WO2002060229A1 - A method for the implementation of electronic components in via-holes of a multi-layer multi-chip module - Google Patents

A method for the implementation of electronic components in via-holes of a multi-layer multi-chip module Download PDF

Info

Publication number
WO2002060229A1
WO2002060229A1 PCT/IL2001/000991 IL0100991W WO02060229A1 WO 2002060229 A1 WO2002060229 A1 WO 2002060229A1 IL 0100991 W IL0100991 W IL 0100991W WO 02060229 A1 WO02060229 A1 WO 02060229A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
electrical components
conductive
substrate
holes
Prior art date
Application number
PCT/IL2001/000991
Other languages
French (fr)
Inventor
Israel Schuster
Original Assignee
Cerel (Ceramic Technologies) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerel (Ceramic Technologies) Ltd. filed Critical Cerel (Ceramic Technologies) Ltd.
Priority to US10/470,036 priority Critical patent/US7200920B2/en
Priority to DE60129743T priority patent/DE60129743D1/en
Priority to EP01980882A priority patent/EP1354503B1/en
Publication of WO2002060229A1 publication Critical patent/WO2002060229A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4061Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/647Resistive arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/135Electrophoretic deposition of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • Y10T29/49089Filling with powdered insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49099Coating resistive material on a base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49101Applying terminal

Definitions

  • the present invention relates to the field of integrated multi-layer multi-chip modules (MCMs), to the manufacture of integrated multi-layer MCMs, and specifically to the manufacture of integrated multi-layer MCMs in which electrical components are produced in the via-holes that provide the electrical continuity between the layers.
  • MCMs integrated multi-layer multi-chip modules
  • substrate serve as the supporting and interconnecting substrate for electronic components.
  • Resistors, capacitors, inductors, and many other types of electronic component are mounted on the substrate in a predetermined- manner and electrically connected together by a metallic conducting pattern that is deposited on its surface to form the required electronic device.
  • active devices e.g. diodes, transistors, ICs, power sources, etc.
  • multi-layer devices have been constructed.
  • electrical circuits consisting of electronic components and conducting patterns are constructed on the substrates that makes up each layer.
  • the layers are electrically connected by via-holes, which are vertical holes that are manufactured through the substrate at the appropriate places to provide conducting paths between the layers.
  • US patent 5,855,755 describes the production of passive electronic circuit elements from "electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams".
  • the production of the electronic circuit elements requires several steps including periods of thermal treatment or of drying either at room temperature. "Because the photopolymerization process may form lines having sides that are not entirely uniform or smooth, it may be difficult to obtain resistors within narrow tolerances without further processing.” In applications where precise resistance is necessary, the resistor lines are made wider than necessary and, after curing, each of the resistors is measured and trimmed with a laser to increase the resistance. It may be necessary to carry out the trimming process in several stages to achieve the required accuracy.
  • US 5,872,040 describes a method in which "thin film electronic components are deposited on a surface, parameter values are measured or estimated, a correction offset file is generated, and the components are trimmed using adaptive lithography.” In this example also, many steps are required to produce the electronic components on the substrate and then in the lithography techniques used to trim the films to get the desired electrical values for the elements.
  • Patent Numbers US 5,953,203 and US 6,055,151 disclose methods for producing capacitors on multi-layer ceramic circuit boards, using screen printing techniques, that overcome some of the above mentioned difficulties of the existing methods.
  • they disclose methods of producing the capacitors that "greatly reduces the shrinkage of the green tapes during firing in the x and y directions, so that most of the shrinkage occurs only in the z, or thickness, dimension". This, presumably, reduces or eliminates the need for trimming of the capacitors.
  • a method of producing buried capacitors "buried one or two tape layers below the top of the substrate” is disclosed, reducing somewhat the total surface area of substrate required.
  • the present invention is directed to a method for the implementation of electrical components in a substrate having via-holes comprising the construction of said components within said via-holes.
  • the method of the invention produces electrical components that may be selected from the group comprising:
  • the electrical components may be formed from either non-conductive and/or conductive particles that are deposited in predetermined quantities within the via-holes of the substrate.
  • the conductive particles are selected from either metallic or ferro-magnetic particles and the non-conductive particles are selected from the group comprising:
  • the electrical components may be formed by using an electrophoretic deposition (EPD) process that may comprise the following steps:
  • first electrode placing an electrode (referred to as “first electrode"
  • the electrical components may be deposited within the via-holes as one layer composed of a single type of particle, or co-deposited as one layer composed of two or more types of particles, or deposited and/or co-deposited as two or more layers each composed of one or more types of particles
  • the invention is also directed towards electrical components that may be deposited within the via-holes of a substrate and are selected from the group comprising:
  • the electrical components may be formed from either non- conductive and/or conductive particles that are deposited in predetermined quantities within the via-holes of the substrate.
  • the conductive particles are selected from either metallic or ferro-magnetic particles and the non-conductive particles are selected from the group comprising:
  • the invention is also directed to a substrate containing electrical components
  • the substrate of the invention contains
  • electrical components that may be selected from the group comprising:
  • the substrate contains electrical components that are implemented by the
  • the invention is also directed to a substrate for a multi-chip module containing electrical components implemented by an electrophoretic deposition process and selected from the group comprising:
  • the substrate for a multi-chip module of the invention contains electrical components that may be formed from either non- conductive and/or conductive particles that are deposited in predetermined quantities deposited within the via-holes of the substrate.
  • the conductive particles may be selected from either metallic or ferro-magnetic particles and the non-conductive particles may be selected from the group comprising:
  • the electrical components may be deposited within the via-holes of the substrate for a multi-chip module of the invention as one layer composed of a single type of particle, or co-deposited as one layer composed of two or more types of particles, or consist of a first layer, deposited or co-deposited within the via-holes of the substrate in a first EPD cell, and of a second, or more additional layer, sequentially deposited or co-deposited within the via-holes of the substrate in corresponding separate EPD cells, wherein each layer is composed of one or more types of non-conductive or conductive particles.
  • the invention is also directed to a method for producing a multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprise the layers of the module, further comprising conductive means to connect said electrical components with other components of said multi-chip module located within the via-holes or on the surface of the same, or different, layers of said multi-layered multi-chip module.
  • the invention is also directed to a multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprises the layers of the module, by a method using an electrophoretic deposition process and which further comprises conductive means to connect the implemented electrical components within the via-holes with other components of the multi-chip module located in the same, or different layers of the multi-layered multi-chip module.
  • EPD technology is used for producing the desired electronic components within the via-hole.
  • the desired electronic components are produced by the deposition of charged particles onto an electrode immersed in either an aqueous or non-aqueous suspension containing said charged particles in a powder form.
  • the success of the EPD process depends primarily on the electric charge carried by the particles, which can be controlled through pretreatment of the powder and by addition of surface active agents to the dispersion.
  • resistors are produced by depositing resistive particles, capacitors by depositing dielectric particles, and conductors by depositing conductive particles.
  • piezzoelectric elements and rechargeable or nonrechargeable batteries can be created by employing the technology of the invention.
  • the EPD technology may be applied by completely covering the one orifice of the via-hole with one electrode of the EPD cell.
  • the volume of the via-hole is immersed in the suspension, a second electrode is provided, and an electric field is applied between the electrodes through the via-hole and the suspension.
  • This field causes charged particles that were in the suspension to be deposited by EPD onto the inner surface of the electrode, filling the via-hole until a required deposit thickness is obtained. Since the electrical value of the resulting component electrode depends on the known electric constants of the suspended particles (resistance, dielectric constant, etc.) and the dimensions of the component, good agreement between the calculated and manufactured values are achieved.
  • the diameters of the via-holes are accurately controlled during their production by methods that are well known to the man skilled in the art (see for example, US 5,841,075).
  • the field is turned off and the substrate is then removed from the EPD cell.
  • the thickness of the deposited layer is a function of the concentration of particles in the suspension, current, and time and consequently it is easily monitored, controllable and reproducible. If so desired, the process of manufacturing the electrical component is completed by immersing the via-hole into a second EPD cell and depositing conductive particles until the via-hole is completely full.
  • different particles can be precipitated in the via-hole in any desired order.
  • one or more different electronic components can be formed in the same via-hole.
  • a part of a circuit consisting of, for example, a resistor and capacitor connected in series can be produced in a single via-hole.
  • any other combination of two or more components is possible.
  • the only limitation being the physical capacity of the via-hole.
  • holes of diameters larger than those associated with conventional via-holes are required in order to deposit a sufficient quantity of material to create the component. In this manner, a component, or components, possessing predetermined electrical characteristics has been created in the via-hole.
  • Fig. 1 schematically illustrates a device for carrying out an EPD process
  • Fig. 2A is a cross-sectional view schematically showing the substrate
  • Fig. 2B is a cross-sectional view schematically showing the addition of a via hole to the substrate
  • Fig. 2C is a cross-sectional view schematically showing the placement of the electrodes
  • Fig. 2D is a cross-sectional view schematically showing the situation after the deposition of a first layer
  • Fig. 2E is a cross-sectional view schematically showing the situation after the deposition of a second layer
  • Fig. 2F is a cross-sectional view schematically showing the situation after the deposition of a third layer.
  • Fig. 2G is a cross-sectional view schematically showing the situation after completion of the deposition process.
  • Fig. 3A schematically shows a MCM with the electronic components arranged in a single layer on the surface according to prior art
  • Fig. 3B shows the device of Fig. 3A with passive elements distributed on the surfaces of the different dielectric layers in order to miniaturize the device according to prior art
  • Fig. 3C shows the device of Fig. 3A with passive elements created in the via-holes according to the method of the invention.
  • An electrophoretic deposition (EPD) cell 1 is shown schematically in Fig. 1.
  • the cell 1 consists of a container with an electric circuit consisting of an "upper" positive electrode 4 connected through a DC power supply 5 to a 'lower" negative electrode 6.
  • the substrate and electrodes are suspended in a liquid suspension
  • the suspension consists of particles of the material that has been chosen for the manufacture of the electrical component to which positive electrical charges have been attached by adsorption of ions.
  • the particles are suspended in either water or any other suitable liquid, such as alcohol, depending upon the properties of the powder to be placed in suspension and the type of substrate.
  • the particles of the suspension are chosen according to the type of passive component that should be formed and the desired values of the electrical properties of said component.
  • Conductors are produced from metals, including gold, silver, copper, aluminum, nickel, platinum, and palladium.
  • Capacitors are made from high dielectric constant materials such as BaTi ⁇ 3, Ta 2 O ⁇ , or PZT.
  • Inductor cores are made from ferromagnetic materials, and resistors from controlled combinations of insulating materials such as glass, ceramics, or polymers with conducting materials such as ruthenium or any of the metals that are used to create conductors.
  • piezoelectric devices having an electrode component consisting of PZT, magnetoresistive sensors from cobalt/copper compositions, and magnetic actuators from materials such as Tbo.3 ⁇ Dyo.7oFe 92.
  • EPD electrowetting diode
  • the substrate 2 (in Fig. 1) is placed in the EPD cell 1 such that the via-hole 3 is completely immersed in the suspension.
  • the via-holes are created by techniques that are well known in the art. Much care is taken to maintain a uniform cross section of the hole throughout the entire thickness of the substrates in order to allow production of high quality electrical components.
  • the lower electrode 6 is positioned such that it completely covers the orifice of the via-hole and an electric field is created in the EPD cell. Said electric field causes the electrically charged particles of the suspension to be deposited on the inner surface of electrode 6 that is directed towards the upper orifice of the via-hole.
  • the lower electrode can be part of the conductive pattern deposited on the surface of the substrate.
  • several identical component electrodes namely, same electrical component types can be formed in different via-holes at the same time.
  • Figs. 2A through 2G show the EPD process in more detail.
  • the process begins, in Fig 2A, with a substrate layer generally indicated by the reference numeral 2.
  • Fig. 2B the via-hole by the numeral 3 is created.
  • Fig.2C the lower electrode designated by numeral 6 and the upper electrode designated by numeral 4 are placed in position.
  • Fig 2D shows the situation after the deposition of the first layer designated by numeral 7.
  • 7 is a conducting layer that serves as a contact point for the element to be created in the via-hole. It is not, however, necessary to begin the process by depositing a conductive layer for example if the electrode 6, is part of the conducting pattern on the surface of the substrate.
  • the substrate and electrodes are now removed from the cell containing the conductive material and moved to an EPD cell containing a suspension of particles suitable to form the desired component.
  • the invention is described in terms of the deposition of a single type of particle, it is possible to co-deposit two or more types of charged particles from the same suspension in order to form electronic components with certain characteristics.
  • Fig. 2E shows the situation at the end of the deposition of the particles that constitute the electronic component 8.
  • the thickness t is easily determined from the desired electric value of the component.
  • the capacitance depends on the cross-sectional area of the via-hole, the dielectric constant of the particles deposited in the EPD process, and the thickness t. Since the via-hole is precisely created, its diameter is known. It is easy to calibrate the EPD cell in order to accurately produce a desired thickness of deposited material, since the dielectric constant of the particles in the suspension is also known.
  • the substrate and electrodes are now removed from the second EPD cell and returned to the first cell containing the conductive material (Fig. 2F). In this step of the process, the remainder of the via-hole is filled with conductive material forming the second contact point of the electronic element. Finally, in Fig. 2G, the electrodes are removed and the substrate, with the electronic element created in the via-hole, is removed from the suspension and dried and treated according to the application, employing techniques well known in the art.
  • a spiral conducting pattern is created on the substrate above the upper orifice of the via-hole by techniques well known in the art, for example by screen printing or as disclosed in US 6,040,226.
  • the electrode of the EPD cell is placed over said spiral and orifice and ferromagnetic particles are deposited in the via-hole to produce a ferromagnetic "core" for the inductor.
  • This ferromagnetic layer increases the Q factor of the inductor and allows the use of smaller components to achieve the desired inductance.
  • the substrate and electrodes can be moved to a third EPD cell containing a suspension of different electrically charged non- conductive particles and another or a more complex electrical component can be formed in the same via-hole. This process can be repeated several times forming via-holes with any desired combination of non- conductive and conductive particles forming the electrical components described above.
  • the layers in the via-hole constitute what is known in the art as a "green body", i.e. they have no mechanical strength and contain cavities filled with solvent that allow for continuation of the electric field necessary for the deposition of subsequent layers.
  • the green body is impermeable to the suspended powder material intended for deposition within the via-hole on a previously deposited layer.
  • An example of an electrical component formed by a multi-layer deposition process is a lithium polymer battery.
  • a lithium polymer battery As discussed previously, to produce a battery, it might be necessary to prepare a hole in the substrate with a diameter larger than that associated with conventional via-holes.
  • the substrate, with the hole of the required diameter is placed in a first EPD cell containing lithium cobalt dioxide powder in suspension.
  • the electrodes are supplied and a layer that serves as the cathode of the battery is deposited.
  • the substrate is then moved to a second EPD cell containing powders of a polymer composite and a lithium salt which are co-deposited to form the solid polymer electrolyte layer.
  • the substrate is moved to a third EPD cell, where a graphite layer, that serves as the anode of the battery is deposited.
  • Figs. 3A to 3C show the assembled integrated multi-layer device in which the components are designated as follows: dielectric substrate layers 2, via-holes 3, conducting lines 9, an integrated circuit chip 10, passive components 11, and the component electrodes of the invention 12.
  • Figs. 3A and 3B show the assembly according to the methods of the prior art. In Fig. 3B, some of the passive components that are located on the upper surface only of the substrate of Fig. 3A have been relocated on the surfaces of the internal substrates of the multi-layer structure. All of the methods of depositing the film layers that make up the passive electronic components on the surfaces of the substrates suffer from difficulties in accurately controlling the width and thickness of the films. In applications where strict tolerances for the electrical parameters of the components are necessary, considerable time, and therefore expense, must be invested in trimming the films; or, expensive thin-film technology must be employed.
  • Fig. 3C shows the device of Figs 3A and 3B, manufactured according to the method of the invention. It will be recognized by the experienced observer that the method of the invention leads to the construction of a device containing a greatly reduced overall length of conducting lines connecting the electrical components and also to a completed multi-layer structure occupying significantly smaller volume than the equivalent device constructed according to the existing methods.

Abstract

The substrate (2) containing the via-hole (3) is inserted into an electrophoretic cell (1) and an electrode (6) (the 'first electrode') is placed on top of a first orifice of the via-hole(s) (3), to be implemented with electrical component(s), so that the electrode (6) totally covers the first orifice. Electrically charged either conductive and/or non-conductive particles are provided by immersing the volume of the via-hole(s) (3) in a conductive medium (17) consisting of the electrically charged particles. An electric field is created between the first electrode (6) and a second electrode (4) through the via-hole(s) (3) and the conductive medium (17) and the electrically charged particles are precipitated on the inner surface of the first electrode (6) that is directed to the second orifice of the via-hole(s) (3), until a desired portion of the volume of the via-hole(s) (3) is filled with a first layer of the charged particles having a desired thickness. More layers may be created by repeating this process using additional electophoretic cell(s), until remaining portion of the volume of the via-hole(s) (3) is filled with the additional charged particles.

Description

A METHOD FOR THE IMPLEMENTATION OF ELECTRONIC COMPONENTS IN VIA-HOLES OF A MULTI-LAYER MULTI-CHIP
MODULE
FIELD OF THE INVENTION
The present invention relates to the field of integrated multi-layer multi-chip modules (MCMs), to the manufacture of integrated multi-layer MCMs, and specifically to the manufacture of integrated multi-layer MCMs in which electrical components are produced in the via-holes that provide the electrical continuity between the layers.
BACKGROUND OF THE INVENTION
Many different types of substrate serve as the supporting and interconnecting substrate for electronic components. Resistors, capacitors, inductors, and many other types of electronic component are mounted on the substrate in a predetermined- manner and electrically connected together by a metallic conducting pattern that is deposited on its surface to form the required electronic device.
Resistors, capacitors, and other passive components, such as inductors, typically occupy over 50% of the surface area of the substrate. In order to provide more room for active devices (e.g. diodes, transistors, ICs, power sources, etc.) on the surface, as well as to miniaturize the device, multi-layer devices have been constructed. In these devices, electrical circuits consisting of electronic components and conducting patterns are constructed on the substrates that makes up each layer. The layers are electrically connected by via-holes, which are vertical holes that are manufactured through the substrate at the appropriate places to provide conducting paths between the layers. Many different methods of forming passive electronic circuit elements on substrates have been described. For example:
US patent 5,855,755 describes the production of passive electronic circuit elements from "electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams". The production of the electronic circuit elements requires several steps including periods of thermal treatment or of drying either at room temperature. "Because the photopolymerization process may form lines having sides that are not entirely uniform or smooth, it may be difficult to obtain resistors within narrow tolerances without further processing." In applications where precise resistance is necessary, the resistor lines are made wider than necessary and, after curing, each of the resistors is measured and trimmed with a laser to increase the resistance. It may be necessary to carry out the trimming process in several stages to achieve the required accuracy.
US 5,872,040 describes a method in which "thin film electronic components are deposited on a surface, parameter values are measured or estimated, a correction offset file is generated, and the components are trimmed using adaptive lithography." In this example also, many steps are required to produce the electronic components on the substrate and then in the lithography techniques used to trim the films to get the desired electrical values for the elements.
In the currently used methods of producing passive electronic elements, except in the case of parallel plate capacitors in which the substrate itself also serves as the dielectric layer of the capacitor, the elements are produced on one surface of the substrate layers. Thus, creating a multi-layer system results in conducting lines no shorter than the original single layer MCM with the attendant heating, energy loss, and reduced signal to noise ratio. Most of the existing methods of producing passive elements on substrate surfaces require multi-step, relatively complex, manufacturing processes and relatively large volumes of expensive substrate material. Also, because of the difficulty in controlling the thickness and shape of thin films on the substrate, existing methods result in the production of elements whose electric characteristics vary from their expected values, thus reducing the performance of the device. The accuracy of the components can be improved by trimming them to change their dimensions and therefore their electrical characteristics. This trimming adds to the complexity, time required, and cost of manufacture and sometimes negative results arise such as burning, in the case of laser trimming, or from the harsh chemicals used in lithographic techniques.
Patent Numbers US 5,953,203 and US 6,055,151 disclose methods for producing capacitors on multi-layer ceramic circuit boards, using screen printing techniques, that overcome some of the above mentioned difficulties of the existing methods. In particular, they disclose methods of producing the capacitors that "greatly reduces the shrinkage of the green tapes during firing in the x and y directions, so that most of the shrinkage occurs only in the z, or thickness, dimension". This, presumably, reduces or eliminates the need for trimming of the capacitors. In addition a method of producing buried capacitors, "buried one or two tape layers below the top of the substrate" is disclosed, reducing somewhat the total surface area of substrate required.
The methods disclosed in these patents only partially alleviate the difficulties of the prior art. They are only applicable to multi-layer circuit boards, and not to other types of substrate. They apply only to the production of capacitors, with restrictions on the capacitance values that are achievable. The method of manufacture is complex requiring the build up of many layers, including barrier layers needed to prevent dilution effects caused by diffusion of material from neighboring layers during firing of the laminated stacks. There is therefore a need for providing an improved process for manufacturing electronic components for use on integrated multi-layer MCMs that overcomes the limitations of existing methods.
It is a purpose of this invention to provide a method of manufacturing active and passive electronic components for use on integrated multi-layer MCMs that overcomes the limitations of existing methods.
It is an additional purpose of this invention to provide a method of manufacturing passive electronic components on integrated multi-layer MCMs that is less costly than existing methods. It is a further purpose of this invention to provide a device consisting of integrated multi-layer MCMs that results in reduced module size, shorter conducting lines, reduced power consumption, and improved signal to noise ratio.
Other purposes and advantages of this invention will appear as the description proceeds.
SUMMARY OF THE INVENTION
The present invention is directed to a method for the implementation of electrical components in a substrate having via-holes comprising the construction of said components within said via-holes. The method of the invention produces electrical components that may be selected from the group comprising:
- capacitors;
- resistors;
- piezoelectric elements; - inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries.
The electrical components may be formed from either non-conductive and/or conductive particles that are deposited in predetermined quantities within the via-holes of the substrate. The conductive particles are selected from either metallic or ferro-magnetic particles and the non-conductive particles are selected from the group comprising:
- dielectric particles;
- resistive particles;
- ferromagnetic particles; and
- piezoelectric particles.
The electrical components may be formed by using an electrophoretic deposition (EPD) process that may comprise the following steps:
- (a) inserting the substrate containing said via-hole(s) into an
electrophoretic cell, placing an electrode (referred to as "first electrode") on
top of a first orifice of each of said via-hole(s), to be implemented with
electrical component(s), so that said electrode totally covers said first
orifice;
- (b) providing electrically charged either conductive and/or non-conductive
particles by immersing the volume of said via-hole(s) in a conductive
medium consisting of said electrically charged particles;
- (c) creating an electric field between said first electrode and a second
electrode through said via-hole(s) and said conductive medium; - (d) precipitating said electrically charged particles on the inner surface of
said first electrode that is directed to the second orifice of said via-hole(s),
until a desired portion of the volume of said via-hole(s) is filled with a first
layer of said charged particles having a desired thickness; and optionally,
if so desired
- (e) precipitating an additional electrically charged layer, composed of
either conductive and/or nonconductive particles, on top of the inner
surface of said first layer, using a second electrophoretic cell; and,
optionally if so desired
- (f) repeating the last step using additional electophoretic cell(s) creating
more layers, until the remaining portion of the volume of said via-hole(s)
is filled with said additional charged particles.
The electrical components may be deposited within the via-holes as one layer composed of a single type of particle, or co-deposited as one layer composed of two or more types of particles, or deposited and/or co-deposited as two or more layers each composed of one or more types of particles
The invention is also directed towards electrical components that may be deposited within the via-holes of a substrate and are selected from the group comprising:
- capacitors;
- conductors;
- resistors;
- piezoelectric elements;
- inductors; - magnetoresistive sensors;
- magnetic actuators; and
- batteries.
The electrical components may be formed from either non- conductive and/or conductive particles that are deposited in predetermined quantities within the via-holes of the substrate. The conductive particles are selected from either metallic or ferro-magnetic particles and the non-conductive particles are selected from the group comprising:
- dielectric particles;
- resistive particles;
- ferromagnetic particles; and
- piezoelectric particles.
The invention is also directed to a substrate containing electrical components
implemented within the via-holes of said substrate by a method using an
electrophoretic deposition process. The substrate of the invention contains
electrical components that may be selected from the group comprising:
- capacitors;
- conductors;
- resistors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries. The substrate contains electrical components that are implemented by the
electrophoretic deposition process.
The invention is also directed to a substrate for a multi-chip module containing electrical components implemented by an electrophoretic deposition process and selected from the group comprising:
- capacitors;
- conductors;
- resistors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries.
The substrate for a multi-chip module of the invention contains electrical components that may be formed from either non- conductive and/or conductive particles that are deposited in predetermined quantities deposited within the via-holes of the substrate. The conductive particles may be selected from either metallic or ferro-magnetic particles and the non-conductive particles may be selected from the group comprising:
- dielectric particles;
- resistive particles;
- ferromagnetic particles; and
- piezoelectric particles.
The electrical components may be deposited within the via-holes of the substrate for a multi-chip module of the invention as one layer composed of a single type of particle, or co-deposited as one layer composed of two or more types of particles, or consist of a first layer, deposited or co-deposited within the via-holes of the substrate in a first EPD cell, and of a second, or more additional layer, sequentially deposited or co-deposited within the via-holes of the substrate in corresponding separate EPD cells, wherein each layer is composed of one or more types of non-conductive or conductive particles.
The invention is also directed to a method for producing a multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprise the layers of the module, further comprising conductive means to connect said electrical components with other components of said multi-chip module located within the via-holes or on the surface of the same, or different, layers of said multi-layered multi-chip module.
The invention is also directed to a multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprises the layers of the module, by a method using an electrophoretic deposition process and which further comprises conductive means to connect the implemented electrical components within the via-holes with other components of the multi-chip module located in the same, or different layers of the multi-layered multi-chip module.
In the preferred embodiment of the present invention, EPD technology is used for producing the desired electronic components within the via-hole. In the EPD process the desired electronic components are produced by the deposition of charged particles onto an electrode immersed in either an aqueous or non-aqueous suspension containing said charged particles in a powder form. The success of the EPD process depends primarily on the electric charge carried by the particles, which can be controlled through pretreatment of the powder and by addition of surface active agents to the dispersion.
Most ceramics, metals, polymers, and semiconductors can be electrodeposited providing that the powders are suitably dispersed. Thus resistors are produced by depositing resistive particles, capacitors by depositing dielectric particles, and conductors by depositing conductive particles. In addition, piezzoelectric elements and rechargeable or nonrechargeable batteries can be created by employing the technology of the invention.
According to one aspect of the invention, the EPD technology may be applied by completely covering the one orifice of the via-hole with one electrode of the EPD cell. The volume of the via-hole is immersed in the suspension, a second electrode is provided, and an electric field is applied between the electrodes through the via-hole and the suspension. This field causes charged particles that were in the suspension to be deposited by EPD onto the inner surface of the electrode, filling the via-hole until a required deposit thickness is obtained. Since the electrical value of the resulting component electrode depends on the known electric constants of the suspended particles (resistance, dielectric constant, etc.) and the dimensions of the component, good agreement between the calculated and manufactured values are achieved. This follows from the fact that the diameters of the via-holes are accurately controlled during their production by methods that are well known to the man skilled in the art (see for example, US 5,841,075). When the charged particles have been deposited to the required thickness, the field is turned off and the substrate is then removed from the EPD cell. The thickness of the deposited layer is a function of the concentration of particles in the suspension, current, and time and consequently it is easily monitored, controllable and reproducible. If so desired, the process of manufacturing the electrical component is completed by immersing the via-hole into a second EPD cell and depositing conductive particles until the via-hole is completely full.
Alternatively, different particles can be precipitated in the via-hole in any desired order. For example, one or more different electronic components can be formed in the same via-hole. Thus, a part of a circuit consisting of, for example, a resistor and capacitor connected in series can be produced in a single via-hole. Similarly, any other combination of two or more components is possible. The only limitation being the physical capacity of the via-hole. It should be noted that in the case of some of the electrical components, such as batteries, holes of diameters larger than those associated with conventional via-holes are required in order to deposit a sufficient quantity of material to create the component. In this manner, a component, or components, possessing predetermined electrical characteristics has been created in the via-hole. This reduces the overall length of conducting lines in the final circuit; since the depth of the via-holes, which in the existing technology contained only conductors, now contain passive elements and conductors to provide electrical continuity between the layers of the multi-layer system. Since many of the components are now embedded in a vertical direction instead of all of the components being dispersed horizontally on the surface of the layers as in the prior art, the overall volume of the multi-layer system and amount of substrate material required to support the components is reduced.
All of the above and other characteristics and advantages of the invention will be further demonstrated by means of the following illustrative and non-limitative description of preferred embodiments thereof, with reference to the appended drawings. BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 schematically illustrates a device for carrying out an EPD process;
Fig. 2A is a cross-sectional view schematically showing the substrate; Fig. 2B is a cross-sectional view schematically showing the addition of a via hole to the substrate;
Fig. 2C is a cross-sectional view schematically showing the placement of the electrodes;
Fig. 2D is a cross-sectional view schematically showing the situation after the deposition of a first layer;
Fig. 2E is a cross-sectional view schematically showing the situation after the deposition of a second layer;
Fig. 2F is a cross-sectional view schematically showing the situation after the deposition of a third layer; and,
Fig. 2G is a cross-sectional view schematically showing the situation after completion of the deposition process.
Fig. 3A schematically shows a MCM with the electronic components arranged in a single layer on the surface according to prior art;
Fig. 3B shows the device of Fig. 3A with passive elements distributed on the surfaces of the different dielectric layers in order to miniaturize the device according to prior art; and
Fig. 3C shows the device of Fig. 3A with passive elements created in the via-holes according to the method of the invention.
DETAILED DESCRIPTION OF THE INVENTION
An electrophoretic deposition (EPD) cell 1 is shown schematically in Fig. 1. The cell 1 consists of a container with an electric circuit consisting of an "upper" positive electrode 4 connected through a DC power supply 5 to a 'lower" negative electrode 6. The substrate and electrodes are suspended in a liquid suspension
17. The suspension consists of particles of the material that has been chosen for the manufacture of the electrical component to which positive electrical charges have been attached by adsorption of ions. The particles are suspended in either water or any other suitable liquid, such as alcohol, depending upon the properties of the powder to be placed in suspension and the type of substrate.
As mentioned above, the particles of the suspension are chosen according to the type of passive component that should be formed and the desired values of the electrical properties of said component. Conductors are produced from metals, including gold, silver, copper, aluminum, nickel, platinum, and palladium. Capacitors are made from high dielectric constant materials such as BaTiθ3, Ta2Oδ , or PZT. Inductor cores are made from ferromagnetic materials, and resistors from controlled combinations of insulating materials such as glass, ceramics, or polymers with conducting materials such as ruthenium or any of the metals that are used to create conductors.
Using the technology of this invention, it is also possible to manufacture piezoelectric devices having an electrode component consisting of PZT, magnetoresistive sensors from cobalt/copper compositions, and magnetic actuators from materials such as Tbo.3θDyo.7oFe 92. Using EPD it is also possible to create Li and Ni/Cd batteries.
The substrate 2 (in Fig. 1) is placed in the EPD cell 1 such that the via-hole 3 is completely immersed in the suspension. The via-holes are created by techniques that are well known in the art. Much care is taken to maintain a uniform cross section of the hole throughout the entire thickness of the substrates in order to allow production of high quality electrical components. The lower electrode 6 is positioned such that it completely covers the orifice of the via-hole and an electric field is created in the EPD cell. Said electric field causes the electrically charged particles of the suspension to be deposited on the inner surface of electrode 6 that is directed towards the upper orifice of the via-hole. According to one aspect of the invention, the lower electrode can be part of the conductive pattern deposited on the surface of the substrate. As will be obvious to a man skilled in the art, several identical component electrodes, namely, same electrical component types can be formed in different via-holes at the same time.
Figs. 2A through 2G show the EPD process in more detail. The process begins, in Fig 2A, with a substrate layer generally indicated by the reference numeral 2. In Fig. 2B, the via-hole by the numeral 3 is created. In Fig.2C, the lower electrode designated by numeral 6 and the upper electrode designated by numeral 4 are placed in position. Fig 2D shows the situation after the deposition of the first layer designated by numeral 7. In most embodiments, 7 is a conducting layer that serves as a contact point for the element to be created in the via-hole. It is not, however, necessary to begin the process by depositing a conductive layer for example if the electrode 6, is part of the conducting pattern on the surface of the substrate.
The substrate and electrodes are now removed from the cell containing the conductive material and moved to an EPD cell containing a suspension of particles suitable to form the desired component. It should be noted that, for simplicity, the invention is described in terms of the deposition of a single type of particle, it is possible to co-deposit two or more types of charged particles from the same suspension in order to form electronic components with certain characteristics. Fig. 2E shows the situation at the end of the deposition of the particles that constitute the electronic component 8. The thickness t is easily determined from the desired electric value of the component. For example in the case of a capacitor, the capacitance depends on the cross-sectional area of the via-hole, the dielectric constant of the particles deposited in the EPD process, and the thickness t. Since the via-hole is precisely created, its diameter is known. It is easy to calibrate the EPD cell in order to accurately produce a desired thickness of deposited material, since the dielectric constant of the particles in the suspension is also known.
The substrate and electrodes are now removed from the second EPD cell and returned to the first cell containing the conductive material (Fig. 2F). In this step of the process, the remainder of the via-hole is filled with conductive material forming the second contact point of the electronic element. Finally, in Fig. 2G, the electrodes are removed and the substrate, with the electronic element created in the via-hole, is removed from the suspension and dried and treated according to the application, employing techniques well known in the art.
To create an inductor, a spiral conducting pattern is created on the substrate above the upper orifice of the via-hole by techniques well known in the art, for example by screen printing or as disclosed in US 6,040,226. The electrode of the EPD cell is placed over said spiral and orifice and ferromagnetic particles are deposited in the via-hole to produce a ferromagnetic "core" for the inductor. This ferromagnetic layer increases the Q factor of the inductor and allows the use of smaller components to achieve the desired inductance.
In other embodiments of the invention, the substrate and electrodes can be moved to a third EPD cell containing a suspension of different electrically charged non- conductive particles and another or a more complex electrical component can be formed in the same via-hole. This process can be repeated several times forming via-holes with any desired combination of non- conductive and conductive particles forming the electrical components described above.
Deposition of more than one layer in the via-holes is possible using the EPD process because the substrate is moved from one cell to another before the previously deposited layers have had a chance to cure. The layers in the via-hole constitute what is known in the art as a "green body", i.e. they have no mechanical strength and contain cavities filled with solvent that allow for continuation of the electric field necessary for the deposition of subsequent layers. However, the green body is impermeable to the suspended powder material intended for deposition within the via-hole on a previously deposited layer. Although the strength of the electric field in the via-hole will be decreased after the deposition of each layer, it is possible to compensate for this effect by increasing the electrical potential between the EPD electrodes.
An example of an electrical component formed by a multi-layer deposition process is a lithium polymer battery. As discussed previously, to produce a battery, it might be necessary to prepare a hole in the substrate with a diameter larger than that associated with conventional via-holes. The substrate, with the hole of the required diameter is placed in a first EPD cell containing lithium cobalt dioxide powder in suspension. The electrodes are supplied and a layer that serves as the cathode of the battery is deposited. The substrate is then moved to a second EPD cell containing powders of a polymer composite and a lithium salt which are co-deposited to form the solid polymer electrolyte layer. Finally, the substrate is moved to a third EPD cell, where a graphite layer, that serves as the anode of the battery is deposited.
When all of the component electrodes in all of the layers are formed in the manner described above; external components, conducting lines, and additional passive components are attached to the various substrates and the final integrated multi-layer electronic device is assembled using conventional techniques. The techniques of the final assembly of integrated multi-layer MCMs are well known, and therefore they are not discussed here.
Figs. 3A to 3C show the assembled integrated multi-layer device in which the components are designated as follows: dielectric substrate layers 2, via-holes 3, conducting lines 9, an integrated circuit chip 10, passive components 11, and the component electrodes of the invention 12. Figs. 3A and 3B show the assembly according to the methods of the prior art. In Fig. 3B, some of the passive components that are located on the upper surface only of the substrate of Fig. 3A have been relocated on the surfaces of the internal substrates of the multi-layer structure. All of the methods of depositing the film layers that make up the passive electronic components on the surfaces of the substrates suffer from difficulties in accurately controlling the width and thickness of the films. In applications where strict tolerances for the electrical parameters of the components are necessary, considerable time, and therefore expense, must be invested in trimming the films; or, expensive thin-film technology must be employed.
Fig. 3C shows the device of Figs 3A and 3B, manufactured according to the method of the invention. It will be recognized by the experienced observer that the method of the invention leads to the construction of a device containing a greatly reduced overall length of conducting lines connecting the electrical components and also to a completed multi-layer structure occupying significantly smaller volume than the equivalent device constructed according to the existing methods.
Although embodiments of the invention have been described by way of illustration, it will be understood that the invention may be carried out with many variations, modifications, and adaptations without departing from its spirit or exceeding the scope of the claims.

Claims

1. A method for the implementation of electrical components in a substrate having via-holes comprising the construction of said components within said via-holes.
2. A method according to claim 1, wherein the electrical components are selected
from the group comprising:
- capacitors;
- resistors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries.
3. A method according to any of claims 1 and 2, wherein the electrical components are deposited within the via-holes of the substrate.
4. A method according to claim 3, wherein either non-conductive and/or conductive particles are deposited in predetermined quantities to form the electrical components.
5. A method according to claim 4, wherein the non-conductive particles are selected from the group comprising:
- dielectric particles;
- resistive particles;
- ferromagnetic particles; and
- piezoelectric particles.
6. A method according to claim 4, wherein the conductive particles are selected from the group comprising:
- metallic particles
- ferro-magnetic particles
7. A method according to claims 1 to 6, wherein the components are formed by using an electrophoretic deposition (EPD) process.
8. A method according to claim 7, comprising:
- (a) inserting the substrate containing said via-hole(s) into an
electrophoretic cell, placing an electrode (referred to as "first electrode") on
top of a first orifice of each of said via-hole(s), to be implemented with
electrical component(s), so that said electrode totally covers said first
orifice;
- (o) providing electrically charged either conductive and/or non-conductive
particles by immersing the volume of said via-hole(s) in a conductive
medium consisting of said electrically charged particles;
- (c) creating an electric field between said first electrode and a second
electrode through said via-hole(s) and said conductive medium;
- (d) precipitating said electrically charged particles on the inner surface of
said first electrode that is directed to the second orifice of said via-hole(s),
until a desired portion of the volume of said via-hole(s) is filled with a first
layer of said charged particles having a desired thickness; and optionally,
if so desired - (e) precipitating an additional electrically charged layer, composed of
either conductive and/or nonconductive particles, on top of the inner
surface of said first layer, using a second electrophoretic cell; and,
optionally if so desired
- (f) repeating the last step using additional electophoretic cell(s) creating
rriore layers, until the remaining portion of the volume of said via-hole(s)
is filled with said additional charged particles.
9. A method according to any one of claims 1, 7, or 8, wherein the electrical components deposited within the via-holes consist of one layer composed of a single type of particles.
10. A method according to any one of claims 1, 7, or 8, wherein the electrical components co-deposited within the via-holes consist of one layer composed of two or more types of particles.
11. A method according to any one of claims 1, 7, or 8, wherein the electrical components deposited and/or co-deposited within the via-holes consist of two or more layers each composed of one or more types of particles.
12. Electrical components implemented according to the method of any one of claims 1, 7, or 8, wherein said electrical components are selected from the group comprising:
- capacitors;
- conductors;
- resistors;
- piezoelectric elements;
- inductors; - magnetoresistive sensors;
- magnetic actuators; and
- batteries.
13. Electrical components according to claim 12, wherein said electrical
components are deposited within the via-holes of the substrate.
14. Electrical components according to claim 13, wherein either non- conductive
and/or conductive particles are deposited in predetermined quantities to form
said electrical components.
15. Electrical components according to claim 14, wherein the non-conductive
particles are selected from the group comprising:
- dielectric particles;
- resistive particles;
- ferromagnetic particles; and
- piezoelectric particles.
16. Electrical components according to claim 14, wherein the conductive particles are selected from the group comprising:
- metallic particles
- ferro-magnetic particles
17. Electrical components implemented according to any of claims 12 to 16, wherein said electrical components deposited within the via-holes consist of one layer composed of a single type of particles.
18. Electrical components implemented according to any of claims 12 to 16, wherein said electrical components co-deposited within the via-holes consist of one layer composed of two or more types of particles.
19. Electrical components according to any of claims 12 to 16, wherein said electrical components deposited and/or co-deposited within the via-holes consist of two or more layers each composed of one or more types of particles.
20. A substrate containing electrical components implemented within the
via-holes of said substrate by a method using an electrophoretic deposition
process.
21. A substrate according to claim 20, wherein the electrical components are
selected from the group comprising:
- capacitors;
- conductors;
- resistors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries.
22. A substrate according to claim 21, wherein the electrical components are
implemented by the electrophoretic deposition process comprising:
- (a) inserting the substrate containing the via-hole(s) into an
electrophoretic cell, placing an electrode (referred to as "first electrode") on top of a first orifice of each of said via-hole(s), to be implemented with
electrical component(s), so that said electrode totally covers said first
orifice;
- (b) providing electrically charged either conductive and/or non-conductive
particles by immersing the volume of said via-hole(s) in a conductive
medium consisting of said electrically charged particles;
- (c) creating an electric field between said first electrode and a second
electrode through said via-hole(s) and said conductive medium;
-(d) precipitating said electrically charged particles on the inner surface of
said first electrode that is directed to the second orifice of said via-hole(s),
until a desired portion of the volume of said via-hole(s) is filled with a first
layer of said charged particles having a desired thickness; and optionally,
if so desired
-(e) precipitating an additional electrically charged layer, composed of
either conductive and/or nonconductive particles, on top of the inner
surface of said first layer, using a second electrophoretic cell; and,
optionally if so desired
-(f) repeating the last step using additional electophoretic cell(s) creating
more layers, until the remaining portion of the volume of said via-hole(s)
is filled with said additional charged particles.
23. A substrate for a multi-chip module containing electrical components implemented according to any one of claims 20-22, wherein said electrical components are selected from the group comprising: - capacitors;
- conductors;
- resistors;
- piezoelectric elements;
- inductors;
- magnetoresistive sensors;
- magnetic actuators; and
- batteries.
24. A substrate for a multi-chip module according to of claim 23, wherein said electrical components are deposited within the via-holes of said substrate.
25. A substrate for a multi-chip module according to claim 24, wherein either non-conductive and/or conductive particles are deposited in predetermined quantities to form the electrical components.
26. A substrate for a multi-chip module according to claims 25, wherein the non-conductive particles are selected from the group comprising:
- dielectric particles;
- resistive particles;
- ferromagnetic particles; and
- piezoelectric particles.
27. A substrate for a multi-chip module according to claim 25, wherein the non-conductive particles are selected from the group comprising:
- metallic particles
- ferro-magnetic particles
28. A substrate for a multi-chip module according to claim 25, wherein the electrical components deposited within the via-holes consist of one layer composed of a single type of particle.
29. A substrate for a multi-chip module according to claim 25, wherein the electrical components co-deposited within the via-holes consist of one layer composed of two or more types of particles.
30. A substrate for a multi-chip module according to claim 25, consisting of a first layer, deposited or co-deposited within the via-holes of said substrate in a first EPD cell, and of a second, or more additional layer, sequentially deposited or co-deposited within the via-holes of said substrate in corresponding separate EPD cells, wherein each layer is composed of one or more types of non-conductive or conductive particles.
31. A method according to claims 1 and 8, for producing a multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprise the layers of the module, further comprising conductive means to connect said electrical components with other components of said multi-chip module located within the via-holes or on the surface of the same, or different, layers of said multi-layered multi-chip module.
32. A multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprises the layers of the module, by a method using an electrophoretic deposition process.
33. A multi-layered multi-chip module, according to claim 33, further comprising conductive means to connect the implemented electrical components within the via-holes with other components of the multi-chip module located in the same, or different layers of the multi-layered multi-chip module.
34. A device containing a multi-layered multi-chip module in which at least a portion of the electrical components are implemented within the via-holes of the substrates that comprises the layers of the module, by a method using an electrophoretic deposition process.
35. A device, according to claim 34, further comprising conductive means to connect the implemented electrical components within the via-holes with other components of the multi-chip module located in the same or different layers of the multi-layered multi-chip module.
PCT/IL2001/000991 2001-01-25 2001-10-25 A method for the implementation of electronic components in via-holes of a multi-layer multi-chip module WO2002060229A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/470,036 US7200920B2 (en) 2001-01-25 2001-10-25 Method for the implementation of electronic components in via-holes of a multi-layer multi-chip module
DE60129743T DE60129743D1 (en) 2001-01-25 2001-10-25 METHOD FOR IMPLEMENTING ELECTRONIC COMPONENTS IN THE THROUGHPUTS OF A MULTILAYER MULTICHIP MODULE
EP01980882A EP1354503B1 (en) 2001-01-25 2001-10-25 A method for the implementation of electronic components in via-holes of a multi-layer multi-chip module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL141118 2001-01-25
IL14111801A IL141118A0 (en) 2001-01-25 2001-01-25 A method for the implementation of electronic components in via-holes of a multi-layer multi-chip module

Publications (1)

Publication Number Publication Date
WO2002060229A1 true WO2002060229A1 (en) 2002-08-01

Family

ID=11075079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2001/000991 WO2002060229A1 (en) 2001-01-25 2001-10-25 A method for the implementation of electronic components in via-holes of a multi-layer multi-chip module

Country Status (6)

Country Link
US (1) US7200920B2 (en)
EP (1) EP1354503B1 (en)
AT (1) ATE369030T1 (en)
DE (1) DE60129743D1 (en)
IL (1) IL141118A0 (en)
WO (1) WO2002060229A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008736A1 (en) * 2004-07-22 2006-01-26 Cerel (Ceramic Technologies) Ltd. Fabrication of electrical components and circuits by selective electrophoretic deposition (s-epd) and transfer
CN108415320A (en) * 2018-02-13 2018-08-17 深圳比特微电子科技有限公司 Power supply circuit, circuit board and virtual digit coin dig mine machine

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839581B1 (en) * 2002-05-07 2005-07-01 St Microelectronics Sa ELECTRONIC CIRCUIT COMPRISING A CAPACITOR AND AT LEAST ONE SEMICONDUCTOR COMPONENT, AND METHOD FOR DESIGNING SUCH CIRCUIT
US6900708B2 (en) * 2002-06-26 2005-05-31 Georgia Tech Research Corporation Integrated passive devices fabricated utilizing multi-layer, organic laminates
US7260890B2 (en) 2002-06-26 2007-08-28 Georgia Tech Research Corporation Methods for fabricating three-dimensional all organic interconnect structures
US20050063135A1 (en) * 2003-09-18 2005-03-24 Borland William J. High tolerance embedded capacitors
US7287328B2 (en) * 2003-08-29 2007-10-30 Rochester Institute Of Technology Methods for distributed electrode injection
US20050062587A1 (en) * 2003-09-24 2005-03-24 Wei-Chun Yang Method and structure of a substrate with built-in via hole resistors
US20050191786A1 (en) * 2003-12-31 2005-09-01 Microfabrica Inc. Integrated circuit packaging using electrochemically fabricated structures
US20080142369A1 (en) * 2003-12-31 2008-06-19 Microfabrica Inc. Integrated Circuit Packaging Using Electrochemically Fabricated Structures
US8581308B2 (en) 2004-02-19 2013-11-12 Rochester Institute Of Technology High temperature embedded charge devices and methods thereof
US7275316B2 (en) * 2004-03-31 2007-10-02 Intel Corporation Method of embedding passive component within via
US8345433B2 (en) * 2004-07-08 2013-01-01 Avx Corporation Heterogeneous organic laminate stack ups for high frequency applications
US7515434B2 (en) * 2004-12-20 2009-04-07 Nortel Networks Limited Technique for enhancing circuit density and performance
US7439840B2 (en) 2006-06-27 2008-10-21 Jacket Micro Devices, Inc. Methods and apparatuses for high-performing multi-layer inductors
US7808434B2 (en) * 2006-08-09 2010-10-05 Avx Corporation Systems and methods for integrated antennae structures in multilayer organic-based printed circuit devices
US7989895B2 (en) 2006-11-15 2011-08-02 Avx Corporation Integration using package stacking with multi-layer organic substrates
KR100818116B1 (en) * 2007-06-20 2008-03-31 주식회사 하이닉스반도체 Semiconductor package
WO2012071002A1 (en) * 2010-11-22 2012-05-31 Andreas Fischer A method and an apparatus for forming electrically conductive vias in a substrate, an automated robot-based manufacturing system, a component comprising a substrate with via holes, and an interposer device
US8810475B2 (en) * 2011-03-11 2014-08-19 Ibiden Co., Ltd. Antenna device
US10014843B2 (en) * 2013-08-08 2018-07-03 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Multilayer electronic structures with embedded filters

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303078A (en) * 1962-05-18 1967-02-07 David Wolf Method of making electrical components
US4300115A (en) * 1980-06-02 1981-11-10 The United States Of America As Represented By The Secretary Of The Army Multilayer via resistors
EP0491543A2 (en) * 1990-12-17 1992-06-24 Hughes Aircraft Company Via resistors within multilayer 3-dimensional structures/substrates
EP0574206A2 (en) * 1992-06-08 1993-12-15 Nippon CMK Corp. Multilayer printed circuit board and method for manufacturing the same
US5354599A (en) * 1992-09-24 1994-10-11 Hughes Aircraft Company Dielectric vias within multi-layer 3-dimensional structures/substrates
US5438167A (en) * 1992-09-24 1995-08-01 Hughes Aircraft Company Ferrimagnetic vias within multi-layer 3-dimensional structures/substrates
EP0719079A1 (en) * 1994-12-22 1996-06-26 Kanto Kasei Co., Ltd. Printed circuit board
US6068782A (en) * 1998-02-11 2000-05-30 Ormet Corporation Individual embedded capacitors for laminated printed circuit boards

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5683928A (en) * 1994-12-05 1997-11-04 General Electric Company Method for fabricating a thin film resistor
US5855755A (en) * 1995-06-19 1999-01-05 Lynntech, Inc. Method of manufacturing passive elements using conductive polypyrrole formulations
AU5238898A (en) * 1996-11-08 1998-05-29 W.L. Gore & Associates, Inc. Method for reducing via inductance in an electronic assembly and device
US5953203A (en) * 1997-03-06 1999-09-14 Sarnoff Corporation Multilayer ceramic circuit boards including embedded capacitors
US6055151A (en) * 1997-03-06 2000-04-25 Sarnoff Corp Multilayer ceramic circuit boards including embedded components
US6040226A (en) * 1997-05-27 2000-03-21 General Electric Company Method for fabricating a thin film inductor
US6024857A (en) * 1997-10-08 2000-02-15 Novellus Systems, Inc. Electroplating additive for filling sub-micron features
CN1180133C (en) * 1998-10-14 2004-12-15 法拉第技术公司 Electrodeposition of metals in small recesses using modulated electric fields
US6534116B2 (en) * 2000-08-10 2003-03-18 Nutool, Inc. Plating method and apparatus that creates a differential between additive disposed on a top surface and a cavity surface of a workpiece using an external influence

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303078A (en) * 1962-05-18 1967-02-07 David Wolf Method of making electrical components
US4300115A (en) * 1980-06-02 1981-11-10 The United States Of America As Represented By The Secretary Of The Army Multilayer via resistors
EP0491543A2 (en) * 1990-12-17 1992-06-24 Hughes Aircraft Company Via resistors within multilayer 3-dimensional structures/substrates
EP0574206A2 (en) * 1992-06-08 1993-12-15 Nippon CMK Corp. Multilayer printed circuit board and method for manufacturing the same
US5354599A (en) * 1992-09-24 1994-10-11 Hughes Aircraft Company Dielectric vias within multi-layer 3-dimensional structures/substrates
US5438167A (en) * 1992-09-24 1995-08-01 Hughes Aircraft Company Ferrimagnetic vias within multi-layer 3-dimensional structures/substrates
EP0719079A1 (en) * 1994-12-22 1996-06-26 Kanto Kasei Co., Ltd. Printed circuit board
US6068782A (en) * 1998-02-11 2000-05-30 Ormet Corporation Individual embedded capacitors for laminated printed circuit boards

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"POLYMER RESISTOR FORMATION IN PHOTO VIA", IBM TECHNICAL DISCLOSURE BULLETIN, IBM CORP. NEW YORK, US, vol. 36, no. 10, 1 October 1993 (1993-10-01), pages 349, XP000412286, ISSN: 0018-8689 *
SCHEIFERS S M: "A NOVEL METHOD OF CREATING RESISTORS IN PRINTED WIRING BOARDS", MOTOROLA TECHNICAL DEVELOPMENTS, MOTOROLA INC. SCHAUMBURG, ILLINOIS, US, vol. 36, September 1998 (1998-09-01), pages 69 - 71, XP000850369 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008736A1 (en) * 2004-07-22 2006-01-26 Cerel (Ceramic Technologies) Ltd. Fabrication of electrical components and circuits by selective electrophoretic deposition (s-epd) and transfer
CN108415320A (en) * 2018-02-13 2018-08-17 深圳比特微电子科技有限公司 Power supply circuit, circuit board and virtual digit coin dig mine machine

Also Published As

Publication number Publication date
DE60129743D1 (en) 2007-09-13
EP1354503B1 (en) 2007-08-01
EP1354503A1 (en) 2003-10-22
ATE369030T1 (en) 2007-08-15
US20040113752A1 (en) 2004-06-17
US7200920B2 (en) 2007-04-10
IL141118A0 (en) 2002-02-10

Similar Documents

Publication Publication Date Title
US7200920B2 (en) Method for the implementation of electronic components in via-holes of a multi-layer multi-chip module
US6987661B1 (en) Integrated circuit substrate having embedded passive components and methods therefor
US7334326B1 (en) Method for making an integrated circuit substrate having embedded passive components
JP4996036B2 (en) Plating terminal
US6542379B1 (en) Circuitry with integrated passive components and method for producing
CN1051670C (en) Laminar stackable circuit board structure and manufacture
US9349788B2 (en) Thin film capacitors embedded in polymer dielectric
US5121299A (en) Multi-level circuit structure utilizing conductive cores having conductive protrusions and cavities therein
US6510045B2 (en) Solid electrolyte capacitor
JP2004040085A (en) Component formation by plating technique
US6967138B2 (en) Process for manufacturing a substrate with embedded capacitor
US20150042415A1 (en) Multilayer Electronic Structures with Embedded Filters
US7006359B2 (en) Modular electronic assembly and method of making
US6775126B2 (en) Solid electrolytic capacitor and method of manufacturing capacitor
US6291272B1 (en) Structure and process for making substrate packages for high frequency application
TW444522B (en) Process for forming polymer thick film resistors and metal thin film resistors in a printed circuited substrate
US20040128822A1 (en) Method for making a multilayer circuit board having embedded passive components
US7049929B1 (en) Resistor process
WO2006008736A1 (en) Fabrication of electrical components and circuits by selective electrophoretic deposition (s-epd) and transfer
JP4577479B2 (en) Sheet forming method having different material parts and sheet having different material parts used for multilayer wiring board formation
JPH0714110B2 (en) Multilayer ceramic substrate
US20020062924A1 (en) Definable integrated passives for circuitry
JPH09199333A (en) Coil component and its manufacture
JP2003115418A (en) Method of manufacturing solid electrolytic capacitor
WO2002039796A1 (en) Definable integrated passives for circuitry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001980882

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001980882

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10470036

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001980882

Country of ref document: EP