを要求出力 P t rとする。 またステップ S 5 8で要求出力 P t rが図 11の閾値 P 1を越えていて発電電動機 2の出力だけで は走行できない場合には、 ステップ S 59で発電電動機 2に発生させるべき電動 機出力 Pmを車速 Vc a rおよび要求出力 P t rに基づいて設定するとともに、 要求出力 P t rから前記電動機出力 Pmを減算したものを目標内燃機関出力 P e とする。
続くステップ S 60でバッテリ残容量 E s 0 cが図 10の第 1閾値 E 1未満で あれば、 内燃機関 1による発電が必要であると判定し、 ステップ S 61で発電許 可フラグ REG— FLGを 「1」 にセットするとともに、 放電許可フラグ DCH — FLGを 「0」 にリセッ卜する。
続くステップ S 62で前記発電許可フラグ REG一 FLGが 「1」 にセットさ れているとき、 ステップ S 63で要求出力 P t rが図 11の設定値 P b s f c ( 内燃機関 1の効率が最大となる出力) 未満である場合には、 ステップ S 64で発 電電動機 2に発生させるべき発電量 Pmを、 設定値 P b s f cから要求出力 P t rを減算した値に設定し、 内燃機関 1の出力となる設定値 P b s f cの一部であ る発電量 Pmで発電電動機 2を駆動してバッテリ 8を充電する。 またステップ S 6 5でバッテリ残容量 E s o cが図 1 0の第 2閾値 E 2以上であってバッテリ 8 の充電が不要な場合には、 ステップ S 6 6で発電電動機 2に発生させるべき発電 量 P mを 0に設定するとともに、 発電許可フラグ R E G— F L Gを 「0」 にリセ ッ卜する。
続くステップ S 6 7でランキンサイクル装置 9の出力であるランキンサイクル 出力 P r cを内燃機関 1の運転状態から算出し、 ステップ S 6 8で要求駆動力 F t rから発電電動機 2の電動機出力 P m (あるいは負値である発電電動機 2の発 電量 P m) と、 ランキンサイクル出力 P r cとを減算して目標内燃機関出力 P e を算出し、 ステップ S 6 9で最小の燃料消費量で前記目標内燃機関出力 P eを得 るための内燃機関 1の回転数 N eを算出する。
このように、 車両のクルーズ時にバッテリ残容量 E s o cが充分であるとき、 要求出力 P t rが大きければ内燃機関 1の駆動力および発電電動機 2の駆動力を 併用して走行し、 要求出力 P t rが小さければ内燃機関 1を停止して発電電動機 2の駆動力だけで走行するので燃料の消費量を最小限に抑えることができる。 ま た車両のクルーズ時にバッテリ残容量 E s o cが不足しているときには、 内燃機 関 1の駆動力で発電電動機 2を駆動してバッテリ 8を充電することができる。 次に、 図 7のフローチャートに基づいて前記ステップ S 1 1 (減速時制御) の サブルーチンを説明する。
先ず、 ステップ S 7 1で車速およびスロットル開度から車両の要求出力、 つま り要求回生出力 P t rを算出し、 ステップ S 7 2でバッテリ電圧およびバッテリ 電流からバッテリ残容量 E s 0 cを算出する。 続くステップ S 7 3でバッテリ残 容量 E s 0 cが図 1 0の第 3閾値 E 3以下であれば回生電力によるバッテリ 8の 充電が可能であると判定し、 ステップ S 7 4で充電許可フラグ C HA— F L Gを 「1」 にセッ卜する。
続くステップ S 7 5で前記充電許可フラグ C HA— F L Gが 「1」 にセッ卜さ れているとき、 ステップ S 7 6で要求回生出力 P t rの絶対値が図 1 1の閾値 P 2の絶対値以下である場合には、 ステップ S 7 7で前記要求回生出力の P ι:を そのまま発電電動機 2の回生出力 P mとする。 またステップ S 7 8で要求回生出 力 P t rの絶対値が図 1 1の閾値 P 2の絶対値を越えている場合には、 ステップ S 7 9で発電電動機 2の回生出力 P mを前記閾値 P 2に設定する。
続くステップ S 8 0でバッテリ残容量 E s 0 cが図 1 0の第 3閾値 E 3を越え ていれば、 バッテリ 8がそれ以上充電できない状態にあると判定し、 ステップ S 8 1で充電許可フラグ C HA— F L Gを 「0」 にリセットする。
続くステップ S 8 2で前記充電許可フラグ C H A— F L Gが 「0」 にリセッ ト されているとき、 ステップ S 8 3で内燃機関 1が運転中である場合には、 ステツ プ S 8 4で回生制動を行わずにエンジンブレーキおよびメカブレーキで車両を減 速する。 またステップ S 8 5で内燃機関 1が停止中であれば、 ステップ S 8 6で メ力ブレーキで車両を減速する。
このように、 車両の減速時にバッテリ 8が過充電になる虞がないことを条件に 、 発電電動機 2により回生制動を実行して回生電力でバッテリ 8を充電し、 また バッテリ 8が過充電になる虞がある場合には回生制動を禁止してエンジンブレー キおよびメカブレーキで車両を減速するので、 燃料の消費量を最小限に抑えなが らバッテリ残容量 E s o cを最大限に確保することができる。
図 1 2は車両の走行パターンの一例を示すもので、 加速時には内燃機関 1の駆 動力および発電電動機 2の駆動力を併用して走行し、 クルーズ時には内燃機関 1 の駆動力で走行し、 減速時には内燃機関 1を停止させて発電電動機 2の回生電力 でバッテリ 8を充電する。 そして内燃機関 1の運転時にはランキンサイクル装置 9の出力で内燃機関 1の駆動力がアシス卜される。
図 1 3は車両の走行パターンの他の一例を示すもので、 車両の発進時には大き な低速トルクを出力可能な発電電動機 2を使用し、 加速時には内燃機関 1の駆動 力で走行し、 クルーズ時には発電電動機 2の駆動力で走行し、 減速時には内燃機 関 1を停止させて発電電動機 2の回生電力でバッテリ 8を充電する。 そして内燃 機関 1の運転時にはランキンサイクル装置 9の出力で内燃機関 1の駆動力がァシ ストされる。
次に、 図 1 4に基づいて本発明の第 2実施例を説明する。
図 1に示す第 1実施例では発電電動機 2が内燃機関 1および変速機 4の間に設 けられていたが、 第 2実施例はバッテリ 8により駆動される第 1発電電動機 2 a が差動装置 6に接続され、 かつバッテリ 8により駆動される第 2発電,電動機 2 b が内燃機関 1に接続される。 第 1発電電動機 2 aは、 該第 1発電電動機 2 aだけ の駆動力による走行と、 内燃機関 1の駆動力のアシストと、 回生電力の発生とに 使用され、 第 2発電電動機 2 bは、 内燃機関 1の始動と、 内燃機関 1の駆動力に よる発電とに使用される。 本実施例でも、 前述した第 1実施例と同様にランキン サイクル装置 9が出力する駆動力は、 遊星歯車機構等の駆動力統合手段を介して 変速機 4に入力される (矢印 a参照)。
以上、 本発明の実施例を詳述したが、 本発明は前記実施例に限定されるもので なく、 種々の設計変更を行うことが可能である。
例えば、 既に説明した実施例では、 図 1および図 1 4に矢印 aで示すようにラ ンキンサイクル装置 9の軸出力を車両の走行用の駆動源として直接使用している が、 ランキンサイクル装置 9の軸出力で図示せぬ発電機を駆動することができる 。 矢印 bで示すように発電機で発電した電力はバッテリ 8に充電され、 発電電動 機 2 , 2 a , 2 bの駆動に使用される。 車両の加速時やクルーズ時には発電電動 機 2 , 2 aによる回生電力を得ることができないが、 このときランキンサイクル 装置 9により発電した電力でバッテリ 8を充電することにより、 内燃機関 1の駆 動力を用いることなく、 加速時、 クルーズ時および減速時の全ての場合において 、 ランキンサイクル装置 9の発電電力あるいは発電電動機 2 , 2 aの回生電力で バッテリ 8を充電することができ、 発電電動機 2 , 2 a , 2 bの性能を充分に生 かすことができる。 尚、 本実施例では、 第 1、 第 2実施例におけるランキンサイ クル出力 P r cに対応する出力を、 発電電動機 2が電動機出力 P mとして出力す ることになる。
また図 5に示す加速時の処理に代えて、 図 6に示すクルーズ時の処理を採用す ることができる。
また実施例では蓄電手段としてバッテリ 8を例示したが、 バッテリ 8に代えて キャパシ夕を用いることも可能である。
産業上の利用可能性
以上のように、 本発明は内燃機関および発電電動機を備えた既存のハイプリッ ド車両に適用することが可能であり、 そのハイプリッド車両にランキンサイクル 装置を付加することにより、 更なるエネルギー回収効率の向上および燃料消費量 を節減を可能とするものである t

Claims

請求の範囲
1. 走行用の駆動力を発生する内燃機関 (1) と、
蓄電手段 (8) からの電力で走行用の駆動力を発生するとともに前記蓄電手段 (8) を充電する電力を発生する発電電動機 (2, 2 a) と、
内燃機関 (1) の運転時にその廃熱で作動して走行用の駆動力を発生するラン キンサイクル装置 (9) と、
を備えたことを特徴とするハイプリッド車両。
2. 走行用の駆動力を発生する内燃機関 (1) と、
蓄電手段 (8) からの電力で走行用の駆動力を発生するとともに前記蓄電手段 (8) を充電する電力を発生する発電電動機 (2, 2 a) と、
内燃機関 (1) の運転時にその廃熱で作動して蓄電手段 (8) を充電する電力 を発生するランキンサイクル装置 (9) と、
を備えたことを特徵とするハイブリツド車両。
3. 発電電動機 (2, 2 a) が電力を発生していないときに、 ランキンサイクル 装置 (9) は蓄電手段 (8) を充電する電力を発生することを特徴とする、 請求 項 2に記載のハイブリッド車両。
PCT/JP2001/008823 2000-10-10 2001-10-05 Vehicule hybride WO2002031334A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE60133209T DE60133209T2 (de) 2000-10-10 2001-10-05 Hybridfahrzeug
BR0114487-1A BR0114487A (pt) 2000-10-10 2001-10-05 Veìculo hìbrido
EP01974728A EP1326017B1 (en) 2000-10-10 2001-10-05 Hybrid vehicle
US10/398,168 US7056251B2 (en) 2000-10-10 2001-10-05 Hybrid vehicle
AU2001294200A AU2001294200B9 (en) 2000-10-10 2001-10-05 Hybrid vehicle
KR10-2003-7004686A KR20030046481A (ko) 2000-10-10 2001-10-05 하이브리드 차량
CA002425427A CA2425427A1 (en) 2000-10-10 2001-10-05 Hybrid vehicle
AU9420001A AU9420001A (en) 2000-10-10 2001-10-05 Hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-314435 2000-10-10
JP2000314435A JP2002115573A (ja) 2000-10-10 2000-10-10 ハイブリッド車両

Publications (1)

Publication Number Publication Date
WO2002031334A1 true WO2002031334A1 (fr) 2002-04-18

Family

ID=18793693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008823 WO2002031334A1 (fr) 2000-10-10 2001-10-05 Vehicule hybride

Country Status (10)

Country Link
US (1) US7056251B2 (ja)
EP (1) EP1326017B1 (ja)
JP (1) JP2002115573A (ja)
KR (1) KR20030046481A (ja)
CN (1) CN1469971A (ja)
AU (2) AU2001294200B9 (ja)
BR (1) BR0114487A (ja)
CA (1) CA2425427A1 (ja)
DE (1) DE60133209T2 (ja)
WO (1) WO2002031334A1 (ja)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842144B1 (fr) * 2002-07-11 2005-01-28 Peugeot Citroen Automobiles Sa Procede et dispositif de transmission de puissance pour une vehicule automobile comprenant un moteur thermique et au moins une machine electrique
JP3889381B2 (ja) * 2003-08-01 2007-03-07 本田技研工業株式会社 ハイブリッド車両の制御装置
JP4606840B2 (ja) * 2004-10-29 2011-01-05 株式会社デンソー 複合流体機械およびそれを用いた冷凍装置
JP4396515B2 (ja) * 2004-12-22 2010-01-13 トヨタ自動車株式会社 電源装置
JP2006200492A (ja) * 2005-01-24 2006-08-03 Honda Motor Co Ltd 車両用ランキンサイクル装置
FR2885169A1 (fr) * 2005-04-27 2006-11-03 Renault Sas Systeme de gestion de l'energie calorifique a bord d'un vehicule comportant un circuit a cycle de rankine
KR20080012435A (ko) * 2006-08-03 2008-02-12 세이지 이시베 하이브리드 차량의 내연 기관 폐열 회수 시스템,하이브리드 시스템 및 발전용 내연 기관의 폐열 회수시스템
DE102006042651A1 (de) * 2006-09-12 2008-05-08 Bayerische Motoren Werke Ag Kraftfahrzeug mit Hybridantrieb
US8061140B2 (en) * 2007-03-07 2011-11-22 Thermal Power Recovery Llc High efficiency multicycle internal combustion engine with waste heat recovery
US8109097B2 (en) * 2007-03-07 2012-02-07 Thermal Power Recovery, Llc High efficiency dual cycle internal combustion engine with steam power recovered from waste heat
US8661817B2 (en) * 2007-03-07 2014-03-04 Thermal Power Recovery Llc High efficiency dual cycle internal combustion steam engine and method
US8448440B2 (en) 2007-03-07 2013-05-28 Thermal Power Recovery Llc Method and apparatus for achieving higher thermal efficiency in a steam engine or steam expander
US9316130B1 (en) 2007-03-07 2016-04-19 Thermal Power Recovery Llc High efficiency steam engine, steam expander and improved valves therefor
US20080245590A1 (en) * 2007-04-05 2008-10-09 Toyota Engineering & Manufacturing North America, Inc. Hybrid Automotive Vehicle with Thermoelectric Device
JP5084342B2 (ja) * 2007-04-27 2012-11-28 サンデン株式会社 流体機械、該流体機械を用いたランキン回路及び車両の廃熱利用システム
DE102007022735A1 (de) * 2007-05-11 2008-11-13 Voith Patent Gmbh Fahrzeugantrieb und Verfahren zum Betrieb desselben
JP5045234B2 (ja) * 2007-05-16 2012-10-10 トヨタ自動車株式会社 車両用走行制御装置
US20100133031A1 (en) * 2007-05-24 2010-06-03 Edward Charles Mendler Hydraulic hybrid power system
DE102007026264A1 (de) * 2007-06-05 2008-12-11 Bayerische Motoren Werke Aktiengesellschaft Hybridfahrzeug
WO2008153716A2 (en) * 2007-06-08 2008-12-18 Farkaly Stephen J Rankine engine with efficient heat exchange system
DE102007026889A1 (de) * 2007-06-11 2008-12-18 Robert Bosch Gmbh Hybridantrieb mit Abgasenergienutzung und Verfahren hierzu
US8046998B2 (en) * 2008-10-01 2011-11-01 Toyota Motor Engineering & Manufacturing North America, Inc. Waste heat auxiliary power unit
DE102008060950A1 (de) 2008-12-06 2010-06-10 Daimler Ag Kraftfahrzeug mit einer Abwärmenutzungsvorrichtung insbesondere zur Einspeisung der in nutzbare Leistung umgewandelten Abwärme in den Antrieb des Kraftfahrzeugs
AT505717A2 (de) 2008-12-09 2009-03-15 Avl List Gmbh Verfahren zum betreiben eines antriebssystems
WO2010083151A2 (en) 2009-01-13 2010-07-22 Avl North America Inc. Ejector type egr mixer
US8739531B2 (en) 2009-01-13 2014-06-03 Avl Powertrain Engineering, Inc. Hybrid power plant with waste heat recovery system
US8839620B2 (en) 2009-01-13 2014-09-23 Avl Powertrain Engineering, Inc. Sliding vane rotary expander for waste heat recovery system
JP5332709B2 (ja) * 2009-02-23 2013-11-06 日産自動車株式会社 廃熱回収装置搭載車両
US8330285B2 (en) * 2009-07-08 2012-12-11 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for a more efficient and dynamic waste heat recovery system
US9227626B2 (en) 2009-09-15 2016-01-05 Kpit Technologies Limited Motor assistance for a hybrid vehicle based on predicted driving range
US8560156B2 (en) * 2009-09-15 2013-10-15 Kpit Cummins Infosystems Limited Power assisting system
KR101897836B1 (ko) * 2009-09-15 2018-09-12 케이피아이티 테크놀로지스 엘티디. 차량을 하이브리드 차량으로 변환하는 방법
EP2477835B1 (en) 2009-09-15 2018-03-21 KPIT Technologies Limited Method of providing assistance for a hybrid vehicle based on user input
EP2308708B1 (de) * 2009-09-16 2016-08-17 swissauto powersport llc Elektrofahrzeug mit Reichweitenverlängerung
US9187083B2 (en) 2009-09-16 2015-11-17 Polaris Industries Inc. System and method for charging an on-board battery of an electric vehicle
US8567182B2 (en) * 2009-09-24 2013-10-29 GM Global Technology Operations LLC Vehicle exhaust heat recovery system and method of managing exhaust heat
US8413434B2 (en) * 2009-10-21 2013-04-09 GM Global Technology Operations LLC Exhaust heat recovery for transmission warm-up
CN101795011B (zh) * 2010-01-25 2012-09-05 武汉理工大学 基于发动机废热热电发电的弱混合动力系统
US8628025B2 (en) * 2010-03-09 2014-01-14 GM Global Technology Operations LLC Vehicle waste heat recovery system and method of operation
JP2011196209A (ja) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp 排熱回生システム
JP5187347B2 (ja) * 2010-05-31 2013-04-24 日産自動車株式会社 車両の発電制御装置
DE102010044889A1 (de) 2010-09-09 2011-05-12 Daimler Ag Vorrichtung und Verfahren zur Einspeisung von aus Abwärme eines Verbrennungsmotors gewonnener elektrischer Energie in ein Versorgungsnetz eines Hybridantriebsstranges eines Fahrzeugs
DE102010045630A1 (de) * 2010-09-17 2012-03-22 Voith Patent Gmbh Dampfgetriebener Kraftfahrzeugantriebsstrang
DE202011001111U1 (de) * 2011-01-05 2011-03-17 Eckert, Frank System zur Kopplung von Rankine-Prozessen an Verbrennungsmotoren und Gasturbinen
US20120204536A1 (en) * 2011-02-10 2012-08-16 GM Global Technology Operations LLC Catalytic converter combustion strategy for a hybrid vehicle
US8714288B2 (en) 2011-02-17 2014-05-06 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid variant automobile drive
SE535680C2 (sv) * 2011-03-17 2012-11-06 Scania Cv Ab Arrangemang för att omvandla värmeenergi till mekanisk energi i ett fordon
DE102011076403A1 (de) * 2011-05-24 2012-11-29 Robert Bosch Gmbh Hybridfahrzeug und Verfahren zum Betreiben eines Hybridfahrzeugs
FR2978728B1 (fr) * 2011-08-03 2014-07-04 Eads Europ Aeronautic Defence Architecture de propulsion d'aeronef integrant un systeme de recuperation d'energie
DE102011116425A1 (de) 2011-10-19 2012-05-03 Daimler Ag Reichweitenverlängerungsmodul eines elektrisch betreibbaren Fahrzeuges, mit zumindest einer Verbrennungskraftmaschine und einem mit dieser gekoppelten Generator sowie dessen Anwendung
JP5406270B2 (ja) * 2011-12-26 2014-02-05 三菱電機株式会社 電動過給機を備えたハイブリッド車両の駆動方法、及び駆動装置
DE102012004600A1 (de) * 2012-03-07 2013-09-12 Daimler Ag Abwärmenutzungsvorrichtung für ein Kraftfahrzeug
US9074492B2 (en) 2012-04-30 2015-07-07 Electro-Motive Diesel, Inc. Energy recovery arrangement having multiple heat sources
JP5741527B2 (ja) 2012-05-30 2015-07-01 株式会社デンソー エンジン用後処理装置
GB2509740A (en) 2013-01-11 2014-07-16 Dearman Engine Company Ltd Cryogenic engine combined with a power generator
US8818601B1 (en) * 2013-03-14 2014-08-26 GM Global Technology Operations LLC Extended-range electric vehicle with supercapacitor range extender
EP2802060B1 (en) * 2013-05-06 2016-07-13 ABB Technology Ltd Energy accumulation and distribution
FR3007697B1 (fr) * 2013-07-01 2015-07-17 Peugeot Citroen Automobiles Sa Systeme moto propulseur pour vehicule hybride
JP6222014B2 (ja) * 2014-09-01 2017-11-01 マツダ株式会社 車両用減速回生制御装置
US9650941B2 (en) * 2014-12-16 2017-05-16 Ford Global Technologies, Llc Rankine cycle for a vehicle
DE102014018955A1 (de) 2014-12-18 2016-06-23 Daimler Ag Kraftfahrzeug und Verfahren zu dessen Betrieb
US10300786B2 (en) 2014-12-19 2019-05-28 Polaris Industries Inc. Utility vehicle
DE102015208859A1 (de) * 2015-05-13 2016-11-17 Mahle International Gmbh Fahrzeug
US10290911B2 (en) 2015-05-18 2019-05-14 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling loops and vehicles incorporating the same
AU2017284964B2 (en) 2016-06-14 2020-07-02 Polaris Industries, Inc. Hybrid utility vehicle
DE102016217743A1 (de) 2016-09-16 2018-03-22 Robert Bosch Gmbh Hybridsystem für eine Brennkraftmaschine
DE102016015272A1 (de) 2016-12-21 2018-06-21 Daimler Ag Abwärmenutzungsvorrichtung
DE102016015270A1 (de) 2016-12-21 2018-06-21 Daimler Ag Abwärmenutzungsvorrichtung
US10252610B2 (en) * 2017-03-07 2019-04-09 Toyota Motor Engineering & Manufacturing North America, Inc. Electric vehicle and fuel cell vehicle with rankine cycle
US10279676B2 (en) 2017-03-07 2019-05-07 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid vehicle with in wheel motor and rankine cycle system
US10449847B2 (en) * 2017-09-12 2019-10-22 Denso International America, Inc. Exhaust particulate filter regeneration
US11001250B2 (en) * 2018-03-01 2021-05-11 Cummins Inc. Waste heat recovery hybrid power drive
US10780770B2 (en) 2018-10-05 2020-09-22 Polaris Industries Inc. Hybrid utility vehicle
US11370266B2 (en) 2019-05-16 2022-06-28 Polaris Industries Inc. Hybrid utility vehicle
US20240034165A1 (en) * 2022-07-27 2024-02-01 Saudi Arabian Oil Company Methods of charging a hybrid vehicle battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221409A (ja) * 1983-05-30 1984-12-13 Toyo Radiator Kk エンジンにおける熱エネルギ−回収装置
JPH05111101A (ja) * 1991-10-17 1993-04-30 Hino Motors Ltd 車両の制動および補助駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405029A (en) * 1980-01-02 1983-09-20 Hunt Hugh S Hybrid vehicles
JPS56101012A (en) 1980-01-18 1981-08-13 Niles Parts Co Ltd Power device utilizing heat released from internal- combustion engine
DE4205240A1 (de) 1992-02-21 1993-08-26 Porsche Ag Antriebsaggregat, insbesondere fuer kraftfahrzeuge
US5680764A (en) * 1995-06-07 1997-10-28 Clean Energy Systems, Inc. Clean air engines transportation and other power applications
JP3094872B2 (ja) * 1995-10-20 2000-10-03 トヨタ自動車株式会社 ハイブリッド車用制御装置
JPH11343864A (ja) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd 深冷タービン発電システム
US6202782B1 (en) * 1999-05-03 2001-03-20 Takefumi Hatanaka Vehicle driving method and hybrid vehicle propulsion system
JP4229559B2 (ja) * 2000-01-21 2009-02-25 本田技研工業株式会社 多気筒内燃機関の熱交換装置
US6450283B1 (en) * 2000-11-27 2002-09-17 Michael Blake Taggett Waste heat conversion system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59221409A (ja) * 1983-05-30 1984-12-13 Toyo Radiator Kk エンジンにおける熱エネルギ−回収装置
JPH05111101A (ja) * 1991-10-17 1993-04-30 Hino Motors Ltd 車両の制動および補助駆動装置

Also Published As

Publication number Publication date
DE60133209D1 (de) 2008-04-24
AU2001294200B2 (en) 2005-01-13
AU9420001A (en) 2002-04-22
BR0114487A (pt) 2003-11-18
EP1326017A1 (en) 2003-07-09
CA2425427A1 (en) 2003-04-09
DE60133209T2 (de) 2009-03-19
US7056251B2 (en) 2006-06-06
JP2002115573A (ja) 2002-04-19
EP1326017A4 (en) 2006-05-24
US20040063535A1 (en) 2004-04-01
EP1326017B1 (en) 2008-03-12
KR20030046481A (ko) 2003-06-12
AU2001294200B9 (en) 2005-05-05
CN1469971A (zh) 2004-01-21

Similar Documents

Publication Publication Date Title
WO2002031334A1 (fr) Vehicule hybride
JP3536634B2 (ja) ハイブリッド車両の制御装置
JP5304350B2 (ja) 車両用制御装置
US20040231330A1 (en) Rankine cycle system and vehicle therewith
JP4260385B2 (ja) ハイブリッド車両の制御装置
EP2695784B1 (en) Hybrid vehicle and method for controlling the same
JP2006132337A (ja) ハイブリッド車のエンジン始動制御装置
JP4344767B2 (ja) ランキンサイクル装置付き車両
JP3566142B2 (ja) ハイブリッド車両の制御装置
JP6977622B2 (ja) ハイブリッド車両の制御装置
JP4165481B2 (ja) ハイブリッド電気自動車の制御装置
WO2003033881A1 (fr) Vehicule presentant un dispositif a cycle de rankine
JP3216590B2 (ja) 原動機の運転制御装置およびハイブリッド車輌の運転制御装置
JP3560863B2 (ja) ハイブリッド車両の制御装置
EP1443183A1 (en) Rankine cycle device
JP2008094238A (ja) ハイブリッド車の制御装置
JP5895353B2 (ja) ハイブリッド車
JP2006144589A (ja) ハイブリッド車のエンジン制御装置
JP3287943B2 (ja) ハイブリッド車両の制御装置
JP5795854B2 (ja) ハイブリッド電気自動車の制御装置
JPH11332015A (ja) ハイブリッド車駆動装置及び駆動方法
JP4000750B2 (ja) 動力出力装置およびその制御方法
JP2003235107A (ja) 車両の制御装置
JP3587055B2 (ja) ハイブリッド自動車の制御装置
WO2014038442A1 (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001294200

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020037004686

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2425427

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018171818

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001974728

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037004686

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001974728

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10398168

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 1020037004686

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001974728

Country of ref document: EP