WO2002073778A1 - Segmented stator switched reluctance machine - Google Patents

Segmented stator switched reluctance machine Download PDF

Info

Publication number
WO2002073778A1
WO2002073778A1 PCT/US2002/007261 US0207261W WO02073778A1 WO 2002073778 A1 WO2002073778 A1 WO 2002073778A1 US 0207261 W US0207261 W US 0207261W WO 02073778 A1 WO02073778 A1 WO 02073778A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
stator segment
switched reluctance
rotor
segment core
Prior art date
Application number
PCT/US2002/007261
Other languages
French (fr)
Inventor
C. Theodore Peachee
Donald J. Williams
James A. Wafer
Marielle Piron
Steven P. Randall
Richard S. Wallace
Michael L. Mcclelland
Original Assignee
Emerson Electric Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Electric Co. filed Critical Emerson Electric Co.
Priority to MXPA03008256A priority Critical patent/MXPA03008256A/en
Priority to EP02709814A priority patent/EP1374374A1/en
Publication of WO2002073778A1 publication Critical patent/WO2002073778A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/15Sectional machines

Definitions

  • This invention relates to electric machines and, more particularly, to a switched reluctance electric machine including a segmented stator.
  • Reluctance electric machines such as motors and generators, typically include a stator that is mounted inside a machine housing and a rotor that is supported for rotation relative to the stator.
  • Reluctance electric machines produce torque as a result of the rotor tending to rotate to a position that minimizes the reluctance of the magnetic circuit and maximizes the inductance of an energized winding of the stator.
  • a drive circuit generates a set of stator winding currents that are output to stator pole windings and that produce a magnetic field. In response to the magnetic field, the rotor rotates in an attempt to maximize the inductance of the energized winding of the stator.
  • the windings are energized at a controlled frequency.
  • Control circuitry and/or transducers are provided for detecting the angular position of the rotor.
  • a drive circuit energizes the stator windings as a function of the sensed rotor position.
  • Conventional switched reluctance electric machines generally include a stator with a solid stator core or a laminated stator with a plurality of circular stator plates that are punched from a magnetically conducting material and that are stacked together.
  • the stator plates define salient stator poles that project radially inward and inter-polar slots that are located between the adjacent stator poles.
  • the stator typically includes pairs of diametrically opposed stator poles.
  • the rotor also typically includes pairs of diametrically opposed rotor poles. Windings or coils are wound around the stator poles. The windings that are wound around the pairs of diametrically opposed stator poles are connected to define a phase coil.
  • phase coil By providing current in the phase coil, magnetic fields are established in the stator poles that attract a pair of the rotor poles.
  • the current in the phase coils is generated in a predetermined sequence in order to produce torque on the rotor.
  • the period during which current is provided to the phase coil, while the rotor poles are brought into alignment with the stator poles, is known as the active stage of the phase coil.
  • the current in the phase coil is commutated to prevent a negative torque from acting on the rotor poles. Once the commutation point is reached, current is no longer output to the phase coil and the current is allowed to dissipate. The period during which current is allowed to dissipate is known as the inactive stage.
  • a drive circuit estimates the rotor position from the inductance of the phase coil.
  • Another sensorless approach outputs diagnostic pulses to the unenergized windings and senses the resulting electrical response.
  • a drive circuit employs voltage sensing pulses that are output to an inactive phase coil.
  • the RPT In switched reluctance electric machines using the "sensed" approach, the RPT detects the angular position of the rotor with respect to the stator. The RPT provides an angular position signal to the drive circuit that energizes the windings of the switched reluctance electric machine.
  • the RPT typically includes a sensor board with one or more sensors and a shutter that is coupled to and rotates with the shaft of the rotor.
  • the shutter includes a plurality of shutter teeth that pass through optical sensors as the rotor rotates.
  • the RPTs also increase the overall size of the switched reluctance electric machine, which can adversely impact machine and product packaging requirements.
  • the costs of the RPTs often place switched reluctance electric machines at a competitive disadvantage in applications that are suitable for open-loop induction electric machines that do not require RPTs.
  • Another drawback with RPTs involves field servicing of the switched reluctance electric machines. Specifically, wear elements, such as the bearings, that are located within the enclosed rotor housing may need to be repaired or replaced. To reach the wear elements, an end shield must be removed from the housing. Because alignment of the sensor board is important, replacement of the end shield often requires the use of complex realignment techniques.
  • the sensor board When the service technician improperly performs the alignment techniques, the sensor board is misaligned and the motor's performance is adversely impacted.
  • variations in the electrical characteristics of the individual stator pole windings can adversely impact the ability of the sensorless drive circuits to correctly derive the angular rotor position.
  • Most of the sensorless approaches measure the resistance and/or inductance of the windings. If the resistance and/or inductance varies from one stator winding to another, the drive circuit may incorrectly determine the angular rotor position.
  • winding wire can be initially wound and transferred onto the stator poles. Transfer winding tends to leave excess winding wire or loops around axial ends of the stator poles. Transfer winding can typically utilize approximately 60-65% of available stator slot area. Needle winding employs a needle that winds the wire directly on the stator poles. The needle, however, takes up some of the stator slot area, which reduces slot fill to approximately 50%. The positioning of winding wire on the stator poles using these methods varies from one stator pole to the next.
  • Winding creep and other assembly variations also impact the inductance and resistance of the winding wire over time, which makes it difficult to accurately perform "sensorless” control due to the non-conformity of the salient stator poles.
  • Tangs or circumferential projections have been used on the radially inner ends of the salient stator poles to provide a stop surface to retain the winding wire in place. The tangs limit a slot opening dimension between adjacent salient poles.
  • stator pole winding wire on the stator poles varies from one stator pole to the next and from one electric machine to the next.
  • the individual winding turns are positioned differently and the cross sectional pattern of the stator pole windings is different.
  • the inductance and resistance of the stator pole windings often vary from one stator pole to the next even though the same number of winding turns are used.
  • a switched reluctance machine includes a rotor and a segmented stator having a plurality of stator segment assemblies.
  • the stator segment assemblies define salient stator poles and inter-polar stator slots.
  • Each of the stator segment assemblies includes a stator segment core, an end cap assembly attached to opposite axial end surfaces of the stator segment core, and winding wire that is wound around the stator segment core and the end cap assembly.
  • the rotor defines a plurality of rotor poles. The rotor tends to rotate relative to the stator to maximize the inductance of an energized winding.
  • each stator plate has an outer rim section and a tooth section.
  • the end cap assembly includes a pair of end caps that are secured to opposite ends of the stator segment core, and a pair of retainer plates interconnecting the end caps on opposite sides of the stator segment core.
  • the end cap assembly defines an annular retention channel within which the winding wire is wound. The retention channel facilitates improved precision in the winding process and tends to reduce winding creep during use.
  • the present invention improves the torque density of the switched reluctance electric machine.
  • the torque output of the switched reluctance electric machine can be increased and/or the dimensions of the switched reluctance electric machine can be reduced for a given torque output.
  • the stator segment assemblies can be manufactured with a greater uniformity and with lower variations in inductance and resistance. Sensorless rotor position sensing techniques can be employed to dramatically lower the manufacturing costs of the switched reluctance machine and to improve reliability in the field.
  • FIG. 1 illustrates a segmented stator and a rotor for a switched reluctance electric machine
  • FIG. 2A illustrates a stator plate
  • FIG. 2B identifies tooth width, projection width and stator pole arc on the stator plate of FIG. 2A;
  • FIG. 3 is a perspective view of a stator segment assembly associated with the stator;
  • FIG. 4 illustrates a switched reluctance drive circuit and a circuit board for connecting the drive circuit to terminals of the stator segment assemblies;
  • FIG. 5A shows the stator segment assembly with its wire windings and insulation removed to better illustrate a stack of stator plates and the end cap assembly;
  • FIG. 5B is a plan view of the end cap assembly shown in FIG. 5A; [0031] FIG. 5C is an end view of the end cap assembly shown in FIG.
  • FIG. 6A is similar to FIG. 5A except that an alternate end cap assembly is shown;
  • FIG. 6B shows a plan view of the alternate end cap assembly of FIG. 6A.
  • FIG. 6C illustrates an end view of the alternate end cap assembly shown in FIG. 6B.
  • a switched reluctance machine 10 is shown to include a housing 12, a segmented stator 14 mounted in the housing 12, and a rotor 16 supported for rotation relative to the segmented stator 14.
  • the segmented stator 14 includes a plurality of stator segment assemblies 18 that can be individually assembled and then combined with additional stator segment assemblies to provide the segmented stator 14.
  • each stator segment assembly 18 includes a stator segment core 20, an end cap assembly 22 supporting the stator segment core 20, and winding wire 24 that is wound around the stator segment core 20 and the end cap assembly 22.
  • the stator segment core 20 includes a solid core or a stack of individual stator plates 26.
  • Each stator plate 26 includes an arcuate outer rim section 28 and a tooth-shaped pole section 30.
  • An outer edge surface 32 of the outer rim section 28 is shaped for mounting to an inner wall surface 34 of the housing 12.
  • Each outer rim section 28 has a tongue projection 36 formed on one edge surface 38 and a groove 40 on its opposite edge surface 42. This tongue and groove arrangement helps align the stator segment assemblies during manufacturing.
  • Each pole section 30 of the stator plates 26 has an arcuate inner edge surface 44 and a pair of circumferentially-extending projections 46.
  • the stator segment core 20 is defined by a plurality of stator plates 26 that are stacked together.
  • the stator plates 26 are die cut from thin sheets of magnetically conductive material.
  • a first pair of slits 50 are cut into the outer rim section 28 and a second pair of slits 52 are cut into the pole section 30.
  • the slits 50 are transverse in alignment relative to the slits 52.
  • a die punch operation is completed to deform a central portion between the slits 50 and 52. This operation results in the stator plates 26 being releasably interconnected to define the stator segment core 20.
  • the rotor 16 is shown to include a circular rim section 54 and a plurality of tooth-shaped pole sections 56 that project radially from the rim section 54.
  • a circular bore 58 is formed in the rotor 16 and includes keyways 60.
  • the circular bore 58 of the rotor 16 receives a rotor shaft (not shown).
  • the rotor 16 has eight equally spaced rotor pole sections 56 and the segmented stator 14 has twelve equally spaced pole sections 30. Other rotor pole and stator pole combinations are also contemplated.
  • each rotor pole section 56 has an arcuate outer edge surface 62 that defines an air gap 63 with respect to the arcuate inner edge surface 44 on the pole sections 30 of the stator plates 26.
  • tooth width W1 , projection width W2, and stator pole arc Bs are shown.
  • the slot opening dimension between radially inner ends of the stator teeth restricts the projection width W2 when needle and transfer winding methods are employed. This restriction is eliminated when the segmented stator assemblies are employed because the stator teeth can be wound individually before being assembled into the stator.
  • the tooth width W1 determines the magnetic flux density in the stator tooth and how much area is available for winding wire in the inter-polar stator slot.
  • the designer of the switched reluctance electric machine can select the tooth width W1 so that it is sufficient to accommodate the maximum anticipated magnetic flux in the stator poles, but is not wider than necessary.
  • the slot area is increased, which allows additional winding wire.
  • the design of the stator plates also depends on the type of steel that is selected, the axial length of the stator stack, and the desired magnetic flux density in the stator teeth.
  • the stator segment assembly 18 is shown fully assembled to include the stator segment core 20, the end cap assembly 22 and the winding wire 24.
  • the end cap assembly 22 is preferably made from magnetically permeable material and includes a first end cap 64A, a second end cap 64B and a pair of elongated winding retainer sections 66.
  • the first end cap 64A is located at one end of the stator segment core 20 and the second end cap 64B is located at the opposite end of the stator segment core 20.
  • the winding retainer sections 66 interconnect the first and second end caps 64A and 64B and are located adjacent to the projections 46 near the radially inner end of the pole sections 30 of the stator plates 26.
  • the end caps 64A and 64B are similar in configuration.
  • the retainer sections 66 are similar in configuration. Snap-in connections are contemplated for connecting the opposite ends of each retainer section 66 to the end caps 64A and 64B. Additionally, it is contemplated that adhesives are used for bonding the end caps 64A and 64B to the opposite ends of the stator segment core 20.
  • the end caps 64A and 64B and the retainer sections 66 can also be molded as an integral end cap assembly 22.
  • the first end cap 64A is similar to the second end cap 64B. The following description of the components will use reference numerals with an "A" suffix for the first end cap 64A and with an "B" suffix for the second end cap 64B.
  • Terminals 70 and 72 are shown in FIGs. 3 and 5A to be mounted in slots 74 and 76 (FIG. 5C) formed in an end surface 78A of the first end cap 64A.
  • One end of the winding wire 24 is connected to the first terminal 70 while an opposite end of the winding wire 24 is connected to the second terminal 72.
  • Insulating material 77 covers winding wire 24 on both lateral sides of stator core 20. The insulating material 77 is also positioned (but not shown) between the stator segment core 20 and the winding wire 24.
  • a switched reluctance drive circuit 80 is shown connected via connecting wires 82, 84 and 86 to a printed circuit board 88.
  • the printed circuit board 88 is circular and has a plurality of radially outwardly projecting terminal pads 90.
  • Each terminal pad 90 has conductive terminal slots 92 and 94 arranged to accept installation of the terminals 70 and 72 for each stator segment assembly 18.
  • the drive circuit 80 operates to control energization of the winding wire 24 of the stator segment assemblies 18.
  • FIG. 5A shows the stator segment assembly 18 prior to the winding wire 24 being wound thereon.
  • the first end cap 64A includes an outer section 98A and an inner section 100A interconnected by a hub section 102A, all defining a common face surface 104A.
  • the face surface 104A abuts and is bonded to an end surface 106 of the stator segment core 20.
  • the face surface 104B of second end cap 64B abuts and is bonded to an end surface 108 of the stator segment core 20.
  • the first end cap 64A When the first end cap 64A is secured to the stator segment core 20, its outer section 98A is connected slightly radially inward with respect to the outer rim section 28 and is parallel to the outer rim section 28.
  • the hub section 102A is aligned with pole section 30 and the inner section 100A is aligned with and extends laterally beyond the inner edge surface 44 and the projections 46.
  • a similar alignment is provided when the second end cap 64B is secured to the opposite end surface 108 of the stator segment core 20.
  • the width of hub sections 102A and 102B is less than or equal to the width of the pole sections 30 of the stator segment core 20.
  • FIG. 5B shows the inner section 100A of the first end cap 64A and the inner section 100B of the second end cap 64B to be rectangular in shape. It is contemplated, however, that other configurations (i.e. semi-circular, square, tapered, etc.) could be used.
  • the retainer sections 66 could be provided as a cantilevered section that is integrally formed with the end caps 64A and/or 64B and adapted for connection to the inner section of the opposite end cap.
  • lateral axial grooves 110 and a central axial groove 112 can be formed on the outer section of the end caps 64A and 64B.
  • a cavity 114 can also be formed to provide additional weight reduction.
  • FIGs. 6A, 6B and 6C an alternative cap assembly 122 is shown for connection to the stator segment core 20 and supporting the winding wire 24. Reference numerals from FIGs. 5A, 5B and 5C will be used where appropriate to identify similar elements.
  • the first end cap 124A is generally similar to the first end cap 64A.
  • the alternative end cap assembly 122 includes an additional pair of retainer sections.
  • An outer retainer section 126A extends axially from the common face surface 104A adjacent to the outer section 98A for connection to the outer section 98B of the second end cap 124B.
  • An outer retainer section 126B likewise extends axially from its common face surface 104B for connection to common face surface 104A of first end cap 124A.
  • the outer retainer sections 126A and 126B provide additional support for the end cap assembly 22.
  • the outer retainer sections 126A and 126B fill an undercut area of the stator segment core 20 and eliminate a sharp edge on the inner wall surface 130 that may scrape the winding wire during the winding operation.
  • the outer retainer sections 126A and 126B have a tapered profile to mate with the profile of inner wall surfaces 130 (FIG. 2) of the outer rim section 28.
  • the segmented stator for a switched reluctance electric machine improves the torque density of the electric machine in part by increasing slot fill, by allowing the stator segment assemblies to be precisely wound (which improves heat exchange between the windings and the slot), and by providing a greater active length for a given overall length across end turns (due to shorten end turns).
  • stator segment assemblies of the switched reluctance electric machine can be produced with a greater electrical uniformity and with lower variations in inductance and resistance.
  • sensorless rotor position sensing techniques can be employed, which dramatically lowers the manufacturing costs of the switched reluctance machine and improves reliability in the field.
  • the manufacturing tolerances of the stator have been improved, less costly drive circuits can be employed and/or more accurate control can be achieved.
  • the end cap assemblies according to the invention prevent winding creep and further help to improve the electrical uniformity of the stator segment assemblies during use.

Abstract

A switched reluctance machine (10) includes a stator (14) with a plurality of circumferentially-spaced stator segment assemblies (18) that include salient stator poles and inter-polar stator slots. Each of the stator segment assemblies (18) includes a stack of stator plates forming a stator segment core (20), an end cap assembly (22), and winding wire (24) wound around the stator segment core (20) and the end cap assembly (22). The rotor (16) defines a plurality of rotor poles (56). The rotor tends to rotate relative to the stator to maximize the inductance of an energized winding. A drive circuit energizes the winding wire around the stator segment assemblies based on a rotational position of the rotor. Each stator plate includes a first radially outer rim section and a tooth section that extends radially inwardly from a first center portion of the first radially outer rim section.

Description

SEGMENTED STATOR SWITCHED RELUCTANCE MACHINE
FIELD OF THE INVENTION [0001] This invention relates to electric machines and, more particularly, to a switched reluctance electric machine including a segmented stator.
BACKGROUND OF THE INVENTION [0002] Reluctance electric machines, such as motors and generators, typically include a stator that is mounted inside a machine housing and a rotor that is supported for rotation relative to the stator. Reluctance electric machines produce torque as a result of the rotor tending to rotate to a position that minimizes the reluctance of the magnetic circuit and maximizes the inductance of an energized winding of the stator. A drive circuit generates a set of stator winding currents that are output to stator pole windings and that produce a magnetic field. In response to the magnetic field, the rotor rotates in an attempt to maximize the inductance of the energized winding of the stator.
[0003] In synchronous reluctance electric machines, the windings are energized at a controlled frequency. Control circuitry and/or transducers are provided for detecting the angular position of the rotor. A drive circuit energizes the stator windings as a function of the sensed rotor position. The design and operation of sensorless switched reluctance electric machines is known in the art and is discussed in T.J.E. Miller, "Switched Reluctance Motors and Their Control", Magna Physics Publishing and Clarendon Press, Oxford, 1993, which is hereby incorporated by reference.
[0004] Conventional switched reluctance electric machines generally include a stator with a solid stator core or a laminated stator with a plurality of circular stator plates that are punched from a magnetically conducting material and that are stacked together. The stator plates define salient stator poles that project radially inward and inter-polar slots that are located between the adjacent stator poles. The stator typically includes pairs of diametrically opposed stator poles. The rotor also typically includes pairs of diametrically opposed rotor poles. Windings or coils are wound around the stator poles. The windings that are wound around the pairs of diametrically opposed stator poles are connected to define a phase coil. [0005] By providing current in the phase coil, magnetic fields are established in the stator poles that attract a pair of the rotor poles. The current in the phase coils is generated in a predetermined sequence in order to produce torque on the rotor. The period during which current is provided to the phase coil, while the rotor poles are brought into alignment with the stator poles, is known as the active stage of the phase coil.
[0006] At a predetermined point, either as the rotor poles become aligned with the stator poles or at some point prior thereto, the current in the phase coil is commutated to prevent a negative torque from acting on the rotor poles. Once the commutation point is reached, current is no longer output to the phase coil and the current is allowed to dissipate. The period during which current is allowed to dissipate is known as the inactive stage.
[0007] In order to maintain torque on the rotor, to thereby optimize machine efficiency, it is important to maintain the relationship between the position of the rotor and the active stage of each phase coil. If the active stage is initiated and/or commutated too early or too late with respect to the position of the rotor, a constant torque on the rotor will not be maintained and the machine will not operate at an optimum efficiency. Conventional switched reluctance electric machines attempt to maintain the relationship between the active stages of the phase coils and the position of the rotor by continuously sensing rotor position.
[0008] There are two distinct approaches for detecting the angular position of the rotor. In a "sensed" approach, an external physical sensor senses the angular position of the rotor. For example, a rotor position transducer (RPT) with a hall effect sensor or an optical sensor physically senses the angular position of the rotor. In a "sensorless" approach, electronics that are associated with the drive circuit derive the angular rotor position without an external physical sensor. For example, the rotor position can be derived by measuring the back electromotive force (EMF) in an unenergized winding. In U. S. Patent Nos. 6,107,772, 6,011 ,368 to Kalpathi et al, 5,982,117 to Taylor et al, 5,929,590 to Tang et al, 5,883,485 to Mehlhom, 5,877,568 to Maes et al, 5,777,416 to Kolomeitsev, and 4,772,839 to MacMinn, which are hereby incorporated by reference, a drive circuit estimates the rotor position from the inductance of the phase coil.
[0009] Another sensorless approach outputs diagnostic pulses to the unenergized windings and senses the resulting electrical response. For example, in U.S. Pat. Nos. 4,959,596 to MacMinn, et al., and 5,589,518 to Vitunic, which are hereby incorporated by reference, a drive circuit employs voltage sensing pulses that are output to an inactive phase coil.
[0010] In switched reluctance electric machines using the "sensed" approach, the RPT detects the angular position of the rotor with respect to the stator. The RPT provides an angular position signal to the drive circuit that energizes the windings of the switched reluctance electric machine. The RPT typically includes a sensor board with one or more sensors and a shutter that is coupled to and rotates with the shaft of the rotor. The shutter includes a plurality of shutter teeth that pass through optical sensors as the rotor rotates.
[0011] Because rotor position information is critical to proper operation of the switched reluctance electric machine, sophisticated alignment techniques are used to ensure that the sensor board of the RPT is properly positioned with respect to the housing and the stator. Misalignment of the sensor board is known to degrade the performance of the electric machine. Unfortunately, utilization of these complex alignment techniques increases the manufacturing costs for switched reluctance electric machines equipped with RPTs.
[0012] The RPTs also increase the overall size of the switched reluctance electric machine, which can adversely impact machine and product packaging requirements. The costs of the RPTs often place switched reluctance electric machines at a competitive disadvantage in applications that are suitable for open-loop induction electric machines that do not require RPTs. [0013] Another drawback with RPTs involves field servicing of the switched reluctance electric machines. Specifically, wear elements, such as the bearings, that are located within the enclosed rotor housing may need to be repaired or replaced. To reach the wear elements, an end shield must be removed from the housing. Because alignment of the sensor board is important, replacement of the end shield often requires the use of complex realignment techniques. When the service technician improperly performs the alignment techniques, the sensor board is misaligned and the motor's performance is adversely impacted. [0014] When sensing the angular rotor position using the "sensorless" approach, variations in the electrical characteristics of the individual stator pole windings can adversely impact the ability of the sensorless drive circuits to correctly derive the angular rotor position. Most of the sensorless approaches measure the resistance and/or inductance of the windings. If the resistance and/or inductance varies from one stator winding to another, the drive circuit may incorrectly determine the angular rotor position.
[0015] There are several conventional methods for placing the winding wire on the stator of a switched reluctance electric machine. The winding wire can be initially wound and transferred onto the stator poles. Transfer winding tends to leave excess winding wire or loops around axial ends of the stator poles. Transfer winding can typically utilize approximately 60-65% of available stator slot area. Needle winding employs a needle that winds the wire directly on the stator poles. The needle, however, takes up some of the stator slot area, which reduces slot fill to approximately 50%. The positioning of winding wire on the stator poles using these methods varies from one stator pole to the next. Winding creep and other assembly variations also impact the inductance and resistance of the winding wire over time, which makes it difficult to accurately perform "sensorless" control due to the non-conformity of the salient stator poles. [0016] It is difficult to hold the winding wire in place during wrapping and forming of the windings. This is particularly true for salient stator poles of reluctance machines that typically have teeth with parallel sides that do not hold the winding wire very well. Tangs or circumferential projections have been used on the radially inner ends of the salient stator poles to provide a stop surface to retain the winding wire in place. The tangs limit a slot opening dimension between adjacent salient poles. As the size of the tangs increases, the ability of the tangs to retain the winding wire improves. However, as the size of the tangs increases and the slot opening dimension decreases, it becomes more difficult or impossible to employ the conventional needle and transfer winding methods. Widening of the tangs may also compromise performance. In addition to retaining the winding wire, there are other electrical reasons for widening the tangs, which would be precluded by these winding methods.
[0017] When using needle and transfer winding methods, the position of winding wire on the stator poles varies from one stator pole to the next and from one electric machine to the next. In other words, the individual winding turns are positioned differently and the cross sectional pattern of the stator pole windings is different. As a result, the inductance and resistance of the stator pole windings often vary from one stator pole to the next even though the same number of winding turns are used.
[0018] While the design of switched reluctance electric machines is relatively mature, there are several areas requiring improvement. Specifically, it is desirable to improve the torque density of switched reluctance electric machines. By increasing the torque density, the size of the switched reluctance electric machine can be reduced for a given torque output and/or the size can be maintained with an increase in torque output. Electrical machines achieving higher torque density will allow designers of products equipped with switched reluctance electrical machines greater flexibility in product design that may lead to increased sales through product differentiation and/or improved profit margins.
[0019] It is also desirable to eliminate the need for RPTs in switched reluctance electric machines. It is also desirable to assemble the stator of a switched reluctance electric machine in a highly uniform and repeatable manner to improve the performance of sensorless switched reluctance motors by reducing variations in the inductance and resistance of the stator.
SUMMARY OF THE INVENTION [0020] A switched reluctance machine according to the invention includes a rotor and a segmented stator having a plurality of stator segment assemblies. The stator segment assemblies define salient stator poles and inter-polar stator slots. Each of the stator segment assemblies includes a stator segment core, an end cap assembly attached to opposite axial end surfaces of the stator segment core, and winding wire that is wound around the stator segment core and the end cap assembly. The rotor defines a plurality of rotor poles. The rotor tends to rotate relative to the stator to maximize the inductance of an energized winding. A drive circuit energizes the winding wire around the stator segment assemblies based on the rotational position of the rotor. [0021] According to other features of the invention, each stator plate has an outer rim section and a tooth section. The end cap assembly includes a pair of end caps that are secured to opposite ends of the stator segment core, and a pair of retainer plates interconnecting the end caps on opposite sides of the stator segment core. The end cap assembly defines an annular retention channel within which the winding wire is wound. The retention channel facilitates improved precision in the winding process and tends to reduce winding creep during use.
[0022] By providing a segmented stator, the present invention improves the torque density of the switched reluctance electric machine. As a result, the torque output of the switched reluctance electric machine can be increased and/or the dimensions of the switched reluctance electric machine can be reduced for a given torque output. In addition, the stator segment assemblies can be manufactured with a greater uniformity and with lower variations in inductance and resistance. Sensorless rotor position sensing techniques can be employed to dramatically lower the manufacturing costs of the switched reluctance machine and to improve reliability in the field. [0023] Other objects, features and advantages will be apparent from the specification, the claims and the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS [0024] FIG. 1 illustrates a segmented stator and a rotor for a switched reluctance electric machine;
[0025] FIG. 2A illustrates a stator plate;
[0026] FIG. 2B identifies tooth width, projection width and stator pole arc on the stator plate of FIG. 2A; [0027] FIG. 3 is a perspective view of a stator segment assembly associated with the stator;
[0028] FIG. 4 illustrates a switched reluctance drive circuit and a circuit board for connecting the drive circuit to terminals of the stator segment assemblies; [0029] FIG. 5A shows the stator segment assembly with its wire windings and insulation removed to better illustrate a stack of stator plates and the end cap assembly;
[0030] FIG. 5B is a plan view of the end cap assembly shown in FIG. 5A; [0031] FIG. 5C is an end view of the end cap assembly shown in FIG.
5B;
[0032] FIG. 6A is similar to FIG. 5A except that an alternate end cap assembly is shown;
[0033] FIG. 6B shows a plan view of the alternate end cap assembly of FIG. 6A; and
[0034] FIG. 6C illustrates an end view of the alternate end cap assembly shown in FIG. 6B.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0035] The following detailed description provides preferred exemplary embodiments only and is not intended to limit the scope, applicability or configuration of the present invention. Rather, the detailed description of the preferred exemplary embodiments will provide those skilled in the art with an enabling description for implementing the preferred exemplary embodiments of the present invention. It will be understood that various changes may be made in the function and arrangement of the elements without departing from the spirit and scope of the invention as set forth in the appended claims.
[0036] Referring now to the drawings, a switched reluctance machine 10 is shown to include a housing 12, a segmented stator 14 mounted in the housing 12, and a rotor 16 supported for rotation relative to the segmented stator 14. In accordance with the present invention, the segmented stator 14 includes a plurality of stator segment assemblies 18 that can be individually assembled and then combined with additional stator segment assemblies to provide the segmented stator 14. As will be detailed, each stator segment assembly 18 includes a stator segment core 20, an end cap assembly 22 supporting the stator segment core 20, and winding wire 24 that is wound around the stator segment core 20 and the end cap assembly 22.
[0037] Referring to FIGs. 1 , 2A and 2B, the stator segment core 20 includes a solid core or a stack of individual stator plates 26. Each stator plate 26 includes an arcuate outer rim section 28 and a tooth-shaped pole section 30. An outer edge surface 32 of the outer rim section 28 is shaped for mounting to an inner wall surface 34 of the housing 12. Each outer rim section 28 has a tongue projection 36 formed on one edge surface 38 and a groove 40 on its opposite edge surface 42. This tongue and groove arrangement helps align the stator segment assemblies during manufacturing. Each pole section 30 of the stator plates 26 has an arcuate inner edge surface 44 and a pair of circumferentially-extending projections 46.
[0038] As previously mentioned, the stator segment core 20 is defined by a plurality of stator plates 26 that are stacked together. The stator plates 26 are die cut from thin sheets of magnetically conductive material. During the die cutting operation, a first pair of slits 50 are cut into the outer rim section 28 and a second pair of slits 52 are cut into the pole section 30. The slits 50 are transverse in alignment relative to the slits 52. After stacking the stator plates 26 that form the stator segment core 20, a die punch operation is completed to deform a central portion between the slits 50 and 52. This operation results in the stator plates 26 being releasably interconnected to define the stator segment core 20.
[0039] The rotor 16 is shown to include a circular rim section 54 and a plurality of tooth-shaped pole sections 56 that project radially from the rim section 54. A circular bore 58 is formed in the rotor 16 and includes keyways 60. The circular bore 58 of the rotor 16 receives a rotor shaft (not shown). In the particular embodiment shown, the rotor 16 has eight equally spaced rotor pole sections 56 and the segmented stator 14 has twelve equally spaced pole sections 30. Other rotor pole and stator pole combinations are also contemplated. In addition, each rotor pole section 56 has an arcuate outer edge surface 62 that defines an air gap 63 with respect to the arcuate inner edge surface 44 on the pole sections 30 of the stator plates 26.
[0040] Referring to FIG. 2B, tooth width W1 , projection width W2, and stator pole arc Bs are shown. As a result of segmenting the stator, the designer of the switched reluctance electric machine has greater flexibility in designing the dimensions of the stator segment assemblies. The slot opening dimension between radially inner ends of the stator teeth restricts the projection width W2 when needle and transfer winding methods are employed. This restriction is eliminated when the segmented stator assemblies are employed because the stator teeth can be wound individually before being assembled into the stator.
[0041] The tooth width W1 determines the magnetic flux density in the stator tooth and how much area is available for winding wire in the inter-polar stator slot. The designer of the switched reluctance electric machine can select the tooth width W1 so that it is sufficient to accommodate the maximum anticipated magnetic flux in the stator poles, but is not wider than necessary. By optimizing the tooth width W1 , the slot area is increased, which allows additional winding wire. By increasing the current carrying capacity of the windings without causing overheating, the torque density of the switched reluctance electric machine can be improved. The design of the stator plates also depends on the type of steel that is selected, the axial length of the stator stack, and the desired magnetic flux density in the stator teeth. [0042] Referring to FIG. 3, the stator segment assembly 18 is shown fully assembled to include the stator segment core 20, the end cap assembly 22 and the winding wire 24. The end cap assembly 22 is preferably made from magnetically permeable material and includes a first end cap 64A, a second end cap 64B and a pair of elongated winding retainer sections 66. The first end cap 64A is located at one end of the stator segment core 20 and the second end cap 64B is located at the opposite end of the stator segment core 20. The winding retainer sections 66 interconnect the first and second end caps 64A and 64B and are located adjacent to the projections 46 near the radially inner end of the pole sections 30 of the stator plates 26. Preferably, the end caps 64A and 64B are similar in configuration. Likewise, it is preferable that the retainer sections 66 are similar in configuration. Snap-in connections are contemplated for connecting the opposite ends of each retainer section 66 to the end caps 64A and 64B. Additionally, it is contemplated that adhesives are used for bonding the end caps 64A and 64B to the opposite ends of the stator segment core 20. The end caps 64A and 64B and the retainer sections 66 can also be molded as an integral end cap assembly 22. The first end cap 64A is similar to the second end cap 64B. The following description of the components will use reference numerals with an "A" suffix for the first end cap 64A and with an "B" suffix for the second end cap 64B.
[0043] Terminals 70 and 72 are shown in FIGs. 3 and 5A to be mounted in slots 74 and 76 (FIG. 5C) formed in an end surface 78A of the first end cap 64A. One end of the winding wire 24 is connected to the first terminal 70 while an opposite end of the winding wire 24 is connected to the second terminal 72. Insulating material 77 covers winding wire 24 on both lateral sides of stator core 20. The insulating material 77 is also positioned (but not shown) between the stator segment core 20 and the winding wire 24.
[0044] Referring to FIG. 4, a switched reluctance drive circuit 80 is shown connected via connecting wires 82, 84 and 86 to a printed circuit board 88. The printed circuit board 88 is circular and has a plurality of radially outwardly projecting terminal pads 90. Each terminal pad 90 has conductive terminal slots 92 and 94 arranged to accept installation of the terminals 70 and 72 for each stator segment assembly 18. The drive circuit 80 operates to control energization of the winding wire 24 of the stator segment assemblies 18.
[0045] To more clearly illustrate the structure of the end cap assembly 22, FIG. 5A shows the stator segment assembly 18 prior to the winding wire 24 being wound thereon. The first end cap 64A includes an outer section 98A and an inner section 100A interconnected by a hub section 102A, all defining a common face surface 104A. The face surface 104A abuts and is bonded to an end surface 106 of the stator segment core 20. Similarly, the face surface 104B of second end cap 64B abuts and is bonded to an end surface 108 of the stator segment core 20. When the first end cap 64A is secured to the stator segment core 20, its outer section 98A is connected slightly radially inward with respect to the outer rim section 28 and is parallel to the outer rim section 28. The hub section 102A is aligned with pole section 30 and the inner section 100A is aligned with and extends laterally beyond the inner edge surface 44 and the projections 46. A similar alignment is provided when the second end cap 64B is secured to the opposite end surface 108 of the stator segment core 20. Moreover, the width of hub sections 102A and 102B is less than or equal to the width of the pole sections 30 of the stator segment core 20. The opposite ends of the retainer sections 66 are connected to the face surfaces 104A and 104B of the end caps 64A and 64B, respectively, adjacent to their inner sections 100A and 100B. As such, the end cap assembly 22 defines a continuous annular channel within which the winding wire 24 can be precisely installed and maintained. [0046] FIG. 5B shows the inner section 100A of the first end cap 64A and the inner section 100B of the second end cap 64B to be rectangular in shape. It is contemplated, however, that other configurations (i.e. semi-circular, square, tapered, etc.) could be used. As a further option, the retainer sections 66 could be provided as a cantilevered section that is integrally formed with the end caps 64A and/or 64B and adapted for connection to the inner section of the opposite end cap. To reduce the weight of the end cap assembly 22, lateral axial grooves 110 and a central axial groove 112 can be formed on the outer section of the end caps 64A and 64B. Likewise, a cavity 114 can also be formed to provide additional weight reduction.
[0047] Referring now to FIGs. 6A, 6B and 6C, an alternative cap assembly 122 is shown for connection to the stator segment core 20 and supporting the winding wire 24. Reference numerals from FIGs. 5A, 5B and 5C will be used where appropriate to identify similar elements. Specifically, the first end cap 124A is generally similar to the first end cap 64A. The alternative end cap assembly 122 includes an additional pair of retainer sections. An outer retainer section 126A extends axially from the common face surface 104A adjacent to the outer section 98A for connection to the outer section 98B of the second end cap 124B. An outer retainer section 126B likewise extends axially from its common face surface 104B for connection to common face surface 104A of first end cap 124A. The outer retainer sections 126A and 126B provide additional support for the end cap assembly 22. In addition, the outer retainer sections 126A and 126B fill an undercut area of the stator segment core 20 and eliminate a sharp edge on the inner wall surface 130 that may scrape the winding wire during the winding operation. The outer retainer sections 126A and 126B have a tapered profile to mate with the profile of inner wall surfaces 130 (FIG. 2) of the outer rim section 28. [0048] As can be appreciated from the foregoing, the segmented stator for a switched reluctance electric machine according to the invention improves the torque density of the electric machine in part by increasing slot fill, by allowing the stator segment assemblies to be precisely wound (which improves heat exchange between the windings and the slot), and by providing a greater active length for a given overall length across end turns (due to shorten end turns).
[0049] The stator segment assemblies of the switched reluctance electric machine can be produced with a greater electrical uniformity and with lower variations in inductance and resistance. As a result, sensorless rotor position sensing techniques can be employed, which dramatically lowers the manufacturing costs of the switched reluctance machine and improves reliability in the field. Because the manufacturing tolerances of the stator have been improved, less costly drive circuits can be employed and/or more accurate control can be achieved. In addition, the end cap assemblies according to the invention prevent winding creep and further help to improve the electrical uniformity of the stator segment assemblies during use. [0050] Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.

Claims

CLAIMS What is Claimed is:
1. A switched reluctance machine comprising: a stator including a plurality of circumferentially-spaced stator segment assemblies with a stator segment core and winding wire wound around said stator segment core; a rotor defining a plurality of rotor poles, wherein said rotor tends to rotate relative to said stator to maximize the inductance of an energized winding; and a drive circuit that energizes said winding wire around said stator segment assemblies based on a rotational position of said rotor.
2. The switched reluctance machine of claim 1 wherein said stator segment core include a stack of stator plates.
3. The switched reluctance machine of claim 2 wherein said stator plates include: a radially outer rim section; and a tooth section that extends radially inwardly from a center portion of said radially outer rim section.
4. The switched reluctance machine of claim 3 further comprising: an insulation layer located between said winding wire and said stator segment core.
5. The switched reluctance machine of claim 3 further comprising: projections extending from opposite sides of a radially inner end of said tooth section.
6. The switched reluctance machine of claim 5 further comprising: first and second end caps connected to opposite face surfaces of said stator segment core; and first and second end cap retainer sections that extend along said projections and that connect said first and second end caps, wherein said first and second end caps and said first and second end cap retainer sections reduce movement of said winding wire during use.
7. The switched reluctance machine of claim 2 wherein said stator plates of said stator segment core include radial and lateral slits and first and second central portions that are deformed using a punch to hold said stack of stator plates together.
8. The switched reluctance machine of claim 1 wherein said drive circuit senses rotor position using sensorless techniques.
9. In a switched reluctance machine that includes a stator, a rotor and a machine housing, an improved stator comprising: a plurality of circumferentially-spaced stator segment assemblies that are arranged around an inner surface of said machine housing, each of said stator segment assemblies defining a salient stator pole that extends in a radially inward direction, wherein inter-polar stator slots are defined between adjacent stator segment assemblies, and said stator segment assemblies including a stator segment core and winding wire that is wound around said stator segment core.
10. The improved stator of claim 9 wherein said stator segment core includes a stack of stator plates.
11. The improved stator of claim 10 wherein each of said stator plates includes: a radially outer rim section; and a tooth section that extends radially inwardly from a center portion of said radially outer rim section.
12. The improved stator of claim 11 further comprising: an insulation layer located between said winding wire and said stator segment core.
13. The improved stator of claim 9 further comprising: projections extending from opposite sides of a radially inner end of said tooth section.
14. The improved stator of claim 11 further comprising: first and second end caps connected to opposite axial ends of said stator segment core; and first and second end cap retainer sections that extend along said projections and that connect said first and second end caps, wherein said first and second end caps and said first and second axial end cap retainer sections reduce movement of said winding wire during use.
15. The improved stator of claim 8 wherein said stator plates of said stator segment core include radial and lateral slits and first and second central portions that are deformed to hold said stator segment core together.
16. A switched reluctance machine comprising: a machine housing; a rotor that rotates relative to said machine housing; and a stator that is mounted on an inner surface of said machine housing, said stator including a plurality of circumferentially-spaced stator segment assemblies, wherein said stator segment assemblies include a stack of stator plates forming a stator segment core and winding wire that is wound around said stator segment core, wherein each of said stator plates has a generally "T"-shaped cross-section, a radially outer rim section, and a tooth section that extends radially inwardly from a center portion of said radially outer rim section.
17. The switched reluctance machine of claim 14 further comprising: an insulation layer located between said winding wire and said stator segment cores.
18. The switched reluctance machine of claim 14 further comprising: projections extending from opposite sides of a radially inner end of said tooth section.
19. The switched reluctance machine of claim 16 further comprising: first and second end caps connected to opposite axial ends of said stator segment core; and first and second end cap retainer sections that extend along said projections and that connect said first and second end caps, wherein said first and second end caps and said first and second end cap retainer sections reduce movement of said winding wire during use.
20. The switched reluctance machine of claim 14 wherein said stator plates of said stator segment core include radial and lateral slits and first and second central portions that are deformed to hold said stator segment core together.
21. The switched reluctance machine of claim 14 further comprising: a drive circuit connected to said winding wire of said stator segment assemblies, wherein said drive circuit senses rotor position using sensorless rotor techniques.
PCT/US2002/007261 2001-03-12 2002-03-12 Segmented stator switched reluctance machine WO2002073778A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MXPA03008256A MXPA03008256A (en) 2001-03-12 2002-03-12 Segmented stator switched reluctance machine.
EP02709814A EP1374374A1 (en) 2001-03-12 2002-03-12 Segmented stator switched reluctance machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/803,876 US7012350B2 (en) 2001-01-04 2001-03-12 Segmented stator switched reluctance machine
US09/803,876 2001-03-12

Publications (1)

Publication Number Publication Date
WO2002073778A1 true WO2002073778A1 (en) 2002-09-19

Family

ID=25187667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/007261 WO2002073778A1 (en) 2001-03-12 2002-03-12 Segmented stator switched reluctance machine

Country Status (5)

Country Link
US (1) US7012350B2 (en)
EP (1) EP1374374A1 (en)
CN (1) CN1502161A (en)
MX (1) MXPA03008256A (en)
WO (1) WO2002073778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161509A1 (en) * 2015-04-06 2016-10-13 Mcmaster University Switched reluctance machine with toroidal winding

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7111380B2 (en) * 2002-10-31 2006-09-26 Emerson Electric Co. Method for forming an annular stator assembly
DE102004048461A1 (en) * 2004-10-05 2006-04-27 Siemens Ag Housing for an electrical machine
DE102006017081A1 (en) * 2005-09-21 2007-03-22 Temic Automotive Electric Motors Gmbh Stator for an electric motor and method of manufacture
CN100385773C (en) * 2006-03-30 2008-04-30 南京航空航天大学 Column-projection-polar composite rotor structure
US7982356B2 (en) 2006-06-02 2011-07-19 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electric motor and method for manufacturing an electric motor for a motor vehicle actuator drive
US7400056B2 (en) * 2006-09-29 2008-07-15 Honeywell International Inc. Engine starter-generator optimized for start function
KR100908396B1 (en) * 2007-04-23 2009-07-20 주식회사 아모텍 XLD motor stator, XLD motor with double rotor / single stator structure and automotive cooling device using same
US8901798B2 (en) * 2007-05-31 2014-12-02 Regal Beloit America, Inc. Switched reluctance machines with minimum stator core
WO2009015517A1 (en) * 2007-08-02 2009-02-05 Beijing Institute For Frontier Science A permanent magnet synchronous array-type ac motor without bearings
JP5151738B2 (en) * 2008-07-01 2013-02-27 株式会社デンソー Rotating electric machine stator and rotating electric machine
EP2439831B1 (en) * 2009-06-05 2019-09-11 Toyota Jidosha Kabushiki Kaisha Split stator and manufacturing method thereof
KR101041165B1 (en) * 2009-07-14 2011-06-13 엘지이노텍 주식회사 stator core of motor
US20110037339A1 (en) * 2009-08-12 2011-02-17 Gm Global Technology Operations, Inc. Concentrated winding machines with reduced torque ripple and methods for designing the same
US20110109184A1 (en) * 2009-11-12 2011-05-12 Langreck Gerald K Tandem rotor servo motor
WO2011101886A1 (en) * 2010-02-16 2011-08-25 東芝三菱電機産業システム株式会社 Synchronous generator
CA2794210C (en) * 2010-03-25 2017-08-22 Gerald K. Langreck High acceleration rotary actuator
JP5641902B2 (en) * 2010-10-08 2014-12-17 日本発條株式会社 Motor stator core and manufacturing method
FR2967310B1 (en) 2010-11-04 2013-08-02 Xap ELECTROMAGNETIC MOTOR WITHOUT BRUSH
CN103222156B (en) * 2011-03-07 2015-11-25 浙江博望科技发展有限公司 A kind of ferrite three-phase permanent magnet motor
TWI443938B (en) * 2011-08-26 2014-07-01 Univ Nat Taiwan Science Tech Stator unit, winding method therefor, stator structure using the same; and manufacture therefor
CN102957226B (en) * 2011-08-26 2015-02-25 黄仲钦 Stator structure and manufacturing method thereof
KR101321307B1 (en) * 2011-10-31 2013-10-28 삼성전기주식회사 Drive apparatus for switched reluctance motor and method thereof
TWI439010B (en) 2011-11-11 2014-05-21 Ind Tech Res Inst Segmented oriented-permeability structure for a rotating electrical machines
FR2986673B1 (en) 2012-02-02 2017-08-11 Novatem ELECTRIC MACHINE HAVING MODULAR STATOR STRUCTURE
WO2013136485A1 (en) * 2012-03-15 2013-09-19 三菱電機株式会社 Armature of rotating electrical machine and method for manufacturing armature of rotating electrical machine
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
TWI742414B (en) * 2013-11-13 2021-10-11 美商布魯克斯自動機械公司 Sealed switched reluctance motor
JP2016537948A (en) 2013-11-13 2016-12-01 ブルックス オートメーション インコーポレイテッド Sealed switched reluctance motor
JP6679482B2 (en) 2013-11-13 2020-04-15 ブルックス オートメーション インコーポレイテッド Control method and apparatus for brushless electric machine
TWI695447B (en) 2013-11-13 2020-06-01 布魯克斯自動機械公司 Transport apparatus
JP6708546B2 (en) 2013-11-13 2020-06-10 ブルックス オートメーション インコーポレイテッド Sealed robot drive
CN103997178A (en) * 2014-05-19 2014-08-20 刘忠涛 Permanent magnet magnetic resistance energy-saving motor
JP6293712B2 (en) 2015-08-27 2018-03-14 株式会社三井ハイテック Armature and method for manufacturing armature
WO2017149593A1 (en) * 2016-02-29 2017-09-08 株式会社安川電機 Rotating electric machine and rotating electric machine manufacturing method
WO2017158847A1 (en) 2016-03-18 2017-09-21 株式会社安川電機 Rotating electric machine and rotating electric machine manufacturing method
JP6519572B2 (en) * 2016-11-25 2019-05-29 トヨタ自動車株式会社 Control device for switched reluctance motor
JP2018207632A (en) * 2017-06-01 2018-12-27 株式会社東芝 Dynamo-electric motor
WO2019058565A1 (en) * 2017-09-25 2019-03-28 三菱重工エンジン&ターボチャージャ株式会社 Supercharger
US11431210B2 (en) 2018-08-02 2022-08-30 Regal Beloit America, Inc. Lamination, stator and electric motor having tip pairs for stator teeth
EP3614529A1 (en) * 2018-08-23 2020-02-26 Siemens Aktiengesellschaft Single tooth segment
CN216981644U (en) 2021-08-25 2022-07-15 米沃奇电动工具公司 Electric motor and electric tool including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1811585A1 (en) * 1967-12-29 1969-07-17 Leuenberger H Process for manufacturing a laminated core and a laminated core manufactured according to this
JPH10174319A (en) * 1996-12-17 1998-06-26 Shinko Electric Co Ltd Stator of electric rotary machine
JPH10210721A (en) * 1997-01-20 1998-08-07 Mitsubishi Electric Corp Reluctance motor
JPH1118331A (en) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd Stator of motor
JPH11289701A (en) * 1998-04-03 1999-10-19 Nissan Motor Co Ltd Stator of reluctance motor
JPH11341717A (en) * 1998-05-28 1999-12-10 Matsushita Seiko Co Ltd Stator of motor and its manufacture
JP2000224790A (en) * 1999-02-01 2000-08-11 Hitachi Ltd Rotating machine and motor-driven vehicle with the machine

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1756672A (en) 1922-10-12 1930-04-29 Allis Louis Co Dynamo-electric machine
US2688103A (en) 1952-07-16 1954-08-31 Honeywell Regulator Co Stator for rotative electrical apparatus
US2894157A (en) 1956-07-20 1959-07-07 Wayne J Morrill Winding forms for dynamoelectric machines
DE1760382A1 (en) 1968-05-11 1971-06-16 Licentia Gmbh Drum washing machine
US3914859A (en) 1974-01-17 1975-10-28 Ray T Pierson Method of fabricating closed slot stator construction particularly adapted for stepper motors
US4130770A (en) 1974-02-26 1978-12-19 Papst-Motoren Kg Axial flow fan having improved axial length structure
US3987324A (en) * 1974-05-20 1976-10-19 General Electric Company High efficiency induction motor with multi-cage rotor
US3979821A (en) 1975-05-09 1976-09-14 Kollmorgen Corporation Method of manufacturing rare earth permanent magnet rotor
US4149309A (en) 1977-07-27 1979-04-17 Mitsui Mfg. Co., Ltd. Laminated core manufacture
US4350914A (en) 1977-08-17 1982-09-21 Vibrac Corporation Electric motor manufacture
US4635349A (en) 1979-03-13 1987-01-13 General Electric Company Method of making single phase multi-speed motor
US4340829A (en) 1979-06-22 1982-07-20 Sheller Globe Corporation Molded end coil insulator
DE2937838C2 (en) 1979-09-19 1986-08-28 Braun Ag, 6000 Frankfurt Method and arrangement for regulating speed and phase position in synchronous motors
CH654455A5 (en) 1980-05-10 1986-02-14 Papst Motoren Gmbh & Co Kg BRUSHLESS DC MOTOR ARRANGEMENT, ESPECIALLY FOR MAGNETIC DISC DRIVES.
US4584495A (en) * 1984-12-17 1986-04-22 Applied Motion Products, Inc. Performance step motor
US4819460A (en) 1986-06-18 1989-04-11 Emerson Electric Co. Washing machine with direct drive system
US4812695A (en) 1986-08-15 1989-03-14 Marathon Electric Manufacturing Corporation Annular stator core construction
US4845837A (en) 1986-10-06 1989-07-11 Emerson Electric Co. Method of making permanent magnet assembly
US4772839A (en) 1987-10-27 1988-09-20 General Electric Company Rotor position estimator for switched reluctance motor
US4883982A (en) 1988-06-02 1989-11-28 General Electric Company Electronically commutated motor, blower integral therewith, and stationary and rotatable assemblies therefor
US4922165A (en) * 1988-06-06 1990-05-01 General Electric Company Core and slot liner
US5563463A (en) 1988-06-08 1996-10-08 General Electric Company Permanent magnet rotor
DE3819651A1 (en) 1988-06-09 1989-12-14 Miele & Cie WASHING MACHINE OR LAUNDRY DRYER WITH A DRIVE MOTOR DIRECTLY DRIVING THE LAUNDRY DRUM
US4953284A (en) 1988-12-15 1990-09-04 Prestolite Electric Incorporated Method for retaining a magnet within a motor assembly
US4896089A (en) 1989-01-31 1990-01-23 General Electric Company Fault management system for a switched reluctance motor
US4959596A (en) 1989-04-03 1990-09-25 General Electric Company Switched reluctance motor drive system and laundering apparatus employing same
US4950932A (en) 1989-05-30 1990-08-21 General Electric Company Axial flow fan integral with electronically commutated motor
US4998052A (en) 1989-07-28 1991-03-05 General Electric Company Gearless direct drive switched reluctance motor for laundry application
SE464213B (en) 1989-07-28 1991-03-18 Electrolux Mecatronik Ab PROCEDURE AND DEVICE FOR SENSOR-FREE CONTROL OF AN ELECTRIC ENGINE
US5256926A (en) 1989-08-01 1993-10-26 Robert Bosch Gmbh Alternating-current generator with stator center lamination and method for producing the center lamination
US5252902A (en) 1990-03-02 1993-10-12 Kabushiki Kaisha Sg Servo control system
US5076076A (en) 1990-04-02 1991-12-31 General Electric Company Direct drive oscillating basket washing machine and control for a washing machine
JP2883409B2 (en) * 1990-06-19 1999-04-19 アスモ株式会社 Small electric motor
US5034642A (en) 1990-08-30 1991-07-23 Emerson Electric Co. Permanent magnet rotor and motor
US5161393A (en) 1991-06-28 1992-11-10 General Electric Company Electronic washer control including automatic load size determination, fabric blend determination and adjustable washer means
US5212419A (en) 1992-01-10 1993-05-18 Fisher Electric Motor Technology, Inc. Lightweight high power electromotive device
US5194775A (en) * 1992-03-09 1993-03-16 Morrill Electric, Inc. Electric motor stator tabs
US5257828A (en) 1992-06-03 1993-11-02 Trw Inc. Method and apparatus for controlling damping in an electric assist steering system for vehicle yaw rate control
GB9211685D0 (en) 1992-06-03 1992-07-15 Switched Reluctance Drives Ltd Sensorless rotor position measurement
US5672925A (en) * 1992-08-06 1997-09-30 Electric Power Research Institute, Inc. Doubly salient variable reluctance machine with stationary permanent magnets or auxiliary field windings
US5327053A (en) 1992-08-12 1994-07-05 Seagate Technology, Inc. Apparatus and method for detecting rotor position in a sensorless and brushless DC motor
US5301523A (en) 1992-08-27 1994-04-12 General Electric Company Electronic washer control including automatic balance, spin and brake operations
JP3430521B2 (en) 1992-09-24 2003-07-28 松下電器産業株式会社 Rotating electric machine stator
US5291115A (en) 1992-09-25 1994-03-01 The Texas A&M University System Method and apparatus for sensing the rotor position of a switched reluctance motor without a shaft position sensor
DE69314612T2 (en) 1992-12-17 1998-02-12 Lg Electronics Inc Sensorless, switched reluctance motor
JP3355700B2 (en) * 1993-06-14 2002-12-09 松下電器産業株式会社 Rotating electric machine stator
US5491859A (en) 1993-11-30 1996-02-20 Maytag Corporation Drive system for automatic washing machine
US5457375A (en) 1994-05-27 1995-10-10 Emerson Electric Co. Sensorless commutation controller for a poly-phase dynamoelectric machine
US5578880A (en) 1994-07-18 1996-11-26 General Electric Company Fault tolerant active magnetic bearing electric system
US5806169A (en) 1995-04-03 1998-09-15 Trago; Bradley A. Method of fabricating an injected molded motor assembly
JP2894967B2 (en) * 1995-04-20 1999-05-24 ファナック株式会社 Insulation member of motor core
US5691591A (en) 1995-05-19 1997-11-25 Itt Automotive Electrical Systems Inc. Switched reluctance motor with indirect position sensing and magnetic brake
DK0748027T3 (en) * 1995-06-07 2007-01-08 Gen Electric Dynamoelectric machine and its rotor structures
JPH0937591A (en) 1995-07-18 1997-02-07 Secoh Giken Inc Plural phase reluctance motor
JPH10509859A (en) 1995-09-20 1998-09-22 ジョージア テック リサーチ コーポレーション Method and apparatus for controlling magnetoresistive switching motor
US5701064A (en) 1995-10-27 1997-12-23 Emerson Electric Co. Rotor position sensing in a dynamoelectric machine using coupling between machine coils
US5740880A (en) 1995-12-07 1998-04-21 Ford Global Technologies, Inc. Speed tracking of induced armature field in electric power assisted steering
GB9525952D0 (en) 1995-12-19 1996-02-21 Switched Reluctance Drives Ltd Sensorless rotor position monitoring in reluctance machines
GB2310545B (en) * 1996-02-22 2000-04-19 Honda Motor Co Ltd Stator core and method and apparatus for assembling same
WO1997031422A1 (en) 1996-02-23 1997-08-28 Matsushita Electric Industrial Co., Ltd. Motor
GB9606802D0 (en) 1996-03-30 1996-06-05 Lucas Ind Plc Current limiter for an EPAS system
US6359412B1 (en) * 1996-04-09 2002-03-19 Hamilton Sundstrand Corporation Commutation apparatus and method for a four state sensorless switched reluctance machine system utilizing machine winding current sensing
GB9607688D0 (en) 1996-04-12 1996-06-12 Switched Reluctance Drives Ltd Current shaping in reluctance machines
US5743721A (en) 1996-04-30 1998-04-28 Itt Automotive Electrical Systems, Inc. Blower assembly having integral air flow cooling duct
JP3599144B2 (en) 1996-05-09 2004-12-08 本田技研工業株式会社 Vehicle steering assist system
US6389678B1 (en) 1996-05-31 2002-05-21 Emerson Electric Co. Method of constructing a salient pole motor
US5877568A (en) 1996-05-31 1999-03-02 Emerson Electric Co. Rotor position sensing system
DE19622186A1 (en) 1996-06-03 1997-12-04 Hilti Ag Electric motor
US5783916A (en) 1996-07-02 1998-07-21 Dana Corporation Apparatus and method for generating rotor position signals and controlling commutation in a variable reluctance electric motor
JP3290354B2 (en) 1996-07-05 2002-06-10 株式会社東芝 Washing machine and driving method of washing machine
DE19632136A1 (en) 1996-08-09 1998-02-12 Deutsche Telekom Ag Digital storage element
US5720065A (en) 1996-09-11 1998-02-24 White Consolidated Industries, Inc. Direct drive discriminator mechanism
JP3568364B2 (en) 1996-09-30 2004-09-22 松下電器産業株式会社 Rotating machine core
US5777416A (en) 1996-12-23 1998-07-07 Dana Corporation Switched reluctance motor with low mutual inductance between phases
US5811905A (en) * 1997-01-07 1998-09-22 Emerson Electric Co. Doubly-fed switched reluctance machine
US5929590A (en) 1997-01-07 1999-07-27 Emerson Electric Co. Method and apparatus for implementing sensorless control of a switched reluctance machine
US5883485A (en) 1997-03-26 1999-03-16 A. O. Smith Corporation Simplified control for running a switched reluctance motor
JP3680482B2 (en) 1997-03-28 2005-08-10 松下電器産業株式会社 Electric motor stator constituent member, electric motor stator, electric motor manufacturing method
DE19724475B4 (en) 1997-06-10 2010-08-05 BSH Bosch und Siemens Hausgeräte GmbH Drive device for a front-loadable washing machine
JP3981438B2 (en) * 1997-07-14 2007-09-26 ピア株式会社 Car lamp mounting structure
JP4026887B2 (en) 1997-07-24 2007-12-26 本田技研工業株式会社 Electric power steering device
JP3745884B2 (en) 1997-08-20 2006-02-15 ミネベア株式会社 Motor structure and manufacturing method thereof
JP3415406B2 (en) * 1997-09-05 2003-06-09 トヨタ自動車株式会社 Magnet-embedded AC motor and its design method
US6107772A (en) 1997-09-26 2000-08-22 Dana Corporation Sensorless switched reluctance motor control
JP3450710B2 (en) 1997-10-24 2003-09-29 オークマ株式会社 Switch reluctance motor
US6066905A (en) 1997-11-05 2000-05-23 General Electric Company Dynamoelectric machine: quadrature winding retention apparatus
KR100259375B1 (en) 1997-11-10 2000-06-15 윤종용 A device for and a method of driving sensorless srm
US5859518A (en) 1997-12-22 1999-01-12 Micro Linear Corporation Switched reluctance motor controller with sensorless rotor position detection
AU1931099A (en) 1997-12-23 1999-07-12 Emerson Electric Co. Electromagnetic device having encapsulated construction and precise positioning of bearing and shaft axes
IT245840Y1 (en) 1998-05-07 2002-03-26 Bitron Spa ELECTRONICALLY COMMUTED ELECTRIC MOTOR.
US6104113A (en) 1998-05-14 2000-08-15 General Electric Company Coil assembly for sensorless rotor angular position control of single phase permanent magnet motor
US5979195A (en) 1998-05-15 1999-11-09 Maytag Corporation Seal arrangement between inner and outer tubs of a horizontal axis washing machine
JP3535012B2 (en) * 1998-06-09 2004-06-07 ミネベア株式会社 Radial gap type small cylindrical rotating electric machine
JP3279279B2 (en) * 1998-06-30 2002-04-30 三菱電機株式会社 Iron core equipment
DE19831165A1 (en) 1998-07-11 2000-01-13 Bosch Gmbh Robert Electrical machine, in particular reluctance motor
DE19933009A1 (en) * 1998-07-24 2000-02-10 Matsushita Electric Ind Co Ltd Electric motor e.g. for automobile air conditioning unit, has rotor core provided with slits for reception of internal permanent magnets with non-magnetic section between each permanent magnet and rotor periphery
JP3318531B2 (en) 1998-08-04 2002-08-26 ミネベア株式会社 Rotating electric machine and its bearing structure
JP3421251B2 (en) 1998-08-21 2003-06-30 ミネベア株式会社 Rotating electric machine and its bobbin
US6452302B1 (en) 1998-09-28 2002-09-17 Hitachi, Ltd. Rotary electric machine and electric vehicle using the same
BR9804426A (en) 1998-10-16 2000-05-16 Elevadores Atlas S A Electric machine of subsynchronous reluctance.
US6211587B1 (en) 1998-11-12 2001-04-03 Hitachi, Ltd. Electric rotating machine
US5994804A (en) 1998-12-07 1999-11-30 Sundstrand Corporation Air cooled dynamoelectric machine
JP4147706B2 (en) * 1998-12-18 2008-09-10 トヨタ自動車株式会社 Electrical angle detection device, detection method, and motor control device
US6011368A (en) 1999-03-30 2000-01-04 Dana Corporation Sensorless detection of a locked rotor in a switched reluctance motor
US6122579A (en) 1999-05-28 2000-09-19 Delphi Technologies, Inc. Electric power steering control with torque ripple and road disturbance damper
GB9914402D0 (en) 1999-06-22 1999-08-18 Univ Warwick Electrial machines
EP1216475A1 (en) 1999-09-17 2002-06-26 Delphi Technologies, Inc. Method and apparatus for robust generation of an index pulse for an electric power steering system
WO2001020761A1 (en) 1999-09-17 2001-03-22 Delphi Technologies, Inc. Method and system for controlling torque in permanent magnet brushless electric motors
US6441572B2 (en) * 1999-12-14 2002-08-27 The Penn State Research Foundation Detection of rotor angle in a permanent magnet synchronous motor at zero speed
GB9929655D0 (en) 1999-12-15 2000-02-09 Switched Reluctance Drives Ltd Rotor position monitoring of a switched reluctance drive
JP2001238377A (en) 2000-02-24 2001-08-31 Minebea Co Ltd Rotating electric machine
US6487769B2 (en) 2000-11-30 2002-12-03 Emerson Electric Co. Method and apparatus for constructing a segmented stator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1811585A1 (en) * 1967-12-29 1969-07-17 Leuenberger H Process for manufacturing a laminated core and a laminated core manufactured according to this
JPH10174319A (en) * 1996-12-17 1998-06-26 Shinko Electric Co Ltd Stator of electric rotary machine
JPH10210721A (en) * 1997-01-20 1998-08-07 Mitsubishi Electric Corp Reluctance motor
JPH1118331A (en) * 1997-06-30 1999-01-22 Matsushita Electric Ind Co Ltd Stator of motor
JPH11289701A (en) * 1998-04-03 1999-10-19 Nissan Motor Co Ltd Stator of reluctance motor
JPH11341717A (en) * 1998-05-28 1999-12-10 Matsushita Seiko Co Ltd Stator of motor and its manufacture
JP2000224790A (en) * 1999-02-01 2000-08-11 Hitachi Ltd Rotating machine and motor-driven vehicle with the machine

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 11 30 September 1998 (1998-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 04 30 April 1999 (1999-04-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01 31 January 2000 (2000-01-31) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 03 30 March 2000 (2000-03-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 11 3 January 2001 (2001-01-03) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161509A1 (en) * 2015-04-06 2016-10-13 Mcmaster University Switched reluctance machine with toroidal winding
US20180083519A1 (en) * 2015-04-06 2018-03-22 Mcmaster University Switched reluctance machine with toroidal winding
US10720819B2 (en) 2015-04-06 2020-07-21 Mcmaster University Switched reluctance machine with toroidal winding

Also Published As

Publication number Publication date
MXPA03008256A (en) 2003-12-11
EP1374374A1 (en) 2004-01-02
US20020125782A1 (en) 2002-09-12
CN1502161A (en) 2004-06-02
US7012350B2 (en) 2006-03-14

Similar Documents

Publication Publication Date Title
US7012350B2 (en) Segmented stator switched reluctance machine
EP1352459B1 (en) End cap assembly for a segmented stator electric machine
US6897591B2 (en) Sensorless switched reluctance electric machine with segmented stator
US6891299B2 (en) Rotary electric machine having a flux-concentrating rotor and a stator with windings on teeth
US6700284B2 (en) Fan assembly including a segmented stator switched reluctance fan motor
JP4092128B2 (en) Electric machine having at least one magnetic field detector
US20020139606A1 (en) Electric power steering system including a segmented stator switched reluctance motor
US6584813B2 (en) Washing machine including a segmented stator switched reluctance motor
EP0160868A2 (en) Brushless motor
JP3514929B2 (en) motor
US5929547A (en) Rotor core having slots for receiving permanent magnets
WO2004008610A1 (en) Interconnecting ring and wire guide for a stator of an electric machine
US7245054B1 (en) Permanent magnet electric machine having reduced cogging torque
US20020149278A1 (en) Rotary electric machine stator having individual removable coils
US20020093269A1 (en) Slot area undercut for segmented stators
WO2005114817A1 (en) Multiple winding coil shapes for increased slot fill
US6140726A (en) Radial gap cylindrical motor having an increased number of slots
US6362552B1 (en) Electric motor rotor
JP2002191146A (en) Gap winding motor
JP2002191147A (en) Rotor structure of gap winding motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 01153/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/008256

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002709814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028079469

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002709814

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWR Wipo information: refused in national office

Ref document number: 2002709814

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002709814

Country of ref document: EP