WO2002047156A1 - Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses - Google Patents

Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses Download PDF

Info

Publication number
WO2002047156A1
WO2002047156A1 PCT/FR2001/003873 FR0103873W WO0247156A1 WO 2002047156 A1 WO2002047156 A1 WO 2002047156A1 FR 0103873 W FR0103873 W FR 0103873W WO 0247156 A1 WO0247156 A1 WO 0247156A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaseous species
introduction
layer
separation
weakened zone
Prior art date
Application number
PCT/FR2001/003873
Other languages
English (en)
Inventor
Bernard Aspar
Michel Bruel
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to KR1020037007447A priority Critical patent/KR100869327B1/ko
Priority to US10/432,362 priority patent/US6946365B2/en
Priority to JP2002548776A priority patent/JP4064816B2/ja
Priority to AU2002217208A priority patent/AU2002217208A1/en
Priority to EP01999973A priority patent/EP1354346B1/fr
Priority to AT01999973T priority patent/ATE556432T1/de
Publication of WO2002047156A1 publication Critical patent/WO2002047156A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the present invention relates to a process for producing a thin layer involving the introduction of gaseous species.
  • it makes it possible to produce relatively thick layers. It finds applications in particular in the field of semiconductors.
  • this substrate is brought into intimate contact, by its implanted face with a stiffener and that a heat treatment is applied to at a sufficient temperature, there is an interaction between the microcavities or the microbubbles leading to a separation of the semiconductor substrate into two parts: a thin semiconductor film adhering to the stiffener on the one hand, the rest of the semiconductor substrate on the other hand.
  • the separation takes place in the area where the microcavities or microbubbles are present.
  • the heat treatment is such that the interaction between the microbubbles or microcavities created by implantation is capable of inducing a separation between the thin film and the rest of the substrate. We can therefore obtain the transfer of a thin film from an initial substrate to a stiffener serving as a support for this thin film.
  • a weakened zone and the separation at the level of this zone can also be used for the manufacture of a thin film of solid material other than a semiconductor material, a conductive or dielectric material, crystalline or not (see the document FR-A-2 748 850).
  • Document FR-A-2 738 671 discloses a process also using ion implantation to create a weakened zone which allows, thanks to a subsequent treatment, to obtain the separation of a surface layer with the rest of an initial substrate.
  • the ion implantation is carried out at a depth greater than or equal to a determined minimum depth so that the thin film obtained is rigid after its separation from the rest of the initial substrate.
  • the term rigid film is understood to mean a self-supporting film, that is to say a mechanically independent film which can be used or handled directly.
  • the present invention proposes to implant (or introduce) the gaseous species by the rear face of the substrate, that is to say by the face of the substrate opposite to the desired film or thin layer.
  • the substrate must be "transparent to ions" on the side of its rear face.
  • the subject of the invention is therefore a method of producing a thin layer from a structure, the method involving the introduction of gaseous species to create a weakened zone leading to a separation of the structure at the level of this zone.
  • weakened the process being characterized in that it comprises the following stages: a) production of a stacked structure formed of a first part designed to facilitate the introduction of gaseous species and of a second part, the second part having a first free face and a second face integral with the first part, b) introduction of gaseous species into the structure, starting from the first part to create a weakened zone, the thin layer being thus delimited between said first free face of the second part and said weakened zone, c) separation of the thin layer from the rest of the structure at the level of the weakened zone.
  • the introduction of gaseous species is carried out by ion implantation through the free face of the first part.
  • the introduction of gaseous species can create a weakened zone in the first part, in the second part or at the interface between the first part and the second part.
  • the first part can comprise a material with high porosity or low stopping power for gaseous species or of thickness corresponding to the depth of penetration of gaseous species in this first part.
  • the introduction of gaseous species being carried out by ion implantation the first part may comprise a support transparent to the implanted gaseous species, that is to say a support having openings to the implanted gaseous species, the ratio of the total surface of the openings relative to the surface of the support being such that the separation may occur in the weakened area created.
  • the support can be a grid, the first part also comprising a film deposited on the grid and secured to the second part.
  • the first part may be a self-supporting film initially placed on a support, the second part being formed on the first part by growth to provide a manipulable structure.
  • the growth of the second part can be carried out by a CVD deposition method or a liquid phase epitaxy method.
  • the first part comprises a surface layer serving as a germ for the growth of the second part on the first part.
  • the growth of the second part can be carried out by a CVD deposition method or a liquid phase epitaxy method.
  • the introduction of gaseous species can be carried out so that the weakened zone leaves, after separation, on the surface of the first part a layer which can serve as a germ to make a second part grow again on the first part.
  • step b) or before step c) an intermediate support is fixed to the first part.
  • the intermediate support can be eliminated.
  • the structure may include a layer intended to promote separation, the gaseous species being introduced into this layer.
  • the separation step can be carried out by adding thermal and / or mechanical energy to the weakened zone.
  • the separation step can use an energy supply to initiate a cleavage action using a cleavage front propagating along the weakened area. This technique is in particular disclosed by document WO 98/52 216.
  • the gaseous species can be chosen from hydrogen and rare gases, these species being able to be introduced alone or in combination.
  • FIGS. 1A to 1D illustrate a first mode for carrying out the present invention
  • FIG. 2A to 2D illustrate a second embodiment of the present invention.
  • FIGS. 1A to 1D illustrate an embodiment of the invention where the first part of the structure comprises a grid.
  • FIG. 1A is a perspective view in partial section of this first part 10.
  • the first part 10 comprises a grid 11 formed of bars, the section of which may be square or rectangular.
  • the bars are for example 80 ⁇ m wide and can be spaced from a few hundred micrometers to a few millimeters.
  • the grid can serve as a stiffener and allow separation at the level of the implanted area without inducing the formation of blisters.
  • the spacings between the bars are too large and / or if the ion penetration depth is not sufficient to induce a separation (there is then blistering) and lead to a self-supporting film, it can be deposited after the step implantation layer which serves as a stiffener on the free face of the first part.
  • the grid 11 can be produced by etching a plate of Si or Sic.
  • the grid 11 serves as a support for a film 12 formed of one or more layers, for example of two layers 13 and 14. If it is desired to obtain at the end of the process a thin layer of monocrystalline silicon, the layer 13 can be in Si0 2 and be 1 ⁇ m thick and the layer 14 may be made of silicon and have 2 ⁇ m thick.
  • the film 12 can be obtained and deposited on the grid 11 by the method disclosed in the document FR-A-2 738 671 cited above.
  • the film 12 can be made integral with the grid 11 by a molecular adhesion technique known to those skilled in the art. You can also use an adhesive to secure the film 12 and the grid 11, making sure that the glue does not disturb the ion implantation.
  • the layer 14 can then be used to form the second part of the structure.
  • Figure 1B which is a cross-sectional view of the structure.
  • the second part 20 is a layer of monocrystalline silicon obtained by growth from the layer 14 serving as a seed. Growth is for example obtained by a CVD deposition technique or by liquid phase epitaxy. The second part 20 can then reach several ⁇ m, or even a few tens of ⁇ m, for example 50 ⁇ m thick.
  • FIG. 1C which is also a cross-sectional view of the structure, illustrates the step of ion implantation carried out through the grid 11.
  • Ion implantation can consist of implanting hydrogen ions, symbolically represented by the arrows 1 , with a dose of 10 17 H + / cm 2 and an energy of 400 keV.
  • the ions mainly reach the silicon layer 14 to form a weakened zone 15 there.
  • gaseous species into a layer of material to constitute a weakened zone can also be done by other methods used alone or in combination and described in the document.
  • Figure 1D which is also a cross-sectional view of the structure, illustrates the separation step.
  • the separation can take place by thermal annealing and / or by the use of mechanical forces.
  • a thin layer 2 is then obtained between the free face 21 of the second part 20 and the initial location of the weakened zone.
  • the initial layer 14 is then split into two sublayers 14 ′ and 14 ".
  • the thin layer about 50 ⁇ m thick, is recovered for use.
  • the rest of the structure, consisting of the grid stack 11, layer 13 and sublayer 14 "(forming the film 12 *), can be reused as a new first part, the sublayer 14" serving as a seed for the formation of a new second part.
  • the weakened zone was created in the layer 14 belonging to the first part of the structure, the thin layer obtained then comprising the first part of the structure and a portion of the second part (the sub-layer 14 '). It is also part of the present invention to create the weakened area at the interface of the two parts, in which case the thin layer obtained would correspond exactly to the second part of the structure.
  • This variant has an advantage: a fault zone created at this interface promotes separation. This defect zone may contain crystalline defects and / or microcavities which will promote separation. It is also possible to create the weakened zone in the second part of the structure, in which case the thin layer obtained would correspond to a portion of the second part.
  • the introduction of gaseous species can be carried out for an implantation energy of 200 keV for example.
  • a layer is added to the free face of the first part which serves as a stiffener and which allows separation.
  • This layer can consist, for example, of 3 ⁇ m of silicon oxide.
  • the second part of the structure can also consist of a stack of layers. It may be, temporarily or not, attached to an intermediate support.
  • a specific layer may be provided in the structure, for example produced before the formation of the second part, intended to promote separation at the level of the weakened zone.
  • the specific layer may be a layer of SiGe epitaxially grown on a silicon layer of the first part.
  • the second part is epitaxied on the SiGe layer and the implantation is carried out at the level of the constrained SiGe layer.
  • the specified layer can be a highly boron doped silicon layer. Such a material makes it possible to obtain a separation using a lower thermal and / or mechanical budget.
  • Figures 2A to 2D illustrate another embodiment of the invention where the first part of the structure consists of a self-supporting film. These figures are cross-sectional views.
  • FIG. 2A shows a self-supporting film 31 placed on a support 30 without adhering to it.
  • the self-supporting film 31 is for example a silicon film 5 ⁇ m thick obtained by the process disclosed in the document FR-A-2 738 671 cited above. This film 31 constitutes the first part of the structure.
  • FIG. 2B shows that a layer 32 has been formed on the film 31.
  • the layer 32 can be a silicon layer 45 ⁇ m thick, epitaxied on the layer 31.
  • the layer 32 constitutes the second part of the structure. We obtain a manipulable structure.
  • FIG. 2C shows the structure which has been turned over on its support 30 to undergo the ion implantation step.
  • Hydrogen ions (symbolically represented by the arrows 33) are then implanted, for example for a dose of 10 17 H + / cm 2 and with an energy of 500 keV.
  • the weakened zone is created at the interface between the two parts 31 and 32. To create this weakened zone, it is possible to use a coimplantation of helium and hydrogen for example.
  • the structure is again turned over on its support and, for example by a heat treatment or by a partial heat treatment followed by an application of mechanical forces, the separation between the parts 31 and 32 is obtained.
  • a thin layer is obtained consisting of the second part 32 as shown in Figure 2D.
  • Part 31 can again be used to apply the method of the invention.
  • the invention applies to obtaining thin layers of different materials. It is thus possible to obtain self-supporting GaN layers for optoelectronic or microelectronic applications.
  • the self-supporting film can be
  • Sic Sic.

Abstract

L'invention concerne un procédé de réalisation d'une couche mince à partir d'une structure, comprenant les étapes suivantes (a) réalisation d'une structure empilée formée d'une première partie conçue pour faciliter l'introduction des espèces gazeuses et d'une deuxième partie, la deuxième partie possédant une première face libre et une deuxième face solidaire de la première partie, (b) introduction d'espèces gazeuses dans la structure, à partir de la première partie pour créer une zone fragilisée, la couche mince étant ainsi délimitée entre la première face de la deuxième partie et ladite zone fragilisée, (c) séparation de la couche mince du reste de la structure au niveau de la zone fragilisée.

Description

PROCEDE DE REALISATION D'UNE COUCHE MINCE IMPLIQUANT L'INTRODUCTION D'ESPECES GAZEUSES
DESCRIPTION
Domaine technique
La présente invention concerne un procédé de réalisation d'une couche mince impliquant l'introduction d'espèces gazeuses. Elle permet en particulier de réaliser des couches d'épaisseur relativement fortes. Elle trouve des applications notamment dans le domaine des semi-conducteurs .
Etat de la technique antérieure
L'introduction d'espèces gazeuses dans un matériau solide peut être avantageusement réalisée par implantation ionique. Ainsi, le document FR-A-2 681 472 (correspondant au brevet américain N° 5 374 564) décrit un procédé de fabrication de films minces de matériau semiconducteur. Ce document divulgue que l'implantation d'un gaz rare et/ou d'hydrogène dans un substrat en matériau semiconducteur est susceptible d'induire, dans certaines conditions, la formation de microcavités ou de microbulles (encore désignées par le terme "platelets" dans la terminologie anglo-saxonne) à une profondeur voisine de la profondeur moyenne de pénétration des ions implantés. Si ce substrat est mis en contact intime, par sa face implantée avec un raidisseur et qu'un traitement thermique est appliqué à une température suffisante, il se produit une interaction entre les microcavités ou les microbulles conduisant à une séparation du substrat semiconducteur en deux parties : un film mince semiconducteur adhérant au raidisseur d'une part, le reste du substrat semiconducteur d'autre part. La séparation a lieu au niveau de la zone où les microcavités ou microbulles sont présentes. Le traitement thermique est tel que l'interaction entre les microbulles ou microcavités créées par implantation est apte à induire une séparation entre le film mince et le reste du substrat. On peut donc obtenir le transfert d'un film mince depuis un substrat initial jusqu'à un raidisseur servant de support à ce film mince. La création d'une zone fragilisée et la séparation au niveau de cette zone peuvent également être utilisées pour la fabrication d'un film mince de matériau solide autre qu'un matériau semiconducteur, un matériau conducteur ou diélectrique, cristallin ou non (voir le document FR-A-2 748 850) .
Ce procédé s'avère très intéressant et est utilisé notamment pour obtenir des substrats SOI. Le passage de ces ions peut amener des perturbations pour certaines applications. Cependant, l'épaisseur de film mince obtenu dépend de l'énergie d'implantation que peut fournir les implanteurs. L'obtention de films relativement épais (50 μm par exemple) exige des implanteurs très puissants, ce qui impose une limite pour les épaisseurs disponibles. Il peut en outre présenter un inconvénient en ce sens que le film mince obtenu a été traversé par les ions destinés à former les microcavités.
Le document FR-A-2 738 671 (correspondant au brevet américain N° 5 714 395) divulgue un procédé utilisant également l'implantation ionique pour créer une zone fragilisée qui permet, grâce à un traitement postérieur, d'obtenir la séparation d'une couche superficielle d'avec le reste d'un substrat initial. Selon ce document, l'implantation ionique est effectuée à une profondeur supérieure ou égale à une profondeur minimum déterminée pour que le film mince obtenu soit rigide après sa séparation d'avec le reste du substrat initial. On entend par film rigide un film autoporté, c'est-à-dire indépendant mécaniquement et pouvant être utilisé ou manipulé directement.
Exposé de 1 ' invention
Pour remédier à ces inconvénients, la présente invention propose d'implanter (ou d'introduire) les espèces gazeuses par la face arrière du substrat, c'est-à-dire par la face du substrat opposée au film ou couche mince désirée. Pour cela, il faut que le substrat soit "transparent aux ions" du côté de sa face arrière.
L'invention a donc pour objet un procédé de réalisation d'une couche mince à partir d'une structure, le procédé impliquant l'introduction d'espèces gazeuses pour créer une zone fragilisée conduisant à une séparation de la structure au niveau de cette zone fragilisée, le procédé étant caractérisé en ce qu'il comprend les étapes suivantes : a) réalisation d'une structure empilée formée d'une première partie conçue pour faciliter l'introduction des espèces gazeuses et d'une deuxième partie, la deuxième partie possédant une première face libre et une deuxième face solidaire de la première partie, b) introduction d'espèces gazeuses dans la structure, à partir de la première partie pour créer une zone fragilisée, la couche mince étant ainsi délimitée entre ladite première face libre de la deuxième partie et ladite zone fragilisée, c) séparation de la couche mince du reste de la structure au niveau de la zone fragilisée.
De préférence, l'introduction d'espèces gazeuses est réalisée par implantation ionique au travers de la face libre de la première partie.
L'introduction d'espèces gazeuses peut créer une zone fragilisée dans la première partie, dans la deuxième partie ou à 1 ' interface entre la première partie et la deuxième partie. La première partie peut comprendre un matériau à forte porosité ou à faible pouvoir d'arrêt pour les espèces gazeuses ou d'épaisseur correspondant à la profondeur de pénétration des espèces gazeuses dans cette première partie. L'introduction d'espèces gazeuses étant réalisée par implantation ionique, la première partie peut comprendre un support transparent aux espèces gazeuses implantées, c'est-à-dire un support présentant des ouvertures aux espèces gazeuses implantées, le rapport de la surface totale des ouvertures par rapport à la surface du support étant tel que la séparation peut se produire au niveau de la zone fragilisée créée. Le support peut être une grille, la première partie comprenant aussi un film déposé sur la grille et solidaire de la deuxième partie. La première partie peut être un film autoporté initialement posé sur un support, la deuxième partie étant formée sur la première partie par croissance pour fournir une structure manipulable. La croissance de la deuxième partie peut être réalisée par un procédé de dépôt CVD ou un procédé d'épitaxie en phase liquide.
Avantageusement, la première partie comprend une couche superficielle servant de germe pour la croissance de la deuxième partie sur la première partie. La croissance de la deuxième partie- peut être réalisée par un procédé de dépôt CVD ou un procédé d'épitaxie en phase liquide. L'introduction d'espèces gazeuses peut être menée de façon que la zone fragilisée laisse subsister, après séparation, en surface de la première partie une couche pouvant servir de germe pour faire croître à nouveau une deuxième partie sur la première partie.
Eventuellement, avant l'étape b) ou avant l'étape c) , un support intermédiaire est fixé sur la première partie. Après l'étape c) , le support intermédiaire peut être éliminé.
La structure peut comprendre une couche destinée à favoriser la séparation, les espèces gazeuses étant introduites dans cette couche. L'étape de séparation peut être réalisée par apport d'énergie thermique et/ou mécanique à la zone fragilisée.
L'étape de séparation peut mettre en œuvre un apport d'énergie pour initier une action de clivage utilisant un front de clivage se propageant le long de la zone fragilisée. Cette technique est en particulier divulguée par le document WO 98/52 216.
Les espèces gazeuses peuvent être choisies parmi l'hydrogène et les gaz rares, ces espèces pouvant être introduites seules ou en combinaison.
Brève description des dessins
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels : - les figures 1A à 1D illustrent un premier mode de réalisation de la présente invention,
- les figures 2A à 2D illustrent un deuxième mode de réalisation de la présente invention.
Description détaillée de modes de réalisation de 1 ' invention
Les figures 1A à 1D illustrent un mode de réalisation de l'invention où la première partie de la structure comprend une grille.
La figure 1A est une vue en perspective et en coupe partielle de cette première partie 10. La première partie 10 comprend une grille 11 formée de barreaux dont la section peut être carrée ou rectangulaire. Les barreaux ont par exemple 80 μm de largeur et peuvent être espacés de quelques centaines de micromètres à quelques millimètres. Suivant les dimensions des barreaux et des espacements qui les séparent, la grille peut servir de raidisseur et permettre la séparation au niveau de la zone implantée sans induire la formation de cloques. Quand les espacements entre les barreaux sont trop grands et/ou si la profondeur de pénétration des ions n'est pas suffisante pour induire une séparation (on a alors formation de cloques) et conduire à un film autoporté, on peut déposer après l'étape d'implantation une couche qui sert de raidisseur sur la face libre de la première partie.
La grille 11 peut être réalisée par gravure d'une plaquette de Si ou de Sic.
La grille 11 sert de support à un film 12 formé d'une ou plusieurs couches, par exemple de deux couches 13 et 14. Si on désire obtenir à l'issue du procédé une couche mince de silicium monocristallin, la couche 13 peut être en Si02 et avoir 1 μm d'épaisseur et la couche 14 peut être en silicium et avoir 2 μm d'épaisseur. Le film 12 peut être obtenu et déposé sur la grille 11 par le procédé divulgué dans le document FR-A-2 738 671 cité plus haut. Le film 12 peut être rendu solidaire de la grille 11 par une technique d'adhésion moléculaire connue de l'homme de l'art. On peut aussi utiliser une colle pour solidariser le film 12 et la grille 11 en s 'assurant que la colle ne perturbe pas l'implantation ionique.
' • La couche 14 peut alors servir à la formation de la deuxième partie de la structure. C'est ce que montre la figure 1B qui est une vue en coupe transversale de la structure. La deuxième partie 20 est une couche de silicium monocristallin obtenue par croissance à partir de la couche 14 servant de germe. La croissance est par exemple obtenue par une technique de dépôt CVD ou par epitaxie en phase liquide. La deuxième partie 20 peut alors atteindre plusieurs μm, voire quelques dizaines de μm, par exemple 50 μm d' épaisseur.
La figure 1C, qui est également une vue en coupe transversale de la structure, illustre l'étape d'implantation ionique effectuée au travers de la grille 11. L'implantation ionique peut consister à implanter des ions hydrogène, figurés symboliquement par les flèches 1, avec une dose de 1017H+/cm2 et une énergie de 400 keV. Les ions parviennent majoritairement dans la couche 14 en silicium pour y former une zone fragilisée 15.
L'introduction d'espèces gazeuses dans une couche de matériau pour constituer une zone fragilisée peut aussi se faire par d'autres méthodes employées seules ou en combinaison et décrites dans le document
FR-A-2 773 261.
La figure 1D, qui est également une vue en coupe transversale de la structure, illustre l'étape de séparation. La séparation peut avoir lieu par recuit thermique et/ou par utilisation de forces mécaniques. On obtient alors une couche mince 2 entre la face libre 21 de la deuxième partie 20 et l'emplacement initial de la zone fragilisée. La couche initiale 14 est alors scindée en deux sous-couches 14' et 14". La couche mince 2, d'environ 50 μm d'épaisseur, est récupérée pour être exploitée. Le reste de la structure, constitué de l'empilement grille 11, couche 13 et sous- couche 14" (formant le film 12*), peut être réutilisé comme nouvelle première partie, la sous-couche 14" servant de germe pour la formation d'une nouvelle seconde partie.
Dans cet exemple de réalisation, la zone fragilisée a été créée dans la couche 14 appartenant à la première partie de la structure, la couche mince obtenue comprenant alors la première partie de la structure et une portion de la deuxième partie (la sous-couche 14 ' ) . Il entre aussi dans le cadre de la présente invention de créer la zone fragilisée à l'interface des deux parties, auquel cas la couche mince obtenue correspondrait exactement à la deuxième partie de la structure. Cette variante présente un avantage : une zone de défauts créée à cette interface favorise la séparation. Cette zone de défauts peut contenir des défauts cristallins et/ou des microcavités qui vont favoriser la séparation. Il est aussi possible de créer la zone fragilisée dans la deuxième partie de la structure, auquel cas la couche mince obtenue correspondrait à une portion de la deuxième partie.
Dans une variante du procédé, l'introduction des espèces gazeuses peut être réalisée pour une énergie d'implantation de 200 keV par exemple. Dans ce cas, avant séparation on rajoute sur la face libre de la première partie une couche qui sert de raidisseur et qui permet la séparation. Cette couche peut être constituée par exemple de 3 μm d'oxyde de silicium.
La deuxième partie de la structure peut aussi être constituée d'un empilement de couches. Elle peut-être, temporairement ou non, fixée à un support intermédiaire . II peut être prévu dans la structure une couche spécifique, par exemple réalisée avant la formation de la deuxième partie, destinée à favoriser la séparation au niveau de la zone fragilisée. La couche spécifique -peut être une couche de SiGe épitaxiée sur une couche de silicium de la première partie. La deuxième partie est épitaxiée sur la couche de SiGe et l'implantation est réalisée au niveau de la couche de SiGe contrainte. La couche spécifiée peut être une couche de silicium fortement dopée au bore. Un tel matériau permet d'obtenir une séparation à l'aide d'un budget thermique et/ou mécanique plus faible.
Les figures 2A à 2D illustrent un autre mode de réalisation de l'invention où la première partie de la structure est constituée par un film autoporté. Ces figures sont des vues en coupe transversale.
La figure 2A montre un film autoporté 31 posé sur un support 30 sans y adhérer. Le film autoporté 31 est par exemple un film de silicium de 5 μm d'épaisseur obtenu par le procédé divulgué dans le document FR-A-2 738 671 cité plus haut. Ce film 31 constitue la première partie de la structure.
La figure 2B montre qu'une couche 32 a été formée sur le film 31. La couche 32 peut être une couche de silicium de 45 μm d'épaisseur, épitaxiée sur la couche 31. La couche 32 constitue la deuxième partie de la structure. On obtient une structure manipulable.
La figure 2C montre la structure qui a été retournée sur son support 30 pour subir l'étape d'implantation ionique. Des ions hydrogène (figurés symboliquement par les flèches 33) sont alors implantés, par exemple pour une dose de 1017H+/cm2 et avec une énergie de 500 keV. Dans cet exemple de réalisation, la zone fragilisée est créée à l'interface entre les deux parties 31 et 32. Pour créer cette zone fragilisée, on peut utiliser une coimplantation d'hélium et d'hydrogène par exemple.
La structure est à nouveau retournée sur son support et, par exemple par un traitement thermique ou par un traitement thermique partiel suivi d'une application de forces mécaniques, la séparation entre les parties 31 et 32 est obtenue. On obtient une couche mince constituée par la deuxième partie 32 comme le montre la figure 2D. La partie 31 peut à nouveau être utilisée pour appliquer le procédé de l'invention.
L'invention s'applique à l'obtention de couches minces de différents matériaux. Il est ainsi possible d'obtenir des couches de GaN autoportées pour des applications optoélectroniques ou microélectro- niques. Dans ce cas, le film autoporté peut être en
Sic. Sur ce film, on peut réaliser une couche épaisse de GaN par exemple par epitaxie à 1050°C. De 1 ' hydrogène est ensuite implanté selon une dose de 1016H+/cm2 à 250 keV dans le Sic au voisinage de l'interface avec GaN. A l'aide par exemple d'un traitement thermique à 850°C, la séparation est obtenue au niveau de la zone implantée. On obtient un film de GaN autoporté muni d'une couche mince de Sic provenant de la séparation. Le reste du film de Sic qui est toujours autoporté peut être recyclé.

Claims

REVENDICATIONS
1. Procédé de réalisation d'une couche mince (2,32) à partir d'une structure, le procédé impliquant l'introduction d'espèces gazeuses pour créer une zone fragilisée conduisant à une séparation de la structure au niveau de cette zone fragilisée, le procédé étant caractérisé en ce qu'il comprend les étapes suivantes : a) réalisation d'une structure empilée formée d'une première partie (10,31) conçue pour faciliter l'introduction des espèces gazeuses et d'une deuxième partie (20,32) la deuxième partie possédant une première face libre et une deuxième face solidaire de la première partie, b) introduction d'espèces gazeuses dans la structure, à partir de la première partie (10,31) pour créer une zone fragilisée (15) , la couche mince étant ainsi délimitée entre ladite première face libre de la deuxième partie et ladite zone fragilisée, c) séparation de la couche mince (2,32) du reste de la structure au niveau de la zone fragilisée.
2. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses est réalisée par implantation ionique au travers de la face libre de la première partie.
3. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses crée une zone fragilisée (15) dans la première partie (10) .
4. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses crée une zone fragilisée dans la deuxième partie.
5. Procédé selon la revendication 1, caractérisé en ce que l'introduction d'espèces gazeuses crée une zone fragilisée à l'interface entre la première partie (31) et la deuxième partie (32) .
6. Procédé selon la revendication 1, caractérisé en ce que la première partie comprend un matériau à forte porosité ou à faible pouvoir d'arrêt pour les espèces gazeuses ou d'épaisseur correspondant à la profondeur de pénétration des espèces gazeuses dans cette première partie.
7. Procédé selon la revendication 2, caractérisé en ce que la première partie comprend un- support transparent aux espèces gazeuses implantées , c'est-à-dire un support présentant des ouvertures aux espèces gazeuses implantées, le rapport de la surface totale des ouvertures par rapport à la surface du support étant tel que la séparation peut se produire au niveau de la zone fragilisée créée.
8. Procédé selon la revendication 7, caractérisé en ce que le support est une grille (11) , la première partie (10) comprenant aussi un film (12) déposé sur la grille et solidaire de la deuxième partie (20) .
9. Procédé selon la revendication 1, caractérisé en ce que la première partie (31) est un film autoporté initialement posé sur un support (30) , la deuxième partie étant formée sur la première partie par croissance pour fournir une structure manipulable.
10. Procédé selon la revendication 9, caractérisé en ce que la croissance de la deuxième partie (32) est réalisée par un procédé de dépôt CVD ou un procédé d'épitaxie en phase liquide.
11. Procédé selon la revendication 1, caractérisé en ce que la première partie (10) comprend une couche superficielle (14,14") servant de germe pour la croissance de la deuxième partie sur la première partie .
12. Procédé selon la revendication 11, caractérisé en ce que la croissance de la deuxième partie est réalisée par un procédé de dépôt CVD ou un procédé d'épitaxie en phase liquide.
13. Procédé selon l'une des revendications
11 ou 12, caractérisé en ce que l'introduction d'espèces gazeuses est menée de façon que la zone fragilisée (15) laisse subsister, après séparation, en surface de la première partie (10) une couche (14") pouvant servir de germe pour faire croître à nouveau une deuxième partie sur la première partie.
14. Procédé selon la revendication 1, caractérisé en ce que, avant l'étape b) ou avant l'étape c) , un support intermédiaire est fixé sur la première partie.
15. Procédé selon la revendication 14, caractérisé en ce que, après l'étape c) , le support intermédiaire est éliminé.
16. Procédé selon la revendication 1, caractérisé en ce que la structure comprend une couche destinée à favoriser la séparation, les espèces gazeuses étant introduites dans cette couche .
17. Procédé selon la revendication 1, caractérisé en ce que l'étape de séparation est réalisée par apport d'énergie thermique et/ou mécanique à la zone fragilisée.
18. Procédé selon la revendication 1, caractérisé en ce que l'étape de séparation met en œuvre un apport d'énergie pour initier une action de clivage utilisant un front de clivage se propageant le long de la zone fragilisée.
19. Procédé selon la revendication 1, caractérisé en ce que les espèces gazeuses sont choisies parmi l'hydrogène et les gaz rares, ces espèces étant introduites seules ou en combinaison.
PCT/FR2001/003873 2000-12-08 2001-12-07 Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses WO2002047156A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020037007447A KR100869327B1 (ko) 2000-12-08 2001-12-07 가스종의 도입을 포함하는 박막층의 제조방법
US10/432,362 US6946365B2 (en) 2000-12-08 2001-12-07 Method for producing a thin film comprising introduction of gaseous species
JP2002548776A JP4064816B2 (ja) 2000-12-08 2001-12-07 気体種の導入を含む薄膜製造方法
AU2002217208A AU2002217208A1 (en) 2000-12-08 2001-12-07 Method for producing a thin film comprising introduction of gaseous species
EP01999973A EP1354346B1 (fr) 2000-12-08 2001-12-07 Procede de realisation d'une couche mince impliquant l'implantation d'especes gazeuses
AT01999973T ATE556432T1 (de) 2000-12-08 2001-12-07 Verfahren zur herstellung eines dünnfilms durch implantation von gasförmigen teilchen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/15980 2000-12-08
FR0015980A FR2818010B1 (fr) 2000-12-08 2000-12-08 Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses

Publications (1)

Publication Number Publication Date
WO2002047156A1 true WO2002047156A1 (fr) 2002-06-13

Family

ID=8857408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003873 WO2002047156A1 (fr) 2000-12-08 2001-12-07 Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses

Country Status (10)

Country Link
US (1) US6946365B2 (fr)
EP (1) EP1354346B1 (fr)
JP (1) JP4064816B2 (fr)
KR (1) KR100869327B1 (fr)
AT (1) ATE556432T1 (fr)
AU (1) AU2002217208A1 (fr)
FR (1) FR2818010B1 (fr)
MY (1) MY127171A (fr)
TW (1) TW527621B (fr)
WO (1) WO2002047156A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018909B2 (en) 2003-02-28 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
US7176108B2 (en) 2002-11-07 2007-02-13 Soitec Silicon On Insulator Method of detaching a thin film at moderate temperature after co-implantation
US7229899B2 (en) 1997-12-30 2007-06-12 Commissariat A L'energie Atomique Process for the transfer of a thin film
WO2007094231A1 (fr) 2006-02-16 2007-08-23 Shin-Etsu Chemical Co., Ltd. Procédé de fabrication d'un substrat semi-conducteur
US7348260B2 (en) 2003-02-28 2008-03-25 S.O.I.Tec Silicon On Insulator Technologies Method for forming a relaxed or pseudo-relaxed useful layer on a substrate
US7439092B2 (en) 2005-05-20 2008-10-21 Commissariat A L'energie Atomique Thin film splitting method
US7615463B2 (en) 2001-10-11 2009-11-10 Commissariat A L'energie Atomique Method for making thin layers containing microcomponents
US7670930B2 (en) 2006-03-29 2010-03-02 Commissariat A L 'energie Atomique Method of detaching a thin film by melting precipitates
US7713369B2 (en) 2001-04-13 2010-05-11 Commissariat A L'energie Atomique Detachable substrate or detachable structure and method for the production thereof
US7772087B2 (en) 2003-12-19 2010-08-10 Commissariat A L'energie Atomique Method of catastrophic transfer of a thin film after co-implantation
US7960248B2 (en) 2007-12-17 2011-06-14 Commissariat A L'energie Atomique Method for transfer of a thin layer
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8142593B2 (en) 2005-08-16 2012-03-27 Commissariat A L'energie Atomique Method of transferring a thin film onto a support
US8193069B2 (en) 2003-07-21 2012-06-05 Commissariat A L'energie Atomique Stacked structure and production method thereof
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer
US8309431B2 (en) 2003-10-28 2012-11-13 Commissariat A L'energie Atomique Method for self-supported transfer of a fine layer by pulsation after implantation or co-implantation
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410516B1 (en) * 1986-01-09 2002-06-25 President & Fellows Of Harvard College Nuclear factors associated with transcriptional regulation
FR2811807B1 (fr) * 2000-07-12 2003-07-04 Commissariat Energie Atomique Procede de decoupage d'un bloc de materiau et de formation d'un film mince
FR2847075B1 (fr) * 2002-11-07 2005-02-18 Commissariat Energie Atomique Procede de formation d'une zone fragile dans un substrat par co-implantation
FR2851848B1 (fr) * 2003-02-28 2005-07-08 Soitec Silicon On Insulator Relaxation a haute temperature d'une couche mince apres transfert
WO2008123117A1 (fr) * 2007-03-26 2008-10-16 Semiconductor Energy Laboratory Co., Ltd. Substrat soi et procédé de réalisation d'un substrat soi
WO2008123116A1 (fr) * 2007-03-26 2008-10-16 Semiconductor Energy Laboratory Co., Ltd. Substrat soi et procédé de réalisation d'un substrat soi
WO2008132894A1 (fr) 2007-04-13 2008-11-06 Semiconductor Energy Laboratory Co., Ltd. Dispositif d'affichage, procédé de fabrication du dispositif d'affichage, et substrat de silicium sur isolant
WO2008134828A2 (fr) * 2007-05-04 2008-11-13 Katholieke Universiteit Leuven Protection contre la dégénérescence tissulaire
KR101233105B1 (ko) 2008-08-27 2013-02-15 소이텍 선택되거나 제어된 격자 파라미터들을 갖는 반도체 물질층들을 이용하여 반도체 구조물들 또는 소자들을 제조하는 방법
US8367520B2 (en) * 2008-09-22 2013-02-05 Soitec Methods and structures for altering strain in III-nitride materials
FR2936904B1 (fr) 2008-10-03 2011-01-14 Soitec Silicon On Insulator Procedes et structures pour alterer la contrainte dans des materiaux nitrure iii.
US8486771B2 (en) * 2008-09-24 2013-07-16 Soitec Methods of forming relaxed layers of semiconductor materials, semiconductor structures, devices and engineered substrates including same
US8637383B2 (en) 2010-12-23 2014-01-28 Soitec Strain relaxation using metal materials and related structures
US8278193B2 (en) * 2008-10-30 2012-10-02 Soitec Methods of forming layers of semiconductor material having reduced lattice strain, semiconductor structures, devices and engineered substrates including same
US8679942B2 (en) 2008-11-26 2014-03-25 Soitec Strain engineered composite semiconductor substrates and methods of forming same
US8278167B2 (en) * 2008-12-18 2012-10-02 Micron Technology, Inc. Method and structure for integrating capacitor-less memory cell with logic
US20100187568A1 (en) * 2009-01-28 2010-07-29 S.O.I.Tec Silicon On Insulator Technologies, S.A. Epitaxial methods and structures for forming semiconductor materials
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US8198172B2 (en) 2009-02-25 2012-06-12 Micron Technology, Inc. Methods of forming integrated circuits using donor and acceptor substrates
US8178396B2 (en) * 2009-03-11 2012-05-15 Micron Technology, Inc. Methods for forming three-dimensional memory devices, and related structures
JP5529963B2 (ja) 2009-07-20 2014-06-25 ソイテック 半導体構造体または半導体デバイスを形成する方法および光起電力構造体
US8461566B2 (en) * 2009-11-02 2013-06-11 Micron Technology, Inc. Methods, structures and devices for increasing memory density
US8114754B2 (en) * 2009-11-18 2012-02-14 S.O.I.Tec Silicon On Insulator Technologies Methods of fabricating semiconductor structures and devices using glass bonding layers, and semiconductor structures and devices formed by such methods
US9646869B2 (en) 2010-03-02 2017-05-09 Micron Technology, Inc. Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices
US8288795B2 (en) 2010-03-02 2012-10-16 Micron Technology, Inc. Thyristor based memory cells, devices and systems including the same and methods for forming the same
US8513722B2 (en) 2010-03-02 2013-08-20 Micron Technology, Inc. Floating body cell structures, devices including same, and methods for forming same
US9608119B2 (en) 2010-03-02 2017-03-28 Micron Technology, Inc. Semiconductor-metal-on-insulator structures, methods of forming such structures, and semiconductor devices including such structures
US8507966B2 (en) 2010-03-02 2013-08-13 Micron Technology, Inc. Semiconductor cells, arrays, devices and systems having a buried conductive line and methods for forming the same
CN102822970B (zh) 2010-03-31 2015-06-17 Soitec公司 键合半导体结构及其形成方法
US8461017B2 (en) 2010-07-19 2013-06-11 Soitec Methods of forming bonded semiconductor structures using a temporary carrier having a weakened ion implant region for subsequent separation along the weakened region
TW201214627A (en) 2010-09-10 2012-04-01 Soitec Silicon On Insulator Methods of forming through wafer interconnects in semiconductor structures using sacrificial material and semiconductor structures formes by such methods
WO2012085219A1 (fr) 2010-12-23 2012-06-28 Soitec Relâchement des contraintes à l'aide de matériaux métalliques et structures associées
US9142412B2 (en) 2011-02-03 2015-09-22 Soitec Semiconductor devices including substrate layers and overlying semiconductor layers having closely matching coefficients of thermal expansion, and related methods
US9082948B2 (en) 2011-02-03 2015-07-14 Soitec Methods of fabricating semiconductor structures using thermal spray processes, and semiconductor structures fabricated using such methods
US8436363B2 (en) 2011-02-03 2013-05-07 Soitec Metallic carrier for layer transfer and methods for forming the same
US8598621B2 (en) 2011-02-11 2013-12-03 Micron Technology, Inc. Memory cells, memory arrays, methods of forming memory cells, and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor
US8952418B2 (en) 2011-03-01 2015-02-10 Micron Technology, Inc. Gated bipolar junction transistors
US8519431B2 (en) 2011-03-08 2013-08-27 Micron Technology, Inc. Thyristors
US8338294B2 (en) 2011-03-31 2012-12-25 Soitec Methods of forming bonded semiconductor structures including two or more processed semiconductor structures carried by a common substrate, and semiconductor structures formed by such methods
US20120248621A1 (en) * 2011-03-31 2012-10-04 S.O.I.Tec Silicon On Insulator Technologies Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US8970045B2 (en) 2011-03-31 2015-03-03 Soitec Methods for fabrication of semiconductor structures including interposers with conductive vias, and related structures and devices
TWI517226B (zh) 2011-03-31 2016-01-11 索泰克公司 形成包含由一共同底材承載之兩個或以上已處理半導體構造之黏附半導體構造之方法及應用此等方法所形成之半導體構造
FR2978600B1 (fr) 2011-07-25 2014-02-07 Soitec Silicon On Insulator Procede et dispositif de fabrication de couche de materiau semi-conducteur
US8772848B2 (en) 2011-07-26 2014-07-08 Micron Technology, Inc. Circuit structures, memory circuitry, and methods
US8842945B2 (en) 2011-08-09 2014-09-23 Soitec Methods of forming three dimensionally integrated semiconductor systems including photoactive devices and semiconductor-on-insulator substrates
US8728863B2 (en) 2011-08-09 2014-05-20 Soitec Methods of forming bonded semiconductor structures including interconnect layers having one or more of electrical, optical, and fluidic interconnects therein, and bonded semiconductor structures formed using such methods
US8617925B2 (en) 2011-08-09 2013-12-31 Soitec Methods of forming bonded semiconductor structures in 3D integration processes using recoverable substrates, and bonded semiconductor structures formed by such methods
TWI500123B (zh) 2011-08-09 2015-09-11 Soitec Silicon On Insulator 包含內有一個或多個電性、光學及流體互連之互連層之黏附半導體構造之形成方法及應用此等方法形成之黏附半導體構造
US8673733B2 (en) 2011-09-27 2014-03-18 Soitec Methods of transferring layers of material in 3D integration processes and related structures and devices
US8841742B2 (en) 2011-09-27 2014-09-23 Soitec Low temperature layer transfer process using donor structure with material in recesses in transfer layer, semiconductor structures fabricated using such methods
TWI573198B (zh) 2011-09-27 2017-03-01 索泰克公司 在三度空間集積製程中轉移材料層之方法及其相關結構與元件
WO2013093590A1 (fr) 2011-12-23 2013-06-27 Soitec Procédés de fabrication de structures semi-conductrices au moyen de processus de pulvérisation thermique, et structures semi-conductrices fabriquées au moyen de tels procédés
KR102031725B1 (ko) 2012-02-22 2019-10-14 소이텍 결정질 반도체 재료의 박층 제공방법 및 관련 구조 및 장치
US9136134B2 (en) 2012-02-22 2015-09-15 Soitec Methods of providing thin layers of crystalline semiconductor material, and related structures and devices
US8916483B2 (en) 2012-03-09 2014-12-23 Soitec Methods of forming semiconductor structures including III-V semiconductor material using substrates comprising molybdenum
WO2013132332A1 (fr) 2012-03-09 2013-09-12 Soitec Procédés permettant de former des structures semi-conductrices incluant du matériau semi-conducteur iii-v au moyen de substrats comprenant du molybdène, et structures formées par de tels procédés
US9245836B2 (en) 2012-06-28 2016-01-26 Soitec Interposers including fluidic microchannels and related structures and methods
WO2014020390A1 (fr) 2012-07-31 2014-02-06 Soitec Procédés de fabrication de structures à semi-conducteurs utilisant un traitement de retrait par laser, et structures à semi-conducteurs connexes
US9511996B2 (en) 2012-07-31 2016-12-06 Soitec Methods of forming semiconductor structures including MEMS devices and integrated circuits on common sides of substrates, and related structures and devices
WO2014020387A1 (fr) 2012-07-31 2014-02-06 Soitec Procédés de formation de structures semi-conductrices incluant des dispositifs de microsystème électromécanique et des circuits intégrés sur les côtés opposés de substrats, et structures ainsi que dispositifs connexes
WO2014020389A1 (fr) 2012-07-31 2014-02-06 Soitec Procédés de formation de structures semi-conductrices incluant une interconnexion conductrice et structures connexes
WO2014030040A1 (fr) 2012-08-24 2014-02-27 Soitec Procédés de formation de structures et dispositifs semiconducteurs comprenant du graphène, et structures et dispositifs associés
TWI588955B (zh) 2012-09-24 2017-06-21 索泰克公司 使用多重底材形成iii-v族半導體結構之方法及應用此等方法所製作之半導體元件
TWI602315B (zh) 2013-03-08 2017-10-11 索泰克公司 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法
TWI593135B (zh) 2013-03-15 2017-07-21 索泰克公司 具有含氮化銦鎵之主動區域之半導體結構,形成此等半導體結構之方法,以及應用此等半導體結構形成之發光元件
US9343626B2 (en) 2013-03-15 2016-05-17 Soitec Semiconductor structures having active regions comprising InGaN, methods of forming such semiconductor structures, and light emitting devices formed from such semiconductor structures
FR3003397B1 (fr) 2013-03-15 2016-07-22 Soitec Silicon On Insulator Structures semi-conductrices dotées de régions actives comprenant de l'INGAN
KR20160024361A (ko) 2013-06-27 2016-03-04 소이텍 희생 재료로 충전된 공동을 포함하는 반도체 구조를 제조하는 방법들
US9209301B1 (en) 2014-09-18 2015-12-08 Soitec Method for fabricating semiconductor layers including transistor channels having different strain states, and related semiconductor layers
US9165945B1 (en) 2014-09-18 2015-10-20 Soitec Method for fabricating semiconductor structures including transistor channels having different strain states, and related semiconductor structures
US9219150B1 (en) 2014-09-18 2015-12-22 Soitec Method for fabricating semiconductor structures including fin structures with different strain states, and related semiconductor structures
FR3121281B1 (fr) * 2021-03-23 2023-11-24 Soitec Silicon On Insulator Procede de fabrication d’une structure composite comprenant une couche mince en semi-conducteur monocristallin sur un substrat support

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665588A1 (fr) * 1994-01-26 1995-08-02 Commissariat A L'energie Atomique Procédé de dépôt de lames semiconductrices sur un support
EP0763849A1 (fr) * 1995-09-13 1997-03-19 Commissariat A L'energie Atomique Procédé de fabrication de films minces à matériau semi-conducteur
EP0767486A2 (fr) * 1995-10-06 1997-04-09 Canon Kabushiki Kaisha Substrat semi-conducteur et procédé de fabrication
JPH10308355A (ja) * 1997-05-09 1998-11-17 Denso Corp 半導体基板の製造方法
WO1998052216A1 (fr) 1997-05-12 1998-11-19 Silicon Genesis Corporation Procede de clivage controle
JPH11126910A (ja) 1997-08-05 1999-05-11 Denso Corp 圧力センサ用半導体基板の製造方法
US6191007B1 (en) 1997-04-28 2001-02-20 Denso Corporation Method for manufacturing a semiconductor substrate

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3341396A (en) 1967-01-05 1967-09-12 Gen Mills Inc Marbleizing process and article
DE2539104C3 (de) 1975-09-03 1986-07-10 Basf Ag, 6700 Ludwigshafen Lösungsmittelarme Einbrennlacke
JPS55126583A (en) 1979-03-19 1980-09-30 Okamura Mfg Co Ltd Imitation marble and its manufacture
US4578418A (en) 1981-10-26 1986-03-25 E. I. Du Pont De Nemours And Company Two-package urethane maintenance primer
US4609690A (en) 1983-09-29 1986-09-02 Ashland Oil, Inc. Aqueous hydroxyl-acrylic latex and water dispersible multi-isocyanate adhesive composition
US4877656A (en) 1986-11-06 1989-10-31 Academy Of Applied Science, Inc. Method of fabricating simulated stone surfaces and improved simulated stone product
DE3932171A1 (de) 1989-09-27 1991-04-04 Henkel Kgaa Universalklebespachtel
FR2681472B1 (fr) * 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JPH05331412A (ja) 1992-06-03 1993-12-14 Sumitomo Metal Ind Ltd 塗料組成物
DE4338265C1 (de) 1993-11-10 1994-12-08 Herberts Gmbh Verfahren zur Beschichtung im Coil Coating Verfahren unter Verwendung von Überzugsmitteln auf der Basis organischer Lösemittel
US5472649A (en) 1994-04-13 1995-12-05 Eastman Chemical Company Method for preparing powder coating compositions having improved particle properties
BE1008721A3 (nl) 1994-09-21 1996-07-02 Dsm Nv Bindmiddelsamenstelling voor poederverfformuleringen.
DE4433854B4 (de) 1994-09-22 2005-06-02 Basf Coatings Ag Schnelltrocknendes Überzugsmittel
JPH08295548A (ja) 1995-04-25 1996-11-12 Okura Ind Co Ltd 深み感の有る大理石調の成形板
JP3898256B2 (ja) 1996-08-28 2007-03-28 大日本印刷株式会社 化粧シート
JP3497334B2 (ja) 1996-10-31 2004-02-16 三菱樹脂株式会社 繊維強化樹脂製単位板
JP3257624B2 (ja) * 1996-11-15 2002-02-18 キヤノン株式会社 半導体部材の製造方法
KR100364064B1 (ko) 1996-11-22 2005-04-06 에스케이 카켄 가부시끼가이샤 비오염도료조성물
FR2758907B1 (fr) * 1997-01-27 1999-05-07 Commissariat Energie Atomique Procede d'obtention d'un film mince, notamment semiconducteur, comportant une zone protegee des ions, et impliquant une etape d'implantation ionique
JPH11186186A (ja) * 1997-12-18 1999-07-09 Denso Corp 半導体基板の製造方法
JPH10308520A (ja) * 1997-05-06 1998-11-17 Nippon Telegr & Teleph Corp <Ntt> 半導体薄膜の製造方法およびその半導体薄膜を用いた太陽電池
JPH118842A (ja) * 1997-06-18 1999-01-12 Nippon Telegr & Teleph Corp <Ntt> 画像スクランブル装置および画像スクランブル解除装置
FR2773261B1 (fr) * 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
JP2000077287A (ja) * 1998-08-26 2000-03-14 Nissin Electric Co Ltd 結晶薄膜基板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665588A1 (fr) * 1994-01-26 1995-08-02 Commissariat A L'energie Atomique Procédé de dépôt de lames semiconductrices sur un support
EP0763849A1 (fr) * 1995-09-13 1997-03-19 Commissariat A L'energie Atomique Procédé de fabrication de films minces à matériau semi-conducteur
EP0767486A2 (fr) * 1995-10-06 1997-04-09 Canon Kabushiki Kaisha Substrat semi-conducteur et procédé de fabrication
US6191007B1 (en) 1997-04-28 2001-02-20 Denso Corporation Method for manufacturing a semiconductor substrate
JPH10308355A (ja) * 1997-05-09 1998-11-17 Denso Corp 半導体基板の製造方法
WO1998052216A1 (fr) 1997-05-12 1998-11-19 Silicon Genesis Corporation Procede de clivage controle
JPH11126910A (ja) 1997-08-05 1999-05-11 Denso Corp 圧力センサ用半導体基板の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"SOI INTERPOSER STRUCTURE", IBM TECHNICAL DISCLOSURE BULLETIN, IBM CORP. NEW YORK, US, vol. 39, no. 7, 1 July 1996 (1996-07-01), pages 191 - 195, XP000627972, ISSN: 0018-8689 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 02 26 February 1999 (1999-02-26) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 10 31 August 1999 (1999-08-31) *
PATENT ABSTRACTS OF JAPAN, vol. 1999, no. 10, 8390319

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609514B2 (en) 1997-12-10 2013-12-17 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US7229899B2 (en) 1997-12-30 2007-06-12 Commissariat A L'energie Atomique Process for the transfer of a thin film
US7883994B2 (en) 1997-12-30 2011-02-08 Commissariat A L'energie Atomique Process for the transfer of a thin film
US7713369B2 (en) 2001-04-13 2010-05-11 Commissariat A L'energie Atomique Detachable substrate or detachable structure and method for the production thereof
US7615463B2 (en) 2001-10-11 2009-11-10 Commissariat A L'energie Atomique Method for making thin layers containing microcomponents
US7176108B2 (en) 2002-11-07 2007-02-13 Soitec Silicon On Insulator Method of detaching a thin film at moderate temperature after co-implantation
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US7919393B2 (en) 2003-02-28 2011-04-05 S.O.I.Tec Silicon On Insulator Technologies Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
US8173512B2 (en) 2003-02-28 2012-05-08 Soitec Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
US7736988B2 (en) 2003-02-28 2010-06-15 S.O.I.Tec Silicon On Insulator Technologies Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
US7348260B2 (en) 2003-02-28 2008-03-25 S.O.I.Tec Silicon On Insulator Technologies Method for forming a relaxed or pseudo-relaxed useful layer on a substrate
US7018909B2 (en) 2003-02-28 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8193069B2 (en) 2003-07-21 2012-06-05 Commissariat A L'energie Atomique Stacked structure and production method thereof
US8309431B2 (en) 2003-10-28 2012-11-13 Commissariat A L'energie Atomique Method for self-supported transfer of a fine layer by pulsation after implantation or co-implantation
US7772087B2 (en) 2003-12-19 2010-08-10 Commissariat A L'energie Atomique Method of catastrophic transfer of a thin film after co-implantation
US7439092B2 (en) 2005-05-20 2008-10-21 Commissariat A L'energie Atomique Thin film splitting method
US8142593B2 (en) 2005-08-16 2012-03-27 Commissariat A L'energie Atomique Method of transferring a thin film onto a support
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
WO2007094231A1 (fr) 2006-02-16 2007-08-23 Shin-Etsu Chemical Co., Ltd. Procédé de fabrication d'un substrat semi-conducteur
US7670930B2 (en) 2006-03-29 2010-03-02 Commissariat A L 'energie Atomique Method of detaching a thin film by melting precipitates
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate
US7960248B2 (en) 2007-12-17 2011-06-14 Commissariat A L'energie Atomique Method for transfer of a thin layer
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer

Also Published As

Publication number Publication date
TW527621B (en) 2003-04-11
US6946365B2 (en) 2005-09-20
JP2004515920A (ja) 2004-05-27
MY127171A (en) 2006-11-30
KR20030061833A (ko) 2003-07-22
JP4064816B2 (ja) 2008-03-19
FR2818010B1 (fr) 2003-09-05
KR100869327B1 (ko) 2008-11-18
EP1354346B1 (fr) 2012-05-02
FR2818010A1 (fr) 2002-06-14
ATE556432T1 (de) 2012-05-15
EP1354346A1 (fr) 2003-10-22
AU2002217208A1 (en) 2002-06-18
US20040092087A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
EP1354346B1 (fr) Procede de realisation d&#39;une couche mince impliquant l&#39;implantation d&#39;especes gazeuses
EP1285461B1 (fr) Procede de fabrication d&#39;une couche mince
EP1114446B1 (fr) Procede de realisation d&#39;une membrane mince
EP2342744B1 (fr) Procede de formation d&#39;une couche monocristalline dans le domaine micro-electronique
EP0763849B1 (fr) Procédé de fabrication de films minces à matériau semi-conducteur
EP0533551B1 (fr) Procédé de fabrication de films minces de matériau semiconducteur
EP1922752B1 (fr) Procede de report d&#39;une couche mince sur un support
EP2002474B1 (fr) Procede de detachement d&#39;un film mince par fusion de precipites
EP2468931B1 (fr) Procédé de clivage d&#39;un substrat et ensemble comprenant un substrat et une structure permettant ce clivage
FR2845523A1 (fr) Procede pour realiser un substrat par transfert d&#39;une plaquette donneuse comportant des especes etrangeres, et plaquette donneuse associee
FR2936903A1 (fr) Relaxation d&#39;une couche de materiau contraint avec application d&#39;un raidisseur
FR2907966A1 (fr) Procede de fabrication d&#39;un substrat.
WO2001045178A1 (fr) Support intermediaire aspirant et son utilisation pour realiser une structure en couche mince
FR3055467A1 (fr) Procede de realisation d’une couche contrainte en tension a base de germanium etain
EP3520132B1 (fr) Structure comprenant des ilots semi-conducteurs monocristallins, procede de fabrication d&#39;une telle structure
EP3987574A1 (fr) Procédé de réalisation de vignettes de nitrure destinées chacune à former un dispositif électronique ou optoélectronique
EP4088309B1 (fr) Procede d&#39;assemblage de deux substrats semi-conducteurs
EP3903341B1 (fr) Procede de fabrication d&#39;un substrat pour un capteur d&#39;image de type face avant
EP4256606A2 (fr) Substrat donneur pour le transfert d&#39;une couche mince et procede de transfert associe
EP4264659A1 (fr) Procede de fabrication d&#39;une structure semi-conductrice comprenant une zone d&#39;interface incluant des agglomerats
WO2023057700A1 (fr) Procede de fabrication d&#39;une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic poly-cristallin
FR3059149A1 (fr) Procede de fabrication d&#39;un film mince a base d&#39;inp ou de gaas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001999973

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002548776

Country of ref document: JP

Ref document number: 10432362

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037007447

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037007447

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001999973

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642