WO2002047183A1 - Organischer feld-effekt-transistor, verfahren zur stukturierung eines ofets und integrierte schaltung - Google Patents

Organischer feld-effekt-transistor, verfahren zur stukturierung eines ofets und integrierte schaltung Download PDF

Info

Publication number
WO2002047183A1
WO2002047183A1 PCT/DE2001/004611 DE0104611W WO0247183A1 WO 2002047183 A1 WO2002047183 A1 WO 2002047183A1 DE 0104611 W DE0104611 W DE 0104611W WO 0247183 A1 WO0247183 A1 WO 0247183A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ofet
structuring
organic
functional polymer
Prior art date
Application number
PCT/DE2001/004611
Other languages
English (en)
French (fr)
Inventor
Adolf Bernds
Wolfgang Clemens
Peter Haring
Heinrich Kurz
Borislav Vratzov
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP01999978A priority Critical patent/EP1346422A1/de
Priority to US10/433,959 priority patent/US7229868B2/en
Priority to JP2002548799A priority patent/JP2004515928A/ja
Publication of WO2002047183A1 publication Critical patent/WO2002047183A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/221Changing the shape of the active layer in the devices, e.g. patterning by lift-off techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/821Patterning of a layer by embossing, e.g. stamping to form trenches in an insulating layer

Definitions

  • the invention relates to an organic field-effect transistor, a method for structuring an OFET and an integrated circuit with improved structuring of the functional polymer layers.
  • Organic integrated circuits based on OFETs are used for microelectronic mass applications and disposable products such as identification and product "tags".
  • a "tag” is e.g. an electronic bar code as it is attached to goods or on suitcases.
  • OFETs have a wide range of uses as RFID tags: radio frequency identification tags that do not only have to be arranged on the surface. OFETs for these applications can do without the excellent performance of silicon technology, but this should ensure low manufacturing costs and mechanical flexibility.
  • the components such as Electronic bar codes are typically one-way products and are only economically interesting if they are manufactured in inexpensive processes.
  • the structured layer can only be structured with other known methods (such as printing) in such a way that the length 1 is the distance between
  • Designated source and drain electrode and thus represents a measure of the power density of the OFET is at least 30 to 50 microns. However, lengths 1 of less than 10 ⁇ m are aimed for, so that apart from the elaborate lithography method, currently no structuring method seems sensible.
  • the object of the invention is therefore to provide a cost-effective and mass-production method for structuring OFETs with high resolution. Furthermore, it is an object of the invention to create a more powerful OFET, which is equipped with more structured layers, and a more compact OFET, which can be produced with a smaller distance 1.
  • the invention relates to an organic field-effect transistor (OFET), comprising at least the following layers on a substrate: an organic semiconductor layer between and above at least one source and at least one drain electrode which are made of a conductive organic material, an organic insulation layer over the semiconducting layer and an organic conductor layer, the conductor layer and at least one of the other two layers being structured.
  • OFET organic field-effect transistor
  • the invention also relates to a method for structuring an OFET Squeegee at least one functional polymer into a negative form.
  • the invention relates to an integrated circuit which comprises at least one OFET, which has at least one structured conductor layer and a further structured layer.
  • a negative form is a structured layer or a part of a structured layer that contains depressions into which the functional polymer, which for example forms an electrode of an OFET or a semiconductor or an insulator layer, is filled by doctor blades.
  • the method comprises the following steps a) on a substrate or a lower layer, a, if necessary. full-surface molded layer, which is not applied to the area to be structured.
  • This molded layer is not the functional polymer (i.e. semiconducting, conductive or insulating layer), but another organic material that serves as a shape or cliché for the conductive organic electrode layer. This other organic material should have insulating properties.
  • the molding layer receives depressions corresponding to the structures by imprinting (pressing in a stamp impression with subsequent hardening by exposure), c) the functional polymer is then knife-coated into these depressions in liquid form, as a solution and / or as a melt.
  • the negative shape of the structure on the molding layer can be produced on the substrate or a lower layer by the imprint method, which is a technique which is mature in the field of electronic and microelectronic components.
  • the material of the negative form can be a UV-curing lacquer that has indentations after imprinting and exposure. Varnishes suitable for this purpose are commercially available and the method of structuring them by imprinting is known from the literature.
  • a stamp is pressed onto the uncured molded polymer, which is applied as a layer on the substrate or a lower layer, in such a way that indentations occur in the manner in which the structuring is to take place.
  • the layer provided with depressions is then hardened either thermally or by irradiation, which creates the solid molded layer into which the functional polymer can be knife-coated.
  • doctor blade method is that the difficult structuring of functional polymers is prepared by the well-established and proven imprint method. This means that a rich technical background can be used and extremely fine structures can be achieved.
  • the doctor blade method is also not material-specific. Rather, with the doctor method, polyaniline, but also any other conductive organic material, such as Polypyrrol, can be used to manufacture electrodes. Likewise, any other organic material such as Polythiophenes as semiconductors and / or polyvinylphenol as insulators are knife-coated and thus structured, that is to say the entire OFET.
  • the negative mold is removed after the functional polymer has cured, so that any difference in height between the functional polymer and the negative mold that may result from evaporation of the solvent or shrinkage is reduced.
  • the functional polymers can largely be left in their optimal consistency.
  • polyaniline as a conductive organic material has a certain viscosity with optimal conductivity. If, for example, polyaniline is to be printed and not coated, its viscosity must be based on one of the printing methods This usually means a loss in conductivity.
  • the viscosity range for doctoring is much larger than for printing, so that there is generally no need to make any changes in the viscosity of the organic material.
  • an advantage of the doctor blade method is the ability to apply thick layers.
  • the conductivity of 1 ⁇ m thick polymer electrodes is effectively higher than with the usual 0.2 ⁇ m layer thickness.
  • “Functional polymer” here means any organic, organometallic and / or inorganic material that is functionally involved in the construction of an OFET and / or an integrated circuit made up of several OFETs. These include, for example, the conductive component (eg polyaniline), the one Electrode forms the semiconducting component that the
  • organic material Everything that is based on organic material is referred to here briefly as “organic”, the term “organic material” encompassing all types of organic, organometallic and / or inorganic plastics, which are referred to in English as “plastics”, for example. These are all types of substances with the exception of classic semiconductors (germanium, silicon) and the typical metallic leads. ter. A restriction in the dogmatic sense ' to organic material as carbon-containing material is therefore not intended, rather the broad use of, for example, silicones is also contemplated. Furthermore, the term should not be restricted to polymeric or oligomeric materials, but the use of “small molecules” is also conceivable.
  • each layer of an OFET to which a layer to be structured is applied is referred to here as the “lower layer”.
  • the molding layer made of the molding polymer adjoins the “lower layer” or the substrate.
  • the shape polymer is not defined here by the term “polymer” to be in a polymeric state of aggregation; rather, this substance can also be any plastics that can be used in practice to form a negative shape.
  • Figure 1.1 shows the substrate or a lower layer 1 onto which the molding layer of the negative mold 2, for example made of a molding polymer such as a UV-curable lacquer, is applied over the entire surface, for example.
  • the molding layer 2 is embossed with a stamp 4, as in FIG. 1.2. shown, provided with depressions, so there are 2 depressions with the stamp 4, which can be made of silicon dioxide (Si0 2 ), for example, in the molded layer. While the stamp 4 impresses the depressions 12, the molding layer 2 is irradiated with UV light, as a result of which the molding polymer 2 with permanent formation of the
  • Wells 12 cures. This creates the depressions 12 in the molded layer 2, as shown in FIG. 1.3. are shown.
  • the stamp 4 is pulled out of the molding layer 2 after the embossing has ended.
  • the functional polymer 8 (for example polyaniline) is scraped into the recesses 12 using a doctor blade 9 (FIG. 1.4.).
  • Figure 1.5 you can see how in the manufacture OFET the functional polymer 8. fills the depressions 12 of the molded layer 2.
  • Figure 2 shows a further embodiment of the method in a continuous process or continuous web printing.
  • the tape made of substrate or lower layer 1 with the molded polymer 2, which can be a UV-curable but also a thermally curable lacquer.
  • This band is then subjected to 10 different work steps from left to right, as indicated by arrow 13, along several pressure rollers. First, it passes through the shadow plate 3, with which the not yet hardened molded polymer 2 is protected against radiation. Thereafter, depressions are embossed into the molded polymer 2 with the aid of the stamp roller 4, which are immediately hardened with the UV lamp 5 integrated in the stamp roller 4.
  • the direction of the arrow from FIG. 5 indicates the direction of the light cone emitted from FIG. 5.
  • the band provided with depressions 12 in the molding layer 2 then passes under a UV lamp or heater 6 for post-curing, so that a structured lacquer 7 is produced.
  • the functional polymer 8 is then knife-coated into the structured lacquer 7 with the depressions 12, so that the finished structure 11 is produced.

Abstract

Die Erfindung betrifft einen organischen Feld-Effekt-Transistor, ein Verfahren zur Strukturierung eines OFETs und eine integrierte Schaltung mit verbesserter Strukturierung der Funktionspolymerschichten. Die Strukturierung wird durch Einrakeln des Funktionspolymers in eine Formschicht, in der zunächst durch Imprinting Vertiefungen erzeugt wurden, erzielt.

Description

Beschreibung
Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
Die Erfindung betrifft einen Organischen Feld-Effekt-Transistor, ein Verfahren zur Strukturierung eines OFETs und eine integrierte Schaltung mit verbesserter Strukturierung der Funktionspolymerschichten.
Organische integrierte Schaltkreise (integrated plastic circuits) auf der Basis von OFETs werden für mikroelektronische Massenanwendungen und Wegwerf-Produkte wie Identifikationsund Produkt-„tags" gebraucht. Ein „tag" ist z.B. ein elektro- nischer Streifencode, wie er auf Waren angebracht wird oder auf Koffern. OFETs haben ein weites Einsatzgebiet als RFID- tags : radio frequency identification - tags, die nicht nur auf der Oberfläche angeordnet sein müssen. Bei OFETs für diese Anwendungen kann auf das excellente Betriebsverhalten der Silizium-Technologie verzichtet werden, aber dafür sollten niedrige Herstellungskosten und mechanische Flexibilität gewährleistet sein. Die Bauteile wie z.B. elektronische Strich- Kodierungen, sind typischerweise Einwegeprodukte und sind wirtschaftlich nur interessant, wenn sie in preiswerten Pro- zessen hergestellt werden.
Bisher wird, wegen der Herstellungskosten, nur die Leiterschicht des OFETs strukturiert . Die Strukturierung kann nur über einen zweistufigen Prozess („Lithographiemethode" vgl. dazu Applied Physics Letters 73(1), 1998, S.108.110 und
Mol.Cryst.Liq. Cryst . 189,1990, S.221-225) mit zunächst vollflächiger Beschichtung und darauffolgender Strukturierung, die zudem materialspezifisch ist, bewerkstelligt werden. Mit „Materialspezifität" ist gemeint, dass der beschriebene Pro- zess mit den genannten photochemischen Komponenten einzig an dem leitfähigen organischen Material Polyanilin funktioniert. Ein anderes leitfähiges organisches Material, z.B. Polypyr- rol, lässt sich so nicht ohne weiteres auf diese Art strukturieren.
Die fehlende Strukturierung der anderen Schichten, wie zumin- dest die der halbleitenden und der isolierenden Schicht aus Funktionspolymeren, führt zu einer deutlichen Leistungssenkung der erhaltenen OFETs, darauf wird aber trotzdem aus Kostengründen verzichtet . Die strukturierte Schicht kann mit anderen bekannten Verfahren (wie z.B. Drucken) nur so struktu- riert werden, dass die Länge 1, die den Abstand zwischen
Source und Drain Elektrode bezeichnet und damit ein Maß für die Leistungsdichte des OFETs darstellt zumindest 30 bis 50 μm beträgt. Angestrebt werden aber Längen 1 von unter 10 μm, so dass außer der aufwendigen Lithographie-Methode mo- entan keine Strukturierungsmethode sinnvoll erscheint.
Aufgabe der Erfindung ist daher ein kostengünstiges und massenfertigungstaugliches Verfahren zur Strukturierung von OFETs mit hoher Auflösung zur Verfügung zu stellen. Weiterhin ist Aufgabe der Erfindung, einen leistungsstärkeren, weil mit mehr strukturierten Schichten ausgestatteten sowie einen kompakteren OFET zu schaffen, der mit einem geringeren Abstand 1 herstellbar ist.
Gegenstand der Erfindung ist ein Organischer Feld-Effekt- Transistor (OFET) , zumindest folgende Schichten auf einem Substrat umfassend: eine organische Halbleiterschicht zwischen und über zumindest einer Source- und zumindest einer Drain-Elek- trode, die aus einem leitenden organischen Material sind, eine organische Isolationsschicht über der halbleitenden Schicht und eine organische Leiterschicht, wobei die Leiterschicht und zumindest eine der beiden anderen Schichten strukturiert ist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Strukturierung eines OFETs durch Rakeln von zumindest einem Funktionspolymer in eine Negativ- Form. Schließlich ist Gegenstand der Erfindung eine integrierte Schaltung, die zumindest einen OFET, der zumindest eine strukturierte Leiterschicht und eine weitere struktu- rierte Schicht hat, umfasst.
~ Als Negativ-Form wird eine strukturierte Schicht oder ein Teil einer strukturierten Schicht bezeichnet, die Vertiefungen enthält, in die das Funktionspolymer, das z.B. eine Elektrode eines OFETs oder eine Halbleiter- oder eine Isolatorschicht bildet, durch Rakeln eingefüllt wird.
Das Verfahren umfasst folgende Arbeitsschritteϊ a) auf einem Substrat oder einer unteren Schicht wird eine, ggf . vollflächige Formschicht, die nicht auf den Bereich, der strukturiert werden soll beschränkt sein muss, aufgebracht. Diese Formschicht ist nicht das Funktionspolymer (also halbleitende, leitende oder isolierende Schicht) , sondern ein anderes organisches Material, das als Form oder Klischee für die leitende organische Elektrodenschicht dient. Dieses andere organische Material sollte isolierende Eigenschaften haben. b) die Formschicht erhält durch Imprinting (Eindrücken eines Stempelabdrucks mit nachfolgender Aushärtung durch Belich- ten) Vertiefungen, die den Strukturen entsprechen, c) in diese Vertiefungen wird dann das Funktionspolymer flüssig, als Lösung und/oder als Schmelze hineingerakelt .
Die Negativ-Form der Struktur auf der Formschicht kann durch die Imprintmethode, die eine auf dem Gebiet der elektronischen und mikroelektronischen Bauteile ausgereifte Technik darstellt, auf dem Substrat oder einer unteren Schicht erzeugt werden. Das Material der Negativ-Form kann ein UV- härtender Lack sein, der nach Imprinting und Belichten Ver- tiefungen besitzt. Dafür geeigneten Lacke sind kommerziell erhältlich und die Methode sie durch Imprinting zu strukturieren, ist literaturbekannt. Allgemein wird bei dem Imprinting auf das ungehärtete Formpolymer, das als Schicht auf dem Substrat oder einer unteren Schicht aufgebracht ist, ein Stempel so eingedrückt, dass Vertiefungen in der Art, wie die Strukturierung erfolgen soll, entstehen. Die mit Vertiefungen versehene Schicht wird dann entweder thermisch oder durch Bestrahlung gehärtet, wodurch die feste Formschicht entsteht, in die das Funktionspo- lymer eingerakelt werden kann.
Der Vorteil der Rakel-Methode besteht darin, dass die schwierige Strukturierung von Funktionspolymeren durch die eingefahrene und bewährte Imprintmethode vorbereitet wird. Dadurch kann auf einen reichen technischen Hintergrund zurückgegriffen werden und es können extrem feine Strukturen erzielt werden. Die Rakel-Methode ist zudem nicht materialspezifisch. Mit der Rakelmethode kann vielmehr Polyanilin, aber auch jedes andere leitfähige organisches Material, wie z.B. Polypyr- rol, zur Herstellung von Elektroden eingesetzt werden. Ebenso kann damit jedes andere organische Material wie z.B. Polythi- ophen als Halbleiter und/oder Polyvinylphenol als Isolator eingerakelt und somit strukturiert werden, also der gesamte OFET.
Nach einer Ausführungsform des Verfahrens wird die Negativ- Form nach erfolgter Aushärtung des Funktionspolymers entfernt, so dass ein eventuell durch Verdunstung des Lösungsmittels oder Schrumpfung entstandener Höhenunterschied zwi- sehen Funktionspolymer und Negativ-Form vermindert wird.
Ein anderer Ansatz, einen gegebenenfalls entstandenen Höhenunterschied zwischen Negativ-Form und Funktionspolymer zu vermeiden, liegt in der Wiederholung des Einrakelvorgangs, wodurch das Volumen der Negativ-Form einfach weiter aufgefüllt wird. In der Regel" kann man die Funktionspolymere weitgehend in ihrer optimalen Konsistenz belassen. So besitzt z.B. Polyanilin als leitfähiges organisches Material bei optimaler Leitfähigkeit eine bestimmte Viskosität. Wenn Polyanilin beispielswei- se gedruckt werden soll und nicht eingerakelt, so muss seine Viskosität auf einen der Druckmethode angepassten Wert eingestellt werden. Das bedeutet meistens Einbusse der Leitfähig- eit. Für das Rakeln ist die Viskositätsspanne ungleich größer als für das Drucken, so dass in aller Regel keine Visko- sitätsänderungen am organischen Material vorgenommen werden ' müssen.
Schließlich ist ein Vorteil der Rakelmethode die Fähigkeit zu dicken Schichten. So ist z.B. die Leitfähigkeit von 1 μm di- cken Polymerelektroden effektiv höher als bei üblicherweise 0,2 μm Schichtdicke. Ein OFET mit einer Schichtdicke im Bereich von bis zu Iμm, insbesondere im Bereich von 0,3 bis 0,7 μm ist deshalb vorteilhaft.
Als „Funktionspolymer" wird hier jedes organische, metallorganische und/oder anorganische Material bezeichnet, das funk- tionell am Aufbau eines OFET und/oder einer integrierten Schaltung aus mehreren OFETs beteiligt ist. Dazu zählen beispielhaft die leitende Komponente (z.B. Polyanilin), das eine Elektrode bildet, die halbleitende Komponente, die die
Schicht zwischen den Elektroden bildet und die isolierende Komponente. Es sei ausdrücklich darauf hingewiesen, dass die Bezeichnung „Funktionspolymer" demnach auch nicht polymere Komponenten, wie z.B. oligomere Verbindungen, umfasst.
Als „organisch" wird hier kurz alles, was „auf organischem Material basiert" bezeichnet, wobei der Begriff „organisches Material" alle Arten von organischen, metallorganischen und/oder anorganischen Kunststoffen, die im Englischen z.B. mit „plastics" bezeichnet werden, umfasst. Es handelt sich um alle Arten von Stoffen mit Ausnahme der klassischen Halbleiter (Germanium, Silizium) und der typischen metallischen Lei- ter. Eine Beschränkung im dogmatischen Sinn' auf organisches Material als Kohlenstoff-enthaltendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Term keiner Beschränkung auf polyme-re oder oligomere Materialien unterliegen, sondern es ist durchaus auch der Einsatz von „small molecules" denkbar.
Als „untere Schicht" wird hier jede Schicht eines OFETs be- zeichnet, auf die eine zu strukturierende Schicht aufgebracht wird. Die Formschicht aus dem Formpolymer schließt an die „untere Schicht" oder das Substrat an. Das Formpolymer wird hier durch die Bezeichnung „polymer" auch nicht auf einen po- lymeren Aggregatszustand festgelegt, vielmehr kann es sich bei dieser Substanz auch um alle praktisch einsetzbaren Kunststoffe zur Ausbildung einer Negativ-Form handeln.
Im Folgenden wird eine Ausführungsform des Verfahrens noch ' anhand von schematischen Figuren näher erläutert.
Figur 1.1. zeigt das Substrat oder eine untere Schicht 1 auf die die Formschicht der Negativ-Form 2, beispielsweise aus einem Formpolymer wie einem UV-härtbaren Lack, z.B. vollflächig aufgebracht ist. Die Formschicht 2 wird mit einem Präge- Stempel 4, wie in Figur 1.2. gezeigt, mit Vertiefungen versehen, also es werden in die Formschicht 2 Vertiefungen mit dem Stempel 4, der beispielsweise aus Siliziumdioxid (Si02) sein kann, eingeprägt. Während der Stempel 4 die Vertiefungen 12 einprägt wird die Formschicht 2 mit UV-Licht bestrahlt, wo- durch das Formpolymer 2 unter permantenter Ausbildung der
Vertiefungen 12 aushärtet. Dadurch entstehen die Vertiefungen 12 in der Formschicht 2, wie sie in Figur 1.3. gezeigt sind. Der Stempel 4 wird nach beendigter Prägung aus der Formschicht 2 herausgezogen. In die Vertiefungen 12 wird das Funktionspolymer 8 (z.B. Polyanilin) mit einem Rakel 9 hin- eingerakelt (Figur 1.4.). In Figur 1.5. erkennt man, wie im fertigen OFET das Funktionspolymer 8. die Vertiefungen 12 der Formschicht 2 ausfüllt.
Figur 2 zeigt eine weitere Ausführungsform des Verfahrens im kontinuierlichen Prozess oder kontinuierlichen Rollendruck. Zu sehen ist das Band aus Substrat oder unterer Schicht 1 mit dem Formpolymer 2, das ein UV-härtbarer, aber auch ein t er- ..misch härtbarer Lack sein kann. Dieses Band wird nun von links nach rechts, wie durch den Pfeil 13 angedeutet, entlang mehrerer Andruckrollen 10 verschiedenen Arbeitsschritten unterworfen. Zunächst passiert es das Schattenblech 3, mit dem das noch nicht gehärtete Formpolymer 2 gegen -Bestrahlung geschützt wird. Danach werden in das Formpolymer 2 mit Hilfe der Stempelrolle 4 Vertiefungen eingeprägt, die mit der in der Stempelrolle 4 integrierten UV-Lampe 5 gleich angehärtet werden. Die von 5 ausgehende Pfeilrichtung zeigt die Richtung des Lichtkegels, der von 5 ausgestrahlt wird, an. Das mit Vertiefungen 12 in der Formschicht 2 versehene Band zieht dann unter einer UV-Lampe oder Heizung 6 zur Nachhärtung vor- bei, so dass ein strukturierter Lack 7 entsteht. In den strukturierten Lack 7 mit den Vertiefungen 12 wird dann mit dem Rakel 9 das Funktionspolymer 8 eingerakelt, so dass die _ fertige Struktur 11 entsteht.

Claims

Patentansprüche
1. Organischer Feld-Effekt-Transistor (OFET), zumindest folgende Schichten auf einem Substrat umfassend: - eine organische Halbleiterschicht zwischen und über zumindest einer Source- und zumindest einer Drain-Elektrode, die aus einem leitenden organischen Material • •■ sind, . ... . .. eine organische Isolationsschicht über der halbleitenden Schicht und eine organische Leiterschicht, wobei die.Leiters-chicht und zumindest eine der beiden anderen Schichten strukturiert ist.
2. OFET nach Anspruch 1 mit einem Abstand 1 zwischen Source und Drain Elektrode von kleiner 20 μm, insbesondere von kleiner 10 μm und ganz bevorzugt von 2 bis 5 μm.
3. OFET nach einem der Ansprüche 1 oder 2 , der eine Elektrode mit einer Schichtdicke von lμm umfasst.
4. Integrierte Schaltung, die zumindest einen OFET, der zumindest eine .strukturierte Leiterschicht und eine weitere strukturierte Schicht hat, umfasst. - -
5. Verfahren zur Strukturierung eines OFETs durch Rakeln von zumindest einem Funktionspolymer-, in eine Negativ-Form.
6. Verfahren nach Anspruch 5, folgende Arbeitsschritte umfas- send: a) auf einem Substrat oder einer unteren Schicht wird eine Formschicht für eine Negativform aufgebracht, b) diese Formschicht erhält Vertiefungen, die den Negativen der späteren Strukturen entsprechen und c) in diese Vertiefungen wird dann das Funktionspolymer hin- eingerakelt .
7. Verfahren nach einem der Ansprüche 5 oder 6, bei dem die Formschicht nach der Strukturierung entfernt wird.
8. Verfahren nach einem der Ansprüche 5 bis 7, bei dem zumin- dest zweimal das Funktionspolymer in die Vertiefungen der
Formschicht eingerakelt wird.
9. Verfahren nach einem der Ansprüche 5 bis 8, bei dem die Vertiefungen in der Formschicht durch Imprinting erzeugt wer- den.
10. Verfahren nach einem der Ansprüche 5 bis 9, das als kon- tiniuerliches Verfahren mit einem durchlaufenden Band durchgeführt wird.
PCT/DE2001/004611 2000-12-08 2001-12-07 Organischer feld-effekt-transistor, verfahren zur stukturierung eines ofets und integrierte schaltung WO2002047183A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01999978A EP1346422A1 (de) 2000-12-08 2001-12-07 Organischer feld-effekt-transistor, verfahren zur stukturierung eines ofets und integrierte schaltung
US10/433,959 US7229868B2 (en) 2000-12-08 2001-12-07 Organic field-effect transistor, method for structuring an OFET and integrated circuit
JP2002548799A JP2004515928A (ja) 2000-12-08 2001-12-07 有機電界効果トランジスタ、ofetの構造化法および集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10061297A DE10061297C2 (de) 2000-12-08 2000-12-08 Verfahren zur Sturkturierung eines OFETs
DE10061297.0 2000-12-08

Publications (1)

Publication Number Publication Date
WO2002047183A1 true WO2002047183A1 (de) 2002-06-13

Family

ID=7666421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004611 WO2002047183A1 (de) 2000-12-08 2001-12-07 Organischer feld-effekt-transistor, verfahren zur stukturierung eines ofets und integrierte schaltung

Country Status (5)

Country Link
US (1) US7229868B2 (de)
EP (1) EP1346422A1 (de)
JP (1) JP2004515928A (de)
DE (1) DE10061297C2 (de)
WO (1) WO2002047183A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021751A1 (de) * 2002-08-30 2004-03-11 Infineon Technologies Ag Herstellung organischer elektronischer schaltkreise durch kontaktdrucktechniken
WO2004032257A2 (de) 2002-10-02 2004-04-15 Leonhard Kurz Gmbh & Co. Kg Folie mit organischen halbleitern
WO2004055920A3 (en) * 2002-12-14 2004-10-07 Plastic Logic Ltd Electronic devices
WO2005022663A1 (de) * 2003-08-25 2005-03-10 Polyic Gmbh & Co. Kg Organisches elektronisches bauteil mit hochaufgelöster struk­turierung und herstellungsverfahren dazu
US6903958B2 (en) 2000-09-13 2005-06-07 Siemens Aktiengesellschaft Method of writing to an organic memory
EP1780815A2 (de) * 2005-10-31 2007-05-02 Fuji Electric Holdings Co., Ltd. Organischer Dünnfilmtransistor und dessen Herstellungsmethode
US7700402B2 (en) 2003-10-24 2010-04-20 Leonhard Kurz Stiftung & Co. Kg Method for production of a film

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1309994A2 (de) 2000-08-18 2003-05-14 Siemens Aktiengesellschaft Verkapseltes organisch-elektronisches bauteil, verfahren zu seiner herstellung und seine verwendung
DE10043204A1 (de) 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
DE10126860C2 (de) * 2001-06-01 2003-05-28 Siemens Ag Organischer Feldeffekt-Transistor, Verfahren zu seiner Herstellung und Verwendung zum Aufbau integrierter Schaltungen
DE10212639A1 (de) * 2002-03-21 2003-10-16 Siemens Ag Vorrichtung und Verfahren zur Laserstrukturierung von Funktionspolymeren und Verwendungen
DE10226370B4 (de) 2002-06-13 2008-12-11 Polyic Gmbh & Co. Kg Substrat für ein elektronisches Bauteil, Verwendung des Substrates, Verfahren zur Erhöhung der Ladungsträgermobilität und Organischer Feld-Effekt Transistor (OFET)
US8044517B2 (en) 2002-07-29 2011-10-25 Polyic Gmbh & Co. Kg Electronic component comprising predominantly organic functional materials and a method for the production thereof
WO2004042837A2 (de) * 2002-11-05 2004-05-21 Siemens Aktiengesellschaft Organisches elektronisches bauteil mit hochaufgelöster strukturierung und herstellungsverfahren dazu
DE50306538D1 (de) 2002-11-19 2007-03-29 Polyic Gmbh & Co Kg Organische elektronische schaltung mit stukturierter halbleitender funktionsschicht und herstellungsverfahren dazu
DE10302149A1 (de) 2003-01-21 2005-08-25 Siemens Ag Verwendung leitfähiger Carbon-black/Graphit-Mischungen für die Herstellung von low-cost Elektronik
US7708958B2 (en) 2003-06-26 2010-05-04 Tersano Inc. System and containers for water filtration and item sanitization
DE10330062A1 (de) * 2003-07-03 2005-01-27 Siemens Ag Verfahren und Vorrichtung zur Strukturierung von organischen Schichten
DE10340608A1 (de) 2003-08-29 2005-03-24 Infineon Technologies Ag Polymerformulierung und Verfahren zur Herstellung einer Dielektrikumsschicht
DE10340609A1 (de) * 2003-08-29 2005-04-07 Infineon Technologies Ag Polymerformulierung und Verfahren zur Herstellung einer Dielektrikumsschicht
DE10340643B4 (de) 2003-09-03 2009-04-16 Polyic Gmbh & Co. Kg Druckverfahren zur Herstellung einer Doppelschicht für Polymerelektronik-Schaltungen, sowie dadurch hergestelltes elektronisches Bauelement mit Doppelschicht
DE102004005247A1 (de) * 2004-01-28 2005-09-01 Infineon Technologies Ag Imprint-Lithographieverfahren
JP2005353725A (ja) * 2004-06-09 2005-12-22 Shinko Electric Ind Co Ltd 基板上への能動素子の形成方法および基板
JP4549751B2 (ja) * 2004-06-17 2010-09-22 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI253193B (en) * 2004-08-06 2006-04-11 Ind Tech Res Inst Method for manufacturing organic thin-film transistor with plastic substrate
DE102004040831A1 (de) 2004-08-23 2006-03-09 Polyic Gmbh & Co. Kg Funketikettfähige Umverpackung
DE102004059467A1 (de) * 2004-12-10 2006-07-20 Polyic Gmbh & Co. Kg Gatter aus organischen Feldeffekttransistoren
DE102004059464A1 (de) 2004-12-10 2006-06-29 Polyic Gmbh & Co. Kg Elektronikbauteil mit Modulator
DE102004059465A1 (de) 2004-12-10 2006-06-14 Polyic Gmbh & Co. Kg Erkennungssystem
DE102004063435A1 (de) 2004-12-23 2006-07-27 Polyic Gmbh & Co. Kg Organischer Gleichrichter
DE102005009819A1 (de) 2005-03-01 2006-09-07 Polyic Gmbh & Co. Kg Elektronikbaugruppe
US7595502B2 (en) 2005-03-04 2009-09-29 Samsung Mobile Display Co., Ltd. Method of manufacturing thin film transistor, thin film transistor manufactured by the method, and display device employing the same
DE102005017655B4 (de) 2005-04-15 2008-12-11 Polyic Gmbh & Co. Kg Mehrschichtiger Verbundkörper mit elektronischer Funktion
EP1727219B1 (de) 2005-05-25 2014-05-07 Samsung SDI Germany GmbH Organischer Dünnschichttransistor und Verfahren zu seiner Herstellung
KR100647695B1 (ko) * 2005-05-27 2006-11-23 삼성에스디아이 주식회사 유기 박막 트랜지스터 및 그의 제조방법과 이를 구비한평판표시장치
GB2427509A (en) * 2005-06-21 2006-12-27 Seiko Epson Corp Organic electronic device fabrication by micro-embossing
DE102005031448A1 (de) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Aktivierbare optische Schicht
DE102005035589A1 (de) 2005-07-29 2007-02-01 Polyic Gmbh & Co. Kg Verfahren zur Herstellung eines elektronischen Bauelements
DE102005035590A1 (de) * 2005-07-29 2007-02-01 Polyic Gmbh & Co. Kg Elektronisches Bauelement
JP2007042905A (ja) * 2005-08-04 2007-02-15 Sony Corp 半導体装置およびその製造方法
DE102005042166A1 (de) * 2005-09-06 2007-03-15 Polyic Gmbh & Co.Kg Organisches Bauelement und ein solches umfassende elektrische Schaltung
DE102005044306A1 (de) 2005-09-16 2007-03-22 Polyic Gmbh & Co. Kg Elektronische Schaltung und Verfahren zur Herstellung einer solchen
KR101308435B1 (ko) 2006-06-30 2013-09-16 엘지디스플레이 주식회사 패턴 형성방법 및 이를 이용한 액정표시소자의 제조방법
US7935566B2 (en) * 2007-05-14 2011-05-03 Nanyang Technological University Embossing printing for fabrication of organic field effect transistors and its integrated devices
US8071277B2 (en) * 2007-12-21 2011-12-06 3M Innovative Properties Company Method and system for fabricating three-dimensional structures with sub-micron and micron features
US8206537B2 (en) * 2008-08-27 2012-06-26 Carnegie Mellon University Method for forming a conducting multi-polymer nanostructure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962984A2 (de) * 1998-05-29 1999-12-08 Lucent Technologies Inc. Dünfilmtransistor integriert mit einer organischen lichtemittierenden Diode
DE19851703A1 (de) * 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Verfahren zur Herstellung von elektronischen Strukturen
WO2000079617A1 (en) * 1999-06-21 2000-12-28 Cambridge University Technical Services Limited Aligned polymers for an organic tft
WO2002019443A1 (de) * 2000-09-01 2002-03-07 Siemens Aktiengesellschaft Organischer feld-effekt-transistor, verfahren zur strukturierung eines ofets und integrierte schaltung

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512052A (en) 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (de) 1973-10-12 1979-02-24
JPS54101176A (en) 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4340657A (en) 1980-02-19 1982-07-20 Polychrome Corporation Novel radiation-sensitive articles
DE3338597A1 (de) 1983-10-24 1985-05-02 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben
JPS60117769A (ja) 1983-11-30 1985-06-25 Fujitsu Ltd 半導体メモリ装置
EP0239808B1 (de) 1986-03-03 1991-02-27 Kabushiki Kaisha Toshiba Strahlungsdetektor
JP2728412B2 (ja) 1987-12-25 1998-03-18 株式会社日立製作所 半導体装置
GB2215307B (en) 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
US5364735A (en) 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
US5487897A (en) * 1989-07-24 1996-01-30 Atrix Laboratories, Inc. Biodegradable implant precursor
US5206525A (en) 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FI91573C (sv) * 1990-01-04 1994-07-11 Neste Oy Sätt att framställa elektroniska och elektro-optiska komponenter och kretsar
FR2664430B1 (fr) 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
FR2673041A1 (fr) 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0580530A (ja) 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
EP0610183B1 (de) 1991-10-30 1995-05-10 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Belichtungsvorrichtung
US5219462A (en) * 1992-01-13 1993-06-15 Minnesota Mining And Manufacturing Company Abrasive article having abrasive composite members positioned in recesses
JP2709223B2 (ja) 1992-01-30 1998-02-04 三菱電機株式会社 非接触形携帯記憶装置
DE4243832A1 (de) 1992-12-23 1994-06-30 Daimler Benz Ag Tastsensoranordnung
JP3457348B2 (ja) 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
FR2701117B1 (fr) 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
US5567550A (en) 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
JPH0722669A (ja) 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
JP3035352B2 (ja) 1993-08-24 2000-04-24 メトリカ・インコーポレーテッド 新規な使い捨て電子検定ディバイス
JP3460863B2 (ja) 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
FR2710413B1 (fr) 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
US5556706A (en) 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
IL111151A (en) 1994-10-03 1998-09-24 News Datacom Ltd Secure access systems
JP3246189B2 (ja) 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5574291A (en) 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5652645A (en) 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
GB2310493B (en) 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (ja) 1996-03-06 2000-08-28 富士機工電子株式会社 エアリア・グリッド・アレイ・パッケージの製造方法
DE19629656A1 (de) 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US6344662B1 (en) 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
KR100248392B1 (ko) 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
EP0968537B1 (de) 1997-08-22 2012-05-02 Creator Technology B.V. Feld-effekt-transistor, der im wesentlichen aus organischen materialien besteht
ES2199705T1 (es) 1997-09-11 2004-03-01 Prec Dynamics Corp Transpondor de identificacion con circuito integrado consistente de materiales organicos.
US6251513B1 (en) 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JPH11142810A (ja) 1997-11-12 1999-05-28 Nintendo Co Ltd 携帯型情報処理装置
EP0958663A1 (de) 1997-12-05 1999-11-24 Koninklijke Philips Electronics N.V. Zwischenverstärker zur identifikation
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US5998805A (en) 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
RU2210834C2 (ru) 1998-01-28 2003-08-20 Тин Филм Электроникс Аса Способ формирования электропроводящих и/или полупроводниковых трехмерных структур, способ уничтожения этих структур и генератор/модулятор электрического поля для использования в способе формирования
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
DE19816860A1 (de) 1998-03-06 1999-11-18 Deutsche Telekom Ag Chipkarte, insbesondere Guthabenkarte
US6033202A (en) * 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
GB9808061D0 (en) 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
GB9808806D0 (en) 1998-04-24 1998-06-24 Cambridge Display Tech Ltd Selective deposition of polymer films
JP3780700B2 (ja) * 1998-05-26 2006-05-31 セイコーエプソン株式会社 パターン形成方法、パターン形成装置、パターン形成用版、パターン形成用版の製造方法、カラーフィルタの製造方法、導電膜の製造方法及び液晶パネルの製造方法
US5967048A (en) 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
US6215130B1 (en) 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
US6330464B1 (en) 1998-08-26 2001-12-11 Sensors For Medicine & Science Optical-based sensing devices
US6384804B1 (en) 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) * 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
GB2347013A (en) * 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US6300141B1 (en) 1999-03-02 2001-10-09 Helix Biopharma Corporation Card-based biosensor device
US6180956B1 (en) 1999-03-03 2001-01-30 International Business Machine Corp. Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
US6207472B1 (en) 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
DE19921024C2 (de) 1999-05-06 2001-03-08 Wolfgang Eichelmann Videospielanlage
US6383664B2 (en) 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
US6272275B1 (en) * 1999-06-25 2001-08-07 Corning Incorporated Print-molding for process for planar waveguides
DE19933757A1 (de) 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Chipkarte mit integrierter Batterie
DE19935527A1 (de) 1999-07-28 2001-02-08 Giesecke & Devrient Gmbh Aktive Folie für Chipkarten mit Display
DE19937262A1 (de) 1999-08-06 2001-03-01 Siemens Ag Anordnung mit Transistor-Funktion
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6340822B1 (en) 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
EP1149420B1 (de) 1999-10-11 2015-03-04 Creator Technology B.V. Integrierter schaltkreis
US6335539B1 (en) 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
US6621098B1 (en) 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6197663B1 (en) * 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
KR100940110B1 (ko) 1999-12-21 2010-02-02 플라스틱 로직 리미티드 잉크젯으로 제조되는 집적회로 및 전자 디바이스 제조 방법
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
DE10012204A1 (de) 2000-03-13 2001-09-20 Siemens Ag Einrichtung zum Kennzeichnen von Stückgut
US6329226B1 (en) 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10033112C2 (de) 2000-07-07 2002-11-14 Siemens Ag Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung
EP1309994A2 (de) 2000-08-18 2003-05-14 Siemens Aktiengesellschaft Verkapseltes organisch-elektronisches bauteil, verfahren zu seiner herstellung und seine verwendung
KR20020036916A (ko) 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
KR100390522B1 (ko) 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US6870180B2 (en) 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
JP2003089259A (ja) * 2001-09-18 2003-03-25 Hitachi Ltd パターン形成方法およびパターン形成装置
US7351660B2 (en) 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6946332B2 (en) * 2002-03-15 2005-09-20 Lucent Technologies Inc. Forming nanoscale patterned thin film metal layers
US6812509B2 (en) 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962984A2 (de) * 1998-05-29 1999-12-08 Lucent Technologies Inc. Dünfilmtransistor integriert mit einer organischen lichtemittierenden Diode
DE19851703A1 (de) * 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Verfahren zur Herstellung von elektronischen Strukturen
WO2000079617A1 (en) * 1999-06-21 2000-12-28 Cambridge University Technical Services Limited Aligned polymers for an organic tft
WO2002019443A1 (de) * 2000-09-01 2002-03-07 Siemens Aktiengesellschaft Organischer feld-effekt-transistor, verfahren zur strukturierung eines ofets und integrierte schaltung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROGERS J A ET AL: "PRINTING PROCESS SUITABLE FOR REEL-TO-REEL PRODUCTION OF HIGH-PERFORMANCE ORGANIC TRANSISTORS AND CIRCUITS", ADVANCED MATERIALS, VCH VERLAGSGESELLSCHAFT, WEINHEIM, DE, vol. 11, no. 9, 5 July 1999 (1999-07-05), pages 741 - 745, XP000851834, ISSN: 0935-9648 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903958B2 (en) 2000-09-13 2005-06-07 Siemens Aktiengesellschaft Method of writing to an organic memory
WO2004021751A1 (de) * 2002-08-30 2004-03-11 Infineon Technologies Ag Herstellung organischer elektronischer schaltkreise durch kontaktdrucktechniken
EP2261979A1 (de) 2002-10-02 2010-12-15 Leonhard Kurz Stiftung & Co. KG Folie mit organischen Halbleitern
US7655498B2 (en) 2002-10-02 2010-02-02 Leonhard Kurz Stiftung & Co. Kg Film comprising organic semiconductors
KR101196591B1 (ko) * 2002-10-02 2012-11-02 레오나르트 쿠르츠 스티프퉁 운트 코. 카게 유기 반도체 막
JP4841841B2 (ja) * 2002-10-02 2011-12-21 レオナード クルツ シュティフトゥング ウント コンパニー カーゲー 有機半導体付フィルム
JP2006501659A (ja) * 2002-10-02 2006-01-12 レオナード クルツ ゲーエムベーハー ウント コンパニー カーゲー 有機半導体付フィルム
WO2004032257A2 (de) 2002-10-02 2004-04-15 Leonhard Kurz Gmbh & Co. Kg Folie mit organischen halbleitern
JP2006510210A (ja) * 2002-12-14 2006-03-23 プラスティック ロジック リミテッド 電子装置
US7482207B2 (en) 2002-12-14 2009-01-27 Plastic Logic Limited Electronic devices
US7935565B2 (en) 2002-12-14 2011-05-03 Plastic Logic Limited Electronic devices
WO2004055920A3 (en) * 2002-12-14 2004-10-07 Plastic Logic Ltd Electronic devices
WO2004055919A3 (en) * 2002-12-14 2005-03-24 Plastic Logic Ltd Electronic devices
JP2007503712A (ja) * 2003-08-25 2007-02-22 ポリック ゲーエムベーハー ウント コー.カーゲー 高解像度構造を有する有機電子部品及びその生産方法
WO2005022663A1 (de) * 2003-08-25 2005-03-10 Polyic Gmbh & Co. Kg Organisches elektronisches bauteil mit hochaufgelöster struk­turierung und herstellungsverfahren dazu
US7700402B2 (en) 2003-10-24 2010-04-20 Leonhard Kurz Stiftung & Co. Kg Method for production of a film
CN1871721B (zh) * 2003-10-24 2010-04-28 雷恩哈德库兹两合公司 用于制造薄膜的方法
TWI383459B (zh) * 2003-10-24 2013-01-21 Kurz Leonhard Fa 製造膜的方法
EP1780815A2 (de) * 2005-10-31 2007-05-02 Fuji Electric Holdings Co., Ltd. Organischer Dünnfilmtransistor und dessen Herstellungsmethode
EP1780815A3 (de) * 2005-10-31 2008-02-27 Fuji Electric Holdings Co., Ltd. Organischer Dünnfilmtransistor und dessen Herstellungsmethode

Also Published As

Publication number Publication date
EP1346422A1 (de) 2003-09-24
DE10061297C2 (de) 2003-05-28
JP2004515928A (ja) 2004-05-27
US7229868B2 (en) 2007-06-12
US20040063267A1 (en) 2004-04-01
DE10061297A1 (de) 2002-06-27

Similar Documents

Publication Publication Date Title
EP1346422A1 (de) Organischer feld-effekt-transistor, verfahren zur stukturierung eines ofets und integrierte schaltung
EP1316116B1 (de) Verfahren zur strukturierung eines organischen feldeffekttransistors
DE10126860C2 (de) Organischer Feldeffekt-Transistor, Verfahren zu seiner Herstellung und Verwendung zum Aufbau integrierter Schaltungen
DE10140666C2 (de) Verfahren zur Herstellung eines leitfähigen strukturierten Polymerfilms und Verwendung des Verfahrens
DE60029445T2 (de) Verfahren zur strukturierung von polymerschichten, und anwendung der verfahren
US7271098B2 (en) Method of fabricating a desired pattern of electronically functional material
DE10033112A1 (de) Verfahren zur Herstellung und Strukturierung organischer-Feldeffekt-Transistoren (OFET)
EP1559147B1 (de) Folie mit organischen halbleitern
DE10349963A1 (de) Verfahren zur Herstellung einer Folie
DE10229118A1 (de) Verfahren zur kostengünstigen Strukturierung von leitfähigen Polymeren mittels Definition von hydrophilen und hydrophoben Bereichen
EP1636826A2 (de) Verbindung zur bildung einer selbstorganisierenden monolage, schichtstruktur, halbleiterbauelement mit einer schichtstruktur und verfahren zur herstellung einer schichtstruktur
DE10047171A1 (de) Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungverfahren dazu
EP1559148A2 (de) ORGANISCHES ELEKTRONISCHES BAUTEIL MIT HOCHAUFGELöSTER STRUKTURIERUNG UND HERSTELLUNGSVERFAHREN DAZU
WO2011131535A1 (de) Verfahren und vorrichtung zur herstellung elektronischer und/oder energieerzeugender und/oder energieumwandelnder elemente und komponenten
EP1704606B1 (de) Verfahren zur Herstellung eines organischen Transistors mit selbstjustierender Gate-Elektrode
DE10349027B4 (de) Organische Schaltung mit kleinen Strukturen und Verfahren zu deren Herstellung
DE102005005589A1 (de) Hybrider, organischer Feldeffekttransistor mit oberflächenmodifiziertem Kupfer als Source- und Drain-Elektrode
DE102019201792A1 (de) Halbleiter-Schaltungsanordnung und Verfahren zu deren Herstellung
DE102007002119A1 (de) Verfahren zur Herstellung eines organischen Dünnfilmtransistors und organischer Dünnfilmtransistor mit einer Zwischenschicht zwischen Substrat und organischer Halbleiterschicht
WO2007144163A2 (de) Verfahren zur herstellung einer strukturierten schichtfolge auf einem substrat
DE102009047315A1 (de) Organischer Feldeffekttransistor und Verfahren zur Herstellung desselben
WO2005006448A1 (de) Feldeffekttransistor und verfahren zum herstellen eines feldeffekttransistors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001999978

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002548799

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001999978

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10433959

Country of ref document: US