WO2002051143A1 - Dispositif d'interpolation de lignes de balayage - Google Patents

Dispositif d'interpolation de lignes de balayage Download PDF

Info

Publication number
WO2002051143A1
WO2002051143A1 PCT/JP2001/010703 JP0110703W WO0251143A1 WO 2002051143 A1 WO2002051143 A1 WO 2002051143A1 JP 0110703 W JP0110703 W JP 0110703W WO 0251143 A1 WO0251143 A1 WO 0251143A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
interpolation
pixel
interpolated
difference
Prior art date
Application number
PCT/JP2001/010703
Other languages
English (en)
French (fr)
Inventor
Hideaki Kawamura
Mitsuhiro Kasahara
Tomoaki Daigi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/169,753 priority Critical patent/US6801221B2/en
Priority to EP01271750A priority patent/EP1345432B1/en
Publication of WO2002051143A1 publication Critical patent/WO2002051143A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • H04N7/012Conversion between an interlaced and a progressive signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes

Definitions

  • the present invention relates to a scanning line interpolation device that performs an interpolation process of a scanning line displayed by a video signal.
  • Scan line interpolation is performed to convert interlaced scan (in-line scan) video signals into progressive scan (progressive scan) video signals or to increase the number of scan lines in the progressive scan system.
  • a scanning line interpolation device is used.
  • the value of a pixel (hereinafter, referred to as an interpolation pixel) constituting a scanning line to be created by the interpolation processing (hereinafter, referred to as an interpolation scanning line) is determined by the values of pixels of the upper and lower scanning lines. It is calculated based on the value.
  • the value of the interpolation pixel is calculated using a pixel positioned in the vertical direction with respect to the interpolation pixel, and in the case of an image having an oblique edge or a thin oblique line, the value of the interpolation pixel is calculated. It has been proposed to calculate the value of an interpolated pixel using pixels located in the direction. For this purpose, a correlation determination circuit that determines a direction having a high correlation in an image displayed by a video signal is used.
  • the conventional correlation determination circuit detects a difference value between two pixels in the vertical direction and the diagonal direction with the interpolation pixel as a center, and determines an angle in a direction having a high correlation based on the difference value.
  • a method using a difference value between two pixels may cause erroneous detection of an angle.
  • the value of the interpolation pixel is calculated using the pixels located in the vertical direction, and the pixel is located in the determined direction.
  • the difference value between two pixels is equal to or smaller than a threshold value, it has been proposed to calculate the value of the interpolated pixel using pixels in the oblique direction.
  • the difference value between the two pixels 81 and 82 in the vertical direction of the interpolation pixel IN is “100”
  • the difference value between the two pixels 83 and 84 in one diagonal direction is “100”
  • the difference value in the other diagonal direction is “100”. Since the difference value between pixels 85 and 86 is "40”, the direction of high correlation is the direction of the straight line connecting the two pixels 85 and 86.
  • the value of the interpolation pixel IN is calculated using the two pixels 85 and 86 in the oblique direction. For example, the average value “100” of the values of the two pixels 85 and 86 is the value of the intercept pixel.
  • the interpolation pixel IN using the two pixels 81 and 82 in the vertical direction is used.
  • a value is calculated.
  • the average value 50 of the values of the two pixels 81 and 82 is the value of the interpolation pixel IN.
  • the value of the interpolated pixel differs by "50" only when the value of the pixel 85 differs by "5". As a result, a smooth image cannot be obtained. Disclosure of the invention
  • An object of the present invention is to provide a scanning line interpolation device capable of performing smooth interpolation processing on an image having an edge in an oblique direction.
  • a scanning line interpolating apparatus is a scanning line interpolating apparatus that performs a scanning line interpolation process by calculating a value of a pixel to be interpolated based on an input video signal.
  • First interpolation means for calculating a first interpolation value by an interpolation process using pixels of upper and lower scanning lines positioned in the vertical direction with respect to the pixel, and inputs a signal indicating a direction of an image with respect to a pixel to be interpolated.
  • Difference calculating means for calculating the difference between the values of the pixels of the upper and lower scanning lines located in the direction indicated by the signal input by the input means, and the signal input by the input means for the pixel to be interpolated.
  • a second interpolation means for calculating a second interpolation value by interpolation processing using pixels of upper and lower scanning lines located in the direction, and a case where the difference value calculated by the difference calculation means is equal to or less than the first value.
  • the second interpolation value calculated by the second interpolation means is output as the value of the pixel to be interpolated, and the difference value calculated by the difference calculation means is equal to or greater than a second value larger than the first value
  • the first interpolation value calculated by the first interpolation means is output as the value of the pixel to be interpolated, and the difference value calculated by the difference calculation means is within the range of the second value from the first value.
  • the first interpolated value calculated by the first And interpolated value output means for calculating a third interpolated value by calculation using the second interpolated value calculated by the second interpolating means and outputting the third interpolated value as a value of a pixel to be interpolated.
  • the first interpolation value is calculated by the first interpolation means by the interpolation processing using the pixels of the upper and lower scanning lines positioned in the vertical direction with respect to the pixel to be interpolated.
  • a signal indicating the direction of the image with respect to the pixel to be interpolated is input by the input means, and the difference between the values of the pixels of the upper and lower scanning lines positioned in the direction indicated by the signal input with respect to the pixel to be interpolated is the difference. It is calculated by the calculation means.
  • a second interpolation value is calculated by a second interpolation means by an interpolation process using pixels of upper and lower scanning lines located in a direction indicated by the input signal with respect to the pixel to be interpolated.
  • the second interpolation value is output as the value of the pixel to be interpolated by the interpolation value output means, and when the difference value is equal to or larger than the second value larger than the first value.
  • the first interpolated value is output as the value of the pixel to be interpolated by the interpolated value output means, and when the difference value is within the range from the first value to the second value, the first interpolated value is output.
  • a third interpolated value is calculated by an operation using the second interpolated value, and is output by the interpolated value output means as a value of a pixel to be interpolated.
  • the first interpolated value calculated using the pixel in the vertical direction is compared with the first interpolated value. Since the value of the pixel to be interpolated is calculated by an operation using the second interpolation value calculated using the pixel in the oblique direction, the smooth interpolation processing is performed on the image having the edge in the oblique direction. Can do so.
  • the interpolation value output means calculates the interpolation value at a ratio according to the difference value.
  • the first interpolation value and the second interpolation value calculated by the second interpolation means may be added, and the addition result may be output as the value of the pixel to be interpolated.
  • the first interpolation value and the second interpolation value are added at a ratio according to the difference value, so that a smooth Interpolation processing becomes possible.
  • the interpolation value output means increases the ratio of the first interpolation value calculated by the first interpolation means and increases the ratio.
  • the first interpolation value and the second interpolation value may be added such that the ratio of the second interpolation value calculated by the second interpolation means decreases.
  • the first interpolated value and the second interpolated value are set such that the ratio of the first interpolated value increases and the ratio of the second interpolated value decreases. Are added, so that smoother interpolation processing can be performed.
  • the difference calculation means calculates the difference values of the values of a plurality of sets of pixels located in a plurality of directions with respect to the pixel to be interpolated in a plurality of directions around the direction indicated by the signal input by the input means.
  • the scanning line interpolating device includes a minimum value judging means for judging a minimum value among the plurality of difference values calculated by the difference calculating means, and a plurality of second interpolated values calculated by the second interpolating means. Selecting means for selecting a second interpolation value corresponding to the difference value determined to be the minimum value by the minimum value determination means and providing the selected second interpolation value to the interpolation value output means.
  • the difference values of the values of a plurality of sets of pixels located in a plurality of directions centered on the direction indicated by the signal input to the pixel to be interpolated are calculated, and input to the pixel to be interpolated.
  • a plurality of second interpolated values are respectively calculated by an interpolation process using a plurality of sets of pixels located in a plurality of directions around the direction indicated by the signal. Then, a minimum value of the plurality of difference values is determined, and a value of the plurality of second interpolation values is determined. The second interpolation value corresponding to the difference value determined to be the minimum value is selected and provided to the interpolation value output means.
  • the direction having the highest correlation among the plurality of directions is determined, and the second interpolation value in the direction having the highest correlation among the second interpolation values in the plurality of directions is selected. Can be corrected.
  • the scanning line interpolating device detects the values of the pixels located vertically above and below the pixel to be interpolated, and the second interpolated value calculated by the second interpolating device is detected by the detecting device. And intermediate value determining means for determining whether or not the second interpolated value is between the values detected by the intermediate value determining means. If it is determined that there is no pixel value, the first interpolation value calculated by the first interpolation means may be output as the value of the pixel to be interpolated, regardless of the difference value calculated by the difference calculation means.
  • the values of pixels located vertically above and below the pixel to be interpolated are respectively detected, and it is determined whether or not the second interpolated value is between the detected values. If it is determined that the second interpolation value is not between the detected values, the first interpolation value is output as the value of the pixel to be interpolated, regardless of the diagonal difference value.
  • the first interpolation value is used without using the second interpolation value, so that the angle of the image is It is possible to prevent the value of the pixel to be interpolated from being calculated by using the pixel in the wrong direction when an error is detected.
  • the scanning line interpolation apparatus further includes upper and lower difference calculating means for calculating a difference value between pixels located vertically above and below the pixel to be interpolated, and the interpolation value output means includes a difference calculated by the upper and lower difference calculating means.
  • the first interpolation value calculated by the first interpolation means is output as the value of the pixel to be interpolated regardless of the difference value calculated by the difference calculation means. Is also good.
  • a difference value between pixels located vertically above and below the pixel to be interpolated is calculated. If the difference value in the vertical direction is smaller than a predetermined value, the first value is obtained regardless of the difference value in the oblique direction. Is output as the value of the pixel to be interpolated.
  • the second interpolation value is used.
  • the first interpolation value it is possible to prevent the image quality from deteriorating due to erroneous detection of the image angle.
  • the second interpolation means may calculate, as the second interpolation value, the average value of the pixels of the upper and lower scanning lines located in the direction indicated by the signal input by the input means with respect to the pixel to be interpolated.
  • the second interpolation value is an average value of the values of the pixels located in the oblique direction of the pixel to be interpolated.
  • the first value may be 0, and the second value may be a preset threshold.
  • the second interpolation value is output as the value of the pixel to be interpolated
  • the first interpolation value is the value of the pixel to be interpolated. Is output as a value, and when the difference value is within the range of 0 to the threshold value, the third interpolation value calculated by the operation using the first interpolation value and the second interpolation value is interpolated. It is output as the value of the pixel to be used.
  • the scanning line interpolating apparatus further includes image angle detecting means for detecting an image angle related to a pixel to be interpolated based on the input video signal and providing a signal indicating the direction of the image to the input means.
  • a binarized pattern generating means for binarizing an input video signal within a predetermined detection area including a plurality of scanning lines and pixels to be interpolated to generate a binarized pattern;
  • the reference pattern generating means for generating the value image as a plurality of reference patterns, and the binarized pattern generated by the binarized pattern generating means are compared with each of the plurality of reference patterns generated by the reference pattern generating means.
  • comparing means for detecting the angle of the image with respect to the pixel to be interpolated based on the comparison result.
  • the input video signal is binarized in a predetermined detection area by the binarization pattern generation means to generate a binarization pattern. Also, a binary image having a plurality of directions is generated as a plurality of reference patterns by the reference pattern generating means. Then, the binarized pattern is compared with each of the plurality of reference patterns by the comparing means, and the angle of the image related to the pixel to be interpolated is detected based on the comparison result.
  • the difference value between the two pixels is used. Erroneous detection is suppressed as compared with the case where the image is present, and the angle of an image having an oblique edge can be accurately detected.
  • the angle to be detected is not limited to the angle of a straight line connecting pixels at point-symmetric positions with respect to the pixel to be interpolated, and the angle between them is detected. You can also. Therefore, angles can be detected at finer intervals without increasing the circuit scale.
  • the scanning line interpolating apparatus further includes image angle detecting means for detecting an image angle related to a pixel to be interpolated based on the input video signal and providing a signal indicating the direction of the image to the input means. Generates a local minimum pattern representing the position of the local maximum or minimum point of the horizontal luminance distribution for each scanning line within a predetermined detection area including a plurality of scanning lines and pixels to be interpolated in the input video signal.
  • a reference pattern generating means for generating a plurality of reference patterns indicating the positions of the local maximum or minimum points of the horizontal luminance distribution for each scanning line in the detection area;
  • the maximum and minimum patterns generated by the pattern generator are compared with each of the plurality of reference patterns generated by the reference pattern generator, and interpolation is performed based on the comparison result.
  • Comparison means for detecting the angle of the image related to come pixel may include.
  • a maximum and minimum pattern is generated by the maximum and minimum pattern generation means in the input video signal for each scanning line within the predetermined detection area, which indicates the position of the maximum or minimum point of the horizontal luminance distribution. Is done.
  • the reference pattern generating means generates a plurality of reference patterns indicating the position of the maximum point or the minimum point of the horizontal luminance distribution for each scanning line in the detection area. Then, the maximum and minimum patterns are compared with each of the plurality of reference patterns by the comparing means, and the angle of the image relating to the pixel to be interpolated is detected based on the comparison result.
  • the angle to be detected is not limited to the angle of a straight line connecting pixels at point-symmetric positions with respect to the pixel to be interpolated, and the angle between them is detected. You can also. Therefore, increase the circuit scale No angle can be detected at finer intervals.
  • a scanning line interpolation device is a scanning line interpolation device that performs a scanning line interpolation process by calculating a value of a pixel to be interpolated based on an input video signal.
  • a first interpolator for calculating a first interpolation value by interpolation using pixels of upper and lower scanning lines positioned in the vertical direction with respect to a pixel to be input, and a signal indicating a direction of an image with respect to the pixel to be interpolated are input.
  • An input terminal to be interpolated An input terminal to be interpolated; a difference calculating device for calculating a difference value between pixel values of upper and lower scanning lines positioned in a direction indicated by a signal input to the input terminal with respect to a pixel to be interpolated; A second interpolation device that calculates a second interpolation value by interpolation using pixels of upper and lower scanning lines positioned in the direction indicated by the signal input to the input terminal, and a difference calculated by the difference calculation device.
  • the second interpolation value calculated by the second interpolation device is output as the value of the pixel to be interpolated, and the difference value calculated by the difference calculation device is equal to or greater than a second value larger than the first value
  • the first interpolation value calculated by the first interpolation device is output as the value of the pixel to be interpolated, and the difference value calculated by the difference calculation device is calculated from the first value to the second value from the first value. If it is within the range, a third interpolation value is calculated by an operation using the first interpolation value calculated by the first interpolation device and the second interpolation value calculated by the second interpolation device. And an interpolation value output device for outputting the value of the pixel to be interpolated.
  • the first interpolation value is calculated by the first interpolation device by the interpolation process using the pixels of the upper and lower scanning lines positioned in the vertical direction with respect to the pixel to be interpolated.
  • a signal indicating the direction of the image with respect to the pixel to be interpolated is input to the input terminal, and the difference between the values of the pixels of the upper and lower scanning lines positioned in the direction indicated by the signal input with respect to the pixel to be interpolated is the difference. It is calculated by the calculation device.
  • a second interpolation value is calculated by a second interpolation device by an interpolation process using pixels of upper and lower scanning lines positioned in a direction indicated by a signal input to a pixel to be interpolated.
  • the second interpolation value is output as the value of the pixel to be interpolated by the interpolation value output device, and the difference value is equal to or greater than the second value that is larger than the first value.
  • the first interpolated value is output as the value of the pixel to be interpolated by the interpolated value output device, and if the difference value is within the range from the first value to the second value, the first interpolated value is Second interpolated value
  • the third interpolated value is calculated by the calculation using and the output value of the pixel to be interpolated by the interpolated value output device.
  • the first interpolated value calculated using the pixel in the vertical direction is compared with the first interpolated value. Since the value of the pixel to be interpolated is calculated by an operation using the second interpolation value calculated using the pixel in the oblique direction, smooth interpolation processing is performed on an image having an edge in the oblique direction. Can be.
  • the interpolation value output device is calculated by the first interpolation device at a ratio corresponding to the difference value.
  • the first interpolation value and the second interpolation value calculated by the second interpolation device may be added, and the addition result may be output as a value of a pixel to be interpolated.
  • the first interpolation value and the second interpolation value are added at a ratio according to the difference value, so that a smooth Interpolation processing becomes possible.
  • the interpolation value output device increases the ratio of the first interpolation value calculated by the first interpolation device as the difference value calculated by the difference calculation device approaches the second value from the first value, and
  • the first interpolation value and the second interpolation value may be added such that the ratio of the second interpolation value calculated by the second interpolation device decreases.
  • the first interpolated value and the second interpolated value are set such that the ratio of the first interpolated value increases and the ratio of the second interpolated value decreases. Are added, so that smoother interpolation processing can be performed.
  • the difference calculation device calculates difference values of values of a plurality of sets of pixels located in a plurality of directions around a direction indicated by a signal input to the input terminal with respect to a pixel to be interpolated, and a second interpolation
  • the device calculates a plurality of second interpolated values by performing an interpolation process using a plurality of sets of pixels located in a plurality of directions with respect to a pixel to be interpolated in a plurality of directions centered on a direction indicated by a signal input to the input terminal.
  • Each of the scanning line interpolation devices calculates a minimum value among a plurality of difference values calculated by the difference calculation device, and a plurality of second interpolation devices calculated by the second interpolation device.
  • the second interpolated value corresponding to the difference value determined to be the minimum value by the minimum value judging device among the values is selected and output to the interpolated value output device.
  • a selecting device is selected.
  • the difference values of the values of a plurality of sets of pixels located in a plurality of directions centered on the direction indicated by the signal input to the pixel to be interpolated are calculated, and input to the pixel to be interpolated.
  • a plurality of second interpolated values are respectively calculated by an interpolation process using a plurality of sets of pixels located in a plurality of directions around the direction indicated by the signal. Then, the minimum value of the plurality of difference values is determined, and a second interpolation value corresponding to the difference value determined to be the minimum value among the plurality of second interpolation values is selected and output to the interpolation value output device. Given.
  • the direction having the highest correlation among the plurality of directions is determined, and the second interpolation value in the direction having the highest correlation among the second interpolation values in the plurality of directions is selected. Can be corrected.
  • the scanning line interpolation device detects a value of a pixel located vertically above and below a pixel to be interpolated, and a detection device detects a second interpolation value calculated by the second interpolation device.
  • An intermediate value judging device for judging whether or not the second interpolated value is between the detected values by the intermediate value judging device. If it is determined that there is no pixel value, the first interpolation value calculated by the first interpolation device may be output as a pixel value to be interpolated, regardless of the difference value calculated by the difference calculation device.
  • the values of pixels located vertically above and below the pixel to be interpolated are respectively detected, and it is determined whether or not the second interpolated value is between the detected values. If it is determined that the second interpolation value is not between the detected values, the first interpolation value is output as the value of the pixel to be interpolated, regardless of the diagonal difference value.
  • the first interpolation value is used without using the second interpolation value, so that the angle of the image is It is possible to prevent the value of the pixel to be interpolated from being calculated by using the pixel in the wrong direction when an error is detected.
  • the scanning line interpolation device further includes an upper / lower difference calculating device that calculates a difference value of a pixel located vertically above and below the pixel to be interpolated, and the interpolation value output device includes a difference calculated by the upper / lower difference calculating device.
  • the difference calculation device Regardless of the calculated difference value, the first interpolation value calculated by the first interpolation device may be output as the value of the pixel to be interpolated.
  • a difference value between pixels located vertically above and below the pixel to be interpolated is calculated. If the difference value in the vertical direction is smaller than a predetermined value, the first value is obtained regardless of the difference value in the oblique direction. Is output as the value of the pixel to be interpolated.
  • the first interpolation value is used without using the second interpolation value, thereby preventing deterioration in image quality due to erroneous detection of an image angle. be able to.
  • the second interpolation device may calculate, as the second interpolation value, the average value of the pixels of the upper and lower scanning lines located in the direction indicated by the signal input to the input terminal with respect to the pixel to be interpolated.
  • the second interpolation value is an average value of the values of the pixels located in the oblique direction of the pixel to be interpolated.
  • the first value may be 0, and the second value may be a preset threshold.
  • the second interpolation value is output as the value of the pixel to be interpolated
  • the first interpolation value is the value of the pixel to be interpolated. Is output as a value, and when the difference value is within the range of 0 to the threshold value, the third interpolation value calculated by the operation using the first interpolation value and the second interpolation value is interpolated. It is output as the value of the pixel to be used.
  • the scanning line interpolation device further includes: an image angle detection device that detects an image angle of a pixel to be interpolated based on the input video signal and provides a signal indicating the image angle to an input terminal.
  • a binarized pattern generator that binarizes an input video signal within a predetermined detection area including a plurality of scanning lines and pixels to be interpolated to generate a binarized pattern;
  • a reference pattern generator that generates a value image as a plurality of reference patterns, and a binarized pattern generated by the binarized pattern generator is compared with each of a plurality of reference patterns generated by the reference pattern generator.
  • a comparison device for detecting an angle of an image with respect to a pixel to be interpolated based on the comparison result.
  • an input video signal is binarized in a predetermined detection area by a binarization pattern generation device to generate a binarization pattern. See also A binary image having a plurality of directions is generated as a plurality of reference patterns by the pattern generation device. Then, the binarized pattern is compared with each of the plurality of reference patterns by the comparing device, and the angle of the image related to the pixel to be interpolated is detected based on the comparison result.
  • ⁇ -In this case since the two-dimensional pattern is compared, erroneous detection is suppressed as compared with the case where the difference value between two pixels is used, and the angle of an image having an oblique edge is accurately detected. can do.
  • the angle to be detected is not limited to the angle of a straight line connecting pixels at point-symmetric positions with respect to the pixel to be interpolated, and the angle between them is detected. You can also. Therefore, angles can be detected at finer intervals without increasing the circuit scale.
  • the scanning line interpolation device further includes: an image angle detection device that detects an image angle of a pixel to be interpolated based on the input video signal and provides a signal indicating the image angle to an input terminal. Generates a local minimum pattern representing the position of the local maximum or minimum point of the horizontal luminance distribution for each scanning line within a predetermined detection area including a plurality of scanning lines and pixels to be interpolated in the input video signal.
  • a reference pattern generator for generating a plurality of reference patterns indicating the position of a local maximum or minimum point of a horizontal luminance distribution for each scanning line in the detection area; and a local maximum or minimum pattern generator.
  • the maximum and minimum patterns generated by the pattern generator are compared with each of the plurality of reference patterns generated by the reference pattern generator, and interpolation is performed based on the comparison result.
  • Comparison device and for detecting the angle of the image related to come pixel may include.
  • a maximum / minimum pattern is generated in the input video signal by a maximum / minimum pattern generator for each scanning line within a predetermined detection area, which indicates the position of the maximum or minimum point of the horizontal luminance distribution. Is done.
  • the reference pattern generator generates a plurality of reference patterns representing the position of the maximum point or the minimum point of the horizontal luminance distribution for each scanning line in the detection area. Then, the maximum and minimum patterns are compared with each of the plurality of reference patterns by the comparison device, and the angle of the image related to the pixel to be interpolated is detected based on the comparison result.
  • the difference value between the two pixels is used.
  • erroneous detection is suppressed as compared with the case where the image is displayed, and the angle of the image of the thin oblique line can be accurately detected.
  • the angle to be detected is not limited to the angle of a straight line connecting pixels at point-symmetric positions with respect to the pixel to be interpolated, and the angle between them is detected. You can also. Therefore, angles can be detected at finer intervals without increasing the circuit scale.
  • FIG. 1 is a block diagram showing a configuration of a scanning line interpolation device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the relationship between the image angle and the pixels used for the interpolation processing.
  • FIG. 3 is a schematic diagram for explaining the operation of the mixing unit in FIG.
  • Fig. 4 is a schematic diagram showing the relationship between the absolute value of the oblique difference and the coefficient of the oblique average value and the coefficient of the vertical interpolated value.
  • FIG. 5 is a block diagram illustrating a configuration of a scanning line interpolation device according to the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining the oblique direction interpolation processing by the oblique direction average value calculation unit and the oblique direction difference absolute value calculation unit of the scanning line interpolation apparatus of FIG. 5,
  • FIG. 7 is a block diagram illustrating an example of a configuration of an image angle detection device that outputs an angle signal.
  • FIG. 8 is a diagram illustrating an example of a binarization pattern output from the binarization unit in FIG. 7, and
  • FIG. 7 is a schematic diagram illustrating an example of a reference pattern generated by the reference pattern generation unit in FIG. 7;
  • FIG. 10 is a block diagram illustrating another example of the configuration of the image angle detection device that outputs an angle signal.
  • FIG. 11 is a schematic diagram showing an example of a local minimum pattern output from the upper line local minimum detector and the lower line local minimum detector of FIG.
  • Fig. 12 shows the reference generated by the reference pattern generator in Fig. 11. Schematic diagram showing an example of a pattern
  • FIG. 13 is a schematic diagram for explaining an interpolation process in a conventional scanning line interpolation device.
  • FIG. 1 is a block diagram showing the configuration of the scanning line interpolation device according to the first embodiment of the present invention.
  • the scanning line interpolation device in FIG. 1 includes a line memory 1, a vertical direction interpolation circuit 2, an oblique average value operation unit 3, an oblique difference absolute value operation unit 4, and a mixing unit 5.
  • the video signal VD 1 is input to a line memory 1, a vertical direction interpolation circuit 2, a diagonal average value calculation unit 3, and a diagonal difference absolute value calculation unit 4.
  • the angle signal AN is input to the oblique direction average value calculation unit 3 and the oblique direction difference absolute value operation unit 4 via the input terminal 6.
  • the angle signal AN indicates the angle of an image in an oblique direction, such as an image having an oblique edge or an image of a thin oblique line, and is provided by an image angle detection device described later.
  • the line memory 1 delays the input video signal VD1 by one line (one scanning line) and outputs it.
  • the video signal V D2 output from the line memory 1 is supplied to a vertical interpolation circuit 2, an oblique average value operation unit 3, and an oblique difference absolute value operation unit 4.
  • the video signals V D1 and V D2 have a luminance of 256 gradations. That is, the minimum value of the luminance of the video signals VD1 and VD2 is "0", and the maximum value is "255".
  • the vertical direction interpolation circuit 2 is positioned vertically above and below an interpolation pixel (a pixel to be created by interpolation processing) based on the input video signal VD 1 and the video signal VD 2 output from the line memory 1. Performs interpolation processing (hereinafter referred to as vertical interpolation processing) using pixels, and outputs a vertical interpolation value ID.
  • the vertical direction interpolation circuit 2 calculates, for example, the average value of the values of pixels located vertically above and below the interpolation pixel as the vertical direction interpolation value ID.
  • a well-known interpolation A circuit can be used as the vertical direction interpolation circuit 2.
  • an interpolation circuit using a median filter that selects and outputs an intermediate value among a plurality of pixel values may be used as the vertical direction interpolation circuit 2.
  • the oblique direction average value calculation unit 3 calculates the upper scanning line positioned obliquely with respect to the interpolation pixel based on the input video signal VD1, the video signal VD2 output from the line memory 1, and the angle signal AN. The average value of the pixel value and the pixel value of the lower scanning line is calculated, and the calculation result is output as an oblique direction average value AD.
  • the process of calculating the oblique direction average value AD by the oblique direction average value calculation unit 3 is called oblique direction interpolation processing.
  • the oblique direction difference absolute value calculation unit 4 calculates the value of the pixel positioned obliquely with respect to the interpolation pixel. The absolute value of the difference is calculated, and the calculation result is output as the diagonal difference absolute value DD.
  • the mixing section 5 Based on the oblique difference absolute value DD output from the oblique difference absolute value calculating section 4, the mixing section 5 outputs the vertical interpolation value ID output from the vertical interpolating circuit 2 and the oblique direction average value calculating section 3 The output average value of the diagonal direction AD or a mixed value thereof is output as an interpolated pixel value (hereinafter referred to as an interpolated pixel value) IS.
  • an interpolated pixel value hereinafter referred to as an interpolated pixel value
  • the vertical direction interpolation circuit 2 corresponds to the first interpolation means or the first interpolation apparatus
  • the input terminal 6 receiving the angle signal AN corresponds to the input means or the input terminal
  • the value calculation unit 4 corresponds to a difference calculation unit or a difference calculation device
  • the oblique direction average value calculation unit 3 corresponds to a second interpolation unit or a second interpolation device
  • the mixing unit 5 corresponds to an interpolation value output unit or an interpolation value. It corresponds to an output device.
  • FIG. 2 is a schematic diagram for explaining the relationship between the angle of the image and the pixels used for the interpolation processing.
  • IL indicates an interpolated scan line
  • AL indicates a scan line above the interpolated scan line IL
  • BL indicates a scan line below the interpolated scan line IL.
  • the upper scan line AL includes pixels A1 to A5
  • the lower scan line BL includes pixels B1 to B5.
  • IN indicates the interpolation pixel.
  • the angle of the image is about 45 ° with respect to the horizontal direction as indicated by the arrow d0. It has become.
  • the angle signal AN shown in FIG. 1 represents 45 °.
  • the oblique difference absolute value calculation unit 4 in FIG. 1 calculates the luminance value of the pixel A 4 of the upper scan line AL and the lower scan line BL that are located at a 45 ° direction with the interpolation pixel IN as the center.
  • the absolute value of the difference from the luminance value of the pixel B2 is output as the oblique difference absolute value DD.
  • FIG. 3 is a schematic diagram for explaining the operation of the mixing unit 5 of FIG.
  • the mixing unit 5 outputs the oblique direction average value output from the oblique direction average value calculation unit 3.
  • the value AD is output as the interpolation pixel value IS.
  • the mixing unit 5 outputs the vertical direction output from the vertical interpolation circuit 2.
  • the interpolation value ID is output as the interpolation pixel value IS.
  • the mixing unit 5 When the oblique difference absolute value DD output from the oblique difference absolute value calculation unit 4 is between 0 and the threshold value TH, the mixing unit 5 outputs the oblique direction output from the oblique direction average value calculation unit 3.
  • the average value AD and the vertical interpolation value ID output from the vertical interpolation circuit 2 are mixed at a ratio according to the oblique difference absolute value DD, and the mixed value is output as an interpolation pixel value IS.
  • FIG. 4 is a schematic diagram showing the relationship between the absolute value of the oblique direction difference, the coefficient of the oblique direction average value, and the coefficient of the vertical direction interpolation value.
  • the mixing unit 5 in FIG. 1 calculates the mixed value CX by the following equation when the oblique difference absolute value DD is between 0 and the threshold value TH.
  • K1 and K2 are the coefficients of the oblique average value and the vertical interpolation value, respectively, and K1 + K2 is set to always be 1.
  • the horizontal axis of FIG. 4 indicates the oblique difference absolute value DD, and the vertical axis indicates the coefficients K1 and K2.
  • the coefficient K1 of the oblique average value AD is 1.0 when the oblique difference absolute value DD is 0, and decreases as the oblique difference absolute value DD increases. It becomes 0 when the absolute value DD is the threshold value TH. Meanwhile, vertical
  • the coefficient K2 of the interpolation value ID becomes 0 when the oblique difference absolute value DD is 0, increases as the oblique difference absolute value DD increases, and becomes 1 when the oblique difference absolute value DD is the threshold value TH. . '
  • the coefficient K1 of the oblique direction average value AD and the coefficient K2 of the vertical interpolation value ID linearly decrease and increase with respect to the oblique difference absolute value DD.
  • the present invention is not limited thereto, and the coefficient K1 of the oblique average value AD and the coefficient K2 of the vertical interpolation value ID may change in a curved shape.
  • the mixing unit 5 determines the vertical interpolated value according to the oblique difference absolute value DD. Since the ID and the ratio of the average value AD in the oblique direction are changed and mixed and output as the interpolated pixel value IS, smooth interpolation processing can be performed on an image having oblique edges.
  • the present invention is not limited to this.
  • An arbitrary value may be set so that the oblique direction average value AD is output as the interpolated pixel value IS.
  • FIG. 5 is a block diagram showing a configuration of a scanning line interpolation device according to the second embodiment of the present invention.
  • the scanning line interpolation device shown in FIG. 5 includes a line memory 11, a vertical interpolation circuit 12, a vertically enhanced lower pixel value extraction unit 13, an oblique average value operation unit 14, and a vertical upper and lower pixel difference absolute value operation unit 1. 5. Includes diagonal difference absolute value calculation unit 16, selector 17, minimum value judgment unit 18, selector 19, intermediate value judgment unit 20, and mixing unit 21.
  • the video signal VD 1 is a line memory 11, a vertical interpolation circuit 12, a vertical upper and lower pixel value extractor 13, an oblique average value calculator 14, a vertical upper and lower pixel difference absolute value calculator 15, and an oblique It is input to the direction difference absolute value calculation unit 16. Further, the angle signal AN is input to the oblique direction average value calculating section 14 and the oblique direction difference absolute value calculating section 16 via the input terminal 22.
  • the line memory 11 delays the input video signal VD 1 by one line (one scanning line). And output.
  • the video signal VD 2 output from the line memory 11 is divided into a vertical interpolation circuit 12, a vertical upper and lower pixel value extractor 13, an oblique average value calculator 14, a vertical upper and lower pixel difference absolute value calculator 15, It is provided to the oblique direction difference absolute value calculation unit 16.
  • the video signals VD1 and VD2 have 256 levels of luminance. That is, the minimum value of the luminance of the video signals VD1 and VD2 is "0", and the maximum value is "255".
  • the vertical direction interpolation circuit 12 is similar to the vertical direction interpolation circuit 2 in FIG. 1, and is based on the input video signal VD 1 and the video signal VD 2 output from the line memory 11 1. Vertical interpolation processing is performed using the pixels located above and below the direction, and the vertical interpolation value ID is output.
  • the vertical upper and lower pixel value extractor 13 Based on the input video signal VD 1 and the video signal VD 2 output from the line memory 11, the vertical upper and lower pixel value extractor 13 extracts the upper scanning line positioned vertically with respect to the interpolation pixel.
  • the pixel value and the pixel value of the lower scanning line are output as a vertical upper pixel value P and a vertical lower pixel value Q, respectively.
  • the oblique direction average value calculation unit 14 calculates the angle of the angle indicated by the angle signal AN with respect to the interpolation pixel.
  • the average value of the values of the pixels on the upper scanning line and the pixels on the lower scanning line located in the direction (called the 0 direction) is calculated, and the calculation result is output as the average value Ab in the oblique direction.
  • the oblique direction average value calculation unit 14 calculates the value of the pixel of the upper scan line and the lower scan direction, which are located in the direction of one angle smaller than the angle indicated by the angle signal AN (referred to as “ ⁇ 1 direction”).
  • the vertical upper and lower pixel difference absolute value calculator 15 scans the upper scanning line positioned in the vertical direction with respect to the interpolation pixel. The difference between the pixel value of Calculate the pair value and output as the upper and lower difference absolute value AB.
  • the oblique direction difference absolute value calculation unit 16 is indicated by the angle signal AN for the interpolation pixel based on the input video signal VD1, the video signal VD2 output from the line memory 11, and the angle signal AN.
  • the absolute value of the difference between the value of the pixel on the upper scanning line and the value of the pixel on the lower scanning line located in the direction of the angle (0 direction) is calculated, and is output as the absolute difference Db in the oblique direction.
  • the oblique direction difference absolute value calculation unit 16 calculates the value of the pixel of the upper scanning line located in the direction (-1 direction) smaller by one from the angle indicated by the angle signal AN and the lower scanning line.
  • the absolute value of the difference from the pixel value of the line is calculated, the calculation result is output as the oblique difference absolute value Da, and the direction of the angle that is one larger than the angle indicated by the angle signal AN (+1).
  • the absolute value of the difference between the value of the pixel on the upper scanning line and the value of the pixel on the lower scanning line located in the (direction) is calculated, and the calculation result is output as the diagonal difference absolute value Dc.
  • the minimum value judging section 18 judges the minimum value among the oblique difference absolute values D a, D b, and D c output from the oblique difference absolute value calculating section 16, and determines the angle at which the minimum value is obtained. The fixed result is given to selectors 17 and 19.
  • the selector 17 indicates the judgment result among the oblique direction average values A a, A b, and A c output from the oblique direction average value calculation unit 14 based on the judgment result given by the minimum value judgment unit 18. Select the average value in the oblique direction corresponding to the angle and output it as the average value in the oblique direction.
  • the selector 19 determines which of the oblique direction difference absolute values D a, D b, and D c is output from the oblique direction difference absolute value calculator 16 based on the judgment result given by the minimum value judging unit 18. The absolute value of the diagonal difference corresponding to the indicated angle is selected and output as the diagonal difference absolute value S.
  • the intermediate value judging unit 20 calculates the intermediate value of the vertical upper pixel value P and the vertical lower pixel value Q output from the vertical upper and lower pixel value extracting unit 13 and the oblique direction average value R output from the selector 17. And the determination result is given to the mixing unit 21.
  • the mixing unit 21 generates a vertical interpolation value ID output from the vertical interpolation circuit 12 based on the diagonal difference absolute value S output from the selector 19 and an average diagonal value output from the selector 17. R, or their mixture, as the interpolated pixel value IS Power.
  • the method of calculating the mixed value of the oblique difference absolute value S and the vertical interpolation value ID is the same as the method of calculating the mixed value of the oblique average value AD and the vertical interpolation value ID shown in FIGS. 2 and 3. is there.
  • the mixing unit 21 determines that the determination result of the intermediate value determination unit 20 is not the diagonal annual average value R, that is, the diagonal average value R is not an intermediate value between the vertical upper pixel value P and the vertical lower pixel value Q.
  • the vertical interpolation value ID output from the vertical interpolation circuit 12 is output as the interpolation pixel value IS.
  • the oblique difference absolute value calculation unit 16 calculates the oblique difference absolute values D a and D when the upper and lower difference absolute values AB given by the vertical upper and lower pixel difference absolute value calculator 15 are smaller than a predetermined value.
  • the maximum luminance value "2 5 5" is output as b and D c, respectively.
  • the diagonal difference absolute value S output from the selector 19 becomes the maximum value “255”. Therefore, the mixing unit 21 outputs the vertical interpolation value ID output from the vertical interpolation circuit 12 as the interpolation pixel value IS. That is, when the absolute value of the difference between the upper and lower pixels of the interpolation pixel is small, the vertical interpolation processing is performed without performing the oblique interpolation processing.
  • the vertical direction interpolation circuit 12 corresponds to the first interpolation means or the first interpolation device
  • the input terminal 22 receiving the angle signal AN corresponds to the input means or the input terminal
  • the absolute value calculation unit 16 corresponds to the difference calculation means or the difference calculation device
  • the oblique direction average value calculation unit 14 corresponds to the second interpolation means or the second interpolation device
  • the mixing unit 22 interpolates. It corresponds to a value output means or an interpolation value output device.
  • the minimum value judging section 18 corresponds to the minimum value judging means or the minimum value judging device
  • the selector 17 corresponds to the selecting means or the selecting device
  • the vertical upper and lower pixel value extracting section 13 corresponds to the detecting means or the detecting means.
  • the intermediate value determination unit 20 corresponds to the intermediate value determination unit or the intermediate value determination device
  • the vertical upper and lower pixel difference absolute value calculation unit 15 corresponds to the upper and lower difference calculation unit or the upper and lower difference calculation device. I do.
  • FIG. 6 is a schematic diagram for explaining the oblique direction interpolation processing by the oblique direction average value operation unit 14 and the oblique direction difference absolute value operation unit 16 of FIG.
  • IL indicates an interpolation scanning line
  • AL indicates a scanning line above the interpolation scanning line IL
  • BL indicates a scanning line below the interpolation scanning line IL.
  • the upper scanning line AL includes pixels A1 to A5
  • the lower scanning line BL includes pixels B1 to B5.
  • IN indicates an interpolation pixel
  • the angle of the image represented by the angle signal AN of FIG. 5 is indicated by an arrow d0
  • the -1 direction is indicated by an arrow d—
  • the +1 direction is indicated by an arrow d +.
  • the oblique direction average value calculation unit 14 in FIG. 5 calculates the luminance value of the pixel A4 of the upper scanning line AL and the luminance of the pixel B2 of the lower scanning line BL located in the direction of the arrow d0 around the interpolation pixel IN.
  • the average value of the values is output as the average value Ab in the oblique direction, and the average value of the luminance value of the pixel A 5 of the upper scanning line AL and the luminance value of the pixel B 1 of the lower scanning line BL located in the direction of arrow d— Is output as the average value Aa in the oblique direction, and the average value of the luminance value of the pixel A3 of the upper scanning line AL and the luminance value of the pixel B3 of the lower scanning line BL located in the direction of the arrow d + is obtained in the oblique direction.
  • the absolute value of the difference from the brightness value of 2 is output as the oblique direction difference absolute value Db, and the brightness value of pixel A 5 of the upper scanning line AL and the pixel of the lower scanning line BL located in the direction of arrow d—
  • the absolute value of the difference from the luminance value of B1 is output as the oblique direction difference absolute value Da, and the luminance value of pixel A3 of the upper scanning line AL located in the direction of arrow d + and the lower scanning line BL
  • the absolute value of the difference from the luminance value of the pixel B3 is output as the diagonal difference absolute value Dc.
  • the vertical interpolation value ID and the diagonal direction Since the mixing is performed while changing the ratio of the difference absolute value R, and output as the interpolated pixel value IS, a smooth interpolation process can be performed on an image having an oblique edge.
  • the high direction is determined, and corresponds to the direction having the highest correlation among the oblique average values A a, Ab, and Ac calculated by the oblique direction average value calculation unit 14. Since the average value in the oblique direction is selected, erroneous detection of the angle of the image can be corrected. Further, in an image having oblique edges, the value of the interpolated pixel is intermediate between the values of the upper and lower pixels.
  • the vertical interpolation processing is performed without performing the diagonal interpolation processing. It is possible to prevent the calculation of the interpolated pixel value IS based on the pixel in the wrong direction.
  • the difference between pixels located vertically above and below the interpolated pixel is large. If the absolute value of the difference between the pixel above and below the interpolated pixel is small, vertical interpolation processing is performed without performing diagonal interpolation processing, thereby preventing image quality deterioration due to erroneous detection of the image angle. it can.
  • FIG. 7 is a block diagram showing an example of the configuration of an image angle detection device that outputs an angle signal AN.
  • the image angle detection device of FIG. 7 includes a line memory 31, a binarization unit 32, a detection window internal video signal processing unit 33, a pattern matching angle detection unit 34, and a reference pattern generation unit 35.
  • the video signal V D1 is input to the line memory 31, the binarization unit 32, and the video signal processing unit 33 in the detection window.
  • the line memory 31 outputs the input video signal VD1 with a delay of one line (one scanning line).
  • the video signal VD2 output from the line memory 31 is supplied to the binarization unit 32 and the video signal processing unit 33 in the detection window.
  • the binarization unit 32 converts the input video signal VD 1 and the video signal VD 2 output from the line memory 31 into an average luminance value LU given from a detection window video signal processing unit 33 described later. It binarizes as a threshold and outputs a binary pattern BI consisting of "1" and "0".
  • the binarization pattern BI has the size of the detection window.
  • the detection window is, for example, a rectangular area of 7 ⁇ 2 pixels including 7 pixels of the video signal VD1 and 7 pixels of the video signal VD2, 15 pixels of the video signal VD1 and 15 pixels of the video signal VD2. It is a rectangular area of 15 ⁇ 2 pixels including pixels.
  • the size of the detection window is 7 ⁇ 2 pixels. In this case, The size of the turn BI is 7 X 2 pixels.
  • the video signal processing unit 33 in the detection window sets a detection window for the input video signal VD 1 and the video signal VD 2 output from the line memory 31, and sets the brightness of the video signals VD1 and VD 2 in the detection window. Is calculated, and the average luminance value LU is given to the binarization unit 32 as a threshold for binarization.
  • the reference pattern generation unit 35 generates a plurality of reference patterns RA including “1” and “0” and supplies the reference patterns RA to the pattern matching angle detection unit 34.
  • the size of each reference pattern RA is equal to the size of the detection window.
  • the pattern matching angle detection unit 34 compares the binarized pattern BI given from the binarization unit 32 with each of the plurality of reference patterns RA given from the reference pattern generation unit 35, and matches the matched reference pattern RA. Is output as the angle signal AN.
  • the comparison operation between the binary pattern BI and each reference pattern RA is referred to as pattern matching.
  • FIG. 8 is a schematic diagram illustrating an example of the binarization pattern BI output from the binarization unit 32 in FIG.
  • IN indicates an interpolation pixel
  • IL indicates an interpolation scanning line
  • AL indicates a scanning line above the interpolation scanning line IL
  • BL indicates a scanning line below the interpolation scanning line IL.
  • a low-luminance part (dark part) is indicated by “0”, and a high-luminance part (bright part) is indicated by “1”.
  • the angle of the image edge is 45 °.
  • the angle in the horizontal direction is 0, and the angle in the upper right diagonal direction is positive.
  • FIG. 9 is a schematic diagram showing an example of a reference pattern generated by the reference pattern generator 35 of FIG.
  • the shaded pixels are pixels on the upper and lower scanning lines used for calculating the value of the interpolated pixel indicated by the bold line.
  • FIGS. 9 (a), (b), (c), (d), and (e) show reference patterns of 45 °, 34 °, 27 °, 22 °, and 18 °, respectively.
  • the upper left is a dark part
  • the lower right is a bright part.
  • the binary pattern BI in FIG. 8 matches the reference pattern in FIG. 9 (a).
  • the pattern matching angle detector 35 in FIG. 7 outputs an angle signal AN indicating 45 °.
  • the luminance distribution of the video signals VD 1 and VD 2 in the detection window is converted into a binary pattern BI, and the binary pattern BI and a plurality of preset reference patterns RA are used.
  • the angle of the image can be detected with a small circuit scale.
  • Pattern BI can be created.
  • the angle to be detected is not limited to the angle of a straight line connecting pixels located at point-symmetric positions with respect to the interpolation pixel, and the angle between those angles is determined.
  • the angle can also be detected. Therefore, the angle can be detected at finer intervals using the line memory 31 having a small capacity.
  • FIG. 10 is a block diagram showing another example of the configuration of the image angle detection device that outputs the angle signal AN.
  • the image angle detection device shown in FIG. 10 includes a line memory 41, an upper line local minimum detector 42, a lower line local minimum detector 43, a pattern matching angle detector 44, and a reference pattern generator 45. .
  • the video signal VD 1 is input to the line memory 41 and the lower line maximum / minimum detector 43.
  • the line memory 41 outputs the input video signal VD 1 with a delay of one line (one scanning line).
  • the video signal VD 2 output from the line memory 41 is The upper line maximum and minimum detection unit 42 is provided.
  • the upper line maximum / minimum detection unit 42 detects the maximum point and the minimum point of the luminance distribution in the horizontal direction in the video signal VD 2 output from the line memory 41, and the maximum / minimum pattern indicating the positions of the maximum point and the minimum point.
  • P1 is given to the pattern matching angle detection unit 44.
  • the lower line maximum / minimum detection section 43 detects the maximum / minimum point of the luminance distribution in the horizontal direction in the input video signal VD1, and performs pattern matching of the maximum / minimum pattern P2 indicating the position of the maximum / minimum point.
  • Angle detection unit 4 4 The maximum and minimum pattern P1 and the maximum and minimum pattern P2 each have the size of one scanning line of the detection window.
  • the detection window is, for example, a rectangular area of 7 ⁇ 2 pixels including 7 pixels of the video signal VD1 and 7 pixels of the video signal VD2, 15 pixels of the video signal VD1 and 15 pixels of the video signal VD2. It is a rectangular area of 15 ⁇ 2 pixels including pixels.
  • the size of the detection window is 7 ⁇ 2 pixels.
  • the size of the maximum minimum pattern P1 and the maximum minimum pattern P2 are each 7 pixels.
  • the reference pattern generating section 45 generates a plurality of reference patterns RB indicating the positions of the local maximum point and the local minimum point in the detection window, and supplies the reference pattern RB to the pattern matching angle detection section 44.
  • the size of each reference pattern RB is equal to the size of the detection window.
  • the pattern matching angle detector 4 4 uses the local maximum pattern P 1 output from the upper line local minimum detector 42 and the local maximum pattern P 2 output from the lower line local minimum detector 43 as the reference pattern generator 4. It compares with each of the plurality of reference patterns RB given from 5 and outputs an angle signal AN indicating the angle of the matched reference pattern RB.
  • pattern matching the comparison operation between the maximum and minimum patterns P I and P 2 and each reference pattern RB is referred to as pattern matching.
  • FIG. 11 is a schematic diagram showing an example of the local minimum patterns P1, P2 output from the upper line local minimum detector 42 and the lower line local minimum detector 43 of FIG.
  • IN indicates an interpolation pixel
  • IL indicates an interpolation scanning line
  • AL indicates a scanning line above the interpolation scanning line IL
  • BL indicates a scanning line below the interpolation scanning line IL. Show.
  • the position of the pixel having the maximum point in the horizontal luminance distribution is indicated by ⁇ large J '', and the position of the pixel having the minimum point in the horizontal luminance distribution is indicated by ⁇ small '' .
  • the position of the pixel having the local maximum point and the position of the pixel having the local minimum point are indicated by predetermined numerical values.
  • the angle between the straight line connecting the maximum points and the straight line connecting the minimum points in the luminance distribution of the scanning line AL and the scanning line BL is 45 °.
  • the angle in the horizontal direction is 0, and the angle in the upper right diagonal direction is positive.
  • FIG. 12 is a schematic diagram showing an example of a reference pattern generated by the reference pattern generator 45 in FIG.
  • Figures 12 (a) and 12 (b) show the reference patterns at 45 ° and 34 °, respectively.
  • the position of the pixel having the maximum point is indicated by “large”, and the position of the pixel having the minimum point is indicated by “small”.
  • the position of the pixel having the maximum point and the position of the pixel having the minimum point are indicated by predetermined numerical values.
  • the angle between the line connecting the maximum points and the line connecting the minimum points in the luminance distribution of the two scan lines is 45 ° and 34 ° are set.
  • the maximum and minimum values P 1 and P 2 in FIG. 11 match the reference patterns in FIG. 12 (a).
  • the pattern matching angle detection unit 44 in FIG. 10 outputs an angle signal AN indicating 45 °.
  • the local minimum patterns P 1 and P 2 representing the positions of the local maximum points and the local minimum points in the luminance distribution of the video signals VD 1 and VD 2 in the detection window are created.
  • the angle of an image can be detected with a small circuit scale.
  • the angle of the image of the thin oblique line can be detected by detecting the local maximum point and the local minimum point as a pair.
  • the angle to be detected is not limited to the angle of a straight line connecting pixels located at point symmetry positions with respect to the interpolation pixel as a center.
  • the angle can also be detected. Therefore, the angle can be detected at finer intervals using the line memory 41 having a small capacity.
  • the configuration of the image angle detecting device is not limited to the above example.
  • a known correlation determination circuit disclosed in Japanese Patent Application Laid-Open No. H13-31367 may be used.
  • the first interpolation calculated using the pixel in the vertical direction Since the value of the pixel to be interpolated is calculated by the operation using the value and the second interpolation value calculated using the pixel in the oblique direction, smooth interpolation processing is performed on an image having an oblique edge. It can be carried out.

Description

技術分野
本発明は、 映像信号により表示される走査線の補間処理を行う走査線補間装置 に関する。 明
背景技術
飛び越し走査 (イン夕レース走査) 方式の映像信号を順次走査 (プログレッシ ブ走査) 方式の映像信号に変換するため、 または順次走査方式における走査線の 数を増加させるために、 走査線の補間処理を行う走査線補間装置が用いられる。 このような走査線補間装置においては、 補間処理により作成すべき走査線 (以 下、 補間走査線と呼ぶ) を構成する画素 (以下、 補間画素と呼ぶ) の値が上下の 走査線の画素の値に基づいて算出される。
この場合、 通常は、 補間画素に対して垂直方向に位置する画素を用いて補間画 素の値を算出し、 斜め方向のエッジを有する画像または細い斜め線の画像におい ては、 補間画素の斜め方向に位置する画素を用いて補間画素の値を算出すること が提案されている。 そのために、 映像信号により表示される画像において相関の 高い方向を判定する相関判定回路が用いられる。
従来の相関判定回路では、 補間画素を中心として上下方向および斜め方向のそ れぞれ 2画素間の差分値を検出し、 その差分値に基づいて相関の高い方向の角度 を判定している。 しかしながら、 このような 2画素間の差分値を用いる方法では 、 角度の誤検出が生じることがある。
そこで、 判定された方向に位置する 2画素間の差分値がしきい値よりも大きい 場合には、 垂直方向に位置する画素を用いて補間画素の値を算出し、 判定された 方向に位置する 2画素間の差分値がしきい値以下の場合には、 斜め方向の画素を 用いて補間画素の値を算出することが提案されている。
しかしながら、 上記の走査線補間装置では、 判定された方向に位置する 2画素 間の差分値がしきい値の近傍にある場合には、 補間画素の値がばらつき、 滑らか な画像が得られない。
例えば、 図 1 3に示すように、 斜め方向のエッジを有する画像を考える。 補間 画素 I Nの上下方向の 2画素 81 , 82の値がそれぞれ "0" および "100" であり、 一方の斜め方向の画素 83, 84の値がそれぞれ " 0" および " 100 " であり、 他方の斜め方向の画素 85, 86の値が "80" および "120" で あるとする。 また、 しきい値を "40" とする。
この場合、 補間画素 I Nの上下方向の 2画素 81, 82間の差分値が "100 " 、 一方の斜め方向の 2画素 83, 84間の差分値が "100" 、 他方の斜め方 向の 2画素 85, 86間の差分値が " 40" となるので、 相関の高い方向は、 2 画素 85, 86を結ぶ直線の方向となる。 この場合、 2画素 85, 86間の差分 値がしきい値以下であるので、 斜め方向の 2画素 85, 86を用いて補間画素 I Nの値が算出される。 例えば、 2画素 85, 86の値の平均値 "100" が捕間 画素の値となる。
しかしながら、 画素 85の値が "75" の場合には、 2画素 85, 86間の差 分値がしきい値よりも大きいので、 垂直方向の 2画素 81, 82を用いて補間画 素 I Nの値が算出される。 例えば、 2画素 8 1, 82の値の平均値 50が補間画 素 I Nの値となる。
このように、 画素 85の値が "5" 異なるだけで補間画素の値は "50" 異な ることになる。 その結果、 滑らかな画像が得られない。 発明の開示
本発明の目的は、 斜め方向のエッジを有する画像において滑らかな補間処理を 行うことができる走査線補間装置を提供することである。
本発明の一局面に従う走査線補間装置は、 入力された映像信号に基づいて補間 すべき画素の値を算出することにより走査線の補間処理を行う走査線補間装置で あって、 補間すべき画素に対して垂直方向に位置する上下の走査線の画素を用い た補間処理により第 1の補間値を算出する第 1の補間手段と、 補間すべき画素に 対する画像の方向を示す信号を入力する入力手段と、 補間すべき画素に対して入 力手段により入力された信号が示す方向に位置する上下の走査線の画素の値の差 分値を算出する差分算出手段と、 補間すべき画素に対して入力手段により入力さ れた信号が示す方向に位置する上下の走査線の画素を用いた補間処理により第 2 の補間値を算出する第 2の補間手段と、 差分算出手段により算出された差分値が 第 1の値以下の場合に、 第 2の補間手段により算出された第 2の補間値を補間す べき画素の値として出力し、 差分算出手段により算出された差分値が第 1の値よ りも大きい第 2の値以上の場合に、 第 1の補間手段により算出された第 1の補間 値を補間すべき画素の値として出力し、 差分算出手段により算出された差分値が 第 1の値から第 2の値の範囲内にある場合に、 第 1の補間手段により算出された 第 1の補間値と第 2の補間手段により算出された第 2の補間値とを用いた演算に より第 3の補間値を算出して補間すべき画素の値として出力する補間値出力手段 とを備えたものである。
本発明に係る走査線補間装置においては、 補間すべき画素に対して垂直方向に 位置する上下の走査線の画素を用いた補間処理により第 1の補間手段により第 1 の補間値が算出される。 また、 補間すべき画素に対する画像の方向を示す信号が 入力手段により入力され、 補間すべき画素に対して入力された信号が示す方向に 位置する上下の走査線の画素の値の差分値が差分算出手段により算出される。 ま た、 補間すべき画素に対して入力された信号が示す方向に位置する上下の走査線 の画素を用いた補間処理により第 2の補間手段により第 2の補間値が算出される 。 差分値が第 1の値以下の場合に、 第 2の補間値が補間値出力手段により補間す べき画素の値として出力され、 差分値が第 1の値よりも大きい第 2の値以上の場 合に、 第 1の補間値が補間値出力手段により補間すべき画素の値として出力され 、 差分値が第 1の値から第 2の値の範囲内にある場合に、 第 1の補間値と第 2の 補間値とを用いた演算により第 3の補間値が算出されて補間値出力手段により補 間すべき画素の値として出力される。
このように、 補間すべき画素の斜め方向の画素の差分値が第 1の値と第 2の値 との間にある場合に、 垂直方向の画素を用いて算出された第 1の補間値と斜め方 向の画素を用いて算出された第 2の補間値とを用いた演算により補間すべき画素 の値が算出されるので、 斜め方向のエッジを有する画像において滑らかな補間処 理を行うことができる。
補間値出力手段は、 差分算出手段により算出された差分値が第 1の値から第 2 の値の範囲内にある場合に、 差分値に応じた比率で第 1の補間手段により算出さ れた第 1の補間値と第 2の補間手段により算出された第 2の補間値とを加算し、 加算結果を補間すべき画素の値として出力してもよい。
この場合、 差分値が第 1の値と第 2の値との間にある場合に、 差分値に応じた 比率で第 1の補間値と第 2の補間値とが加算されるので、 滑らかな補間処理が可 能となる。
補間値出力手段は、 差分算出手段により算出された差分値が第 1の値から第 2 の値に近づくにつれて、 第 1の補間手段により算出された第 1の補間値の比率が 増加するとともに第 2の補間手段により算出された第 2の補間値の比率が減少す るように第 1の補間値と第 2の補間値とを加算してもよい。
この場合、 差分値が第 1の値から第 2の値に近づくにつれて、 第 1の補間値の 比率が増加するとともに第 2の補間値の比率が減少するように第 1の補間値と第 2の補間値とが加算されるので、 さらに滑らかな補間処理が可能となる。
差分算出手段は、 補間すべき画素に対して入力手段により入力された信号が示 す方向を中心として複数の方向に位置する複数組の画素の値の差分値をそれぞれ 算出し、 第 2の補間手段は、 補間すべき画素に対して入力手段により入力された 信号が示す方向を中心として複数の方向に位置する複数組の画素をそれぞれ用い た補間処理により複数の第 2の補間値をそれぞれ算出し、 走査線補間装置は、 差 分算出手段により算出された複数の差分値のうち最小値を判定する最小値判定手 段と、 第 2の補間手段により算出された複数の第 2の補間値のうち最小値判定手 段により最小値と判定された差分値に対応する第 2の補間値を選択して補間値出 力手段に与える選択手段とをさらに備えてもよい。
この場合、 補間すべき画素に対して入力された信号が示す方向を中心として複 数の方向に位置する複数組の画素の値の差分値がそれぞれ算出され、 補間すべき 画素に対して入力された信号が示す方向を中心として複数の方向に位置する複数 組の画素をそれぞれ用いた補間処理により複数の第 2の補間値がそれぞれ算出さ れる。 そして、 複数の差分値のうち最小値が判定され、 複数の第 2の補間値のう ち最小値と判定された差分値に対応する第 2の補間値が選択されて補間値出力手 段に与えられる。
このようにして、 複数の方向のうち最も相関の高い方向を判定し、 複数の方向 の第 2の補間値のうち最も相関の高い方向の第 2の補間値を選択することにより 、 画像の角度の誤検出を修正することができる。
走査線補間装置は、 補間すべき画素に対して垂直方向の上下に位置する画素の 値をそれぞれ検出する検出手段と、 第 2の補間手段により算出された第 2の補間 値が検出手段により検出された値の間にあるか否かを判定する中間値判定手段と をさらに備え、 補間値出力手段は、 中間値判定手段により第 2の補間値が検出手 段により検出された値の間にないと判定された場合に、 差分算出手段により算出 された差分値にかかわらず、 第 1の補間手段により算出された第 1の補間値を補 間すべき画素の値として出力してもよい。
この場合、 補間すべき画素に対して垂直方向の上下に位置する画素の値がそれ ぞれ検出され、 第 2の補間値が検出された値の間にあるか否かが判定される。 第 2の補間値が検出された値の間にないと判定された場合に、 斜め方向の差分値に かかわらず、 第 1の補間値が補間すべき画素の値として出力される。
このように、 第 2の補間値が補間すべき画素の上下の画素の値の間にない場合 には第 2の補間値を用いずに第 1の補間値を用いることにより、 画像の角度が誤 検出された場合に誤った方向の画素を用いて補間すべき画素の値を算出すること を防止することができる。
走査線補間装置は、 補間すべき画素に対して垂直方向の上下に位置する画素の 差分値を算出する上下差分演算手段をさらに備え、 補間値出力手段は、 上下差分 演算手段により算出された差分値が所定値よりも小さい場合に、 差分算出手段に より算出された差分値にかかわらず、 第 1の補間手段により算出された第 1の補 間値を補間すべき画素の値として出力してもよい。
この場合、 補間すべき画素に対して垂直方向の上下に位置する画素の差分値が 算出され、 垂直方向の差分値が所定値よりも小さい場合に、 斜め方向の差分値に かかわらず、 第 1の補間値が補間すべき画素の値として出力される。
このように、 垂直方向の差分値が所定値よりも小さい場合に第 2の補間値を用 いずに第 1の補間値を用いることにより、 画像の角度の誤検出による画質の劣化 を防止することができる。
第 2の補間手段は、 補間すべき画素に対して入力手段により入力された信号が 示す方向に位置する上下の走査線の画素の平均値を第 2の補間値として算出して もよい。
この場合、 第 2の補間値は、 補間すべき画素の斜め方向に位置する画素の値の 平均値となる。
第 1の値は 0であり、 第 2の値は予め設定されたしきい値であってもよい。 この場合、 差分値が 0の場合に、 第 2の補間値が補間すべき画素の値として出 力され、 差分値がしきい値以上の場合に、 第 1の補間値が補間すべき画素の値と して出力され、 差分値が 0からしきい値の範囲内にある場合に、 第 1の補間値と 第 2の補間値とを用いた演算により算出された第 3の補間値が補間すべき画素の 値として出力される。
走査線補間装置は、 入力された映像信号に基づいて補間すべき画素に関する画 像の角度を検出して画像の方向を示す信号を入力手段に与える画像角度検出手段 をさらに備え、 画像角度検出手段は、 入力された映像信号を複数の走査線および 補間すべき画素を含む所定の検出領域内で 2値化して 2値化パターンを発生する 2値化パターン発生手段と、 複数の方向を有する 2値画像を複数の参照パターン として発生する参照パターン発生手段と、 2値化パターン発生手段により発生さ れた 2値化パターンを参照パターン発生手段により発生された複数の参照パター ンの各々と比較し、 比較結果に基づいて補間すべき画素に関する画像の角度を検 出する比較手段とを備えてもよい。
画像角度検出手段において、 入力された映像信号が 2値化パターン発生手段に より所定の検出領域内で 2値化されて 2値化パターンが発生される。 また、 参照 パターン発生手段により複数の方向を有する 2値画像が複数の参照パターンとし て発生される。 そして、 比較手段により 2値化パターンが複数の参照パターンの 各々と比較され、 比較結果に基づいて補間すべき画素に関する画像の角度が検出 される。
この場合、 二次元のパターンの比較を行っているので、 2画素間の差分値を用 いる場合と比較して誤検出が抑制され、 斜め方向のエッジを有する画像の角度を 正確に検出することができる。
また、 二次元の参照パターンを用いることにより、 検出する角度が補間すべき 画素を中心とする点対称の位置にある画素を結ぶ直線の角度に限定されず、 それ らの間の角度を検出することもできる。 したがって、 回路規模を大きくすること なく、 より細かい間隔で角度を検出することができる。
走査線補間装置は、 入力された映像信号に基づいて補間すべき画素に関する画 像の角度を検出して画像の方向を示す信号を入力手段に与える画像角度検出手段 をさらに備え、 画像角度検出手段は、 入力された映像信号において複数の走査線 および補間すべき画素を含む所定の検出領域内で各走査線ごとに水平方向の輝度 分布の極大点または極小点の位置を表す極大極小パターンを発生する極大極小パ ターン発生手段と、 検出領域内で各走査線ごとに水平方向の輝度分布の極大点ま たは極小点の位置を表す複数の参照パターンを発生する参照パターン発生手段と 、 極大極小パターン発生手段により発生された極大極小パターンを参照パターン 発生手段により発生された複数の参照パターンの各々と比較し、 比較結果に基づ いて補間すべき画素に関する画像の角度を検出する比較手段とを含んでもよい。 画像角度検出手段においては、 入力された映像信号において極大極小パターン 発生手段により所定の検出領域内で各走査線ごとに水平方向の輝度分布の極大点 または極小点の位置を表す極大極小パターンが発生される。 また、 参照パターン 発生手段により検出領域内で各走査線ごとに水平方向の輝度分布の極大点または 極小点の位置を表す複数の参照パターンが発生される。 そして、 比較手段により 極大極小パターンが複数の参照パターンの各々と比較され、 ^較結果に基づいて 補間すべき画素に関する画像の角度が検出される。
この場合、 二次元のパターンの比較を行っているので、 2画素間の差分値を用 いる場合と比較して誤検出が抑制され、 細い斜め線の画像の角度を正確に検出す ることができる。
また、 二次元の参照パターンを用いることにより、 検出する角度が補間すべき 画素を中心とする点対称の位置にある画素を結ぶ直線の角度に限定されず、 それ らの間の角度を検出することもできる。 したがって、 回路規模を大きくすること なく、 より細かい間隔で角度を検出することができる。
本発明の他の局面に従う走査線補間装置は、 入力された映像信号に基づいて補 間すべき画素の値を算出することにより走査線の補間処理を行う走査線補間装置 であって、 補間すべき画素に対して垂直方向に位置する上下の走査線の画素を用 いた補間処理により第 1の補間値を算出する第 1の補間装置と、 補間すべき画素 に対する画像の方向を示す信号を入力する入力端子と、 補間すべき画素に対して 入力端子に入力された信号が示す方向に位置する上下の走査線の画素の値の差分 値を算出する差分算出装置と、 補間すべき画素に対して入力端子に入力された信 号が示す方向に位置する上下の走査線の画素を用いた補間処理により第 2の補間 値を算出する第 2の補間装置と、 差分算出装置により算出された差分値が第 1の 値以下の場合に、 第 2の補間装置により算出された第 2の補間値を補間すべき画 素の値として出力し、 差分算出装置により算出された差分値が第 1の値よりも大 きい第 2の値以上の場合に、 第 1の補間装置により算出された第 1の補間値を補 間すべき画素の値として出力し、 差分算出装置により算出された差分値が第 1の 値から第 2の値の範囲内にある場合に、 第 1の補間装置により算出された第 1の 補間値と第 2の補間装置により算出された第 2の補間値とを用いた演算により第 3の補間値を算出して補間すべき画素の値として出力する補間値出力装置とを備 えたものである。
本発明に係る走査線補間装置においては、 補間すべき画素に対して垂直方向に 位置する上下の走査線の画素を用いた補間処理により第 1の補間装置により第 1 の補間値が算出される。 また、 補間すべき画素に対する画像の方向を示す信号が 入力端子に入力され、 補間すべき画素に対して入力された信号が示す方向に位置 する上下の走査線の画素の値の差分値が差分算出装置により算出される。 また、 補間すべき画素に対して入力された信号が示す方向に位置する上下の走査線の画 素を用いた補間処理により第 2の補間装置により第 2の補間値が算出される。 差 分値が第 1の値以下の場合に、 第 2の補間値が補間値出力装置により補間すべき 画素の値として出力され、 差分値が第 1の値よりも大きい第 2の値以上の場合に、 第 1の補間値が補間値出力装置により補間すべき画素の値として出力され、 差分 値が第 1の値から第 2の値の範囲内にある場合に、 第 1の補間値と第 2の補間値 とを用いた演算により第 3の補間値が算出されて補間値出力装置により補間すベ き画素の値として出力される。
このように、 補間すべき画素の斜め方向の画素の差分値が第 1の値と第 2の値 との間にある場合に、 垂直方向の画素を用いて算出された第 1の補間値と斜め方 向の画素を用いて算出された第 2の補間値とを用いた演算により補間すべき画素 の値が算出されるので、 斜め方向のエッジを有する画像において滑らかな補間処 理を行うことができる。
補間値出力装置は、 差分算出装置により算出された差分値が第 1の値から第 2 の値の範囲内にある場合に、 差分値に応じた比率で第 1の補間装置により算出さ れた第 1の補間値と第 2の補間装置により算出された第 2の補間値とを加算し、 加算結果を補間すべき画素の値として出力してもよい。
この場合、 差分値が第 1の値と第 2の値との間にある場合に、 差分値に応じた 比率で第 1の補間値と第 2の補間値とが加算されるので、 滑らかな補間処理が可 能となる。
補間値出力装置は、 差分算出装置により算出された差分値が第 1の値から第 2 の値に近づくにつれて、 第 1の補間装置により算出された第 1の補間値の比率が 増加するとともに第 2の補間装置により算出された第 2の補間値の比率が減少す るように第 1の補間値と第 2の補間値とを加算してもよい。
この場合、 差分値が第 1の値から第 2の値に近づくにつれて、 第 1の補間値の 比率が増加するとともに第 2の補間値の比率が減少するように第 1の補間値と第 2の補間値とが加算されるので、 さらに滑らかな補間処理が可能となる。
差分算出装置は、 補間すべき画素に対して入力端子に入力された信号が示す方 向を中心として複数の方向に位置する複数組の画素の値の差分値をそれぞれ算出 し、 第 2の補間装置は、 補間すべき画素に対して入力端子に入力された信号が示 す方向を中心として複数の方向に位置する複数組の画素をそれぞれ用いた補間処 理により複数の第 2の補間値をそれぞれ算出し、 走査線補間装置は、 差分算出装 置により算出された複数の差分値のうち最小値を判定する最小値判定装置と、 第 2の補間装置により算出された複数の第 2の補間値のうち最小値判定装置により 最小値と判定された差分値に対応する第 2の補間値を選択して補間値出力装置に 与える選択装置とをさらに備えてもよい。
この場合、 補間すべき画素に対して入力された信号が示す方向を中心として複 数の方向に位置する複数組の画素の値の差分値がそれぞれ算出され、 補間すべき 画素に対して入力された信号が示す方向を中心として複数の方向に位置する複数 組の画素をそれぞれ用いた補間処理により複数の第 2の補間値がそれぞれ算出さ れる。 そして、 複数の差分値のうち最小値が判定され、 複数の第 2の補間値のう ち最小値と判定された差分値に対応する第 2の補間値が選択されて補間値出力装 置に与えられる。
このようにして、 複数の方向のうち最も相関の高い方向を判定し、 複数の方向 の第 2の補間値のうち最も相関の高い方向の第 2の補間値を選択することにより、 画像の角度の誤検出を修正することができる。
走査線補間装置は、 補間すべき画素に対して垂直方向の上下に位置する画素の 値をそれぞれ検出する検出装置と、 第 2の補間装置により算出された第 2の補間 値が検出装置により検出された値の間にあるか否かを判定する中間値判定装置と をさらに備え、 補間値出力装置は、 中間値判定装置により第 2の補間値が検出装 置により検出された値の間にないと判定された場合に、 差分算出装置により算出 された差分値にかかわらず、 第 1の補間装置により算出された第 1の補間値を補 間すべき画素の値として出力してもよい。
この場合、 補間すべき画素に対して垂直方向の上下に位置する画素の値がそれ ぞれ検出され、 第 2の補間値が検出された値の間にあるか否かが判定される。 第 2の補間値が検出された値の間にないと判定された場合に、 斜め方向の差分値に かかわらず、 第 1の補間値が補間すべき画素の値として出力される。
このように、 第 2の補間値が補間すべき画素の上下の画素の値の間にない場合 には第 2の補間値を用いずに第 1の補間値を用いることにより、 画像の角度が誤 検出された場合に誤った方向の画素を用いて補間すべき画素の値を算出すること を防止することができる。
走査線補間装置ば、 補間すべき画素に対して垂直方向の上下に位置する画素の 差分値を算出する上下差分演算装置をさらに備え、 補間値出力装置は、 上下差分 演算装置により算出された差分値が所定値よりも小さい場合に、 差分算出装置に より算出された差分値にかかわらず、 第 1の補間装置により算出された第 1の補 間値を補間すべき画素の値として出力してもよい。
この場合、 補間すべき画素に対して垂直方向の上下に位置する画素の差分値が 算出され、 垂直方向の差分値が所定値よりも小さい場合に、 斜め方向の差分値に かかわらず、 第 1の補間値が補間すべき画素の値として出力される。
このように、 垂直方向の差分値が所定値よりも小さい場合に第 2の補間値を用 いずに第 1の補間値を用いることにより、 画像の角度の誤検出による画質の劣化 を防止することができる。
第 2の補間装置は補間すべき画素に対して入力端子に入力された信号が示す方 向に位置する上下の走査線の画素の平均値を第 2の補間値として算出してもよい。 この場合、 第 2の補間値は、 補間すべき画素の斜め方向に位置する画素の値の 平均値となる。
第 1の値は 0であり、 第 2の値は予め設定されたしきい値であってもよい。 この場合、 差分値が 0の場合に、 第 2の補間値が補間すべき画素の値として出 力され、 差分値がしきい値以上の場合に、 第 1の補間値が補間すべき画素の値と して出力され、 差分値が 0からしきい値の範囲内にある場合に、 第 1の補間値と 第 2の補間値とを用いた演算により算出された第 3の補間値が補間すべき画素の 値として出力される。
走査線補間装置は、 入力された映像信号に基づいて補間すべき画素に関する画 像の角度を検出して画像の角度を示す信号を入力端子に与える画像角度検出装置 をさらに備え、 画像角度検出装置は、 入力された映像信号を複数の走査線および 補間すべき画素を含む所定の検出領域内で 2値化して 2値化パターンを発生する 2値化パターン発生装置と、 複数の方向を有する 2値画像を複数の参照パターン として発生する参照パターン発生装置と、 2値化パターン発生装置により発生さ れた 2値化パターンを参照パターン発生装置により発生された複数の参照パター ンの各々と比較し、 比較結果に基づいて補間すべき画素に関する画像の角度を検 出する比較装置とを含んでもよい。
画像角度検出装置において、 入力された映像信号が 2値化パターン発生装置に より所定の検出領域内で 2値化されて 2値化パターンが発生される。 また、 参照 パターン発生装置により複数の方向を有する 2値画像が複数の参照パターンとし て発生される。 そして、 比較装置により 2値化パターンが複数の参照パターンの 各々と比較され、 比較結果に基づいて補間すべき画素に関する画像の角度が検出 される。 · - この場合、 二次元のパターンの比較を行っているので、 2画素間の差分値を用 いる場合と比較して誤検出が抑制され、 斜め方向のエッジを有する画像の角度を 正確に検出することができる。
また、 二次元の参照パターンを用いることにより、 検出する角度が補間すべき 画素を中心とする点対称の位置にある画素を結ぶ直線の角度に限定されず、 それ らの間の角度を検出することもできる。 したがって、 回路規模を大きくすること なく、 より細かい間隔で角度を検出することができる。
走査線補間装置は、 入力された映像信号に基づいて補間すべき画素に関する画 像の角度を検出して画像の角度を示す信号を入力端子に与える画像角度検出装置 をさらに備え、 画像角度検出装置は、 入力された映像信号において複数の走査線 および補間すべき画素を含む所定の検出領域内で各走査線ごとに水平方向の輝度 分布の極大点または極小点の位置を表す極大極小パターンを発生する極大極小パ ターン発生装置と、 検出領域内で各走査線ごとに水平方向の輝度分布の極大点ま たは極小点の位置を表す複数の参照パターンを発生する参照パターン発生装置と 、 極大極小パターン発生装置により発生された極大極小パターンを参照パターン 発生装置により発生された複数の参照パターンの各々と比較し、 比較結果に基づ いて補間すべき画素に関する画像の角度を検出する比較装置とを含んでもよい。 画像角度検出装置においては、 入力された映像信号において極大極小パターン 発生装置により所定の検出領域内で各走査線ごとに水平方向の輝度分布の極大点 または極小点の位置を表す極大極小パターンが発生される。 また、 参照パターン 発生装置により検出領域内で各走査線ごとに水平方向の輝度分布の極大点または 極小点の位置を表す複数の参照パターンが発生される。 そして、 比較装置により 極大極小パターンが複数の参照パターンの各々と比較され、 比較結果に基づいて 補間すべき画素に関する画像の角度が検出される。
この場合、 二次元のパターンの比較を行っているので、 2画素間の差分値を用 いる場合と比較して誤検出が抑制され、 細い斜め線の画像の角度を正確に検出す ることができる。
また、 二次元の参照パターンを用いることにより、 検出する角度が補間すべき 画素を中心とする点対称の位置にある画素を結ぶ直線の角度に限定されず、 それ らの間の角度を検出することもできる。 したがって、 回路規模を大きくすること なく、 より細かい間隔で角度を検出することができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態における走査線補間装置の構成を示すプロ ック図、
図 2は、 画像の角度と補間処理に用いる画素との関係を説明するための模式図 図 3は、 図 1の混合部の動作を説明するための模式図、
図 4は、 斜め方向差分絶対値と斜め方向平均値の係数および垂直方向補間値の 係数との関係を示す模式図、
図 5は、 本発明の第 2の実施の形態における走査線補間装置の構成を示すプロ ック図、
図 6は、 図 5の走査線補間装置の斜め方向平均値演算部および斜め方向差分絶 対値演算部による斜め方向補間処理を説明するための模式図、
図 7は、 角度信号を出力する画像角度検出装置の構成の一例を示すブロック図 図 8は、 図 7の 2値化部から出力される 2値化パターンの一例を示す図、 図 9は、 図 7のリフアレンスパターン発生部により発生されるリフアレンスパ ターンの例を示す模式図、
図 1 0は、 角度信号を出力する画像角度検出装置の構成の他の例を示すブロッ ク図、
図 1 1は、 図 1 0の上ライン極大極小検出部および下ライン極大極小検出部か ら出力される極大極小パターンの例を示す模式図、
図 1 2は、 図 1 1のリファレンスパターン発生部により発生されるリファレン スパターンの例を示す模式図、
図 1 3は、 従来の走査線補間装置における補間処理を説明するための模式図で ある。 発明を実施するための最良の形態
( 1 ) 第 1の実施の形態
図 1は本発明の第 1の実施の形態における走査線補間装置の構成を示すブロッ ク図である。
図 1の走査線補間装置は、 ラインメモリ 1、 垂直方向補間回路 2、 斜め方向平 均値演算部 3、 斜め方向差分絶対値演算部 4および混合部 5を含む。
映像信号 V D 1は、 ラインメモリ 1、 垂直方向補間回路 2、 斜め方向平均値演 算部 3および斜め方向差分絶対値演算部 4に入力される。
また、 角度信号 A Nが、 入力端子 6を介して斜め方向平均値演算部 3および斜 め方向差分絶対値演算部 4に入力される。 この角度信号 A Nは、 斜め方向のエツ ジを有する画像または細い斜め線の画像のように斜め方向の画像の角度を示し、 後述する画像角度検出装置により与えられる。
ラインメモリ 1は、 入力された映像信号 V D 1を 1ライン (1走査線) 分遅延 させて出力する。 ラインメモリ 1から出力される映像信号 V D 2は、 垂直方向補 間回路 2、 斜め方向平均値演算部 3および斜め方向差分絶対値演算部 4に与えら れる。
本例では、 映像信号 V D 1 , V D 2は 2 5 6階調の輝度を有するものとする。 すなわち、 映像信号 V D 1, V D 2の輝度の最小値は " 0 " であり、 最大値は " 2 5 5 " である。
垂直方向補間回路 2は、 入力される映像信号 V D 1およびラインメモリ 1から 出力される映像信号 V D 2に基づいて補間画素 (補間処理により作成すべき画素 ) に対して垂直方向の上下に位置する画素を用いて補間処理 (以下、 垂直方向補 間処理と呼ぶ) を行い、 垂直方向補間値 I Dを出力する。 この垂直方向補間回路 2は、 例えば、 補間画素に対して垂直方向の上下に位置する画素の値の平均値を 垂直方向補間値 I Dとして算出する。 垂直方向補間回路 2としては、 公知の補間 回路を用いることができる。 例えば、 垂直方向補間回路 2として複数の画素の値 のうち中間値を選択して出力するメディアンフィルタを用いた補間回路を用いて もよい。
斜め方向平均値演算部 3は、 入力される映像信号 V D 1、 ラインメモリ 1から 出力される映像信号 V D 2および角度信号 A Nに基づいて補間画素に対して斜め 方向に位置する上の走査線の画素の値と下の走査線の画素の値との平均値を算出 し、 算出結果を斜め方向平均値 A Dとして出力する。 この斜め方向平均値演算部 3による斜め方向平均値 A Dの算出処理を斜め方向補間処理と呼ぶ。
斜め方向差分絶対値演算部 4は、 入力される映像信号 V D 1、 ラインメモリ 1 から出力される映像信号 V D 2および角度信号 A Nに基づいて補間画素に対して 斜め方向に位置する画素の値の差分の絶対値を算出し、 算出結果を斜め方向差分 絶対値 D Dとして出力する。
混合部 5は、 斜め方向差分絶対値演算部 4から出力される斜め方向差分絶対値 D Dに基づいて、 垂直方向補間回路 2から出力される垂直方向補間値 I D、 斜め 方向平均値演算部 3から出力される斜め方向平均値 A D、 またはそれらの混合値 を補間画素の値 (以下、 補間画素値と呼ぶ) I Sとして出力する。 混合部 5の詳 細な動作は後述する。
本実施の形態では、 垂直方向補間回路 2が第 1の補間手段または第 1の補間装 置に相当し、 角度信号 A Nを受ける入力端子 6が入力手段または入力端子に相当 し、 斜め方向差分絶対値算出部 4が差分算出手段または差分算出装置に相当し、 斜め方向平均値演算部 3が第 2の補間手段または第 2の補間装置に相当し、 混合 部 5が補間値出力手段または補間値出力装置に相当する。
図 2は画像の角度と補間処理に用いる画素との関係を説明するための模式図で ある。
図 2において、 I Lは補間走査線を示し、 A Lは補間走査線 I Lの上の走査線 を示し、 B Lは補間走査線 I Lの下の走査線を示す。 上の走査線 A Lは画素 A 1 〜A 5を含み、 下の走査線 B Lは画素 B 1〜B 5を含む。 I Nは補間画素を示す 図 2の例では、 画像の角度は矢印 d 0で示すように水平方向に対して約 4 5 ° となっている。 この場合、 図 1に示される角度信号 ANは 45° を表す。 図 1の 斜め方向平均値演算部 3は、 補間画素 I Nを中心として角度 45° の方向に位置 する上の走査線 ALの画素 A 4の輝度値および下の走査線 B Lの画素 B 2の輝度 値の平均値を斜め方向平均値 ADとして出力する。 また、 図 1の斜め方向差分絶 対値演算部 4は、 補間画素 I Nを中心として角度 45° の方向に位置する上の走 査線 A Lの画素 A 4の輝度値と下の走査線 BLの画素 B 2の輝度値との差分の絶 対値を斜め方向差分絶対値 DDとして出力する。
図 3は図 1の混合部 5の動作を説明するための模式図である。
図 3に示すように、 斜め方向差分絶対値演算部 4から出力される斜め方向差分 絶対値 D Dが 0の場合には、 混合部 5は斜め方向平均値演算部 3から出力される 斜め方向平均値 ADを補間画素値 I Sとして出力する。 また、 斜め方向差分絶対 値演算部 4から出力される斜め方向差分絶対値 DDが予め設定されたしきい値 T H以上の場合には、 混合部 5は垂直方向補間回路 2から出力される垂直方向補間 値 I Dを補間画素値 I Sとして出力する。 斜め方向差分絶対値演算部 4から出力 される斜め方向差分絶対値 DDが 0としきい値 THとの間にある場合には、 混合 部 5は斜め方向平均値演算部 3から出力される斜め方向平均値 ADと垂直方向補 間回路 2から出力される垂直方向補間値 I Dとを斜め方向差分絶対値 D Dに応じ た比率で混合し、 混合値を補間画素値 I Sとして出力する。
図 4は斜め方向差分絶対値と斜め方向平均値の係数および垂直方向補間値の係 数との関係を示す模式図である。
図 1の混合部 5は、 斜め方向差分絶対値 D Dが 0としきい値 T Hとの間にある 場合に次式により混合値 CXを算出する。
CX = K 1 · AD + K2 ' I D … ( 1 )
上式 (1) において、 K 1および K 2はそれぞれ斜め方向平均値および垂直方 向補間値の係数であり、 K 1 +K2は常に 1となるように設定する。 図 4の横軸 は斜め方向差分絶対値 DDを示し、 縦軸は係数 K 1および K 2を示す。
図 4に示すように、 斜め方向平均値 A Dの係数 K 1は、 斜め方向差分絶対値 D Dが 0のときに 1. 0となり、 斜め方向差分絶対値 DDが増加するにつれて減少 し、 斜め方向差分絶対値 DDがしきい値 THのときに 0となる。 一方、 垂直方向 補間値 I Dの係数 K2は、 斜め方向差分絶対値 DDが 0のときに 0となり、 斜め 方向差分絶対値 DDが増加するにつれて増加し、 斜め方向差分絶対値 DDがしき い値 THのときに 1. 0となる。 '
なお、 図 4の例では、 斜め方向平均値 ADの係数 K 1および垂直方向補間値 I Dの係数 K 2が斜め方向差分絶対値 DDに対して直線的に減少および増加してい るが、 これに限定されず、 斜め方向平均値 ADの係数 K1および垂直方向補間値 I Dの係数 K 2が曲線状に変化してもよい。
本実施の形態の走査線補間装置においては、 斜め方向差分絶対値 DDが 0とし きい値 THとの間にある場合に、 混合部 5が斜め方向差分絶対値 DDに応じて垂 直方向補間値 I Dおよび斜め方向平均値 ADの比率を変化させて混合し、 補間画 素値 I Sとして出力するので、 斜め方向のエッジを有する画像において滑らかな 補間処理が可能となる。
なお、 斜め方向差分絶対値 DDが 0の場合のみに斜め方向平均値 ADを補間画 素値 I Sとして出力する例を示したが、 これに限るものではなく、 0より大きく しきい値 THより小さい任意の値で斜め方向平均値 ADを補間画素値 I Sとして 出力するように設定してもよい。
(2) 第 2の実施の形態
図 5は本発明の第 2の実施の形態における走査線補間装置の構成を示すブロッ ク図である。
図 5の走査線補間装置は、 ラインメモリ 1 1、 垂直方向補間回路 12、 垂直方 向上下画素値抽出部 1 3、 斜め方向平均値演算部 14、 垂直方向上下画素差分絶 対値演算部 1 5、 斜め方向差分絶対値演算部 1 6、 セレクタ 1 7、 最小値判定部 1 8、 セレクタ 1 9、 中間値判定部 20および混合部 2 1を含む。
映像信号 VD 1は、 ラインメモリ 1 1、 垂直方向補間回路 1 2、 垂直方向上下 画素値抽出部 1 3、 斜め方向平均値演算部 14、 垂直方向上下画素差分絶対値演 算部 1 5および斜め方向差分絶対値演算部 1 6に入力される。 また、 角度信号 A Nは、 入力端子 22を介して斜め方向平均値演算部 14および斜め方向差分絶対 値演算部 1 6に入力される。
ラインメモリ 1 1は、 入力された映像信号 VD 1を 1ライン (1走査線) 遅延 させて出力する。 ラインメモリ 1 1から出力される映像信号 VD 2は、 垂直方向 補間回路 12、 垂直方向上下画素値抽出部 13、 斜め方向平均値演算部 14、 垂 直方向上下画素差分絶対値演算部 1 5および斜め方向差分絶対値演算部 1 6に与 えられる。
本例においても、 映像信号 VD 1, VD 2は 256階調の輝度を有するものと する。 すなわち、 映像信号 VD 1, VD 2の輝度の最小値は "0" であり、 最大 値は " 255" である。
垂直方向補間回路 1 2は、 図 1の垂直方向補間回路 2と同様に、 入力される映 像信号 VD 1およびラインメモリ 1 1から出力される映像信号 VD 2に基づいて 補間画素に対して垂直方向の上下に位置する画素を用いて垂直方向補間処理を行 レ 垂直方向補間値 I Dを出力する。
垂直方向上下画素値抽出部 1 3は、 入力される映像信号 VD 1およびラインメ モリ 1 1から出力される映像信号 VD 2に基づいて、 補間画素に対して垂直方向 に位置する上の走査線の画素の値および下の走査線の画素の値をそれぞれ垂直上 画素値 Pおよび垂直下画素値 Qとして出力する。
斜め方向平均値演算部 14は、 入力される映像信号 VD 1、 ラインメモリ 1 1 から出力される映像信号 VD 2および角度信号 ANに基づいて、 補間画素に対し て角度信号 ANにより示される角度の方向 (0方向と呼ぶ) に位置する上の走査 線の画素の値と下の走査線の画素の値との平均値を算出し、 算出結果を斜め方向 平均値 Abとして出力する。 また、 斜め方向平均値演算部 14は、 角度信号 AN により示される角度を中心として 1つ小さい角度の方向 (— 1方向と呼ぶ) に位 置する上の走査線の画素の値と下の走査線の画素の値との平均値を算出し、 算出 結果を斜め方向平均値 Aaとして出力するとともに、 角度信号 ANにより示され る角度を中心として 1つ大きい角度の方向 (+ 1方向と呼ぶ) に位置する上の走 查線の画素の値と下の走査線の画素の値との平均値を算出し、 算出結果を斜め方 向平均値 Acとして出力する。
垂直方向上下画素差分絶対値演算部 15は、 入力される映像信号 VD 1および ラインメモリ 1 1から出力される映像信号 VD 2に基づいて、 補間画素に対して 垂直方向に位置する上の走査線の画素の値と下の走査線の画素の値との差分の絶 対値を算出し、 上下差分絶対値 A Bとして出力する。
斜め方向差分絶対値演算部 1 6は、 入力される映像信号 V D 1、 ラインメモリ 1 1から出力される映像信号 V D 2および角度信号 A Nに基づいて、 補間画素に 対して角度信号 A Nにより示される角度の方向 (0方向) に位置する上の走査線 の画素の値と下の走査線の画素の値との差分の絶対値を算出し、 斜め方向差分絶 対値 D bとして出力する。 また、 斜め方向差分絶対値演算部 1 6は、 角度信号 A Nにより示される角度を中心として 1つ小さい角度の方向 (― 1方向) に位置す る上の走査線の画素の値と下の走査線の画素の値との差分の絶対値を算出し、 算 出結果を斜め方向差分絶対値 D aとして出力するとともに、 角度信号 A Nにより 示される角度を中心として 1つ大きい角度の方向 (+ 1方向) に位置する上の走 査線の画素の値と下の走査線の画素の値との差分の絶対値を算出し、 算出結果を 斜め方向差分絶対値 D cとして出力する。
最小値判定部 1 8は、 斜め方向差分絶対値演算部 1 6から出力される斜め方向 差分絶対値 D a, D b , D cのうち最小値を判定し、 最小値となる角度を示す判 定結果をセレクタ 1 7, 1 9に与える。
セレクタ 1 7は、 最小値判定部 1 8により与えられる判定結果に基づいて斜め 方向平均値演算部 1 4から出力される斜め方向平均値 A a , A b , A cのうち判 定結果が示す角度に対応する斜め方向平均値を選択し、 斜め方向平均値 として. 出力する。
セレクタ 1 9は、 最小値判定部 1 8により与えられる判定結果に基づいて斜め 方向差分絶対値演算部 1 6から出力される斜め方向差分絶対値 D a, D b , D c のうち判定結果が示す角度に対応する斜め方向差分絶対値を選択し、 斜め方向差 分絶対値 Sとして出力する。
中間値判定部 2 0は、 垂直方向上下画素値抽出部 1 3から出力される垂直上画 素値 Pおよび垂直下画素値 Qならびにセレクタ 1 7から出力される斜め方向平均 値 Rのうち中間値を判定し、 判定結果を混合部 2 1に与える。
混合部 2 1は、 セレクタ 1 9から出力される斜め方向差分絶対値 Sに基づいて 、 垂直方向補間回路 1 2から出力される垂直方向補間値 I D、 セレクタ 1 7から 出力される斜め方向平均値 R、 またはそれらの混合値を補間画素値 I Sとして出 力する。 斜め方向差分絶対値 Sと垂直方向補間値 I Dとの混合値の算出方法は、 図 2および図 3に示した斜め方向平均値 A Dと垂直方向補間値 I Dとの混合値の 算出方法と同様である。
また、 混合部 2 1は、 中間値判定部 2 0の判定結果が斜め方向年均値 Rでない 場合、 すなわち斜め方向平均値 Rが垂直上画素値 Pと垂直下画素値 Qとの中間値 でない場合には、 垂直方向補間回路 1 2から出力される垂直方向補間値 I Dを補 間画素値 I Sとして出力する。 それにより、 斜め方向平均値 Rが補間画素の上下 の画素の値の間にない場合には、 斜め方向補間処理が行われずに垂直方向補間処 理が行われる。
斜め方向差分絶対値演算部 1 6は、 垂直方向上下画素差分絶対値演算部 1 5に より与えられた上下差分絶対値 A Bが所定値よりも小さい場合に、 斜め方向差分 絶対値 D a , D b , D cとして輝度の最大値 " 2 5 5 " をそれぞれ出力する。 そ れにより、 セレクタ 1 9から出力される斜め方向差分絶対値 Sが最大値 " 2 5 5 " となる。 したがって、 混合部 2 1は、 垂直方向補間回路 1 2から出力される垂 直方向補間値 I Dを補間画素値 I Sとして出力する。 すなわち、 補間画素の上下 の画素の差分の絶対値が小さい場合には斜め方向補間処理が行われずに垂直方向 補間処理が行われる。
本実施の形態では、 垂直方向補間回路 1 2が第 1の補間手段または第 1の補間 装置に相当し、 角度信号 A Nを受ける入力端子 2 2が入力手段または入力端子に 相当し、 斜め方向差分絶対値演算部 1 6が差分算出手段ま は差分算出装置に相 当し、 斜め方向平均値演算部 1 4が第 2の補間手段または第 2の補間装置に相当 し、 混合部 2 2が補間値出力手段または補間値出力装置に相当する。
また、 最小値判定部 1 8が最小値判定手段または最小値判定装置に相当し、 セ レク夕 1 7が選択手段または選択装置に相当し、 垂直方向上下画素値抽出部 1 3 が検出手段または検出装置に相当し、 中間値判定部 2 0が中間値判定手段または 中間値判定装置に相当し、 垂直方向上下画素差分絶対値演算部 1 5が上下差分演 算手段または上下差分演算装置に相当する。
図 6は図 5の斜め方向平均値演算部 1 4および斜め方向差分絶対値演算部 1 6 による斜め方向補間処理を説明するための模式図である。 図 6において、 I Lは補間走査線を示し、 A Lは補間走査線 I Lの上の走査線 を示し、 BLは補間走査線 I Lの下の走査線を示す。 上の走査線 ALは画素 A1 〜A5を含み、 下の走査線 BLは画素 B 1〜B 5を含む。 I Nは補間画素を示す 図 6の例では、 図 5の角度信号 ANが表す画像の角度を矢印 d 0で示し、 — 1 方向を矢印 d—で示し、 + 1方向を矢印 d+で示す。
図 5の斜め方向平均値演算部 14は、 補間画素 I Nを中心として矢印 d 0の方 向に位置する上の走査線 ALの画素 A4の輝度値および下の走査線 B Lの画素 B 2の輝度値の平均値を斜め方向平均値 Abとして出力し、 矢印 d—の方向に位置 する上の走査線 ALの画素 A 5の輝度値および下の走査線 BLの画素 B 1の輝度 値の平均値を斜め方向平均値 A aとして出力し、 矢印 d +の方向に位置する上の 走査線 A Lの画素 A 3の輝度値および下の走査線 B Lの画素 B 3の輝度値の平均 値を斜め方向平均値 Acとして出力する。 また、 図 5の斜め方向差分絶対値演算 部 14は、 補間画素 I Nを中心として矢印 d 0の方向に位置する上の走査線 A L の画素 A 4の輝度値と下の走査線 B Lの画素 B 2の輝度値との差分の絶対値を斜 め方向差分絶対値 Dbとして出力し、 矢印 d—の方向に位置する上の走査線 AL の画素 A 5の輝度値と下の走査線 B Lの画素 B 1の輝度値との差分の絶対値を斜 め方向差分絶対値 D aとして出力するとともに、 矢印 d+の方向に位置する上の 走査線 A Lの画素 A 3の輝度値と下の走査線 B Lの画素 B 3の輝度値との差分の 絶対値を斜め方向差分絶対値 D cとして出力する。
本実施の形態の走査線補間装置においては、 斜め方向差分絶対値 Sが 0としき い値 THとの間にある場合に、 斜め方向差分絶対値 Sに応じて垂直方向補間値 I Dおよび斜め方向差分絶対値 Rの比率を変化させて混合し、 補間画素値 I Sとし て出力するので、 斜め方向のエッジを有する画像において滑らかな補間処理が可 能となる。
また、 斜め方向差分絶対値演算部 1 6により算出された斜め方向差分絶対値 D a, Db, D cに基づいて角度信号 ANにより示される方向、 — 1方向および + 1方向のうち最も相関の高い方向を判定し、 斜め方向平均値演算部 14により算 出された斜め方向平均値 A a, Ab, Acのうち最も相関の高い方向に対応する 斜め方向平均値を選択するので、 画像の角度の誤検出を修正することができる。 さらに、 斜め方向のエッジを有する画像においては、 補間画素の値は上下の画 素の値の中間となる。 斜め方向平均値 Rが補間画素の上下の画素の値の中間にな い場合には、 斜め方向補間処理を行わずに垂直方向補間処理を行うことにより、 画像の角度が誤検出された場合に誤った方向の画素に基づいて補間画素値 I Sを 算出することを防止することができる。
また、 斜め方向のエッジを有する画像では、 補間画素に対して垂直方向の上下 に位置する画素間の差分は大きい。 補間画素の上下の画素の差分の絶対値が小さ い場合には斜め方向補間処理を行わずに垂直方向補間処理を行うことにより、 画 像の角度の誤検出による画質の劣化を防止することができる。
図 7は角度信号 ANを出力する画像角度検出装置の構成の一例を示すプロック 図である。
図 7の画像角度検出装置は、 ラインメモリ 3 1、 2値化部 3 2、 検出ウィンド ゥ内映像信号処理部 3 3、 パターンマッチング角度検出部 3 4およびリファレン スパターン発生部 3 5を含む。
映像信号 V D 1は、 ラインメモリ 3 1、 2値化部 3 2および検出ウィンドウ内 映像信号処理部 3 3に入力される。 ラインメモリ 3 1は、 入力された映像信号 V D 1を 1ライン (1走査線) 分遅延させて出力する。 ラインメモリ 3 1から出力 される映像信号 V D 2は、 2値化部 3 2および検出ウィンドウ内映像信号処理部 3 3に与えられる。
2値化部 3 2は、 入力される映像信号 V D 1およびラインメモリ 3 1から出力 される映像信号 V D 2を、 後述する検出ウィンドウ内映像信号処理部 3 3から与 えられる平均輝度値 L Uをしきい値として 2値化し、 " 1 " および " 0 " からな る 2値化パターン B Iを出力する。 2値化パターン B Iは、 検出ウィンドウのサ ィズを有する。
ここで、 検出ウィンドウは、 例えば、 映像信号 V D 1の 7画素および映像信号 V D 2の 7画素を含む 7 X 2画素の矩形領域、 映像信号 V D 1の 1 5画素および 映像信号 V D 2の 1 5画素を含む 1 5 X 2画素の矩形領域等である。 なお、 以下 の説明では、 検出ウィンドウのサイズを 7 X 2画素とする。 この場合、 2値化パ ターン B Iのサイズは 7 X 2画素となる。
検出ウィンドウ内映像信号処理部 33は、 入力される映像信号 VD 1およびラ インメモリ 31から出力される映像信号 VD 2に検出ウィンドウを設定し、 検出 ウィンドウ内の映像信号 VD 1, VD 2の輝度の平均値を算出し、 2値化部 32 に平均輝度値 LUを 2値化のためのしきい値として与える。
リファレンスパターン発生部 35は、 "1" および " 0" からなる複数のリフ アレンスパターン RAを発生し、 パターンマッチング角度検出部 34に与える。 各リファレンスパターン RAのサイズは検出ウインドウのサイズに等しい。 パターンマッチング角度検出部 34は、 2値化部 32から与えられる 2値化パ タ一ン B Iをリファレンスパターン発生部 35から与えられる複数のリファレン スパターン RAの各々と比較し、 一致したリファレンスパターン RAの角度を角 度信号 ANとして出力する。 以下、 2値化パターン B Iと各リファレンスパ夕一 ン R Aとの比較動作をパターンマッチングと呼ぶ。
図 8は図 7の 2値化部 32から出力される 2値化パターン B Iの一例を示す模 式図である。
図 8において、 I Nは補間画素を示し、 I Lは補間走査線を示す。 また、 AL は補間走査線 I Lの上の走査線を示し、 BLは補間走査線 I Lの下の走査線を示 す。
図 8の例では、 輝度の低い部分 (暗い部分) が "0" で示され、 輝度の高い部 分 (明るい部分) が "1" で示されている。 2値化パターン B Iにおいては、 画 像のエッジの角度が 45° となっている。 ここでは、 水平方向の角度を 0とし、 右上の斜め方向の角度を正としている。
図 9は図 7のリファレンスパターン発生部 35により発生されるリファレンス パターンの例を示す模式図である。 網掛けが施されている画素は、 太線で示され る補間画素の値の算出に用いる上下の走査線の画素である。
図 9 (a) , (b) , (c) , (d) , (e) はそれぞれ 45° 、 34° 、 2 7° 、 22° および 18° のリファレンスパターンを示す。 図 9の例では、 左上 が暗い部分となり、 右下が明るい部分となっている。
図 9に示すように、 二次元の輝度分布によるリファレンスパターンにおいては 、 補間画素を中心とした点対称の位置の画素間を結ぶ直線の角度だけでなく、 そ れらの角度の間の角度も設定することができる。 例えば、 4 5 ° 、 2 7 ° および 1 8 ° の間の角度である 3 4 ° および 2 2 ° を設定することができる。
例えば、 図 8の 2値化パターン B Iは図 9 ( a ) のリファレンスパターンと一 致する。 この場合、 図 7パターンマッチング角度検出部 3 5は、 4 5 ° を示す角 度信号 A Nを出力する。
図 7の画像角度検出装置においては、 検出ウィンドウ内の映像信号 V D 1 , V D 2の輝度分布を 2値化パターン B Iに変換し、 2値化パターン B Iと予め設定 された複数のリファレンスパターン R Aとのパターンマッチングを行うことによ り、 少ない回路規模で画像の角度を検出することができる。
この場合、 検出ウィンドウ内の平均輝度値を 2値化のしきい値として用いてい るので、 外部から 2値化のしきい値を設定することなく、 画像の輝度レベルに関 係なく 2値化パターン B Iを作成することができる。
また、 二次元の輝度分布によるパターンマッチングを行っているので、 2画素 間の差分値を用いる場合と比較して誤検出が抑制され、 斜め方向のエッジを有す る画像の角度を正確に検出することができる。
さらに、 二次元の輝度分布によるリファレンスパターン R Aを用いることによ り、 検出する角度が補間画素を中心として点対称の位置にある画素を結ぶ直線の 角度に限定されず、 それらの角度の間の角度を検出することもできる。 したがつ て、 少ない容量のラインメモリ 3 1を用いてより細かい間隔で角度を検出するこ とができる。
図 1 0は角度信号 A Nを出力する画像角度検出装置の構成の他の例を示すプロ ック図である。
図 1 0の画像角度検出装置は、 ラインメモリ 4 1、 上ライン極大極小検出部 4 2、 下ライン極大極小検出部 4 3、 パターンマッチング角度検出部 4 4およびリ ファレンスパターン発生部 4 5を含む。
映像信号 V D 1は、 ラインメモリ 4 1および下ライン極大極小検出部 4 3に入 力される。 ラインメモリ 4 1は、 入力された映像信号 V D 1を 1ライン (1走査 線) 分遅延させて出力する。 ラインメモリ 4 1から出力される映像信号 V D 2は 、 上ライン極大極小検出部 4 2に与えられる。
上ライン極大極小検出部 4 2は、 ラインメモリ 4 1から出力される映像信号 V D 2において水平方向の輝度分布の極大点および極小点を検出し、 極大点および 極小点の位置を示す極大極小パターン P 1をパターンマッチング角度検出部 4 4 に与える。 下ライン極大極小検出部 4 3は、 入力される映像信号 V D 1において 水平方向の輝度分布の極大点および極小点を検出し、 極大点および極小点の位置 を示す極大極小パターン P 2をパターンマッチング角度検出部 4 4に与える。 極 大極小パターン P 1および極大極小パターン P 2は、 それぞれ検出ウィンドウの 1走査線分のサイズを有する。
ここで、 検出ウィンドウは、 例えば、 映像信号 V D 1の 7画素および映像信号 V D 2の 7画素を含む 7 X 2画素の矩形領域、 映像信号 V D 1の 1 5画素および 映像信号 V D 2の 1 5画素を含む 1 5 X 2画素の矩形領域等である。 なお、 以下 の説明では、 検出ウィンドウのサイズを 7 X 2画素とする。 この場合、 極大極小 パターン P 1および極大極小パターン P 2のサイズはそれぞれ 7画素である。
リファレンスパ夕一ン発生部 4 5は、 検出ウィンドウ内の極大点および極小点 の位置を示す複数のリファレンスパターン R Bを発生し、 パターンマッチング角 度検出部 4 4に与える。 各リファレンスパターン R Bのサイズは検出ウィンドウ のサイズに等しい。
パターンマッチング角度検出部 4 4は、 上ライン極大極小検出部 4 2から出力 される極大極小パターン P 1および下ライン極大極小検出部 4 3から出力される 極大極小パターン P 2をリファレンスパターン発生部 4 5から与えられる複数の リファレンスパターン R Bの各々と比較し、 一致したリファレンスパターン R B の角度を示す角度信号 A Nを出力する。
以下、 極大極小パターン P I , P 2と各リファレンスパターン R Bとの比較動 作をパターンマッチングと呼ぶ。
図 1 1は図 1 0の上ライン極大極小検出部 4 2および下ライン極大極小検出部 4 3から出力される極大極小パターン P 1, P 2の一例を示す模式図である。 図 1 1において、 I Nは補間画素を示し、 I Lは補間走査線を示す。 また、 A Lは補間走査線 I Lの上の走査線を示し、 B Lは補間走査線 I Lの下の走査線を 示す。
図 1 1の例では、 水平方向の輝度分布において極大点を有する画素の位置が 「 大 J で示され、 水平方向の輝度分布において極小点を有する画素の位置が 「小」 で示されている。 なお、 実際には、 極大点を有する画素の位置および極小点を有 する画素の位置は所定の数値で示される。 極大極小パターン P 1, P 2において は、 走査線 ALおよび走査線 B Lの輝度分布において極大点同士を結ぶ直線およ び極小点同士を結ぶ直線の角度が 45 ° となっている。 ここでは、 水平方向の角 度を 0とし、 右上の斜め方向の角度を正としている。
図 12は図 10のリファレンスパターン発生部 45により発生されるリファレ ンスパターンの例を示す模式図である。
図 12 (a) , (b) はそれぞれ 45 ° および 34° のリファレンスパターン を示す。 図 12において、 極大点を有する画素の位置が 「大」 で示され、 極小点 を有する画素の位置が 「小」 で示されている。 なお、 実際には、 極大点を有する 画素の位置および極小点を有する画素の位置は所定の数値で示されている。
図 12 (a) , (b) に示すように、 極大点および極小点を対として 2つの走 査線の輝度分布における極大点同士を結ぶ直線および極小点同士を結ぶ直線の角 度がそれぞれ 45° および 34° に設定されている。
例えば、 図 11の極大極小パ夕一ン P 1 , P 2は図 12 (a) のリファレンス パターンと一致する。 この場合、 図 10のパターンマッチング角度検出部 44は 、 45 ° を示す角度信号 ANを出力する。
図 10の画像角度検出装置においては、 検出ウインドウ内の映像信号 VD 1, VD 2の輝度分布における極大点および極小点の位置を表す極大極小パターン P 1, P 2を作成し、 極大極小パターン P 1, P 2と予め設定された複数のリファ レンスパターン RBとのパターンマッチングを行うことにより、 少ない回路規模 で画像の角度を検出することができる。
この場合、 極大点および極小点を対として検出することにより、 細い斜め線の 画像の角度を検出することができる。
また、 二次元の輝度分布によるパターンマッチングを行っているので、 2画素 間の差分値を用いる場合と比較して誤検出が抑制され、 細い斜め線の画像の角度 を正確に検出することができる。
さらに、 二次元の輝度分布によるリファレンスパターン R Bを用いることによ り、 検出する角度が補間画素を中心として点対称の位置にある画素を結ぶ直線の 角度に限定されず、 それらの角度の間の角度を検出することもできる。 したがつ て、 少ない容量のラインメモリ 4 1を用いてより細かい間隔で角度を検出するこ とができる。
なお、 図 5の垂直方向上下画素値抽出部 1 3および中間値判定部 2 0を用いた 処理を行う場合、 および垂直方向上下画素差分絶対値演算部 1 5を用いた処理を 行う場合には、 図 7の画像角度検出装置を用いることが好ましい。
また、 画像角度検出装置の構成は上記の例に限定されず、 例えば、 特開平 1一 3 3 1 6 7号公報等に開示される公知の相関判定回路を用いてもよい。
本発明によれば、 補間すべき画素の斜め方向の画素の差分値が第 1の値と第 2 の値との間にある場合に、 垂直方向の画素を用いて算出された第 1の補間値と斜 め方向の画素を用いて算出された第 2の補間値とを用いた演算により補間すべき 画素の値が算出されるので、 斜め方向のエッジを有する画像において滑らかな補 間処理を行うことができる。

Claims

求 の 範 囲
1 . 入力された映像信号に基づいて補間すべき画素の値を算出することにより走 查線の補間処理を行う走査線補間装置であって、
前記補間すべき画素に対して垂直方向に位置する上下の走査線の画素を用いた 補間処理により第 1の補間値を算出する第 1の補間手段と、
前記補間すべき画素に対する画像の方向を示す信号を入力する入力手段と、 前記補間すべき画素に対して前記入力手段により入力された信号が示す方向に 位置する上下の走査線の画素の値の差分値を算出する差分算出手段と、
前記補間すべき画素に対して前記入力手段により入力された信号が示す方向に 位置する上下の走査線の画素を用いた補間処理により第 2の補間値を算出する第 2の補間手段と、
前記差分算出手段により算出された差分値が第 1の値以下の場合に、 前記第 2 の補間手段により算出された第 2の補間値を前記補間すべき画素の値として出力 し、 前記差分算出手段により算出された差分値が前記第 1の値よりも大きい第 2 の値以上の場合に、 前記第 1の補間手段により算出された第 1の補間値を前記補 間すべき画素の値として出力し、 前記差分算出手段により算出された差分値が前 記第 1の値から前記第 2の値の範囲内にある場合に、 前記第 1の補間手段により 算出された第 1の補間値と前記第 2の補間手段により算出された第 2の補間値と を用いた演算により第 3の補間値を算出して前記補間すべき画素の値として出力 する補間値出力手段とを備えた、 走査線補間装置。
2 . 前記補間値出力手段は、 前記差分算出手段により算出された差分値が前記第 1の値から前記第 2の値の範囲内にある場合に、 前記差分値に応じた比率で前記 第 1の補間手段により算出された第 1の補間値と前記第 2の補間手段により算出 された第 2の補間値とを加算し、 加算結果を前記補間すべき画素の値として出力 する、 請求項 1記載の走査線補間装置。
3 . 前記補間値出力手段は、 前記差分算出手段により算出された差分値が前記第 1の値から前記第 2の値に近づくにつれて、 前記第 1の補間手段により算出され た第 1の補間値の比率が増加するとともに前記第 2の補間手段により算出された 第 2の補間値の比率が減少するように前記第 1の補間値と前記第 2の補間値とを 加算する、 請求項 2記載の走査線補間装置。
4 . 前記差分算出手段は、 前記補間すべき画素に対して前記入力手段により入力 された信号が示す方向を中心として複数の方向に位置する複数組の画素の値の差 分値をそれぞれ算出し、
前記第 2の補間手段は、 前記補間すべき画素に対して前記入力手段により入力 された信号が示す方向を中心として複数の方向に位置する複数組の画素をそれぞ れ用いた補間処理により複数の第 2の補間値をそれぞれ算出し、
前記差分算出手段により算出された複数の差分値のうち最小値を判定する最小 値判定手段と、
前記第 2の補間手段により算出された複数の第 2の補間値のうち前記最小値判 定手段により最小値と判定された差分値に対応する第 2の補間値を選択して前記 補間値出力手段に与える選択手段とをさらに備えた、 請求項 1記載の走査線補間
5 . 前記補間すべき画素に対して垂直方向の上下に位置する画素の値をそれぞれ 検出する検出手段と、
前記第 2の補間手段により算出された第 2の補間値が前記検出手段により検出 された値の間にあるか否かを判定する中間値判定手段とをさらに備え、
前記補間値出力手段は、 前記中間値判定手段により第 2の補間値が前記検出手 段により検出された値の間にないと判定された場合に、 前記差分算出手段により 算出された差分値にかかわらず、 前記第 1の補間手段により算出された第 1の補 間値を前記補間すべき画素の値として出力する、 請求項 1記載の走査線補間装置
6 . 前記補間すべき画素に対して垂直方向の上下に位置する画素の差分値を算出 する上下差分演算手段をさらに備え、
前記補間値出力手段は、 前記上下差分演算手段により算出された差分値が所定 値よりも小さい場合に、 前記差分算出手段により算出された差分値にかかわらず
、 前記第 1の補間手段により算出された第 1の補間値を前記補間すべき画素の値 として出力する、 請求項 1記載の走査線補間装置。
7 . 前記第 2の補間手段は、 前記補間すべき画素に対して前記入力手段により入 力された信号が示す方向に位置する上下の走査線の画素の平均値を前記第 2の補 間値として算出する、 請求項 1記載の走査線補間装置。
8 . 前記第 1の値は 0であり、 前記第 2の値は予め設定されたしきい値である、 請求項 1記載の走査線補間装置。
9 . 入力された映像信号に基づいて補間すべき画素に関する画像の角度を検出し て画像の方向を示す信号を前記入力手段に与える画像角度検出手段をさらに備え 前記画像角度検出手段は、
前記入力された映像信号を複数の走査線および前記補間すべき画素を含む所定 の検出領域内で 2値化して 2値化パターンを発生する 2値化パターン発生手段と 複数の方向を有する 2値画像を複数の参照パターンとして発生する参照パ夕一 ン発生手段と、
前記 2値化パターン発生手段により発生された 2値化パターンを前記参照パ夕 ーン発生手段により発生された複数の参照パターンの各々と比較し、 比較結果に 基づいて前記補間すべき画素に関する画像の角度を検出する比較手段とを含む、 請求項 1記載の走査線補間装置。
1 0 . 入力された映像信号に基づいて補間すべき画素に関する画像の角度を検出 して画像の方向を示す信号前記入力手段に与える画像角度検出手段をさらに備え 前記画像角度検出手段は、
前記入力された映像信号において複数の走査線および前記補間すべき画素を含 む所定の検出領域内で各走査線ごとに水平方向の輝度分布の極大点または極小点 の位置を表す極大極小パターンを発生する極大極小パターン発生手段と、 前記検出領域内で各走査線ごとに水平方向の輝度分布の極大点または極小点の 位置を表す複数の参照パターンを発生する参照パターン発生手段と、
前記極大極小パターン発生手段により発生された極大極小パターンを前記参照 パ夕一ン発生手段により発生された複数の参照パターンの各々と比較し、 比較結 果に基づいて前記補間すべき画素に関する画像の角度を検出する比較手段とを含 む、 請求項 1記載の走査線補間装置。
1 1 . 入力された映像信号に ¾づいて補間すべき画素の値を算出することにより 走査線の補間処理を行う走査線補間装置であって、
前記補間すべき画素に対して垂直方向に位置する上下の走査線の画素を用いた 補間処理により第 1の補間値を算出する第 1の補間装置と、
前記補間すべき画素に対する画像の方向を示す信号を入力する入力端子と、 前記補間すべき画素に対して前記入力端子に入力された信号が示す方向に位置 する上下の走査線の画素の値の差分値を算出する差分算出装置と、
前記補間すべき画素に対して前記入力端子に入力された信号が示す方向に位置 する上下の走査線の画素を用いた補間処理により第 2の補間値を算出する第 2の 補間装置と、
前記差分算出装置により算出された差分値が第 1の値以下の場合に、 前記第 2 の補間装置により算出された第 2の補間値を前記補間すべき画素の値として出力 し、 前記差分算出装置により算出された差分値が前記第 1の値よりも大きい第 2 の値以上の場合に、 前記第 1の補間装置により算出された第 1の補間値を前記補 間すべき画素の値として出力し、 前記差分算出装置により算出された差分値が前 記第 1の値から前記第 2の値の範囲内にある場合に、 前記第 1の補間装置により 算出された第 1の補間値と前記第 2の補間装置により算出された第 2の補間値と を用いた演算により第 3の補間値を算出して前記補間すべき画素の値として出力 する補間値出力装置とを備えた、 走査線補間装置。
1 2 . 前記補間値出力装置は、 前記差分算出装置により算出された差分値が前記 第 1の値から前記第 2の値の範囲内にある場合に、 前記差分値に応じた比率で前 記第 1の補間装置により算出された第 1の補間値と前記第 2の補間装置により算 出された第 2の補間値とを加算し、 加算結果を前記補間すべき画素の値として出 力する、 請求項 1 1記載の走査線補間装置。
1 3 . 前記補間値出力装置は、 前記差分算出装置により算出された差分値が前記 第 1の値から前記第 2の値に近づくにつれて、 前記第 1の補間装置により算出さ れた第 1の補間値の比率が増加するとともに前記第 2の補間装置により算出され た第 2の補間値の比率が減少するように前記第 1の補間値と前記第 2の補間値と を加算する、 請求項 1 2記載の走査線補間装置。
1 4 . 前記差分算出装置は、 前記補間すべき画素に対して前記入力端子に入力さ れた信号が示す方向を中心として複数の方向に位置する複数組の画素の値の差分 値をそれぞれ算出し、
前記第 2の補間装置は、 前記補間すべき画素に対して前記入力端子に入力され た信号が示す方向を中心として複数の方向に位置する複数組の画素をそれぞれ用 いた補間処理により複数の第 2の補間値をそれぞれ算出し、
前記差分算出装置により算出された複数の差分値のうち最小値を判定する最小 値判定装置と、
前記第 2の補間装置により算出された複数の第 2の補間値のうち前記最小値判 定装置により最小値と判定された差分値に対応する第 2の補間値を選択して前記 補間値出力装置に与える選択装置とをさらに備えた、 請求項 1 1記載の走査線補
1 5 . 前記補間すべき画素に対して垂直方向の上下に位置する画素の値をそれぞ れ検出する検出装置と、
前記第 2の補間装置により算出された第 2の補間値が前記検出装置により検出 された値の間にあるか否かを判定する中間値判定装置とをさらに備え、
前記補間値出力装置は、 前記中間値判定装置により第 2の補間値が前記検出装 置により検出された値の間にないと判定された場合に、 前記差分算出装置により 算出された差分値にかかわらず、 前記第 1の補間装置により算出された第 1の補 間値を前記補間すべき画素の値として出力する、 請求項 1 1記載の走査線補間装
1 6 . 前記補間すべき画素に対して垂直方向の上下に位置する画素の差分値を算 出する上下差分演算装置をさらに備え、
前記補間値出力装置は、 前記上下差分演算装置により算出された差分値が所定 値よりも小さい場合に、 前記差分算出装置により算出された差分値にかかわらず 、 前記第 1の補間装置により算出された第 1の補間値を前記補間すべき画素の値 として出力する、 請求項 1 1記載の走査線補間装置。
1 7 . 前記第 2の補間装置は、 前記補間すべき画素に対して前記入力端子に入力 された信号が示す方向に位置する上下の走査線の画素の平均値を前記第 2の補間 値として算出する、 請求項 1 1記載の走査線補間装置。
1 8 . 前記第 1の値は 0であり、 前記第 2の値は予め設定されたしきい値である 、 請求項 1 1記載の走査線補間装置。
1 9 . 入力された映像信号に基づいて補間すべき画素に関する画像の角度を検出 して画像の方向を示す信号を前記入力端子に与える画像角度検出装置をさらに備 え、
前記画像角度検出装置は、
前記入力された映像信号を複数の走査線および前記補間すべき画素を含む所定 の検出領域内で 2値化して 2値化パターンを発生する 2値化パターン発生装置と 複数の方向を有する 2値画像を複数の参照パターンとして発生する参照パター ン発生装置と、
前記 2値化パターン発生装置により発生された 2値化パターンを前記参照パ夕 ーン発生装置により発生された複数の参照パターンの各々と比較し、 比較結果に 基づいて前記捕間すべき画素に関する画像の角度を検出する比較装置とを含む、 請求項 1 1記載の走査線補間装置。 .
2 0 . 入力された映像信号に基づいて補間すべき画素に関する画像の角度を検出 して画像の方向を示す信号を前記入力端子に与える画像角度検出装置をさらに備 え、
前記画像角度検出装置は、
前記入力された映像信号において複数の走査線および前記補間すべき画素を含 む所定の検出領域内で各走査線ごとに水平方向の輝度分布の極大点または極小点 の位置を表す極大極小パターンを発生する極大極小パ夕一ン発生装置と、 前記検出領域内で各走査線ごとに水平方向の輝度分布の極大点または極小点の 位置を表す複数の参照パターンを発生する参照パターン発生装置と、
前記極大極小パターン発生装置により発生された極大極小パターンを前記参照 パ夕一ン発生装置により発生された複数の参照パターンの各々と比較し、 比較結 果に基づいて前記補間すべき画素に関する画像の角度を検出する比較装置とを含 む、 請求項 1 1記載の走査線補間装置。
PCT/JP2001/010703 2000-12-14 2001-12-06 Dispositif d'interpolation de lignes de balayage WO2002051143A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/169,753 US6801221B2 (en) 2000-12-14 2001-12-06 Scanning line interpolating device
EP01271750A EP1345432B1 (en) 2000-12-14 2001-12-06 Scanning line interpolating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-380904 2000-12-14
JP2000380904A JP4553481B2 (ja) 2000-12-14 2000-12-14 走査線補間装置

Publications (1)

Publication Number Publication Date
WO2002051143A1 true WO2002051143A1 (fr) 2002-06-27

Family

ID=18849010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010703 WO2002051143A1 (fr) 2000-12-14 2001-12-06 Dispositif d'interpolation de lignes de balayage

Country Status (8)

Country Link
US (1) US6801221B2 (ja)
EP (1) EP1345432B1 (ja)
JP (1) JP4553481B2 (ja)
KR (1) KR100495549B1 (ja)
CN (1) CN1186931C (ja)
MY (1) MY129345A (ja)
TW (1) TW554626B (ja)
WO (1) WO2002051143A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336316B2 (en) 2003-05-01 2008-02-26 Imagination Technologies Limited De-interlacing of video data
CN112313934A (zh) * 2018-06-27 2021-02-02 三菱电机株式会社 像素插值装置、像素插值方法、图像处理装置、程序和记录介质
US11639192B2 (en) * 2019-03-28 2023-05-02 Denso Corporation Detection unit

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108969B2 (ja) * 2000-12-14 2008-06-25 松下電器産業株式会社 画像角度検出装置およびそれを備えた走査線補間装置
DE10232372B3 (de) 2002-07-17 2004-01-22 Micronas Gmbh Verfahren zur Interpolation eines Bildpunktes einer Zwischenzeile eines Halbbildes
EP1531625A4 (en) 2002-08-19 2013-01-23 Sony Corp IMAGE PROCESSING DEVICE AND METHOD, VIDEO DISPLAY, AND RECORDED INFORMATION REPRODUCING DEVICE
JP3805303B2 (ja) * 2002-12-26 2006-08-02 三菱電機株式会社 画素数変換方法及び画素数変換装置
JP3877694B2 (ja) 2003-03-28 2007-02-07 三洋電機株式会社 表示処理装置
KR100574943B1 (ko) * 2003-06-10 2006-05-02 삼성전자주식회사 영상 변환 방법 및 장치
KR100601638B1 (ko) 2003-06-18 2006-07-14 삼성전자주식회사 디-인터레이싱 방법, 그 장치, 그 비디오 디코더 및 그재생 장치
KR100543466B1 (ko) * 2003-11-13 2006-01-20 삼성전자주식회사 영상 보간 장치 및 방법
US7362376B2 (en) 2003-12-23 2008-04-22 Lsi Logic Corporation Method and apparatus for video deinterlacing and format conversion
TWI253848B (en) * 2004-04-09 2006-04-21 Mstar Semiconductor Inc Pixel interpolation method and related pixel interpolation device
EP1631068A3 (en) * 2004-08-26 2008-09-03 Samsung Electronics Co., Ltd. Apparatus and method for converting interlaced image into progressive image
TWI276043B (en) * 2004-09-09 2007-03-11 Seiko Epson Corp Display apparatus
JP2006148827A (ja) * 2004-11-25 2006-06-08 Oki Electric Ind Co Ltd 走査線補間装置、及び走査線補間方法
JP2007060512A (ja) * 2005-08-26 2007-03-08 Pioneer Electronic Corp 走査線補間回路、該走査線補間回路に用いられる走査線補間方法、及び画像表示装置
JP2008011390A (ja) * 2006-06-30 2008-01-17 Toshiba Corp 映像信号斜め補間装置
JP5080783B2 (ja) 2006-11-14 2012-11-21 パナソニック株式会社 走査線補間装置および走査線補間方法
US8295357B2 (en) * 2006-12-27 2012-10-23 Intel Corporation Method and apparatus for angular-directed spatial deinterlacer
TWI389568B (zh) 2007-01-26 2013-03-11 Mstar Semiconductor Inc 影像解交錯的方法及相關裝置
JP2009077293A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 映像信号斜め補間装置および映像信号斜め補間方法
JP2009105751A (ja) * 2007-10-24 2009-05-14 Panasonic Corp 走査線補間装置および走査線補間方法
JP4973542B2 (ja) * 2008-02-26 2012-07-11 富士通株式会社 画素補間装置及び画素補間方法
TWI376643B (en) * 2008-03-24 2012-11-11 Novatek Microelectronics Corp Method for detecting image edge and image interpolation using the same
EP2114068A1 (en) 2008-04-30 2009-11-04 Sony Corporation Method for converting an image and image conversion unit
JP6173823B2 (ja) * 2013-08-02 2017-08-02 日置電機株式会社 極点検索装置および極点検索方法
JP2016085628A (ja) * 2014-10-27 2016-05-19 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 画像処理装置、画像処理方法、およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293793A (ja) * 1989-05-04 1990-12-04 Sony Corp ビデオ信号補間方法
JPH04343590A (ja) * 1991-05-20 1992-11-30 Victor Co Of Japan Ltd 補間信号生成回路
JPH04364685A (ja) * 1991-06-12 1992-12-17 Toshiba Corp 走査線補間装置
JPH05153562A (ja) * 1991-12-02 1993-06-18 Matsushita Electric Ind Co Ltd 相関検出補間方法および装置
JPH07288778A (ja) * 1994-04-19 1995-10-31 Matsushita Electric Ind Co Ltd 補間ライン検出方法及び補間ライン検出装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174088A (ja) * 1987-12-28 1989-07-10 Toshiba Corp 輝度/色度分離回路
NL8802365A (nl) * 1988-09-27 1990-04-17 Philips Nv Werkwijze en schakeling voor het verwerken van een beeldsignaal.
JP2732644B2 (ja) 1989-02-13 1998-03-30 株式会社東芝 相関判定回路
US5131057A (en) * 1990-02-12 1992-07-14 Wright State University Method for video-to-printing image resolution conversion
EP0474287B1 (en) * 1990-09-03 1995-11-22 Koninklijke Philips Electronics N.V. Method and apparatus for processing a picture signal
US5347599A (en) 1991-06-14 1994-09-13 Matsushita Electric Industrial Co., Ltd. Adaptive interpolation method and apparatus using correlation detection
JP3314963B2 (ja) * 1992-10-21 2002-08-19 日本放送協会 画像信号の走査変換装置
CA2129092C (en) * 1993-10-04 1999-10-19 Leon C. Williams Image interpolation apparatus
US5886745A (en) 1994-12-09 1999-03-23 Matsushita Electric Industrial Co., Ltd. Progressive scanning conversion apparatus
JPH0937214A (ja) 1995-07-14 1997-02-07 Matsushita Electric Ind Co Ltd 順次走査変換方法及び順次走査変換装置
JP2002510946A (ja) * 1998-04-03 2002-04-09 ミランダ テクノロジーズ インコーポレイテッド Hdtv(高品位テレビ)に向上させるコンバータ
US6377307B1 (en) * 1999-05-27 2002-04-23 Pioneer Corporation Line interpolation apparatus and video signal conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293793A (ja) * 1989-05-04 1990-12-04 Sony Corp ビデオ信号補間方法
JPH04343590A (ja) * 1991-05-20 1992-11-30 Victor Co Of Japan Ltd 補間信号生成回路
JPH04364685A (ja) * 1991-06-12 1992-12-17 Toshiba Corp 走査線補間装置
JPH05153562A (ja) * 1991-12-02 1993-06-18 Matsushita Electric Ind Co Ltd 相関検出補間方法および装置
JPH07288778A (ja) * 1994-04-19 1995-10-31 Matsushita Electric Ind Co Ltd 補間ライン検出方法及び補間ライン検出装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1345432A4 *
T. DOYLE, M. LOOYMANS: "Signal Processing of HDTV, II", 30 August 1989, article "Progressive Scan Conversion using Edge Information"

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336316B2 (en) 2003-05-01 2008-02-26 Imagination Technologies Limited De-interlacing of video data
CN112313934A (zh) * 2018-06-27 2021-02-02 三菱电机株式会社 像素插值装置、像素插值方法、图像处理装置、程序和记录介质
CN112313934B (zh) * 2018-06-27 2022-05-31 三菱电机株式会社 像素插值装置、像素插值方法、图像处理装置和记录介质
US11639192B2 (en) * 2019-03-28 2023-05-02 Denso Corporation Detection unit

Also Published As

Publication number Publication date
MY129345A (en) 2007-03-30
JP2002185934A (ja) 2002-06-28
CN1401185A (zh) 2003-03-05
EP1345432A4 (en) 2010-12-15
CN1186931C (zh) 2005-01-26
JP4553481B2 (ja) 2010-09-29
US6801221B2 (en) 2004-10-05
KR100495549B1 (ko) 2005-06-16
EP1345432A1 (en) 2003-09-17
TW554626B (en) 2003-09-21
US20030038817A1 (en) 2003-02-27
KR20020076304A (ko) 2002-10-09
EP1345432B1 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2002051143A1 (fr) Dispositif d'interpolation de lignes de balayage
US6924844B2 (en) Image angle detector and scanning line interpolating apparatus
US7474354B2 (en) Image angle detection device and scan line interpolation device having the same
US6999128B2 (en) Stillness judging device and scanning line interpolating device having it
US8107773B2 (en) Video signal processing apparatus and video signal processing method
US6930729B2 (en) Apparatus and method for deleting sawtooth wave
US8254682B2 (en) Pattern detecting method and related image processing apparatus
US20060197868A1 (en) Apparatus for interpolating scanning line and method thereof
EP1343043A1 (en) Faraday rotator and optical attenuator
JP2658625B2 (ja) 補間信号生成回路
JP2001094951A (ja) 走査線補間方法
JP2004193747A5 (ja)
JP2009212851A (ja) 走査線補間装置及びその制御方法
JPS62230179A (ja) 動き補正方法
JP2005341346A (ja) 画素特徴判定装置、画素補間装置、及び映像信号処理装置
US20100254610A1 (en) Scanning line interpolation apparatus and scanning line interpolation method
JP2007097028A (ja) 動きベクトル検出方法および動きベクトル検出回路
JP2004056586A (ja) 画像処理装置及び画像処理方法
JP2001145066A (ja) 走査線補間装置
JP2005286518A (ja) 補間信号生成回路
JP2007142669A (ja) 走査線補間装置
TW200307457A (en) Image angle detection device and scan line interpolation device having the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 10169753

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001271750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018049044

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027010460

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027010460

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001271750

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027010460

Country of ref document: KR