WO2002066936A1 - Debitmetre a dispositif de chauffage de resistance - Google Patents

Debitmetre a dispositif de chauffage de resistance Download PDF

Info

Publication number
WO2002066936A1
WO2002066936A1 PCT/JP2001/001222 JP0101222W WO02066936A1 WO 2002066936 A1 WO2002066936 A1 WO 2002066936A1 JP 0101222 W JP0101222 W JP 0101222W WO 02066936 A1 WO02066936 A1 WO 02066936A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
temperature
passage
type flow
flow rate
Prior art date
Application number
PCT/JP2001/001222
Other languages
English (en)
French (fr)
Inventor
Hiromu Kikawa
Shinya Igarashi
Masayuki Kozawa
Naoki Saitou
Takayuki Saitou
Original Assignee
Hitachi, Ltd.
Hitachi Car Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Car Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to DE60137265T priority Critical patent/DE60137265D1/de
Priority to EP01906144A priority patent/EP1363109B8/en
Priority to PCT/JP2001/001222 priority patent/WO2002066936A1/ja
Priority to JP2002566612A priority patent/JP4174321B2/ja
Priority to EP08019956.5A priority patent/EP2034279B1/en
Priority to US10/468,080 priority patent/US7201046B2/en
Publication of WO2002066936A1 publication Critical patent/WO2002066936A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Definitions

  • the present invention relates to a heating resistance type air flow measurement device that measures the amount of intake air flowing through an intake passage of an internal combustion engine.
  • the present invention relates to a heating resistor type flow rate measuring device suitable for measuring.
  • Various measurement errors are known in conventional heating resistor type flow rate measuring devices. Among them, detection elements such as heating resistors and the like are generated by heat transmitted through the structure of the heating resistor type flow rate measuring device itself. Has a temperature characteristic error caused by heating.
  • Typical heat generation sources are 1) those that use the engine and exhaust pipe as heat sources, and 2) the power transistors that form the signal amplification circuit in the electronic circuit section of the heating resistor type flow measurement device. The heat source is raised.
  • the heat transfer paths are: A) the heat transmitted through the structure of the heating resistor type flow measurement device itself and directly reaches the detection element; B) the heat transmitted through the structure of the heating resistor type flow measurement device itself is the auxiliary passage wall The temperature of the air flow in contact with the sub-passage wall increases, and reaches the detection element.
  • the temperature of the temperature sensor becomes higher than the surrounding air temperature by the amount of heat transmitted, and the amount of heat is directly generated as an error in the measured temperature.
  • the heating resistor need not be electrically heated by the amount of heat received by the detection element, so that the output of the heating resistor type flow measuring device decreases. This is because the heating resistor type flow rate measurement device always controls the temperature of the heating resistor so that it is always higher than the temperature of the temperature sensing resistor by a certain value, and measures the power required for the control. This is because it is extracted as a value.
  • the heating value of the heat-generating resistor increases by the amount of heat received by the detection element, and the output of the heat-generating resistor type flow measurement device increases.
  • the heating resistor type flow rate measuring device an error due to heat occurs.
  • Japanese Patent Application Laid-Open No. 60-3699116 discloses The ones described are known.
  • the shape and material of the terminal supporting the detecting element are changed in order to adjust the thermal influence from the structural member.
  • DISCLOSURE OF THE INVENTION in the method in which the shape and material of the terminal are changed, the weldability with the detecting element is deteriorated when the material of the detecting element support is changed, and the productivity is increased when the support is complicated. There are problems such as deterioration.
  • An object of the present invention is to provide a heating resistance type flow rate measuring device with improved productivity.
  • the present invention provides a detecting element for detecting an air flow rate, a temperature-sensitive resistor for measuring an ambient temperature to compensate for a heating temperature of the detecting element, and a detecting element and a temperature-sensitive element.
  • a heating resistor type flow rate measuring device having a sub-passage in which a resistor is disposed, wherein a hole formed in a wall of the sub-passage is provided in the vicinity of the detection element and the temperature-sensitive resistor or any one of them. It is prepared for.
  • FIG. 1 is a vertical cross-sectional perspective view showing the overall configuration of a heating resistance type flow rate measuring device according to an embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a sub-passage of a heating resistance type flow measuring device according to an embodiment of the present invention.
  • FIG. 3 is a vertical cross-sectional perspective view showing a configuration of a main part of a heating resistance type flow rate measuring device according to an embodiment of the present invention.
  • FIG. 4 is a plan view of a main part of a heating resistance type flow rate measuring device according to an embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view of a sub-passage of the heating resistance type flow rate measuring device according to one embodiment of the present invention.
  • FIG. 6 is a longitudinal sectional view of a sub-passage of the heating resistance type flow rate measuring device according to one embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view of a sub-passage of the heating resistance type flow rate measuring device according to one embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of the effect of reducing the influence of temperature in the heating resistance type flow measurement device according to one embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of the effect of reducing the influence of temperature in the heating resistance type flow measurement device according to one embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of the effect of reducing the temperature effect in the heating resistance type flow measuring device according to one embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of the effect of reducing the temperature effect in the heating resistance type flow measurement device according to one embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION a configuration of a heating resistance type flow measurement device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 11.
  • FIG. 1 is a vertical cross-sectional perspective view showing the entire configuration of a heating resistance type flow measurement device according to an embodiment of the present invention.
  • FIG. 2 is a sub-passage of the heating resistance flow measurement device according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view of FIG.
  • the module housing 4 of the heating resistor type flow rate measuring device is attached to the intake passage 1 of the automotive internal combustion engine via the 7 "module flange 3.
  • the module flange 3 is connected to the outside.
  • a connector 2 for electrical connection is provided at the distal end of the module housing 4.
  • a sub-passage 6 is formed inside the sub-passage 6, an air temperature detecting element 12 and a temperature-sensitive resistor 1 are provided. 3 and a heating resistor 14 are provided.
  • Part of the air taken into the internal combustion engine from the intake passage 1 flows into the inside of the sub passage 6 from the sub passage inlet 7, and flows out to the intake passage 1 from the sub passage outlet 8.
  • the temperature of the air flowing into the sub-passage 7 is detected by the air temperature detecting element 12.
  • the flow rate of the air flowing into the sub-passage 7 is detected by the heating resistor 14, and the intake air temperature is corrected by the temperature sensing resistor 13.
  • the air temperature detecting element 12, the temperature sensing resistor 13, and the heating resistor 14 are electrically connected to an electronic circuit installed inside the module housing 4.
  • This electronic circuit is connected to the outside via the connector 2 and outputs a detection signal of the air flow rate and a detection signal of the air temperature to the outside.
  • the electronic circuit installed inside the module housing 4 is sealed by the force par 5.
  • a sub passage wall hole 9 is provided near the air temperature detection element 12 on the sub passage side wall 15 where the air temperature detection element 12 is close.
  • a sub passage wall hole 10 is provided in the vicinity of the temperature sensitive resistor 13 on the side wall 15 of the sub passage close to the temperature sensitive resistor 13.
  • a sub-passage wall hole 11 is provided in the vicinity of the heat-generating resistor 14 on the sub-passage side wall 16 where the heating resistor 14 is close.
  • the air temperature detecting element 12 and the temperature sensitive resistor 13 are arranged on the same plane with respect to the air flow X.
  • the heating resistor 14 is located downstream of the air temperature detecting element 12 and the temperature-sensitive resistor 13 with respect to the air flow X, and is connected to the air temperature detecting element 12 and the temperature-sensitive resistor 13. Are arranged on a different plane. Since the air temperature detection element 12 and the temperature sensitive resistor 1.3 detect the temperature of the inflowing air, if the heating resistor 14 is located upstream, the heat of the heating resistor 14 Since accurate temperature detection cannot be performed, the heat generating resistor 14 is disposed downstream of the air temperature detecting element 12 and the temperature sensitive resistor 13.
  • the air flow upstream of the heating resistor 14 If an element that disturbs the air flow is placed, accurate measurement of the air flow rate cannot be performed, so that the heating resistor antibody 14 will react with the air flow X to the air temperature detection element 12 and the temperature sensitive resistor 13 Are located in different planes.
  • FIG. 3 is a longitudinal sectional perspective view showing a main part configuration of a heating resistance type flow measuring device according to one embodiment of the present invention
  • FIG. 4 is a perspective view of a heating resistance type flow measuring device according to one embodiment of the present invention. It is a top view of a part.
  • the same reference numerals as those in FIGS. 1 and 2 indicate the same parts.
  • the shape of the auxiliary passage wall holes 9, 10, and 11 is a rectangular slit shape.
  • the width of the sub-passage wall holes 9, 10, 0, 11 provided in the vicinity of the air temperature detecting element 12, the temperature sensing resistor 13, and the heating resistor 14 is shown.
  • L 2 is the width L 1 or more (L 2 ⁇ L 1) of each of the air temperature detection element 12, the temperature sensing resistor 13 and the heating resistor 14, and the width L 3 or less of the sub passage 6 ( L 2 ⁇ L 3).
  • the shape of the auxiliary passage wall holes 9, 10, 11 is not limited to a slit shape, but may be an elliptical shape or a circular shape.
  • the detection elements such as the air temperature detection element 12, the temperature sensing resistor 13, and the heating resistor 14 are installed close to the sub passage walls 15 and 16, pass through the sub passage 6 Since the flowing air mainly passes through the portion where the flow resistance is small, the air flow between the detecting element and the sub passage wall tends to be very small. For this reason, the effect that the detection element heated by the external heat or the heat generated by the power transistor of the control circuit is cooled by the airflow flowing through the sub-passage is reduced.
  • FIG. 5 is a longitudinal sectional view of a sub-passage of the heating resistance type flow rate measuring device according to one embodiment of the present invention. 1 to 4 indicate the same parts.
  • the sub passage wall hole 9 provided near the air temperature detecting element 12 is provided with an air temperature. It is offset from the temperature detection element 12 by a distance ml in the downstream direction of the air flow in the sub passage 6.
  • the offset amount ml is a distance in the air flow direction between the center of the air temperature detecting element 12 and the center of the sub passage wall hole 9.
  • the sub-passage wall hole 9 is offset by the distance ml and provided in the downstream direction of the air flow in the sub-passage 6, so that part of the air flowing in from the sub-passage inlet 7 flows out of the sub-passage wall hole 9. Will do.
  • a sub-passage wall hole 1 provided near the temperature-sensitive resistor 13 is required. 0 is offset by a distance m 2 in the downstream direction of the air flow in the sub passage 6 with respect to the temperature-sensitive resistor 13.
  • the sub passage wall hole 11 provided in the vicinity of the heating resistor 14 generates heat. resistance
  • the body 14 is offset by a distance m 3 in the downstream direction of the air flow in the sub passage 6.
  • the air flow rate between the heating resistor 14 and the sub-passage wall 16 is increased.
  • the air flow velocity around the heating resistor 14 is increased, and the effect that the detection element heated by external heat or the like is cooled by the air flow flowing through the sub-passage can be increased.
  • the offset amounts ml, m2, and m3 are, for example, 11 mm to 13 mm.
  • the sign (+) indicates the amount of offset in the downstream direction from the detection element
  • the sign (1) indicates the amount of offset in the downstream direction from the detection element.
  • the offset amounts m l, m 2, and m 3 need to be changed depending on the dimensions of the detection element and the like, and a specific example thereof will be described later with reference to FIG.
  • FIG. 6 is a longitudinal sectional view of a sub-passage of the heating resistance type flow rate measuring device according to one embodiment of the present invention. 1 to 4 indicate the same parts.
  • the temperature boundary layer is divided so that the heat generated from the sub passage wall 15 does not propagate to the air temperature detection element 12.
  • the sub passage wall hole 9 ′ provided near the air temperature detecting element 12 is offset from the air temperature detecting element 12 by a distance n 1 in the air flow upstream direction in the sub passage 6. ing.
  • the offset amount nl is a distance between the center of the air temperature detecting element 12 and the center of the auxiliary passage wall hole 9 'in the direction opposite to the air flow direction.
  • the temperature boundary layer is cut off by the air flowing from the sub-passage wall holes 9 ′,
  • the heat from 15 becomes difficult to be transmitted to the air temperature detecting element 12.
  • the influence of heat from the sub passage wall 15 can be reduced, and the air temperature around the detection element can be reduced.
  • the sub passage wall hole 10 ′ provided near the temperature sensitive resistor 13 is Temperature sensitive resistor 13 is offset by a distance n2 in the upstream direction of the air flow in the auxiliary passage 6.
  • the temperature boundary layer is separated by the air flowing from the sub passage wall hole 10 ′ by offsetting the sub passage wall hole 10, by the distance n 2, and providing the sub passage wall hole 10 in the upstream direction of the air flow in the sub passage 6.
  • heat from the auxiliary passage wall 15 is less likely to be transmitted to the temperature-sensitive resistor 13. As a result, the effect of heat from the sub passage wall 15 can be reduced.
  • the sub passage wall hole 11 ′ provided near the heating resistor 14 is It is offset by a distance n3 in the upstream direction of the air flow in the passage 6.
  • the temperature boundary layer is divided by the air flowing from the sub-passage wall hole 11, The heat from the sub-passage wall 16 is less likely to be transmitted to the heat-generating antibody 14 c. As a result, the effect of the heat from the sub-passage wall 16 can be reduced.
  • the offset amounts nl, n2, and ⁇ 3 are, for example, 0111111 to +5111111.
  • the sign (+) indicates an offset amount in the upstream direction from the detection element.
  • the offset amounts nl, n2, and n3 need to be changed depending on the dimensions of the detection element and the like, and specific examples thereof will be described later with reference to FIG.
  • FIG. 7 is a longitudinal sectional view of a sub-passage of the heating resistance type flow rate measuring device according to one embodiment of the present invention. 1 to 6 indicate the same parts.
  • the sub-passage wall hole 9 provided in the vicinity of the air temperature detection element 12 is offset from the air temperature detection element 12 by a distance ml in the downstream direction of the air flow in the sub-passage 6.
  • the flow velocity of the airflow flowing between the auxiliary passage wall 15 is improved.
  • the flow rate of air flowing between the air temperature detecting element 12 and the sub passage wall 15 is increased, and the air temperature detecting element 12 heated by external heat or the like is moved to the air flowing through the sub passage. Cool by flow.
  • the width L 2 (9) of the sub passage wall hole 9 is obtained. Is 9.5 mm, which satisfies the relationship L1 (12) ⁇ L2 (9) ⁇ L3. Further, when the air temperature detecting element 12 has a cylindrical shape, its diameter 012 is 1.0 Omm0, and the height H (9) of the auxiliary passage wall hole 9 is 1.0 mm, the offset amount ml is +0.5 mm And
  • the sub passage wall hole 10 provided in the vicinity of the temperature sensitive resistor 13 is offset from the temperature sensitive resistor 13 by a distance m2 in the downstream direction of the air flow in the sub passage 6, and the temperature sensitive resistance is reduced.
  • the flow velocity of the airflow flowing between the body 13 and the sub passage wall 15 is improved.
  • the flow rate of air flowing between the temperature-sensitive resistor 13 and the auxiliary passage wall 15 is increased, and the temperature-sensitive resistor 13 heated by external heat or the like flows through the airflow flowing through the auxiliary passage. To cool.
  • the width L 2 (10 ) Is 8.5 mm, which satisfies the relationship L 1 (13) ⁇ L2 (10) ⁇ L3.
  • the temperature sensitive resistor 13 when the temperature sensitive resistor 13 is formed in a cylindrical shape, its diameter 013 is 0.8 mm, and the height H (10) of the sub passage wall hole 10 is 1.5 mm, the offset m2 is +2. 5 mm.
  • the sub-passage wall hole 11 ′ provided in the vicinity of the heating resistor 14 is offset from the heating resistor 14 by a distance n3 in the upstream direction of the air flow in the sub-passage 6. 'The temperature boundary layer is separated by air flowing in from This makes it difficult for the heat from the sub-passage wall 16 to propagate to the heating resistor 14, thereby reducing the influence of the heat from the sub-passage wall 16.
  • the lateral width L2 (ir) of the sub passage wall hole 11 ' is , 8.5 mm, which satisfies the relationship of L 1 (14) ⁇ L2 (11,) ⁇ L3.
  • the heating resistor 14 has a cylindrical shape
  • the diameter 14 is 0.5 mm0
  • the height H (ll,) of the auxiliary passage wall hole 11 is 1.0 mm
  • the offset amount n3 is +2. 5 mm.
  • the sub-passage wall holes 9 and 10 for the air temperature detecting element 12 and the temperature sensitive resistor 13 are distances m 1 and m 2 in the downstream direction of the air flow in the sub-passage 6.
  • the element 12 is cooled by the airflow flowing through the sub-passage I am trying to do it.
  • the sub passage wall hole 1 1 ′ provided near the heating resistor 14 is offset from the sub passage wall 16 by offsetting the distance n 3 in the upstream direction of the air flow in the sub passage 6. The effect of heat is reduced.
  • Figures 8 and 9 show the air flow distribution with and without the sub-passage wall holes 9, 10 and the results of the air flow distribution analysis in the sub-passage where the effect of the sub-passage wall holes was verified by CAE analysis. I have.
  • FIG. 8 shows the flow velocity distribution when there are no auxiliary passage wall holes 9 and 10.
  • the air temperature detecting element 12 and the temperature sensitive resistor 13 when there is no sub passage wall hole near the air temperature detecting element 12 and the temperature sensitive resistor 13, the air temperature detecting element 12 and the temperature sensitive resistor 13 and In the gap formed by the sub-passage wall 15 near the detection element, the air velocity is much slower than the center of the sub-passage 6, and the air temperature due to the airflow flowing in the sub-passage Cooling effect of sensing element 12 and temperature sensitive resistor 13 has been reduced by half
  • FIG. 9 shows the flow velocity distribution when the sub passage wall holes 9 and 10 are provided.
  • the air temperature detecting elements 12 and 12 of the sub-passage wall 15 are provided.
  • An air flow flows into the sub-passage wall holes 9 and 10 provided in the vicinity of the temperature-sensitive resistor 13, and the relatively fast air flow is in contact with almost the entire circumference of the detection element.
  • the cooling effect of the air temperature detecting element 12 and the temperature sensitive resistor 13 due to the airflow flowing through the passages is increased.
  • FIG. 10 and 11 show the temperature distribution with and without the sub-passage wall hole 11'.
  • the analysis of the air temperature distribution in the sub-passage 6 verified the effect of the sub-passage wall hole by CAE analysis. The results are shown.
  • FIG. 10 shows the temperature distribution when there is no sub passage wall hole 11 ′.
  • FIG. 11 shows a temperature distribution when the sub passage wall hole 11 'is provided.
  • the high temperature airflow generated near the sub passage wall 16 is divided by the sub passage wall hole 11 ′.
  • the temperature of the airflow around the heating resistor 14 can be reduced, and the effect of heat from the sub passage wall 16 can be reduced.
  • the shapes of the sub passage wall holes 9, 10, and 11 ' are rectangular slits.
  • the shape of the auxiliary passage wall hole may be elliptical, and specific dimensions in that case will be described.
  • the minor passage wall hole 9 has an elliptical shape with a major radius of RL (9) and a minor radius of Rs (9).
  • the minor passage wall hole 10 has an elliptical shape with a major radius of RL (10) and a minor radius of Rs (10).
  • RL major radius of RL
  • Rs minor radius of Rs
  • the minor passage wall hole 11 has an elliptical shape having a major radius of RL (ll) and a minor radius of Rs (ll).
  • the length of the heating resistor 14 is L1 (14) and the width of the sub passage 6 is L3, the relationship of L1 (13) ⁇ RL (11,) L3 is satisfied.
  • the offset amount n3 is in the range of Omm to +5 mm.
  • the radius RL (i) the short radius Rs (ll ').
  • the heating resistor type flow measuring device is improved only by the passage structure without improving the flow measuring element of the heating resistor type flow measuring device and without performing correction by a special electronic circuit. Improve the temperature characteristics of flow measurement devices Can be.
  • the present invention is effective not only for the measurement of the air flow described above, but also for the measurement of other fluids such as hydrogen, nitrogen or water.
  • INDUSTRIAL APPLICABILITY According to the present invention, the productivity of a heating resistance type flow rate measuring device can be improved.

Description

明 細 書 発熱抵抗体式流量測定装置 技術分野 本発明は、 内燃機関の吸気通路を流れる吸入空気量を測定する発熱抵抗式空気 流量測定装置に係り、 特に、 自動車用エンジンに吸入される空気流量を測定する のに好適な発熱抵抗体式流量測定装置に関する。 背景技術 従来の発熱抵抗体式流量測定装置においては、 様々な計測誤差が知られている が、 その中で発熱抵抗体式流量測定装置自身の構造体を伝わった熱により、 発熱 抵抗体等の検出素子が加熱されることにより発生する温度特性誤差がある。 熱の 発生源としては、 代表的な物は、 1 ) エンジン及び排気管を熱源とするもの、 2 ) 発熱抵抗体式流量測定装置の電子回路部において信号増幅回路を形成してい るパヮ一トランジスタを熱源とするものが上げられる。 熱の伝達経路としては、 A) 発熱抵抗体式流量測定装置自身の構造体を伝わり検出素子に直接到達するも の、 B ) 発熱抵抗体式流量測定装置自身の構造体を伝わった熱が副通路壁の温度 を上昇させ、 副通路壁に接する空気流の温度が上昇し、 検出素子に到達するもの の二つが考えられる。
ここで、 空気温度を測定する温度センサに熱が伝わった場合は、 温度センサの 温度が伝わった熱量の分だけ周囲の空気温度より高くなり、 その熱量が直接計測 温度の誤差として発生する。 発熱抵抗体に熱が伝わった場合には、 検出素子が受 けた熱量分だけ、 発熱抵抗体を電気的に加熱する必要が無くなるため、 発熱抵抗 体式流量測定装置の出力が減少する。 これは、 発熱抵抗体式流量測定装置は、 常 に、 発熱抵抗体の温度を感温抵抗体の温度に対して常に一定値高くなるように制 御しており、 その制御に必要な電力を計測値として取出しているためである。 熱 が感温抵抗体に伝わった場合には、 検出素子が受けた熱量分だけ、 発熱抵抗体の 加熱量が多くなり、 発熱抵抗体式流量測定装置の出力が増加する。 このようにし て、 発熱抵抗体式流量測定装置では、 熱による誤差が発生する。
従来の発熱抵抗式流量測定装置においては、 構造部材を介して発熱抵抗体等の 検出素子が受ける熱影響を低減もしくは調整するものとして、 例えば、 特閧 6 0 - 3 6 9 1 6号公報に記載されたものが知られている。 特開 6 0— 3 6 9 1 6号 公報に記載されたものでは、 構造部材からの熱影響を調整するために、 検出素子 を支持するターミナルの形状, 材質を変化させるようにしている。 発明の開示 しかしながら、 ターミナルの形状や材質を変える方式では、 検出素子支持体の 材質を変更した場合の検出素子との溶接性悪化や、 支持体が複雑な搆造となった 場合の生産性の悪化等の問題がある。
本発明の目的は、 生産性の向上した発熱抵抗式流量測定装置を提供することに あ^ ) o
上記目的を達成するために、 本発明は、 空気流量を検出する検出素子と、 この 検出素子の加熱温度を補償するために周囲温度を測定する感温抵抗体と、 この検 出素子と感温抵抗体を内部に配置する副通路を有する発熱抵抗体式流量測定装置 において、 上記検出素子及び感温抵抗体それそれ、 もしくは何れかの近傍であつ て、 上記副通路の壁に形成された孔を備えるようにしたものである。
かかる構成により、 孔の位置を変えるのみで、 検出素子若しくは感温抵抗体に 対する温度影響を低減して、 生産性を向上し得るものとなる。 図面の簡単な説明 図 1は、 本発明の一実施形態による発熱抵抗式流量測定装置の全体構成を示す 縦断面透視図である。
図 2は、 本発明の一実施形態による発熱抵抗式流量測定装置の副通路の縦断面 図である。
図 3は、 本発明の一実施形態による発熱抵抗式流量測定装置の要部構成を示す 縦断面透視図である。
図 4は、 本発明の一実施形態による発熱抵抗式流量測定装置の要部の平面図で める。
図 5は、 本発明の一実施形態による発熱抵抗式流量測定装置の副通路の縦断面 図である。
図 6は、 本発明の一実施形態による発熱抵抗式流量測定装置の副通路の縦断面 図である。
図 7は、 本発明の一実施形態による発熱抵抗式流量測定装置の副通路の縦断面 図である。
図 8は、 本発明の一実施形態による発熱抵抗式流量測定装置における温度影響 の低減効果の説明図である。
図 9は、 本発明の一実施形態による発熱抵抗式流量測定装置における温度影響 の低減効果の説明図である。
図 1 0は、 本発明の一実施形態による発熱抵抗式流量測定装置における温度影 響の低減効果の説明図である。
図 1 1は、 本発明の一実施形態による発熱抵抗式流量測定装置における温度影 響の低減効果の説明図である。 発明を実施するための最良の形態 以下、 図 1〜図 1 1を用いて、 本発明の一実施形態による発熱抵抗式流量測定 装置の構成について説明する。
最初に、 図 1及び図 2を用いて、 本実施形態による発熱抵抗式流量測定装置の 全体構成について説明する。
図 1は、 本発明の一実施形態による発熱抵抗式流量測定装置の全体構成を示す 縦断面透視図であり、 図 2は、 本発明の一実施形態による発熱抵抗式流量測定装 置の副通路の縦断面図であり、 図 1の A— A断面図である。 図 1に示すように、 発熱抵抗体式流量測定装置のモジュールハウジング 4は、 自動車用内燃機関の吸気通路 1に、 7 "モジュールフランジ 3を介して取りつけられ る。 モジュールフランジ 3には、 外部との電気接続用のコネクタ 2が設けられて いる。 モジュールハウジング 4の先端部には副通路 6が形成されている。 副通路 6の内部には、 空気温度検出素子 1 2と、 感温抵抗体 1 3と、 発熱抵抗体 1 4と が設置されている。
吸気通路 1から内燃機関に吸入される空気の一部は、 副通路入口 7から副通路 6の内部に流入し、 副通路出口 8から吸気通路 1に流出する。 副通路 7に流入し た空気の温度は、 空気温度検出素子 1 2によって検出される。 副通路 7に流入し た空気の流量は、 発熱抵抗体 1 4によって検出されるとともに、 感温抵抗体 1 3 によって吸気温が補正される。
空気温度検出素子 1 2 , 感温抵抗体 1 3 , 発熱抵抗体 1 4は、 モジュールハウ ジング 4内部に設置された電子回路と電気的に接続されている。 この電子回路は、 コネクタ 2を介して外部と接続され、 外部に空気流量の検出信号及び空気温度の 検出信号を出力する。 モジュールハウジング 4の内部に設置された電子回路は、 力パー 5によって封止されている。
次に、 図 2に示すように、 空気温度検出素子 1 2が近接している副通路側壁 1 5には、 空気温度検出素子 1 2の近傍に、 副通路壁孔 9が設けられている。 また、 感温抵抗体 1 3が近接している副通路側壁 1 5には、 感温抵抗体 1 3の近傍に、 副通路壁孔 1 0が設けられている。 さらに、 発熱抵抗体 1 4が近接している副通 路側壁 1 6には、 発熱抵抗体 1 4の近傍に、 副通路壁孔 1 1が設けられている。 また、 図 2に示すように、 空気温度検出素子 1 2 , 感温抵抗体 1 3は、 空気の 流れ Xに対して、 同一平面上に配置されている。 一方、 発熱抵抗体 1 4は、 空気 の流れ Xに対して、 空気温度検出素子 1 2 , 感温抵抗体 1 3の下流であって、 空 気温度検出素子 1 2 , 感温抵抗体 1 3とは異なる平面に配置されている。 空気温 度検出素子 1 2及び感温抵抗体 1. 3は、 流入する空気の温度を検出するものであ るため、 発熱抵抗体 1 4が上流にあると、 発熱抵抗体 1 4の熱によって正確な温 度検出が行えなくなるため、 発熱抵抗体 1 4は、 空気温度検出素子 1 2及び感温 抵抗体 1 3の下流に配置されている。 また、 発熱抵抗体 1 4の上流に空気の流れ を乱す素子が配置されていると、 正確な空気流量の測定が行えないため、 発熱抵 抗体 1 4は、 空気の流れ Xに対して、 空気温度検出素子 1 2 , 感温抵抗体 1 3と は異なる平面に配置されている。
次に、 図 3及び図 4を用いて、 本実施形態による発熱抵抗式流量測定装置に設 けられた副通路壁孔の寸法形状について説明する。
図 3は、 本発明の一実施形態による発熱抵抗式流量測定装置の要部構成を示す 縦断面透視図であり、 図 4は、 本発明の一実施形態による発熱抵抗式流量測定装 置の要部の平面図である。 なお、 図 1及び図 2と同一符号は、 同一部分を示して いる。
図 3に示すように、 副通路壁孔 9, 1 0 , 1 1の形状は、 矩形のスリット状で ある。 そして、 図 3及び図 4に示すように、 空気温度検出素子 1 2, 感温抵抗体 1 3及び発熱抵抗体 1 4の近傍に設けられた副通路壁孔 9 , 1 0 , 1 1の横幅 L 2は、 空気温度検出素子 1 2, 感温抵抗体 1 3及び発熱抵抗体 1 4のそれそれの 横幅 L 1以上 ( L 2≥ L 1 ) であり、 副通路 6の幅 L 3以下 ( L 2≤ L 3 ) とし ている。 なお、 副通路壁孔 9 , 1 0, 1 1の形状は、 スリヅト状に限らず、 楕円 形もしくは円形等の形状としてもよいものである。
以上のように、 空気温度検出素子 1 2, 感温抵抗体 1 3 , 発熱抵抗体 1 4が、 副通路 6の内部に配置されている構成では、 次の 2つの問題が生じる。
1 ) 空気温度検出素子 1 2 , 感温抵抗体 1 3, 発熱抵抗体 1 4等の検出素子が、 副通路壁 1 5 , 1 6に近接して設置されている場合、 副通路 6を通過する空気流 は、 流れ抵抗が小さい部分を主に通過するため、 検出素子と副通路壁面間を流れ る空気流量が非常に小さくなる傾向にある。 このため、 外部からの熱もしくは制 御回路のパワートランジスタ部発熱により加熱されている検出素子が、 副通路を 流れる空気流により冷却される効果が減少する。
2 ) また、 外部もしくはパヮ一トランジスタ部より伝達する熱は、 空気流量計 の構造部材を伝達するため、 副通路壁自体の温度も上昇する。 この時、 副通路壁 1 5 , 1 6に接している副通路 6の内部を流れる空気流も加熱され、 副通路壁か らある程度の距離までの空気は温度が上昇することとなる。 この空気温度が上昇 する範囲は、 副通路壁の最上流端点から徐々に成長していく。 発熱抵抗体等の検 出素子がこの空気温度の上昇する範囲内に設置されている場合は、 熱が構造部材 を伝わって検出素子の温度が直接上昇した場合と同様に、 温度による誤差を生じ ることとなる。
次に、 図 5を用いて、 (1 ) 冷却効果の減少に対して、 流速を増加して、 冷却 効果を増加するための、 本実施形態による副通路壁孔の寸法形状について説明す る。
図 5は、 本発明の一実施形態による発熱抵抗式流量測定装置の副通路の縦断面 図である。 なお、 図 1〜図 4と同一符号は、 同一部分を示している。
空気温度検出素子 1 2と副通路壁 1 5との間を流れる空気流の流速を向上させ るためには、 空気温度検出素子 1 2の近傍に設けられた副通路壁孔 9は、 空気温 度検出素子 1 2に対し、 副通路 6内の空気流れ下流方向に距離 m lだけオフセッ トしている。 オフセット量 m lは、 空気温度検出素子 1 2の中心と、 副通路壁孔 9の中心との間の空気流れ方向の距離である。 副通路壁孔 9を、 距離 m lだけォ フセットさせて、 副通路 6内の空気流れ下流方向に設けることにより、 副通路入 口 7から流入した空気の一部は、 副通路壁孔 9から流出することになる。 その結 果、 空気温度検出素子 1 2と副通路壁 1 5の間を流れる空気流量を増加して、 空 気温度検出素子 1 2の周囲の空気流速が増加して、 外部からの熱等により加熱さ れている検出素子が、 副通路を流れる空気流により冷却される効果が増加するこ とができる。
また、 同 に、 感温抵抗体 1 3と副通路壁 1 5との間を流れる空気流の流速を 向上させるためには、 感温抵抗体 1 3の近傍に設けられた副通路壁孔 1 0は、 感 温抵抗体 1 3に対し、 副通路 6内の空気流れ下流方向に距離 m 2だけオフセット している。 副通路壁孔 1 0を、 距離 m 2だけオフセットさせて、 副通路 6内の空 気流れ下流方向に設けることにより、 感温抵抗体 1 3と副通路壁 1 5の間を流れ る空気流量を増加して、 感温抵抗体 1 3の周囲の空気流速が増加して、 外部から の熱等により加熱されている検出素子が、 副通路を流れる空気流により冷却され る効果が増加することができる。
さらに、 発熱抵抗体 1 4と副通路壁 1 6との間を流れる空気流の流速を向上さ せるためには、 発熱抵抗体 1 4の近傍に設けられた副通路壁孔 1 1は、 発熱抵抗 体 1 4に対し、 副通路 6内の空気流れ下流方向に距離 m 3だけオフセットしてい る。 副通路壁孔 1 1を、 距離 m 3だけオフセットさせて、 副通路 6内の空気流れ 下流方向に設けることにより、 発熱抵抗体 1 4と副通路壁 1 6の間を流れる空気 流量を増加して、 発熱抵抗体 1 4の周囲の空気流速が増加して、 外部からの熱等 により加熱されている検出素子が、 副通路を流れる空気流により冷却される効果 が増加することができる。
オフセット量 m l , m 2 , m 3は、 例えば、 一 1 mm〜十 3 mmとする。 ここ で、 符号 (+ ) は、 検出素子から下流方向へのオフセット量を示し、 符号 (一) は、 検出素子から下流方向へのオフセヅ ト量を示している。 オフセヅ ト量 m l , m 2 , m 3は、 検出素子の寸法等によって変える必要があり、 その具体例につい ては、 図 7において後述する。
次に、 図 6を用いて、 (2 ) 副通路壁の温度上昇による温度誤差に対して、 温 度境界層を分断するための、 本実施形態による副通路壁孔の寸法形状について説 明する。
図 6は、 本発明の一実施形態による発熱抵抗式流量測定装置の副通路の縦断面 図である。 なお、 図 1〜図 4と同一符号は、 同一部分を示している。
副通路壁 1 5の熱の影響を低減するためには、 副通路壁 1 5から発生する熱が 空気温度検出素子 1 2に伝搬しないように、 温度境界層を分断する。 そのために は、 空気温度検出素子 1 2の近傍に設けられた副通路壁孔 9 ' は、 空気温度検出 素子 1 2に対し、 副通路 6内の空気流れ上流方向に距離 n 1だけオフセヅ卜して いる。 オフセット量 n lは、 空気温度検出素子 1 2の中心と、 副通路壁孔 9 ' の 中心との間の空気流れ方向と逆方向の距離である。 副通路壁孔 9, を、 距離 n l だけオフセットさせて、 副通路 6内の空気流れ上流方向に設けることにより、 副 通路壁孔 9 ' から流入する空気によって温度境界層が分断され、 副通路壁 1 5か らの熱が、 空気温度検出素子 1 2に伝搬されれにくくなる。 その結果、 副通路壁 1 5からの熱の影響を低減することができ、 検出素子周囲の空気温度を低下させ ることができる。
また、 同様に、 副通路壁 1 5からの熱が感温抵抗体 1 3に影響することを低減 するため、 感温抵抗体 1 3の近傍に設けられた副通路壁孔 1 0 ' は、 感温抵抗体 13に対し、 副通路 6内の空気流れ上流方向に距離 n2だけオフセヅトしている。 副通路壁孔 10, を、 距離 n 2だけオフセヅ トさせて、 副通路 6内の空気流れ上 流方向に設けることにより、 副通路壁孔 10' から流入する空気によって温度境 界層が分断され、 副通路壁 15からの熱が、 感温抵抗体 13に伝搬されれにくく なる。 その結果、 副通路壁 15からの熱の影響を低減することができる。
さらに、 副通路壁 16からの熱が発熱抵抗体 14に影響することを低減するた め、 発熱抵抗体 14の近傍に設けられた副通路壁孔 11' は、 発熱抵抗体 14に 対し、 副通路 6内の空気流れ上流方向に距離 n3だけオフセットしている。 副通 路壁孔 11' を、 距離 n 3だけオフセットさせて、 副通路 6内の空気流れ上流方 向に設けることにより、 副通路壁孔 11, から流入する空気によって温度境界層 が分断され、 副通路壁 16からの熱が、 発熱抵'抗体 14に伝搬されれにくくなる c その結果、 副通路壁 16からの熱の影響を低減することができる。 ·
オフセット量 nl, n 2 , η3は、 例えば、 0111111〜+ 5111111とする。 ここで、 符号 (+ ) は、 検出素子から上流方向へのオフセット量を示している。 オフセヅ ト量 nl, n2, n3は、 検出素子の寸法等によって変える必要があり、 その具 体例については、 図 7において後述する。
次に、 図 7を用いて、 上述の (1) (2) に対する本実施形態による副通路壁 孔の寸法形状について説明する。
図 7は、 本発明の一実施形態による発熱抵抗式流量測定装置の副通路の縦断面 図である。 なお、 図 1〜図 6と同一符号は、 同一部分を示している。
空気温度検出素子 12の近傍に設けられた副通路壁孔 9は、 空気温度検出素子 12に対し、 副通路 6内の空気流れ下流方向に距離 mlだけオフセットしており、 空気温度検出素子 12と副通路壁 15との間を流れる空気流の流速を向上させる ようにしている。 これによつて、 空気温度検出素子 12と副通路壁 15の間を流 れる空気流量を増加して、 外部からの熱等により加熱されている空気温度検出素 子 12を、 副通路を流れる空気流により冷却する。
ここで、 空気温度検出素子 12の長さ L 1(12)を 2. 5 mmとし、 副通路 6の 幅 L3を 9. 5 mmとするとき、 副通路壁孔 9の横幅 L 2 (9)は、 9. 5 mmと しており、 L 1(12)≤L2(9)≤L3の関係を満たしている。 また、 空気温度検出素子 12を円筒形状として、 その直径 012を 1. Omm0 とし、 副通路壁孔 9の高さ H (9)を 1. 0mmとするとき、 オフセット量 mlは、 + 0. 5mmとしている。
また、 感温抵抗体 13の近傍に設けられた副通路壁孔 10は、 感温抵抗体 13 に対し、 副通路 6内の空気流れ下流方向に距離 m2だけオフセッ トしており、 感 温抵抗体 13と副通路壁 15との間を流れる空気流の流速を向上させるようにし ている。 これによつて、 感温抵抗体 13と副通路壁 15の間を流れる空気流量を 増加して、 外部からの熱等により加熱されている感温抵抗体 13を、 副通路を流 れる空気流により冷却する。
ここで、 感温抵抗体 13の長さ L 1 (13)を 2. 0 mmとし、 副通路 6の幅 L 3 を 9. 5 mmとするとき、 副通路壁孔 10の横幅 L 2 (10)は、 8. 5mmとして おり、 L 1(13)≤L2(10)^L3の関係を満たしている。
また、 感温抵抗体 13を円筒形状として、 その直径 013を 0. 8mm とし、 副通路壁孔 10の高さ H(10)を 1. 5mmとするとき、 オフセヅ ト量 m2は、 + 2. 5mmとしている。
さらに、 発熱抵抗体 14の近傍に設けられた副通路壁孔 11' は、 発熱抵抗体 14に対し、 副通路 6内の空気流れ上流方向に距離 n3だけオフセットしており、 副通路壁孔 11' から流入する空気によって温度境界層が分断している。 これに よって、 副通路壁 16からの熱が、 発熱抵抗体 14に伝搬されれにくくなり、 副 通路壁 16からの熱の影響を低減することができる。
ここで、 発熱抵抗体 14の長さ L 1(14)を 2. 0 mmとし、 副通路 6の幅 L 3 を 9. 5mmとするとき、 副通路壁孔 11 ' の横幅 L2(ir )は、 8. 5mmと しており、 L 1(14)≤L2(11,)≤L3の関係を満たしている。
また、 発熱抵抗体 14を円筒形状として、 その直径 14を 0. 5mm0とし、 副通路壁孔 11, の高さ H(ll,)を 1. 0mmとするとき、 オフセット量 n3は、 + 2. 5mmとしている。
すなわち、 図 7に示した例は、 空気温度検出素子 12及び感温抵抗体 13に対 する副通路壁孔 9, 10は、 副通路 6内の空気流れ下流方向に距離 m 1, m 2だ けオフセットさせることにより、 素子 12を、 副通路を流れる空気流により冷却 するようにしている。 一方、 発熱抵抗体 1 4の近傍に設けられた副通路壁孔 1 1 ' は、 副通路 6内の空気流れ上流方向に距離 n 3だけオフセットさせることによ り、 副通路壁 1 6からの熱の影響を低減するようにしている。
次に、 図 8〜図 1 1を用いて、 図 7に示した構成とした場合の温度影響の低減 効果について説明する。
図 8〜図 1 1は、 本発明の一実施形態による発熱抵抗式流量測定装置における 温度影響の低減効果の説明図である。
図 8及び図 9は、 副通路壁孔 9 , 1 0の有無による空気流速分布について示し ており、 副通路壁孔の効果を C A E解析により検証した副通路内の空気流速分布 解析結果を示している。
図 8は、 副通路壁孔 9 , 1 0が無い場合の流速分布である。 図 8に示すように、 空気温度検出素子 1 2, 感温抵抗体 1 3の近傍に副通路壁孔が無い場合には、 空 気温度検出素子 1 2及び感温抵抗体 1 3とこれらの検出素子が近傍している副通 路壁 1 5が形成する隙間では、 副通路 6の中心部に比較して、 非常に空気流速が 遅くなつており、 副通路内を流れる空気流による空気温度検出素子 1 2及び感温 抵抗体 1 3の冷却効果が半減している
一方、 図 9は、 副通路壁孔 9 , 1 0を設けた場合の流速分布である。 図 9に示 すように、 空気温度検出素子 1 2, 感温抵抗体 1 3の近傍に副通路壁孔 9 , 1 0 を設けることにより、 副通路壁 1 5の空気温度検出素子 1 2及び感温抵抗体 1 3 近傍に設けられた副通路壁孔 9 , 1 0に空気流の流れ込みが発生し、 検出素子の ほぼ全周に比較的早い空気流が接している。 この結果副、 通路内を流れる空気流 による空気温度検出素子 1 2及び感温抵抗体 1 3の冷却効果が増加している。 また、 図 1 0及び図 1 1は、 副通路壁孔 1 1 ' の有無による温度分布について 示しており、 副通路壁孔の効果を C A E解析により検証した副通路 6内の空気温 度分布解析結果を示している。 図 1 0は、 副通路壁孔 1 1 ' が無い場合の温度分 布である。
図 1 0に示すように、 発熱抵抗体 1 4の近傍に副通路壁孔が無い場合には、 副 通路 6内を流れる空気流は外部もしくは電子回路の発熱により暖められている副 通路壁 1 6により加熱され、 副通路壁 1 6近傍で温度の高い流れを形成しており、 この副通路壁 16により加熱された空気流が発熱抵抗体 14に到達している。 そ の結果、 発熱抵抗体 14は、 副通路壁 16からの熱の影響を受け、 温度による誤 差を生じることとなる。
一方、 図 11は、 副通路壁孔 11' を設けた場合の温度分布である。 図 11に 示すように、 発熱抵抗体 14の近傍に副通路壁孔 11' を設けることにより、 副 通路壁孔 11' により、 副通路壁 16の近傍に発生した温度の高い空気流が分断 され、 発熱抵抗体 14の周囲の空気流温度を低下させ、 副通路壁 16からの熱の 影響を低減することができる。
なお、 図 7にて説明した例では、 副通路壁孔 9, 10, 11' の形状は、 矩形 のスリット状としている。 しかしながら、 副通路壁孔の形状は、 楕円形とするこ ともできるので、 その場合の具体的な寸法について説明する。
副通路壁孔 9が、 長半径が RL(9)であり、 短半径 Rs(9)の楕円形とする。 空気 温度検出素子 12の長さを L 1(12)とし、 副通路 6の幅を L 3とするとき、 L 1 (12)≤RL(9)^L 3の関係を満すようにする。 オフセヅト量 mlは、 一 1 mn!〜 + 3mmの範囲とする。
また、 副通路壁孔 10が、 長半径が RL(10)であり、 短半径 Rs(10)の楕円形と する。 感温抵抗体 13の長さを L 1(13)とし、 副通路 6の幅を L 3とするとき、 L 1 (13)^RL(10)≤L 3の関係を満すようにする。 オフセヅト量 m2は、 一 1 mm〜十 3 mmの範囲とする。
さらに、 副通路壁孔 11' が、 長半径が RL(ll)であり、 短半径 Rs(ll)の楕円 形とする。 発熱抵抗体 14の長さを L 1(14)とし、 副通路 6の幅を L 3とすると き、 L 1 (13)≤RL(11,) L 3の関係を満すようにする。 オフセヅ ト量 n3は、 Omm〜+ 5 mmの範囲とする。
副通路壁孔の形状が、 円形の場合は、 上述した楕円形の例において、 長半径 R L(9) =短半径 Rs(9), 長半径 RL(10) =短半径 Rs(10), 長半径 RL(i )=短半径 Rs(ll' )とすればよいものである。
以上説明したように、 本実施形態によれば、 発熱抵抗体式流量測定装置の流量 計測素子を改良すること無く、 また特別な電子回路による補正を行うこと無く、 その通路構造のみにより、 発熱抵抗体式流量測定装置の温度特性を改善すること ができる。
また、 各検出素子近傍に設置される孔の大きさ, 位置の組み合わせを変更する ことにより、 容易に発熱抵抗体式流量測定装置の温度特性を調整することが可能 となるため、 発熱抵抗体式流量測定装置の構成、 自動車用内燃機関の吸気通路の 形状、 温度条件によらず、 簡単に最適な温度特性を得ることができる。
さらに、 従来の発熱抵抗体式流量測定装置の製造方法を変更すること無く、 従 来構造品と同等のコストと製造することができる。
なお、 本発明は、 上述した空気流の計測のみならず、 他の流体, 例えば、 水素, 窒素若しくは水などの計測にも有効である。 産業上の利用の可能性 本発明によれば、 発熱抵抗式流量測定装置の生産性を向上することができる。

Claims

請求の範囲
1 . 空気流量を検出する検出素子と、 この検出素子の加熱温度を補償するために 周囲温度を測定する感温抵抗体と、 この検出素子と感温抵抗体を内部に配置する 副通路を有する発熱抵抗体式流量測定装置において、
上記検出素子及び感温抵抗体それそれ、 もしくは何れかの近傍であって、 上記 副通路の壁に形成された孔を備えたことを特徴とする発熱抵抗体式流量測定装置
2 . 請求項 1記載の発熱抵抗体式流量測定装置において、
上記副通路内に配置され、 流体温度を測定する温度センサと、
上記温度センサの近傍であって、 上記副通路の壁に形成された孔を備えたこと を特徴とする発熱抵抗体式流量測定装置。
3 . 請求項 1もしくは請求項 2のいずれか 1項記載の発熱抵抗体式流量測定装置 において、
上記検出素子及び上記感温抵抗体及び上記温度センサは、 上記副通路の内部の 中心軸よりも副通路の壁面に偏って配置されたことを特徴とする発熱抵抗体式流
4 . 請求項 3記載の発熱抵抗体式流量測定装置において、
上記孔は、 上記検出素子及び上記感温抵抗体及び上記温度センサの周囲に流れ る空気流の流速を増加させるものであることを特徴とする発熱抵抗体式流量測定
5 . 請求項 4記載の発熱抵抗体式流量測定装置において、
上記孔の中心位置は、 上記検出素子の中心軸に対して、 上記副通路の下流方向 に一 1〜十 3 mmの範囲に設けられていることを特徴とする発熱抵抗体式流量測
6 . 請求項 1若しくは請求項 2のいずれかに記載の発熱抵抗体式流量測定装置に おいて、
上記孔は、 上記副通路の壁面に接する空気流に発生する温度境界層を分断する ものであることを特徴とする発熱抵抗体式流量測定装置。
7 . 請求項 6記載の発熱抵抗体式流量測定装置において、
上記孔の中心位置は、 上記検出素子の中心軸に対して、 上記副通路の上流方向 に 0〜 + 5 mmの範囲に設けられていることを特徴とする発熱抵抗体式流量測定
8 . 請求項 1若しくは請求項 2のいずれかに記載の発熱抵抗体式流量測定装置に おいて、
上記検出素子及び上記感温抵抗体及び上記温度センサの横幅を L 1とし、 上記 副通路の断面形状を方形としてその幅を L 3とするとき、 上記孔の横幅 L 2を L 1 L 2 ^ L 3としたことを特徴とする発熱抵抗体式流量測定装置。
PCT/JP2001/001222 2001-02-21 2001-02-21 Debitmetre a dispositif de chauffage de resistance WO2002066936A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60137265T DE60137265D1 (de) 2001-02-21 2001-02-21 Strömungsmesser mit widerstandsheizelement
EP01906144A EP1363109B8 (en) 2001-02-21 2001-02-21 Flowmeter with resistor heater
PCT/JP2001/001222 WO2002066936A1 (fr) 2001-02-21 2001-02-21 Debitmetre a dispositif de chauffage de resistance
JP2002566612A JP4174321B2 (ja) 2001-02-21 2001-02-21 発熱抵抗体式流量測定装置
EP08019956.5A EP2034279B1 (en) 2001-02-21 2001-02-21 Flowmeter with resistor heater
US10/468,080 US7201046B2 (en) 2001-02-21 2001-02-21 Flowmeter with resistor heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/001222 WO2002066936A1 (fr) 2001-02-21 2001-02-21 Debitmetre a dispositif de chauffage de resistance

Publications (1)

Publication Number Publication Date
WO2002066936A1 true WO2002066936A1 (fr) 2002-08-29

Family

ID=11737036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001222 WO2002066936A1 (fr) 2001-02-21 2001-02-21 Debitmetre a dispositif de chauffage de resistance

Country Status (5)

Country Link
US (1) US7201046B2 (ja)
EP (2) EP1363109B8 (ja)
JP (1) JP4174321B2 (ja)
DE (1) DE60137265D1 (ja)
WO (1) WO2002066936A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220419A (ja) * 2005-02-08 2006-08-24 Hitachi Ltd 発熱抵抗体式空気流量測定装置
JP2006234766A (ja) * 2005-02-28 2006-09-07 Hitachi Ltd 気体流量測定装置
JP2007298481A (ja) * 2006-05-08 2007-11-15 Hitachi Ltd 流量測定装置
JP5791759B1 (ja) * 2014-05-19 2015-10-07 三菱電機株式会社 流量測定装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203219B3 (de) * 2021-03-30 2022-06-23 Vitesco Technologies GmbH Luftmassensensor und Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265385A (ja) * 1993-03-15 1994-09-20 Hitachi Ltd 空気流量測定装置
EP0708315A2 (en) * 1994-10-18 1996-04-24 Hitachi, Ltd. Thermal-type air flow measuring instrument
US5780735A (en) * 1995-02-15 1998-07-14 Hitachi, Ltd. Air flow rate measurement apparatus
JPH1114421A (ja) * 1997-06-23 1999-01-22 Hitachi Ltd 発熱抵抗体式空気流量測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105013A (ja) * 1981-12-18 1983-06-22 Hitachi Ltd 熱線式流量計
JPS604813A (ja) * 1983-06-23 1985-01-11 Nippon Soken Inc 気体流量測定装置
JPS6036916A (ja) 1983-08-10 1985-02-26 Automob Antipollut & Saf Res Center 熱式流量計
KR950009044B1 (ko) * 1987-06-17 1995-08-14 가부시키가이샤 히타치세이사쿠쇼 발열저항식 공기유량측정장치
JP2856542B2 (ja) * 1990-11-21 1999-02-10 株式会社日立製作所 熱線式空気流量計
DE4219454C2 (de) * 1992-06-13 1995-09-28 Bosch Gmbh Robert Massenflußsensor
JPH09145439A (ja) * 1995-11-27 1997-06-06 Nissan Motor Co Ltd 熱式流量計
JP3404300B2 (ja) * 1998-10-28 2003-05-06 三菱電機株式会社 感熱式流量センサ
US6658931B1 (en) * 2000-03-13 2003-12-09 Honeywell International Inc. Fluid flow sensing and control method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265385A (ja) * 1993-03-15 1994-09-20 Hitachi Ltd 空気流量測定装置
EP0708315A2 (en) * 1994-10-18 1996-04-24 Hitachi, Ltd. Thermal-type air flow measuring instrument
US5780735A (en) * 1995-02-15 1998-07-14 Hitachi, Ltd. Air flow rate measurement apparatus
JPH1114421A (ja) * 1997-06-23 1999-01-22 Hitachi Ltd 発熱抵抗体式空気流量測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1363109A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220419A (ja) * 2005-02-08 2006-08-24 Hitachi Ltd 発熱抵抗体式空気流量測定装置
JP2006234766A (ja) * 2005-02-28 2006-09-07 Hitachi Ltd 気体流量測定装置
JP2007298481A (ja) * 2006-05-08 2007-11-15 Hitachi Ltd 流量測定装置
JP5791759B1 (ja) * 2014-05-19 2015-10-07 三菱電機株式会社 流量測定装置

Also Published As

Publication number Publication date
DE60137265D1 (de) 2009-02-12
EP2034279A1 (en) 2009-03-11
EP1363109B1 (en) 2008-12-31
EP1363109B8 (en) 2009-04-08
US7201046B2 (en) 2007-04-10
EP1363109A1 (en) 2003-11-19
EP2034279B1 (en) 2016-07-06
EP1363109A4 (en) 2006-04-12
JPWO2002066936A1 (ja) 2004-06-24
JP4174321B2 (ja) 2008-10-29
US20040060353A1 (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US8813556B2 (en) Intake temperature sensor
JP3404251B2 (ja) 流量検出装置
JP5182314B2 (ja) 空気流量測定装置
US7775104B2 (en) Thermal flowmeter in which relationship among length of heat resistor, heating temperature for the heat resistor, and power supplied to the heat resistor is prescribed
JP2008309614A (ja) 空気流量測定装置
JP4157034B2 (ja) 熱式流量計測装置
JP4558647B2 (ja) 熱式流体流量計
JP4488030B2 (ja) 空気流量測定装置
JP4707412B2 (ja) 気体流量測定装置
TW200401881A (en) Flow sensor
JP2004170113A (ja) 流体検出装置
JP4752472B2 (ja) 空気流量測定装置
JP2002503349A (ja) 流れる媒体の質量を測定するための測定装置
JP3981907B2 (ja) 流量測定装置
WO2002066936A1 (fr) Debitmetre a dispositif de chauffage de resistance
US7051589B2 (en) Heating resistor flow rate measuring instrument
JP2003090750A (ja) 流量及び流速測定装置
JP4871922B2 (ja) 発熱抵抗体式流量測定装置
JP2000310552A (ja) 空気流量計
JP2007121221A (ja) 流体流量検出装置
JP2001317976A (ja) 流量測定装置
JPH06294672A (ja) 流量計
JP2000162011A (ja) 発熱抵抗式空気流量測定装置
JP2001059759A (ja) 発熱抵抗式流量測定装置
JP2004264129A (ja) 流量計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002566612

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001906144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10468080

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001906144

Country of ref document: EP