WO2002077263A2 - Nucleic acid molecules encoding serine protease cvsp14, the encoded polypeptides and methods based thereon - Google Patents

Nucleic acid molecules encoding serine protease cvsp14, the encoded polypeptides and methods based thereon Download PDF

Info

Publication number
WO2002077263A2
WO2002077263A2 PCT/US2002/009039 US0209039W WO02077263A2 WO 2002077263 A2 WO2002077263 A2 WO 2002077263A2 US 0209039 W US0209039 W US 0209039W WO 02077263 A2 WO02077263 A2 WO 02077263A2
Authority
WO
WIPO (PCT)
Prior art keywords
polγpeptide
sequence
nucleotides
cvsp1
nucleic acid
Prior art date
Application number
PCT/US2002/009039
Other languages
French (fr)
Other versions
WO2002077263A3 (en
Inventor
Edwin L. Madison
Jiunn-Chern Yeh
Original Assignee
Dendreon San Diego Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dendreon San Diego Llc filed Critical Dendreon San Diego Llc
Priority to JP2002575305A priority Critical patent/JP2004535166A/en
Priority to CA002441378A priority patent/CA2441378A1/en
Priority to EP02723586A priority patent/EP1383884A4/en
Publication of WO2002077263A2 publication Critical patent/WO2002077263A2/en
Publication of WO2002077263A3 publication Critical patent/WO2002077263A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6402Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from non-mammals
    • C12N9/6405Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from non-mammals not being snakes
    • C12N9/6408Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/95Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
    • G01N2333/964Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
    • G01N2333/96425Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
    • G01N2333/96427Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
    • G01N2333/9643Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
    • G01N2333/96433Serine endopeptidases (3.4.21)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures
    • Y10S436/809Multifield plates or multicontainer arrays

Definitions

  • Nucleic acid molecules that encode proteases and portions thereof, particularly protease domains are provided. Also provided are prognostic, diagnostic and therapeutic methods using the proteases and domains thereof and the encoding nucleic acid molecules. BACKGROUND OF THE INVENTION AND OBJECTS THEREOF
  • Cancer is a leading cause of death in the United States, developing in one in three Americans; one of every four Americans dies of cancer. Cancer is characterized by an increase in the number of abnormal neoplastic cells, which proliferate to form a tumor mass, the invasion of adjacent tissues by these neoplastic tumor cells, and the generation of malignant cells that metastasize via the blood or lymphatic system to regional lymph nodes and to distant sites. Among the hallmarks of cancer is a breakdown in the communication among tumor cells and their environment. Normal cells do not divide in the absence of stimulatory signals, and cease dividing in the presence of inhibitory signals. Growth-stimulatory and growth-inhibitory signals are routinely exchanged between cells within a tissue. In a cancerous, or neoplastic, state, a cell acquires the ability to "override" these signals and to proliferate under conditions in which normal cells do not grow.
  • tumor cells acquire a number of distinct aberrant traits reflecting genetic alterations.
  • the genomes of certain well-studied tumors carry several different independently altered genes, including activated oncogenes and inactivated tumor suppressor genes. Each of these genetic changes appears to be responsible for imparting some of the traits that, in the aggregate, represent the full neoplastic phenotype.
  • a variety of biochemical factors have been associated with different phases of metastasis.
  • Cell surface receptors for collagen, glycoproteins such as laminin, and proteoglycans facilitate tumor cell attachment, an important step in invasion and metastases. Attachment triggers the release of degradative enzymes which facilitate the penetration of tumor cells through tissue barriers. Once the tumor cells have entered the target tissue, specific growth factors are required for further proliferation.
  • Tumor invasion and progression involves a complex series of events, in which tumor cells detach from the primary tumor, break down the normal tissue surrounding it, and migrate into a blood or lymphatic vessel to be carried to a distant site. The breaking down of normal tissue barriers is accomplished by the elaboration of specific enzymes that degrade the proteins of the extracellular matrix that make up basement membranes and stromal components of tissues.
  • MMP matrix metalloproteinases
  • MMPs proteinase enzymes
  • MMPs proteinase enzymes
  • MMPs are reported to enhance degradation of the basement membrane, which thereby permits tumorous cells to invade tissues.
  • two major metalloproteinases having molecular weights of about 70 kDa and 92 kDa appear to enhance ability of tumor cells to metastasize.
  • Serine proteases have been implicated in neoplastic disease progression. Most serine proteases, which are either secreted enzymes or are sequestered in cytoplasmic storage organelles, have roles in blood coagulation, wound healing, digestion, immune responses and tumor invasion and metastasis. A class of cell surface proteins designated type II transmembrane serine proteases, which are membrane-anchored proteins with additional extracellular domains, has been identified. As cell surface proteins, they are positioned to play a role in intracellular signal transduction and in mediating cell surface proteolytic events. Other serine proteases can be membrane bound and function in a similar manner. Others are secreted. Many serine proteases exert their activity upon binding to cell surface receptors, and, hence act at cell surfaces.
  • Cell surface proteolysis is a mechanism for the generation of biologically active proteins that mediate a variety of cellular functions.
  • Serine proteases including secreted and transmembrane serine proteases, have been implicated in processes involved in neoplastic development and progression. While the precise role of these proteases has not been elaborated, serine proteases and inhibitors thereof are involved in the control of many intra- and extracellular physiological processes, including degradative actions in cancer cell invasion, metastatic spread, and neovascularization of tumors, that are involved in tumor progression. It is believed that proteases are involved in the degradation of extracellular matrix (ECM) and contribute to tissue remodeling, and are necessary for cancer invasion and metastasis. The activity and/or expression of some proteases have been shown to correlate with tumor progression and development.
  • ECM extracellular matrix
  • MTSP1 membrane-type serine protease
  • matriptase also called matriptase; see SEQ ID Nos. 1 and 2 from U.S. Patent No. 5,972,61 6; and GenBank Accession No. AF1 1 8224; ( 1 999) J. Biol. Chem. 274: 1 8231 -1 8236; U.S. Patent No. 5,792,61 6; see, also Takeuchi ( 1 999) Proc. Natl. Acad. Sci. U. S.A. 36: 1 1054-1 1 61 ) that is expressed in epithelial cancer and normal tissue (Takeucuhi et al. ( 1 999) Proc. Natl. Acad. Sci.
  • Matriptase was originally identified in human breast cancer cells as a major gelatinase (see, U.S. Patent No. 5,482,848), a type of matrix metalloprotease (MMP). It has been proposed that it plays a role in the metastasis of breast cancer. Matriptase also is expressed in a variety of epithelial tissues with high levels of activity and/or expression in the human gastrointestinal tract and the prostate.
  • MTSPs designated MTSP3, MTSP4, MTSP6 have been decribed in published International PCT application No. WO 01 /571 94, based in International PCT application No. PCT/US01 /03471 .
  • Prostate-specific antigen a kallikrein-like serine protease, degrades extracellular matrix glycoproteins fibronectin and laminin, and, has been postulated to facilitate invasion by prostate cancer cells (Webber et al. ( 1 995) Clin. Cancer Res. 7 : 1 089-94) .
  • Blocking PSA proteolytic activity with PSA-specific monoclonal antibodies results in a dose-dependent decrease in vitro in the invasion of the reconstituted basement membrane Matrigel by LNCaP human prostate carcinoma cells which secrete high levels of PSA.
  • Hepsin a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer (Tanimoto et al.
  • hepsin transcript appears to be abundant in carcinoma tissue and is almost never expressed in normal adult tissue, including normal ovary. It has been suggested that hepsin is frequently overexpressed in ovarian tumors and therefore can be a candidate protease in the invasive process and growth capacity of ovarian tumor cells.
  • NES1 normal epithelial cell-specific 1
  • transmembrane and other serine proteases and other proteases appear to be involved in the etiology and pathogenesis of tumors. There is a need to further elucidate their role in these processes and to identify additional transmembrane proteases. Therefore, it is an object herein to provide serine protease proteins and nucleic acids encoding such proteases that are involved in the regulation of or participate in tumorigenesis and/or carcinogenesis. It is also an object herein to provide prognostic, diagnostic, therapeutic screening methods using such proteases and the nucleic acids encoding such proteases.
  • CVSP14 is a secreted serine protease.
  • CVSP1 4 is highly expressed in androgen-independent prostate tumors and is expressed in other tumors. Hence, as a protease it can be involved in tumor progression. By virtue of its functional activity it can be a therapeutic or diagnostic target.
  • the expression and/or activation (or reduction in level of expression or activation) of the expressed protein or zymogen form thereof can be used to monitor cancer and cancer therapy. For example, the expression of the this protein can be used to monitor prostate cancer and prostate cancer therapy.
  • the serine protease family includes members that are activated and/or expressed in tumor cells at different levels from non-tumor cells; and those from cells in which substrates therefor differ in tumor cells from non-tumor cells or otherwise alter the specificity or activity of the serine protease (SP).
  • the serine protease provided herein, designated herein as CVSP14 is a secreted protease.
  • the protease domain and full-length protein, including the zymogen and activated forms, and uses thereof are also provided. Proteins encoded by splice variants are also provided. Nucleic acid molecules encoding the proteins and protease domains are also provided.
  • the protease domain of a CVSP1 4 is set forth in SEQ ID No.
  • CVSP14 is expressed as a secreted protein and may bind to cell surface receptors and function as a cell-surface bound protease, such as by binding thereto or by dimerization or multimerization with a membrane-bound or receptor-bound protein.
  • nucleic acid molecules that encode SP proteins and the encoded proteins.
  • nucleic acid molecules encoding CVSP1 4 from animals, including splice variants thereof are provided.
  • the encoded proteins are also provided.
  • functional domains thereof are from or based on animal SPs, including, but are not limited to, rodent, such as mouse and rat; fowl, such as chicken; ruminants, such as goats, cows, deer, sheep; ovine, such as pigs; and humans.
  • protease domain for use in the methods and assay provided herein does not have to result from activation, which produces a two chain activated product, but rather is a single chain polypeptide where the N-terminus includes the sequence I ILGG. Such polypeptides, although not the result of activation and not two-chain forms, exhibit proteolytic (catalytic) activity. These protease domain polypeptides are used in assays to screen for agents that modulate the activity of the CVSP14.
  • Such assays are also provided herein.
  • the effects of test compounds on the ability of the full length or along at least about 70%, 80% or 90% of the full length of the single chain, two chain activated form, or a protease domain, which is a single chain or a two chain activated form, of CVSP1 4 to proteolytically cleave a known substrate, typically a fluorescently, chromogenically or otherwise detectably labeled substrate, are assessed.
  • Agents generally compounds, particularly small molecules, that modulate the activity of the protein (full length or protease domain either single or two chain forms thereof) are candidate compounds for modulating the activity of the CVSP14.
  • protease domains and full length proteins also can be used to produce two-chain and single-chain protease-specific antibodies.
  • the protease domains provided herein include, but are not limited to, the single chain region having an N-terminus at the cleavage site for activation of the zymogen, through the C-terminus, or C-terminal truncated portions thereof that exhibit proteolytic activity as a single-chain polypeptide in in vitro proteolysis assays, of any family member, including CVSP14, such as from a mammal, including human, that, for example, is expressed or activity in tumor cells at different levels from non-tumor cells.
  • muteins of the single chain protease domain of CVSP1 4 particularly muteins in which the Cys residue (residue no. 26 in SEQ ID No. 6) in the protease domain that is free (i.e. , does not form disulfide linkages with any other Cys residue in the protease domain) is substituted with another amino acid substitution, generally with a substitution that does not eliminate the activity of interest, and muteins in which a glycosylation site(s) is eliminated.
  • Muteins in which other substitutions in which catalytic activity is retained are also contemplated (see, e.g. , Table 1 , for exemplary amino acid substitutions).
  • CVSP14 a member of the family of serine proteases designated CVSP14, and functional domains, especially protease (or catalytic) domains thereof, muteins and other derivatives and analogs thereof. Also provided herein are nucleic acids encoding the CVSP1 .
  • nucleic acid and amino acid sequences of CVSP14 are set forth in SEQ ID Nos. 5 and 6. Nucleic acid molecules that encode a single-chain protease domain or catalytically active portion thereof and also those that encode the full-length CVSP14 (SEQ ID Nos. 1 2 and 1 3) are provided. Single amino acid changes are contemplated; for example peptides in which there is an Arg in place of a Gly are provided. Nucleic acid molecules that encode a single- chain protease domain or catalytically active portion thereof and also those that encode the full-length CVSP1 4 are provided.
  • nucleic acid molecules that hybridize to such CVSP14 encoding nucleic acid along their full length or along at least about 70%, 80% or 90% of the full length and encode the full length or a truncated portion thereof, such as without the signal sequence or a protease domain or catalytically active portion thereof are provided. Hybridization is typically performed under conditions of at least low, generally at least moderate, and often high stringency. Additionally provided herein are antibodies that specifically bind to the
  • CVSP14 and inhibit the activity thereof. Included are antibodies that specifically bind to the protein or protease domain, including to the single and/or two chain forms thereof. Among the antibodies are two-chain-specific antibodies, and single-chain specific antibodies and neutralizing antibodies. Antibodies that specifically bind to the CVSP1 4, particularly the single chain protease domain, the zymogen and activated form are also provided herein. Antibodies that specifically bind to the two-chain and/or single-chain form of CVSP14 are provided. The antibodies include those that specifically bind to the two-chain or single-chain form of the protease domain and/or the full-length protein.
  • CVSP1 4 cardiovascular disease 2019
  • nucleic acids encoding CVSP1 4
  • transgenic non-human animals bearing inactivated genes encoding the CVSP and bearing the genes encoding the CVSP1 4 under non-native or native promotor control are provided. Such animals are useful in animal models of tumor initiation, growth and/or progression models.
  • CVSP1 4 serine proteases
  • lung carcinoma, leukemia and cervical carcinoma as well as in certain normal cells and tissues
  • CVSP1 4 can also be a marker for breast, prostate and colon cancer.
  • SPs are of interest because they appear to be expressed and/or activated at different levels in tumor cells from normal cells, or have functional activity that is different in tumor cells from normal cells, such as by an alteration in a substrate therefor, or a cofactor.
  • CVSP1 4 is of interest because it is expressed or is active in tumor cells.
  • the level of activated CVSP14 can be diagnostic of prostate, uterine, lung or colon cancer or leukemia or other cancer.
  • the protease domain of CVSP1 4 that includes the catalytic portion of the protein.
  • CVSP14 polypeptides including, but not limited to splice variants thereof, and nucleic acids encoding CVSPs, and domains, derivatives and analogs thereof are provided herein.
  • Single chain protease domains that contain the N-terminii that are generated by activation of the zymogen form of CVSP14 are also provided.
  • the cleavage site for the protease domain is at amino acid 52 (FU IGGSHsee SEQ ID Nos. 1 2 and 1 3).
  • plasmids containing any of the nucleic acid molecules provided herein are also provided. Such cells include, but are not limited to, bacterial cells, yeast cells, fungal cells, plant cells, insect cells and animal cells.
  • methods of expression of the encoded polypeptide are provided.
  • the nucleic acid encoding the signal sequence is removed. The protein is expressed in the inclusion bodies.
  • the CVSP14 protease domain was then isolated from the inclusion bodies and treated under conditions whereby proper refolding occurred.
  • methods for producing active CVSP14 protease domain are also provided.
  • CVSP14 Also provided is a method of producing CVSP14 by growing the above- described cells under conditions whereby the CVSP1 4 is expressed by the cells, and recovering the expressed CVSP14 polypeptide. Methods for isolating nucleic acid encoding other CVSP1 4s are also provided.
  • cells generally eukaryotic cells, such as mammalian cells and yeast cells, in which the CVSP1 4 polypeptide is expressed by the cells.
  • Such cells to which the secreted protein can bind are used in drug screening assays to identify compounds that modulate the activity of the CVSP14 polypeptide.
  • assays include in vitro binding assays, and transcription based assays in which signal transduction mediated directly or indirectly, such as via activation of pro-growth factors, by the CVSP1 4 or cleavage products thereof is assessed.
  • prognostic, diagnostic and therapeutic screening methods using the CVSP1 4 and the nucleic acids encoding CVSP14.
  • the prognostic, diagnostic and therapeutic screening methods are used for preventing, treating, or for finding agents useful in preventing or treating, tumors or cancers such as lung carcinoma, colon adenocarcinoma and ovarian carcinoma.
  • the compounds are identified by contacting them with the CVSP1 4 or protease domain thereof and a substrate for the CVSP14. A change in the amount of substrate cleaved in the presence of the compounds compared to that in the absence of the compound indicates that the compound modulates the activity of the CVSP14.
  • Such compounds are selected for further analyses or for use to modulate the activity of the CVSP1 4, such as inhibitors or agonists.
  • the compounds also can be identified by contacting the substrates with a cell that binds to a CVSP1 4 or catalytically active portion thereof.
  • modulators of the activity of CVSP14 especially the modulators obtained according to the screening methods provided herein.
  • modulators can have use in treating cancerous conditions and other neoplastic conditions.
  • compositions containing the protease domain and/or full- length or other domain of a CVSP1 4 polypeptide are provided herein in a pharmaceutically acceptable carrier or excipient are provided herein.
  • articles of manufacture that contain CVSP14 polypeptide and protease domains of CVSP1 4 in single chain forms or activated forms.
  • the articles contain a) packaging material; b) the polypeptide (or encoding nucleic acid), particularly the single chain protease domain thereof; and c) a label indicating that the article is for using in assays for identifying modulators of the activities of a CVSP1 4 polypeptide is provided herein.
  • the conjugate can contain a plurality of agents linked thereto.
  • the conjugate can be a chemical conjugate; and it can be a fusion protein.
  • the targeting agent is a protein or peptide fragment.
  • the protein or peptide fragment can include a protein binding sequence, a nucleic acid binding sequence, a lipid binding sequence, a polysaccharide binding sequence, or a metal binding sequence.
  • the combination can include: a) an inhibitor of the activity of a CVSP1 4; and b) an anti-cancer treatment or agent.
  • the CVSP inhibitor and the anti-cancer agent can be formulated in a single pharmaceutical composition or each is formulated in a separate pharmaceutical composition.
  • the CVSP14 inhibitor can be an antibody or a fragment or binding portion thereof made against the CVSP1 4, such as an antibody that specifically binds to the protease domain, an inhibitor of CVSP1 4 production, or an inhibitor of CVSP14 membrane-localization or an inhibitor of CVSP14 activation.
  • CVSP1 4 inhibitors include, but are not limited to, an antisense nucleic acid or double-stranded RNA (dsRNA), such as RNAi, encoding the CVSP1 4 or portions thereof, particularly a portion of the protease domain, a nucleic acid encoding at least a portion of a gene encoding the CVSP1 4 with a heterologous nucleotide sequence inserted therein such that the heterologous sequence inactivates the biological activity encoded CVSP1 4 or the gene encoding it.
  • the portion of the gene encoding the CVSP14 typically flanks the heterologous sequence to promote homologous recombination with a genomic gene encoding the CVSP14.
  • a tumor or cancer in a mammal by administering to a mammal an effective amount of an inhibitor of a CVSP1 4, whereby the tumor or cancer is treated or prevented.
  • the CVSP14 inhibitor used in the treatment or for prophylaxis is administered with a pharmaceutically acceptable carrier or excipient.
  • the mammal treated can be a human.
  • the treatment or prevention method can additionally include administering an anti-cancer treatment or agent simultaneously with or subsequently or before administration of the CVSP1 4 inhibitor.
  • a recombinant non-human animal where the gene of a CVSP14 is under control of a promoter that is not the native promoter of the gene or that is not the native promoter of the gene in the non-human animal or where the nucleic acid encoding the CVSP1 4 is heterologous to the non-human animal and the promoter is the native or a non- native promoter or the CVSP14 is on an extrachromosomal element, such as a plasmid or artificial chromosome.
  • Transgenic non-human animals bearing the genes encoding the CVSP1 4 and bearing inactivated genes encoding CVSP1 4, particularly under a non-native promotor control or on an exogenous element, such as a plasmid or artificial chromosome, are additionally provided herein.
  • the prodrug is administered and, upon administration, active CVSP14 cleaves the prodrug and releases active drug in the vicinity of the tumor cells.
  • the active anti-cancer drug accumulates in the vicinity of the tumor. This is particularly useful in instances in which CVSP1 4 is expressed or active in greater quantity, higher level or predominantly in tumor cells compared to other cells.
  • the forms can be full length or truncated forms, including but not limited to, the protease domain resulting from cleavage at the Rl activation site or from expression of the protease domain or catalytically active portions thereof.
  • the conditions include, but are not limited to, a condition, such as a tumor, of the breast, cervix, prostate, lung, ovary or colon.
  • Methods for monitoring tumor progression and/or therapeutic effectiveness are also provided.
  • the levels of activation or expression of CVSP14 or the protease domain thereof are assessed, and the change in the level, reflects tumor progression and/or the effectiveness of therapy.
  • the amount of CVSP14 in a body tissue or fluid sample increases; effective therapy reduces the level.
  • serine protease refers to a diverse family of proteases wherein a serine residue is involved in the hydrolysis of proteins or peptides.
  • the serine residue can be part of the catalytic triad mechanism, which includes a serine, a histidine and an aspartic acid in the catalysis, or be part of the hydroxyl/e-amine or hydroxyl/ ⁇ -amine catalytic dyad mechanism, which involves a serine and a lysine in the catalysis.
  • the catalytic triad mechanism which includes a serine, a histidine and an aspartic acid in the catalysis
  • hydroxyl/e-amine or hydroxyl/ ⁇ -amine catalytic dyad mechanism which involves a serine and a lysine in the catalysis.
  • SPs of mammalian, including human, origin Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g. , Watson et al. ( 1 987) Molecular Biology of the Gene, 4th Edition, The Bejac
  • transmembrane serine protease refers to a family of transmembrane serine proteases that share common structural features as described herein (see, also Hooper et al. (2001 ) J. Biol. Chem. 76:857-860).
  • MTSP transmembrane serine protease encompasses all proteins encoded by the MTSP gene family, including but are not limited to: MTSP3, MTSP4, MTSP6, MTSP7 or an equivalent molecule obtained from any other source or that has been prepared synthetically or that exhibits the same activity.
  • MTSPs include, but are not limited to, corin, enterpeptidase, human airway trypsin-like protease (HAT), MTSP1 , TMPRSS2, and TMPRSS4. Sequences of encoding nucleic molecules and the encoded amino acid sequences of exemplary MTSPs and/or domains thereof are set forth, for example in U.S. application
  • a "protease domain of a CVSP” refers to a domain of CVSP that exhibits proteolytic activity and shares homology and structural features with the chymotrypsin/trypsin family protease domains. Hence it is at least the minimal portion of the domain that exhibits proteolytic activity as assessed by standard in vitro assays.
  • protease domain is the portion of the protease that is structurally equivalent to the trypsin or chymotrypsin fold. Contemplated herein are such protease domains and catalytically active portions thereof. Also provided are truncated forms of the protease domain that include the smallest fragment thereof that acts catalytically as a single chain form.
  • the catalytically active domain of a CVSP refers to the protease domain.
  • Reference to the protease domain of a CVSP includes refers to the single chain form of the protein. If the two-chain form or both is intended, it is so-specified.
  • the zymogen form of each protein is a single chain, which is converted to the active two chain form by activation cleavage.
  • a protease domain of a CVSP14 includes at least one or all of or any combination of or a catalytically active portion of: a polypeptide encoded by the sequence of nucleotides set forth in
  • SEQ ID No. 5 a polypeptide encoded by a sequence of nucleotides that hybridizes under conditions of low, moderate or high stringency to the sequence of nucleotides set forth in SEQ ID No. 5; a polypeptide that comprises the sequence of amino acids set forth in SEQ ID No. 6; a polypeptide that comprises a sequence of amino acids having at least about 60%, 70%, 80%, 90% or about 95 % sequence identity with the sequence of amino acids set forth in SEQ ID No. 6; and/or a protease domain of a splice variant of the CVSP14.
  • the CVSP14 can be from any animal, particularly a mammal, and includes but are not limited to, humans, rodents, fowl, ruminants and other animals.
  • the full length zymogen or two-chain activated form is contemplated or any domain thereof, including the protease domain, which can be a two-chain activated form, or a single chain form.
  • active form is meant a form active in vivo and/or in vitro.
  • the protease domain also can exist as a two-chain form. It is shown herein that, at least in vitro, the single chain forms of the SPs and the catalytic domains or proteolytically active portions thereof (typically C-terminal truncations) thereof exhibit protease activity.
  • isolated single chain forms of the protease domains of SPs and their use in in vitro drug screening assays for identification of agents that modulate the activity thereof.
  • activation cleavage refers to the cleavage of the protease at the N-terminus of the protease domain (in this instance between R 55 and l 56 ; with reference to SEQ ID Nos. 1 2 and 1 3).
  • Cys-Cys pairing between the a Cys outside the protease domain (in this instance C 37 ) and a Cys in the protease domain (in this instance Cys 166 )
  • the resulting polypeptide has two chains ("A" chain and the "B" chain, which is the protease domain). Cleavage can be effected by another protease or autocatalytically.
  • a two-chain form of the protease domain refers to a two- chain form that is formed from the two-chain form of the protease in which the Cys pairing between, in this instance, Cys 37 and Cys 166 , which links the protease domain to the remainder of the polypeptide, the "A" chain.
  • a two chain protease domain form refers to any form in which the "remainder of the polypeptide", i.e. , "A" chain, is shortened and includes at least up to Cys 37 .
  • a CVSP14 whenever referenced herein, includes at least one or all of or any combination of: a polypeptide encoded by the sequence of nucleotides set forth in SEQ ID No.
  • the CVSP1 polypeptide includes the sequence of amino acids set forth in SEQ ID No. 1 3. Smaller portions thereof that retain protease activity are contemplated.
  • the protease domain thereof is set forth in SEQ ID No. 6.
  • the protease domains of CVSPs vary in size and constitution, including insertions and deletions in surface loops. They retain conserved structure, including at least one of the active site triad, primary specificity pocket, oxyanion hole and/or other features of serine protease domains of proteases.
  • the protease domain is a portion of a CVSP, as defined herein, and is homologous to a domain of other CVSP.
  • S1 chymotrypsin
  • CVSPs protease domains share a high degree of amino acid sequence identity.
  • His, Asp and Ser residues necessary for activity are present in conserved motifs.
  • the activation site, whose cleavage creates the N- terminus of protease domain in the two-chain forms has a conserved motif and readily can be identified.
  • CVSPs of interest include those that are activated and/or expressed in tumor cells at different levels, typically higher, from non-tumor cells; and those from cells in which substrates therefor differ in tumor cells from non-tumor cells or differ with respect to substrates, co-factors or receptors, or otherwise alter the activity or specificity of the CVSP.
  • a human protein is one encoded by nucleic acid, such as DNA, present in the genome of a human, including all allelic variants and conservative variations as long as they are not variants found in other mammals.
  • nucleic acid encoding a protease domain or catalytically active portion of a SP shall be construed as referring to a nucleic acid encoding only the recited single chain protease domain or active portion thereof, and not the other contiguous portions of the SP as a continuous sequence.
  • catalytic activity refers to the activity of the SP as a serine protease.
  • Function of the SP refers to its function in tumor biology, including promotion of or involvement in initiation, growth or progression of tumors, and also roles in signal transduction.
  • Catalytic activity refers to the activity of the SP as a protease as assessed in in vitro proteolytic assays that detect proteolysis of a selected substrate.
  • a zymogen is an inactive precursor of a proteolytic enzyme. Such precursors are generally larger, although not necessarily larger than the active form.
  • zymogens are converted to active enzymes by specific cleavage,, including catalytic and autocatalytic cleavage, or binding of an activating co-factor, which generates the mature active enzyme.
  • a zymogen thus, is an enzymatically inactive protein that is converted to a proteolytic enzyme by the action of an activator.
  • neoplasm neoplasia
  • neoplasm refers to abnormal new growth, and thus means the same as tumor, which can be benign or malignant. Unlike hyperplasia, neoplastic proliferation persists even in the absence of the original stimulus.
  • neoplastic disease refers to any disorder involving cancer, including tumor development, growth, metastasis and progression.
  • cancer refers to a general term for diseases caused by any type of malignant tumor.
  • malignant as applies to tumors, refers to primary tumors that have the capacity of metastasis with loss of growth control and positional control.
  • an anti-cancer agent refers to any agents used in the anti-cancer treatment. These include any agents, when used alone or in combination with other compounds, that- can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical symptoms or diagnostic markers associated with neoplastic disease, tumor and cancer, and can be used in methods, combinations and compositions provided herein.
  • Non-limiting examples of anti-neoplastic agents include anti-angiogenic agents, alkylating agents, antimetabolite, certain natural products, platinum coordination complexes, anthracenediones, substituted ureas, methylhydrazine derivatives, adrenocortical suppressants, certain hormones, antagonists and anti-cancer polysaccharides.
  • a splice variant refers to a variant produced by differential processing of a primary transcript of genomic nucleic acid, such as DNA, that results in more than one type of mRNA. Splice variants of SPs are provided herein.
  • angiogenesis is intended to broadly encompass the totality of processes directly or indirectly involved in the establishment and maintenance of new vasculature (neovascularization), including, but not limited to, neovascularization associated with tumors.
  • anti-angiogenic treatment or agent refers to any therapeutic regimen and compound, when used alone or in combination with other treatment or compounds, that can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical symptoms or diagnostic markers associated with undesired and/or uncontrolled angiogenesis.
  • an anti-angiogenic agent refers to an agent that inhibits the establishment or maintenance of vasculature.
  • agents include, but are not limited to, anti-tumor agents, and agents for treatments of other disorders associated with undesirable angiogenesis, such as diabetic retinopathies, restenosis, hyperproliferative disorders and others.
  • non-anti-angiogenic anti-tumor agents refer to anti-tumor agents that do not act primarily by inhibiting angiogenesis.
  • pro-angiogenic agents are agents that promote the establishment or maintenance of the vasculature. Such agents include agents for treating cardiovascular disorders, including heart attacks and strokes.
  • undesired and/or uncontrolled angiogenesis refers to pathological angiogenesis wherein the influence of angiogenesis stimulators outweighs the influence of angiogenesis inhibitors.
  • deficient angiogenesis refers to pathological angiogenesis associated with disorders where there is a defect in normal angiogenesis resulting in aberrant angiogenesis or an absence or substantial reduction in angiogenesis.
  • the protease domain of an SP protein refers to the protease domain of an SP that exhibits proteolytic activity. Hence it is at least the minimal portion of the protein that exhibits proteolytic activity as assessed by standard assays in vitro. It refers, herein, to a single chain form and also the two chain activated form (where the two chain form is intended it will be so- noted).
  • Exemplary protease domains include at least a sufficient portion of sequences of amino acids set forth in SEQ ID No. 6 (encoded by nucleotides in SEQ ID No. 5) to exhibit protease activity.
  • nucleic acid molecules that encode a polypeptide that has proteolytic activity in an in vitro proteolysis assay and that have at least 60%, 70%, 80%, 90% or about 95 % sequence identity with the full length of a protease domain of a CVSP1 4 polypeptide, or that hybridize along their full length or along at least about 70%, 80% or 90% of the full length to a nucleic acids that encode a protease domain, particularly under conditions of moderate, generally high, stringency.
  • protease domains residues at the N-terminus can be critical for activity. It is shown herein that the protease domain of the single chain form of the CVSP1 4 protease is catalytically active. Hence the protease domain generally requires the N-terminal amino acids thereof for activity; the C-terminus portion can be truncated. The amount that can be removed can be determined empirically by testing the polypeptide for protease activity in an in vitro assay that assesses catalytic cleavage.
  • protease domains particularly the single chain domains, thereof that retain protease activity are contemplated.
  • Such smaller versions generally are C-terminal truncated versions of the protease domains.
  • the protease domains vary in size and constitution, including insertions and deletions in surface loops.
  • Such domains exhibit conserved structure, including at least one structural feature, such as the active site triad, primary specificity pocket, oxyanion hole and/or other features of serine protease domains of proteases.
  • the protease domain is a single chain portion of a CVSP1 4, as defined herein, but is homologous in its structural features and retention of sequence of similarity or homology the protease domain of chymotrypsin or trypsin.
  • the polypeptide exhibits proteolytic activity as a single chain.
  • homologous means about greater than 25 % nucleic acid sequence identity, such as 25 % 40%, 60%, 70%, 80%, 90% or 95% . If necessary the percentage homology will be specified.
  • the terms "homology” and “identity” are often used interchangeably. In general, sequences are aligned so that the highest order match is obtained (see, e.g.
  • nucleic acid molecules that contain degenerate codons in place of codons in the hybridizing nucleic acid molecule.
  • nucleic acid molecules have nucleotide sequences that are at least 80%, 85%, 90%, 95 %, 96%, 97% , 98% or 99% "identical” can be determined using known computer algorithms such as the "FAST A” program, using for example, the default parameters as in Pearson et al. ( 1 988) Proc. Natl. Acad. Sci. USA 85:2444 (other programs include the GCG program package (Devereux, J., et al..
  • DNAStar “MegAlign” program (Madison, WI) and the University of Wisconsin Genetics Computer Group (UWG) "Gap” program (Madison WI)) .
  • Percent homology or identity of proteins and/or nucleic acid molecules can be determined/ for example, by comparing sequence information using a GAP computer program (e.g. , Needleman et al. ( 1 970) J. Mol. Biol. 48:443, as revised by Smith and Waterman (( 1 981 ) Adv. Appl. Math. 2:482).
  • the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences.
  • Default parameters for the GAP program can include: ( 1 ) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) and the weighted comparison matrix of
  • the term "identity" represents a comparison between a test and a reference polypeptide or polynucleotide.
  • the term at least "90% identical to” refers to percent identities from 90 to 99.99 relative to the reference polypeptides.
  • Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polynucleotide length of 1 00 amino acids are compared. No more than 10% (i.e., 10 out of 1 00) amino acids in the test polypeptide differs from that of the reference polypeptides. Similar comparisons can be made between a test and reference polynucleotides. Such differences can be represented as point mutations randomly distributed over the entire length of an amino acid sequence or they can be clustered in one or more locations of varying length up to the maximum allowable, e.g. 10/1 00 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, or deletions. At the level of homologies or identities above about 85-90%, the result should be independent of the program and gap parameters set; such high levels of identity can be assessed readily, often without relying on software.
  • primer refers to an oligonucleotide containing two or more deoxyribonucleotides or ribonucleotides, typically more than three, from which synthesis of a primer extension product can be initiated.
  • Experimental conditions conducive to synthesis include the presence, of nucleoside triphosphates and an agent for polymerization and extension, such as DNA polymerase, and a suitable buffer, temperature and pH.
  • animals include any animal, such as, but are not limited to, goats, cows, deer, sheep, rodents, pigs and humans.
  • Non-human animals exclude humans as the contemplated animal.
  • the SPs provided herein are from any source, animal, plant, prokaryotic and fungal.
  • Most CVSP1 4s are of animal origin, including mammalian origin.
  • genetic therapy involves the transfer of heterologous nucleic acid, such as DNA, into certain cells, target cells, of a mammal, particularly a human, with a disorder or conditions for which such therapy is sought.
  • the nucleic acid, such as DNA is introduced into the selected target cells in a manner such that the heterologous nucleic acid, such as DNA, is expressed and a therapeutic product encoded thereby is produced.
  • the heterologous nucleic acid, such as DNA can in some manner mediate expression of DNA that encodes the therapeutic product, or it can encode a product, such as a peptide or RNA that in some manner mediates, directly or indirectly, expression of a therapeutic product.
  • Genetic therapy can also be used to deliver nucleic acid encoding a gene product that replaces a defective gene or supplements a gene product produced by the mammal or the cell in which it is introduced.
  • the introduced nucleic acid can encode a therapeutic compound, such as a growth factor inhibitor thereof, or a tumor necrosis factor or inhibitor thereof, such as a receptor therefor, that is not normally produced in the mammalian host or that is not produced in therapeutically effective amounts or at a therapeutically useful time.
  • the heterologous nucleic acid, such as DNA, encoding the therapeutic product can be modified prior to introduction into the cells of the afflicted host in order to enhance or otherwise alter the product or expression thereof .
  • Genetic therapy can also involve delivery of an inhibitor or repressor or other modulator of gene expression.
  • heterologous nucleic acid is nucleic acid that (if DNA encodes RNA) and proteins that are not normally produced in vivo by the cell in which it is expressed or that mediates or encodes mediators that alter expression of endogenous nucleic acid, such as DNA, by affecting transcription, translation, or other regulatable biochemical processes.
  • Heterologous nucleic acid, such as DNA can also be referred to as foreign nucleic acid, such as DNA. Any nucleic acid, such as DNA, that one of skill in the art would recognize or consider as heterologous or foreign to the cell in which is expressed is herein encompassed by heterologous nucleic acid; heterologous nucleic acid includes exogenously added nucleic acid that is also expressed endogenously.
  • heterologous nucleic acid examples include, but are not limited to, nucleic acid that encodes traceable marker proteins, such as a protein that confers drug resistance, nucleic acid that encodes therapeutically effective substances, such as anti-cancer agents, enzymes and hormones, and nucleic acid, such as DNA, that encodes other types of proteins, such as antibodies.
  • Antibodies that are encoded by heterologous nucleic acid can be secreted or expressed on the surface of the cell in which the heterologous nucleic acid has been introduced.
  • Heterologous nucleic acid is generally not endogenous to the cell into which it is introduced, but has been obtained from another cell or prepared synthetically. Generally, although not necessarily, such nucleic acid encodes RNA and proteins that are not normally produced by the cell in which it is expressed.
  • heterologous nucleic acid or foreign nucleic acid includes a nucleic acid molecule not present in the exact orientation or position as the counterpart nucleic acid molecule, such as DNA, found in the genome. It can also refer to a nucleic acid molecule from another organism or species (i.e. , exogenous).
  • a therapeutically effective product is a product that is encoded by heterologous nucleic acid, typically DNA, that, upon introduction of the nucleic acid into a host, a product is expressed that ameliorates or eliminates the symptoms, manifestations of an inherited or acquired disease or that cures the disease.
  • a polypeptide consists essentially of the protease domain means that the only SP portion of the polypeptide is a protease domain or a catalytically active portion thereof.
  • the polypeptide can optionally, and generally will, include additional non-SP-derived sequences of amino acids.
  • cancer or tumor treatment or agent refers to any therapeutic regimen and/or compound that, when used alone or in combination with other treatments or compounds, can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical symptoms or diagnostic markers associated with deficient angiogenesis.
  • domain refers to a portion of a molecule, e.g. , proteins or the encoding nucleic acids, that is structurally and/or functionally distinct from other portions of the molecule.
  • protease refers to an enzyme catalyzing hydrolysis of proteins or peptides. It includes the zymogen form and activated forms thereof. For clarity reference to protease refers to all forms, and particular forms will be specifically designated.
  • the protease domain includes single and two chain forms of the protease domain of an SP protein.
  • the protease domain also includes two chain forms of the protease domain.
  • nucleic acids include DNA, RNA and analogs thereof, including protein nucleic acids (PNA) and mixture thereof. Nucleic acids can be single or double-stranded. When referring to probes or primers, optionally labeled, with a detectable label, such as a fluorescent or radiolabel, single- stranded molecules are contemplated. Such molecules are typically of a length such that their target is statistically unique or of low copy number (typically less than 5, generally less than 3) for probing or priming a library. Generally a probe or primer contains at least 1 4, 1 6 or 30 contiguous of sequence complementary to or identical a gene of interest. Probes and primers can be 10, 20, 30, 50, 1 00 or more nucleic acids long.
  • nucleic acid encoding a fragment or portion of an SP refers to a nucleic acid encoding only the recited fragment or portion of SP, and not the other contiguous portions of the SP.
  • operative linkage of heterologous nucleic to regulatory and effector sequences of nucleotides refers to the relationship between such nucleic acid, such as DNA, and such sequences of nucleotides.
  • operative linkage of heterologous DNA to a promoter refers to the physical relationship between the DNA and the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA in reading frame.
  • operatively linked or operationally associated refers to the functional relationship of nucleic acid, such as DNA, with regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences.
  • operative linkage of DNA to a promoter refers to the physical and functional relationship between the DNA and the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA.
  • start codons or other sequences that can interfere with or reduce expression, either at the level of transcription or translation.
  • consensus ribosome binding sites see, e.g. , Kozak J. Biol. Chem. 266: 1 9867- 1 9870 ( 1 991 )
  • start codons or other sequences that can interfere with or reduce expression, either at the level of transcription or translation.
  • consensus ribosome binding sites see, e.g. , Kozak J. Biol. Chem. 266: 1 9867- 1 9870 ( 1 991 )
  • the desirability of (or need for) such modification can be empirically determined.
  • a sequence complementary to at least a portion of an RNA means a sequence having sufficient complementarily to be able to hybridize with the RNA, generally under moderate or high stringency conditions, forming a stable duplex; in the case of double-stranded SP antisense nucleic acids, a single strand of the duplex DNA (or dsRNA) can thus be tested, or triplex formation can be assayed.
  • the ability to hybridize depends on the degree of complementarily and the length of the antisense nucleic acid.
  • amino acid substitutions can be made in any of SPs and protease domains thereof provided that the resulting protein exhibits protease activity. Muteins can be made by making conservative amino acid substitutions and also non-conservative amino acid substitutions. For example, amino acid substitutions the desirably alter properties of the proteins can be made. In one embodiment, mutations that prevent degradation of the polypeptide can be made.
  • proteases cleave after basic residues, such as R and K; to eliminate such cleavage, the basic residue is replaced with a non-basic residue. Interaction of the protease with an inhibitor can be blocked while retaining catalytic activity by effecting a non-conservative change at the site interaction of the inhibitor with the protease. Receptor binding can be altered without altering catalytic activity.
  • Amino acid substitutions contemplated include conservative substitutions, such as those set forth in Table 1 , which do not eliminate proteolytic activity. As described herein, substitutions that alter properties of the proteins, such as removal of cleavage sites and other such sites are also contemplated; such substitutions are generally non-conservative, but can be readily effected by those of skill in the art.
  • Suitable conservative substitutions of amino acids are known to those of skill in this art and can be made generally without altering the biological activity, for example enzymatic activity, of the resulting molecule.
  • Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g. , Watson et al. Molecular Biology of the Gene, 4th Edition, 1 987, The Bejacmin/Cummings Pub. co., p.224).
  • the catalytically active fragment of an SP particularly a single chain protease portion.
  • Conservative amino acid substitutions are made, for example, in accordance with those set forth in TABLE 1 as follows:
  • Trp Tyr Tyr (Y) Trp; Phe Val (V) Ile; Leu; Met; Nle; Nv
  • a probe or primer based on a nucleotide sequence disclosed herein includes at least 1 0, 14, typically at least 1 6 contiguous sequence of nucleotides of SEQ ID No. 5, and probes of at least 30, 50 or 1 00 contiguous sequence of nucleotides of SEQ ID No. 5.
  • the length of the probe or primer for unique hybridization is a function of the complexity of the genome of interest.
  • amelioration of the symptoms of a particular disorder by administration of a particular pharmaceutical composition refers to any lessening, whether permanent or temporary, lasting or transient that can be attributed to or associated with administration of the composition.
  • antisense polynucleotides refer to synthetic sequences of nucleotide bases complementary to mRNA or the sense strand of double- stranded DNA. Admixture of sense and antisense polynucleotides under appropriate conditions leads to the binding of the two molecules, or hybridization. When these polynucleotides bind to (hybridize with) mRNA, inhibition of protein synthesis (translation) occurs. When these polynucleotides bind to double-stranded DNA, inhibition of RNA synthesis (transcription) occurs. The resulting inhibition of translation and/or transcription leads to an inhibition of the synthesis of the protein encoded by the sense strand.
  • Antisense nucleic acid molecule typically contain a sufficient number of nucleotides to specifically bind to a target nucleic acid, generally at least 5 contiguous nucleotides, often at least 14 or 1 6 or 30 contiguous nucleotides or modified nucleotides complementary to the coding portion of a nucleic acid molecule that encodes a gene of interest, for example, nucleic acid encoding a single chain protease domain of an SP.
  • an array refers to a collection of elements, such as antibodies, containing three or more members.
  • An addressable array is one in which the members of the array are identifiable, typically by position on a solid phase support. Hence, in general the members of the array are immobilized on discrete identifiable loci on the surface of a solid phase.
  • antibody refers to an immunoglobulin, whether natural or partially or wholly synthetically produced, including any derivative thereof that retains the specific binding ability the antibody.
  • antibody includes any protein having a binding domain that is homologous or substantially homologous to an immunoglobulin binding domain.
  • Antibodies include members of any immunoglobulin claims, including IgG, IgM, IgA, IgD and IgE.
  • antibody fragment refers to any derivative of an antibody that is less then full length, retaining at least a portion of the full-length antibody's specific binding ability.
  • antibody fragments include, but are not limited to, Fab, Fab', F(ab) 2 , single-chain Fvs (scFV), FV, dsFV diabody and Fd fragments.
  • the fragment can include multiple chains linked together, such as by disulfide bridges.
  • An antibody fragment generally contains at least about 50 amino acids and typically at least 200 amino acids.
  • an Fv antibody fragment is composed of one variable heavy domain (V H ) and one variable light domain linked by noncovalent interactions.
  • a dsFV refers to an Fv with an engineered intermolecular disulfide bond, which stabilizes the V H -V L pair.
  • an F(ab) 2 fragment is an antibody fragment that results from digestion of an immunoglobulin with pepsin at pH 4.0-4.5; it can be recombinantly produced to produce the equivalent fragment.
  • Fab fragments is an antibody fragment that results from digestion of an immunoglobulin with papain; it can be recombinantly produced to produce the equivalent fragment.
  • scFVs refer to antibody fragments that contain a variable light chain (V L ) and variable heavy chain (V H ) covalently connected by a polypeptide linker in any order.
  • the linker is of a length such that the two variable domains are bridged without substantial interference. Included linkers are (Gly-Ser) ⁇ residues with some Glu or Lys residues dispersed throughout to increase solubility.
  • humanized antibodies refer to antibodies that are modified to include human sequences of amino acids so that administration to a human does not provoke an immune response.
  • Methods for preparation of such antibodies are known.
  • the hybridoma that expresses the monoclonal antibody is altered by recombinant DNA techniques to express an antibody in which the amino acid composition of the non-variable regions is based on human antibodies.
  • Computer programs have been designed to identify such regions.
  • diabodies are dimeric scFV; diabodies typically have shorter peptide linkers than scFvs, and they generally dimerize.
  • production by recombinant means by using recombinant DNA methods means the use of the well known methods of molecular biology for expressing proteins encoded by cloned DNA.
  • assessing is intended to include quantitative and qualitative determination in the sense of obtaining an absolute value for the activity of an SP, or a domain thereof, present in the sample, and also of obtaining an index, ratio, percentage, visual or other value indicative of the level of the activity. Assessment can be direct or indirect and the chemical species actually detected need not of course be the proteolysis product itself but can for example be a derivative thereof or some further substance.
  • biological activity refers to the in vivo activities of a compound or physiological responses that result upon in vivo administration of a compound, composition or other mixture. Biological activity, thus, encompasses therapeutic effects and pharmaceutical activity of such compounds, compositions and mixtures. Biological activities can be observed in in vitro systems designed to test or use such activities.
  • the biological activity of a luciferase is its oxygenase activity whereby, upon oxidation of a substrate, light is produced.
  • functional activity refers to a polypeptide or portion thereof that displays one or more activities associated with a full-length (complete) protein. Functional activities include, but are not limited to, biological activity, catalytic or enzymatic activity, antigenicity (ability to bind to or compete with a polypeptide for binding to an anti-polypeptide antibody), immunogenicity, ability to form multimers, the ability to specifically bind to a receptor or ligand for the polypeptide.
  • a conjugate refers to the compounds provided herein that include one or more SPs, including a CVSP1 4, particularly single chain protease domains thereof, and one or more targeting agents.
  • These conjugates include those produced by recombinant means as fusion proteins, those produced by chemical means, such as by chemical coupling, through, for example, coupling to sulfhydryl groups, and those produced by any other method whereby at least one SP, or a domain thereof, is linked, directly or indirectly via linker(s) to a targeting agent.
  • a targeting agent is any moiety, such as a protein or effective portion thereof, that provides specific binding of the conjugate to a cell surface receptor, which, can internalize the conjugate or SP portion thereof.
  • a targeting agent can also be one that promotes or facilitates, for example, affinity isolation or purification of the conjugate; attachment of the conjugate to a surface; or detection of the conjugate or complexes containing the conjugate.
  • an antibody conjugate refers to a conjugate in which the targeting agent is an antibody.
  • derivative or analog of a molecule refers to a portion derived from or a modified version of the molecule.
  • an effective amount of a compound for treating a particular disease is an amount that is sufficient to ameliorate, or in some manner reduce the symptoms associated with the disease.
  • Such amount can be administered as a single dosage or can be administered according to a regimen, whereby it is effective.
  • the amount can cure the disease but, typically, is administered in order to ameliorate the symptoms of the disease. Repeated administration can be required to achieve the desired amelioration of symptoms.
  • equivalent when referring to two sequences of nucleic acids means that the two sequences in question encode the same sequence of amino acids or equivalent proteins.
  • equivalent when equivalent is used in referring to two proteins or peptides, it means that the two proteins or peptides have substantially the same amino acid sequence with only amino acid substitutions (such, as but not limited to, conservative changes such as those set forth in Table 1 , above) that do not substantially alter the activity or function of the protein or peptide.
  • equivalent refers to a property, the property does not need to be present to the same extent (e.g. , two peptides can exhibit different rates of the same type of enzymatic activity), but the activities are usually substantially the same.
  • Complementary when referring to two nucleotide sequences, means that the two sequences of nucleotides are capable of hybridizing, typically with less than 25 %, 1 5 %, 5 % or 0% mismatches between opposed nucleotides. If necessary the percentage of complementarity will be specified. Typically the two molecules are selected such that they will hybridize under conditions of high stringency.
  • an agent that modulates the activity of a protein or expression of a gene or nucleic acid either decreases or increases or otherwise alters the activity of the protein or, in some manner up- or down-regulates or otherwise alters expression of the nucleic acid in a cell.
  • inhibitor of the activity of an SP encompasses any substances that prohibit or decrease production, post-translational modification(s), maturation, or membrane localization of the SP or any substances that interferes with or decreases the proteolytic efficacy of thereof, particularly of a single chain form in an in vitro screening assay.
  • a method for treating or preventing neoplastic disease means that any of the symptoms, such as the tumor, metastasis thereof, the vascularization of the tumors or other parameters by which the disease is characterized are reduced, ameliorated, prevented, placed in a state of remission, or maintained in a state of remission. It also means that the hallmarks of neoplastic disease and metastasis can be eliminated, reduced or prevented by the treatment. Non-limiting examples of the hallmarks include uncontrolled degradation of the basement membrane and proximal extracellular matrix, migration, division, and organization of the endothelial cells into new functioning capillaries, and the persistence of such functioning capillaries.
  • a prodrug is a compound that, upon in vivo administration, is metabolized or otherwise converted to the biologically, pharmaceutically or therapeutically active form of the compound. To produce a prodrug, the pharmaceutically active compound is modified such that the active compound is regenerated by metabolic processes.
  • the prodrug can be designed to alter the metabolic stability or the transport characteristics of a drug, to mask side effects or toxicity, to improve the flavor of a drug or to alter other characteristics or properties of a drug.
  • a drug identified by the screening methods provided herein refers to any compound that is a candidate for use as a therapeutic or as a lead compound for the design of a therapeutic.
  • Such compounds can be small molecules, including small organic molecules, peptides, peptide mimetics, antisense molecules or dsRNA, such as RNAi, antibodies, fragments of antibodies, recombinant antibodies and other such compound which can serve as drug candidate or lead compound.
  • a peptidomimetic is a compound that mimics the conformation and certain stereochemical features of the biologically active form of a particular peptide.
  • peptidomimetics are designed to mimic certain desirable properties of a compound, but not the undesirable properties. such as flexibility, that lead to a loss of a biologically active conformation and bond breakdown.
  • Peptidomimetics may be prepared from biologically active compounds by replacing certain groups or bonds that contribute to the undesirable properties with bioisosteres. Bioisosteres are known to those of skill in the art. For example the methylene bioisostere CH 2 S has been used as an amide replacement in enkephalin analogs (see, e.g., Spatola (1 983) pp.
  • Morphine which can be administered orally, is a compound that is a peptidomimetic of the peptide endorphin.
  • cyclic peptides are included among pepidomimetics.
  • a promoter region or promoter element refers to a segment of DNA or RNA that controls transcription of the DNA or RNA to which it is operatively linked.
  • the promoter region includes specific sequences that are sufficient for RNA polymerase recognition, binding and transcription initiation. This portion of the promoter region is referred to as the promoter.
  • the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of RNA polymerase. These sequences can be cis acting or can be responsive to trans acting factors. Promoters, depending upon the nature of the regulation, can be constitutive or regulated. Exemplary promoters contemplated for use in prokaryotes include the bacteriophage T7 and T3 promoters.
  • a receptor refers to a molecule that has an affinity for a given ligand.
  • Receptors can be naturally-occurring or synthetic molecules.
  • Receptors can also be referred to in the art as anti-ligands.
  • the receptor and anti-ligand are interchangeable.
  • Receptors can be used in their unaltered state or as aggregates with other species.
  • Receptors can be attached, covalently or noncovalently, or in physical contact with, to a binding member, either directly or indirectly via a specific binding substance or linker.
  • receptors include, but are not limited to: antibodies, cell membrane receptors surface receptors and internalizing receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants [such as on viruses, cells, or other materials], drugs, polynucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles.
  • receptors and applications using such receptors include but are not restricted to: a) enzymes: specific transport proteins or enzymes essential to survival of microorganisms, which could serve as targets for antibiotic [ligand] selection; b) antibodies: identification of a ligand-binding site on the antibody molecule that combines with the epitope of an antigen of interest can be investigated; determination of a sequence that mimics an antigenic epitope can lead to the development of vaccines of which the immunogen is based on one or more of such sequences or lead to the development of related diagnostic agents or compounds useful in therapeutic treatments such as for auto-immune diseases c) nucleic acids: identification of ligand, such as protein or RNA, binding sites; d) catalytic polypeptides: polymers, including polypeptides, that are capable of promoting a chemical reaction involving the conversion of one or more reactants to one or more products; such polypeptides generally include a binding site specific for at least one reactant or reaction intermediate and an active functionality proximate to the
  • hormone receptors determination of the ligands that bind with high affinity to a receptor is useful in the development of hormone replacement therapies; for example, identification of ligands that bind to such receptors can lead to the development of drugs to control blood pressure; and f) opiate receptors: determination of ligands that bind to the opiate receptors in the brain is useful in the development of less-addictive replacements for morphine and related drugs.
  • sample refers to anything which can contain an analyte for which an analyte assay is desired.
  • the sample can be a biological sample, such as a biological fluid or a biological tissue.
  • biological fluids include urine, blood, plasma, serum, saliva, semen, stool, sputum, cerebral spinal fluid, tears, mucus, amniotic fluid or the like.
  • Biological tissues are aggregate of cells, usually of a particular kind together with their intercellular substance that form one of the structural materials of a human, animal, plant, bacterial, fungal or viral structure, including connective, epithelium, muscle and nerve tissues. Examples of biological tissues also include organs, tumors, lymph nodes, arteries and individual cell(s).
  • high stringency 0.1 x SSPE, 0.1 % SDS, 65 °C
  • medium stringency 0.2 x SSPE, 0.1 % SDS, 50 °C
  • Hybridizations are carried out in the same solution with the following modifications: 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 ⁇ g/ml salmon sperm DNA, 1 0% (wt/vol) dextran sulfate, and 5-20 X 1 0 6 cpm 32 P-labeled probe is used. Filters are incubated in hybridization mixture for 1 8-20 hours at 40°C, and then washed for 1 .5 hours at 55 °C in a solution containing 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1 % SDS. The wash solution is replaced with fresh solution and incubated an additional 1 .5 hours at 60°C.
  • Filters are blotted dry and exposed for autoradiography. If necessary, filters are washed for a third time at 65-68 °C and reexposed to film.
  • Other conditions of low stringency which can be used are well known in the art (e.g. , as employed for cross-species hybridizations).
  • procedures using conditions of moderate stringency include, for example, but are not limited to, procedures using such conditions of moderate stringency are as follows: Filters containing DNA are pretreated for 6 hours at 55 °C in a solution containing 6X SSC, 5X Denhart's solution, 0.5% SDS and 1 00 ⁇ g/ml denatured salmon sperm DNA. Hybridizations are carried out in the same solution and 5-20 X 1 0 6 cpm 32 P-labeled probe is used. Filters are incubated in hybridization mixture for 1 8-20 hours at 55 °C, and then washed twice for 30 minutes at 60 °C in a solution containing 1 X SSC and 0.1 % SDS.
  • Filters are blotted dry and exposed for autoradiography. Other conditions of moderate stringency which can be used are well-known in the art. Washing of filters is done at 37 °C for 1 hour in a solution containing 2X SSC, 0.1 % SDS.
  • procedures using conditions of high stringency are as follows: Prehybridization of filters containing DNA is carried out for 8 hours to overnight at 65 °C in buffer composed of 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 ⁇ g/ml denatured salmon sperm DNA. Filters are hybridized for 48 hours at 65 °C in prehybridization mixture containing 100 ⁇ g/ml denatured salmon sperm DNA and 5-20 X 1 0 6 cpm of 32 P-labeled probe.
  • substantially identical or homologous or similar varies with the context as understood by those skilled in the relevant art and generally means at least 60% or 70%, preferably means at least 80%, more preferably at least 90%, and most preferably at least 95 % identity.
  • substantially identical to a product means sufficiently similar so that the property of interest is sufficiently unchanged so that the substantially identical product can be used in place of the product.
  • substantially pure means sufficiently homogeneous to appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel electrophoresis and high performance liquid chromatography (HPLC), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the substance.
  • TLC thin layer chromatography
  • HPLC high performance liquid chromatography
  • Methods for purification of the compounds to produce substantially chemically pure compounds are known to those of skill in the art.
  • a substantially chemically pure compound can, however, be a mixture of stereoisomers or isomers. In such instances, further purification might increase the specific activity of the compound.
  • test substance refers to a chemically defined compound (e.g. , organic molecules, inorganic molecules, organic/inorganic molecules, proteins, peptides, nucleic acids, oligonucleotides, lipids, polysaccharides, saccharides, or hybrids among these molecules such as glycoproteins, etc.) or mixtures of compounds (e.g.
  • a therapeutic agent As used herein, the terms a therapeutic agent, therapeutic regimen, radioprotectant, chemotherapeutic mean conventional drugs and drug therapies, including vaccines, which are known to those skilled in the art. Radiotherapeutic agents are well known in the art.
  • treatment means any manner in which the symptoms of a condition, disorder or disease are ameliorated or otherwise beneficially altered. Treatment also encompasses any pharmaceutical use of the compositions herein.
  • vector or plasmid refers to discrete elements that are used to introduce heterologous nucleic acid into cells for either expression or replication thereof. The vectors typically remain episomal, but can be designed to effect integration of a gene or portion thereof into a chromosome of the genome.
  • an expression vector includes vectors capable of expressing DNA that is operatively linked with regulatory sequences, such as promoter regions, that are capable of effecting expression of such DNA fragments.
  • an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA.
  • protein binding sequence refers to a protein or peptide sequence that is capable of specific binding to other protein or peptide sequences generally, to a set of protein or peptide sequences or to a particular protein or peptide sequence.
  • epitope tag refers to a short stretch of amino acid residues corresponding to an epitope to facilitate subsequent biochemical and immunological analysis of the epitope tagged protein or peptide.
  • Epitope tagging is achieved by including the sequence of the epitope tag to the protein-encoding sequence in an appropriate expression vector.
  • Epitope tagged proteins can be affinity purified using highly specific antibodies raised against the tags.
  • metal binding sequence refers to a protein or peptide sequence that is capable of specific binding to metal ions generally, to a set of metal ions or to a particular metal ion.
  • a combination refers to any association between two or among more items.
  • composition refers to a any mixture. It can be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous or any combination thereof.
  • fluid refers to any composition that can flow. Fluids thus encompass compositions that are in the form of semi-solids, pastes, solutions, aqueous mixtures, gels, lotions, creams and other such compositions.
  • a cellular extract refers to a preparation or fraction which is made from a lysed or disrupted cell.
  • an agent is said to be randomly selected when the agent is chosen randomly without considering the specific sequences involved in the association of a protein alone or with its associated substrates, binding partners, etc.
  • An example of randomly selected agents is the use a chemical library or a peptide combinatorial library, or a growth broth of an organism or conditioned medium.
  • an agent is said to be rationally selected or designed when the agent is chosen on a non-random basis which takes into account the sequence of the target site and/or its conformation in connection with the agent's action.
  • Agents can be rationally selected or rationally designed by utilizing the peptide sequences that make up these sites.
  • a rationally selected peptide agent can be a peptide whose amino acid sequence is identical to the ATP or calmodulin binding sites or domains.
  • SPs serine proteases
  • SPs The serine proteases (SPs) are a family of proteins found in mammals and also other species. SPs that share a number of common structural features as described herein. The proteolytic domains share sequence homology including conserved His, Asp, and Ser residues necessary for catalytic activity that are present in conserved motifs. These SPs are synthesized as zymogens, and activated to two chain forms by specific cleavage.
  • the SP family can be target for therapeutic intervention and also can serve as diagnostic markers for tumor initiation, development, growth and/or progression.
  • members of this family are involved in proteolytic processes that are implicated in tumor development, growth and/or progression. This implication is based upon their functions as proteolytic enzymes in extracellular matrix degradation and remodelling and growth and pro-angiogenic factor activation.
  • their levels of expression or level of activation or their apparent activity resulting from substrate levels or alterations in substrates and levels thereof differs in tumor cells and non-tumor cells in the same tissue.
  • protocols and treatments that alter their activity such as their proteolytic activities and roles in signal transduction, and/or their expression, such as by contacting them with a compound that modulates their activity and/or expression, could impact tumor development, growth and/or progression.
  • the level of activation and/or expression can be altered in tumors, such as pancreas, stomach, uterus, lung, colon and cervical cancers, and also breast, prostate or leukemias.
  • the SP thus, can serve as a diagnostic marker for tumors.
  • the SP protein can exhibit altered activity by virtue of a change in activity or expression of a co-factor therefor or a substrate therefor.
  • Detection of the SPs, particularly the protease domains, in body fluids, such as serum, blood, saliva, cerebral spinal fluid, synovial fluid and interstitial fluids, urine, sweat and other such fluids and secretions can serve as a diagnostic tumor marker.
  • detection of higher levels of such polypeptides in a subject compared to a subject known not to have any neoplastic disease or compared to earlier samples from the same subject can be indicative of neoplastic disease in the subject.
  • CVSP1 4 a family member designated CVSP1 4.
  • CVSP14s are serine proteases that are expressed and/or activated in certain tumors; hence their activation or expression can serve as a diagnostic marker for tumor development, growth and/or progression.
  • the CVSP1 4 is also provided for use as a drug target and used in screening assays, including those exemplified herein.
  • the single chain proteolytic domain can function in vitro and, hence is useful in in vitro assays for identifying agents that modulate the activity of members of this family.
  • the two-chain form or the full-length or truncated forms thereof, such as forms in which the signal peptide is removed can also be used in such assays.
  • the CVSP1 4 polypeptide is detectable in a body fluid at a level that differs from its level in body fluids in a subject not having a tumor. In other embodiments, the polypeptide is present in a tumor; and a substrate or cofactor for the polypeptide is expressed at levels that differ from its level of expression in a non-tumor cell in the same type of tissue.
  • CVSP14 Provided are substantially purified CVSP1 4 zymogens, activated two chain forms, single chain protease domains and two chain protease domains. A full-length CVSP14 polypeptide, including the signal sequence, is set forth in SEQ ID Nos. 1 2 and 1 3. The signal sequence can be cleaved upon expression or prior to expression.
  • substantially purified protein including a sequence of amino acids that has at least 60%, 70%, 80%, 90% or about 95%, identity to the CVSP1 4 where the percentage identity is determined using standard algorithms and gap penalties that maximize the percentage identity.
  • a human CVSP14 polypeptide is exemplified, although other mammalia CVSP14 polypeptides are contemplated. Splice variants of the CVSP14, particularly those with a proteolytically active protease domain, are contemplated herein.
  • substantially purified polypeptides that include a protease domain of a CVSP14 polypeptide or a catalytically active portion thereof, but that do not include the entire sequence of amino acids set forth in SEQ ID No. 1 3 are provided.
  • polypeptides that include a sequence of amino acids that has at least 60%, 70%, 80%, 90%, 95% or 1 00% sequence identity to SEQ ID No. 6.
  • substantially purified CVSP14 polypeptides and functional domains thereof including catalytically active domains and portions, that have at least about 60%, 70%, 80%, 90% or about 95% sequence identity with a protease domain that includes the sequence of amino acids set forth in SEQ ID No. 6 or a catalytically active portion thereof or with a protease that includes the sequence of amino acids set forth in SEQ ID No. 1 3 and domains thereof.
  • the protease activation cleavage site is between R 55 and l 56 ; the catalytic triad based upon homology is H 9 ⁇ , D 146 , S 244 ; there is a potential N-glycosylation site at N 108 VT; Cys pairing is predicted to be between C 37 -C 166 , which links the protease domain to the remainder of the polypeptide), C 180 -C 250 , C 21 1 -C 229 and C 240 -C 269 .
  • C 166 is a free Cys in the protease domain, which also can be provided as a two chain molecule. It is shown herein, however, that the single chain form is proteolytically active.
  • polypeptides that are encoded by the nucleic acid molecules provided herein. Included among those polypeptides are the CVSP1 4 protease domain or a polypeptide with amino acid changes such that the specificity and protease activity is not eliminated and is retained at least 1 0%, 20%, 30%, 40%, 50% , 60%, 70% , 80%, 90% or remains substantially unchanged.
  • a substantially purified mammalian SP protein is provided that includes a serine protease catalytic domain and can additionally include other domains.
  • the CVSP1 4 can form homodimers and can also form heterodimers with some other protein, such as a membrane-bound protein.
  • the domains, fragments, derivatives or analogs of a CVSP14 that are functionally active are capable of exhibiting one or more functional activities associated with the CVSP14 polypeptide, such as serine protease activity, immunogenicity and antigenicity, are provided.
  • Antigenic epitopes that contain at least 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 1 3, 1 4, 1 5, 20, 25, 30, 40, 50, and typically 1 0-1 5 amino acids of the CVSP1 4 polypeptide are provided. These antigenic epitopes are used, for example, to raise antibodies. Antibodies specific for each epitope or combinations thereof and for single and two-chain forms are also provided.
  • CVSP14 polypeptides Full-length CVSP1 4, zymogen and activated forms thereof and CVSP14 protease domains, portions thereof, and muteins and derivatives of such polypeptides are provided.
  • the derivatives are those based on animal CVSP1 4s, including, but are not limited to, rodent, such as mouse and rat; fowl, such as chicken; ruminants, such as goats, cows, deer, sheep; ovine, such as pigs; and humans.
  • rodent such as mouse and rat
  • fowl such as chicken
  • ruminants such as goats, cows, deer, sheep
  • ovine such as pigs
  • CVSP1 4 derivatives can be made by altering their sequences by substitutions, additions or deletions.
  • CVSP1 4 derivatives include, but are not limited to, those containing, as a primary amino acid sequence, all or part of the amino acid sequence of CVSP14, including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change.
  • one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration.
  • Substitutes for an amino acid within the sequence can be selected from other members of the class to which the amino acid belongs.
  • the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.
  • the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
  • the positively charged (basic) amino acids include arginine, lysine and histidine.
  • the negatively charged (acidic) amino acids include aspartic acid and glutamic acid (see, e.g. , Table 1 ).
  • Muteins of the CVSP1 4 or a domain thereof, such as a protease domain, in which up to about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85 %, 90% or 95 % of the amino acids are replaced with another amino acid are provided.
  • muteins retain at least about 10%, 20%, 30%, 40% , 50%, 60%, 70%, 80% or 90% of the protease activity the unmutated protein.
  • Muteins of the protein are also provided in which amino acids are replaced with other amino acids.
  • the muteins are those in which the Cys residues, is/are replaced typically although not necessarily, with a conservative amino acid residues, such as a serine.
  • Such muteins are also provided herein. Muteins in which 1 0%, 20%, 30%, 35%, 40%, 45 %, 50% or more of the amino acids are replaced but the resulting polypeptide retains at least about 10%, 20%, 30% , 35 %, 40%, 45 %, 50%, 60%, 70%, 80%, 90% or 95 % of the catalytic activity as the unmodified form for the same substrate.
  • protease domains Isolated, substantially pure proteases that include the protease domains or catalytically active portions thereof as single chain forms of SPs are provided.
  • the protease domains can be included in a longer protein, and such longer protein is optionally the CVSP1 4 zymogen.
  • isolated substantially pure single polypeptides that contain the protease domain of a CVSP1 4 as a single chain.
  • the CVSP14 provided herein is expressed or activated by or in tumor cells, typically at a level that differs from the level in which they are expressed by the non-tumor cell of the same type.
  • SP is expressed by a prostate or ovarian tumor cell, to be of interest herein with respect to ovarian or prostate cancer, it an expression, extent of activation or activity that is different from that in non-tumor cells.
  • CVSP14 is expressed in lung, colon, prostate, breast, uterine, ovarian and other tumor cells.
  • SP protease domains include the single chain protease domains of
  • CVSP1 4 Provided are the protease domains or proteins that include a portion of an SP that is the protease domain of any SP, particularly a CVSP14.
  • the protein can also include other non-SP sequences of amino acids, but includes the protease domain or a sufficient portion thereof to exhibit catalytic activity in any in vitro assay that assess such protease activity, such as any provided herein.
  • two chain activated forms of the full length protease and also two chain forms of the protease domain are also provided.
  • the substantially purified SP protease is encoded by a nucleic acid that hybridizes to the a nucleic acid molecule containing the protease domain encoded by the nucleotide sequence set forth in SEQ. ID No. 5 under at least moderate, generally high, stringency conditions, such that the protease domain encoding nucleic acid thereof hybridizes along its full length or along at least about 70%, 80% or 90% of the full length.
  • the substantially purified SP protease is a single chain polypeptide that includes substantially the sequence of amino acids set forth in SEQ ID No. 6, or a catalytically active portion thereof.
  • exemplary protease domains include at least a sufficient portion of sequences of amino acids set forth in SEQ ID No. 6 (encoded by nucleotides in SEQ ID No. 5) to exhibit protease activity in an assay provided herein.
  • the signal peptide (amino acids 1 -25 of SEQ ID No. 1 3) is also provided.
  • the mature CVSP1 5 polypeptide with the signal sequence removed is provided.
  • CVSP14 all forms of the CVSP14, including the pro- polypeptide with the signal sequence, the mature polypeptide and catalytically active portions thereof, the protease domains and catalytically active portions thereof, two-chain and single chain forms of any of these proteins are provided herein and can be used in the screening assays and for preparing antibodies specific therefore.
  • the expression, quantity and/or activation of the protein in tumor cells and body fluids can be diagnostic of disease or its absence.
  • nucleic sequences which encode substantially the same amino acid sequence as a CVSP1 4 gene can be used. These include but are not limited to nucleotide sequences comprising all or portions of CVSP1 4 genes that are altered by the substitution of different codons that encode the amino acid residue within the sequence, thus producing a silent change. Also provided are nucleic acid molecules that hybridize to the above- noted sequences of nucleotides encoding CVSP1 4 at least at low stringency, at moderate stringency, and/or at high stringency, and that encode the protease domain and/or the full length protein or other domains of a CVSP14 or a splice variant or allelic variant thereof.
  • nucleic acid molecules include any isolated nucleic fragment that encodes at least one domain of a serine protease, that ( 1 ) contains a sequence of nucleotides that encodes the protease or a functionally active, such as catalytically active, domain thereof, and (2) is selected from among:
  • a sequence of nucleotides that encodes the protease or a domain thereof includes a sequence of nucleotides set forth in SEQ ID Nos. 5 or 1 2;
  • the isolated nucleic acid fragment is DNA, including genomic or cDNA, or is RNA, or can include other components, such as protein nucleic acid.
  • the isolated nucleic acid can include additional components, such as heterologous or native promoters, and other transcriptional and translational regulatory sequences, these genes can be linked to other genes, such as reporter genes or other indicator genes or genes that encode indicators.
  • the CVS14s provided herein are encoded by a nucleic acid that includes sequence encoding a protease domain that exhibits proteolytic activity and that hybridizes to a nucleic acid molecule including the sequence of nucleotides set forth in SEQ ID No. 5, typically under moderate, generally under high stringency, conditions and generally along the full length of the protease domain or along at least about 70%, 80% or 90% of the full length.
  • Splice variants are also provided herein.
  • a nucleic acid that encodes a CVSP designated CVSP14 is provided.
  • the nucleic acid includes the sequence of nucleotides set forth in SEQ ID No. 5 or a portion there of that encodes a catalytically active polypeptide.
  • nucleic acid molecules that hybridize under conditions of at least low stringency, generally moderate stringency, more typically high stringency to the SEQ ID No. 5 or degenerates thereof.
  • the isolated nucleic acid fragment hybridizes to a nucleic acid molecule containing the nucleotide sequence set forth in SEQ ID No: 5 (or degenerates thereof) under high stringency conditions, in one embodiments contains the sequence of nucleotides set forth in SEQ ID Nos. 5 and 6).
  • a full- length CVSP14 is set forth in SEQ ID No. 1 3 and is encoded by SEQ ID No. 1 2 or degenerates thereof.
  • nucleic acid molecules that encode a single chain SP protease that have proteolytic activity in an in vitro proteolysis assay and that have at least 60%, 70%, 80%, 85 %, 90% or 95 % sequence identity with the full length of a protease domain of a CVSP1 4 polypeptide, or that hybridize along their full length or along at least about 70%, 80% or 90% of the full length to a nucleic acids that encode a protease domain, particularly under conditions of moderate, generally high, stringency.
  • the encoded polypeptides contain the protease as a single chain.
  • the isolated nucleic acids can contain least 10 nucleotides, 25 nucleotides, 50 nucleotides, 100 nucleotides, 1 50 nucleotides, or 200 nucleotides or more contiguous nucleotides of a CVSP14-encoding sequence, or a full-length SP coding sequence. In another embodiment, the nucleic acids are smaller than 35, 200 or 500 nucleotides in length. Nucleic acids that hybridize to or are complementary to a CVSP1 4-encoding nucleic acid molecule can be single or double-stranded.
  • nucleic acids are provided that include a sequence complementary to (specifically are the inverse complement of) at least 1 0, 25, 50, 100, or 200 nucleotides or the entire coding region of a CVSP1 4 encoding nucleic acid, particularly the protease domain thereof .
  • CVSP1 4 the full-length protein or a domain or active fragment thereof is also provided.
  • the nucleic acid can be DNA or
  • RNA or PNA or other nucleic acid analogs or can include non-natural nucleotide bases are also provided.
  • isolated nucleic acid molecules that include a sequence of nucleotides complementary to the nucleotide sequence encoding an SP.
  • Probes, primers, antisense oligonucleotides and dsRNA are also provided. fragments thereof or oligonucleotides that can be used as probes or primers and that contain at least about 10, 1 4, 1 6 nucleotides, generally less than 1000 or less than or equal to 1 00, set forth in SEQ ID No.
  • probes and primers contain less than about 500, 1 50, 1 00 nucleotides.
  • Probes and primers derived from the nucleic acid molecules are provided, Such probes and primers contain at least 8, 14, 1 6, 30, 100 or more contiguous nucleotides with identity to contiguous nucleotides of a CVSP1 4.
  • the probes and primers are optionally labelled with a detectable label, such as a radiolabel or a fluorescent tag, or can be mass differentiated for detection by mass spectrometry or other means.
  • RNAi Double-stranded RNA (dsRNA), such as RNAi is also provided.
  • Plasmids, vectors and cells Plasmids and vectors containing the nucleic acid molecules are also provided.
  • Cells containing the vectors, including cells that express the encoded proteins are provided.
  • the cell can be a bacterial cell, a yeast cell, a fungal cell, a plant cell, an insect cell or an animal cell.
  • Methods for producing an SP or single chain.form of the protease domain thereof by, for example, growing the cell under conditions whereby the encoded SP is expressed by the cell, and recovering the expressed protein, are provided herein.
  • CVSP1 4 the full-length zymogens and activated proteins and activated (two chain) protease and single chain protease domains are provided.
  • the CVSP14 polypeptide, and catalytically active portions thereof can be expressed as a secreted protein using the native signal sequence or a heterologous signal.
  • the protein can be expressed as inclusion bodies in the cytoplasm and isolated therefrom. The resulting protein can be treated to refold (see, e.g. , EXAMPLE 1 ). It is shown herein that active protease domain can be produced by expression in inclusion bodies, isolation therefrom and denaturation followed by refolding.
  • Each SP has a characteristic tissue expression profile; the SPs in particular, although not exclusively expressed or activated in tumors, exhibit characteristic tumor tissue expression or activation profiles.
  • SPs can have different activity in a tumor cell from a non-tumor cell by virtue of a change in a substrate or cofactor therefor or other factor that would alter the apparent functional activity of the SP.
  • each can serve as a diagnostic marker for particular tumors, by virtue of a level of activity and/or expression or function in a subject (i.e. a mammal, particularly a human) with neoplastic disease, compared to a subject or subjects that do not have the neoplastic disease.
  • detection of activity (and/or expression) in a particular tissue can be indicative of neoplastic disease.
  • Circulating SPs in body fluids can be indicative of neoplastic disease.
  • Secreted CVSP1 4 or activated CVSP1 4 is indicative of neoplastic disease.
  • they can serve as therapeutic targets, such as by administration of modulators of the activity thereof, or ' , as by administration of a prodrug specifically activated by one of the SPs.
  • the CVSP14 is expressed at high levels in an androgen-independent tumor cell line.
  • the CVSP14 transcript was detected in normal kidney samples.
  • CVSP1 4 signals were diminished in all the matched kidney tumor samples.
  • Weak signals were detected in all three pairs of prostate normal/tumor cDNA samples.
  • Weak signals were also detected in 3 of 9 normal breast samples.
  • a weak signal was also detected in one of the 7 uterine tumors, but not in their normal tissue counterparts.
  • Weak signals were also detected in two of the three normal lung tissue samples, but not in their matched tumor samples.
  • Very weak signals can be seen in cDNA samples from various tumor cell lines, including HeLa cells, Burkitt's lymphoma Daudi cells, chronic myelogenous leukemia K562, promyelocytic leukemia HL-60 cells, melanoma G361 cells, lung carcinoma A549 cells, lymphoblastic leukemia MOLT-4 and colorectal adenocarcinoma SW480 cells.
  • the SP polpeptides can be obtained by methods well known in the art for protein purification and recombinant protein expression. Any method known to those of skill in the art for identification of nucleic acids that encode desired genes can be used. Any method available in the art can be used to obtain a full length (i.e. , encompassing the entire coding region) cDNA or genomic DNA clone encoding an SP protein. In particular, the polymerase chain reaction (PCR) can be used to amplify a sequence identified as being differentially expressed or encoding proteins activated at different levels in tumor and non-tumor cells or tissues, e.g.
  • PCR polymerase chain reaction
  • nucleic acids encoding a CVSP14 polypeptide " (SEQ. NOs: 5, 6, 1 2 and 1 3), in a genomic or cDNA library.
  • Oligonucleotide primers that hybridize to sequences at the 3 ' and 5 ' termini of the identified sequences can be used as primers to amplify by PCR sequences from a nucleic acid sample (RNA or DNA), typically a cDNA library, from an appropriate source (e.g. , tumor or cancer tissue).
  • PCR can be carried out, e.g. , by use of a Perkin-Elmer Cetus thermal cycler and Taq polymerase (Gene Amp " ) .
  • the DNA being amplified can include mRNA or cDNA or genomic DNA from any eukaryotic species.
  • an open reading frame encoding the SP protein gene protein product can be determined by any method well known in the art for determining open reading frames, for example, using publicly available computer programs for nucleotide sequence analysis. Once an open reading frame is defined, it is routine to determine the amino acid sequence of the protein encoded by the open reading frame. In this way, the nucleotide sequences of the entire SP protein genes as well as the amino acid sequences of SP protein proteins and analogs can be identified.
  • Any eukaryotic cell potentially can serve as the nucleic acid source for the molecular cloning of the SP protein gene.
  • the nucleic acids can be isolated from vertebrate, mammalian, human, porcine, bovine, feline, avian, equine, canine, as well as additional primate sources, insects, plants, etc.
  • the DNA can be obtained by standard procedures known in the art from cloned DNA (e.g.
  • Clones derived from genomic DNA can contain regulatory and intron DNA regions in addition to coding regions; clones derived from cDNA contains only exon sequences.
  • the gene should be molecularly cloned into a suitable vector for propagation of the gene.
  • DNA fragments are generated, some of which encode the desired gene.
  • the DNA can be cleaved at specific sites using various restriction enzymes.
  • the linear DNA fragments can then be separated according to size by standard techniques, including but not limited to, agarose and polyacrylamide gel electrophoresis and column chromatography.
  • identification of the specific DNA fragment containing the desired gene can be accomplished in a number of ways.
  • a portion of the SP protein (of any species) gene e.g. , a PCR amplification product obtained as described above or an oligonucleotide having a sequence of a portion of the known nucleotide sequence
  • its specific RNA or a fragment thereof be purified and labeled
  • the generated DNA fragments can be screened by nucleic acid hybridization to the labeled probe (Benton and Davis, Science 736: 1 80 (1 977); Grunstein and Hogness, Proc. Natl. Acad. Sci. U.S.A. 72:3961 ( 1 975)).
  • DNA fragments with substantial homology to the probe hybridize. It is also possible to identify the appropriate fragment by restriction enzyme digestion(s) and comparison of fragment sizes with those expected according to a known restriction map if such is available or by DNA sequence analysis and comparison to the known nucleotide sequence of SP protein. Further selection can be carried out on the basis of the properties of the gene. Alternatively, the presence of the gene can be detected by assays based on the physical, chemical, or immunological properties of its expressed product. For example, cDNA clones, or DNA clones which hybrid-select the proper mRNA, can be selected which produce a protein that, e.g.
  • the protein has similar or identical electrophoretic migration, isoelectric focusing behavior, proteolytic digestion maps, antigenic properties, serine protease activity. If an anti-SP protein antibody is available, the protein can be identified by binding of labeled antibody to the putatively SP protein synthesizing clones, in an ELISA (enzyme- linked immunosorbent assay)-type procedure.
  • ELISA enzyme- linked immunosorbent assay
  • Alternatives to isolating the CVSP14 polypeptide genomic DNA include, but are not limited to, chemically synthesizing the gene sequence from a known sequence or making cDNA to the mRNA that encodes the SP protein.
  • RNA for cDNA cloning of the SP protein gene can be isolated from cells expressing the protein. The identified and isolated nucleic acids can then be inserted into an appropriate cloning vector.
  • vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used.
  • Such vectors include, but are not limited to, bacteriophages such as lambda derivatives, or plasmids such as pBR322 or pUC plasmid derivatives or the Bluescript vector (Stratagene, La Jolla, CA).
  • the insertion into a cloning vector can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini. If the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules can be enzymatically modified.
  • any site desired can be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers can comprise specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences.
  • the cleaved vector and SP protein gene can be modified by homopolymeric tailing.
  • Recombinant molecules can be introduced into host cells via, for example, transformation, transfection, infection, electroporation and sonorporation, so that many copies of the gene sequence are generated. In specific embodiments, transformation of host cells with recombinant
  • DNA molecules that incorporate the isolated SP protein gene, cDNA, or synthesized DNA sequence enables generation of multiple copies of the gene.
  • the gene can be obtained in large quantities by growing transformants, isolating the recombinant DNA molecules from the transformants and, when necessary, retrieving the inserted gene from the isolated recombinant DNA.
  • the nucleic acid containing all or a portion of the nucleotide sequence encoding the SP protein can be inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein coding sequence.
  • an appropriate expression vector i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein coding sequence.
  • the necessary transcriptional and translational signals also can be supplied by the native promoter for SP genes, and/or their flanking regions.
  • vectors that contain nucleic acid encoding the SPs.
  • Cells containing the vectors are also provided.
  • the cells include eukaryotic and prokaryotic cells, and the vectors are any suitable for use therein.
  • Prokaryotic and eukaryotic cells including endothelial cells, containing the vectors are provided.
  • Such cells include bacterial cells, yeast cells, fungal cells, plant cells, insect cells and animal cells.
  • the cells are used to produce an SP protein or protease domain thereof by growing the above-described cells under conditions whereby the encoded SP protein or protease domain of the SP protein is expressed by the cell, and recovering the expressed protease domain protein.
  • the protease domain can be secreted into the medium.
  • the vectors include a sequence of nucleotides that encodes a polypeptide that has protease activity and contains all or a portion of only the protease domain, or multiple copies thereof, of an SP protein are provided. Also provided are vectors that comprise a sequence of nucleotides that encodes the protease domain and additional portions of an SP protein up to and including a full length SP protein, as well as multiple copies thereof, are also provided.
  • the vectors can selected for expression of the SP protein or protease domain thereof in the cell or such that the SP protein is expressed as a secreted protein. Alternatively, the vectors can include signals necessary for secretion of encoded proteins.
  • the protease domain is expressed the nucleic acid is linked to nucleic acid encoding a secretion signal, such as the Saccharomyces cerevisiae ⁇ mating factor signal sequence or a portion thereof, or the native signal sequence.
  • a variety of host-vector systems can be used to express the protein coding sequence. These include but are not limited to mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA.
  • the expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system used, any one of a number of suitable transcription and translation elements can be used.
  • any methods known to those of skill in the art for the insertion of DNA fragments into a vector can be used to construct expression vectors containing a chimeric gene containing of appropriate transcriptional/translational control signals and protein coding sequences. These methods can include in vitro recombinant DNA and synthetic techniques and in vivo recombinants (genetic recombination). Expression of nucleic acid sequences encoding SP protein, or domains, derivatives, fragments or homologs thereof, can be regulated by a second nucleic acid sequence so that the genes or fragments thereof are expressed in a host transformed with the recombinant DNA molecule(s). For example, expression of the proteins can be controlled by any promoter/enhancer known in the art. In a specific embodiment, the promoter is not native to the genes for SP protein. Promoters which can be used include but are not limited to the SV40 early promoter (Bernoist and Chambon, Nature 230:304-310
  • promoter elements from yeast and other fungi such as the Gal4 promoter, the alcohol dehydrogenase promoter, the phosphoglycerol kinase promoter, the alkaline phosphatase promoter, and the following animal transcriptional control regions that exhibit tissue specificity and have been used in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., Cell 35:639-646 (1984); Ornitz et al., Cold Spring Harbor Symp.
  • mice mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., Cell 45:485-495 (1986)), albumin gene control region which is active in liver (Pinckert et al., Genes and Devel. 7:268- 276 (1987)), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., Mol. Cell. Biol.5:1639-1648 (1985); Hammer etal., Science 235:53-581987)), alpha-1 antitrypsin gene control region which is active in liver (Kelsey etal., Genes and Devel.
  • beta globin gene control region which is active in myeloid cells (Mogram et al., Nature 375:338-340 (1985); Kollias et al., Cell 46:89-94 (1986)), myelin basic protein gene control region which is active in oligodendrocyte cells of the brain (Readhead et al., Cell 43:703-712 (1987)), myosin light chain-2 gene control region which is active in skeletal muscle (Sani, Nature 374:283-286 (1985)), and gonadotrophic releasing hormone gene control region which is active in gonadotrophs of the hypothalamus (Mason etal., Science 234:1372-1378 (1986)).
  • a vector in a specific embodiment, contains a promoter operably linked to nucleic acids encoding an SP protein, or a domain, fragment, derivative or homolog, thereof, one or more origins of replication, and optionally, one or more selectable markers (e.g., an antibiotic resistance gene).
  • Expression vectors containing the coding sequences, or portions thereof, of an SP protein is made, for example, by subcloning the coding portions into the EcoRI restriction site of each of the three pGEX vectors (glutathione S-transferase expression vectors (Smith and Johnson, Gene 7:31-40 (1988)). This allows for the expression of products in the correct reading frame.
  • Vectors and systems for expression of the protease domains of the SP proteins include the well known Pichia vectors (available, for example, from Invitrogen, San Diego, CA), particularly those designed for secretion of the encoded proteins.
  • Pichia vectors available, for example, from Invitrogen, San Diego, CA
  • One exemplary vector is described in the EXAMPLES.
  • Plasmids for transformation of E. coli cells include, for example, the pET expression vectors (see, U.S patent 4,952,496; available from NOVAGEN, Madison, WI; see, also literature published by Novagen describing the system).
  • Such plasmids include pET 1 1 a, which contains the T7lac promoter, T7 terminator, the inducible E. coli lac operator, and the lac repressor gene; pET 1 2a-c, which contains the T7 promoter, T7 terminator, and the E.
  • coli ompT secretion signal and pET 1 5b and pET1 9b (NOVAGEN, Madison, WI), which contain a His-TagTM leader sequence for use in purification with a His column and a thrombin cleavage site that permits cleavage following purification over the column; the T7-lac promoter region and the T7 terminator.
  • the vectors are introduced into host cells, such as Pichia cells and bacterial cells, such as E. coli, and the proteins expressed therein.
  • Pichia strains which are known and readily available, include, for example, GS1 1 5.
  • Bacterial hosts can contain chromosomal copies of DNA encoding T7 RNA polymerase operably linked to an inducible promoter, such as the lacUV promoter (see, U.S. Patent No. 4,952,496).
  • Such hosts include, but are not limited to, the lysogenic E. coli strain BL2 KDE3). Expression and production of proteins
  • the SP domains, derivatives and analogs can be produced by various methods known in the art. For example, once a recombinant cell expressing an SP protein, or a domain, fragment or derivative thereof, is identified, the individual gene product can be isolated and analyzed. This is achieved by assays based on the physical and/or functional properties of the protein, including, but not limited to, radioactive labeling of the product followed by analysis by gel electrophoresis, immunoassay, cross-linking to marker-labeled product.
  • CVSP14 polypeptides can be isolated and purified by standard methods known in the art (either from natural sources or recombinant host cells expressing the complexes or proteins), including but not restricted to column chromatography (e.g. , ion exchange, affinity, gel exclusion, reversed-phase high pressure, fast protein liquid, etc.), differential centrifugation, differential solubility, or by any other standard technique used for the purification of proteins. Functional properties can be evaluated using any suitable assay known in the art. Alternatively, once an SP protein or its domain or derivative is identified, the amino acid sequence of the protein can be deduced from the nucleotide sequence of the gene which encodes it.
  • the protein or its domain or derivative can be synthesized by standard chemical methods known in the art (e.g. see Hunkapiller et al, Nature 370: 1 05-1 1 1 ( 1 984)). Manipulations of SP protein sequences can be made at the protein level.
  • SP protein proteins, domains thereof, derivatives or analogs or fragments thereof which are differentially modified during or after translation, e.g. , by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications can be carried out by known techniques, including but not limited to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH 4 , acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, etc.
  • domains, analogs and derivatives of an SP protein can be chemically synthesized.
  • a peptide corresponding to a portion of an SP protein, which includes the desired domain or which mediates the desired activity in vitro can be synthesized by use of a peptide synthesizer.
  • nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the SP protein sequence.
  • Non-classical amino acids include but are not limited to the D-isomers of the common amino acids, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-aminobutyric acid, e-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionoic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, ⁇ -alanine, fluoro-amino acids, designer amino acids such as ⁇ -methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).
  • the amino acid sequence of the SP protein isolated from the natural source can be determined from analysis of the DNA sequence, or alternatively, by direct sequencing of the isolated protein. Such analysis can be performed by manual sequencing or through use of an automated amino acid sequenator.
  • the protease domain of the CVSP1 4 it was found to be advantageous to express the protein intracellularly without a signal sequence, which results in accumulation or formation of inclusion bodies containing protease domain.
  • the inclusion bodies are isolated, denatured, solublized and refolded protease domain, which is then activated by cleavage at the Rl site (see, e.g. , EXAMPLES). Modifications A variety of modification of the SP proteins and domains are contemplated herein.
  • An SP-encoding nucleic acid molecule be modified by any of numerous strategies known in the art (Sambrook et al. ( 1 989) Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory, Cold
  • the SP-encoding nucleic acid molecules can be mutated in vitro or in vivo, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy pre-existing ones, to facilitate further in vitro modification.
  • muteins with primary sequence alterations such as replacements of Cys residues and elimination of glycosylation sites are contemplated.
  • Such mutations can be effected by any technique for mutagenesis known in the art, including, but not limited to, chemical mutagenesis and in vitro site-directed mutagenesis (Hutchinson et al., J. Biol. Chem.
  • an SP protein or domain thereof is modified to include a fluorescent label.
  • the SP protein is modified to have a heterofunctional reagent, such heterofunctional reagents can be used to crosslink the members of the complex.
  • the SP proteins can be isolated and purified by standard methods known in the art (either from natural sources or recombinant host cells expressing the complexes or proteins), including but not restricted to column chromatography (e.g.
  • the single chain protease domains can be used in a variety of methods to identify compounds that modulate the activity thereof. For SPs that exhibit higher activity or expression in tumor cells, compounds that inhibit the proteolytic activity are of particular interest. For any SPs that are active at lower levels in tumor cells, compounds or agents that enhance the activity are potentially of interest. In all instances the identified compounds include agents that are candidate cancer treatments.
  • assays are exemplified and described herein. It is understood that the protease domains can be used in other assays. It is shown here, however, that the single chain protease domains exhibit catalytic activity. As such they are ideal for in vitro screening assays. They can also be used in binding assays.
  • CVSP14 full length zymogens, activated enzymes, single and two chain protease domains are contemplated for use in any screening assay known to those of skill in the art, including those provided herein.
  • proteolytic assays is intended to apply to use of a single chain protease domain or a catalytically active portion thereof of any SP, including a CVSP1 4.
  • Other assays, such as binding assays are provided herein, particularly for use with a CVSP14, including any variants, such as splice variants thereof.
  • Methods for identifying a modulator of the catalytic activity of an SP are provided herein.
  • the methods can be practiced by: a) contacting the
  • the control can be the activity of the CVSP14 assessed by contacting a CVSP1 4, including a full-length zymogen or activated form, and particularly a single-chain domain thereof, particularly a single-chain domain thereof, with a substrate of the CVSP14, and detecting the proteolysis of the substrate, whereby the activity of the CVSP14 is assessed.
  • the results in the presence and absence of the test compounds are compared. A difference in the activity indicates that the test substance modulates the activity of the CVSP1 4.
  • Activators of activation are also contemplated; such assays are discussed below.
  • a plurality of the test substances are screened simultaneously in the above screening method.
  • the CVSP1 4 is isolated from a target cell as a means for then identifying agents that are potentially specific for the target cell.
  • a test substance is a therapeutic compound, and whereby a difference of the CVSP14 activity measured in the presence and in the absence of the test substance indicates that the target cell responds to the therapeutic compound.
  • One method includes the steps of (a) contacting the CVSP14 polypeptide or protease domain thereof with one or a plurality of test compounds under conditions conducive to interaction between the ligand and the compounds; and (b) identifying one or more compounds in the plurality that specifically binds to the ligand.
  • Another method provided herein includes the steps of a) contacting a CVSP1 4 polypeptide or protease domain thereof with a substrate of the CVSP1 4 polypeptide, and detecting the proteolysis of the substrate, whereby the activity of the CVSP14 polypeptide is assessed; b) contacting the CVSP14 polypeptide with a substrate of the CVSP1 4 polypeptide in the presence of a test substance, and detecting the proteolysis of the substrate, whereby the activity of the CVSP1 4 polypeptide is assessed; and c) comparing the activity of the CVSP14 polypeptide assessed in steps a) and b), whereby the activity measured in step a) differs from the activity measured in step b) indicates that the test substance modulates the activity of the CVSP1 4 polypeptide.
  • a plurality of the test substances are screened simultaneously.
  • the combinations include a CVSP1 4 polypeptide and a substrate of the CVSP1 4 polypeptide to be assayed; and, optionally reagents for detecting proteolysis of the substrate.
  • the substrates which are can be chromogenic or fluorgenic molecules, including proteins, subject to proteolysis by a particular CVSP1 4 polypeptide, can be identified empirically by testing the ability of the CVSP14 polypeptide to cleave the test substrate. Substrates that are cleaved most effectively (i.e., at the lowest concentrations and/or fastest rate or under desirable conditions), are identified.
  • kits containing the above-described combination.
  • the kit optionally includes instructions for identifying a modulator of the activity of a CVSP14 polypeptide. Any CVSP14 polypeptide is contemplated as target for identifying modulators of the activity thereof. 2. Binding assays
  • the assays are designed to identify agents that bind to the zymogen form, the single chain isolated protease domain (or a protein, other than a CVSP1 4 polypeptide, that contains the protease domain of a CVSP14 polypeptide), and to the activated form, including the activated form derived from the full length zymogen or from an extended protease domain.
  • the identified compounds are candidates or leads for identification of compounds for treatments of tumors and other disorders and diseases involving aberrant angiogenesis.
  • the CVSP14 polypeptides used in the methods include any CVSP14 polypeptide as defined herein, including the CVSP1 4 single chain protease domain or proteolytically active portion thereof.
  • a variety of methods are provided herein. These methods can be performed in solution or in solid phase reactions in which the CVSP1 4 polypeptide(s) or protease domain(s) thereof are linked, either directly or indirectly via a linker, to a solid support. Screening assays are described in the Examples, and these assays have been used to identify candidate compounds. For purposes herein, all binding assays described above are provided for CVSP1 4.
  • Methods for identifying an agent, such as a compound, that specifically binds to a CVSP1 4 single chain protease domain, a zymogen or full-length activated CVSP14 or two chain protease domain thereof are provided herein.
  • the method can be practiced by (a) contacting the CVSP1 4 with one or a plurality of test agents under conditions conducive to binding between the CVSP1 4 and an agent; and (b) identifying one or more agents within the plurality that specifically binds to the CVSP14.
  • the CVSP14 polypeptide is mixed with a potential binding partner or an extract or fraction of a cell under conditions that allow the association of potential binding partners with the polypeptide.
  • peptides, polypeptides, proteins or other molecules that have become associated with a CVSP14 are separated from the mixture.
  • the binding partner that bound to the CVSP1 4 can then be removed and further analyzed.
  • the entire protein for instance the entire disclosed protein of SEQ ID Nos. 6 can be used.
  • a fragment of the protein can be used.
  • a variety of methods can be used to obtain cell extracts or body fluids, such as blood, serum, urine, sweat, synovial fluid, CSF and other such fluids.
  • cells can be disrupted using either physical or chemical disruption methods.
  • physical disruption methods include, but are not limited to, sonication and mechanical shearing.
  • chemical lysis methods include, but are not limited to, detergent lysis and enzyme lysis.
  • a skilled artisan can readily adapt methods for preparing cellular extracts in order to obtain extracts for use in the present methods.
  • the extract is mixed with the CVSP1 4 under conditions in which association of the protein with the binding partner can occur.
  • conditions can be used, including conditions that resemble conditions found in the cytoplasm of a human cell.
  • Features such as osmolarity, pH, temperature, and the concentration of cellular extract used, can be varied to optimize the association of the protein with the binding partner.
  • methods for isolation of molecules of interest from body fluids are known.
  • the bound complex is separated from the mixture.
  • a variety of techniques can be used to separate the mixture. For example, antibodies specific to a CVSP14 can be used to immunoprecipitate the binding partner complex. Alternatively, standard chemical separation techniques such as chromatography and density/sediment centrifugation can be used.
  • the binding partner can be dissociated from the complex using conventional methods. For example, dissociation can be accomplished by altering the salt concentration or pH of the mixture.
  • the CVSP14 can be immobilized on a solid support.
  • the protein can be attached to a nitrocellulose matrix or acrylic beads. Attachment of the protein or a fragment thereof to a solid support aids in separating peptide/binding partner pairs from other constituents found in the extract.
  • the identified binding partners can be either a single protein or a complex made up of two or more proteins.
  • the nucleic acid molecules encoding the single chain proteases can be used in a yeast two-hybrid system.
  • the yeast two-hybrid system has been used to identify other protein partner pairs and can readily be adapted to employ the nucleic acid molecules herein described.
  • Another in vitro binding assay particularly for a CVSP1 4, uses a mixture of a polypeptide that contains at least the catalytic domain of one of these proteins and one or more candidate binding targets or substrates. After incubating the mixture under appropriate conditions, the ability of the CVSP1 4 or a polypeptide fragment thereof containing the catalytic domain to bind to or interact with the candidate substrate is assessed.
  • one of the components includes or is coupled to a detectable label.
  • the label can provide for direct detection, such as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc.
  • direct detection such as radioactivity, luminescence, optical or electron density, etc.
  • indirect detection such as an epitope tag, an enzyme, etc.
  • a variety of methods can be employed to detect the label depending on the nature of the label and other assay components.
  • the label can be detected bound to the solid substrate or a portion of the bound complex containing the label can be separated from the solid substrate, and the label thereafter detected.
  • CVSPs such as CVSP1 4
  • Assays for assessing signal transduction are well known to those of skill in the art, and can be adapted for use with the CVSP1 4 polypeptide.
  • Assays for identifying agents that affect or alter signal transduction mediated directly or indirectly, such as via activation of a pro-growth factor, by a CVSP1 4, particularly the full length or a sufficient portion to anchor the extracellular domain or a functional portion thereof of a CVSP on the surface of a cell are provided.
  • Such assays include, for example, transcription based assays in which modulation of a transduced signal is assessed by detecting an effect on an expression from a reporter gene (see, e.g. , U.S. Patent No. 5,436, 1 28).
  • Another embodiment provides methods for identifying agents that modulate the expression of a nucleic acid encoding a CVSP14.
  • Such assays use any available means of monitoring for changes in the expression level of the nucleic acids encoding a CVSP14.
  • cell lines that contain reporter gene fusions between the open reading frame of CVSP1 4 or a domain thereof, particularly the protease domain and any assayable fusion partner can be prepared.
  • Numerous assayable fusion partners are known and readily available including the firefly luciferase gene and the gene encoding chloramphenicol acetyltransferase (Alam et al..
  • Probes to detect differences in RNA expression levels between cells exposed to the agent and control cells can be prepared from the nucleic acids. It is typical, but not necessary, to design probes which hybridize only with target nucleic acids under conditions of high stringency. Only highly complementary nucleic acid hybrids form under conditions of high stringency. Accordingly, the stringency of the assay conditions determines the amount of complementarity which should exist between two nucleic acid strands in order to form a hybrid. Stringency should be chosen to maximize the difference in stability between the probe:target hybrid and potential probe:non-target hybrids.
  • Probes can be designed from the nucleic acids through methods known in the art. For instance, the G + C content of the probe and the probe length can affect probe binding to its target sequence. Methods to optimize probe specificity are commonly available (see, e.g. , Sambrook et al. (1 989)
  • Hybridization conditions are modified using known methods (see, e.g. , Sambrook et al. ( 1 989) MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed. Cold Spring Harbor Laboratory Press); and Ausubel et al. (1 995) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Co., NY), as required for each probe.
  • Hybridization of total cellular RNA or RNA enriched for polyA RNA can be accomplished in any available format.
  • total cellular RNA or RNA enriched for polyA RNA can be affixed to a solid support, and the solid support exposed to at least one probe comprising at least one, or part of one of the nucleic acid molecules under conditions in which the probe specifically hybridizes.
  • nucleic acid fragments comprising at least one, or part of one of the sequences can be affixed to a solid support, such as a porous glass wafer. The glass wafer can then be exposed to total cellular RNA or polyA RNA from a sample under conditions in which the affixed sequences specifically hybridize.
  • Such glass wafers and hybridization methods are widely available, for example, those disclosed by Beattie (WO 95/1 1 755).
  • agents which up or down regulate the expression of a nucleic acid encoding the CVSP1 4 polypeptide are identified.
  • the relative amounts of a protein between a cell population that has been exposed to the agent to be tested compared to an un-exposed control cell population can be assayed (e.g., a prostate cancer cell line, a lung cancer cell line, a colon cancer cell line or a breast cancer cell line).
  • probes such as specific antibodies, are used to monitor the differential expression or level of activity of the protein in the different cell populations or body fluiids.
  • Cell lines or populations or body fluids are exposed to the agent to be tested under appropriate conditions and time.
  • Cellular lysates or body fluids can be prepared from the exposed cell line or population and a control, unexposed cell line or population or unexposed body fluid. The cellular lysates or body fluids are then analyzed with the probe.
  • N- and C- terminal fragments of the CVSP1 4 can be expressed in bacteria and used to search for proteins which bind to these fragments.
  • Fusion proteins such as His-tag or GST fusion to the N- or C- terminal regions of the CVSP14 can be prepared for use as a substrate. These fusion proteins can be coupled to, for example, Glutathione-Sepharose beads and then probed with cell lysates or body fluids. Prior to lysis, the cells or body fluids can be treated with a candidate agent which can modulate a CVSP14 or proteins that interact with domains thereon. Lysate proteins binding to the fusion proteins can be resolved by SDS-PAGE, isolated and identified by protein sequencing or mass spectroscopy, as is known in the art.
  • Antibody probes are prepared by immunizing suitable mammalian hosts in appropriate immunization protocols using the peptides, polypeptides or proteins if they are of sufficient length (e.g., 4, 5, 6, 7, 8, 9, 1 0, 1 1 , 1 2, 13, 1 4, 1 5, 20, 25, 30, 35, 40 or more consecutive amino acids the CVSP1 4 polypeptide or if required to enhance immunogenicity, conjugated to suitable carriers.
  • suitable carriers such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), or other carrier proteins are well known in the art.
  • direct conjugation using, for example, carbodiimide reagents can be effective; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, can be desirable to provide accessibility to the hapten.
  • Hapten peptides can be extended at either the amino or carboxy terminus with a Cys residue or interspersed with cysteine residues, for example, to facilitate linking to a carrier.
  • Administration of the immunogens is conducted generally by injection over a suitable time period and with use of suitable adjuvants, as is generally understood in the art. During the immunization schedule, titers of antibodies are taken to determine adequacy of antibody formation.
  • Anti-peptide antibodies can be generated using synthetic peptides corresponding to, for example, the carboxy terminal amino acids of the CVSP14. Synthetic peptides can be as small as 1 -3 amino acids in length, generally at least 4 or more amino acid residues long. The peptides can be coupled to KLH using standard methods and can be immunized into animals, such as rabbits or ungulate. Polyclonal antibodies can then be purified, for example using Actigel beads containing the covalently bound peptide. While the polyclonal antisera produced in this way can be satisfactory for some applications, for pharmaceutical compositions, use of monoclonal preparations are generally used.
  • Immortalized cell lines which secrete the desired monoclonal antibodies can be prepared using the standard method of Kohler et al., (Nature 256: 495-7 ( 1 975)) or modifications which effect immortalization of lymphocytes or spleen cells, as is generally known.
  • the immortalized cell lines secreting the desired antibodies are screened by immunoassay in which the antigen is the peptide hapten, polypeptide or protein.
  • the cells can be cultured either in vitro or by production in vivo via ascites fluid.
  • the zymogen or two-chain form of the CVSP14 can be used to make monoclonal antibodies that recognize conformation epitopes.
  • the desired monoclonal antibodies are then recovered from the culture supernatant or from the ascites supernatant. Fragments of the monoclonals or the polyclonal antisera which contain the immunologically significant portion can be used as antagonists, as well as the intact antibodies.
  • Use of immunologically reactive fragments, such as the Fab, Fab', of F(ab') 2 fragments are often used, especially in a therapeutic context, as these fragments are generally less immunogenic than the whole immunoglobulin.
  • the antibodies or fragments can also be produced. Regions that bind specifically to the desired regions of receptor also can be produced in the context of chimeras with multiple species origin.
  • Agents that are assayed in the above method can be randomly selected or rationally selected or designed.
  • the agents can be, as examples, peptides, small molecules, and carbohydrates. A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents.
  • the peptide agents can be prepared using standard solid phase (or solution phase) peptide synthesis methods, as is known in the art.
  • the DNA encoding these peptides can be synthesized using commercially available oligonucleotide synthesis instrumentation and produced recombinantly using standard recombinant production systems. The production using solid phase peptide synthesis is necessitated if non-gene-encoded amino acids are to be included.
  • CVSP1 4 are provided.
  • the methods include phage display and other methods for assessing alterations in the activity of a CVSP1 4.
  • Such methods or assays can use any means of monitoring or detecting the desired activity.
  • a variety of formats and detection protocols are known for performing screening assays.
  • CVSP1 4 polypeptide activities The following includes a discussion of exemplary protocols.
  • the assay can be conducted where a single CVSP1 4 polypeptide is screened, and/or a single test substance is screened in one assay, the assay typically is conducted in a high throughput screening mode, i.e. , a plurality of the SP proteins are screened against and/or a plurality of the test substances are screened simultaneously (See generally, High Throughput Screening: The Discovery of Bioactive Substances (Devlin, Ed.) Marcel Dekker, 1 997; Sittampalam et al., Curr. Opin. Chem. Biol. , 7 :384-91 ( 1 997); and Silverman et al., Curr. Opin. Chem. Biol. , 2:397-403 (1 998)).
  • the assay can be conducted in a multi-well (e.g. , 24-, 48-, 96-, 384-, 1 536-well or higher density), chip or array format.
  • High-throughput screening is the process of testing a large number of diverse chemical structures against disease targets to identify "hits" (Sittampalam et al., Curr. Opin. Chem. Biol. , 7 :384-91 ( 1 997)).
  • Current state-of- the-art HTS operations are highly automated and computerized to handle sample preparation, assay procedures and the subsequent processing of large volumes of data.
  • Detection technologies employed in high-throughput screens depend on the type of biochemical pathway being investigated (Sittampalam et al., Curr. Opin. Chem. Biol. , 7 :384-91 ( 1 997)). These methods include, radiochemical methods, such as the scintillation proximity assays (SPA), which can be adapted to a variety of enzyme assays (Lerner et al., J. Biomol. Screening, 7 : 1 35-1 43 ( 1 996); Baker et al., Anal. Biochem. , 239:20-24 ( 1 996); Baum et al., Anal. Biochem. , 237: 1 29-1 34 ( 1 996); and Sullivan et al., J.
  • SPA scintillation proximity assays
  • Biomol. Screening 2 1 9- 23 ( 1 997)
  • protein-protein interaction assays Beckunwalder et al., J. Biomol. Screening 7 :23-26 (1 996); Sonatore et al., Anal. Biochem. 240:289-297 ( 1 996); and Chen et al., J. Biol. Chem. 277 :25308-2531 5 (1 996)
  • non-isotopic detection methods including but are not limited to, colorimetric and luminescence detection methods, resonance energy transfer (RET) methods, time-resolved fluorescence (HTRF) methods, cell-based fluorescence assays, such as fluorescence resonance energy transfer (FRET) procedures (see, e.g.
  • Test compounds including small molecules, antibodies, proteins, nucleic acids, peptides, and libraries and collections thereof, can be screened in the above-described assays and assays described below to identify compounds that modulate the activity of a CVSP1 4 polypeptide. Rational drug design methodologies that rely on computational chemistry can be used to screen and identify candidate compounds.
  • the compounds identified by the screening methods include inhibitors, including antagonists, and can be agonists
  • Compounds for screening include any compounds and collections of compounds available, known or that can be prepared. a. Selection of Compounds
  • Compounds can be selected for their potency and selectivity of inhibition of serine proteases, especially a CVSP14 polypeptide.
  • a target serine protease and its substrate are combined under assay conditions permitting reaction of the protease with its substrate.
  • the assay is performed in the absence of test compound, and in the presence of increasing concentrations of the test compound.
  • concentration of test compound at which 50% of the serine protease activity is inhibited by the test compound is the IC 50 value (Inhibitory Concentration) or EC 50 (Effective Concentration) value for that compound.
  • IC 50 value Inhibitory Concentration
  • EC 50 Effective Concentration
  • those having lower IC 50 or EC 50 values are considered more potent inhibitors of the serine protease than those compounds having higher IC 50 or EC 50 values.
  • the IC 50 measurement is often used for more simplistic assays, whereas the EC 50 is often used for more complicated assays, such as those employing cells.
  • candidate compounds typically have an IC 50 value of 1 00 nM or less as measured in an in vitro assay for inhibition of CVSP14 polypeptide activity.
  • the test compounds also are evaluated for selectivity toward a serine protease. As described herein, and as generally known, a test compound is assayed for its potency toward a panel of serine proteases and other enzymes and an IC 50 value or EC 50 value is determined for each test compound in each assay system.
  • a compound that demonstrates a low IC 50 value or EC 50 value for the target enzyme, e.g. , CVSP1 4 polypeptide, and a higher IC 50 value or EC 50 value for other enzymes within the test panel e.g.
  • urokinase tissue plasminogen activator thrombin, Factor Xa
  • thrombin thrombin
  • Factor Xa urokinase tissue plasminogen activator
  • thrombin thrombin
  • Factor Xa Factor Xa
  • a compound is deemed selective if its IC 50 value or EC 50 value in the target enzyme assay is at least one order of magnitude less than the next smallest IC 50 value or EC 50 value measured in the selectivity panel of enzymes.
  • Compounds are also evaluated for their activity in vivo.
  • the type of assay chosen for evaluation of test compounds depends on the pathological condition to be treated or prevented by use of the compound, as well as the route of administration to be evaluated for the test compound.
  • the procedures described by Jankun et al., Cane. Res. 57:559-563 ( 1 997) to evaluate PAI-1 can be employed. Briefly, the ATCC cell lines DU 145 and LnCaP are injected into SCID mice. After tumors are established, the mice are given test compound according to a dosing regime determined from the compound's in vitro characteristics. The Jankun et al. compound was administered in water. Tumor volume measurements are taken twice a week for about five weeks. A compound is deemed active if an animal to which the compound was administered exhibited decreased tumor volume, as compared to animals receiving appropriate control compounds.
  • a murine xenograft selected for high lung colonization potential in injected into C57B1 /6 mice i.v. (experimental metastasis) or s.c. into the abdominal wall (spontaneous metastasis).
  • concentrations of the compound to be tested can be admixed with the tumor cells in Matrigel prior to injection. Daily i.p. injections of the test compound are made either on days 1 -6 or days 7-1 3 after tumor inoculation.
  • the animals are sacrificed about three or four weeks after tumor inoculation, and the lung tumor colonies are counted. Evaluation of the resulting data permits a determination as to efficacy of the test compound, optimal dosing and route of administration.
  • the activit ⁇ of the tested compounds toward decreasing tumor volume and metastasis can be evaluated in model described in Rabbani et al., Int. J. Cancer 63:840-845 ( 1 995) to evaluate their inhibitor.
  • Mat LyLu tumor cells were injected into the flank of Copenhagen rats.
  • the animals were implanted with osmotic minipumps to continuously administer various doses of test compound for up to three weeks.
  • the tumor mass and volume of experimental and control animals were evaluated during the experiment, as were metastatic growths.
  • a rabbit cornea neovascularization model can be employed (see, e.g. , Avery et al. (1 990) Arch. Ophthalmol. , 108: 1474-147).
  • Avery et al. describes anesthetizing New Zealand albino rabbits and then making a central corneal incision and forming a radial corneal pocket.
  • a slow release prostaglandin pellet was placed in the pocket to induce neovascularization.
  • Test compound was administered i.p. for five days, at which time the animals were sacrificed.
  • test compound is evaluated by review of periodic photographs taken of the limbus, which can be used to calculate the area of neovascular response and, therefore, limbal neovascularization.
  • a decreased area of neovascularization as compared with appropriate controls indicates the test compound was effective at decreasing or inhibiting neovascularization.
  • An angiogenesis model used to evaluate the effect of a test compound in preventing angiogenesis is described by Min et al. Cane. Res. 56:2428-2433 ( 1 996) .
  • C57BL6 mice receive subcutaneous injections of a Matrigel mixture containing bFGF, as the angiogenesis-inducing agent, with and without the test compound. After five days, the animals are sacrificed and the Matrigel plugs, in which neovascularization can be visualized, are photographed.
  • An experimental animal receiving Matrigel and an effective dose of test compound exhibits less vascularization than a control animal or an experimental animal receiving a lessor non-effective does of compound.
  • the level of CAT detected in various organs provides an indication of the abilit ⁇ of the test compound to inhibit metastasis; detection of less CAT in tissues of a treated animal versus a control animal indicates less CAT-expressing cells migrated to that tissue.
  • F3II tumor cell line
  • the CAM model (chick embr ⁇ o chorioallantoic membrane model), first described b ⁇ L. Ossowski in 1 998 (J. Cell Biol. 707:2437-2445 (1 988)), provides another method for evaluating the inhibitor ⁇ activit ⁇ of a test compound.
  • tumor cells invade through the chorioallantoic membrane containing CAM with tumor cells in the presence of several serine protease inhibitors results in less or no invasion of the tumor cells through the membrane.
  • the CAM assa ⁇ is performed with CAM and tumor cells in the presence and absence of various concentrations of test compound. The invasiveness of tumor cells is measured under such conditions to provide an indication of the compound's inhibitor ⁇ activit ⁇ .
  • a compound having inhibitor ⁇ activit ⁇ correlates with less tumor invasion.
  • the CAM model is also used in a standard assa ⁇ of angiogenesis (i.e. , effect on formation of new blood vessels (Brooks et al. Methods in Molecular Biology 723:257-269 ( 1 999)).
  • angiogenesis inducer such as basic fibroblast growth factor (bFDG) is placed onto the CAM. Diffusion of the c ⁇ tokine into the CAM induces local angiogenesis, which can be measured in several wa ⁇ s such as b ⁇ counting the number of blood vessel branch points within the CAM directl ⁇ below the filter disc.
  • a test compound can either be added to the filter disc that contains the angiogenesis inducer, be placed directl ⁇ on the membrane or be administered s ⁇ stemicall ⁇ .
  • the extent of new blood vessel formation in the presence and/or absence of test compound can be compared using this model.
  • the formation of fewer new blood vessels in the presence of a test compound would be indicative of anti-angiogenesis activit ⁇ .
  • Demonstration of anti-angiogenesis activit ⁇ for inhibitors of a CVSP14 pol ⁇ peptide indicates a role in angiogenesis for that SP protein.
  • Compounds for screening can be serine protease inhibitors, which can be tested for their abilit ⁇ to inhibit the activit ⁇ of a CVSP14.
  • serine protease inhibitors for use in the screening assa ⁇ s, include, but are not limited to: Serine Protease Inhibitor 3 (SPI-3) (Chen, etal. Citokine, 77:856-862 (1999)); Aprotinin (lijima, R., et al., J. Biochem. (Tokyo) 726:912- 916 (1999)); Kazal-t ⁇ pe serine protease inhibitor-like proteins (Niimi, et al. Eur. J. Biochem., 266:282-292 (1999)); Kunitz-t ⁇ pe serine protease inhibitor
  • SPI-3 Serine Protease Inhibitor 3
  • Aprotinin lijima, R., et al., J. Biochem. (Tokyo) 726:912- 916 (1999)
  • Kazal-t ⁇ pe serine protease inhibitor-like proteins Naimi, et al. Eur. J. Biochem.,
  • TFPI-2/MSPI Tissue factor pathwa ⁇ inhibitor-2/Matrix-associated serine rotease inhibitor
  • Bukunin Cui, CY. etal. J. Invest. Dermatol. 773:182-8 (1999)
  • Nafmostat mesilate R ⁇ o, R. et al. Vox Sang. 76:241-6 (1999)
  • TPCK Human etal.
  • AEBSF 4-(2-aminoeth ⁇ l)-benzenesulfon ⁇ l fluoride
  • Pathol. 143(31:886-93 (1993)); FOY-305 (Ohkoshi, M., et al., Anticancer Res., 13(4):963-6 (1993)); Camostat mesilate (Senda, S., et al., Intern. Med., 32(4):350-4 (1993)); Pigment epithelium-derived factor (Steele, F.R., et al., Proc. Natl. Acad. Sci.
  • the source of compounds for the screening assa ⁇ s can be libraries, including, but are not limited to, combinatorial libraries.
  • Methods for s ⁇ nthesizing combinatorial libraries and characteristics of such combinatorial libraries are known in the art (See generally, Combinatorial Libraries: Synthesis, Screening and Application Potential (Cortese Ed.) Walter de Gru ⁇ ter, Inc., 1995; Tietze and Lieb, Curr. Opin. Chem. Biol., 2(3):363-71 (1998); Lam, Anticancer Drug Des., 12(31:145-67 (1997); Blane ⁇ and Martin, Curr. Opin. Chem. Biol., 1(11:54-9 (1997); and Schultz and Schultz, Biotechnol. Prog., 12(61:729-43 (1996)).
  • the libraries fall into roughl ⁇ three categories: fusion-protein-displa ⁇ ed peptide libraries in which random peptides or proteins are presented on the surface of phage particles or proteins expressed from plasmids; support-bound s ⁇ nthetic chemical libraries in which individual compounds or mixtures of compounds are presented on insoluble matrices, such as resin beads (see, e.g., Lam et al., Nature, 354:82-84 (1991)) and cotton supports (see, e.g., Eichler et al., Biochemistry 32:11035-11041 (1993)); and methods in which the compounds are used in solution (see, e.g., Houghten et al., Nature, 354:84-86 (1991); Houghten et al., BioTechniques, 313:412-421 (1992); and Scott et al., Curr.
  • insoluble matrices such as resin beads (see, e.g., Lam et al., Nature, 354:
  • librar ⁇ In the deterministic librar ⁇ , one knows a priori a particular unit's location on each solid support. In a random librar ⁇ , the location of a particular unit is not known a priori although each site still contains a single unique unit. Man ⁇ methods for preparing libraries are known to those of skill in this art (see, e.g., Ge ⁇ sen et al., Proc. Natl. Acad. Sci. USA, 81:3998-4002 (1984), Houghten et al., Proc. Natl. Acad. Sci. USA, 8J_:5131-5135 (1985)).
  • Combinatorial librar ⁇ generated b ⁇ the an ⁇ techniques known to those of skill in the art are contemplated (see, e.g., Table 1 of Schultz and Schultz, Biotechnol. Prog., 12(61:729-43 (1996)) for screening; Bartel et al., Science, 261:1411- 1418 (1993); Baumbach et al. BioPharm, (Can):24-35 (1992); Bock et al. Nature, 355:564-566 (1992); Borman, S., Combinatorial chemists focus on samll molecules molecular recognition, and automation, Chem. Eng.
  • peptides that bind to a CVSP1 4 pol ⁇ peptide or a protease domain of an SP protein can be identified using phage displa ⁇ libraries.
  • this method can include a) contacting phage from a phage librar ⁇ with the CVSP14 pol ⁇ peptide or a protease domain thereof; (b) isolating phage that bind to the protein; and (c) determining the identit ⁇ of at least one peptide coded b ⁇ the isolated phage to identif ⁇ a peptide that binds to a CVSP1 4 pol ⁇ peptide.
  • RNAi double-stranded RNA
  • Antibodies including pol ⁇ clonal and monoclonal antibodies, that specificall ⁇ bind to the CVSP14 pol ⁇ peptide provided herein, particularl ⁇ to the single chain protease domains thereof or the activated forms of the full-length or protease domain or the z ⁇ mogen form, are provided.
  • the antibod ⁇ is a monoclonal antibod ⁇
  • t ⁇ picall ⁇ the antibod ⁇ specificall ⁇ binds to the protease domain of the CVSP1 4 pol ⁇ peptide.
  • antibodies to each of the single chain of the protease domain of CVSP1 4 are provided.
  • antibodies that specificall ⁇ bind to an ⁇ domain of CVSP1 4 and to two chain forms thereof.
  • the CVSP1 4 pol ⁇ peptide and domains, fragments, homologs and derivatives thereof can be used as immunogens to generate antibodies that specificall ⁇ bind such immunogens.
  • Such antibodies include but are not limited to pol ⁇ clonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression librar ⁇ .
  • antibodies to human CVSP1 4 pol ⁇ peptide are produced.
  • complexes formed from fragments of CVSP14 pol ⁇ peptide, which fragments contain the serine protease domain are used as immunogens for antibod ⁇ production.
  • pol ⁇ clonal antibodies to CVSP1 4 pol ⁇ peptide its domains, derivatives, fragments or analogs.
  • various host animals can be immunized b ⁇ injection with the native CVSP14 pol ⁇ peptide or a s ⁇ nthetic version, or a derivative of the foregoing, such as a cross-linked CVSP14 pol ⁇ peptide.
  • host animals include but are not limited to rabbits, mice, rats, etc.
  • adjuvants can be used to increase the immunological response, depending on the host species, and include but are not limited to Freund's (complete and incomplete), mineral gels such as aluminum h ⁇ droxide, surface active substances such as I ⁇ solecithin, pluronic pol ⁇ ols, pol ⁇ anions, peptides, oil emulsions, dinitrophenol, and potentiall ⁇ useful human adjuvants such as bacille Calmette-Guerin (BCG) and cor ⁇ nebacterium parvum.
  • BCG Bacille Calmette-Guerin
  • an ⁇ technique that provides for the production of antibod ⁇ molecules b ⁇ continuous cell lines in culture can be used.
  • Such techniques include but are not restricted to the h ⁇ bridoma technique originally developed by Kohler and Milstein (Nature 256:495-497 (1975)), the trioma technique, the human B-cell h ⁇ bridoma technique (Kozbor et al., Immunology Today 4:72 ( 1 983)), and the EBV h ⁇ bridoma technique to produce human monoclonal antibodies (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R.
  • monoclonal antibodies can be produced in germ-free animals utilizing recent technolog ⁇ (PCT/US90/02545).
  • Human antibodies can be used and can be obtained b ⁇ using human h ⁇ bridomas (Cote et al., Proc. Natl. Acad. Sci. USA 80:2026-2030 (1 983)), or b ⁇ transforming human B cells with EBV virus in vitro (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 ( 1 985)).
  • Antibod ⁇ fragments that specificall ⁇ bind to CVSP1 4 pol ⁇ eptide or epitopes thereof can be generated b ⁇ techniques known in the art.
  • such fragments include but are not limited to: the F(ab')2 fragment, which can be produced b ⁇ pepsin digestion of the antibod ⁇ molecule; the Fab' fragments that can be generated b ⁇ reducing the disulfide bridges of the F(ab')2 fragment, the Fab fragments that can be generated b ⁇ treating the antibod ⁇ molecular with papain and a reducing agent, and Fv fragments.
  • screening for the desired antibod ⁇ can be accomplished b ⁇ techniques known in the art, e.g. , ELISA (enz ⁇ me-linked immunosorbent assa ⁇ ).
  • ELISA Enz ⁇ me-linked immunosorbent assa ⁇
  • the foregoing antibodies can be used in methods known in the art relating to the localization and/or quantitation of CVSP1 pol ⁇ peptide proteins, e.g. , for imaging these proteins, measuring levels thereof in appropriate ph ⁇ siological samples, in, for example, diagnostic methods.
  • anti-CVSP1 4 pol ⁇ peptide antibodies, or fragments thereof, containing the binding domain are used as therapeutic agents.
  • peptides include peptides, pol ⁇ peptides and peptide mimetics, including c ⁇ clic peptides.
  • Peptide mimetics are molecules or compounds that mimic the necessar ⁇ molecular conformation of a ligand or pol ⁇ peptide for specific binding to a target molecule such as a CVSP1 4 pol ⁇ peptide.
  • the peptides, peptides, pol ⁇ peptides and peptide mimetics or peptide mimetics bind to the protease domain of the CVSP14 pol ⁇ peptide.
  • Such peptides and peptide mimetics include those of antibodies that specificall ⁇ bind to a CVSP14 pol ⁇ peptide and, t ⁇ picall ⁇ , bind to the protease domain of a CVSP1 4 pol ⁇ peptide.
  • the peptides, pol ⁇ peptides and peptide mimetics and peptide mimetics identified b ⁇ methods provided herein can be agonists or antagonists of CVSP14 pol ⁇ peptides.
  • Such peptides and peptide mimetics are useful for diagnosing, treating, preventing, and screening for a disease or disorder associated with CVSP1 4 pol ⁇ peptide activit ⁇ in a mammal.
  • the peptides and peptide mimetics are useful for identif ⁇ ing, isolating, and purif ⁇ ing molecules or compounds that modulate the activit ⁇ of a CVSP1 4 pol ⁇ peptide, or specificall ⁇ bind to a CVSP1 pol ⁇ peptide, generall ⁇ the protease domain of a CVSP1 4 pol ⁇ peptide.
  • Low molecular weight peptides and peptide mimetics can have strong binding properties to a target molecule, e.g.
  • a CVSP14 pol ⁇ peptide or the protease domain of a CVSP1 4 pol ⁇ peptide a CVSP14 pol ⁇ peptide or the protease domain of a CVSP1 4 pol ⁇ peptide.
  • Peptides, pol ⁇ peptides and peptide mimetics that bind to CVSP1 4 pol ⁇ peptides as described herein can be administered to mammals, including humans, to modulate CVSP1 4 pol ⁇ peptide activit ⁇ .
  • methods for therapeutic treatment and prevention of neoplastic diseases comprise administering a peptide, pol ⁇ peptides or peptide mimetic compound in an amount sufficient to modulate such activit ⁇ are provided.
  • methods for treating a subject having such a disease or disorder in which a peptide, pol ⁇ peptides or peptide mimetic compound is administered to the subject in a therapeuticall ⁇ effective dose or amount are provided.
  • compositions containing the peptides, pol ⁇ peptides or peptide mimetics can be administered for proph ⁇ lactic and/or therapeutic treatments.
  • compositions can be administered to a patient alread ⁇ suffering from a disease, as described above, in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Amounts effective for this use will depend on the severit ⁇ of the disease and the weight and general state of the patient and can be empiricall ⁇ determined.
  • compositions containing the peptides, pol ⁇ peptides and peptide mimetics are administered to a patient susceptible to or otherwise at risk of a particular disease. Such an amount is defined to be a "proph ⁇ lacticall ⁇ effective dose" .
  • the peptides, pol ⁇ peptides and peptide mimetics that bind to a CVSP1 4 pol ⁇ peptide can be used to prepare pharmaceutical compositions containing, as an active ingredient, at least one of the peptides or peptide mimetics in association with a pharmaceutical carrier or diluent.
  • the compounds can be administered, for example, b ⁇ oral, pulmonar ⁇ , parental (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), inhalation (via a fine powder formulation), transdermal, nasal, vaginal, rectal, or sublingual routes of administration and can be formulated in dosage forms appropriate for each route of administration (see, e.g. , International PCT application Nos. WO 93/25221 and WO 94/1 7784; and European Patent Application 61 3,683).
  • Peptides, pol ⁇ peptides and peptide mimetics that bind to CVSP1 4 pol ⁇ peptides are useful in vitro as unique tools for understanding the biological role of CVSP14 pol ⁇ peptides, including the evaluation of the man ⁇ factors thought to influence, and be influenced b ⁇ , the production of CVSP1 4 pol ⁇ peptide.
  • Such peptides, pol ⁇ peptides and peptide mimetics are also useful in the development of other compounds that bind to and modulate the activit ⁇ of a CVSP1 4 pol ⁇ peptide, because such compounds provide important information on the relationship between structure and activit ⁇ that should facilitate such development.
  • the peptides, pol ⁇ peptides and peptide mimetics are also useful as competitive binders in assa ⁇ s to screen for new CVSP1 4 pol ⁇ peptides or CVSP14 pol ⁇ peptide agonists.
  • the compounds can be used without modification or can be modified in a variet ⁇ of wa ⁇ s; for example, b ⁇ labeling, such as covalentl ⁇ or non-covalentl ⁇ joining a moiet ⁇ which directl ⁇ or indirectl ⁇ provides a detectable signal.
  • the materials thereto can be labeled either directl ⁇ or indirectl ⁇ . Possibilities for .
  • direct labeling include label groups such as: radiolabels such as 125 l enz ⁇ mes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensit ⁇ , wavelength shift, or fluorescence polarization.
  • Possibilities for indirect labeling include biotin ⁇ lation of one constituent followed b ⁇ binding to avidin coupled to one of the above label groups.
  • the compounds can also include spacers or linkers in cases where the compounds are to be attached to a solid support.
  • the peptides, pol ⁇ peptides and peptide mimetics can be used as reagents for detecting CVSP1 4 pol ⁇ peptides in living cells, fixed cells, in biological fluids, in tissue homogenates and in purified, natural biological materials. For example, b ⁇ labelling such peptides, pol ⁇ peptides and peptide mimetics, cells having CVSP14 pol ⁇ peptides can be identified.
  • the peptides, pol ⁇ peptides and peptide mimetics can be used in in situ staining, FACS (fluorescence-activated cell sorting), Western blotting, ELISA and other anal ⁇ tical protocols.
  • the peptides, pol ⁇ peptides and peptide mimetics can be used in purification of CVSP1 4 pol ⁇ peptide pol ⁇ peptides or in purif ⁇ ing cells expressing the CVSP1 4 pol ⁇ peptide pol ⁇ peptides, e.g. , a pol ⁇ peptide encoding the protease domain of a CVSP14 pol ⁇ peptide.
  • the peptides, pol ⁇ peptides and peptide mimetics can also be used as commercial reagents for various medical research and diagnostic uses.
  • the activit ⁇ of the peptides and peptide mimetics can be evaluated either in vitro or in vivo in one of the numerous models described in McDonald ( 1 992) Am. J. of Pediatric Hematology /Oncology, 74:8-21 .
  • Peptide, polypeptides and peptide mimetic therapy Peptide analogs are commonly used in the pharmaceutical industry as * non-peptide drugs with properties analogous to those of the template peptide. These t ⁇ pes of non-peptide compounds are termed "peptide mimetics” or “peptidomimetics” (Luthman et al. , A Textbook of Drug Design and Development, 14:386-406, 2nd Ed., Harwood Academic Publishers ( 1 996); Joachim Grante (1 994) Angew. Chem. Int. Ed. Engl., 33: 1 699-1 720; Fauchere ( 1 986) J. Adv.
  • Peptide mimetics that are structurall ⁇ similar to therapeuticall ⁇ useful peptides can be used to produce an equivalent or enhanced therapeutic or proph ⁇ lactic effect. Preparation of peptidomimetics and structures thereof are known to those of skill in this art. S ⁇ stematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same t ⁇ pe (e.g. , D-l ⁇ sine in place of L-l ⁇ sine) can be used to generate more stable peptides.
  • constrained peptides containing a consensus sequence or a substantiall ⁇ identical consensus sequence variation can be generated b ⁇ methods known in the art (Rizo et al. ( 1 992) An. Rev. Biochem., 67 :387, incorporated herein b ⁇ reference); for example, b ⁇ adding internal c ⁇ steine residues capable of forming intramolecular disulfide bridges which c ⁇ clize the peptide.
  • the peptides and peptide mimetics can be labeled with a detectable label and, accordingl ⁇ , the peptides and peptide mimetics without such a label can serve as intermediates in the preparation of labeled peptides and peptide mimetics.
  • Detectable labels can be molecules or compounds, which when covalentl ⁇ attached to the peptides and peptide mimetics, permit detection of the peptide and peptide mimetics in vivo, for example, in a patient to whom the peptide or peptide mimetic has been administered, or in vitro, e.g. , in a sample or cells.
  • Suitable detectable labels are well known in the art and include, b ⁇ wa ⁇ of example, radioisotopes, fluorescent labels (e.g. , fluorescein), and the like.
  • the particular detectable label emplo ⁇ ed is not critical and is selected to be detectable at non-toxic levels. Selection of the such labels is well within the skill of the art.
  • Covalent attachment of a detectable label to the peptide or peptide mimetic is accomplished b ⁇ conventional methods well known in the art. For example, when the 125 l radioisotope is emplo ⁇ ed as the detectable label, covalent attachment of 125 l to the peptide or the peptide mimetic can be achieved b ⁇ incorporating the amino acid t ⁇ rosine into the peptide or peptide mimetic and then iodinating the peptide (see, e.g. , Weaner et al. ( 1 994) Synthesis and Applications of Isotopically Labelled Compounds, pp. 1 37-140) .
  • incorporation of t ⁇ rosine to the N or C terminus of the peptide or peptide mimetic can be achieved b ⁇ well known chemistr ⁇ .
  • 32 P can be incorporated onto the peptide or peptide mimetic as a phosphate moiet ⁇ through, for example, a h ⁇ drox ⁇ l group on the peptide or peptide mimetic using conventional chemistr ⁇ .
  • Labeling of peptidomimetics usuall ⁇ involves covalent attachment of one or more labels, directl ⁇ or through a spacer (e.g. , an amide group), to non-interfering position(s) on the peptidomimetic that are predicted b ⁇ quantitative structure-activit ⁇ data and/or molecular modeling.
  • Such non-interfering positions generall ⁇ are positions that. do not form direct contacts with the macromolecules(s) to which the peptidomimetic binds to produce the therapeutic effect.
  • Derivatization (e.g. , labeling) of peptidomimetics should not substantiall ⁇ interfere with the desired biological or pharmacological activit ⁇ of the peptidomimetic.
  • Peptides, pol ⁇ peptides and peptide mimetics that can bind to a CVSP1 4 pol ⁇ peptide or the protease domain of CVSP1 4 pol ⁇ peptides and/or modulate the activit ⁇ thereof, or exhibit CVSP1 4 pol ⁇ peptide activit ⁇ , can be used for treatment of neoplastic disease.
  • the peptides, pol ⁇ peptides and peptide mimetics can be delivered, in vivo or ex vivo, to the cells of a subject in need of treatment.
  • peptides which have CVSP14 pol ⁇ peptide activit ⁇ can be delivered, in vivo or ex vivo, to cells which carr ⁇ mutant or missing alleles encoding the CVSP14 pol ⁇ peptide gene.
  • An ⁇ of the techniques described herein or known to the skilled artisan can be used for preparation and in vivo or ex vivo deliver ⁇ of such peptides, pol ⁇ peptides and peptide mimetics that are substantiall ⁇ free of other human proteins.
  • the peptides, pol ⁇ peptides and peptide mimetics can be readil ⁇ prepared b ⁇ expression in a microorganism or s ⁇ nthesis in vitro.
  • the peptides or peptide mimetics can be introduced into cells, in vivo or ex vivo, b ⁇ microinjection or b ⁇ use of liposomes, for example.
  • the peptides, pol ⁇ peptides or peptide mimetics can be taken up b ⁇ cells, in vivo or ex vivo, activel ⁇ or b ⁇ diffusion.
  • extracellular application of the peptide, pol ⁇ peptides or peptide mimetic can be sufficient to effect treatment of a neoplastic disease.
  • the goal of rational drug design is to produce structural analogs of biologically active polypeptides or peptides of interest or of small molecules or peptide mimetics with which the ⁇ interact (e.g. , agonists and antagonists) in order to fashion drugs which are, e.g., more active or stable forms thereof; or which, for example, enhance or interfere with the function of a pol ⁇ peptide in vivo (e.g., a CVSP14 pol ⁇ peptide) .
  • an amino acid residue is replaced b ⁇ Ala, and its effect on the peptide's activit ⁇ is determined.
  • Each of the amino acid residues of the peptide is anal ⁇ zed in this manner to determine the important regions of the peptide.
  • a pol ⁇ peptide or peptide that binds to a CVSP1 4 pol ⁇ peptide or, generall ⁇ , the protease domain of a CVSP1 4 pol ⁇ peptide can be selected b ⁇ a functional assa ⁇ , and then the cr ⁇ stal structure of this pol ⁇ peptide or peptide can be determined.
  • the pol ⁇ peptide can be, for example, an antibod ⁇ specific for a CVSP14 pol ⁇ peptide or the protein domain of a CVSP14 pol ⁇ peptide. This approach can ⁇ ield a pharmacophore upon which subsequent drug design can be based.
  • anti-idiot ⁇ pic pol ⁇ peptides or peptides (anti-ids) to a functional, pharmacologicall ⁇ active pol ⁇ peptide or peptide that binds to a CVSP1 4 pol ⁇ peptide or protease domain of a CVSP14 pol ⁇ peptide.
  • the binding site of the anti-ids is expected to be an analog of the original target molecule, e.g., a CVSP1 4 pol ⁇ peptide or pol ⁇ peptide having a CVSP1 4 pol ⁇ peptide.
  • the anti-id could then be used to identif ⁇ and isolate peptides from banks of chemicall ⁇ or biologically produced banks of peptides. Selected peptides would then act as the pharmacophore.
  • modulators e.g., inhibitors, agonists, antagonists
  • the knowledge of the amino acid sequence of a CVSP1 4 pol ⁇ peptide or the protease domain thereof, e.g., the protease domain encoded b ⁇ the amino acid sequence of SEQ ID Nos. 5 and 6, can provide guidance on computer modeling techniques in place of, or in addition to, X-ra ⁇ cr ⁇ stallograph ⁇ .
  • Methods of identifying peptides and peptide mimetics that bind to CVSP14 polypeptides Peptides having a binding affinit ⁇ to the CVSP14 pol ⁇ peptide pol ⁇ peptides provided herein (e.g. , a CVSP14 pol ⁇ peptide or a pol ⁇ peptide having a protease domain of a CVSP1 4 pol ⁇ peptide) can be readil ⁇ identified, for example, b ⁇ random peptide diversit ⁇ generating s ⁇ stems coupled with an affinit ⁇ enrichment process. Specificall ⁇ , random peptide diversit ⁇ generating s ⁇ stems include the "peptides on plasmids" s ⁇ stem (see, e.g.
  • random peptides can generall ⁇ be designed to have a defined number of amino acid residues in length (e.g. , 1 2) .
  • NNK codon motif
  • NNK motif encodes all of the amino acids, encodes onl ⁇ one stop codon, and reduces codon bias.
  • the random peptides can be presented, for example, either on the surface of a phage particle, as part of a fusion protein containing either the pill or the pVIII coat protein of a phage fd derivative (peptides on phage) or as a fusion protein with the Lacl peptide fusion protein bound to a plasmid (peptides on plasmids).
  • the phage or plasmids, including the DNA encoding the peptides can be identified and isolated b ⁇ an affinit ⁇ enrichment process using immobilized CVSP14 pol ⁇ peptide pol ⁇ peptide having a protease domain.
  • t ⁇ picall ⁇ involves multiple rounds of incubating the phage, plasmids, or pol ⁇ somes with the immobilized CVSP1 4 pol ⁇ peptide pol ⁇ peptide, collecting the phage, plasmids, or pol ⁇ somes that bind to the CVSP1 4 pol ⁇ peptide pol ⁇ peptide (along with the accompan ⁇ ing DNA or mRNA), and producing more of the phage or plasmids (along with the accompan ⁇ ing Lacl-peptide fusion protein) collected.
  • Characteristics of peptides and peptide mimetics Among the peptides, pol ⁇ peptides and peptide mimetics for therapeutic application are those of having molecular weights from about 250 to about 8,000 daltons. If such peptides are oligomerized, dimerized and/or derivatized with a h ⁇ drophilic pol ⁇ mer (e.g. , to increase the affinit ⁇ and/or activit ⁇ of the compounds), the molecular weights of such peptides can be substantiall ⁇ greater and can range an ⁇ where from about 500 to about 1 20,000 daltons, generall ⁇ from about 8,000 to about 80,000 daltons.
  • Such peptides can contain 9 or more amino acids that are naturall ⁇ occurring or s ⁇ nthetic (non-naturall ⁇ occurring) amino acids.
  • One skilled in the art can determine the affinit ⁇ and molecular weight of the peptides and peptide mimetics suitable for therapeutic and/or diagnostic purposes (e.g. , see Dower et al. , U.S. Patent No. 6, 1 21 ,238).
  • the peptides can be covalentl ⁇ attached to one or more of a variet ⁇ of h ⁇ drophilic pol ⁇ mers.
  • Suitable h ⁇ drophilic pol ⁇ mers include, but are not limited to, pol ⁇ alk ⁇ lethers as exemplified b ⁇ pol ⁇ eth ⁇ lene gl ⁇ col and pol ⁇ prop ⁇ lene gl ⁇ col, pol ⁇ lactic acid, pol ⁇ gl ⁇ colic acid, pol ⁇ ox ⁇ alkenes, pol ⁇ vin ⁇ lalcohol, pol ⁇ vin ⁇ lp ⁇ rrolidone, cellulose and cellulose derivatives, dextran and dextran derivatives.
  • pol ⁇ alk ⁇ lethers as exemplified b ⁇ pol ⁇ eth ⁇ lene gl ⁇ col and pol ⁇ prop ⁇ lene gl ⁇ col
  • pol ⁇ lactic acid pol ⁇ gl ⁇ colic acid
  • pol ⁇ ox ⁇ alkenes pol ⁇ vin ⁇ lalcohol
  • pol ⁇ vin ⁇ lp ⁇ rrolidone cellulose and cellulose derivatives
  • dextran and dextran derivatives dextran and dextran
  • the peptide compounds can be dimerized and each of the dimeric subunits can be covalentl ⁇ attached to a h ⁇ drophilic pol ⁇ mer.
  • the peptide compounds can be PEG ⁇ lated, i.e., covalentl ⁇ attached to pol ⁇ eth ⁇ lene gl ⁇ col (PEG). 5. Methods of preparing peptides and peptide mimetics
  • Peptides that bind to CVSP1 4 pol ⁇ peptides can be prepared b ⁇ classical methods known in the art, for example, b ⁇ using standard solid phase techniques.
  • the standard methods include exclusive solid phase s ⁇ nthesis, partial solid phase s ⁇ nthesis methods, fragment condensation, classical solution s ⁇ nthesis, and even b ⁇ recombinant DNA technolog ⁇ (see, e.g. , Merrifield ( 1 963) J. Am. Chem. Soc, 55:21 49, incorporated herein b ⁇ reference.)
  • CVSP14 pol ⁇ peptide or, generall ⁇ , the protease domain of a CVSP1 4 pol ⁇ peptide.
  • This immobilized pol ⁇ mer s ⁇ nthesis s ⁇ stem or other peptide s ⁇ nthesis methods can also be used to s ⁇ nthesize truncation analogs and deletion analogs and combinations of truncation and deletion analogs of the peptide compounds.
  • s ⁇ nthetic amino acids that can be substituted into the peptides include L-h ⁇ drox ⁇ prop ⁇ l, L-3, 4-dih ⁇ drox ⁇ -phen ⁇ lalan ⁇ l, d amino acids such as L-d-h ⁇ drox ⁇ l ⁇ s ⁇ l and D-d-meth ⁇ lalan ⁇ l, L- ⁇ -meth ⁇ lalan ⁇ l, ⁇ amino acids, and isoquinol ⁇ l.
  • D amino acids and non-naturall ⁇ occurring s ⁇ nthetic amino acids can also be incorporated into the peptides (see, e.g. , Roberts et al. ( 1 983) Unusual Amino/Acids in Peptide Synthesis, 5(6):341 -449).
  • the peptides can also be modified b ⁇ phosphor ⁇ lation (see, e.g. , W. Bannwarth et al. ( 1 996) Biorganic and Medicinal Chemistry Letters,
  • peptide compounds also serve as a basis to prepare peptide mimetics with similar biological activit ⁇ .
  • Amino terminus modifications include, but are not limited to, alk ⁇ lating, acet ⁇ lating and adding a carbobenzo ⁇ l group, forming a succinimide group (see, e.g. , Murra ⁇ et al. (1 995) Burger's Medicinal Chemistry and Drug Discovery, Sth ed., Vol. 1, Manfred E. Wolf, ed., John Wile ⁇ and Sons, Inc.).
  • C-terminal modifications include mimetics wherein the C-terminal carbox ⁇ l group is replaced b ⁇ an ester, an amide or modifications to form a c ⁇ clic peptide.
  • the peptide compounds can advantageousl ⁇ be modified with or covalentl ⁇ coupled to one or more of a variet ⁇ of h ⁇ drophilic pol ⁇ mers. It has been found that when peptide compounds are derivatized with a h ⁇ drophilic pol ⁇ mer, their solubility and circulation half-lives can be increased and their immunogenicity is masked, with little, if an ⁇ , diminishment in their binding activit ⁇ .
  • Suitable nonproteinaceous pol ⁇ mers include, but are not limited to, pol ⁇ alk ⁇ lethers as exemplified b ⁇ pol ⁇ eth ⁇ lene gl ⁇ col and pol ⁇ prop ⁇ lene gl ⁇ col, pol ⁇ lactic acid, pol ⁇ gl ⁇ colic acid, pol ⁇ ox ⁇ alkenes, pol ⁇ vin ⁇ lalcohol, pol ⁇ vin ⁇ lp ⁇ rrolidone, cellulose and cellulose derivatives, dextran and dextran derivatives.
  • such h ⁇ drophilic pol ⁇ mers have an average molecular weight ranging from about 500 to about 1 00,000 daltons, including from about 2,000 to about 40,000 daltons and, from about 5,000 to about 20,000 daltons.
  • the h ⁇ drophilic pol ⁇ mers also can have an average molecular weights of about 5,000 daltons, 1 0,000 daltons and 20,000 daltons.
  • peptide derivatives are described, for example, in Hrub ⁇ et al. ( 1 990), Biochem J., 26S(2):249-262, which is incorporated herein b ⁇ reference.
  • the peptide compounds also serve as structural models for non-peptidic compounds with similar biological activit ⁇ .
  • Those of skill in the art recognize that a variet ⁇ of techniques are available for constructing compounds with the same or similar desired biological activit ⁇ as a particular peptide compound but with more favorable activit ⁇ with respect to solubility, stability, and susceptibility to h ⁇ drol ⁇ sis and proteol ⁇ sis (see, e.g. , Morgan et al. ( 1 989) An. Rep. Med.
  • Peptide compounds can exist in a c ⁇ clized form with an intramolecular disulfide bond between the thiol groups of the c ⁇ steines.
  • an intermolecular disulfide bond between the thiol groups of the c ⁇ steines can be produced to ⁇ ield a dimeric (or higher oligomeric) compound.
  • One or more of the c ⁇ steine residues can also be substituted with a homoc ⁇ steine.
  • a conjugate containing: a) a single chain protease domain (or proteol ⁇ ticall ⁇ active portion thereof) of a CVSP14 pol ⁇ peptide or a full length z ⁇ mogen, activated form thereof, or two or single chain protease domain thereof; and b) a targeting agent linked to the CVSP14 pol ⁇ peptide directl ⁇ or via a linker, wherein the agent facilitates: i) affinit ⁇ isolation or purification of the conjugate; ii) attachment of the conjugate to a surface; iii) detection of the conjugate; or iv) targeted deliver ⁇ to a selected tissue or cell, is provided herein.
  • the conjugate can be a chemical conjugate or a fusion protein mixture thereof .
  • the targeting agent can be a protein or peptide fragment, such as a tissue specific or tumor specific monoclonal antibod ⁇ or growth factor or fragment thereof linked either directl ⁇ or via a linker to a CVSP14 pol ⁇ peptide or a protease domain thereof.
  • the targeting agent can also be a protein or peptide fragment that contains a protein binding sequence, a nucleic acid binding sequence, a lipid binding sequence, a pol ⁇ saccharide binding sequence, or a metal binding sequence, or a linker for attachment to a solid support.
  • the conjugate contains a) the CVSP14 or portion thereof, as described herein; and b) a targeting agent linked to the CVSP14 pol ⁇ peptide directl ⁇ or via a linker.
  • Conjugates such as fusion proteins and chemical conjugates, of the CVSP1 4 pol ⁇ peptide with a protein or peptide fragment (or plurality thereof) that functions, for example, to facilitate affinity isolation or purification of the CVSP1 4 pol ⁇ peptide domain, attachment of the CVSP1 4 pol ⁇ peptide domain to a surface, or detection of the CVSP1 4 pol ⁇ peptide domain are provided.
  • the conjugates can be produced b ⁇ chemical conjugation, such as via thiol linkages, and can be produced b ⁇ recombinant means as fusion proteins.
  • the peptide or fragment thereof is linked to either the N-terminus or C- terminus of the CVSP1 4 pol ⁇ peptide domain.
  • the peptide or fragment thereof can be linked an ⁇ where that conjugation can be effected, and there can be a plurality of such peptides or fragments linked to a single CVSP1 4 polypeptide domain or to a plurality thereof.
  • the targeting agent is for in vitro or in vivo delivery to a cell or tissue, and includes agents such as cell or tissue-specific antibodies, growth factors and other factors that bind to moieties expressed on specific cells; and other cell or tissue specific agents that promote directed deliver ⁇ of a linked protein.
  • the targeting agent can be one that specificall ⁇ delivers the CVSP1 4 pol ⁇ peptide to selected cells b ⁇ interaction with a cell surface protein and internalization of conjugate or CVSP14 pol ⁇ peptide portion thereof.
  • conjugates are used in a variet ⁇ of methods and are particularl ⁇ suited for use in methods of activation of prodrugs, such as prodrugs that upon cleavage b ⁇ the particular CVSP1 4, which is localized at or near the targeted cell or tissue, protein are c ⁇ totoxic.
  • the prodrugs are administered prior to, or simultaneousl ⁇ with, or subsequentl ⁇ to the conjugate.
  • the protease activates the prodrug, which then exhibits a therapeutic effect, such as a c ⁇ totoxic effect. 1 .
  • Conjugates with linked CVSP14 pol ⁇ peptide domains can be prepared either b ⁇ chemical conjugation, recombinant DNA technolog ⁇ , or combinations of recombinant expression and chemical conjugation.
  • the CVSP1 4 pol ⁇ peptide domains and the targeting agent can be linked in an ⁇ orientation and more than one targeting agents and/or CVSP14 pol ⁇ peptide domains can be present in a conjugate. a. Fusion proteins
  • a fusion protein contains: a) one or a plurality of domains of a CVSP14 polypeptides and b) a targeting agent.
  • the fusion proteins are generall ⁇ produced b ⁇ recombinant expression of nucleic acids that encode the fusion protein. b. Chemical conjugation
  • the CVSP14 pol ⁇ peptide domain is linked via one or more selected linkers or directl ⁇ to the targeting agent.
  • Chemical conjugation must be used if the targeted agent is other than a peptide or protein, such a nucleic acid or a non-peptide drug.
  • An ⁇ means known to those of skill in the art for chemicall ⁇ conjugating selected moieties can be used.
  • the conjugates can include one or more linkers between the CVSP1 4 pol ⁇ peptide portion and the targeting agent. Additionall ⁇ , linkers are used for facilitating or enhancing immobilization of a CVSP14 pol ⁇ peptide or portion thereof on a solid support, such as a microtiter plate, silicon or silicon-coated chip, glass or plastic support, such as for high throughput solid phase screening protocols.
  • An ⁇ linker known to those of skill in the art for preparation of conjugates can be used herein. These linkers are t ⁇ picall ⁇ used in the preparation of chemical conjugates; peptide linkers can be incorporated into fusion proteins.
  • Linkers can be an ⁇ moiet ⁇ suitable to associate a domain of CVSP1 4 pol ⁇ peptide and a targeting agent.
  • Such linkers and linkages include, but are not limited to, peptidic linkages, amino acid and peptide linkages, t ⁇ picall ⁇ containing between one and about 60 amino acids, more generall ⁇ between about 10 and 30 amino acids, chemical linkers, such as heterobifunctional cleavable cross- linkers, including but are not limited to, N-succinimid ⁇ l (4-iodoacet ⁇ l)- aminobenzoate, sulfosuccinim ⁇ dil (4-iodoacet ⁇ l)-aminobenzoate, 4-succinimid ⁇ l- ox ⁇ carbon ⁇ l-a- (2-p ⁇ rid ⁇ ldithio)toluene, sulfosuccinimid ⁇ l-6- [a-meth ⁇ l-a- (p ⁇ rid ⁇ ldithiol)-toluamid
  • linkers include, but are not limited to peptides and other moieties that reduce stearic hindrance between the domain of CVSP14 pol ⁇ peptide and the targeting agent, intracellular enz ⁇ me substrates, linkers that increase the flexibility of the conjugate, linkers that increase the solubility of the conjugate, linkers that increase the serum stability of the conjugate, photocleavable linkers and acid cleavable linkers.
  • linkers and linkages that are suitable for chemicall ⁇ linked conjugates include, but are not limited to, disulfide bonds, thioether bonds, hindered disulfide bonds, and covalent bonds between free reactive groups, such as amine and thiol groups. These bonds are produced using heterobifunctional reagents to produce reactive thiol groups on one or both of the pol ⁇ peptides and then reacting the thiol groups on one pol ⁇ peptide with reactive thiol groups or amine groups to which reactive maleimido groups or thiol groups can be attached on the other.
  • linkers include, acid cleavable linkers, such as bismaleimideothox ⁇ propane, acid labile-transferrin conjugates and adipic acid diih ⁇ drazide, that would be cleaved in more acidic intracellular compartments; cross linkers that are cleaved upon exposure to UV or visible light and linkers, such as the various domains, such as C H 1 , C H 2, and C H 3, from the constant region of human IgG, (see, Batra et al. Molecular Immunol. , 30:379-386 (1 993)).
  • linkers can be included in order to take advantage of desired properties of each linker.
  • Chemical linkers and peptide linkers can be inserted b ⁇ covalentl ⁇ coupling the linker to the domain of CVSP14 pol ⁇ peptide and the targeting agent.
  • the heterobifunctional agents described below, can be used to effect such covalent coupling.
  • Peptide linkers can also be linked b ⁇ expressing DNA encoding the linker and therapeutic agent (TA), linker and targeted agent, or linker, targeted agent and therapeutic agent (TA) as a fusion protein.
  • Flexible linkers and linkers that increase solubility of the conjugates are contemplated for use, either alone or with other linkers are also contemplated herein. a) Acid cleavable, photocleavable and heat sensitive linkers
  • Acid cleavable linkers, photocleavable and heat sensitive linkers can also be used, particularly where it can be necessar ⁇ to cleave the domain of CVSP14 pol ⁇ peptide to permit it to be more readil ⁇ accessible to reaction.
  • Acid cleavable linkers include, but are not limited to, bismaleimideothox ⁇ propane; and adipic acid dih ⁇ drazide linkers (see, e.g. , Fattom et al. (1 992) Infection & Immun. 60:584-589) and acid labile transferrin conjugates that contain a sufficient portion of transferrin to permit entr ⁇ into the intracellular transferrin c ⁇ cling pathwa ⁇ (see, e.g. , Welh ⁇ ner et al. ( 1 991 ) J. Biol. Chem. 266:4309-4314).
  • Photocleavable linkers are linkers that are cleaved upon exposure to light (see, e.g. , Goldmacher et al. ( 1 992) Bioconj. Chem. 3: 1 04-107, which linkers are herein incorporated b ⁇ reference), thereb ⁇ releasing the targeted agent upon exposure to light.
  • Photocleavable linkers that are cleaved upon exposure to light are known (see, e.g. , Hazum et al. ( 1 981 ) in Pept., Proc. Eur. Pept. Symp. , 1 6th, Brunfeldt, K (Ed), pp.
  • linkers are useful in connection with diagnostic protocols in which it is desirable to remove the targeting agent to permit rapid clearance from the bod ⁇ of the animal.
  • Other linkers for chemical conjugation Other linkers include trit ⁇ l linkers, particularl ⁇ , derivatized trit ⁇ l groups to generate a genus of conjugates that provide for release of therapeutic agents at various degrees of acidit ⁇ or alkalinity.
  • the flexibility thus afforded b ⁇ the abilit ⁇ to preselect the pH range at which the therapeutic agent is released allows selection of a linker based on the known ph ⁇ siological differences between tissues in need of deliver ⁇ of a therapeutic agent (see, e.g. , U.S. Patent No. 5,61 2,474). For example, the acidit ⁇ of tumor tissues appears to be lower than that of normal tissues.
  • Peptide linkers include trit ⁇ l linkers, particularl ⁇ , derivatized trit ⁇ l groups to generate a genus of conjugates that provide for release of therapeutic agents at various degrees of acidit ⁇ or alkal
  • the linker moieties can be peptides.
  • Peptide linkers can be emplo ⁇ ed in fusion proteins and also in chemicall ⁇ linked conjugates.
  • the peptide t ⁇ picall ⁇ has from about 2 to about 60 amino acid residues, for example from about 5 to about 40, or from about 10 to about 30 amino acid residues. The length selected depends upon factors, such as the use for which the linker is included.
  • linker moiet ⁇ can be a flexible spacer amino acid sequence, such as those known in single-chain antibod ⁇ research.
  • linker moieties include, but are not limited to, peptides, such as (Gl ⁇ m Ser) n and (Ser m Gl ⁇ ) n , in which n is 1 to 6, including 1 to 4 and 2 to 4, and m is 1 to 6, including 1 to 4, and 2 to 4, enz ⁇ me cleavable linkers and others.
  • linking moieties are described, for example, in Huston et al. , Proc. Natl. Acad. Sci. U. S.A. 35:5879-5883, 1 988; Whitlow, M., et al. , Protein Engineering 6:989-995, 1 993; Newton et al. , Biochemistry 35:545-553, 1 996; A. J. Cumber et al., Bioconj. Chem. 3:397-401 , 1 992; Ladumer et al., J. Mol. Biol. 273:330-337, 1 997; and U.S. Patent. No. 4,894,443.
  • several linkers can be included in order to take advantage of desired properties of each linker. 3.
  • an ⁇ agent that facilitates detection, immobilization, or purification of the conjugate is contemplated for use herein.
  • the targeting agent is a protein, peptide or fragment thereof that is sufficient to effects the targeting activit ⁇ .
  • Contemplated targeting agents include those that deliver the CVSP1 4 pol ⁇ peptide or portion thereof to selected cells and tissues. Such agents include tumor specific monoclonal antibodies and portions thereof, growth factors, such as FGF, EGF, PDGF, VEGF, c ⁇ tokines, including chemokines, and other such agents. 4. Nucleic acids, plasmids and cells
  • the nucleic acid fragment that encodes the fusion protein includes: a) nucleic acid encoding a protease domain of a CVSP1 4 pol ⁇ peptide; and b) nucleic acid encoding a protein, peptide or effective fragment thereof that facilitates: i) affinit ⁇ isolation or purification of the fusion protein; ii) attachment of the fusion protein to a surface; or iii) detection of the fusion protein.
  • the nucleic acid is DNA.
  • Plasmids for replication and vectors for expression that contain the above nucleic acid fragments are also provided.
  • Cells containing the plasmids and vectors are also provided.
  • the cells can be an ⁇ suitable host including, but are not limited to, bacterial cells, ⁇ east cells, fungal cells, plant cells, insect cell and animal cells.
  • the nucleic acids, plasmids, and cells containing the plasmids can be prepared according to methods known in the art including an ⁇ described herein.
  • An exemplar ⁇ method includes the steps of growing, i.e. culturing the cells so that the proliferate, cells containing a plasmid encoding the fusion protein under conditions whereb ⁇ the fusion protein is expressed b ⁇ the cell, and recovering the expressed fusion protein.
  • Methods for expressing and recovering recombinant proteins are well known in the art (See generally. Current Protocols in Molecular Biology (1 998) ⁇ 1 6, John Wile ⁇ & Sons, Inc.) and such methods can be used for expressing and recovering the expressed fusion proteins.
  • the recovered fusion proteins can be isolated or purified b ⁇ methods known in the art such as centrifugation, filtration, chromatograph, electrophoresis, immunoprecipitation, etc., or b ⁇ a combination thereof (See generally. Current Protocols in Molecular Biology (1 998) ⁇ 10, John Wile ⁇ & Sons, Inc.). Generall ⁇ the recovered fusion protein is isolated or purified through affinit ⁇ binding between the protein or peptide fragment of the fusion protein and an affinit ⁇ binding moiet ⁇ . As discussed in the above sections regarding the construction of the fusion proteins, an ⁇ affinit ⁇ binding pairs can be constructed and used in the isolation or purification of the fusion proteins.
  • the affinit ⁇ binding pairs can be protein binding sequences/protein, DNA binding sequences/DNA sequences, RNA binding sequences/RNA sequences, lipid binding sequences/lipid, pol ⁇ saccharide binding sequences/pol ⁇ saccharide, or metal binding sequences/metal.
  • the CVSP1 4 pol ⁇ peptide can be attached b ⁇ linkage such as ionic or covalent, non-covalent or other chemical interaction, to a surface of a support or matrix material. Immobilization can be effected directl ⁇ or via a linker.
  • the CVSP14 pol ⁇ peptide can be immobilized on an ⁇ suitable support, including, but are not limited to, silicon chips, and other supports described herein and known to those of skill in the art.
  • a plurality of CVSP14 polypeptide or protease domains thereof can be attached to a support, such as an arra ⁇ (i.e. , a pattern of two or more) of conjugates on the surface of a silicon chip or other chip for use in high throughput protocols and formats.
  • the domains of the CVSP1 4 pol ⁇ peptide can be linked directl ⁇ to the surface or via a linker without a targeting agent linked thereto.
  • chips containing arra ⁇ s of the domains of the CVSP14 pol ⁇ peptide can be linked directl ⁇ to the surface or via a linker without a targeting agent linked thereto.
  • the matrix material or solid supports contemplated herein are generall ⁇ an ⁇ of the insoluble materials known to those of skill in the art to immobilize ligands and other molecules, and are those that used in man ⁇ chemical s ⁇ ntheses and separations. Such supports are used, for example, in affinit ⁇ chromatograph ⁇ , in the immobilization of biologicall ⁇ active materials, and during chemical s ⁇ ntheses of biomolecules, including proteins, amino acids and other organic molecules and pol ⁇ mers.
  • the preparation of and use of supports is well known to those of skill in this art; there are man ⁇ such materials and preparations thereof known.
  • naturall ⁇ -occurring support materials such as agarose and cellulose, can be isolated from their respective sources, and processed according to known protocols, and s ⁇ nthetic materials can be prepared in accord with known protocols.
  • the supports are t ⁇ picall ⁇ insoluble materials that are solid, porous, deformable, or hard, and have an ⁇ required structure and geometr ⁇ , including, but not limited to: beads, pellets, disks, capillaries, hollow fibers, needles, solid fibers, random shapes, thin films and membranes.
  • the item can be fabricated from the matrix material or combined with it, such as b ⁇ coating all or part of the surface or impregnating particles.
  • T ⁇ picall ⁇ when the matrix is particulate, the particles are at least about 10-2000 ⁇ m, but can be smaller or larger, depending upon the selected application. Selection of the matrices is governed, at least in part, b ⁇ their ph ⁇ sical and chemical properties, such as solubility, functional groups, mechanical stability, surface area swelling propensity, hydrophobic or h ⁇ drophilic properties and intended use. If necessar ⁇ , the support matrix material can be treated to contain an appropriate reactive moiet ⁇ . In some cases, the support matrix material alread ⁇ containing the reactive moiet ⁇ can be obtained commerciall ⁇ . The support matrix material containing the reactive moiet ⁇ can thereb ⁇ serve as the matrix support upon which molecules are linked.
  • Materials containing reactive surface moieties such as amino silane linkages, h ⁇ drox ⁇ l linkages or carbox ⁇ silane linkages can be produced b ⁇ well established surface chemistr ⁇ techniques involving silanization reactions, or the like.
  • these materials are those having surface silicon oxide moieties, covalentl ⁇ linked to gamma-amino- prop ⁇ lsilane, and other organic moieties; N-[3-(trieth ⁇ ox ⁇ sil ⁇ !prop ⁇ l]phthelamic acid; and bis-(2-h ⁇ drox ⁇ eth ⁇ l)aminoprop ⁇ ltriethox ⁇ silane.
  • Exemplar ⁇ of readil ⁇ available materials containing amino group reactive functionalities include, but are not limited to, para-aminophen ⁇ ltrieth ⁇ ox ⁇ silane. Also derivatized pol ⁇ st ⁇ renes and other such pol ⁇ mers are well known and readil ⁇ available to those of skill in this art (e.g. , the Tentagel ® Resins are available with a multitude of functional groups, and are sold b ⁇ Rapp Pol ⁇ mere, Tubingen, German ⁇ ; see, U.S. Patent No. 4,908,405 and U.S. Patent No. 5,292,81 4; see, also Butz et al., Peptide Res.
  • matrix materials include an ⁇ material that can act as a support matrix for attachment of the molecules of interest. Such materials are known to those of skill in this art, and include those that are used as a support matrix.
  • These materials include, but are not limited to, inorganics, natural pol ⁇ mers, and s ⁇ nthetic pol ⁇ mers, including, but are not limited to: cellulose, cellulose derivatives, acr ⁇ lic resins, glass, silica gels, pol ⁇ st ⁇ rene, gelatin, pol ⁇ vin ⁇ l p ⁇ rrolidone, co-pol ⁇ mers of vin ⁇ l and acr ⁇ lamide, pol ⁇ st ⁇ rene cross-linked with divin ⁇ lbenzene and others (see, Merrifield, Biochemistry, 3: 1 385-1 390 (1 964)), pol ⁇ acr ⁇ lamides, latex gels, pol ⁇ st ⁇ rene, dextran, pol ⁇ acr ⁇ lamides, rubber, silicon, plastics, nitrocellulose, celluloses, natural sponges.
  • inorganics including, but are not limited to: cellulose, cellulose derivatives, acr ⁇ lic resins, glass, silica gels, pol ⁇ s
  • S ⁇ nthetic supports include, but are not limited to: acr ⁇ lamides, dextran- derivatives and dextran co-pol ⁇ mers, agarose-pol ⁇ acr ⁇ lamide blends, other pol ⁇ mers and co-pol ⁇ mers with various functional groups, methacr ⁇ late derivatives and co-pol ⁇ mers, pol ⁇ st ⁇ rene and pol ⁇ st ⁇ rene copol ⁇ mers (see, e.g. , Merrifield, Biochemistry, 3: 1 385-1 390 ( 1 964); Berg et al., in Innovation
  • Such materials include those made from pol ⁇ mers and co-pol ⁇ mers such as pol ⁇ vin ⁇ lalcohols, acr ⁇ lates and acr ⁇ lic acids such as pol ⁇ eth ⁇ lene-co-acr ⁇ lic acid, pol ⁇ eth ⁇ lene-co-methacr ⁇ lic acid, pol ⁇ eth ⁇ - lene-co-eth ⁇ iacr ⁇ late, pol ⁇ eth ⁇ lene-co-meth ⁇ l acr ⁇ late, pol ⁇ prop ⁇ lene-co-acr ⁇ lic acid, pol ⁇ prop ⁇ lene-co-meth ⁇ l-acr ⁇ lic acid, pol ⁇ prop ⁇ lene-co-eth ⁇ lacr ⁇ late, pol ⁇ prop ⁇ lene-co-meth ⁇ l acr ⁇ late, pol ⁇ prop ⁇ lene-co-meth ⁇ l acr ⁇ late, pol ⁇ prop ⁇ lene-co-meth ⁇ l acr ⁇ late, pol ⁇ prop ⁇ lene-co-eth ⁇ lacr ⁇ late
  • a composition containing the protein or other biomolecule is contacted with a support material such as alumina, carbon, an ion-exchange resin, cellulose, glass or a ceramic.
  • a support material such as alumina, carbon, an ion-exchange resin, cellulose, glass or a ceramic.
  • Fluorocarbon pol ⁇ mers have been used as supports to which biomolecules have been attached b ⁇ adsorption (see, U.S. Patent No. 3,843,443; Published International PCT Application WO/86 03840).
  • CVSP1 4 pol ⁇ peptide proteins, domains, analogs, and derivatives thereof, and encoding nucleic acids (and sequences complementar ⁇ thereto), and anti- CVSP14 pol ⁇ peptide antibodies can be used in diagnostics, particularl ⁇ diagnosis of cervical cancer, colon or pancreatic cancers.
  • Such molecules can be used in assa ⁇ s, such as immunoassa ⁇ s, to detect, prognose, diagnose, or monitor various conditions, diseases, and disorders affecting CVSP1 4 pol ⁇ peptide expression, or monitor the treatment thereof.
  • assa ⁇ s such as immunoassa ⁇ s
  • an immunoassa ⁇ is carried out b ⁇ a method including contacting a sample derived from a patient with an anti-CVSP1 4 pol ⁇ peptide antibod ⁇ under conditions such that specific binding can occur, and detecting or measuring the amount of an ⁇ specific binding b ⁇ the antibod ⁇ .
  • Such binding of antibod ⁇ , in tissue sections, can be used to detect aberrant CVSP1 4 pol ⁇ peptide localization or aberrant (e.g. , increased, decreased or absent) levels of CVSP1 4 pol ⁇ peptide.
  • antibod ⁇ to CVSP1 4 pol ⁇ peptide can be used to assa ⁇ in a patient tissue or serum sample for the presence of CVSP14 pol ⁇ peptide where an aberrant level of CVSP1 4 pol ⁇ peptide is an indication of a diseased condition.
  • the immunoassa ⁇ s which can be used include but are not limited to competitive and non-competitive assa ⁇ s ⁇ stems using techniques such as western blots, radioimmunoassa ⁇ s, ELISA (enz ⁇ me linked immunosorbent assa ⁇ ), "sandwich” immunoassa ⁇ s, immunoprecipitation assa ⁇ s, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assa ⁇ s, agglutination assa ⁇ s, complement-fixation assa ⁇ s, immunoradiometric assa ⁇ s, fluorescent immunoassa ⁇ s and protein A immunoassa ⁇ s.
  • CVSP14 pol ⁇ peptide nucleic acid sequences, or subsequences thereof containing about at least 8 nucleotides, generall ⁇ 14 or 1 6 or 30 or more, generall ⁇ less than 1000 or up to 100, continugous nucleotides can be used as h ⁇ bridization probes.
  • H ⁇ bridization assa ⁇ s can be used to detect, prognose, diagnose, or monitor conditions, disorders, or disease states associated with aberrant changes in CVSP1 4 pol ⁇ peptide expression and/or activit ⁇ as described herein.
  • such a h ⁇ bridization assa ⁇ is carried out b ⁇ a method b ⁇ contacting a sample containing nucleic acid with a nucleic acid probe capable of h ⁇ bridizing to CVSP1 4 pol ⁇ peptide encoding DNA or RNA, under conditions such that h ⁇ bridization can occur, and detecting or measuring an ⁇ resulting h ⁇ bridization.
  • a method of diagnosing a disease or disorder characterized b ⁇ detecting an aberrant level of a CVSP1 4 pol ⁇ peptide in a subject b ⁇ measuring the level of the DNA, RNA, protein or functional activit ⁇ of the CVSP1 4 pol ⁇ peptide in a sample derived from the subject, wherein an increase or decrease in the level of the DNA, RNA, protein or functional activit ⁇ of the CVSP14 pol ⁇ peptide, relative to the level of the DNA, RNA, protein or functional activit ⁇ found in an analogous sample not having the disease or disorder indicates the presence of the disease or disorder in the subject.
  • Kits for diagnostic use contain in one or more containers an anti-CVSP14 pol ⁇ peptide antibod ⁇ , and, optionall ⁇ , a labeled binding partner to the antibod ⁇ .
  • the anti-CVSP1 4 pol ⁇ peptide antibod ⁇ can be labeled (with a detectable marker, e.g. , a chemiluminescent, enz ⁇ matic, fluorescent, or radioactive moiet ⁇ ).
  • a kit is also provided that includes in one or more containers a nucleic acid probe capable of h ⁇ bridizing to SP protein-encoding RNA.
  • a kit can comprise in one or more containers a pair of primers (e.g.
  • kits can optionall ⁇ further comprise in a container a predetermined amount of a purified CVSP1 4 pol ⁇ peptide or nucleic acid, e.g. , for use as a standard or control.
  • K Pharmaceutical compositions and modes of administration
  • compositions containing the identified compounds that modulate the activit ⁇ of a CVSP14 pol ⁇ peptide are provided herein. Also provided are combinations of a compound that modulates the activit ⁇ of a CVSP1 4 pol ⁇ peptide and another treatment or compound for treatment of a neoplastic disorder, such as a chemotherapeutic compound.
  • the CVSP1 4 pol ⁇ peptide modulator and the anti-tumor agent can be packaged as separate compositions for administration together or sequentiall ⁇ or intermittentl ⁇ . Alternativel ⁇ , the ⁇ can provided as a single composition for administration or as two compositions for administration as a single composition.
  • the combinations can be packaged as kits. a. CVSP14 pol ⁇ peptide inhibitors
  • An ⁇ CVSP1 pol ⁇ peptide inhibitors including those described herein when used alone or in combination with other compounds, that can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical s ⁇ mptoms or diagnostic markers associated with neoplastic diseases, including undesired and/or uncontrolled angiogenesis, can be used in the present combinations.
  • the CVSP1 4 pol ⁇ peptide inhibitor is an antibod ⁇ or fragment thereof that specificall ⁇ reacts with a CVSP14 pol ⁇ peptide or the protease domain thereof, an inhibitor of the CVSP1 4 pol ⁇ peptide production, an inhibitor of CVSP1 4 pol ⁇ peptide membrane-localization, or an ⁇ inhibitor of the expression of or, especiall ⁇ , the activit ⁇ of a CVSP14 pol ⁇ peptide.
  • An ⁇ anti-angiogenic agents and anti-tumor agents when used alone or in combination with other compounds, that can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical s ⁇ mptoms or diagnostic markers associated with undesired and/or uncontrolled angiogenesis and/or tumor growth and metastasis, particularl ⁇ solid neoplasms, vascular malformations and cardiovascular disorders, chronic inflammator ⁇ diseases and aberrant wound repairs, circulator ⁇ disorders, crest s ⁇ ndromes, dermatological disorders, or ocular disorders, can be used in the combinations. Also contemplated are anti-tumor agents for use in combination with an inhibitor of a CVSP14 pol ⁇ peptide. c. Anti-tumor agents and anti-angiogenic agents
  • the compounds herein and agents can be formulated as pharmaceutical compositions, t ⁇ picall ⁇ for single dosage administration.
  • concentrations of the compounds in the formulations are effective for deliver ⁇ of an amount, upon administration, that is effective for the intended treatment.
  • T ⁇ picall ⁇ the compositions are formulated for single dosage administration.
  • To formulate a composition the weight fraction of a compound or mixture thereof is dissolved, suspended, dispersed or otherwise mixed in a selected vehicle at an effective concentration such that the treated condition is relieved or ameliorated.
  • Pharmaceutical carriers or vehicles suitable for administration of the compounds provided herein include an ⁇ such carriers known to those skilled in the art to be suitable for the particular mode of administration.
  • the compounds can be formulated as the sole pharmaceuticall ⁇ active ingredient in the composition or can be combined with other active ingredients.
  • Liposomal suspensions including tissue-targeted liposomes, can also be suitable as pharmaceuticall ⁇ acceptable carriers. These can be prepared according to methods known to those skilled in the art. For example, liposome formulations can be prepared as described in U.S. Patent No. 4,522,81 1 .
  • the active compound is included in the pharmaceuticall ⁇ acceptable carrier in an amount sufficient to exert a therapeuticall ⁇ useful effect in the absence of undesirable side effects on the patient treated.
  • the therapeuticall ⁇ effective concentration can be determined empiricall ⁇ b ⁇ testing the compounds in known jn vitro and m vivo s ⁇ stems, such as the assa ⁇ s provided herein.
  • the concentration of active compound in the drug composition depends on absorption, inactivation and excretion rates of the active compound, the ph ⁇ sicochemical characteristics of the compound, the dosage schedule, and amount administered as well as other factors known to those of skill in the art.
  • T ⁇ picali ⁇ a therapeuticall ⁇ effective dosage is contemplated.
  • the amounts administered can be on the order of 0.001 to 1 mg/ml, including about 0.005-0.05 mg/ml and about 0.01 mg/ml, of blood volume.
  • Pharmaceutical dosage unit forms are prepared to provide from about 1 mg to about 1 000 mg, including from about 1 0 to about 500 mg, and including about 25-75 mg of the essential active ingredient or a combination of essential ingredients per dosage unit form.
  • the precise dosage can be empiricall ⁇ determined.
  • the active ingredient can be administered at once, or can be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and can be determined empiricall ⁇ using known testing protocols or b ⁇ extrapolation from in vivo or in vitro test data. It is to be noted that concentrations and dosage values can also var ⁇ with the severit ⁇ of the condition to be alleviated.
  • compositions for an ⁇ particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplar ⁇ onl ⁇ and are not intended to limit the scope or use of the claimed compositions and combinations containing them.
  • Pharmaceuticall ⁇ acceptable derivatives include acids, salts, esters, h ⁇ drates, solvates and prodrug forms. The derivative is t ⁇ picall ⁇ selected such that its pharmacokinetic properties are superior to the corresponding neutral compound.
  • compositions are mixed with a suitable pharmaceutical carrier or vehicle for s ⁇ stemic, topical or local administration to form pharmaceutical compositions.
  • a suitable pharmaceutical carrier or vehicle for s ⁇ stemic, topical or local administration to form pharmaceutical compositions.
  • Compounds are included in an amount effective for ameliorating or treating the disorder for which treatment is contemplated.
  • concentration of active compound in the composition depends on absorption, inactivation, excretion rates of the active compound, the dosage schedule, amount administered, particular formulation as well as other factors known to those of skill in the art.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include an ⁇ of the following components: a sterile diluent, such as water for injection, saline solution, fixed oil, pol ⁇ eth ⁇ lene gl ⁇ col, gl ⁇ cerine, prop ⁇ lene gl ⁇ col or other s ⁇ nthetic solvent; antimicrobial agents, such as benz ⁇ l alcohol and meth ⁇ l parabens; antioxidants, such as ascorbic acid and sodium bisulfite; chelating agents, such as eth ⁇ lenediaminetetraacetic acid (EDTA); buffers, such as acetates, citrates and phosphates; and agents for the adjustment of tonicit ⁇ such as sodium chloride or dextrose.
  • Parenteral preparations can be enclosed in ampules, disposable s ⁇ ringes or single or multiple dose vials made of glass, plastic or other suitable material.
  • solubilizing compounds can be used. Such methods are known to those of skill in this art, and include, but are not limited to, using cosolvents, such as dimethylsulfoxide (DMSO), using surfactants, such as Tween ® , or dissolution in aqueous sodium bicarbonate. Derivatives of the compounds, such as prodrugs of the compounds can also be used in formulating effective pharmaceutical compositions.
  • the compositions are formulated in an ophthalmicall ⁇ acceptable carrier.
  • local administration either b ⁇ topical administration or b ⁇ injection are contemplated.
  • Time release formulations are also desirable. T ⁇ picall ⁇ , the compositions are formulated for single dosage administration, so that a single dose administers an effective amount.
  • the resulting mixture can be a solution, suspension, emulsion or other composition.
  • the form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle. If necessary, pharmaceutically acceptable salts or other derivatives of the compounds are prepared.
  • the compound is included in the pharmaceutically acceptable carrier in an amount sufficient to exert a therapeutically useful effect in the absence of undesirable side effects on the patient treated. It is understood that number and degree of side effects depends upon the condition for which the compounds are administered. For example, certain toxic and undesirable side effects are tolerated when treating life-threatening illnesses that would not be tolerated when treating disorders of lesser consequence.
  • the compounds also can be mixed with other active materials, that do not impair the desired action, or with materials that supplement the desired action known to those of skill in the art.
  • the formulations of the compounds and agents for use herein include those suitable for oral, rectal, topical, inhalational, buccal (e.g. , sublingual), parenteral (e.g. , subcutaneous, intramuscular, intradermal, or intravenous), transdermal administration or an ⁇ route.
  • the most suitable route in an ⁇ given case depends on the nature and severit ⁇ of the condition being treated and on the nature of the particular active compound which is being used.
  • the formulations are provided for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, sterile parenteral solutions or suspensions, and oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds or pharmaceuticall ⁇ acceptable derivatives thereof.
  • the pharmaceuticall ⁇ therapeuticall ⁇ active compounds and derivatives thereof are t ⁇ picall ⁇ formulated and administered in unit-dosage forms or multiple-dosage forms.
  • Unit-dose forms as used herein refers to ph ⁇ sicall ⁇ discrete units suitable for human and animal subjects and packaged individuall ⁇ as is known in the art.
  • Each unit-dose contains a predetermined quantit ⁇ of the therapeuticall ⁇ active compound sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carrier, vehicle or diluent.
  • unit-dose forms include ampoules and s ⁇ ringes and individuall ⁇ packaged tablets or capsules.
  • Unit-dose forms can be administered in fractions or multiples thereof.
  • a multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dose form.
  • Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pints or gallons.
  • multiple dose form is a multiple of unit-doses which are not segregated in packaging.
  • the composition can contain along with the active ingredient: a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymeth ⁇ lcellulose; a lubricant, such as magnesium stearate, calcium stearate and talc; and a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polvin ⁇ lp ⁇ rrolidine, celluloses and derivatives thereof, povidone, crospovidones and other such binders known to those of skill in the art.
  • a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymeth ⁇ lcellulose
  • a lubricant such as magnesium stearate, calcium stearate and talc
  • a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polvin ⁇ lp ⁇ rrolidine, celluloses and derivatives thereof, po
  • Liquid pharmaceuticall ⁇ administrable compositions can, for example, be prepared b ⁇ dissolving, dispersing, or otherwise mixing an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, gl ⁇ cerol, gl ⁇ cols, ethanol, and the like, to thereb ⁇ form a solution or suspension.
  • a carrier such as, for example, water, saline, aqueous dextrose, gl ⁇ cerol, gl ⁇ cols, ethanol, and the like
  • the pharmaceutical composition to be administered can also contain minor amounts of nontoxic auxiliar ⁇ substances such as wetting agents, emulsif ⁇ ing agents, or solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, c ⁇ clodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
  • auxiliar ⁇ substances such as wetting agents, emulsif ⁇ ing agents, or solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, c ⁇ clodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
  • Methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art (see, e.g. , Remington's Pharmaceutical Sciences, Mack Publishing Compan ⁇ , Easton, Pa., 1 5th Edition, 1 975).
  • the pharmaceutical compositions can take the form of, for example, tablets or capsules prepared b ⁇ conventional means with pharmaceuticall ⁇ acceptable excipients such as binding agents (e.g. , pregelatinized maize starch, pol ⁇ vin ⁇ l p ⁇ rrolidone or h ⁇ drox ⁇ prop ⁇ l meth ⁇ lcellulose); fillers (e.g. , lactose, microcr ⁇ stalline cellulose or calcium h ⁇ drogen phosphate); lubricants (e.g. , magnesium stearate, talc or silica); disintegrants (e.g. , potato starch or sodium starch gl ⁇ colate); or wetting agents (e.g. , sodium laur ⁇ l sulphate).
  • the tablets can be coated b ⁇ methods well- known in the art.
  • the pharmaceutical preparation can also be in liquid form, for example, solutions, s ⁇ rups or suspensions, or can be presented as a drug product for reconstitution with water or other suitable vehicle before use.
  • Such liquid preparations can be prepared b ⁇ conventional means with pharmaceuticall ⁇ acceptable additives such as suspending agents (e.g. , sorbitol s ⁇ rup, cellulose derivatives or h ⁇ drogenated edible fats); emulsif ⁇ ing agents (e.g. , lecithin or acacia); non-aqueous vehicles (e.g. , almond oil, oil ⁇ esters, or fractionated vegetable oils); and preservatives (e.g. , meth ⁇ l or prop ⁇ l-p-h ⁇ drox ⁇ benzoates or sorbic acid).
  • suspending agents e.g. , sorbitol s ⁇ rup, cellulose derivatives or h ⁇ drogenated edible fats
  • emulsif ⁇ ing agents e.g. , lecithin
  • Formulations suitable for rectal administration can be presented as unit dose suppositories. These can be prepared b ⁇ admixing the active compound with one or more conventional solid carriers, for example, cocoa butter, and then shaping the resulting mixture.
  • one or more conventional solid carriers for example, cocoa butter
  • Formulations suitable for topical application to the skin or to the e ⁇ e generall ⁇ are formulated as an ointment, cream, lotion, paste, gel, spra ⁇ , aerosol and oil.
  • Carriers which can be used include vaseline, lanoline, pol ⁇ eth ⁇ lene gl ⁇ cols, alcohols, and combinations of two or more thereof.
  • the topical formulations can further advantageousl ⁇ contain 0.05 to 1 5 percent b ⁇ weight of thickeners selected from among h ⁇ drox ⁇ prop ⁇ l meth ⁇ l cellulose, meth ⁇ l cellulose, pol ⁇ vin ⁇ lp ⁇ rrolidone, pol ⁇ vin ⁇ l alcohol, pol ⁇ (alk ⁇ lene gl ⁇ cols), pol ⁇ /h ⁇ drox ⁇ alk ⁇ l, (meth)acr ⁇ lates or pol ⁇ (meth)acr ⁇ lamides.
  • a topical formulation is often applied b ⁇ instillation or as an ointment into the conjunctival sac. It also can be used for irrigation or lubrication of the e ⁇ e, facial sinuses, and external auditor ⁇ meatus.
  • the topical formulations in the liquid state can be also present in a h ⁇ drophilic three-dimensional pol ⁇ mer matrix in the form of a strip, contact lens, and the like from which the active components are released.
  • the compounds for use herein can be delivered in the form of an aerosol spra ⁇ presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g. , dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas.
  • the dosage unit can be determined b ⁇ providing a valve to deliver a metered amount.
  • Capsules and cartridges of, e.g. , gelatin, for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
  • Formulations suitable for buccal (sublingual) administration include, for example, lozenges containing the active compound in a flavored base, usuall ⁇ sucrose and acacia or tragacanth; and pastilles containing the compound in an inert base such as gelatin and gl ⁇ cerin or sucrose and acacia.
  • the compounds can be formulated for parenteral administration b ⁇ injection, e.g. , b ⁇ bolus injection or continuous infusion.
  • Formulations for injection can be presented in unit dosage form, e.g. , in ampules or in multi-dose containers, with an added preservative.
  • the compositions can be suspensions, solutions or emulsions in oil ⁇ or aqueous vehicles, and can contain formulator ⁇ agents such as suspending, stabilizing and/or dispersing agents.
  • the active ingredient can be in powder form for reconstitution with a suitable vehicle, e.g. , sterile p ⁇ rogen-free water or other solvents, before use.
  • Formulations suitable for transdermal administration can be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Such patches suitabl ⁇ contain the active compound as an optionall ⁇ buffered aqueous solution of, for example, 0.1 to 0.2 M concentration with respect to the active compound. Formulations suitable for transdermal administration can also be delivered b ⁇ iontophoresis (see, e.g. , Pharmaceutical Research 3 (6), 31 8 ( 1 986)) and t ⁇ picall ⁇ take the form of an optionall ⁇ buffered aqueous solution of the active compound.
  • compositions can also be administered b ⁇ controlled release means and/or deliver ⁇ devices (see, e.g. , in U.S. Patent Nos. 3,536,809; 3,598, 1 23; 3,630,200; 3,845,770; 3,847,770; 3,91 6,899; 4,008,71 9; 4,687,610; 4,769,027; 5,059,595; 5,073,543; 5, 1 20,548; 5,354,566; 5,591 ,767; 5,639,476; 5,674,533 and 5,733,566).
  • Desirable blood levels can be maintained b ⁇ a continuous infusion of the active agent as ascertained b ⁇ plasma levels. It should be noted that the attending ph ⁇ sician would know how to and when to terminate, interrupt or adjust therap ⁇ to lower dosage due to toxicit ⁇ , or bone marrow, liver or kidne ⁇ d ⁇ sfunctions. Conversely, the attending physician would also know how to and when to adjust treatment to higher levels if the clinical response is not adequate (precluding toxic side effects).
  • the efficac ⁇ and/or toxicit ⁇ of the CVSP14 pol ⁇ peptide inhibitor(s), alone or in combination with other agents also can be assessed b ⁇ the methods known in the art (See generall ⁇ , O'Reilly, Investigational New Drugs, J_5 :5-1 3 ( 1 997)).
  • the active compounds or pharmaceutically acceptable derivatives can be prepared with carriers that protect the compound against rapid elimination from the body, such as time release formulations or coatings.
  • Kits containing the compositions and/or the combinations with instructions for administration thereof are provided.
  • the kit can further include a needle or s ⁇ ringe, typically packaged in sterile form, for injecting the complex, and/or a packaged alcohol pad.
  • Instructions are optionally included for administration of the active agent b ⁇ a clinician or b ⁇ the patient.
  • the compounds or CVSP14 polypeptides or protease domains thereof or compositions containing an ⁇ of the preceding agents can be packaged as articles of manufacture containing packaging material, a compound or suitable derivative thereof provided herein, which is effective for treatment of a diseases or disorders contemplated herein, within the packaging material, and a label that indicates that the compound or a suitable derivative thereof is for treating the diseases or disorders contemplated herein.
  • the label can optionall ⁇ include the disorders for which the therap ⁇ is warranted. L.
  • the compounds identified b ⁇ the methods herein are used for treating or preventing neoplastic diseases in an animal, particularl ⁇ a mammal, including a human, is provided herein.
  • the method includes administering to a mammal an effective amount of an inhibitor of a CVSP14 pol ⁇ peptide, whereb ⁇ the disease or disorder is treated or prevented.
  • the CVSP14 pol ⁇ peptide inhibitor used in the treatment or prevention is administered with a pharmaceuticall ⁇ acceptable carrier or excipient.
  • the mammal treated can be a human.
  • the inhibitors provided herein are those identified b ⁇ the screening assa ⁇ s.
  • antibodies and antisense nucleic acids or double-stranded RNA (dsRNA), such as RNAi, are contemplated.
  • the treatment or prevention method can further include administering an anti-angiogenic treatment or agent or anti-tumor agent simultaneousl ⁇ with, prior to or subsequent to the CVSP1 4 pol ⁇ peptide inhibitor, which can be an ⁇ compound identified that inhibits the activit ⁇ of a CVSP14 pol ⁇ peptide.
  • Such compounds include small molecule modulators, an antibod ⁇ or a fragment or derivative thereof containing a binding region thereof against the CVSP14 pol ⁇ peptide, an antisense nucleic acid or double-stranded RNA (dsRNA), such as RNAi, encoding the CVSP14 pol ⁇ peptide, and a nucleic acid containing at least a portion of a gene encoding the CVSP14 pol ⁇ peptide into which a heterologous nucleotide sequence has been inserted such that the heterologous sequence inactivates the biological activit ⁇ of at least a portion of the gene encoding the CVSP1 4 pol ⁇ peptide, in which the portion of the gene encoding the CVSP1 4 pol ⁇ peptide flanks the heterologous sequence to promote homologous recombination with a genomic gene encoding the CVSP1 4 pol ⁇ peptide.
  • dsRNA double-stranded RNA
  • RNAi double-stranded RNA
  • CVSP14 pol ⁇ peptide function is reduced or inhibited b ⁇ CVSP1 4 pol ⁇ peptide antisense nucleic acids, to treat or prevent neoplastic disease.
  • a CVSP14 pol ⁇ peptide "antisense" nucleic acid as used herein refers to a nucleic acid capable of h ⁇ bridizing to a portion of a CVSP1 4 pol ⁇ peptide RNA (generall ⁇ mRNA) b ⁇ virtue of some sequence complementarit ⁇ , and generall ⁇ under high stringenc ⁇ conditions.
  • the antisense nucleic acid can be complementar ⁇ to a coding and/or noncoding region of a CVSP1 4 pol ⁇ peptide mRNA.
  • Such antisense nucleic acids have utilit ⁇ as therapeutics that reduce or inhibit CVSP1 4 pol ⁇ peptide function, and can be used in the treatment or prevention of disorders as described supra.
  • the CVSP14 pol ⁇ peptide antisense nucleic acids are of at least six nucleotides and are generall ⁇ oligonucleotides (ranging from 6 to about 1 50 nucleotides including 6 to 50 nucleotides).
  • the antisense molecule can be complementar ⁇ to all or a portion of the protease domain.
  • the oligonucleotide is at least 10 nucleotides, at least 1 5 nucleotides, at least 100 nucleotides, or at least 1 25 nucleotides.
  • the oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single- stranded or double-stranded.
  • the oligonucleotide can be modified at the base moiet ⁇ , sugar moiet ⁇ , or phosphate backbone.
  • the oligonucleotide can include other appending groups such as peptides, or agents facilitating transport across the cell membrane (see, e.g. , Letsinger et al., Proc. Natl. Acad. Sci. U. S.A. 86:6553-6556 ( 1 989); Lemaitre et al., Proc. Natl. Acad. Sci. U.S.A. 84:648-652 ( 1 987); PCT Publication No. WO 88/09810, published December 1 5, 1 988) or blood-brain barrier (see, e.g.
  • the CVSP1 4 pol ⁇ peptide antisense nucleic acid generall ⁇ is an oligonucleotide, t ⁇ picall ⁇ single-stranded DNA or RNA or an analog thereof or mixtures thereof.
  • the oligonucleotide includes a sequence antisense to a portion of human CVSP1 4 pol ⁇ peptide.
  • the oligonucleotide can be modified at an ⁇ position on its structure with substituents generall ⁇ known in the art.
  • the CVSP14 pol ⁇ peptide antisense oligonucleotide can include at least one modified base moiet ⁇ which is selected from the group including, but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, h ⁇ poxanthine, xanthine, 4-acet ⁇ lc ⁇ tosine, 5-(carbox ⁇ h ⁇ drox ⁇ lmeth ⁇ l) uracil, 5-carbox ⁇ meth ⁇ laminometh ⁇ l-2-thiouridine, 5-carbox ⁇ meth ⁇ laminometh ⁇ luracil, dih ⁇ drouracil, beta-D-galactos ⁇ lqueosine, inosine, N6-isopenten ⁇ ladenine, 1 -meth ⁇ lguanine, 1 -meth ⁇ linosine, 2,2-dimeth ⁇ lguanine, 2-meth ⁇ ladenine, 2-meth ⁇ lguanine, 3-meth ⁇ lc ⁇ tosine,
  • the oligonucleotide includes at least one modified sugar moiet ⁇ selected from the group including but not limited to arabinose, 2-fluoroarabinose, x ⁇ lulose, and hexose.
  • the oligonucleotide can include at least one modified phosphate backbone selected from a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a meth ⁇ lphosphonate, an alk ⁇ l phosphotriester, and a formacetal or analog thereof.
  • the oligonucleotide can be an ⁇ -anomeric oligonucleotide.
  • An ⁇ -anomeric oligonucleotide forms specific double-stranded h ⁇ brids with complementar ⁇ RNA in which the strands run parallel to each other (Gautier et al., Nucl. Acids Res. 15:6625-6641 ( 1 9871).
  • the oligonucleotide can be conjugated to another molecule, e.g. , a peptide, h ⁇ bridization triggered cross-linking agent, transport agent and h ⁇ bridization-triggered cleavage agent.
  • another molecule e.g. , a peptide, h ⁇ bridization triggered cross-linking agent, transport agent and h ⁇ bridization-triggered cleavage agent.
  • the oligonucleotides can be s ⁇ nthesized b ⁇ standard methods known in the art, e.g. b ⁇ use of an automated DNA s ⁇ nthesizer (such as are commerciall ⁇ available from Biosearch, Applied Bios ⁇ stems, etc.).
  • phosphorothioate oligonucleotides can be s ⁇ nthesized b ⁇ the method of Stein et al. (Nucl. Acids Res. 16:3209 ( 1 988)), meth ⁇ lphosphonate oligonucleotides can be prepared b ⁇ use of controlled pore glass pol ⁇ mer supports (Sarin et al., Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451 ( 1 988)), etc.
  • the CVSP1 4 pol ⁇ peptide antisense oligonucleotide includes catal ⁇ tic RNA or a riboz ⁇ me (see, e.g. , PCT International Publication WO 90/1 1 364, published October 4, 1 990; Sarver et al., Science 247: 1 222-1 225 ( 1 990)).
  • the oligonucleotide ' is a 2'-0- meth ⁇ lribonucleotide (Inoue et al., Nucl. Acids Res. 15:61 31 -6148 ( 1 987)1, or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 21 5 :327-330 (1 987)).
  • the oligonucleotide can be double-stranded RNA (dsRNA) such as RNAi.
  • the CVSP14 pol ⁇ peptide antisense nucleic acid is produced intracellularl ⁇ b ⁇ transcription from an exogenous sequence.
  • a vector can be introduced in vivo such that it is taken up b ⁇ a cell, within which cell the vector or a portion thereof is transcribed, producing an antisense nucleic acid (RNA).
  • RNA antisense nucleic acid
  • Such a vector would contain a sequence encoding the CVSP14 pol ⁇ peptide antisense nucleic acid.
  • Such a vector can remain episomal or become chromosomall ⁇ integrated, as long as it can be transcribed to produce the desired antisense RNA.
  • Such vectors can be constructed b ⁇ recombinant DNA technolog ⁇ methods standard in the art.
  • Vectors can be plasmid, viral, or others known in the art, used for replication and expression in mammalian cells.
  • Expression of the sequence encoding the CVSP1 4 pol ⁇ peptide antisense RNA can be b ⁇ an ⁇ promoter known in the art to act in mammalian, including human, cells. Such promoters can be inducible or constitutive.
  • Such promoters include but are not limited to: the SV40 earl ⁇ promoter region (Bernoist and Chambon, Nature 290:304-31 0 ( 1 981 ), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787- 797 ( 1 980), the herpes th ⁇ midine kinase promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78: 1441 -1 445 ( 1 981 ), the regulator ⁇ sequences of the metallothionein gene (Brinster et al., Nature 296:39-42 (1 982), etc.
  • the antisense nucleic acids include sequence complementar ⁇ to at least a portion of an RNA transcript of a CVSP1 4 pol ⁇ peptide gene, including a human CVSP1 4 pol ⁇ peptide gene. Absolute complementaril ⁇ is not required.
  • the amount of CVSP1 4 pol ⁇ peptide antisense nucleic acid (dsRNA) that is effective in the treatment or prevention of neoplastic disease depends on the nature of the disease, and can be determined empiricall ⁇ b ⁇ standard clinical techniques. Where possible, it is desirable to determine the antisense c ⁇ totoxicit ⁇ in cells in vitro, and then in useful animal model s ⁇ stems prior to testing and use in humans. 2.
  • RNA interference RNA interference
  • RNA interference (RNAi) (see, e.g. Chuang et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 37:4985) can be emplo ⁇ ed to inhibit the expression of a gene encoding a CVSP1 4.
  • Interfering RNA (RNAi) fragments, particularl ⁇ double- stranded (ds) RNAi, can be used to generate loss-of-CVSP14 function.
  • Methods relating to the use of RNAi to silence genes in organisms including, mammals, C. elegans, Drosophila and plants, and humans are known (see, e.g. , Fire et al.
  • Double-stranded RNA (dsRNA)-expressing constructs are introduced into a host, such as an animal or plant using, a replicable vector that remains episomal or integrates into the genome.
  • RNAi can interfere with accumulation of endogenous mRNA encoding a CVSP1 4.
  • RNAi also can be used to inhibit expression in vitro. Regions include at least about 21 (or 21 ) nucleotides that are selective (i.e. unique) for CVSP14 are used to prepare the RNAi. Smaller fragments of about 21 nucleotides can be transformed directl ⁇ into cells; larger RNAi dsRNA molecules are generall ⁇ introduced using vectors that encode them. dsRNA molecules are at least about 21 bp long or longer, such as 50, 1 00, 1 50, 200 and longer.
  • nucleic acids that include a sequence of nucleotides encoding a CVSP1 4 pol ⁇ peptide or functional domains or derivative thereof, are administered to promote CVSP14 pol ⁇ peptide function, b ⁇ wa ⁇ of gene therap ⁇ .
  • Gene therap ⁇ refers to therap ⁇ performed b ⁇ the administration of a nucleic acid to a subject.
  • the nucleic acid produces its encoded protein that mediates a therapeutic effect b ⁇ promoting CVSP1 4 pol ⁇ peptide function.
  • one therapeutic composition for gene therap ⁇ includes a CVSP1 4 pol ⁇ peptide-encoding nucleic acid that is part of an expression vector that expresses a CVSP1 4 pol ⁇ peptide or domain, fragment or chimeric protein thereof in a suitable host.
  • a nucleic acid has a promoter operabl ⁇ linked to the CVSP1 4 pol ⁇ peptide coding region, the promoter being inducible or constitutive, and, optionall ⁇ , tissue-specific.
  • a nucleic acid molecule in which the CVSP1 4 pol ⁇ peptide coding sequences and an ⁇ other desired sequences are flanked b ⁇ regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the SP protein nucleic acid (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 ( 1 989); Zijlstra et al., Nature 342:435-438 ( 1 989)).
  • Deliver ⁇ of the nucleic acid into a patient can be either direct, in which case the patient is directl ⁇ exposed to the nucleic acid or nucleic acid-carr ⁇ ing vector, or indirect, in which case, cells are first transformed with the nucleic acid in vitro, then transplanted into the patient.
  • These two approaches are known, respectivel ⁇ , as in vivo or ex vivo gene therap ⁇ .
  • the nucleic acid is directl ⁇ administered in vivo, where it is expressed to produce the encoded product.
  • This can be accomplished b ⁇ an ⁇ of numerous methods known in the art, e.g. , b ⁇ constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g. , b ⁇ infection using a defective or attenuated retroviral or other viral vector (see U.S. Patent No. 4,980,286), or b ⁇ direct injection of naked DNA, or b ⁇ use of microparticle bombardment (e.g.
  • a gene gun Biolistic, Dupont
  • a nucleic acid-ligand complex can be formed in which the ligand is a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid I ⁇ sosomal degradation.
  • the nucleic acid can be targeted in vivo for cell specific uptake and expression, b ⁇ targeting a specific receptor (see, e.g., PCT Publications WO 92/061 80 dated April 1 6, 1 992 (Wu et al.); WO 92/22635 dated December 23, 1 992 (Wilson et al.); WO92/2031 6 dated November 26, 1 992 (Findeis et al.); W093/1 41 88 dated Jul ⁇ 22, 1 993 (Clarke et al.), WO 93/20221 dated October 1 4, 1 993 (Young)).
  • the nucleic acid can be introduced intracellularl ⁇ and incorporated within host cell DNA for expression, b ⁇ homologous recombination (Koller and Smithies, Proc. Natl. Acad. 5c/. USA 86:8932-8935 ( 1 989); Zijlstra et al., Nature 342:435-438 ( 1 989)).
  • a viral vector that contains the CVSP1 4 pol ⁇ peptide nucleic acid is used.
  • a retroviral vector can be used (see Miller et al., Meth. Enzymol. 21 7:581 -599 ( 1 993)).
  • retroviral vectors have been modified to delete retroviral sequences that are not necessar ⁇ for packaging of the viral genome and integration into host cell DNA.
  • the CVSP1 4 pol ⁇ peptide nucleic acid to be used in gene therap ⁇ is cloned into the vector, which facilitates deliver ⁇ of the gene into a patient. More detail about retroviral vectors can be found in Boesen et al., Biotherapy 6:291 -302 ( 1 994), which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherap ⁇ .
  • Adenoviruses are other viral vectors that can be used in gene therap ⁇ .
  • Adenoviruses are especiall ⁇ attractive vehicles for delivering genes to respirator ⁇ epithelia.
  • Adenoviruses naturall ⁇ infect respirator ⁇ epithelia where the ⁇ cause a mild disease.
  • Other targets for adenovirus-based deliver ⁇ s ⁇ stems are liver, the central nervous s ⁇ stem, endothelial cells, and muscle.
  • Adenoviruses have the advantage of being capable of infecting non-dividing cells.
  • Kozarsk ⁇ and Wilson Current Opinion in Genetics and Development 3:499-503 ( 1 993) present a review of adenovirus-based gene therap ⁇ .
  • Adeno-associated virus has also been proposed for use in gene therap ⁇ (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 ( 1 993).
  • Another approach to gene therap ⁇ involves transferring a gene to cells in tissue culture b ⁇ such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection.
  • the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.
  • the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell.
  • Such introduction can be carried out b ⁇ an ⁇ method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc.
  • Numerous techniques are known in the art for the introduction of foreign genes into cells (see e.g. , Loeffler and Behr, Meth. Enzymol. 2 T7:599-61 8 ( 1 993); Cohen et al., Meth. Enzymol. 21 7:61 8-644 ( 1 993); Cline, Pharmac Ther.
  • the technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible b ⁇ the cell and generall ⁇ heritable and expressible b ⁇ its cell progen ⁇ .
  • the resulting recombinant cells can be delivered to a patient b ⁇ various methods known in the art.
  • epithelial cells are injected, e.g. , subcutaneousl ⁇ .
  • recombinant skin cells can be applied as a skin graft onto the patient.
  • Recombinant blood cells e.g. , hematopoietic stem or progenitor cells
  • the amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined b ⁇ one skilled in the art.
  • Cells into which a nucleic acid can be introduced for purposes of gene therap ⁇ encompass an ⁇ desired, available cell t ⁇ pe, and include but are not limited to epithelial cells, endothelial cells, keratinoc ⁇ tes, fibroblasts, muscle cells, hepatoc ⁇ tes; blood cells such as T I ⁇ mphoc ⁇ tes, B I ⁇ mphoc ⁇ tes, monoc ⁇ tes, macrophages, neutrophils, eosinophils, megakar ⁇ oc ⁇ tes, granuloc ⁇ tes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g. , such as stem cells obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, and other sources thereof.
  • a cell used for gene therap ⁇ is autologous to the patient.
  • a CVSP1 4 pol ⁇ peptide nucleic acid is introduced into the cells such that it is expressible b ⁇ the cells or their progen ⁇ , and the recombinant cells are then administered in vivo for therapeutic effect.
  • stem or progenitor cells are used.
  • An ⁇ stem and/or progenitor cells which can be isolated and maintained in vitro can potentiall ⁇ be used in accordance with this embodiment.
  • stem cells include but are not limited to hematopoietic stem cells (HSC), stem cells of epithelial tissues such as the skin and the lining of the gut, embr ⁇ onic heart muscle cells, liver stem cells (PCT Publication WO 94/08598, dated April 28, 1 994), and neural stem cells (Stemple and Anderson, Cell 71:973-985 ( 1 992)).
  • HSC hematopoietic stem cells
  • stem cells of epithelial tissues such as the skin and the lining of the gut
  • embr ⁇ onic heart muscle cells such as the skin and the lining of the gut
  • liver stem cells PCT Publication WO 94/08598, dated April 28, 1 994
  • neural stem cells Stemple and Anderson, Cell 71:973-985 ( 1 992)
  • Epithelial stem cells (ESCs) or keratinoc ⁇ tes can be obtained from tissues such as the skin and the lining of the gut b ⁇ known procedures (Rheinwald, Meth. Cell Bio. 27/1 :229
  • ESCs or keratinoc ⁇ tes obtained from the skin or lining of the gut of a patient or donor can be grown in tissue culture (Rheinwald, Meth. Cell Bio. 27A :229 ( 1 980); Pittelkow and Scott, Cano Clinic Proc. 67 :771 ( 1 986)). If the ESCs are provided b ⁇ a donor, a method for suppression of host versus graft reactivit ⁇ (e.g.
  • HSC hematopoietic stem cells
  • Techniques b ⁇ which this can be accomplished include (a) the isolation and establishment of HSC cultures from bone marrow cells isolated from the future host, or a donor, or (b) the use of previousl ⁇ established long-term HSC cultures, which can be allogeneic or xenogeneic.
  • Non-autologous HSC generall ⁇ are used with a method of suppressing transplantation immune reactions of the future host/patient.
  • human bone marrow cells can be obtained from the posterior iliac crest b ⁇ needle aspiration (see, e.g. , Kodo et al., J. Clin. Invest. 73: 1 377-1 384 ( 1 984)).
  • the HSCs can be made highl ⁇ enriched or in substantiall ⁇ pure form. This enrichment can be accomplished before, during, or after long- term culturing, and can be done b ⁇ an ⁇ techniques known in the art.
  • Long-term cultures of bone marrow cells can be established and maintained b ⁇ using, for example, modified Dexter cell culture techniques (Dexter et al., J. Cell Physio/. 37 :335 ( 1 977) or Witlock-Witte culture techniques (Witlock and Witte, Proc Natl. Acad. Sci. USA 73:3608-361 2 ( 1 982)).
  • the nucleic acid to be introduced for purposes of gene therap ⁇ includes an inducible promoter operabl ⁇ linked to the coding region, such that expression of the nucleic acid is controllable b ⁇ controlling the presence or absence of the appropriate inducer of transcription.
  • a method for treating tumors is provided.
  • the method is practiced b ⁇ administering a prodrug that is cleaved at a specific site b ⁇ a CVSP1 4 to release an active drug.
  • the prodrug Upon contact with a cell that expresses CVSP14 activit ⁇ , the prodrug is converted into an active drug.
  • the prodrug can be a conjugate that contains the active agent, such as an anti-tumor drug, such as a c ⁇ totoxic agent, or other therapeutic agent (TA), linked to a substrate for the targeted CVSP14, such that the drug or agent is inactive or unable to enter a cell, in the conjugate, but is activated upon cleavage.
  • the active agent such as an anti-tumor drug, such as a c ⁇ totoxic agent, or other therapeutic agent (TA)
  • the prodrug for example, can contain an oligopeptide, t ⁇ picall ⁇ a relativel ⁇ short, less than about 10 amino acids peptide, that is proteol ⁇ ticall ⁇ cleaved b ⁇ the targeted CVSP1 4.
  • C ⁇ totoxic agents include, but are not limited to, alk ⁇ lating agents, antiproliferative agents and tubulin binding agents. Others include, vinca drugs, mitom ⁇ cins, bleom ⁇ cins and taxanes.
  • Transgenic animal models and animals such as rodents, including mice an rats, cows, chickens, pigs, goats, sheep, gorillas and other primates, are provided herein.
  • rodents including mice an rats, cows, chickens, pigs, goats, sheep, gorillas and other primates.
  • transgenic non-human animals that contain heterologous nucleic acid encoding a CVSP1 4 pol ⁇ peptide or a transgenic animal in which expression of the pol ⁇ peptide has been altered, such as b ⁇ replacing or modif ⁇ ing the promoter region or other regulator ⁇ region of the endogenous gene are provided.
  • Such an animal can b ⁇ produced b ⁇ promoting recombination between an exogenous CVSP1 4 gene that could be over-expressed or mis-expressed, such as b ⁇ expression under a strong promoter, via homologous or other recombination event.
  • transgenic animals can be produced b ⁇ introducing the nucleic acid using vectors or other modes of gene deliver ⁇ into a germline cell, such as an embr ⁇ onic stem cell.
  • the nucleic acid is introduced, such as an embr ⁇ onic stem cell, which is then injected b ⁇ transforming embr ⁇ o- derived stem (ES) cells with a vector containing the CVSP14 pol ⁇ peptide- encoding nucleic acid followed b ⁇ injecting the ES cells into a blastoc ⁇ st, and implanting the blastoc ⁇ st into a foster mother, followed b ⁇ the birth of a transgenic animal.
  • ES transforming embr ⁇ o- derived stem
  • Generall ⁇ introduction into a chromosome of the animal occurs b ⁇ a recombination between the heterologous CVSP1 4-encoding nucleic acid and endogenous nucleic acid.
  • the heterologous nucleic acid can be targeted to a specific chromosome.
  • knockout animals can be produced.
  • Such an animal can be initially produced by promoting homologous recombination between a CVSP1 4 pol ⁇ peptide gene in its chromosome and an exogenous CVSP1 4 pol ⁇ peptide gene that has been rendered biologicall ⁇ inactive (t ⁇ picall ⁇ b ⁇ insertion of a heterologous sequence, e.g. , an antibiotic resistance gene).
  • this homologous recombination is performed b ⁇ transforming embr ⁇ o-derived stem (ES) cells with a vector containing the insertionall ⁇ inactivated CVSP14 pol ⁇ peptide gene, such that homologous recombination occurs, followed b ⁇ injecting the ES cells into a blastoc ⁇ st, and implanting the blastoc ⁇ st into a foster mother, followed b ⁇ the birth of the chimeric animal ("knockout animal") in which a CVSP14 pol ⁇ peptide gene has been inactivated (see Capecchi, Science 244: 1 288-1 292 (1 989)).
  • the chimeric animal can be bred to produce homoz ⁇ gous knockout animals, which can then be used to produce additional knockout animals.
  • Knockout animals include, but are not limited to, mice, hamsters, sheep, pigs, cattle, and other non-human mammals.
  • a knockout mouse is produced.
  • Such knockout animals are expected to develop or be predisposed to developing neoplastic diseases and thus can have use as animal models of such diseases e.g. , to screen for or test molecules for the ability to treat or prevent such diseases or disorders.
  • Such an animal can be initially produced by promoting homologous recombination between a CVSP14 gene in its chromosome and an exogenous CVSP1 4 pol ⁇ peptide gene that would be over- expressed or mis-expressed (generall ⁇ b ⁇ expression under a strong promoter).
  • this homologous recombination is carried out b ⁇ transforming embr ⁇ o-derived stem (ES) cells with a vector containing the over-expressed or mis-expressed CVSP14 pol ⁇ peptide gene, such that homologous recombination occurs, followed b ⁇ injecting the ES cells into a blastoc ⁇ st, and implanting the blastoc ⁇ st into a foster mother, followed b ⁇ the birth of the chimeric animal in which a CVSP14 gene has been over-expressed or mis-expressed (see Capecchi, Science 244: 1 288-1 292 ( 1 989)).
  • the chimeric animal can be bred to produce additional animals with over-expressed or mis-expressed CVSP14 pol ⁇ peptide.
  • Such animals include, but are not limited to, mice, hamsters, sheep, pigs, cattle and other non-human mammals.
  • a mouse with over- expressed or mis-expressed CVSP14 pol ⁇ peptide is produced.
  • Serine Protease Profiling by Degenerate Primer PCR Serine protease domains were amplified using degenerate primers designed from the consensus sequences flanking the catal ⁇ tic histidine (DSPP1 ) and the catal ⁇ tic serine (DSPP2).
  • the sequence of the sense primer (DSPP1 ) used is as follows (SEQ ID No. 7) : 5'-TGG (GA)TI (ACG)TI (TA)(CG)I GCI (AG)CI CA(TC) TG-3' (nucleotides in parentheses represent equal molar mixtures and I represents deox ⁇ inosine).
  • the sequence of antisense primer (DSPP2) used is as follows (SEQ ID No.
  • Random hexamer and oligo(dT) primed cDNA were used as templates for PCR reactions.
  • PCR products were separated on agarose gels, and all products between 450- to 550-bp were extracted from the gels and subcloned into the pCR2.1 -TOPO cloning vector (Invitrogen).
  • Plasmids containing PCR-generated inserts were identified b ⁇ electrophoresis of EcoR I digestion products on agarose gels. Plasmids containing 450-550 bp inserts were subjected to DNA sequencing.
  • One of these clones contained a 474 bp insert that encoded a portion of the protease domain of a serine protease, which is referred to as CVSP14 herein.
  • a BLAST search against the human genomic database htgs revealed that this sequence matches a genomic sequence AC01 2228 that is derived from human chromosome 1 1 .
  • Cloning of cDNA Encoding the Protease Domain of CVSP14- ClonCapture cDNA Selection Kit (Clontech) was used to obtain cDNA encoding the CVSP14 protease domain.
  • a biotin ⁇ lated 474 bp partial cDNA clone for CVSP1 4 was generated b ⁇ PCR using DSPP1 and DSPP2 primers in the presence of biotin-21 -dUTP.
  • the biotin ⁇ lated product was gel purified and used as probe in RecA-mediated ClonCapture procedures.
  • Human prostate adenocarcinoma cDNA librar ⁇ (Gibco BRL Cat. # 1 1 597-01 0) was used as the cDNA source.
  • the captured cDNAs were transformed into ElectroMAX DH 1 0B cells b ⁇ electroporation, and positive clones containing CVSP14 protease domain were identified b ⁇ colon ⁇ h ⁇ bridization using a non-biotin ⁇ lated DSPP1 and DSPP2 PCR product. Positive clones were verified b ⁇ DNA sequencing.
  • DNA sequencing anal ⁇ sis of four positive clones indicated that all clones contained cDNAs encoding the protease domain of a serine protease.
  • the cDNA encoding CVSP1 4 protease domain is composed of 756 bp, which translates into 251 -amino acids.
  • BLAST anal ⁇ sis of the protein database indicated that this serine protease has highest homolog ⁇ to one of the serine protease domains of Xenopus oviductin (Genbank accession number U81291 and T30338) with 47% identit ⁇ .
  • GCTCTCCTGGGTCTGTCTGGCTTAAGTC-3' SEQ ID NO. 19 (using first 5'- RACE product as template).
  • the PCR products from RACE reactions, which were greater than 500 bp, were purified from agarose gel and subcloned into pCR2.1-TOPO cloning vector (Invitrogen, Carlsbad, CA). Colon ⁇ h ⁇ bridization was then performed to identif ⁇ positive colonies containing CVSP14 sequence.
  • An additional sequence of 279 bp was obtained from the second 5'-RACE products including an ATG start codon within a sequence of AAAACTATGAGT (SEQ ID NO.20).
  • nucleotide and Amino Acid sequences of Human CVSP14 are set forth below and in SEQ ID Nos. 12 and 13: GAT TCA CCA CGT CTT GGT TAA TGA ATA AAC TTG TTT TAA ATT GGC TTA TTG CTG
  • GTC TCT CAA GGC TTC CTA TTT TTG TTT GCT TTA
  • GTC TCT CTA AAA TTT CAG GGA AAA ACT
  • CVSP14 DNA and protein sequences were anal ⁇ zed using DNA Strider (version 1 .2).
  • the ORF of CVSP1 4 is composed of 921 bp, which translate into a 306-amino acid protein.
  • Protein sequence anal ⁇ sis using the SMART (Simple Modular Architecture Research Tool) program at http://smart.embl-heidelberg.de indicates that CVSP14 is a secreted serine protease with a signal peptide (amino acids 1 -25) at the N-terminus followed b ⁇ a tr ⁇ psin-like serine protease domain (amino acids 55-306).
  • the amino acid and nucleoide sequences are set forth in SEQ ID No. 1 2 and 1 3.
  • Gene expression profile of CVSP14 in normal and tumor tissues To obtain information regarding the gene expression profile of the CVSP14 transcript, PCR anal ⁇ sis was carried out on cDNA panels made from several human adult tissues (Clontech, Cat. #K1420-1 ), fetal tissues (Cat. #K1425-1 ) and primar ⁇ tumors (human tumor multiple tissue cDNA panel, catalog number K1 522-1 , CLONTECH) using CVSP14-specific primers GX-SP1 -1 (SEQ ID No. 9) (5'-GACTTAAGCCAGACAGACCCAGGAGAGC-3') and GX-SP1 -2AS (5'-TTGTGAGAGGACGCCACCTTCAGTTAAGC-3') (SEQ ID No. 10).
  • a PCR product of 474 bp generated b ⁇ DSPP1 and DSPP2 primers was used to probe a cDNA blot composed of cDNA s ⁇ nthesized from 68 human tumors and corresponding normal tissue from the same individual (catalog number 7840-1 human matched tumor/normal expression arra ⁇ ; CLONTECH) as well as a dot blot composed of RNA extracted from 72 different human tissues (Human Multiple Tissue Expression (MTE) Arra ⁇ ; Clontech, Palo Alto, CA; catalog no. 7776-1 ).
  • MTE Human Multiple Tissue Expression
  • CVSP14 Strong signals, indicating high expression of CVSP14, were detected in 6 of the 1 5 normal kidne ⁇ cDNA samples and moderate to weak signals could also be detected in 8 additional normal kidne ⁇ cDNA samples.
  • CVSP1 4 signals were diminished in all the matched kidne ⁇ tumor samples.
  • Weak signals were detected in all three pairs of prostate normal/tumor cDNA samples.
  • Weak signals were also detected in 3 of 9 normal breast samples.
  • a weak signal was also detected in one of the 7 uterine tumors , but not in their normal tissue counterparts.
  • Weak signals were also detected in two of the three normal lung tissue samples, but not in their matched tumor samples.
  • Ver ⁇ weak signals can be seen in cDNA samples from various tumor cell lines, including HeLa cells, Burkitt's I ⁇ mphoma Daudi cells, chronic m ⁇ elogenous leukemia K562, prom ⁇ eloc ⁇ tic leukemia HL-60 cells, melanoma G361 cells, lung carcinoma A549 cells, I ⁇ mphoblastic leukemia MOLT-4 and colorectal adenocarcinoma SW480 cells.
  • CVSP14 transcript is expressed moderatel ⁇ in I ⁇ mph node and weal ⁇ in heart, stomach, duodenum, jejunum, ileum, ilocecum, colon (ascending, transverse, and descending), kidne ⁇ , skeletal muscle, lung, placenta, liver, pancreas and salivar ⁇ gland.
  • Nucleic acid encoding each the CVSP14 and protease domain thereof can be cloned into a derivative of the Pichia pastoris vector pPIC9K (available from
  • Plasmid pPIC9K features include the 5' AOX1 promoter fragment at 1 -948; 5' AOX 1 primer site at 855-875; alpha-factor secretion signal(s) at 949-1 21 8; alpha-factor primer site at 1 1 52-1 1 72; multiple cloning site at 1 1 92-1 241 ; 3' AOX1 primer site at 1 327-1 347; 3' AOX1 transcription termination region at 1 253-1 586; HIS4 ORF at 4514-1 980; kanam ⁇ cin resistance gene at 5743-4928; 3' AOX1 fragment at 61 22-6879;
  • the plasmid is derived from pPIC9K b ⁇ eliminating the Xhol site in the kanam ⁇ cin resistance gene and the resulting vector is herein designated pPIC9Kx.
  • PCR SOE PCR-based splicing b ⁇ overlap extension
  • CVSP1 4 SEQ ID No. 1 3) with a serine Two overlapping gene fragments, each containing the AGT codon for serine at position 1 66 were PCR amplified using the following primers: for the 5' gene fragment:
  • the amplified gene fragments were purified on a 1 % agarose gel, mixed and reamplified b ⁇ PCR to produce the full length coding sequence for for the protease domain of CVSP1 4 C 1 22S (C ⁇ s 166 Seq ID No 1 3; C ⁇ s u 1 SEQ ID NO: 1 7).
  • the amplified gene fragments were purified on a 1 % agarose gel, mixed and reamplified b ⁇ PCR to produce the full length coding sequence for for the protease domain of CVSP1 4 C 1 22S (C ⁇ s 166 Seq ID No 1 3; C ⁇ s u 1 SEQ ID
  • CVSP14 expression vector cDNA encoding CVSP14 containing the C 1 22S point mutation i.e., CVSP14C 1 22S, position C, 66 in SEQ ID Nos. 1 2 and 1 3) was cloned from pPIC9Kx:CVSP14C 1 22S.
  • the primers CVSP14-5' GGAATTCCATATGAGCAGCGGCCATATCGACGACGACGACAAAATTCTTGGAG GAAGCCAAGTGGAG (containing a Ndel restriction site; SEQ ID No.
  • CVSP14-3' CCGCTCGAGGTTACCAGTTTGGATGTGTTCGTGG (containing a Xhol restriction site; SEQ ID No. 22) were used to PCR amplif ⁇ the human CVSP14 protease domain utilizing an enterokinase recognition sequence (DDDDK) for z ⁇ mogen activation.
  • DDDDK enterokinase recognition sequence
  • Amplification was conducted in a total volume of 50ul containing 20mM tris-HCI (pH 8.75 at 25 °C), 10mM KCI, 10 mM (NH 4 ) 2 S0 4 , 2mM MgS0 4 , 0.1 % triton X-100, 0.1 mg/ml BSA, 0.2mM dNTPs, 1 .0 unit ACCUZYME DNA pol ⁇ merase (Bioline USA, Inc., New Jerse ⁇ ), and 1 00 pmol of primers.
  • the reaction mixture was heated to 95 °C for 5 min, followed b ⁇ 25 c ⁇ cles of 95, 60, and 75 °C for 30 s each and a final extension of 75 °C for 2 min.
  • PCR products were purified using a QIAquick PCR purification kit (QIAGEN Inc., Chatsworth, CA). PCR products were doubl ⁇ digested with 1 0 units Ndel and 10 units Xhol for 2 hrs at 37 °C. The digested fragments were purified on a 1 .4% agarose gel and stained with ethidium bromide. The band containing CVSP1 4 cDNA was excised and purified using a QIAEX II gel extraction kit (QIAGEN Inc., Chatsworth, CA). CVSP14 cDNA was then cloned into the Ndel and Xhol sites of the pET21 b expression vector (Novagen, Inc., Madison, WI) using standard methods.
  • This vector allows the fusion of a C- terminal 6xHIS tag for purification b ⁇ immobilized metal affinit ⁇ chromatograph ⁇ (IMAC). Competent XL1 0 cells (Stratagene) were transformed with the pET21 bCVSP14 vector and used to produce plasmid stocks. Proper insertion and DNA sequence were confirmed b ⁇ fluorescent thermal d ⁇ e DNA sequencing methods as well as restriction digests. Protein Expression, Purification, and Refolding
  • the resulting solution was filtered through a 0.2um s ⁇ ringe filter before loading onto 25ml Ni-NTA resin (QIAGEN Inc., Chatsworth, CA) pre-equilibrated with 6M GuHCI, 20 mM tris-HCI, 300 mM NaCl, pH 8.0.
  • the column was washed with two column volumes equilibration buffer followed b ⁇ three column volumes 8M urea, 20 mM tris-HCI, 300 mM NaCl, pH 8.0.
  • Purified inclusion bodies are then eluted with two column volumes 8M urea, 20 mM tris-HCI, 300 mM NaCl, 1 M imidazole, pH 8.0.
  • CVSP14 was refolded b ⁇ slowl ⁇ adding the inclusion bod ⁇ mixture to 8L 100mM tris-HCI, 1 50mM NaCl, 7.5mM c ⁇ steine, 1 mM c ⁇ stine, 0.5M arginine, 3g/L cholic acid, pH 8.0 using a peristaltic pump.
  • the refolding mixture was allowed to stir at 4°C for 7 da ⁇ s or until thiol concentration was below 1 mM as detected b ⁇ Ellman's reagent.
  • the refolding solution was filtered through a 1 uM filter, concentrated b ⁇ ultrafiltration and the buffer exchanged in PBS, 3g/L cholic acid, pH 8.0.
  • Activation of CVSP14 was performed by the addition . of 1 -10 U/ml EKMax (Invitrogen, Carlsbad, CA) and incubation at 4°C until the reaction was deemed complete (generall ⁇ 4-8 da ⁇ s). Residual EKMax was removed b ⁇ treating the solution with a small amount of ConA resin that binds the gl ⁇ cos ⁇ lated enterokinase. Complete removal of EKMax was confirmed b ⁇ measuring the activit ⁇ of the solution towards a specific enterokinase fluorogenic substrate.
  • CVSP14 exhibited some activit ⁇ towards a number of these substrates, but was most active towards S-2366 (DiaPharma, Westchester, OH).
  • test compounds to act as inhibitors of catal ⁇ tic activit ⁇ of a CVSP1 4 can be assessed in an amidol ⁇ tic assa ⁇ .
  • the inhibitor-induced inhibition of amidol ⁇ tic activit ⁇ b ⁇ a recombinant CVSP or the protease domain portions thereof, can be measured b ⁇ IC50 values in such an assa ⁇ .
  • the protease domain of CVSP14 expressed as described above is assa ⁇ ed in Costar 96 well tissue culture plates (Corning NY) for inhibition b ⁇ various test compounds as follows . Approximatel ⁇ 1 -10 nM protease is added without inhibitor, or with 100000 nM inhibitor and seven 1 :6 dilutions into 1 X direct buffer (29.2 mM Tris, pH 8.4, 29.2 mM Imidazole, 21 7 mM NaCl ( 100 ⁇ L final volume)), and allowed to incubate at room temperature for 30 minutes.
  • 1 X direct buffer 29.2 mM Tris, pH 8.4, 29.2 mM Imidazole, 21 7 mM NaCl ( 100 ⁇ L final volume
  • Particular substrates for use in the assa ⁇ s can be identified empiricall ⁇ b ⁇ testing substrates.
  • the following list of substrates are exemplar ⁇ of those that can be tested.
  • pNA para-nitranilide (chromogenic)
  • AMC amino meth ⁇ l coumarin (fluorescent)
  • a coupled assa ⁇ can be used. Briefl ⁇ , test the abilit ⁇ of the protease to activate and enz ⁇ me, such as plasminogen and tr ⁇ psinogen. To perform these assa ⁇ s, the single chain protease is incubated with a z ⁇ mogen, such as plasminogen or tr ⁇ psinogen, in the presence of the a known substrate, such, I ⁇ s-plasminogen, for the z ⁇ mogen. If the single chain activates the z ⁇ mogen, the activated enz ⁇ me, such as plasmin and tr ⁇ psin, will degrade the substrate therefor.
  • a z ⁇ mogen such as plasminogen or tr ⁇ psinogen
  • test compounds to act as inhibitors of rMAP catal ⁇ tic activit ⁇ was assessed b ⁇ determining the inhibitor-induced inhibition of amidol ⁇ tic activit ⁇ b ⁇ the MAP, as measured b ⁇ IC 50 values.
  • the assa ⁇ buffer was HBSA (10 mM Hepes, 1 50mM sodium chloride, pH 7.4, 0.1 % bovine serum albumin). All reagents were from Sigma Chemical Co. (St. Louis, MO), unless otherwise indicated.
  • Two IC 50 assa ⁇ s (a) one at either 30-minutes or 60-minutes (a 30-minute or a 60-minute preincubation of test compound and enz ⁇ me) and (b) one at 0-minutes (no preincubation of test compound and enz ⁇ me) were conducted.
  • IC 50 assa ⁇ at either 30-minutes or 60-minutes, the following reagents were combined in appropriate wells of a Corning microtiter plate: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering a broad concentration range) in HBSA (or HBSA alone for uninhibited velocit ⁇ measurement), and 50 microliters of the rMAP (Corvas International) diluted in buffer, ⁇ ielding a final enz ⁇ me concentration of 250 pM as determined b ⁇ active site filtration.
  • the assa ⁇ was initiated b ⁇ the addition of 50 microliters of the substrate S-2765 (N- ⁇ -Benz ⁇ lox ⁇ carbon ⁇ l-D-argin ⁇ l-L-gl ⁇ c ⁇ l-L-arginine-p- nitroaniline dih ⁇ drochloride; DiaPharma Group, Inc.; Franklin, OH) to each well, ⁇ ielding a final assa ⁇ volume of 200 microliters and a final substrate concentration of 100 ⁇ M (about 4-times K m ). Before addition to the assay mixture, S-2765 was reconstituted in deionized water and diluted in HBSA.
  • IC 50 assay For the IC 50 assay at 0 minutes; the same reagents were combined: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering the identical concentration range) in HBSA (or HBSA alone for uninhibited velocit ⁇ measurement), and 50 microliters of the substrate S-2765.
  • the assa ⁇ was initiated b ⁇ the addition of 50 microliters of rMAP.
  • the final concentrations of all components were identical in both IC 50 assa ⁇ s (at 30- or 60- and 0-minute) .
  • the initial velocit ⁇ of chromogenic substrate h ⁇ drol ⁇ sis was measured in both assa ⁇ s b ⁇ the change of absorbance at 405 nM using a Thermo Max ® Kinetic Microplate Reader (Molecular Devices) over a 5 minute period, in which less than 5 % of the added substrate was used.
  • the concentration of added inhibitor, which caused a 50% decrease in the initial rate of h ⁇ drol ⁇ sis was defined as the respective IC 50 value in each of the two assa ⁇ s (30- or 60-minutes and 0-minute).
  • the buffer used for all assa ⁇ s was HBSA ( 1 0 mM HEPES, pH 7.5, 1 50 mM sodium chloride, 0.1 % bovine serum albumin) .
  • the assa ⁇ for IC 50 determinations was conducted b ⁇ combining in appropriate wells of a Corning microtiter plate, 50 microliters of HBSA, 50 microliters of the test compound at a specified concentration (covering a broad concentration range) diluted in HBSA (or HBSA alone for V 0 (uninhibited velocit ⁇ ) measurement), and 50 microliters of the enz ⁇ me diluted in HBSA. Following a 30 minute incubation at ambient temperature, 50 microliters of the substrate at the concentrations specified below were added to the wells, ⁇ ielding a final total volume of 200 microliters. The initial velocit ⁇ of chromogenic substrate h ⁇ drol ⁇ sis was measured b ⁇ the change in absorbance at 405 nm using a
  • Thermo Max ® Kinetic Microplate Reader over a 5 minute period in which less than 5 % of the added substrate was used.
  • the concentration of added inhibitor which caused a 50% decrease in the initial rate of h ⁇ drol ⁇ sis was defined as the IC 50 value.
  • Enzyme activit ⁇ was determined using the chromogenic substrate, Pefachrome t-PA (CH 3 S0 2 -D-hexah ⁇ drot ⁇ rosine-gl ⁇ c ⁇ l-L-Arginine-p-nitroaniline, obtained from Pentapharm Ltd.). The substrate was reconstituted in deionized water prior to use. Purified human ⁇ -thrombin was obtained from Enz ⁇ me Research Laboratories, Inc. The buffer used for all assa ⁇ s was HBSA ( 10 mM HEPES, pH 7.5, 1 50 mM sodium chloride, 0.1 % bovine serum albumin).
  • IC 50 determinations were conducted where HBSA (50 ⁇ L), ⁇ -thrombin (50 ⁇ l) (the final enz ⁇ me concentration is 0.5 nM) and inhibitor (50 ⁇ l) (covering a broad concentration range), were combined in appropriate wells and incubated for 30 minutes at room temperature prior to the addition of substrate Pefachrome-t-PA (50 ⁇ l) (the final substrate concentration is 250 ⁇ M, about 5 times Km).
  • the initial velocit ⁇ of Pefachrome t-PA h ⁇ drol ⁇ sis was measured b ⁇ the change in absorbance at 405 nm using a Thermo Max ® Kinetic Microplate Reader over a 5 minute period in which less than 5 % of the added substrate was used.
  • the concentration of added inhibitor which caused a 50% decrease in the initial rate of h ⁇ drol ⁇ sis was defined as the IC 50 value.
  • Factor Xa catal ⁇ tic activit ⁇ was determined using the chromogenic substrate S-2765 (N-benz ⁇ lox ⁇ carbon ⁇ l-D-arginine-L-gl ⁇ cine-L-arginine-p-nitro- aniline), obtained from DiaPharma Group (Franklin, OH). All substrates were reconstituted in deionized water prior to use. The final concentration of S-2765 was 250 ⁇ M (about 5-times Km). Purified human Factor X was obtained from Enz ⁇ me Research Laboratories, Inc. (South Bend, IN) and Factor Xa (FXa) was activated and prepared from it as described [Bock, P.E., Craig, P. A., Olson, S ., and Singh, P.
  • rt-PA tissue plasminogen activator
  • Assa ⁇ rt-PA catal ⁇ tic activit ⁇ was determined using the substrate, Pefachrome t-PA (CH 3 SQ 2 -D-hexah ⁇ drot ⁇ rosine-gl ⁇ c ⁇ l-L-arginine-p-nitroaniline, obtained from Pentapharm Ltd.).
  • the substrate was made up in deionized water followed b ⁇ dilution in HBSA prior to the assa ⁇ in which the final concentration was 500 micromolar (about 3-times Km).
  • Human rt-PA (Activase ® ) was obtained from Genentech Inc.
  • the enz ⁇ me was reconstituted in deionized water and diluted into HBSA prior to the assa ⁇ in which the final concentration was 1 .0 nM.
  • Plasmin catal ⁇ tic activit ⁇ was determined using the chromogenic substrate, S-2366 (L-p ⁇ roglutam ⁇ l-L-prol ⁇ l-L-arginine-p-nitroaniline h ⁇ drochloride), which was obtained from DiaPharma group.
  • the substrate was made up in deionized water followed b ⁇ dilution in HBSA prior to the assa ⁇ in which the final concentration was 300 micromolar (about 2.5-times Km).
  • Purified human plasmin was obtained from Enz ⁇ me Research Laboratories, Inc. The enz ⁇ me was diluted into HBSA prior to assa ⁇ in which the final concentration was 1 .0 nM.
  • Activated Protein C (aPC) Assay aPC catal ⁇ tic activit ⁇ was determined using the chromogenic substrate, Pefachrome PC (delta-carbobenzlox ⁇ -D-l ⁇ sine-L-prol ⁇ l-L-arginine-p-nitroaniline dih ⁇ drochloride), obtained from Pentapharm Ltd.). The substrate was made up in deionized water followed b ⁇ dilution in HBSA prior to the assa ⁇ in which the final concentration was 400 micromolar (about 3-times Km). Purified human aPC was obtained from Hematologic Technologies, Inc. The enz ⁇ me was diluted into HBSA prior to assa ⁇ in which the final concentration was 1 .0 nM.
  • Ch ⁇ motr ⁇ psin catal ⁇ tic activit ⁇ was determined using the chromogenic substrate, S-2586 (methox ⁇ -succin ⁇ l-L-arginine-L-prol ⁇ l-L-t ⁇ ros ⁇ l-p-nitroanilide), which was obtained from DiaPharma Group.
  • the substrate was made up in deionized water followed b ⁇ dilution in HBSA prior to the assa ⁇ in which the final concentration was 100 micromolar (about 9-times Km).
  • Purified (3X-cr ⁇ stallized; CDI) bovine pancreatic alpha-ch ⁇ motr ⁇ psin was obtained from Worthington Biochemical Corp.
  • the enz ⁇ me was reconstituted in deionized water and diluted into HBSA prior to assa ⁇ in which the final concentration was 0.5 nM. Trypsin Assay
  • Trypsin catal ⁇ tic activit ⁇ was determined using the chromogenic substrate, S-2222 (benzo ⁇ l-L-isoleucine-L-glutamic acid-[gamma-meth ⁇ l ester]-L- arginine-p-nitroanilide), which was obtained from DiaPharma Group.
  • the substrate was made up in deionized water followed b ⁇ dilution in HBSA prior to the assa ⁇ in which the final concentration was 250 micromolar (about 4-times Km).
  • Purified (3X-cr ⁇ stallized; TRL3) bovine pancreatic tr ⁇ psin was obtained from Worthington Biochemical Corp.
  • the enz ⁇ me was reconstituted in deionized water and diluted into HBSA prior to assa ⁇ in which the final concentration was 0.5 nM.

Abstract

Provided herein are polypeptides designated CVSP14 polypeptides that exhibit protease activity as a single chain or as an activated two chain form. Methods using the polypeptides to identify compounds that modulate the protease activity thereof are provides. The polypeptides also serve as tumor markers.

Description

NUCLEIC ACID MOLECULES ENCODING SERINE PROTEASE CVSP14, THE ENCODED POLYPEPTIDES AND METHODS BASED THEREON
RELATED APPLICATIONS
Benefit of priority is claimed to U .S. provisional application Serial No. 60/278, 1 66, filed March 22, 2001 , to Edwin L. Madison and Jiunn-Chern Yeh entitled "NUCLEIC ACID MOLECULES ENCODING A TRANSMEMBRANE SERINE PROTEASE 14, THE ENCODED PROTEINS AND METHODS BASED THEREON." Where permitted, the subject matter of U.S. provisional application is incorporated by reference in it entirety. FIELD OF THE INVENTION
Nucleic acid molecules that encode proteases and portions thereof, particularly protease domains are provided. Also provided are prognostic, diagnostic and therapeutic methods using the proteases and domains thereof and the encoding nucleic acid molecules. BACKGROUND OF THE INVENTION AND OBJECTS THEREOF
Cancer is a leading cause of death in the United States, developing in one in three Americans; one of every four Americans dies of cancer. Cancer is characterized by an increase in the number of abnormal neoplastic cells, which proliferate to form a tumor mass, the invasion of adjacent tissues by these neoplastic tumor cells, and the generation of malignant cells that metastasize via the blood or lymphatic system to regional lymph nodes and to distant sites. Among the hallmarks of cancer is a breakdown in the communication among tumor cells and their environment. Normal cells do not divide in the absence of stimulatory signals, and cease dividing in the presence of inhibitory signals. Growth-stimulatory and growth-inhibitory signals are routinely exchanged between cells within a tissue. In a cancerous, or neoplastic, state, a cell acquires the ability to "override" these signals and to proliferate under conditions in which normal cells do not grow.
In order to proliferate tumor cells acquire a number of distinct aberrant traits reflecting genetic alterations. The genomes of certain well-studied tumors carry several different independently altered genes, including activated oncogenes and inactivated tumor suppressor genes. Each of these genetic changes appears to be responsible for imparting some of the traits that, in the aggregate, represent the full neoplastic phenotype.
A variety of biochemical factors have been associated with different phases of metastasis. Cell surface receptors for collagen, glycoproteins such as laminin, and proteoglycans, facilitate tumor cell attachment, an important step in invasion and metastases. Attachment triggers the release of degradative enzymes which facilitate the penetration of tumor cells through tissue barriers. Once the tumor cells have entered the target tissue, specific growth factors are required for further proliferation. Tumor invasion and progression involves a complex series of events, in which tumor cells detach from the primary tumor, break down the normal tissue surrounding it, and migrate into a blood or lymphatic vessel to be carried to a distant site. The breaking down of normal tissue barriers is accomplished by the elaboration of specific enzymes that degrade the proteins of the extracellular matrix that make up basement membranes and stromal components of tissues.
A class of extracellular matrix degrading enzymes have been implicated in tumor invasion. Among these are the matrix metalloproteinases (MMP). For example, the production of the matrix metalloproteinase stromelysin is associated with malignant tumors with metastatic potential (see, e.g. , McDonnell et al. ( 1 990) Smnrs. in Cancer Biology 7 : 107-1 1 5; McDonnell et al. ( 1 990) Cancer and Metastasis Reviews 3:309-31 9) .
The capacity of cancer cells to metastasize and invade tissue is facilitated by degradation of the basement membrane. Several proteinase enzymes, including the MMPs, have been reported to facilitate the process of invasion of tumor cells. MMPs are reported to enhance degradation of the basement membrane, which thereby permits tumorous cells to invade tissues. For example, two major metalloproteinases having molecular weights of about 70 kDa and 92 kDa appear to enhance ability of tumor cells to metastasize. Serine Proteases
Serine proteases (SPs) have been implicated in neoplastic disease progression. Most serine proteases, which are either secreted enzymes or are sequestered in cytoplasmic storage organelles, have roles in blood coagulation, wound healing, digestion, immune responses and tumor invasion and metastasis. A class of cell surface proteins designated type II transmembrane serine proteases, which are membrane-anchored proteins with additional extracellular domains, has been identified. As cell surface proteins, they are positioned to play a role in intracellular signal transduction and in mediating cell surface proteolytic events. Other serine proteases can be membrane bound and function in a similar manner. Others are secreted. Many serine proteases exert their activity upon binding to cell surface receptors, and, hence act at cell surfaces. Cell surface proteolysis is a mechanism for the generation of biologically active proteins that mediate a variety of cellular functions. Serine proteases, including secreted and transmembrane serine proteases, have been implicated in processes involved in neoplastic development and progression. While the precise role of these proteases has not been elaborated, serine proteases and inhibitors thereof are involved in the control of many intra- and extracellular physiological processes, including degradative actions in cancer cell invasion, metastatic spread, and neovascularization of tumors, that are involved in tumor progression. It is believed that proteases are involved in the degradation of extracellular matrix (ECM) and contribute to tissue remodeling, and are necessary for cancer invasion and metastasis. The activity and/or expression of some proteases have been shown to correlate with tumor progression and development.
For example, a membrane-type serine protease MTSP1 (also called matriptase; see SEQ ID Nos. 1 and 2 from U.S. Patent No. 5,972,61 6; and GenBank Accession No. AF1 1 8224; ( 1 999) J. Biol. Chem. 274: 1 8231 -1 8236; U.S. Patent No. 5,792,61 6; see, also Takeuchi ( 1 999) Proc. Natl. Acad. Sci. U. S.A. 36: 1 1054-1 1 61 ) that is expressed in epithelial cancer and normal tissue (Takeucuhi et al. ( 1 999) Proc. Natl. Acad. Sci. USA 36: 1 1054-61 ) has been identified. Matriptase was originally identified in human breast cancer cells as a major gelatinase (see, U.S. Patent No. 5,482,848), a type of matrix metalloprotease (MMP). It has been proposed that it plays a role in the metastasis of breast cancer. Matriptase also is expressed in a variety of epithelial tissues with high levels of activity and/or expression in the human gastrointestinal tract and the prostate. MTSPs, designated MTSP3, MTSP4, MTSP6 have been decribed in published International PCT application No. WO 01 /571 94, based in International PCT application No. PCT/US01 /03471 .
Prostate-specific antigen (PSA), a kallikrein-like serine protease, degrades extracellular matrix glycoproteins fibronectin and laminin, and, has been postulated to facilitate invasion by prostate cancer cells (Webber et al. ( 1 995) Clin. Cancer Res. 7 : 1 089-94) . Blocking PSA proteolytic activity with PSA-specific monoclonal antibodies results in a dose-dependent decrease in vitro in the invasion of the reconstituted basement membrane Matrigel by LNCaP human prostate carcinoma cells which secrete high levels of PSA. Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer (Tanimoto et al. (1 997) Cancer Res. , 57):2884-7). The hepsin transcript appears to be abundant in carcinoma tissue and is almost never expressed in normal adult tissue, including normal ovary. It has been suggested that hepsin is frequently overexpressed in ovarian tumors and therefore can be a candidate protease in the invasive process and growth capacity of ovarian tumor cells.
A serine protease-like gene, designated normal epithelial cell-specific 1 (NES1 ) (Liu et al., Cancer Res. , 56:3371 -9 ( 1 996)) has been identified. Although expression of the NES1 mRNA is observed in all normal and immortalized nontumorigenic epithelial cell lines, the majority of human breast cancer cell lines show a drastic reduction or a complete lack of its expression. The structural similarity of NES 1 to polypeptides known to regulate growth factor activity and a negative correlation of NES 1 expression with breast oncogenesis suggest a direct or indirect role for this protease-like gene product in the suppression of tumorigenesis.
Hence transmembrane and other serine proteases and other proteases appear to be involved in the etiology and pathogenesis of tumors. There is a need to further elucidate their role in these processes and to identify additional transmembrane proteases. Therefore, it is an object herein to provide serine protease proteins and nucleic acids encoding such proteases that are involved in the regulation of or participate in tumorigenesis and/or carcinogenesis. It is also an object herein to provide prognostic, diagnostic, therapeutic screening methods using such proteases and the nucleic acids encoding such proteases. SUMMARY OF THE INVENTION
Provided herein is a protein designated CVSP14, including the protease domain thereof (see, e.g. , SEQ ID Nos. 5, 6, 1 2 and 1 3). CVSP14 is a secreted serine protease. CVSP1 4 is highly expressed in androgen-independent prostate tumors and is expressed in other tumors. Hence, as a protease it can be involved in tumor progression. By virtue of its functional activity it can be a therapeutic or diagnostic target. The expression and/or activation (or reduction in level of expression or activation) of the expressed protein or zymogen form thereof can be used to monitor cancer and cancer therapy. For example, the expression of the this protein can be used to monitor prostate cancer and prostate cancer therapy.
The serine protease family includes members that are activated and/or expressed in tumor cells at different levels from non-tumor cells; and those from cells in which substrates therefor differ in tumor cells from non-tumor cells or otherwise alter the specificity or activity of the serine protease (SP). The serine protease provided herein, designated herein as CVSP14, is a secreted protease. The protease domain and full-length protein, including the zymogen and activated forms, and uses thereof are also provided. Proteins encoded by splice variants are also provided. Nucleic acid molecules encoding the proteins and protease domains are also provided. The protease domain of a CVSP1 4 is set forth in SEQ ID No. 6; the sequence of a full length protein is set forth in SEQ ID No. 1 3. The sequences of encoding nucleic acid molecules are set forth in SEQ ID Nos. 5 and 1 2, respectively. CVSP14 is expressed as a secreted protein and may bind to cell surface receptors and function as a cell-surface bound protease, such as by binding thereto or by dimerization or multimerization with a membrane-bound or receptor-bound protein.
Also provided herein are nucleic acid molecules that encode SP proteins and the encoded proteins. In particular, nucleic acid molecules encoding CVSP1 4 from animals, including splice variants thereof are provided. The encoded proteins are also provided. Also provided are functional domains thereof. For example, the SP protease domains, portions thereof, and muteins thereof are from or based on animal SPs, including, but are not limited to, rodent, such as mouse and rat; fowl, such as chicken; ruminants, such as goats, cows, deer, sheep; ovine, such as pigs; and humans.
The protease domain for use in the methods and assay provided herein does not have to result from activation, which produces a two chain activated product, but rather is a single chain polypeptide where the N-terminus includes the sequence I ILGG. Such polypeptides, although not the result of activation and not two-chain forms, exhibit proteolytic (catalytic) activity. These protease domain polypeptides are used in assays to screen for agents that modulate the activity of the CVSP14.
Such assays are also provided herein. In exemplary assays, the effects of test compounds on the ability of the full length or along at least about 70%, 80% or 90% of the full length of the single chain, two chain activated form, or a protease domain, which is a single chain or a two chain activated form, of CVSP1 4 to proteolytically cleave a known substrate, typically a fluorescently, chromogenically or otherwise detectably labeled substrate, are assessed. Agents, generally compounds, particularly small molecules, that modulate the activity of the protein (full length or protease domain either single or two chain forms thereof) are candidate compounds for modulating the activity of the CVSP14. The protease domains and full length proteins also can be used to produce two-chain and single-chain protease-specific antibodies. The protease domains provided herein include, but are not limited to, the single chain region having an N-terminus at the cleavage site for activation of the zymogen, through the C-terminus, or C-terminal truncated portions thereof that exhibit proteolytic activity as a single-chain polypeptide in in vitro proteolysis assays, of any family member, including CVSP14, such as from a mammal, including human, that, for example, is expressed or activity in tumor cells at different levels from non-tumor cells.
Also provided are muteins of the single chain protease domain of CVSP1 4 particularly muteins in which the Cys residue (residue no. 26 in SEQ ID No. 6) in the protease domain that is free (i.e. , does not form disulfide linkages with any other Cys residue in the protease domain) is substituted with another amino acid substitution, generally with a substitution that does not eliminate the activity of interest, and muteins in which a glycosylation site(s) is eliminated. Muteins in which other substitutions in which catalytic activity is retained are also contemplated (see, e.g. , Table 1 , for exemplary amino acid substitutions).
Hence, provided herein is a member of the family of serine proteases designated CVSP14, and functional domains, especially protease (or catalytic) domains thereof, muteins and other derivatives and analogs thereof. Also provided herein are nucleic acids encoding the CVSP1 .
The nucleic acid and amino acid sequences of CVSP14 are set forth in SEQ ID Nos. 5 and 6. Nucleic acid molecules that encode a single-chain protease domain or catalytically active portion thereof and also those that encode the full-length CVSP14 (SEQ ID Nos. 1 2 and 1 3) are provided. Single amino acid changes are contemplated; for example peptides in which there is an Arg in place of a Gly are provided. Nucleic acid molecules that encode a single- chain protease domain or catalytically active portion thereof and also those that encode the full-length CVSP1 4 are provided. Also provided are nucleic acid molecules that hybridize to such CVSP14 encoding nucleic acid along their full length or along at least about 70%, 80% or 90% of the full length and encode the full length or a truncated portion thereof, such as without the signal sequence or a protease domain or catalytically active portion thereof are provided. Hybridization is typically performed under conditions of at least low, generally at least moderate, and often high stringency. Additionally provided herein are antibodies that specifically bind to the
CVSP14 and inhibit the activity thereof. Included are antibodies that specifically bind to the protein or protease domain, including to the single and/or two chain forms thereof. Among the antibodies are two-chain-specific antibodies, and single-chain specific antibodies and neutralizing antibodies. Antibodies that specifically bind to the CVSP1 4, particularly the single chain protease domain, the zymogen and activated form are also provided herein. Antibodies that specifically bind to the two-chain and/or single-chain form of CVSP14 are provided. The antibodies include those that specifically bind to the two-chain or single-chain form of the protease domain and/or the full-length protein.
Further provided herein are prognostic, diagnostic, therapeutic screening methods using CVSP1 4 and the nucleic acids encoding CVSP1 4. Also provided are transgenic non-human animals bearing inactivated genes encoding the CVSP and bearing the genes encoding the CVSP1 4 under non-native or native promotor control are provided. Such animals are useful in animal models of tumor initiation, growth and/or progression models.
Provided herein are members of a family of serine proteases (SPs) that are expressed in certain tumor or cancer cells such lung, prostate, colon and breast cancers. In particular, it is shown herein, that CVSP1 4 is expressed in lung carcinoma, leukemia and cervical carcinoma as well as in certain normal cells and tissues (see e.g. , EXAMPLES for tissue-specific expression profile). CVSP1 4 can also be a marker for breast, prostate and colon cancer. SPs are of interest because they appear to be expressed and/or activated at different levels in tumor cells from normal cells, or have functional activity that is different in tumor cells from normal cells, such as by an alteration in a substrate therefor, or a cofactor. CVSP1 4 is of interest because it is expressed or is active in tumor cells. Hence the CVSP1 4 provided herein can serve as diagnostic markers for certain tumors. The level of activated CVSP14 can be diagnostic of prostate, uterine, lung or colon cancer or leukemia or other cancer.
Also provided herein are methods of modulating the activity of the CVSP14 and screening for compounds that modulate, including inhibit, antagonize, agonize or otherwise alter the activity of the CVSP14. Of particular interest is the protease domain of CVSP1 4 that includes the catalytic portion of the protein. CVSP14 polypeptides, including, but not limited to splice variants thereof, and nucleic acids encoding CVSPs, and domains, derivatives and analogs thereof are provided herein. Single chain protease domains that contain the N-terminii that are generated by activation of the zymogen form of CVSP14 are also provided. The cleavage site for the protease domain is at amino acid 52 (FU IGGSHsee SEQ ID Nos. 1 2 and 1 3).
Also provided are plasmids containing any of the nucleic acid molecules provided herein. Cells containing the plasmids are also provided. Such cells include, but are not limited to, bacterial cells, yeast cells, fungal cells, plant cells, insect cells and animal cells. In addition to cells and plasmids containing nucleic acid encoding the CVSP14 polypeptide, methods of expression of the encoded polypeptide are provided. In order to achieve expression of the protease domain, the nucleic acid encoding the signal sequence is removed. The protein is expressed in the inclusion bodies. The CVSP14 protease domain was then isolated from the inclusion bodies and treated under conditions whereby proper refolding occurred. Hence also provided are methods for producing active CVSP14 protease domain.
Also provided is a method of producing CVSP14 by growing the above- described cells under conditions whereby the CVSP1 4 is expressed by the cells, and recovering the expressed CVSP14 polypeptide. Methods for isolating nucleic acid encoding other CVSP1 4s are also provided.
Also provided are cells, generally eukaryotic cells, such as mammalian cells and yeast cells, in which the CVSP1 4 polypeptide is expressed by the cells. Such cells to which the secreted protein can bind are used in drug screening assays to identify compounds that modulate the activity of the CVSP14 polypeptide. These assays include in vitro binding assays, and transcription based assays in which signal transduction mediated directly or indirectly, such as via activation of pro-growth factors, by the CVSP1 4 or cleavage products thereof is assessed. Further provided herein are prognostic, diagnostic and therapeutic screening methods using the CVSP1 4 and the nucleic acids encoding CVSP14. In particular, the prognostic, diagnostic and therapeutic screening methods are used for preventing, treating, or for finding agents useful in preventing or treating, tumors or cancers such as lung carcinoma, colon adenocarcinoma and ovarian carcinoma.
Also provided are methods for screening for compounds that modulate the activity of CVSP1 4. The compounds are identified by contacting them with the CVSP1 4 or protease domain thereof and a substrate for the CVSP14. A change in the amount of substrate cleaved in the presence of the compounds compared to that in the absence of the compound indicates that the compound modulates the activity of the CVSP14. Such compounds are selected for further analyses or for use to modulate the activity of the CVSP1 4, such as inhibitors or agonists. The compounds also can be identified by contacting the substrates with a cell that binds to a CVSP1 4 or catalytically active portion thereof.
Also provided herein are modulators of the activity of CVSP14, especially the modulators obtained according to the screening methods provided herein. Such modulators can have use in treating cancerous conditions and other neoplastic conditions.
Pharmaceutical composition containing the protease domain and/or full- length or other domain of a CVSP1 4 polypeptide are provided herein in a pharmaceutically acceptable carrier or excipient are provided herein. Also provided are articles of manufacture that contain CVSP14 polypeptide and protease domains of CVSP1 4 in single chain forms or activated forms. The articles contain a) packaging material; b) the polypeptide (or encoding nucleic acid), particularly the single chain protease domain thereof; and c) a label indicating that the article is for using in assays for identifying modulators of the activities of a CVSP1 4 polypeptide is provided herein.
Conjugates containing a) a CVSP1 4 polypeptide or protease domain in single chain from; and b) a targeting agent linked to the CVSP directly or via a linker, wherein the agent facilitates: i) affinity isolation or purification of the conjugate; ii) attachment of the conjugate to a surface; iii) detection of the conjugate; or iv) targeted delivery to a selected tissue or cell, is provided herein. The conjugate can contain a plurality of agents linked thereto. The conjugate can be a chemical conjugate; and it can be a fusion protein. In another embodiment, the targeting agent is a protein or peptide fragment. The protein or peptide fragment can include a protein binding sequence, a nucleic acid binding sequence, a lipid binding sequence, a polysaccharide binding sequence, or a metal binding sequence. Methods of diagnosing a disease or disorder characterized by detecting an aberrant level of a CVSP14 in a subject is provided. The method can be practiced by measuring the level of the DNA, RNA, protein or functional activity of the CVSP1 4. An increase or decrease in the level of the DNA, RNA, protein or functional activity of the CVSP, relative to the level of the DNA, RNA, protein or functional activity found in an analogous sample not having the disease or disorder (or other suitable control) is indicative of the presence of the disease or disorder in the subject or other relative any other suitable control.
Combinations are provided herein. The combination can include: a) an inhibitor of the activity of a CVSP1 4; and b) an anti-cancer treatment or agent. The CVSP inhibitor and the anti-cancer agent can be formulated in a single pharmaceutical composition or each is formulated in a separate pharmaceutical composition. The CVSP14 inhibitor can be an antibody or a fragment or binding portion thereof made against the CVSP1 4, such as an antibody that specifically binds to the protease domain, an inhibitor of CVSP1 4 production, or an inhibitor of CVSP14 membrane-localization or an inhibitor of CVSP14 activation. Other CVSP1 4 inhibitors include, but are not limited to, an antisense nucleic acid or double-stranded RNA (dsRNA), such as RNAi, encoding the CVSP1 4 or portions thereof, particularly a portion of the protease domain, a nucleic acid encoding at least a portion of a gene encoding the CVSP1 4 with a heterologous nucleotide sequence inserted therein such that the heterologous sequence inactivates the biological activity encoded CVSP1 4 or the gene encoding it. The portion of the gene encoding the CVSP14 typically flanks the heterologous sequence to promote homologous recombination with a genomic gene encoding the CVSP14. Also, provided are methods for treating or preventing a tumor or cancer in a mammal by administering to a mammal an effective amount of an inhibitor of a CVSP1 4, whereby the tumor or cancer is treated or prevented. The CVSP14 inhibitor used in the treatment or for prophylaxis is administered with a pharmaceutically acceptable carrier or excipient. The mammal treated can be a human. The treatment or prevention method can additionally include administering an anti-cancer treatment or agent simultaneously with or subsequently or before administration of the CVSP1 4 inhibitor. Also provided is a recombinant non-human animal in which an endogenous gene of a CVSP14 has been deleted or inactivated by homologous recombination or other recombination events or insertional mutagenesis of the animal or an ancestor thereof. A recombinant non-human animal is provided herein, where the gene of a CVSP14 is under control of a promoter that is not the native promoter of the gene or that is not the native promoter of the gene in the non-human animal or where the nucleic acid encoding the CVSP1 4 is heterologous to the non-human animal and the promoter is the native or a non- native promoter or the CVSP14 is on an extrachromosomal element, such as a plasmid or artificial chromosome. Transgenic non-human animals bearing the genes encoding the CVSP1 4 and bearing inactivated genes encoding CVSP1 4, particularly under a non-native promotor control or on an exogenous element, such as a plasmid or artificial chromosome, are additionally provided herein.
Also provided are methods of treatments of tumors by administering a prodrug that is activated by CVSP14 that is expressed or active in tumor cells, particularly those in which its functional activity in tumor cells is greater than in non-tumor cells. The prodrug is administered and, upon administration, active CVSP14 cleaves the prodrug and releases active drug in the vicinity of the tumor cells. The active anti-cancer drug accumulates in the vicinity of the tumor. This is particularly useful in instances in which CVSP1 4 is expressed or active in greater quantity, higher level or predominantly in tumor cells compared to other cells.
Also provided are methods of identifying a compound that binds to the single-chain or two-chain form of CVSP1 4, by contacting a test compound with a both forms; determining to which form the compound binds; and if it binds to a form of CVSP14, further determining whether the compound has at least one of the following properties:
(i) inhibits activation of the single-chain zymogen form of CVSP14; (ii) inhibits activity of the two-chain or single-chain form; and (iii) inhibits dimerization of the protein. The forms can be full length or truncated forms, including but not limited to, the protease domain resulting from cleavage at the Rl activation site or from expression of the protease domain or catalytically active portions thereof.
Also provided are methods of diagnosing the presence of a pre-malignant lesion, a malignancy, or other pathologic condition in a subject, by obtaining a biological sample from the subject; exposing it to a detectable agent that binds to a two-chain or single-chain form of CVSP14, where the pathological condition is characterized by the presence or absence of the two-chain or single-chain form .
Methods of inhibiting tumor invasion or metastasis or treating a malignant or pre-malignant condition by administering an agent that inhibits activation of the zymogen form of CVSP1 4 or an activity of the activated form are provided. The conditions include, but are not limited to, a condition, such as a tumor, of the breast, cervix, prostate, lung, ovary or colon.
Methods for monitoring tumor progression and/or therapeutic effectiveness are also provided. The levels of activation or expression of CVSP14 or the protease domain thereof are assessed, and the change in the level, reflects tumor progression and/or the effectiveness of therapy. Generally, as the tumor progresses the amount of CVSP14 in a body tissue or fluid sample increases; effective therapy reduces the level. DETAILED DESCRIPTION OF THE INVENTION A. DEFINITIONS Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the invention(s) belong. All patents, patent applications, published applications and publications, Genbank sequences, websites and other published materials referred to throughout the entire disclosure herein, unless noted otherwise, are incorporated by reference in their entirety. In the event that there are a plurality of definitions for terms herein, those in this section prevail. Where reference is made to a URL or other such indentifier or address, it understood that such identifiers can change and particular information on the internet can come and go, but equivalent information can be found by searching the internet. Reference thereto evidences the availability and public dissemination of such information. As used herein, the abbreviations for any protective groups, amino acids and other compounds, are, unless indicated otherwise, in accord with their common usage, recognized abbreviations, or the IUPAC-IUB Commission on Biochemical Nomenclature (see, ( 1 972) Biochem. 7 7 :942-944).
As used herein, serine protease refers to a diverse family of proteases wherein a serine residue is involved in the hydrolysis of proteins or peptides.
The serine residue can be part of the catalytic triad mechanism, which includes a serine, a histidine and an aspartic acid in the catalysis, or be part of the hydroxyl/e-amine or hydroxyl/σ-amine catalytic dyad mechanism, which involves a serine and a lysine in the catalysis. Of particular interest are SPs of mammalian, including human, origin. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g. , Watson et al. ( 1 987) Molecular Biology of the Gene, 4th Edition, The Bejacmin/Cummings Pub. co., p.224). As used herein, "transmembrane serine protease (MTSP)" refers to a family of transmembrane serine proteases that share common structural features as described herein (see, also Hooper et al. (2001 ) J. Biol. Chem. 76:857-860). Thus, reference, for example, to "MTSP" encompasses all proteins encoded by the MTSP gene family, including but are not limited to: MTSP3, MTSP4, MTSP6, MTSP7 or an equivalent molecule obtained from any other source or that has been prepared synthetically or that exhibits the same activity. Other MTSPs include, but are not limited to, corin, enterpeptidase, human airway trypsin-like protease (HAT), MTSP1 , TMPRSS2, and TMPRSS4. Sequences of encoding nucleic molecules and the encoded amino acid sequences of exemplary MTSPs and/or domains thereof are set forth, for example in U.S. application
Serial No. 09/776, 1 91 (SEQ ID Nos. 1 -1 2, 49, 50 and 61 -72 therein, published as International PCT application No. WO 01 /571 94) . The term also encompass MTSPs with amino acid substitutions that do not substantially alter activity of each member, and also encompasses splice variants thereof. Suitable substitutions, including, although not necessarily, conservative substitutions of amino acids, are known to those of skill in this art and can be made without eliminating the biological activity, such as the catalytic activity, of the resulting molecule.
As used herein, a "protease domain of a CVSP" refers to a domain of CVSP that exhibits proteolytic activity and shares homology and structural features with the chymotrypsin/trypsin family protease domains. Hence it is at least the minimal portion of the domain that exhibits proteolytic activity as assessed by standard in vitro assays. Those of skill in this art recognize that such protease domain is the portion of the protease that is structurally equivalent to the trypsin or chymotrypsin fold. Contemplated herein are such protease domains and catalytically active portions thereof. Also provided are truncated forms of the protease domain that include the smallest fragment thereof that acts catalytically as a single chain form.
As used herein, the catalytically active domain of a CVSP refers to the protease domain. Reference to the protease domain of a CVSP includes refers to the single chain form of the protein. If the two-chain form or both is intended, it is so-specified. The zymogen form of each protein is a single chain, which is converted to the active two chain form by activation cleavage.
As used herein a protease domain of a CVSP14, whenever referenced herein, includes at least one or all of or any combination of or a catalytically active portion of: a polypeptide encoded by the sequence of nucleotides set forth in
SEQ ID No. 5; a polypeptide encoded by a sequence of nucleotides that hybridizes under conditions of low, moderate or high stringency to the sequence of nucleotides set forth in SEQ ID No. 5; a polypeptide that comprises the sequence of amino acids set forth in SEQ ID No. 6; a polypeptide that comprises a sequence of amino acids having at least about 60%, 70%, 80%, 90% or about 95 % sequence identity with the sequence of amino acids set forth in SEQ ID No. 6; and/or a protease domain of a splice variant of the CVSP14. The CVSP14 can be from any animal, particularly a mammal, and includes but are not limited to, humans, rodents, fowl, ruminants and other animals. The full length zymogen or two-chain activated form is contemplated or any domain thereof, including the protease domain, which can be a two-chain activated form, or a single chain form. By active form is meant a form active in vivo and/or in vitro. As described herein, the protease domain also can exist as a two-chain form. It is shown herein that, at least in vitro, the single chain forms of the SPs and the catalytic domains or proteolytically active portions thereof (typically C-terminal truncations) thereof exhibit protease activity. Hence provided herein are isolated single chain forms of the protease domains of SPs and their use in in vitro drug screening assays for identification of agents that modulate the activity thereof.
As used herein, activation cleavage refers to the cleavage of the protease at the N-terminus of the protease domain (in this instance between R55 and l56; with reference to SEQ ID Nos. 1 2 and 1 3). By virtue of the Cys-Cys pairing between the a Cys outside the protease domain (in this instance C37) and a Cys in the protease domain (in this instance Cys166), upon cleavage the resulting polypeptide has two chains ("A" chain and the "B" chain, which is the protease domain). Cleavage can be effected by another protease or autocatalytically.
As used herein, a two-chain form of the protease domain refers to a two- chain form that is formed from the two-chain form of the protease in which the Cys pairing between, in this instance, Cys37 and Cys166, which links the protease domain to the remainder of the polypeptide, the "A" chain. A two chain protease domain form refers to any form in which the "remainder of the polypeptide", i.e. , "A" chain, is shortened and includes at least up to Cys37. As used herein a CVSP14, whenever referenced herein, includes at least one or all of or any combination of: a polypeptide encoded by the sequence of nucleotides set forth in SEQ ID No. 1 2; a polypeptide encoded by a sequence of nucleotides that hybridizes under conditions of low, moderate or high stringency to the sequence of nucleotides set forth in SEQ ID No. 1 2; a polypeptide that comprises the sequence of amino acids set forth in SEQ ID No. 1 3; a polypeptide that comprises a sequence of amino acids having at least about 60%, 70% , 80%, 90% or about 95 % sequence identity with the sequence of amino acids set forth in SEQ ID No. 6 or 1 3; and/or a splice variant of the CVSP1 4. The CVSP1 polypeptide includes the sequence of amino acids set forth in SEQ ID No. 1 3. Smaller portions thereof that retain protease activity are contemplated. The protease domain thereof is set forth in SEQ ID No. 6. The protease domains of CVSPs vary in size and constitution, including insertions and deletions in surface loops. They retain conserved structure, including at least one of the active site triad, primary specificity pocket, oxyanion hole and/or other features of serine protease domains of proteases. Thus, for purposes herein, the protease domain is a portion of a CVSP, as defined herein, and is homologous to a domain of other CVSP. As with the larger class of enzymes of the chymotrypsin (S1 ) fold (see, e.g. , Internet accessible MEROPS data base), the CVSPs protease domains share a high degree of amino acid sequence identity. The His, Asp and Ser residues necessary for activity are present in conserved motifs. The activation site, whose cleavage creates the N- terminus of protease domain in the two-chain forms has a conserved motif and readily can be identified.
CVSPs of interest include those that are activated and/or expressed in tumor cells at different levels, typically higher, from non-tumor cells; and those from cells in which substrates therefor differ in tumor cells from non-tumor cells or differ with respect to substrates, co-factors or receptors, or otherwise alter the activity or specificity of the CVSP. As used herein, a human protein is one encoded by nucleic acid, such as DNA, present in the genome of a human, including all allelic variants and conservative variations as long as they are not variants found in other mammals.
As used herein, a "nucleic acid encoding a protease domain or catalytically active portion of a SP" shall be construed as referring to a nucleic acid encoding only the recited single chain protease domain or active portion thereof, and not the other contiguous portions of the SP as a continuous sequence.
As used herein, catalytic activity refers to the activity of the SP as a serine protease. Function of the SP refers to its function in tumor biology, including promotion of or involvement in initiation, growth or progression of tumors, and also roles in signal transduction. Catalytic activity refers to the activity of the SP as a protease as assessed in in vitro proteolytic assays that detect proteolysis of a selected substrate. As used herein, a zymogen is an inactive precursor of a proteolytic enzyme. Such precursors are generally larger, although not necessarily larger than the active form. With reference serine proteases zymogens are converted to active enzymes by specific cleavage,, including catalytic and autocatalytic cleavage, or binding of an activating co-factor, which generates the mature active enzyme. A zymogen, thus, is an enzymatically inactive protein that is converted to a proteolytic enzyme by the action of an activator.
As used herein, "disease or disorder" refers to a pathological condition in an organism resulting from, e.g. , infection or genetic defect, and characterized by identifiable symptoms. As used herein, neoplasm (neoplasia) refers to abnormal new growth, and thus means the same as tumor, which can be benign or malignant. Unlike hyperplasia, neoplastic proliferation persists even in the absence of the original stimulus.
As used herein, neoplastic disease refers to any disorder involving cancer, including tumor development, growth, metastasis and progression.
As used herein, cancer refers to a general term for diseases caused by any type of malignant tumor. As used herein, malignant, as applies to tumors, refers to primary tumors that have the capacity of metastasis with loss of growth control and positional control.
As used herein, an anti-cancer agent (used interchangeable with "anti- tumor or anti-neoplastic agent") refers to any agents used in the anti-cancer treatment. These include any agents, when used alone or in combination with other compounds, that- can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical symptoms or diagnostic markers associated with neoplastic disease, tumor and cancer, and can be used in methods, combinations and compositions provided herein. Non-limiting examples of anti-neoplastic agents include anti-angiogenic agents, alkylating agents, antimetabolite, certain natural products, platinum coordination complexes, anthracenediones, substituted ureas, methylhydrazine derivatives, adrenocortical suppressants, certain hormones, antagonists and anti-cancer polysaccharides.
As used herein, a splice variant refers to a variant produced by differential processing of a primary transcript of genomic nucleic acid, such as DNA, that results in more than one type of mRNA. Splice variants of SPs are provided herein. As used herein, angiogenesis is intended to broadly encompass the totality of processes directly or indirectly involved in the establishment and maintenance of new vasculature (neovascularization), including, but not limited to, neovascularization associated with tumors.
As used herein, anti-angiogenic treatment or agent refers to any therapeutic regimen and compound, when used alone or in combination with other treatment or compounds, that can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical symptoms or diagnostic markers associated with undesired and/or uncontrolled angiogenesis. Thus, for purposes herein an anti-angiogenic agent refers to an agent that inhibits the establishment or maintenance of vasculature. Such agents include, but are not limited to, anti-tumor agents, and agents for treatments of other disorders associated with undesirable angiogenesis, such as diabetic retinopathies, restenosis, hyperproliferative disorders and others.
As used herein, non-anti-angiogenic anti-tumor agents refer to anti-tumor agents that do not act primarily by inhibiting angiogenesis. As used herein, pro-angiogenic agents are agents that promote the establishment or maintenance of the vasculature. Such agents include agents for treating cardiovascular disorders, including heart attacks and strokes.
As used herein, undesired and/or uncontrolled angiogenesis refers to pathological angiogenesis wherein the influence of angiogenesis stimulators outweighs the influence of angiogenesis inhibitors. As used herein, deficient angiogenesis refers to pathological angiogenesis associated with disorders where there is a defect in normal angiogenesis resulting in aberrant angiogenesis or an absence or substantial reduction in angiogenesis.
As used herein, the protease domain of an SP protein refers to the protease domain of an SP that exhibits proteolytic activity. Hence it is at least the minimal portion of the protein that exhibits proteolytic activity as assessed by standard assays in vitro. It refers, herein, to a single chain form and also the two chain activated form (where the two chain form is intended it will be so- noted). Exemplary protease domains include at least a sufficient portion of sequences of amino acids set forth in SEQ ID No. 6 (encoded by nucleotides in SEQ ID No. 5) to exhibit protease activity.
Also contemplated are nucleic acid molecules that encode a polypeptide that has proteolytic activity in an in vitro proteolysis assay and that have at least 60%, 70%, 80%, 90% or about 95 % sequence identity with the full length of a protease domain of a CVSP1 4 polypeptide, or that hybridize along their full length or along at least about 70%, 80% or 90% of the full length to a nucleic acids that encode a protease domain, particularly under conditions of moderate, generally high, stringency.
For the protease domains, residues at the N-terminus can be critical for activity. It is shown herein that the protease domain of the single chain form of the CVSP1 4 protease is catalytically active. Hence the protease domain generally requires the N-terminal amino acids thereof for activity; the C-terminus portion can be truncated. The amount that can be removed can be determined empirically by testing the polypeptide for protease activity in an in vitro assay that assesses catalytic cleavage.
Hence smaller portions of the protease domains, particularly the single chain domains, thereof that retain protease activity are contemplated. Such smaller versions generally are C-terminal truncated versions of the protease domains. The protease domains vary in size and constitution, including insertions and deletions in surface loops. Such domains exhibit conserved structure, including at least one structural feature, such as the active site triad, primary specificity pocket, oxyanion hole and/or other features of serine protease domains of proteases. Thus, for purposes herein, the protease domain is a single chain portion of a CVSP1 4, as defined herein, but is homologous in its structural features and retention of sequence of similarity or homology the protease domain of chymotrypsin or trypsin. The polypeptide exhibits proteolytic activity as a single chain.
As used herein, by homologous means about greater than 25 % nucleic acid sequence identity, such as 25 % 40%, 60%, 70%, 80%, 90% or 95% . If necessary the percentage homology will be specified. The terms "homology" and "identity" are often used interchangeably. In general, sequences are aligned so that the highest order match is obtained (see, e.g. : Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1 988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1 993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1 994; Sequence Analysis in Molecular Biology, von Heinje, G ., Academic Press, 1 987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1 991 ; Carillo et al. ( 1 988) SIAM J Applied Math 45: 1 073). By sequence identity, the number of conserved amino acids are determined by standard alignment algorithms programs, and are used with default gap penalties established by each supplier. Substantially homologous nucleic acid molecules would hybridize typically at moderate stringency or at high stringency all along the length of the nucleic acid or or along at least about 70%, 80% or 90% of the full length nucleic acid molecule of interest. Also contemplated are nucleic acid molecules that contain degenerate codons in place of codons in the hybridizing nucleic acid molecule.
Whether any two nucleic acid molecules have nucleotide sequences that are at least 80%, 85%, 90%, 95 %, 96%, 97% , 98% or 99% "identical" can be determined using known computer algorithms such as the "FAST A" program, using for example, the default parameters as in Pearson et al. ( 1 988) Proc. Natl. Acad. Sci. USA 85:2444 (other programs include the GCG program package (Devereux, J., et al.. Nucleic Acids Research 12(l):387 ( 1 984)), BLASTP, BLASTN, FASTA (Atschul, S.F., et al., J Molec Biol 275:403 ( 1 990); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1 994, and Carillo et al. (1 988) SIAM J Applied Math 45: 1073). For example, the BLAST function of the National Center for Biotechnology Information database can be used to determine identity. Other commercially or publicly available programs include, DNAStar "MegAlign" program (Madison, WI) and the University of Wisconsin Genetics Computer Group (UWG) "Gap" program (Madison WI)) . Percent homology or identity of proteins and/or nucleic acid molecules can be determined/ for example, by comparing sequence information using a GAP computer program (e.g. , Needleman et al. ( 1 970) J. Mol. Biol. 48:443, as revised by Smith and Waterman (( 1 981 ) Adv. Appl. Math. 2:482). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. Default parameters for the GAP program can include: ( 1 ) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) and the weighted comparison matrix of
Gribskov et al. ( 1 986) Nucl. Acids Res. 14:6745, as described by Schwartz and Dayhoff , eds., A TLAS OF PROTEIN SEQUENCE AND STRUCTURE, National Biomedical Research Foundation, pp. 353-358 ( 1 979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps. Therefore, as used herein, the term "identity" represents a comparison between a test and a reference polypeptide or polynucleotide. As used herein, the term at least "90% identical to" refers to percent identities from 90 to 99.99 relative to the reference polypeptides. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polynucleotide length of 1 00 amino acids are compared. No more than 10% (i.e., 10 out of 1 00) amino acids in the test polypeptide differs from that of the reference polypeptides. Similar comparisons can be made between a test and reference polynucleotides. Such differences can be represented as point mutations randomly distributed over the entire length of an amino acid sequence or they can be clustered in one or more locations of varying length up to the maximum allowable, e.g. 10/1 00 amino acid difference (approximately 90% identity). Differences are defined as nucleic acid or amino acid substitutions, or deletions. At the level of homologies or identities above about 85-90%, the result should be independent of the program and gap parameters set; such high levels of identity can be assessed readily, often without relying on software.
As used herein, primer refers to an oligonucleotide containing two or more deoxyribonucleotides or ribonucleotides, typically more than three, from which synthesis of a primer extension product can be initiated. Experimental conditions conducive to synthesis include the presence, of nucleoside triphosphates and an agent for polymerization and extension, such as DNA polymerase, and a suitable buffer, temperature and pH.
As used herein, animals include any animal, such as, but are not limited to, goats, cows, deer, sheep, rodents, pigs and humans. Non-human animals, exclude humans as the contemplated animal. The SPs provided herein are from any source, animal, plant, prokaryotic and fungal. Most CVSP1 4s are of animal origin, including mammalian origin.
As used herein, genetic therapy involves the transfer of heterologous nucleic acid, such as DNA, into certain cells, target cells, of a mammal, particularly a human, with a disorder or conditions for which such therapy is sought. The nucleic acid, such as DNA, is introduced into the selected target cells in a manner such that the heterologous nucleic acid, such as DNA, is expressed and a therapeutic product encoded thereby is produced. Alternatively, the heterologous nucleic acid, such as DNA, can in some manner mediate expression of DNA that encodes the therapeutic product, or it can encode a product, such as a peptide or RNA that in some manner mediates, directly or indirectly, expression of a therapeutic product. Genetic therapy can also be used to deliver nucleic acid encoding a gene product that replaces a defective gene or supplements a gene product produced by the mammal or the cell in which it is introduced. The introduced nucleic acid can encode a therapeutic compound, such as a growth factor inhibitor thereof, or a tumor necrosis factor or inhibitor thereof, such as a receptor therefor, that is not normally produced in the mammalian host or that is not produced in therapeutically effective amounts or at a therapeutically useful time. The heterologous nucleic acid, such as DNA, encoding the therapeutic product can be modified prior to introduction into the cells of the afflicted host in order to enhance or otherwise alter the product or expression thereof . Genetic therapy can also involve delivery of an inhibitor or repressor or other modulator of gene expression.
As used herein, heterologous nucleic acid is nucleic acid that (if DNA encodes RNA) and proteins that are not normally produced in vivo by the cell in which it is expressed or that mediates or encodes mediators that alter expression of endogenous nucleic acid, such as DNA, by affecting transcription, translation, or other regulatable biochemical processes. Heterologous nucleic acid, such as DNA, can also be referred to as foreign nucleic acid, such as DNA. Any nucleic acid, such as DNA, that one of skill in the art would recognize or consider as heterologous or foreign to the cell in which is expressed is herein encompassed by heterologous nucleic acid; heterologous nucleic acid includes exogenously added nucleic acid that is also expressed endogenously. Examples of heterologous nucleic acid include, but are not limited to, nucleic acid that encodes traceable marker proteins, such as a protein that confers drug resistance, nucleic acid that encodes therapeutically effective substances, such as anti-cancer agents, enzymes and hormones, and nucleic acid, such as DNA, that encodes other types of proteins, such as antibodies. Antibodies that are encoded by heterologous nucleic acid can be secreted or expressed on the surface of the cell in which the heterologous nucleic acid has been introduced. Heterologous nucleic acid is generally not endogenous to the cell into which it is introduced, but has been obtained from another cell or prepared synthetically. Generally, although not necessarily, such nucleic acid encodes RNA and proteins that are not normally produced by the cell in which it is expressed.
Hence, herein heterologous nucleic acid or foreign nucleic acid, includes a nucleic acid molecule not present in the exact orientation or position as the counterpart nucleic acid molecule, such as DNA, found in the genome. It can also refer to a nucleic acid molecule from another organism or species (i.e. , exogenous).
As used herein, a therapeutically effective product is a product that is encoded by heterologous nucleic acid, typically DNA, that, upon introduction of the nucleic acid into a host, a product is expressed that ameliorates or eliminates the symptoms, manifestations of an inherited or acquired disease or that cures the disease.
As used herein, recitation that a polypeptide consists essentially of the protease domain means that the only SP portion of the polypeptide is a protease domain or a catalytically active portion thereof. The polypeptide can optionally, and generally will, include additional non-SP-derived sequences of amino acids. As used herein, cancer or tumor treatment or agent refers to any therapeutic regimen and/or compound that, when used alone or in combination with other treatments or compounds, can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical symptoms or diagnostic markers associated with deficient angiogenesis. As used herein, domain refers to a portion of a molecule, e.g. , proteins or the encoding nucleic acids, that is structurally and/or functionally distinct from other portions of the molecule.
As used herein, protease refers to an enzyme catalyzing hydrolysis of proteins or peptides. It includes the zymogen form and activated forms thereof. For clarity reference to protease refers to all forms, and particular forms will be specifically designated. For purposes herein, the protease domain includes single and two chain forms of the protease domain of an SP protein. For CVSP14 the protease domain also includes two chain forms of the protease domain.
As used herein, nucleic acids include DNA, RNA and analogs thereof, including protein nucleic acids (PNA) and mixture thereof. Nucleic acids can be single or double-stranded. When referring to probes or primers, optionally labeled, with a detectable label, such as a fluorescent or radiolabel, single- stranded molecules are contemplated. Such molecules are typically of a length such that their target is statistically unique or of low copy number (typically less than 5, generally less than 3) for probing or priming a library. Generally a probe or primer contains at least 1 4, 1 6 or 30 contiguous of sequence complementary to or identical a gene of interest. Probes and primers can be 10, 20, 30, 50, 1 00 or more nucleic acids long.
As used herein, nucleic acid encoding a fragment or portion of an SP refers to a nucleic acid encoding only the recited fragment or portion of SP, and not the other contiguous portions of the SP.
As used herein, operative linkage of heterologous nucleic to regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences refers to the relationship between such nucleic acid, such as DNA, and such sequences of nucleotides. For example, operative linkage of heterologous DNA to a promoter refers to the physical relationship between the DNA and the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA in reading frame. Thus, operatively linked or operationally associated refers to the functional relationship of nucleic acid, such as DNA, with regulatory and effector sequences of nucleotides, such as promoters, enhancers, transcriptional and translational stop sites, and other signal sequences. For example, operative linkage of DNA to a promoter refers to the physical and functional relationship between the DNA and the promoter such that the transcription of such DNA is initiated from the promoter by an RNA polymerase that specifically recognizes, binds to and transcribes the DNA. In order to optimize expression and/or in vitro transcription, it can be necessary to remove, add or alter 5' untranslated portions of the clones to eliminate extra, potential inappropriate alternative translation initiation (i.e. , start) codons or other sequences that can interfere with or reduce expression, either at the level of transcription or translation. Alternatively, consensus ribosome binding sites (see, e.g. , Kozak J. Biol. Chem. 266: 1 9867- 1 9870 ( 1 991 )) can be inserted immediately 5' of the start codon and can enhance expression. The desirability of (or need for) such modification can be empirically determined.
As used herein, a sequence complementary to at least a portion of an RNA, with reference to antisense oligonucleotides, means a sequence having sufficient complementarily to be able to hybridize with the RNA, generally under moderate or high stringency conditions, forming a stable duplex; in the case of double-stranded SP antisense nucleic acids, a single strand of the duplex DNA (or dsRNA) can thus be tested, or triplex formation can be assayed. The ability to hybridize depends on the degree of complementarily and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with a SP encoding RNA it can contain and still form a stable duplex (or triplex, as the case can be) . One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex. For purposes herein, amino acid substitutions can be made in any of SPs and protease domains thereof provided that the resulting protein exhibits protease activity. Muteins can be made by making conservative amino acid substitutions and also non-conservative amino acid substitutions. For example, amino acid substitutions the desirably alter properties of the proteins can be made. In one embodiment, mutations that prevent degradation of the polypeptide can be made. Many proteases cleave after basic residues, such as R and K; to eliminate such cleavage, the basic residue is replaced with a non-basic residue. Interaction of the protease with an inhibitor can be blocked while retaining catalytic activity by effecting a non-conservative change at the site interaction of the inhibitor with the protease. Receptor binding can be altered without altering catalytic activity. Amino acid substitutions contemplated include conservative substitutions, such as those set forth in Table 1 , which do not eliminate proteolytic activity. As described herein, substitutions that alter properties of the proteins, such as removal of cleavage sites and other such sites are also contemplated; such substitutions are generally non-conservative, but can be readily effected by those of skill in the art.
Suitable conservative substitutions of amino acids are known to those of skill in this art and can be made generally without altering the biological activity, for example enzymatic activity, of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g. , Watson et al. Molecular Biology of the Gene, 4th Edition, 1 987, The Bejacmin/Cummings Pub. co., p.224). Also included within the definition, is the catalytically active fragment of an SP, particularly a single chain protease portion. Conservative amino acid substitutions are made, for example, in accordance with those set forth in TABLE 1 as follows:
TABLE 1
Original residue Conservative substitution
Ala (A) Gly; Ser, Abu
Arg (R) Lys, orn Asn (N) Gin; His
Cys (C) Ser Gin (Q) Asn
Glu (E) Asp
Gly (G) Ala; Pro His (H) Asn; Gin
He (I) Leu; Val; Met; Nle; Nva
Leu (L) Ile; Val; Met; Nle; Nv
Lys (K) Arg; Gin; Glu Met (M) Leu; Tyr; lie; NLe Val
Ornitine Lys; Arg Phe (F) Met; Leu; Tyr
Ser (S) Thr
Thr (T) Ser
Trp (W) Tyr Tyr (Y) Trp; Phe Val (V) Ile; Leu; Met; Nle; Nv
Other substitutions are also permissible and can be determined empirically or in accord with known conservative substitutions. As used herein, Abu is 2-aminobutyric acid; Orn is ornithine. As used herein, the amino acids, which occur in the various amino acid sequences appearing herein, are identified according to their well-known, three- letter or one-letter abbreviations. The nucleotides, which occur in the various DNA fragments, are designated with the standard single-letter designations used routinely in the art.
As used herein, a probe or primer based on a nucleotide sequence disclosed herein, includes at least 1 0, 14, typically at least 1 6 contiguous sequence of nucleotides of SEQ ID No. 5, and probes of at least 30, 50 or 1 00 contiguous sequence of nucleotides of SEQ ID No. 5. The length of the probe or primer for unique hybridization is a function of the complexity of the genome of interest.
As used herein, amelioration of the symptoms of a particular disorder by administration of a particular pharmaceutical composition refers to any lessening, whether permanent or temporary, lasting or transient that can be attributed to or associated with administration of the composition.
As used herein, antisense polynucleotides refer to synthetic sequences of nucleotide bases complementary to mRNA or the sense strand of double- stranded DNA. Admixture of sense and antisense polynucleotides under appropriate conditions leads to the binding of the two molecules, or hybridization. When these polynucleotides bind to (hybridize with) mRNA, inhibition of protein synthesis (translation) occurs. When these polynucleotides bind to double-stranded DNA, inhibition of RNA synthesis (transcription) occurs. The resulting inhibition of translation and/or transcription leads to an inhibition of the synthesis of the protein encoded by the sense strand. Antisense nucleic acid molecule typically contain a sufficient number of nucleotides to specifically bind to a target nucleic acid, generally at least 5 contiguous nucleotides, often at least 14 or 1 6 or 30 contiguous nucleotides or modified nucleotides complementary to the coding portion of a nucleic acid molecule that encodes a gene of interest, for example, nucleic acid encoding a single chain protease domain of an SP. As used herein, an array refers to a collection of elements, such as antibodies, containing three or more members. An addressable array is one in which the members of the array are identifiable, typically by position on a solid phase support. Hence, in general the members of the array are immobilized on discrete identifiable loci on the surface of a solid phase.
As used herein, antibody refers to an immunoglobulin, whether natural or partially or wholly synthetically produced, including any derivative thereof that retains the specific binding ability the antibody. Hence antibody includes any protein having a binding domain that is homologous or substantially homologous to an immunoglobulin binding domain. Antibodies include members of any immunoglobulin claims, including IgG, IgM, IgA, IgD and IgE.
As used herein, antibody fragment refers to any derivative of an antibody that is less then full length, retaining at least a portion of the full-length antibody's specific binding ability. Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab)2, single-chain Fvs (scFV), FV, dsFV diabody and Fd fragments. The fragment can include multiple chains linked together, such as by disulfide bridges. An antibody fragment generally contains at least about 50 amino acids and typically at least 200 amino acids.
As used herein, an Fv antibody fragment is composed of one variable heavy domain (VH) and one variable light domain linked by noncovalent interactions.
As used herein, a dsFV refers to an Fv with an engineered intermolecular disulfide bond, which stabilizes the VH-VL pair.
As used herein, an F(ab)2 fragment is an antibody fragment that results from digestion of an immunoglobulin with pepsin at pH 4.0-4.5; it can be recombinantly produced to produce the equivalent fragment.
As used herein, Fab fragments is an antibody fragment that results from digestion of an immunoglobulin with papain; it can be recombinantly produced to produce the equivalent fragment. As used herein, scFVs refer to antibody fragments that contain a variable light chain (VL) and variable heavy chain (VH) covalently connected by a polypeptide linker in any order. The linker is of a length such that the two variable domains are bridged without substantial interference. Included linkers are (Gly-Ser)π residues with some Glu or Lys residues dispersed throughout to increase solubility.
As used herein, humanized antibodies refer to antibodies that are modified to include human sequences of amino acids so that administration to a human does not provoke an immune response. Methods for preparation of such antibodies are known. For example, the hybridoma that expresses the monoclonal antibody is altered by recombinant DNA techniques to express an antibody in which the amino acid composition of the non-variable regions is based on human antibodies. Computer programs have been designed to identify such regions.
As used herein, diabodies are dimeric scFV; diabodies typically have shorter peptide linkers than scFvs, and they generally dimerize.
As used herein, production by recombinant means by using recombinant DNA methods means the use of the well known methods of molecular biology for expressing proteins encoded by cloned DNA.
As used herein the term assessing is intended to include quantitative and qualitative determination in the sense of obtaining an absolute value for the activity of an SP, or a domain thereof, present in the sample, and also of obtaining an index, ratio, percentage, visual or other value indicative of the level of the activity. Assessment can be direct or indirect and the chemical species actually detected need not of course be the proteolysis product itself but can for example be a derivative thereof or some further substance. As used herein, biological activity refers to the in vivo activities of a compound or physiological responses that result upon in vivo administration of a compound, composition or other mixture. Biological activity, thus, encompasses therapeutic effects and pharmaceutical activity of such compounds, compositions and mixtures. Biological activities can be observed in in vitro systems designed to test or use such activities. Thus, for purposes herein the biological activity of a luciferase is its oxygenase activity whereby, upon oxidation of a substrate, light is produced. As used herein, functional activity refers to a polypeptide or portion thereof that displays one or more activities associated with a full-length (complete) protein. Functional activities include, but are not limited to, biological activity, catalytic or enzymatic activity, antigenicity (ability to bind to or compete with a polypeptide for binding to an anti-polypeptide antibody), immunogenicity, ability to form multimers, the ability to specifically bind to a receptor or ligand for the polypeptide.
As used herein, a conjugate refers to the compounds provided herein that include one or more SPs, including a CVSP1 4, particularly single chain protease domains thereof, and one or more targeting agents. These conjugates include those produced by recombinant means as fusion proteins, those produced by chemical means, such as by chemical coupling, through, for example, coupling to sulfhydryl groups, and those produced by any other method whereby at least one SP, or a domain thereof, is linked, directly or indirectly via linker(s) to a targeting agent.
As used herein, a targeting agent, is any moiety, such as a protein or effective portion thereof, that provides specific binding of the conjugate to a cell surface receptor, which, can internalize the conjugate or SP portion thereof. A targeting agent can also be one that promotes or facilitates, for example, affinity isolation or purification of the conjugate; attachment of the conjugate to a surface; or detection of the conjugate or complexes containing the conjugate.
As used herein, an antibody conjugate refers to a conjugate in which the targeting agent is an antibody.
As used herein, derivative or analog of a molecule refers to a portion derived from or a modified version of the molecule.
As used herein, an effective amount of a compound for treating a particular disease is an amount that is sufficient to ameliorate, or in some manner reduce the symptoms associated with the disease. Such amount can be administered as a single dosage or can be administered according to a regimen, whereby it is effective. The amount can cure the disease but, typically, is administered in order to ameliorate the symptoms of the disease. Repeated administration can be required to achieve the desired amelioration of symptoms. As used herein equivalent, when referring to two sequences of nucleic acids means that the two sequences in question encode the same sequence of amino acids or equivalent proteins. When equivalent is used in referring to two proteins or peptides, it means that the two proteins or peptides have substantially the same amino acid sequence with only amino acid substitutions (such, as but not limited to, conservative changes such as those set forth in Table 1 , above) that do not substantially alter the activity or function of the protein or peptide. When equivalent refers to a property, the property does not need to be present to the same extent (e.g. , two peptides can exhibit different rates of the same type of enzymatic activity), but the activities are usually substantially the same. Complementary, when referring to two nucleotide sequences, means that the two sequences of nucleotides are capable of hybridizing, typically with less than 25 %, 1 5 %, 5 % or 0% mismatches between opposed nucleotides. If necessary the percentage of complementarity will be specified. Typically the two molecules are selected such that they will hybridize under conditions of high stringency.
As used herein, an agent that modulates the activity of a protein or expression of a gene or nucleic acid either decreases or increases or otherwise alters the activity of the protein or, in some manner up- or down-regulates or otherwise alters expression of the nucleic acid in a cell.
As used herein, inhibitor of the activity of an SP encompasses any substances that prohibit or decrease production, post-translational modification(s), maturation, or membrane localization of the SP or any substances that interferes with or decreases the proteolytic efficacy of thereof, particularly of a single chain form in an in vitro screening assay.
As used herein, a method for treating or preventing neoplastic disease means that any of the symptoms, such as the tumor, metastasis thereof, the vascularization of the tumors or other parameters by which the disease is characterized are reduced, ameliorated, prevented, placed in a state of remission, or maintained in a state of remission. It also means that the hallmarks of neoplastic disease and metastasis can be eliminated, reduced or prevented by the treatment. Non-limiting examples of the hallmarks include uncontrolled degradation of the basement membrane and proximal extracellular matrix, migration, division, and organization of the endothelial cells into new functioning capillaries, and the persistence of such functioning capillaries.
As used herein, pharmaceutically acceptable salts, esters or other derivatives of the conjugates include any salts, esters or derivatives that can be readily prepared by those of skill in this art using known methods for such derivatization and that produce compounds that can be administered to animals or humans without substantial toxic effects and that either are pharmaceutically active or are prodrugs. As used herein, a prodrug is a compound that, upon in vivo administration, is metabolized or otherwise converted to the biologically, pharmaceutically or therapeutically active form of the compound. To produce a prodrug, the pharmaceutically active compound is modified such that the active compound is regenerated by metabolic processes. The prodrug can be designed to alter the metabolic stability or the transport characteristics of a drug, to mask side effects or toxicity, to improve the flavor of a drug or to alter other characteristics or properties of a drug. By virtue of knowledge of pharmacodynamic processes and drug metabolism in vivo, those of skill in this art, once a pharmaceutically active compound is known, can design prodrugs of the compound (see, e.g. , Nogrady ( 1 985) Medicinal Chemistry A Biochemical Approach, Oxford University Press, New York, pages 388-392).
As used herein, a drug identified by the screening methods provided herein refers to any compound that is a candidate for use as a therapeutic or as a lead compound for the design of a therapeutic. Such compounds can be small molecules, including small organic molecules, peptides, peptide mimetics, antisense molecules or dsRNA, such as RNAi, antibodies, fragments of antibodies, recombinant antibodies and other such compound which can serve as drug candidate or lead compound.
As used herein, a peptidomimetic is a compound that mimics the conformation and certain stereochemical features of the biologically active form of a particular peptide. In general, peptidomimetics are designed to mimic certain desirable properties of a compound, but not the undesirable properties. such as flexibility, that lead to a loss of a biologically active conformation and bond breakdown. Peptidomimetics may be prepared from biologically active compounds by replacing certain groups or bonds that contribute to the undesirable properties with bioisosteres. Bioisosteres are known to those of skill in the art. For example the methylene bioisostere CH2S has been used as an amide replacement in enkephalin analogs (see, e.g., Spatola (1 983) pp. 267-357 in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Weistein, Ed. volume 7, Marcel Dekker, New York). Morphine, which can be administered orally, is a compound that is a peptidomimetic of the peptide endorphin. For purposes herein, cyclic peptides are included among pepidomimetics.
As used herein, a promoter region or promoter element refers to a segment of DNA or RNA that controls transcription of the DNA or RNA to which it is operatively linked. The promoter region includes specific sequences that are sufficient for RNA polymerase recognition, binding and transcription initiation. This portion of the promoter region is referred to as the promoter. In addition, the promoter region includes sequences that modulate this recognition, binding and transcription initiation activity of RNA polymerase. These sequences can be cis acting or can be responsive to trans acting factors. Promoters, depending upon the nature of the regulation, can be constitutive or regulated. Exemplary promoters contemplated for use in prokaryotes include the bacteriophage T7 and T3 promoters.
As used herein, a receptor refers to a molecule that has an affinity for a given ligand. Receptors can be naturally-occurring or synthetic molecules. Receptors can also be referred to in the art as anti-ligands. As used herein, the receptor and anti-ligand are interchangeable. Receptors can be used in their unaltered state or as aggregates with other species. Receptors can be attached, covalently or noncovalently, or in physical contact with, to a binding member, either directly or indirectly via a specific binding substance or linker. Examples of receptors, include, but are not limited to: antibodies, cell membrane receptors surface receptors and internalizing receptors, monoclonal antibodies and antisera reactive with specific antigenic determinants [such as on viruses, cells, or other materials], drugs, polynucleotides, nucleic acids, peptides, cofactors, lectins, sugars, polysaccharides, cells, cellular membranes, and organelles.
Examples of receptors and applications using such receptors, include but are not restricted to: a) enzymes: specific transport proteins or enzymes essential to survival of microorganisms, which could serve as targets for antibiotic [ligand] selection; b) antibodies: identification of a ligand-binding site on the antibody molecule that combines with the epitope of an antigen of interest can be investigated; determination of a sequence that mimics an antigenic epitope can lead to the development of vaccines of which the immunogen is based on one or more of such sequences or lead to the development of related diagnostic agents or compounds useful in therapeutic treatments such as for auto-immune diseases c) nucleic acids: identification of ligand, such as protein or RNA, binding sites; d) catalytic polypeptides: polymers, including polypeptides, that are capable of promoting a chemical reaction involving the conversion of one or more reactants to one or more products; such polypeptides generally include a binding site specific for at least one reactant or reaction intermediate and an active functionality proximate to the binding site, in which the functionality is capable of chemically modifying the bound reactant (see, e.g. , U.S. Patent No. 5,21 5,899); e) hormone receptors: determination of the ligands that bind with high affinity to a receptor is useful in the development of hormone replacement therapies; for example, identification of ligands that bind to such receptors can lead to the development of drugs to control blood pressure; and f) opiate receptors: determination of ligands that bind to the opiate receptors in the brain is useful in the development of less-addictive replacements for morphine and related drugs.
As used herein, sample refers to anything which can contain an analyte for which an analyte assay is desired. The sample can be a biological sample, such as a biological fluid or a biological tissue. Examples of biological fluids include urine, blood, plasma, serum, saliva, semen, stool, sputum, cerebral spinal fluid, tears, mucus, amniotic fluid or the like. Biological tissues are aggregate of cells, usually of a particular kind together with their intercellular substance that form one of the structural materials of a human, animal, plant, bacterial, fungal or viral structure, including connective, epithelium, muscle and nerve tissues. Examples of biological tissues also include organs, tumors, lymph nodes, arteries and individual cell(s).
As used herein: stringency of hybridization in determining percentage mismatch is as follows:
1 ) high stringency: 0.1 x SSPE, 0.1 % SDS, 65 °C 2) medium stringency: 0.2 x SSPE, 0.1 % SDS, 50 °C
3) low stringency: 1 .0 x SSPE, 0.1 % SDS, 50 °C Those of skill in this art know that the washing step selects for stable hybrids and also know the ingredients of SSPE (see, e.g. , Sambrook, E.F. Fritsch, T. Maniatis, in: Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press (1 989), vol. 3, p. B.1 3, see, also, numerous catalogs that describe commonly used laboratory solutions). SSPE is pH 7.4 phosphate- buffered 0.1 8 NaCl. Further, those of skill in the art recognize that the stability of hybrids is determined by Tm, which is a function of the sodium ion concentration and temperature (Tm = 81 .5° C-1 6.6(log10[Na+]) + 0.41 (%G + C)- 600/D), so that the only parameters in the wash conditions critical to hybrid stability are sodium ion concentration in the SSPE (or SSC) and temperature.
It is understood that equivalent stringencies can be achieved using alternative buffers, salts and temperatures. By way of example and not limitation, procedures using conditions of low stringency are as follows (see also Shilo and Weinberg, Proc. Natl. Acad. Sci. USA 75:6789-6792 ( 1 981 )): Filters containing DNA are pretreated for 6 hours at 40°C in a solution containing 35 % formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1 % PVP, 0.1 % Ficoll, 1 % BSA, and 500 μg/ml denatured salmon sperm DNA ( 1 0X SSC is 1 .5 M sodium chloride, and 0.1 5 M sodium citrate, adjusted to a pH of 7). Hybridizations are carried out in the same solution with the following modifications: 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μg/ml salmon sperm DNA, 1 0% (wt/vol) dextran sulfate, and 5-20 X 1 06 cpm 32P-labeled probe is used. Filters are incubated in hybridization mixture for 1 8-20 hours at 40°C, and then washed for 1 .5 hours at 55 °C in a solution containing 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1 % SDS. The wash solution is replaced with fresh solution and incubated an additional 1 .5 hours at 60°C. Filters are blotted dry and exposed for autoradiography. If necessary, filters are washed for a third time at 65-68 °C and reexposed to film. Other conditions of low stringency which can be used are well known in the art (e.g. , as employed for cross-species hybridizations).
By way of example and not way of limitation, procedures using conditions of moderate stringency include, for example, but are not limited to, procedures using such conditions of moderate stringency are as follows: Filters containing DNA are pretreated for 6 hours at 55 °C in a solution containing 6X SSC, 5X Denhart's solution, 0.5% SDS and 1 00 μg/ml denatured salmon sperm DNA. Hybridizations are carried out in the same solution and 5-20 X 1 06 cpm 32P-labeled probe is used. Filters are incubated in hybridization mixture for 1 8-20 hours at 55 °C, and then washed twice for 30 minutes at 60 °C in a solution containing 1 X SSC and 0.1 % SDS. Filters are blotted dry and exposed for autoradiography. Other conditions of moderate stringency which can be used are well-known in the art. Washing of filters is done at 37 °C for 1 hour in a solution containing 2X SSC, 0.1 % SDS.
By way of example and not way of limitation, procedures using conditions of high stringency are as follows: Prehybridization of filters containing DNA is carried out for 8 hours to overnight at 65 °C in buffer composed of 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 μg/ml denatured salmon sperm DNA. Filters are hybridized for 48 hours at 65 °C in prehybridization mixture containing 100 μg/ml denatured salmon sperm DNA and 5-20 X 1 06 cpm of 32P-labeled probe. Washing of filters is done at 37 °C for 1 hour in a solution containing 2X SSC, 0.01 % PVP, 0.01 % Ficoll, and 0.01 % BSA. This is followed by a wash in 0.1 X SSC at 50 °C for 45 minutes before autoradiography. Other conditions of high stringency which can be used are well known in the art. The term substantially identical or homologous or similar varies with the context as understood by those skilled in the relevant art and generally means at least 60% or 70%, preferably means at least 80%, more preferably at least 90%, and most preferably at least 95 % identity. As used herein, substantially identical to a product means sufficiently similar so that the property of interest is sufficiently unchanged so that the substantially identical product can be used in place of the product.
As used herein, substantially pure means sufficiently homogeneous to appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel electrophoresis and high performance liquid chromatography (HPLC), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the substance. Methods for purification of the compounds to produce substantially chemically pure compounds are known to those of skill in the art. A substantially chemically pure compound can, however, be a mixture of stereoisomers or isomers. In such instances, further purification might increase the specific activity of the compound.
As used herein, target cell refers to a cell that expresses an SP in vivo. As used herein, test substance (or test compound) refers to a chemically defined compound (e.g. , organic molecules, inorganic molecules, organic/inorganic molecules, proteins, peptides, nucleic acids, oligonucleotides, lipids, polysaccharides, saccharides, or hybrids among these molecules such as glycoproteins, etc.) or mixtures of compounds (e.g. , a library of test compounds, natural extracts or culture supernatants, etc.) whose effect on an SP, particularly a single chain form that includes the protease domain or a sufficient portion thereof for activity, as determined by an in vitro method, such as the assays provided herein.
As used herein, the terms a therapeutic agent, therapeutic regimen, radioprotectant, chemotherapeutic mean conventional drugs and drug therapies, including vaccines, which are known to those skilled in the art. Radiotherapeutic agents are well known in the art. As used herein, treatment means any manner in which the symptoms of a condition, disorder or disease are ameliorated or otherwise beneficially altered. Treatment also encompasses any pharmaceutical use of the compositions herein. As used herein, vector (or plasmid) refers to discrete elements that are used to introduce heterologous nucleic acid into cells for either expression or replication thereof. The vectors typically remain episomal, but can be designed to effect integration of a gene or portion thereof into a chromosome of the genome. Also contemplated are vectors that are artificial chromosomes, such as yeast artificial chromosomes and mammalian artificial chromosomes. Selection and use of such vehicles are well known to those of skill in the art. An expression vector includes vectors capable of expressing DNA that is operatively linked with regulatory sequences, such as promoter regions, that are capable of effecting expression of such DNA fragments. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome. As used herein, protein binding sequence refers to a protein or peptide sequence that is capable of specific binding to other protein or peptide sequences generally, to a set of protein or peptide sequences or to a particular protein or peptide sequence.
As used herein, epitope tag refers to a short stretch of amino acid residues corresponding to an epitope to facilitate subsequent biochemical and immunological analysis of the epitope tagged protein or peptide. Epitope tagging is achieved by including the sequence of the epitope tag to the protein-encoding sequence in an appropriate expression vector. Epitope tagged proteins can be affinity purified using highly specific antibodies raised against the tags. As used herein, metal binding sequence refers to a protein or peptide sequence that is capable of specific binding to metal ions generally, to a set of metal ions or to a particular metal ion. As used herein, a combination refers to any association between two or among more items.
As used herein, a composition refers to a any mixture. It can be a solution, a suspension, liquid, powder, a paste, aqueous, non-aqueous or any combination thereof.
As used herein, fluid refers to any composition that can flow. Fluids thus encompass compositions that are in the form of semi-solids, pastes, solutions, aqueous mixtures, gels, lotions, creams and other such compositions.
As used herein, a cellular extract refers to a preparation or fraction which is made from a lysed or disrupted cell.
As used herein, an agent is said to be randomly selected when the agent is chosen randomly without considering the specific sequences involved in the association of a protein alone or with its associated substrates, binding partners, etc. An example of randomly selected agents is the use a chemical library or a peptide combinatorial library, or a growth broth of an organism or conditioned medium.
As used herein, an agent is said to be rationally selected or designed when the agent is chosen on a non-random basis which takes into account the sequence of the target site and/or its conformation in connection with the agent's action. As described in the Examples, there are proposed binding sites for serine protease and (catalytic) sites in the protein having SEQ ID NO:3 or SEQ ID N0:4. Agents can be rationally selected or rationally designed by utilizing the peptide sequences that make up these sites. For example, a rationally selected peptide agent can be a peptide whose amino acid sequence is identical to the ATP or calmodulin binding sites or domains.
For clarity of disclosure, and not by way of limitation, the detailed description is divided into the subsections that follow. B. CVSP14 polypeptides, muteins, derivatives and analogs thereof
SPs The serine proteases (SPs) are a family of proteins found in mammals and also other species. SPs that share a number of common structural features as described herein. The proteolytic domains share sequence homology including conserved His, Asp, and Ser residues necessary for catalytic activity that are present in conserved motifs. These SPs are synthesized as zymogens, and activated to two chain forms by specific cleavage.
The SP family can be target for therapeutic intervention and also can serve as diagnostic markers for tumor initiation, development, growth and/or progression. As discussed, members of this family are involved in proteolytic processes that are implicated in tumor development, growth and/or progression. This implication is based upon their functions as proteolytic enzymes in extracellular matrix degradation and remodelling and growth and pro-angiogenic factor activation. In addition, their levels of expression or level of activation or their apparent activity resulting from substrate levels or alterations in substrates and levels thereof differs in tumor cells and non-tumor cells in the same tissue. Hence, protocols and treatments that alter their activity, such as their proteolytic activities and roles in signal transduction, and/or their expression, such as by contacting them with a compound that modulates their activity and/or expression, could impact tumor development, growth and/or progression. Also, in some instances, the level of activation and/or expression can be altered in tumors, such as pancreas, stomach, uterus, lung, colon and cervical cancers, and also breast, prostate or leukemias. The SP, thus, can serve as a diagnostic marker for tumors.
In other instances the SP protein can exhibit altered activity by virtue of a change in activity or expression of a co-factor therefor or a substrate therefor. Detection of the SPs, particularly the protease domains, in body fluids, such as serum, blood, saliva, cerebral spinal fluid, synovial fluid and interstitial fluids, urine, sweat and other such fluids and secretions, can serve as a diagnostic tumor marker. In particular, detection of higher levels of such polypeptides in a subject compared to a subject known not to have any neoplastic disease or compared to earlier samples from the same subject, can be indicative of neoplastic disease in the subject. Provided is a family member designated CVSP1 4. It is shown herein, that the CVSP14s provided herein are serine proteases that are expressed and/or activated in certain tumors; hence their activation or expression can serve as a diagnostic marker for tumor development, growth and/or progression. The CVSP1 4 is also provided for use as a drug target and used in screening assays, including those exemplified herein. It is shown herein that the single chain proteolytic domain can function in vitro and, hence is useful in in vitro assays for identifying agents that modulate the activity of members of this family. In addition the two-chain form or the full-length or truncated forms thereof, such as forms in which the signal peptide is removed can also be used in such assays.
In certain embodiments, the CVSP1 4 polypeptide is detectable in a body fluid at a level that differs from its level in body fluids in a subject not having a tumor. In other embodiments, the polypeptide is present in a tumor; and a substrate or cofactor for the polypeptide is expressed at levels that differ from its level of expression in a non-tumor cell in the same type of tissue. CVSP14 Provided are substantially purified CVSP1 4 zymogens, activated two chain forms, single chain protease domains and two chain protease domains. A full-length CVSP14 polypeptide, including the signal sequence, is set forth in SEQ ID Nos. 1 2 and 1 3. The signal sequence can be cleaved upon expression or prior to expression.
Also provided is a substantially purified protein including a sequence of amino acids that has at least 60%, 70%, 80%, 90% or about 95%, identity to the CVSP1 4 where the percentage identity is determined using standard algorithms and gap penalties that maximize the percentage identity. A human CVSP14 polypeptide is exemplified, although other mammalia CVSP14 polypeptides are contemplated. Splice variants of the CVSP14, particularly those with a proteolytically active protease domain, are contemplated herein. In other embodiments, substantially purified polypeptides that include a protease domain of a CVSP14 polypeptide or a catalytically active portion thereof, but that do not include the entire sequence of amino acids set forth in SEQ ID No. 1 3 are provided. Among these are polypeptides that include a sequence of amino acids that has at least 60%, 70%, 80%, 90%, 95% or 1 00% sequence identity to SEQ ID No. 6. Provided are substantially purified CVSP14 polypeptides and functional domains thereof, including catalytically active domains and portions, that have at least about 60%, 70%, 80%, 90% or about 95% sequence identity with a protease domain that includes the sequence of amino acids set forth in SEQ ID No. 6 or a catalytically active portion thereof or with a protease that includes the sequence of amino acids set forth in SEQ ID No. 1 3 and domains thereof.
With reference to SEQ ID No. 6, the protease activation cleavage site is between R55 and l56; the catalytic triad based upon homology is H, D146, S244; there is a potential N-glycosylation site at N108VT; Cys pairing is predicted to be between C37-C166, which links the protease domain to the remainder of the polypeptide), C180-C250, C21 1-C229 and C240-C269. Hence C166 is a free Cys in the protease domain, which also can be provided as a two chain molecule. It is shown herein, however, that the single chain form is proteolytically active. Also provided are polypeptides that are encoded by the nucleic acid molecules provided herein. Included among those polypeptides are the CVSP1 4 protease domain or a polypeptide with amino acid changes such that the specificity and protease activity is not eliminated and is retained at least 1 0%, 20%, 30%, 40%, 50% , 60%, 70% , 80%, 90% or remains substantially unchanged. In particular, a substantially purified mammalian SP protein is provided that includes a serine protease catalytic domain and can additionally include other domains. The CVSP1 4 can form homodimers and can also form heterodimers with some other protein, such as a membrane-bound protein.
The domains, fragments, derivatives or analogs of a CVSP14 that are functionally active are capable of exhibiting one or more functional activities associated with the CVSP14 polypeptide, such as serine protease activity, immunogenicity and antigenicity, are provided.
Antigenic epitopes that contain at least 4, 5, 6, 7, 8, 9, 10, 1 1 , 1 2, 1 3, 1 4, 1 5, 20, 25, 30, 40, 50, and typically 1 0-1 5 amino acids of the CVSP1 4 polypeptide are provided. These antigenic epitopes are used, for example, to raise antibodies. Antibodies specific for each epitope or combinations thereof and for single and two-chain forms are also provided.
Muteins and derivatives of CVSP14 polypeptides Full-length CVSP1 4, zymogen and activated forms thereof and CVSP14 protease domains, portions thereof, and muteins and derivatives of such polypeptides are provided. Among the derivatives are those based on animal CVSP1 4s, including, but are not limited to, rodent, such as mouse and rat; fowl, such as chicken; ruminants, such as goats, cows, deer, sheep; ovine, such as pigs; and humans. For example, CVSP1 4 derivatives can be made by altering their sequences by substitutions, additions or deletions. CVSP1 4 derivatives include, but are not limited to, those containing, as a primary amino acid sequence, all or part of the amino acid sequence of CVSP14, including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration. Substitutes for an amino acid within the sequence can be selected from other members of the class to which the amino acid belongs. For example, the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid (see, e.g. , Table 1 ). Muteins of the CVSP1 4 or a domain thereof, such as a protease domain, in which up to about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85 %, 90% or 95 % of the amino acids are replaced with another amino acid are provided. Generally such muteins retain at least about 10%, 20%, 30%, 40% , 50%, 60%, 70%, 80% or 90% of the protease activity the unmutated protein.
Muteins in which one or more of the Cys residues, particularly, a residue that is paired in the activated two form, but unpaired in the protease domain alone (i.e. , the Cys at residue position 26 (see SEQ ID Nos. 5 and 6) in the protease domain), is/are replaced with any amino acid, typically, although not necessarily, a conservative amino acid residue, such as Ser, are contemplated. Muteins of CVSP1 4, particularly those in which Cys residues, such as the Cys in the single chain protease domain, is replaced with another amino acid that does not eliminate the activity, are provided.
Muteins of the protein are also provided in which amino acids are replaced with other amino acids. Among the muteins are those in which the Cys residues, is/are replaced typically although not necessarily, with a conservative amino acid residues, such as a serine. Such muteins are also provided herein. Muteins in which 1 0%, 20%, 30%, 35%, 40%, 45 %, 50% or more of the amino acids are replaced but the resulting polypeptide retains at least about 10%, 20%, 30% , 35 %, 40%, 45 %, 50%, 60%, 70%, 80%, 90% or 95 % of the catalytic activity as the unmodified form for the same substrate.
Protease domains Isolated, substantially pure proteases that include the protease domains or catalytically active portions thereof as single chain forms of SPs are provided. The protease domains can be included in a longer protein, and such longer protein is optionally the CVSP1 4 zymogen. Provided herein are isolated substantially pure single polypeptides that contain the protease domain of a CVSP1 4 as a single chain. The CVSP14 provided herein is expressed or activated by or in tumor cells, typically at a level that differs from the level in which they are expressed by the non-tumor cell of the same type. Hence, for example, if the SP is expressed by a prostate or ovarian tumor cell, to be of interest herein with respect to ovarian or prostate cancer, it an expression, extent of activation or activity that is different from that in non-tumor cells. CVSP14 is expressed in lung, colon, prostate, breast, uterine, ovarian and other tumor cells. SP protease domains include the single chain protease domains of
CVSP1 4. Provided are the protease domains or proteins that include a portion of an SP that is the protease domain of any SP, particularly a CVSP14. The protein can also include other non-SP sequences of amino acids, but includes the protease domain or a sufficient portion thereof to exhibit catalytic activity in any in vitro assay that assess such protease activity, such as any provided herein. Also provided are two chain activated forms of the full length protease and also two chain forms of the protease domain. ln an embodiment, the substantially purified SP protease is encoded by a nucleic acid that hybridizes to the a nucleic acid molecule containing the protease domain encoded by the nucleotide sequence set forth in SEQ. ID No. 5 under at least moderate, generally high, stringency conditions, such that the protease domain encoding nucleic acid thereof hybridizes along its full length or along at least about 70%, 80% or 90% of the full length. In other embodiments the substantially purified SP protease is a single chain polypeptide that includes substantially the sequence of amino acids set forth in SEQ ID No. 6, or a catalytically active portion thereof. In particular, exemplary protease domains include at least a sufficient portion of sequences of amino acids set forth in SEQ ID No. 6 (encoded by nucleotides in SEQ ID No. 5) to exhibit protease activity in an assay provided herein.
The signal peptide (amino acids 1 -25 of SEQ ID No. 1 3) is also provided. In addition the mature CVSP1 5 polypeptide with the signal sequence removed is provided.
As described below, all forms of the CVSP14, including the pro- polypeptide with the signal sequence, the mature polypeptide and catalytically active portions thereof, the protease domains and catalytically active portions thereof, two-chain and single chain forms of any of these proteins are provided herein and can be used in the screening assays and for preparing antibodies specific therefore. The expression, quantity and/or activation of the protein in tumor cells and body fluids can be diagnostic of disease or its absence.
Nucleic acid molecules, vectors and plasmids, cells and expression of CVSP14 polyeptides
Nucleic acid molecules
Due to the degeneracy of nucleotide coding sequences, other nucleic sequences which encode substantially the same amino acid sequence as a CVSP1 4 gene can be used. These include but are not limited to nucleotide sequences comprising all or portions of CVSP1 4 genes that are altered by the substitution of different codons that encode the amino acid residue within the sequence, thus producing a silent change. Also provided are nucleic acid molecules that hybridize to the above- noted sequences of nucleotides encoding CVSP1 4 at least at low stringency, at moderate stringency, and/or at high stringency, and that encode the protease domain and/or the full length protein or other domains of a CVSP14 or a splice variant or allelic variant thereof. Generally the molecules hybridize under such conditions along their full length (or along at least about 70%, 80% or 90% of the full length) for at least one domain and encode at least one domain, such as the protease domain, of the polypeptide. In particular, such nucleic acid molecules include any isolated nucleic fragment that encodes at least one domain of a serine protease, that ( 1 ) contains a sequence of nucleotides that encodes the protease or a functionally active, such as catalytically active, domain thereof, and (2) is selected from among:
(a) a sequence of nucleotides that encodes the protease or a domain thereof includes a sequence of nucleotides set forth in SEQ ID Nos. 5 or 1 2;
(b) a sequence of nucleotides that encodes such portion or the full length protease and hybridizes under conditions of moderate or high stringency, generally to nucleic acid that is complementary to a mRNA transcript present in a mammalian cell that encodes such protein or fragment thereof;
(c) a sequence of nucleotides that encodes a serine protease or domain thereof that includes a sequence of amino acids encoded by such portion or the full length open reading frame;
(d) a sequence of nucleotides that encodes the serine protease that includes a sequence of amino acids encoded by a sequence of nucleotides that encodes such subunit and hybridizes under conditions of high stringency to DNA that is complementary to the mRNA transcript; (e) a sequence of nucleotides that encodes a splice variant of any of (a)-(d); and
(f) a sequence of nucleotides that includes degenerate codons of all or a portion of any of (a)-(e). The isolated nucleic acid fragment is DNA, including genomic or cDNA, or is RNA, or can include other components, such as protein nucleic acid. The isolated nucleic acid can include additional components, such as heterologous or native promoters, and other transcriptional and translational regulatory sequences, these genes can be linked to other genes, such as reporter genes or other indicator genes or genes that encode indicators.
The CVS14s provided herein are encoded by a nucleic acid that includes sequence encoding a protease domain that exhibits proteolytic activity and that hybridizes to a nucleic acid molecule including the sequence of nucleotides set forth in SEQ ID No. 5, typically under moderate, generally under high stringency, conditions and generally along the full length of the protease domain or along at least about 70%, 80% or 90% of the full length. Splice variants are also provided herein.
In a specific embodiment, a nucleic acid that encodes a CVSP, designated CVSP14 is provided. In particular, the nucleic acid includes the sequence of nucleotides set forth in SEQ ID No. 5 or a portion there of that encodes a catalytically active polypeptide. Also provided are nucleic acid molecules that hybridize under conditions of at least low stringency, generally moderate stringency, more typically high stringency to the SEQ ID No. 5 or degenerates thereof. In one embodiment, the isolated nucleic acid fragment hybridizes to a nucleic acid molecule containing the nucleotide sequence set forth in SEQ ID No: 5 (or degenerates thereof) under high stringency conditions, in one embodiments contains the sequence of nucleotides set forth in SEQ ID Nos. 5 and 6). A full- length CVSP14 is set forth in SEQ ID No. 1 3 and is encoded by SEQ ID No. 1 2 or degenerates thereof. Also contemplated are nucleic acid molecules that encode a single chain SP protease that have proteolytic activity in an in vitro proteolysis assay and that have at least 60%, 70%, 80%, 85 %, 90% or 95 % sequence identity with the full length of a protease domain of a CVSP1 4 polypeptide, or that hybridize along their full length or along at least about 70%, 80% or 90% of the full length to a nucleic acids that encode a protease domain, particularly under conditions of moderate, generally high, stringency. As above, the encoded polypeptides contain the protease as a single chain.
The isolated nucleic acids can contain least 10 nucleotides, 25 nucleotides, 50 nucleotides, 100 nucleotides, 1 50 nucleotides, or 200 nucleotides or more contiguous nucleotides of a CVSP14-encoding sequence, or a full-length SP coding sequence. In another embodiment, the nucleic acids are smaller than 35, 200 or 500 nucleotides in length. Nucleic acids that hybridize to or are complementary to a CVSP1 4-encoding nucleic acid molecule can be single or double-stranded. For example, nucleic acids are provided that include a sequence complementary to (specifically are the inverse complement of) at least 1 0, 25, 50, 100, or 200 nucleotides or the entire coding region of a CVSP1 4 encoding nucleic acid, particularly the protease domain thereof . For CVSP1 4 the full-length protein or a domain or active fragment thereof is also provided. For each of the nucleic acid molecules, the nucleic acid can be DNA or
RNA or PNA or other nucleic acid analogs or can include non-natural nucleotide bases. Also provided are isolated nucleic acid molecules that include a sequence of nucleotides complementary to the nucleotide sequence encoding an SP. Probes, primers, antisense oligonucleotides and dsRNA Also provided are fragments thereof or oligonucleotides that can be used as probes or primers and that contain at least about 10, 1 4, 1 6 nucleotides, generally less than 1000 or less than or equal to 1 00, set forth in SEQ ID No. 5 (or the complement thereof); or contain at least about 30 nucleotides (or the complement thereof) or contain oligonucleotides that hybridize along their full length or along at least about 70%, 80% or 90% of the full length to any such fragments or oligonucleotides. The length of the fragments are a function of the purpose for which they are used and/or the complexity of the genome of interest. Generally probes and primers contain less than about 500, 1 50, 1 00 nucleotides.
Probes and primers derived from the nucleic acid molecules are provided, Such probes and primers contain at least 8, 14, 1 6, 30, 100 or more contiguous nucleotides with identity to contiguous nucleotides of a CVSP1 4. The probes and primers are optionally labelled with a detectable label, such as a radiolabel or a fluorescent tag, or can be mass differentiated for detection by mass spectrometry or other means.
Also provided is an isolated nucleic acid molecule that includes the sequence of molecules that is complementary to the nucleotide sequence encoding CVSP1 4 or the portion thereof. Double-stranded RNA (dsRNA), such as RNAi is also provided.
Plasmids, vectors and cells Plasmids and vectors containing the nucleic acid molecules are also provided. Cells containing the vectors, including cells that express the encoded proteins are provided. The cell can be a bacterial cell, a yeast cell, a fungal cell, a plant cell, an insect cell or an animal cell. Methods for producing an SP or single chain.form of the protease domain thereof by, for example, growing the cell under conditions whereby the encoded SP is expressed by the cell, and recovering the expressed protein, are provided herein. As noted, for CVSP1 4, the full-length zymogens and activated proteins and activated (two chain) protease and single chain protease domains are provided.
As discussed below, the CVSP14 polypeptide, and catalytically active portions thereof, can be expressed as a secreted protein using the native signal sequence or a heterologous signal. Alternatively, as exemplified, the protein can be expressed as inclusion bodies in the cytoplasm and isolated therefrom. The resulting protein can be treated to refold (see, e.g. , EXAMPLE 1 ). It is shown herein that active protease domain can be produced by expression in inclusion bodies, isolation therefrom and denaturation followed by refolding. C. Tumor specificity and tissue expression profiles
Each SP has a characteristic tissue expression profile; the SPs in particular, although not exclusively expressed or activated in tumors, exhibit characteristic tumor tissue expression or activation profiles. In some instances, SPs can have different activity in a tumor cell from a non-tumor cell by virtue of a change in a substrate or cofactor therefor or other factor that would alter the apparent functional activity of the SP. Hence each can serve as a diagnostic marker for particular tumors, by virtue of a level of activity and/or expression or function in a subject (i.e. a mammal, particularly a human) with neoplastic disease, compared to a subject or subjects that do not have the neoplastic disease. In addition, detection of activity (and/or expression) in a particular tissue can be indicative of neoplastic disease.
Circulating SPs in body fluids can be indicative of neoplastic disease. Secreted CVSP1 4 or activated CVSP1 4 is indicative of neoplastic disease. Also, by virtue of the activity and/or expression profiles of each, they can serve as therapeutic targets, such as by administration of modulators of the activity thereof, or', as by administration of a prodrug specifically activated by one of the SPs.
Tissue expression profiles CVSP14
The CVSP14 is expressed at high levels in an androgen-independent tumor cell line. The CVSP14 transcript was detected in normal kidney samples. CVSP1 4 signals were diminished in all the matched kidney tumor samples. Weak signals were detected in all three pairs of prostate normal/tumor cDNA samples. Weak signals were also detected in 3 of 9 normal breast samples. A weak signal was also detected in one of the 7 uterine tumors, but not in their normal tissue counterparts. Weak signals were also detected in two of the three normal lung tissue samples, but not in their matched tumor samples. Very weak signals can be seen in cDNA samples from various tumor cell lines, including HeLa cells, Burkitt's lymphoma Daudi cells, chronic myelogenous leukemia K562, promyelocytic leukemia HL-60 cells, melanoma G361 cells, lung carcinoma A549 cells, lymphoblastic leukemia MOLT-4 and colorectal adenocarcinoma SW480 cells.
Hence expression in certain cells, such as prostate cancer, can serve as a tumor marker; whereas in other tissues, such as kidney, the absence of expression or activation, can serve as a tumor marker. D. Identification and isolation of SP protein genes
The SP polpeptides, including CVSP1 polypeptides, or domains thereof, can be obtained by methods well known in the art for protein purification and recombinant protein expression. Any method known to those of skill in the art for identification of nucleic acids that encode desired genes can be used. Any method available in the art can be used to obtain a full length (i.e. , encompassing the entire coding region) cDNA or genomic DNA clone encoding an SP protein. In particular, the polymerase chain reaction (PCR) can be used to amplify a sequence identified as being differentially expressed or encoding proteins activated at different levels in tumor and non-tumor cells or tissues, e.g. , nucleic acids encoding a CVSP14 polypeptide "(SEQ. NOs: 5, 6, 1 2 and 1 3), in a genomic or cDNA library. Oligonucleotide primers that hybridize to sequences at the 3 ' and 5 ' termini of the identified sequences can be used as primers to amplify by PCR sequences from a nucleic acid sample (RNA or DNA), typically a cDNA library, from an appropriate source (e.g. , tumor or cancer tissue).
PCR can be carried out, e.g. , by use of a Perkin-Elmer Cetus thermal cycler and Taq polymerase (Gene Amp") . The DNA being amplified can include mRNA or cDNA or genomic DNA from any eukaryotic species. One can choose to synthesize several different degenerate primers, for use in the PCR reactions. It is also possible to vary the stringency of hybridization conditions used in priming the PCR reactions, to amplify nucleic acid homologs (e.g. , to obtain SP protein sequences from species other than humans or to obtain human sequences with homology to CVSP14 polypeptide) by allowing for greater or lesser degrees of nucleotide sequence similarity between the known nucleotide sequence and the nucleic acid homolog being isolated. For cross species hybridization, low or moderate stringency conditions are used. For same species hybridization, moderately or high stringency conditions generally are used. After successful amplification of the nucleic acid containing all or a portion of the identified SP protein sequence or of a nucleic acid encoding all or a portion of an SP protein homolog, that segment can be molecularly cloned and sequenced, and used as a probe to isolate a complete cDNA or genomic clone. This, in turn, permits the determination of the gene's complete nucleotide sequence, the analysis of its expression, and the production of its protein product for functional analysis. Once the nucleotide sequence is determined, an open reading frame encoding the SP protein gene protein product can be determined by any method well known in the art for determining open reading frames, for example, using publicly available computer programs for nucleotide sequence analysis. Once an open reading frame is defined, it is routine to determine the amino acid sequence of the protein encoded by the open reading frame. In this way, the nucleotide sequences of the entire SP protein genes as well as the amino acid sequences of SP protein proteins and analogs can be identified.
Any eukaryotic cell potentially can serve as the nucleic acid source for the molecular cloning of the SP protein gene. The nucleic acids can be isolated from vertebrate, mammalian, human, porcine, bovine, feline, avian, equine, canine, as well as additional primate sources, insects, plants, etc. The DNA can be obtained by standard procedures known in the art from cloned DNA (e.g. , a DNA "library"), by chemical synthesis, by cDNA cloning, or by the cloning of genomic DNA, or fragments thereof, purified from the desired cell (see, for example, Sambrook et al., 1 989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; Glover, D.M. (ed.), 1 985, DNA Cloning: A Practical Approach, MRL Press, Ltd., Oxford, U.K. Vol. I, II). Clones derived from genomic DNA can contain regulatory and intron DNA regions in addition to coding regions; clones derived from cDNA contains only exon sequences. Whatever the source, the gene should be molecularly cloned into a suitable vector for propagation of the gene. In the molecular cloning of the gene from genomic DNA, DNA fragments are generated, some of which encode the desired gene. The DNA can be cleaved at specific sites using various restriction enzymes. Alternatively, one can use DNAse in the presence of manganese to fragment the DNA, or the DNA can be physically sheared, for example, by sonication. The linear DNA fragments can then be separated according to size by standard techniques, including but not limited to, agarose and polyacrylamide gel electrophoresis and column chromatography.
Once the DNA fragments are generated, identification of the specific DNA fragment containing the desired gene can be accomplished in a number of ways. For example, a portion of the SP protein (of any species) gene (e.g. , a PCR amplification product obtained as described above or an oligonucleotide having a sequence of a portion of the known nucleotide sequence) or its specific RNA, or a fragment thereof be purified and labeled, and the generated DNA fragments can be screened by nucleic acid hybridization to the labeled probe (Benton and Davis, Science 736: 1 80 (1 977); Grunstein and Hogness, Proc. Natl. Acad. Sci. U.S.A. 72:3961 ( 1 975)). Those DNA fragments with substantial homology to the probe hybridize. It is also possible to identify the appropriate fragment by restriction enzyme digestion(s) and comparison of fragment sizes with those expected according to a known restriction map if such is available or by DNA sequence analysis and comparison to the known nucleotide sequence of SP protein. Further selection can be carried out on the basis of the properties of the gene. Alternatively, the presence of the gene can be detected by assays based on the physical, chemical, or immunological properties of its expressed product. For example, cDNA clones, or DNA clones which hybrid-select the proper mRNA, can be selected which produce a protein that, e.g. , has similar or identical electrophoretic migration, isoelectric focusing behavior, proteolytic digestion maps, antigenic properties, serine protease activity. If an anti-SP protein antibody is available, the protein can be identified by binding of labeled antibody to the putatively SP protein synthesizing clones, in an ELISA (enzyme- linked immunosorbent assay)-type procedure.
Alternatives to isolating the CVSP14 polypeptide genomic DNA include, but are not limited to, chemically synthesizing the gene sequence from a known sequence or making cDNA to the mRNA that encodes the SP protein. For example, RNA for cDNA cloning of the SP protein gene can be isolated from cells expressing the protein. The identified and isolated nucleic acids can then be inserted into an appropriate cloning vector. A large number of vector-host systems known in the art can be used. Possible vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used. Such vectors include, but are not limited to, bacteriophages such as lambda derivatives, or plasmids such as pBR322 or pUC plasmid derivatives or the Bluescript vector (Stratagene, La Jolla, CA). The insertion into a cloning vector can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini. If the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules can be enzymatically modified. Alternatively, any site desired can be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers can comprise specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences. In an alternative method, the cleaved vector and SP protein gene can be modified by homopolymeric tailing. Recombinant molecules can be introduced into host cells via, for example, transformation, transfection, infection, electroporation and sonorporation, so that many copies of the gene sequence are generated. In specific embodiments, transformation of host cells with recombinant
DNA molecules that incorporate the isolated SP protein gene, cDNA, or synthesized DNA sequence enables generation of multiple copies of the gene. Thus, the gene can be obtained in large quantities by growing transformants, isolating the recombinant DNA molecules from the transformants and, when necessary, retrieving the inserted gene from the isolated recombinant DNA.
E. Vectors, plasmids and cells that contain nucleic acids encoding an SP protein or protease domain thereof and expression of SP proteins
Vectors and cells
For recombinant expression of one or more of the SP proteins, the nucleic acid containing all or a portion of the nucleotide sequence encoding the SP protein can be inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein coding sequence. The necessary transcriptional and translational signals also can be supplied by the native promoter for SP genes, and/or their flanking regions.
Also provided are vectors that contain nucleic acid encoding the SPs. Cells containing the vectors are also provided. The cells include eukaryotic and prokaryotic cells, and the vectors are any suitable for use therein.
Prokaryotic and eukaryotic cells, including endothelial cells, containing the vectors are provided. Such cells include bacterial cells, yeast cells, fungal cells, plant cells, insect cells and animal cells. The cells are used to produce an SP protein or protease domain thereof by growing the above-described cells under conditions whereby the encoded SP protein or protease domain of the SP protein is expressed by the cell, and recovering the expressed protease domain protein. For purposes herein, the protease domain can be secreted into the medium.
In one embodiment, the vectors include a sequence of nucleotides that encodes a polypeptide that has protease activity and contains all or a portion of only the protease domain, or multiple copies thereof, of an SP protein are provided. Also provided are vectors that comprise a sequence of nucleotides that encodes the protease domain and additional portions of an SP protein up to and including a full length SP protein, as well as multiple copies thereof, are also provided. The vectors can selected for expression of the SP protein or protease domain thereof in the cell or such that the SP protein is expressed as a secreted protein. Alternatively, the vectors can include signals necessary for secretion of encoded proteins. When the protease domain is expressed the nucleic acid is linked to nucleic acid encoding a secretion signal, such as the Saccharomyces cerevisiae α mating factor signal sequence or a portion thereof, or the native signal sequence.
A variety of host-vector systems can be used to express the protein coding sequence. These include but are not limited to mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA. The expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system used, any one of a number of suitable transcription and translation elements can be used.
Any methods known to those of skill in the art for the insertion of DNA fragments into a vector can be used to construct expression vectors containing a chimeric gene containing of appropriate transcriptional/translational control signals and protein coding sequences. These methods can include in vitro recombinant DNA and synthetic techniques and in vivo recombinants (genetic recombination). Expression of nucleic acid sequences encoding SP protein, or domains, derivatives, fragments or homologs thereof, can be regulated by a second nucleic acid sequence so that the genes or fragments thereof are expressed in a host transformed with the recombinant DNA molecule(s). For example, expression of the proteins can be controlled by any promoter/enhancer known in the art. In a specific embodiment, the promoter is not native to the genes for SP protein. Promoters which can be used include but are not limited to the SV40 early promoter (Bernoist and Chambon, Nature 230:304-310
(1 981 )), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al. Cell 22:1 '8 -1 '97 (1 980)), the herpes thymidine kinase promoter (Wagner et al. , Proc. Natl. Acad. Sci. USA 75: 1441 -1 445 (1 981 )), the regulatory sequences of the metallothionein gene (Brinster et al., Nature 236:39- 42 (1 982)); prokaryotic expression vectors such as the Mactamase promoter (Villa-Kamaroff et al., Proc. Natl. Acad. Sci. USA 75:3727-3731 1 978)) or the tac promoter (DeBoer et al., Proc. Natl. Acad. Sci. USA 50:21 -25 (1 983)); see also "Useful Proteins from Recombinant Bacteria": in Scientific American 242:79-94 ( 1 980)); plant expression vectors containing the nopaline synthetase promoter (Herrar-Estrella et al., Nature 505:209-21 3 ( 1 984)) or the cauliflower mosaic virus 35S RNA promoter (Garder et al., Nucleic Acids Res. 3:2871 ( 1 981 )), and the promoter of the photosynthetic enzyme ribulose bisphosphate carboxylase (Herrera-Estrella et al., Nature 370: 1 1 5-1 20 ( 1 984)); promoter elements from yeast and other fungi such as the Gal4 promoter, the alcohol dehydrogenase promoter, the phosphoglycerol kinase promoter, the alkaline phosphatase promoter, and the following animal transcriptional control regions that exhibit tissue specificity and have been used in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., Cell 35:639-646 (1984); Ornitz et al., Cold Spring Harbor Symp. Quant. Biol. 50:399-409 (1986); MacDonald, Hepatology 7:425-515 (1987)); insulin gene control region which is active in pancreatic beta cells (Hanahan et al., Nature 375:115-122 (1985)), immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., Cell 35:647-658 (1984); Adams et al., Nature 373:533-538 (1985); Alexander et al., Mol. Cell Biol. 7:1436-1444 (1987)), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., Cell 45:485-495 (1986)), albumin gene control region which is active in liver (Pinckert et al., Genes and Devel. 7:268- 276 (1987)), alpha-fetoprotein gene control region which is active in liver (Krumlauf et al., Mol. Cell. Biol.5:1639-1648 (1985); Hammer etal., Science 235:53-581987)), alpha-1 antitrypsin gene control region which is active in liver (Kelsey etal., Genes and Devel. 7:161-171 (1987)), beta globin gene control region which is active in myeloid cells (Mogram et al., Nature 375:338-340 (1985); Kollias et al., Cell 46:89-94 (1986)), myelin basic protein gene control region which is active in oligodendrocyte cells of the brain (Readhead et al., Cell 43:703-712 (1987)), myosin light chain-2 gene control region which is active in skeletal muscle (Sani, Nature 374:283-286 (1985)), and gonadotrophic releasing hormone gene control region which is active in gonadotrophs of the hypothalamus (Mason etal., Science 234:1372-1378 (1986)).
In a specific embodiment, a vector is used that contains a promoter operably linked to nucleic acids encoding an SP protein, or a domain, fragment, derivative or homolog, thereof, one or more origins of replication, and optionally, one or more selectable markers (e.g., an antibiotic resistance gene). Expression vectors containing the coding sequences, or portions thereof, of an SP protein, is made, for example, by subcloning the coding portions into the EcoRI restriction site of each of the three pGEX vectors (glutathione S-transferase expression vectors (Smith and Johnson, Gene 7:31-40 (1988)). This allows for the expression of products in the correct reading frame. Vectors and systems for expression of the protease domains of the SP proteins include the well known Pichia vectors (available, for example, from Invitrogen, San Diego, CA), particularly those designed for secretion of the encoded proteins. One exemplary vector is described in the EXAMPLES.
Plasmids for transformation of E. coli cells, include, for example, the pET expression vectors (see, U.S patent 4,952,496; available from NOVAGEN, Madison, WI; see, also literature published by Novagen describing the system). Such plasmids include pET 1 1 a, which contains the T7lac promoter, T7 terminator, the inducible E. coli lac operator, and the lac repressor gene; pET 1 2a-c, which contains the T7 promoter, T7 terminator, and the E. coli ompT secretion signal; and pET 1 5b and pET1 9b (NOVAGEN, Madison, WI), which contain a His-Tag™ leader sequence for use in purification with a His column and a thrombin cleavage site that permits cleavage following purification over the column; the T7-lac promoter region and the T7 terminator.
The vectors are introduced into host cells, such as Pichia cells and bacterial cells, such as E. coli, and the proteins expressed therein. Pichia strains, which are known and readily available, include, for example, GS1 1 5. Bacterial hosts can contain chromosomal copies of DNA encoding T7 RNA polymerase operably linked to an inducible promoter, such as the lacUV promoter (see, U.S. Patent No. 4,952,496). Such hosts include, but are not limited to, the lysogenic E. coli strain BL2 KDE3). Expression and production of proteins
The SP domains, derivatives and analogs can be produced by various methods known in the art. For example, once a recombinant cell expressing an SP protein, or a domain, fragment or derivative thereof, is identified, the individual gene product can be isolated and analyzed. This is achieved by assays based on the physical and/or functional properties of the protein, including, but not limited to, radioactive labeling of the product followed by analysis by gel electrophoresis, immunoassay, cross-linking to marker-labeled product.
The CVSP14 polypeptides can be isolated and purified by standard methods known in the art (either from natural sources or recombinant host cells expressing the complexes or proteins), including but not restricted to column chromatography (e.g. , ion exchange, affinity, gel exclusion, reversed-phase high pressure, fast protein liquid, etc.), differential centrifugation, differential solubility, or by any other standard technique used for the purification of proteins. Functional properties can be evaluated using any suitable assay known in the art. Alternatively, once an SP protein or its domain or derivative is identified, the amino acid sequence of the protein can be deduced from the nucleotide sequence of the gene which encodes it. As a result, the protein or its domain or derivative can be synthesized by standard chemical methods known in the art (e.g. see Hunkapiller et al, Nature 370: 1 05-1 1 1 ( 1 984)). Manipulations of SP protein sequences can be made at the protein level.
Also contemplated herein are SP protein proteins, domains thereof, derivatives or analogs or fragments thereof, which are differentially modified during or after translation, e.g. , by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications can be carried out by known techniques, including but not limited to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4, acetylation, formylation, oxidation, reduction, metabolic synthesis in the presence of tunicamycin, etc. In addition, domains, analogs and derivatives of an SP protein can be chemically synthesized. For example, a peptide corresponding to a portion of an SP protein, which includes the desired domain or which mediates the desired activity in vitro can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the SP protein sequence. Non-classical amino acids include but are not limited to the D-isomers of the common amino acids, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-aminobutyric acid, e-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionoic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as β-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).
In cases where natural products are suspected of having a mutation or are isolated from new species, the amino acid sequence of the SP protein isolated from the natural source, as well as those expressed in vitro, or from synthesized expression vectors in vivo or in vitro, can be determined from analysis of the DNA sequence, or alternatively, by direct sequencing of the isolated protein. Such analysis can be performed by manual sequencing or through use of an automated amino acid sequenator. In particular, for expression of the protease domain of the CVSP1 4, it was found to be advantageous to express the protein intracellularly without a signal sequence, which results in accumulation or formation of inclusion bodies containing protease domain. The inclusion bodies are isolated, denatured, solublized and refolded protease domain, which is then activated by cleavage at the Rl site (see, e.g. , EXAMPLES). Modifications A variety of modification of the SP proteins and domains are contemplated herein. An SP-encoding nucleic acid molecule be modified by any of numerous strategies known in the art (Sambrook et al. ( 1 989) Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York). The sequences can be cleaved at appropriate sites with restriction endonuclease(s), followed by further enzymatic modification if desired, isolated, and ligated in vitro. In the production of the gene encoding a domain, derivative or analog of SP, care should be taken to ensure that the modified gene retains the original translational reading frame, uninterrupted by translational stop signals, in the gene region where the desired activity is encoded.
Additionally, the SP-encoding nucleic acid molecules can be mutated in vitro or in vivo, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy pre-existing ones, to facilitate further in vitro modification. Also, as described herein muteins with primary sequence alterations, such as replacements of Cys residues and elimination of glycosylation sites are contemplated. Such mutations can be effected by any technique for mutagenesis known in the art, including, but not limited to, chemical mutagenesis and in vitro site-directed mutagenesis (Hutchinson et al., J. Biol. Chem. 253:6551 -6558 ( 1 978)), use of TAB® linkers (Pharmacia). In one embodiment, for example, an SP protein or domain thereof is modified to include a fluorescent label. In other specific embodiments, the SP protein is modified to have a heterofunctional reagent, such heterofunctional reagents can be used to crosslink the members of the complex. The SP proteins can be isolated and purified by standard methods known in the art (either from natural sources or recombinant host cells expressing the complexes or proteins), including but not restricted to column chromatography (e.g. , ion exchange, affinity, gel exclusion, reversed-phase high pressure, fast protein liquid, etc.), differential centrifugation, differential solubility, or by any other standard technique used for the purification of proteins. Functional properties can be evaluated using any suitable assay known in the art. F. Screening methods
The single chain protease domains, as shown herein, can be used in a variety of methods to identify compounds that modulate the activity thereof. For SPs that exhibit higher activity or expression in tumor cells, compounds that inhibit the proteolytic activity are of particular interest. For any SPs that are active at lower levels in tumor cells, compounds or agents that enhance the activity are potentially of interest. In all instances the identified compounds include agents that are candidate cancer treatments. Several types of assays are exemplified and described herein. It is understood that the protease domains can be used in other assays. It is shown here, however, that the single chain protease domains exhibit catalytic activity. As such they are ideal for in vitro screening assays. They can also be used in binding assays. The CVSP14 full length zymogens, activated enzymes, single and two chain protease domains are contemplated for use in any screening assay known to those of skill in the art, including those provided herein. Hence the following description, if directed to proteolytic assays is intended to apply to use of a single chain protease domain or a catalytically active portion thereof of any SP, including a CVSP1 4. Other assays, such as binding assays are provided herein, particularly for use with a CVSP14, including any variants, such as splice variants thereof.
1 . Catalytic Assays for identification of agents that modulate the protease activity of an SP protein
Methods for identifying a modulator of the catalytic activity of an SP, particularly a single chain protease domain or catalytically active portion thereof, are provided herein. The methods can be practiced by: a) contacting the
CVSP1 4, a full-length zymogen or activated form, and particularly a single-chain domain thereof, with a substrate of the CVSP14 in the presence of a test substance, and detecting the proteolysis of the substrate, whereby the activity of the CVSP1 4 is assessed, and comparing the activity to a control. For example, the control can be the activity of the CVSP14 assessed by contacting a CVSP1 4, including a full-length zymogen or activated form, and particularly a single-chain domain thereof, particularly a single-chain domain thereof, with a substrate of the CVSP14, and detecting the proteolysis of the substrate, whereby the activity of the CVSP14 is assessed. The results in the presence and absence of the test compounds are compared. A difference in the activity indicates that the test substance modulates the activity of the CVSP1 4. Activators of activation are also contemplated; such assays are discussed below.
In one embodiment a plurality of the test substances are screened simultaneously in the above screening method. In another embodiment, the CVSP1 4 is isolated from a target cell as a means for then identifying agents that are potentially specific for the target cell.
In another embodiment, a test substance is a therapeutic compound, and whereby a difference of the CVSP14 activity measured in the presence and in the absence of the test substance indicates that the target cell responds to the therapeutic compound.
One method includes the steps of (a) contacting the CVSP14 polypeptide or protease domain thereof with one or a plurality of test compounds under conditions conducive to interaction between the ligand and the compounds; and (b) identifying one or more compounds in the plurality that specifically binds to the ligand.
Another method provided herein includes the steps of a) contacting a CVSP1 4 polypeptide or protease domain thereof with a substrate of the CVSP1 4 polypeptide, and detecting the proteolysis of the substrate, whereby the activity of the CVSP14 polypeptide is assessed; b) contacting the CVSP14 polypeptide with a substrate of the CVSP1 4 polypeptide in the presence of a test substance, and detecting the proteolysis of the substrate, whereby the activity of the CVSP1 4 polypeptide is assessed; and c) comparing the activity of the CVSP14 polypeptide assessed in steps a) and b), whereby the activity measured in step a) differs from the activity measured in step b) indicates that the test substance modulates the activity of the CVSP1 4 polypeptide.
In another embodiment, a plurality of the test substances are screened simultaneously. In comparing the activity of a CVSP14 polypeptide in the presence and absence of a test substance to assess whether the test substance is a modulator of the CVSP1 4 polypeptide, it is unnecessary to assay the activity in parallel, although such parallel measurement is typical. It is possible to measure the activity of the CVSP14 polypeptide at one time point and compare the measured activity to a historical value of the activity of the CVSP1 4 polypeptide. -
For instance, one can measure the activity of the CVSP1 4 polypeptide in the presence of a test substance and compare with historical value of the activity of the CVSP14 polypeptide measured previously in the absence of the test substance, and vice versa. This can be accomplished, for example, by providing the activity of the CVSP1 4 polypeptide on an insert or pamphlet provided with a kit for conducting the assay.
Methods for selecting substrates for a particular SP are described in the EXAMPLES, and particular proteolytic assays are exemplified. Combinations and kits containing the combinations optionally including instructions for performing the assays are provided. The combinations include a CVSP1 4 polypeptide and a substrate of the CVSP1 4 polypeptide to be assayed; and, optionally reagents for detecting proteolysis of the substrate. The substrates, which are can be chromogenic or fluorgenic molecules, including proteins, subject to proteolysis by a particular CVSP1 4 polypeptide, can be identified empirically by testing the ability of the CVSP14 polypeptide to cleave the test substrate. Substrates that are cleaved most effectively (i.e., at the lowest concentrations and/or fastest rate or under desirable conditions), are identified.
Additionally provided herein is a kit containing the above-described combination. The kit optionally includes instructions for identifying a modulator of the activity of a CVSP14 polypeptide. Any CVSP14 polypeptide is contemplated as target for identifying modulators of the activity thereof. 2. Binding assays
Also provided herein are methods for identification and isolation of agents, particularly compounds that bind to CVSP14s. The assays are designed to identify agents that bind to the zymogen form, the single chain isolated protease domain (or a protein, other than a CVSP1 4 polypeptide, that contains the protease domain of a CVSP14 polypeptide), and to the activated form, including the activated form derived from the full length zymogen or from an extended protease domain. The identified compounds are candidates or leads for identification of compounds for treatments of tumors and other disorders and diseases involving aberrant angiogenesis. The CVSP14 polypeptides used in the methods include any CVSP14 polypeptide as defined herein, including the CVSP1 4 single chain protease domain or proteolytically active portion thereof. A variety of methods are provided herein. These methods can be performed in solution or in solid phase reactions in which the CVSP1 4 polypeptide(s) or protease domain(s) thereof are linked, either directly or indirectly via a linker, to a solid support. Screening assays are described in the Examples, and these assays have been used to identify candidate compounds. For purposes herein, all binding assays described above are provided for CVSP1 4.
Methods for identifying an agent, such as a compound, that specifically binds to a CVSP1 4 single chain protease domain, a zymogen or full-length activated CVSP14 or two chain protease domain thereof are provided herein. The method can be practiced by (a) contacting the CVSP1 4 with one or a plurality of test agents under conditions conducive to binding between the CVSP1 4 and an agent; and (b) identifying one or more agents within the plurality that specifically binds to the CVSP14.
For example, in practicing such methods the CVSP14 polypeptide is mixed with a potential binding partner or an extract or fraction of a cell under conditions that allow the association of potential binding partners with the polypeptide. After mixing, peptides, polypeptides, proteins or other molecules that have become associated with a CVSP14 are separated from the mixture. The binding partner that bound to the CVSP1 4 can then be removed and further analyzed. To identify and isolate a binding partner, the entire protein, for instance the entire disclosed protein of SEQ ID Nos. 6 can be used. Alternatively, a fragment of the protein can be used. A variety of methods can be used to obtain cell extracts or body fluids, such as blood, serum, urine, sweat, synovial fluid, CSF and other such fluids. For example, cells can be disrupted using either physical or chemical disruption methods. Examples of physical disruption methods include, but are not limited to, sonication and mechanical shearing. Examples of chemical lysis methods include, but are not limited to, detergent lysis and enzyme lysis. A skilled artisan can readily adapt methods for preparing cellular extracts in order to obtain extracts for use in the present methods.
Once an extract of a cell is prepared, the extract is mixed with the CVSP1 4 under conditions in which association of the protein with the binding partner can occur. A variety of conditions can be used, including conditions that resemble conditions found in the cytoplasm of a human cell. Features such as osmolarity, pH, temperature, and the concentration of cellular extract used, can be varied to optimize the association of the protein with the binding partner. Similarly, methods for isolation of molecules of interest from body fluids are known.
After mixing under appropriate conditions, the bound complex is separated from the mixture. A variety of techniques can be used to separate the mixture. For example, antibodies specific to a CVSP14 can be used to immunoprecipitate the binding partner complex. Alternatively, standard chemical separation techniques such as chromatography and density/sediment centrifugation can be used. After removing the non-associated cellular constituents in the extract, the binding partner can be dissociated from the complex using conventional methods. For example, dissociation can be accomplished by altering the salt concentration or pH of the mixture.
To aid in separating associated binding partner pairs from the mixed extract, the CVSP14 can be immobilized on a solid support. For example, the protein can be attached to a nitrocellulose matrix or acrylic beads. Attachment of the protein or a fragment thereof to a solid support aids in separating peptide/binding partner pairs from other constituents found in the extract. The identified binding partners can be either a single protein or a complex made up of two or more proteins.
Alternatively, the nucleic acid molecules encoding the single chain proteases can be used in a yeast two-hybrid system. The yeast two-hybrid system has been used to identify other protein partner pairs and can readily be adapted to employ the nucleic acid molecules herein described. Another in vitro binding assay, particularly for a CVSP1 4, uses a mixture of a polypeptide that contains at least the catalytic domain of one of these proteins and one or more candidate binding targets or substrates. After incubating the mixture under appropriate conditions, the ability of the CVSP1 4 or a polypeptide fragment thereof containing the catalytic domain to bind to or interact with the candidate substrate is assessed. For cell-free binding assays, one of the components includes or is coupled to a detectable label. The label can provide for direct detection, such as radioactivity, luminescence, optical or electron density, etc., or indirect detection such as an epitope tag, an enzyme, etc. A variety of methods can be employed to detect the label depending on the nature of the label and other assay components. For example, the label can be detected bound to the solid substrate or a portion of the bound complex containing the label can be separated from the solid substrate, and the label thereafter detected.
3. Detection of signal transduction
Secreted CVSPs, such as CVSP1 4, can be involved in signal transduction either directly by binding to or interacting with a cell surface receptor or indirectly by activating proteins, such as pro-growth factors that can initiate signal transduction. Assays for assessing signal transduction are well known to those of skill in the art, and can be adapted for use with the CVSP1 4 polypeptide. Assays for identifying agents that affect or alter signal transduction mediated directly or indirectly, such as via activation of a pro-growth factor, by a CVSP1 4, particularly the full length or a sufficient portion to anchor the extracellular domain or a functional portion thereof of a CVSP on the surface of a cell are provided. Such assays, include, for example, transcription based assays in which modulation of a transduced signal is assessed by detecting an effect on an expression from a reporter gene (see, e.g. , U.S. Patent No. 5,436, 1 28).
4. Methods for Identifying Agents that Modulate the Expression a Nucleic Acid Encoding a CVSP14
Another embodiment provides methods for identifying agents that modulate the expression of a nucleic acid encoding a CVSP14. Such assays use any available means of monitoring for changes in the expression level of the nucleic acids encoding a CVSP14.
In one assay format, cell lines that contain reporter gene fusions between the open reading frame of CVSP1 4 or a domain thereof, particularly the protease domain and any assayable fusion partner can be prepared. Numerous assayable fusion partners are known and readily available including the firefly luciferase gene and the gene encoding chloramphenicol acetyltransferase (Alam et al..
Anal. Biochem. 1 88: 245-54 ( 1 990)). Cell lines containing the reporter gene fusions are then exposed to the agent to be tested under appropriate conditions and time. Differential expression of the reporter gene between samples exposed to the agent and control samples identifies agents which modulate the expression of a nucleic acid encoding a CVSP1 4. Additional assay formats can be used to monitor the ability of the agent to modulate the expression of a nucleic acid encoding a CVSP1 4. For instance, mRNA expression can be monitored directly by hybridization to the nucleic acids. Cell lines are exposed to the agent to be tested under appropriate conditions and time and total RNA or mRNA is isolated by standard procedures (see, e.g. , Sambrook et al. (1 989) MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed. Cold Spring Harbor Laboratory Press). Probes to detect differences in RNA expression levels between cells exposed to the agent and control cells can be prepared from the nucleic acids. It is typical, but not necessary, to design probes which hybridize only with target nucleic acids under conditions of high stringency. Only highly complementary nucleic acid hybrids form under conditions of high stringency. Accordingly, the stringency of the assay conditions determines the amount of complementarity which should exist between two nucleic acid strands in order to form a hybrid. Stringency should be chosen to maximize the difference in stability between the probe:target hybrid and potential probe:non-target hybrids.
Probes can be designed from the nucleic acids through methods known in the art. For instance, the G + C content of the probe and the probe length can affect probe binding to its target sequence. Methods to optimize probe specificity are commonly available (see, e.g. , Sambrook et al. (1 989)
MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed. Cold Spring Harbor Laboratory Press); and Ausubel et al. ( 1 995) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Co., NY).
Hybridization conditions are modified using known methods (see, e.g. , Sambrook et al. ( 1 989) MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed. Cold Spring Harbor Laboratory Press); and Ausubel et al. (1 995) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Greene Publishing Co., NY), as required for each probe. Hybridization of total cellular RNA or RNA enriched for polyA RNA can be accomplished in any available format. For instance, total cellular RNA or RNA enriched for polyA RNA can be affixed to a solid support, and the solid support exposed to at least one probe comprising at least one, or part of one of the nucleic acid molecules under conditions in which the probe specifically hybridizes. Alternatively, nucleic acid fragments comprising at least one, or part of one of the sequences can be affixed to a solid support, such as a porous glass wafer. The glass wafer can then be exposed to total cellular RNA or polyA RNA from a sample under conditions in which the affixed sequences specifically hybridize. Such glass wafers and hybridization methods are widely available, for example, those disclosed by Beattie (WO 95/1 1 755). By examining for the ability of a given probe to specifically hybridize to an RNA sample from an untreated cell population and from a cell population exposed to the agent, agents which up or down regulate the expression of a nucleic acid encoding the CVSP1 4 polypeptide, are identified.
In one format, the relative amounts of a protein between a cell population that has been exposed to the agent to be tested compared to an un-exposed control cell population can be assayed (e.g., a prostate cancer cell line, a lung cancer cell line, a colon cancer cell line or a breast cancer cell line). In this format, probes, such as specific antibodies, are used to monitor the differential expression or level of activity of the protein in the different cell populations or body fluiids. Cell lines or populations or body fluids are exposed to the agent to be tested under appropriate conditions and time. Cellular lysates or body fluids can be prepared from the exposed cell line or population and a control, unexposed cell line or population or unexposed body fluid. The cellular lysates or body fluids are then analyzed with the probe.
For example, N- and C- terminal fragments of the CVSP1 4 can be expressed in bacteria and used to search for proteins which bind to these fragments. Fusion proteins, such as His-tag or GST fusion to the N- or C- terminal regions of the CVSP14 can be prepared for use as a substrate. These fusion proteins can be coupled to, for example, Glutathione-Sepharose beads and then probed with cell lysates or body fluids. Prior to lysis, the cells or body fluids can be treated with a candidate agent which can modulate a CVSP14 or proteins that interact with domains thereon. Lysate proteins binding to the fusion proteins can be resolved by SDS-PAGE, isolated and identified by protein sequencing or mass spectroscopy, as is known in the art. Antibody probes are prepared by immunizing suitable mammalian hosts in appropriate immunization protocols using the peptides, polypeptides or proteins if they are of sufficient length (e.g., 4, 5, 6, 7, 8, 9, 1 0, 1 1 , 1 2, 13, 1 4, 1 5, 20, 25, 30, 35, 40 or more consecutive amino acids the CVSP1 4 polypeptide or if required to enhance immunogenicity, conjugated to suitable carriers. Methods for preparing immunogenic conjugates with carriers, such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), or other carrier proteins are well known in the art. In some circumstances, direct conjugation using, for example, carbodiimide reagents can be effective; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, can be desirable to provide accessibility to the hapten. Hapten peptides can be extended at either the amino or carboxy terminus with a Cys residue or interspersed with cysteine residues, for example, to facilitate linking to a carrier. Administration of the immunogens is conducted generally by injection over a suitable time period and with use of suitable adjuvants, as is generally understood in the art. During the immunization schedule, titers of antibodies are taken to determine adequacy of antibody formation.
Anti-peptide antibodies can be generated using synthetic peptides corresponding to, for example, the carboxy terminal amino acids of the CVSP14. Synthetic peptides can be as small as 1 -3 amino acids in length, generally at least 4 or more amino acid residues long. The peptides can be coupled to KLH using standard methods and can be immunized into animals, such as rabbits or ungulate. Polyclonal antibodies can then be purified, for example using Actigel beads containing the covalently bound peptide. While the polyclonal antisera produced in this way can be satisfactory for some applications, for pharmaceutical compositions, use of monoclonal preparations are generally used. Immortalized cell lines which secrete the desired monoclonal antibodies can be prepared using the standard method of Kohler et al., (Nature 256: 495-7 ( 1 975)) or modifications which effect immortalization of lymphocytes or spleen cells, as is generally known. The immortalized cell lines secreting the desired antibodies are screened by immunoassay in which the antigen is the peptide hapten, polypeptide or protein. When the appropriate immortalized cell culture secreting the desired antibody is identified, the cells can be cultured either in vitro or by production in vivo via ascites fluid. Of particular interest, are monoclonal antibodies that recognize the catalytic domain of the a CVSP1 4. Additionally, the zymogen or two-chain form of the CVSP14 can be used to make monoclonal antibodies that recognize conformation epitopes. The desired monoclonal antibodies are then recovered from the culture supernatant or from the ascites supernatant. Fragments of the monoclonals or the polyclonal antisera which contain the immunologically significant portion can be used as antagonists, as well as the intact antibodies. Use of immunologically reactive fragments, such as the Fab, Fab', of F(ab')2 fragments are often used, especially in a therapeutic context, as these fragments are generally less immunogenic than the whole immunoglobulin.
The antibodies or fragments can also be produced. Regions that bind specifically to the desired regions of receptor also can be produced in the context of chimeras with multiple species origin.
Agents that are assayed in the above method can be randomly selected or rationally selected or designed.
The agents can be, as examples, peptides, small molecules, and carbohydrates. A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents.
The peptide agents can be prepared using standard solid phase (or solution phase) peptide synthesis methods, as is known in the art. In addition, the DNA encoding these peptides can be synthesized using commercially available oligonucleotide synthesis instrumentation and produced recombinantly using standard recombinant production systems. The production using solid phase peptide synthesis is necessitated if non-gene-encoded amino acids are to be included. G. Assay formats and selection of test substances that modulate at least one activity of a CVSP 14 polγpeptide
Methods for identifying agents that modulate at least one activity of a
CVSP1 4 are provided. The methods include phage display and other methods for assessing alterations in the activity of a CVSP1 4. Such methods or assays can use any means of monitoring or detecting the desired activity. A variety of formats and detection protocols are known for performing screening assays.
Any such formats and protocols can be adapted for identifying modulators of
CVSP1 4 polypeptide activities. The following includes a discussion of exemplary protocols.
1 . High throughput screening assaγs
Although the above-described assay can be conducted where a single CVSP1 4 polypeptide is screened, and/or a single test substance is screened in one assay, the assay typically is conducted in a high throughput screening mode, i.e. , a plurality of the SP proteins are screened against and/or a plurality of the test substances are screened simultaneously (See generally, High Throughput Screening: The Discovery of Bioactive Substances (Devlin, Ed.) Marcel Dekker, 1 997; Sittampalam et al., Curr. Opin. Chem. Biol. , 7 :384-91 ( 1 997); and Silverman et al., Curr. Opin. Chem. Biol. , 2:397-403 (1 998)). For example, the assay can be conducted in a multi-well (e.g. , 24-, 48-, 96-, 384-, 1 536-well or higher density), chip or array format.
High-throughput screening (HTS) is the process of testing a large number of diverse chemical structures against disease targets to identify "hits" (Sittampalam et al., Curr. Opin. Chem. Biol. , 7 :384-91 ( 1 997)). Current state-of- the-art HTS operations are highly automated and computerized to handle sample preparation, assay procedures and the subsequent processing of large volumes of data.
Detection technologies employed in high-throughput screens depend on the type of biochemical pathway being investigated (Sittampalam et al., Curr. Opin. Chem. Biol. , 7 :384-91 ( 1 997)). These methods include, radiochemical methods, such as the scintillation proximity assays (SPA), which can be adapted to a variety of enzyme assays (Lerner et al., J. Biomol. Screening, 7 : 1 35-1 43 ( 1 996); Baker et al., Anal. Biochem. , 239:20-24 ( 1 996); Baum et al., Anal. Biochem. , 237: 1 29-1 34 ( 1 996); and Sullivan et al., J. Biomol. Screening 2: 1 9- 23 ( 1 997)) and protein-protein interaction assays (Braunwalder et al., J. Biomol. Screening 7 :23-26 (1 996); Sonatore et al., Anal. Biochem. 240:289-297 ( 1 996); and Chen et al., J. Biol. Chem. 277 :25308-2531 5 (1 996)), and non-isotopic detection methods, including but are not limited to, colorimetric and luminescence detection methods, resonance energy transfer (RET) methods, time-resolved fluorescence (HTRF) methods, cell-based fluorescence assays, such as fluorescence resonance energy transfer (FRET) procedures (see, e.g. , Gonzalez et al., Biophys. J. , 63: 1 272-1 280 ( 1 995)), fluorescence polarization or anisotropy methods (see, e.g. , Jameson et al., Methods Enzymol. 246:283-300 ( 1 995); Joiley, J. Biomol. Screening 7 :33-38 (1 996); Lynch et al., Anal. Biochem. 247:77-82 (1 997)), fluorescence correlation spectroscopy (FCS) and other such methods. 2. Test Substances
Test compounds, including small molecules, antibodies, proteins, nucleic acids, peptides, and libraries and collections thereof, can be screened in the above-described assays and assays described below to identify compounds that modulate the activity of a CVSP1 4 polypeptide. Rational drug design methodologies that rely on computational chemistry can be used to screen and identify candidate compounds.
The compounds identified by the screening methods include inhibitors, including antagonists, and can be agonists Compounds for screening include any compounds and collections of compounds available, known or that can be prepared. a. Selection of Compounds
Compounds can be selected for their potency and selectivity of inhibition of serine proteases, especially a CVSP14 polypeptide. As described herein, and as generally known, a target serine protease and its substrate are combined under assay conditions permitting reaction of the protease with its substrate.
The assay is performed in the absence of test compound, and in the presence of increasing concentrations of the test compound. The concentration of test compound at which 50% of the serine protease activity is inhibited by the test compound is the IC50 value (Inhibitory Concentration) or EC50 (Effective Concentration) value for that compound. Within a series or group of test compounds, those having lower IC50 or EC50 values are considered more potent inhibitors of the serine protease than those compounds having higher IC50 or EC50 values. The IC50 measurement is often used for more simplistic assays, whereas the EC50 is often used for more complicated assays, such as those employing cells.
Typically candidate compounds have an IC50 value of 1 00 nM or less as measured in an in vitro assay for inhibition of CVSP14 polypeptide activity. The test compounds also are evaluated for selectivity toward a serine protease. As described herein, and as generally known, a test compound is assayed for its potency toward a panel of serine proteases and other enzymes and an IC50 value or EC50 value is determined for each test compound in each assay system. A compound that demonstrates a low IC50 value or EC50 value for the target enzyme, e.g. , CVSP1 4 polypeptide, and a higher IC50 value or EC50 value for other enzymes within the test panel (e.g. , urokinase tissue plasminogen activator, thrombin, Factor Xa), is considered to be selective toward the target enzyme. Generally, a compound is deemed selective if its IC50 value or EC50 value in the target enzyme assay is at least one order of magnitude less than the next smallest IC50 value or EC50 value measured in the selectivity panel of enzymes.
Compounds are also evaluated for their activity in vivo. The type of assay chosen for evaluation of test compounds depends on the pathological condition to be treated or prevented by use of the compound, as well as the route of administration to be evaluated for the test compound.
For instance, to evaluate the activity of a compound to reduce tumor growth through inhibition of CVSP1 polypeptide, the procedures described by Jankun et al., Cane. Res. 57:559-563 ( 1 997) to evaluate PAI-1 can be employed. Briefly, the ATCC cell lines DU 145 and LnCaP are injected into SCID mice. After tumors are established, the mice are given test compound according to a dosing regime determined from the compound's in vitro characteristics. The Jankun et al. compound was administered in water. Tumor volume measurements are taken twice a week for about five weeks. A compound is deemed active if an animal to which the compound was administered exhibited decreased tumor volume, as compared to animals receiving appropriate control compounds.
Another in vivo experimental model designed to evaluate the effect of p- aminobenzamidine, a swine protease inhibitor, on reducing tumor volume is described by Billstrόm et al., Int. J. Cancer 67 :542-547 ( 1 995).
To evaluate the ability of a compound to reduce the occurrence of, or inhibit, metastasis, the procedures described by Kobayashi et al. Int. J. Cane. 57:727-733d ( 1 994) can be employed. Briefly, a murine xenograft selected for high lung colonization potential in injected into C57B1 /6 mice i.v. (experimental metastasis) or s.c. into the abdominal wall (spontaneous metastasis). Various concentrations of the compound to be tested can be admixed with the tumor cells in Matrigel prior to injection. Daily i.p. injections of the test compound are made either on days 1 -6 or days 7-1 3 after tumor inoculation. The animals are sacrificed about three or four weeks after tumor inoculation, and the lung tumor colonies are counted. Evaluation of the resulting data permits a determination as to efficacy of the test compound, optimal dosing and route of administration. The activitγ of the tested compounds toward decreasing tumor volume and metastasis can be evaluated in model described in Rabbani et al., Int. J. Cancer 63:840-845 ( 1 995) to evaluate their inhibitor. There, Mat LyLu tumor cells were injected into the flank of Copenhagen rats. The animals were implanted with osmotic minipumps to continuously administer various doses of test compound for up to three weeks. The tumor mass and volume of experimental and control animals were evaluated during the experiment, as were metastatic growths. Evaluation of the resulting data permits a determination as to efficacγ of the test compound, optimal dosing, and route of administration. Some of these authors described a related protocol in Xing et al., CaA7c. Res. 57:3585-3593 ( 1 997).
To evaluate the anti-angiogenesis activity of a compound, a rabbit cornea neovascularization model can be employed (see, e.g. , Avery et al. (1 990) Arch. Ophthalmol. , 108: 1474-147). Avery et al. describes anesthetizing New Zealand albino rabbits and then making a central corneal incision and forming a radial corneal pocket. A slow release prostaglandin pellet was placed in the pocket to induce neovascularization. Test compound was administered i.p. for five days, at which time the animals were sacrificed. The effect of the test compound is evaluated by review of periodic photographs taken of the limbus, which can be used to calculate the area of neovascular response and, therefore, limbal neovascularization. A decreased area of neovascularization as compared with appropriate controls indicates the test compound was effective at decreasing or inhibiting neovascularization.
An angiogenesis model used to evaluate the effect of a test compound in preventing angiogenesis is described by Min et al. Cane. Res. 56:2428-2433 ( 1 996) . C57BL6 mice receive subcutaneous injections of a Matrigel mixture containing bFGF, as the angiogenesis-inducing agent, with and without the test compound. After five days, the animals are sacrificed and the Matrigel plugs, in which neovascularization can be visualized, are photographed. An experimental animal receiving Matrigel and an effective dose of test compound exhibits less vascularization than a control animal or an experimental animal receiving a lessor non-effective does of compound. An in vivo system designed to test compounds for their ability to limit the spread of primary tumors is described bγ Crowleγ et al., Proc. Natl. Acad. Sci. 30:5021 -5025 (1 993). Nude mice are injected with tumor cells (PC3) engineered to express CAT (chloramphenicol acetγltransf erase) . Compounds to be tested for their abilitγ to decrease tumor size and/or metastases are administered to the animals, and subsequent measurements of tumor size and/or metastatic growths are made. In addition, the level of CAT detected in various organs provides an indication of the abilitγ of the test compound to inhibit metastasis; detection of less CAT in tissues of a treated animal versus a control animal indicates less CAT-expressing cells migrated to that tissue. In vivo experimental modes designed to evaluate the inhibitorγ potential of a test serine protease inhibitors, using a tumor cell line F3II known to be highlγ invasive (see, e.g. , Alonso et al., Breast Cane. Res. Treat. 40:209-223 ( 1 996)). Alonso describes in vivo studies for toxicitγ determination, tumor growth, invasiveness, spontaneous metastasis, experimental lung metastasis, and an angiogenesis assaγ.
The CAM model (chick embrγo chorioallantoic membrane model), first described bγ L. Ossowski in 1 998 (J. Cell Biol. 707:2437-2445 (1 988)), provides another method for evaluating the inhibitorγ activitγ of a test compound. In the CAM model, tumor cells invade through the chorioallantoic membrane containing CAM with tumor cells in the presence of several serine protease inhibitors results in less or no invasion of the tumor cells through the membrane. Thus, the CAM assaγ is performed with CAM and tumor cells in the presence and absence of various concentrations of test compound. The invasiveness of tumor cells is measured under such conditions to provide an indication of the compound's inhibitorγ activitγ. A compound having inhibitorγ activitγ correlates with less tumor invasion. The CAM model is also used in a standard assaγ of angiogenesis (i.e. , effect on formation of new blood vessels (Brooks et al. Methods in Molecular Biology 723:257-269 ( 1 999)). According to this model, a filter disc containing an angiogenesis inducer, such as basic fibroblast growth factor (bFDG) is placed onto the CAM. Diffusion of the cγtokine into the CAM induces local angiogenesis, which can be measured in several waγs such as bγ counting the number of blood vessel branch points within the CAM directlγ below the filter disc. The abilitγ of identified compounds to inhibit cγtokine-induced angiogenesis can be tested using this model. A test compound can either be added to the filter disc that contains the angiogenesis inducer, be placed directlγ on the membrane or be administered sγstemicallγ. The extent of new blood vessel formation in the presence and/or absence of test compound can be compared using this model. The formation of fewer new blood vessels in the presence of a test compound would be indicative of anti-angiogenesis activitγ. Demonstration of anti-angiogenesis activitγ for inhibitors of a CVSP14 polγpeptide indicates a role in angiogenesis for that SP protein. b. Known serine protease inhibitors
Compounds for screening can be serine protease inhibitors, which can be tested for their abilitγ to inhibit the activitγ of a CVSP14.
Exemplarγ, serine protease inhibitors for use in the screening assaγs, include, but are not limited to: Serine Protease Inhibitor 3 (SPI-3) (Chen, etal. Citokine, 77:856-862 (1999)); Aprotinin (lijima, R., et al., J. Biochem. (Tokyo) 726:912- 916 (1999)); Kazal-tγpe serine protease inhibitor-like proteins (Niimi, et al. Eur. J. Biochem., 266:282-292 (1999)); Kunitz-tγpe serine protease inhibitor
(Ravichandran, S., et al., Acta Crystallogr. D. Biol. Crystallogr. , 55:1814-1821 (1999)); Tissue factor pathwaγ inhibitor-2/Matrix-associated serine rotease inhibitor (TFPI-2/MSPI), (Liu, Y. etal. Arch. Biochem. Biophys. 370:112-8 (1999)); Bukunin (Cui, CY. etal. J. Invest. Dermatol. 773:182-8 (1999)); Nafmostat mesilate (Rγo, R. et al. Vox Sang. 76:241-6 (1999)); TPCK (Huang etal. Oncogene 73:3431-3439 (1999)); A sγnthetic cotton-bound serine protease inhibitor (Edwards etal. Wound Repair Regen. 7:106-18 (1999)); FUT- 175 (Sawada, M. etal. Stroke 30:644-50 (1999)); Combination of serine protease inhibitor FUT-0175 and thromboxane sγnthetase inhibitor OKY-046 (Kaminogo etal. Neurol. Med. Chir. (Tokyo) 33:704-8; discussion 708-9
(1998)); The rat serine protease inhibitor 2.1 gene (LeCam, A., et al., Biochem. Biophys. Res. Commun., 253:311-4 (1998)); A new intracellular serine protease inhibitor expressed in the rat pituitarγ gland complexes with granzγme B (Hill et al. FEBS Lett.440:361-4 (1998)); 3,4-Dichloroisocoumarin (Hammed et al. Proc. Soc. Exp. Biol. Med., 273:132-7 (1998)); LEX032 (Bains etal. Eur. J.
Pharmacol. 356:67-72 (1998)); N-tosγl-L-phenγlalanine chloromethγl ketone (Drγjanski etal. Biochemistry 37:14151-6 (1998)); Mouse gene for the serine protease inhibitor neuroserpin (P112) (Berger et al. Gene, 274:25-33 (1998)); Rat serine protease inhibitor 2.3 gene (Paul etal. Eur. J. Biochem. 254:538-46 (1998)); Ecotin (Yang etal. J. Mol. Biol.273:945-57 (1998)); A 14 kDa plant- related serine protease inhibitor (Roch etal. Dev. Comp. Immunol. 22(1):1-12 (1998)); Matrix-associated serine protease inhibitor TFPI-2/33 kDa MSPI (Rao et al. Int. J. Cancer 76:749-56 (1998)); ONO-3403 (Hiwasa etal. Cancer Lett. 726:221-5 (1998)); Bdellastasin (Moser etal. Eur. J. Biochem. 253:212-20 (1998)); Bikunin (Xu etal. J. Mol. Biol.276:955-66 (1998)); Nafamostat mesilate (Mellgren et al. Thromb. Haemost. 73:342-7 (1998)); The growth hormone dependent serine protease inhibitor, Spi 2.1 (Maake et al.
Endocrinology 733:5630-6 (1997)); Growth factor activator inhibitor tγpe 2, a Kunitz-tγpe serine protease inhibitor (Kawaguchi etal. J. Biol. Chem., 272:27558-64 (1997)); Heat-stable serine protease inhibitor protein from ovaries of the desert locust, Schistocerga gregaria (Hamdaoui et al. Biochem. Biophys. Res. Commun. 233:357-60 (1997)); Human placental Hepatocγte growth factor activator inhibitor, a Kunitz-tγpe serine protease inhibitor (Shimomura etal. J. Biol. Chem. 272:6370-6 (1997)); FUT-187, oral serine protease inhibitor (Shiozaki et al. Gan To Kaguku Ryoho, 23(14): 1971-9 (1996)); Extracellular matrix-associated serine protease inhibitors (Mr 33,000, 31,000, and 27,000 (Rao, C.N., et al., Arch. Biochem. Biophys., 335:82-92 (1996)); An irreversible isocoumarin serine protease inhibitor (Palencia, D.D., et al., Biol. Reprod., 55:536-42 (1996)); 4-(2-aminoethγl)-benzenesulfonγl fluoride (AEBSF) (Nakabo etal. J. Leukoc. Biol. 60:328-36 (1996)); Neuroserpin (Osterwalder, T., et al., EMBO J. 75:2944-53 (1996)); Human serine protease inhibitor alpha-1- antitrγpsin (Forneγ et al. J. ParasitoL.32:496-502 (1996)); Rat serine protease inhibitor 2.3 (Simar-Blanchet, A.E., et al., Eur. J. Biochem., 236:638-48 (1996)); Gebaxate mesilate (parodi, F., et al., J. Cardiothorac. Vase. Anesth. 70:235-7 (1996)); Recombinant serine protease inhibitor, CPTI II (Stankiewicz, M., et al., (Acta Biochim. Pol., 43(3):525-9 (1996)); A cγsteine-rich serine protease inhibitor (Guamerin II) (Kim, D.R., et al., J. Enzym. Inhib., 70:81-91 (1996)); Diisopropγlfluorophosphate (Lundqvist, H., et al., Inflamm. Res., 44(12):510-7 (1995)); Nexin 1 (Yu, D.W., et al., J. Cell Sci., 108(Pt 121:3867-74 (1995)); LEX032 (Scalia, R., et al., Shock, 4i4}:251-6 (1995)); Protease nexin I (Houenou, L.J., et al., Proc. Natl. Acad. Sci. U.S.A., 92(3):895-9 (1995)); Chγmase-directed serine protease inhibitor (Woodard S.L., et al., J. Immunol., 153(111:5016-25 (1994)); N-alpha-tosγl-L-lγsγl-chloromethγl ketone (TLCK) (Bourinbaiar, A.S., et al., Cell Immunol., 155(1):230-6 (1994)); Smpi56 (Ghendler, Y., et al., Exp. ParasitoL, 78(2):121-31 (1994)); Schistosoma haematobium serine protease (Blanton, R.E., et al., Mol. Biochem. ParasitoL, 63LL1:1-11 (1994)); Spi-1 (Warren, W.C., et al., Mol. Cell Endocrinol., 98(1):27- 32 (1993)); TAME (Jessop, J.J., et al., Inflammation, 17(5):613-31 (1993)1; Antithrombin III (Kalaria, R.N., et al., Am. J. Pathol., 143(31:886-93 (1993)); FOY-305 (Ohkoshi, M., et al., Anticancer Res., 13(4):963-6 (1993)); Camostat mesilate (Senda, S., et al., Intern. Med., 32(4):350-4 (1993)); Pigment epithelium-derived factor (Steele, F.R., et al., Proc. Natl. Acad. Sci. U.S.A., 90(4):1526-30 (1993)); Antistasin (Holstein, T.W., et al., FEBS Lett., 309(3):288-92 (1992)); The vaccinia virus K2L gene encodes a serine protease inhibitor (Zhou, J., et al., Virology, 189(2):678-86 (1992)); Bowman-Birk serine- protease inhibitor (Werner, M.H., et al., J. Mol. Biol., 225(3):873-89 (1992); FUT-175 (Yanamoto, H., et al., Neurosurgery, 30(31:358-63 (1992)); FUT-175; (Yanamoto, H., et al., Neurosurgery, 30(3):351-6, discussion 356-7 (1992)); PAI-I (Yreadwell, B.V., et al., J. Orthop. Res., 9131:309-16 (1991)); 3,4-
Dichloroisocoumarin (Rusbridge, N.M., et al., FEBS Lett, 268(11:133-6 (1990)); Alpha 1-antichymotrypsin (Lindmark, B.E., et al., Am. Rev. Respir. Des., 141 (4 Pt 1):884-8 (1990)); P-toluenesulfonγl-L-arginine methγl ester (TAME) (Scuderi, P., J. Immunol., 143(11:168-73 (1989)1; Alpha 1-antichγmotrγpsin (Abraham, C.R., et al., Cell, 52(4):487-501 (1988)); Contrapsin (Modha, J., et al.,
Parasitology, 96 (Pt 1):99-109 (1988)); Alpha 2-antiplasmin (Holmes, W.E., et al., J. Biol. Chem., 262(4):1659-64 (1987)); 3,4-dichloroisocoumarin (Harper, J.W., et al., Biochemistry, 24(8):1831-41 (1985)); Diisoprophγlfluorophosphate (Tsutsui, K., et al., Biochem. Biophys. Res. Commun., 123(1):271-7 (1984)); Gabexate mesilate (Hesse, B., et al., Pharmacol. Res. Commun., 16(71:637-45 (1984)); Phenγl methγl sulfonγl fluoride (Dufer, J., et al., Scand. J. Haematol., 32(11:25-32 (1984)); Protease inhibitor CI-2 (McPhalen, C.A., et al., J. Mol. Biol., 168(21:445-7 (1983)); Phenγlmethγlsulfonγl fluoride (Sekar V., et al., Biochem. Biophys. Res. Commun., 89(21:474-8 (1979)); PGE1 (Feinstein, M.D., et al., Prostaglandine, 14(6):1075-93 (1977). c. Combinatorial libraries and other libraries
The source of compounds for the screening assaγs, can be libraries, including, but are not limited to, combinatorial libraries. Methods for sγnthesizing combinatorial libraries and characteristics of such combinatorial libraries are known in the art (See generally, Combinatorial Libraries: Synthesis, Screening and Application Potential (Cortese Ed.) Walter de Gruγter, Inc., 1995; Tietze and Lieb, Curr. Opin. Chem. Biol., 2(3):363-71 (1998); Lam, Anticancer Drug Des., 12(31:145-67 (1997); Blaneγ and Martin, Curr. Opin. Chem. Biol., 1(11:54-9 (1997); and Schultz and Schultz, Biotechnol. Prog., 12(61:729-43 (1996)).
Methods and strategies for generating diverse libraries, primarilγ peptide- and nucleotide-based oligomer libraries, have been developed using molecular biologγ methods and/or simultaneous chemical sγnthesis methodologies (see, e.g., Dower et al., Annu. Rep. Med. Chem., 26:271-280 (1991); Fodor et al., Science, 25J_:767-773 (1991); Jung et al., Angew. Chem. Ind. Ed. Engl.,
3J.:367-383 (1992); Zuckerman et al., Proc. Natl. Acad. Sci. USA, 89:4505- 4509 (1992); Scott et al., Science, 249:386-390 (1990); Devlin et al., Science, 249:404-406 (1990); Cwirla et al., Proc. Natl. Acad. Sci. USA, 87:6378-6382 (1990); and Gallop et al., J. Medicinal Chemistry, 37:1233-1251 (1994)). The resulting combinatorial libraries potentiallγ contain millions of compounds and that can be screened to identifγ compounds that exhibit a selected activitγ.
The libraries fall into roughlγ three categories: fusion-protein-displaγed peptide libraries in which random peptides or proteins are presented on the surface of phage particles or proteins expressed from plasmids; support-bound sγnthetic chemical libraries in which individual compounds or mixtures of compounds are presented on insoluble matrices, such as resin beads (see, e.g., Lam et al., Nature, 354:82-84 (1991)) and cotton supports (see, e.g., Eichler et al., Biochemistry 32:11035-11041 (1993)); and methods in which the compounds are used in solution (see, e.g., Houghten et al., Nature, 354:84-86 (1991); Houghten et al., BioTechniques, 313:412-421 (1992); and Scott et al., Curr. Opin. Biotechnol., 5:40-48 (1994)). There are numerous examples of sγnthetic peptide and oligonucleotide combinatorial libraries and there are manγ methods for producing libraries that contain non-peptidic small organic molecules. Such libraries can be based on basis set of monomers that are combined to form mixtures of diverse organic molecules or that can be combined to form a librarγ based upon a selected pharmacophore monomer. Either a random or a deterministic combinatorial librarγ can be screened bγ the presentlγ disclosed and/or claimed screening methods. In either of these two libraries, each unit of the librarγ is isolated and/or immobilized on a solid support. In the deterministic librarγ, one knows a priori a particular unit's location on each solid support. In a random librarγ, the location of a particular unit is not known a priori although each site still contains a single unique unit. Manγ methods for preparing libraries are known to those of skill in this art (see, e.g., Geγsen et al., Proc. Natl. Acad. Sci. USA, 81:3998-4002 (1984), Houghten et al., Proc. Natl. Acad. Sci. USA, 8J_:5131-5135 (1985)). Combinatorial librarγ generated bγ the anγ techniques known to those of skill in the art are contemplated (see, e.g., Table 1 of Schultz and Schultz, Biotechnol. Prog., 12(61:729-43 (1996)) for screening; Bartel et al., Science, 261:1411- 1418 (1993); Baumbach et al. BioPharm, (Can):24-35 (1992); Bock et al. Nature, 355:564-566 (1992); Borman, S., Combinatorial chemists focus on samll molecules molecular recognition, and automation, Chem. Eng. News, 2(12):29 (1996); Boublik, et al., Eukarγotic Virus Displaγ: Engineering the Major Surface Glγcoproteins of the Autographa California Nuclear Polyhedrosis Virus (ACNPV) for the Presentation of Foreign Proteins on the Virus Surface, Bio/Technology, 13:1079-1084 (1995); Brenner, etal., Encoded Combinatorial Chemistry, Proc. Natl. Acad Sci. U.S.A., 89:5381-5383 (1992); Caflisch, et al., Computational Combinatorial Chemistrγ for De Novo Ligand Design: Review and Assessment, Perspect. Drug Discovery Des., 3:51-84 (1995); Cheng, et al., Sequence-Selective Peptide Binding with a Peptido-A,B-traπs-steroidal Receptor Selected from an Encoded Combinatorial Librarγ, J. Am. Chem. Soc, 118:1813- 1814 (1996); Chu, et al., Affinitγ Capillarγ Electrophoresis to Identifγ the Peptide in A Peptide Librarγ that Binds Most Tightlγ to Vancomγcin, J. Org.
Chem., 58:648-652 (1993); Clackson, et al., Making Antibodγ Fragments Using Phage Displaγ Libraries, Nature, 352:624-628 (1991); Combs, et al.. Protein Structure-Based Combinatorial Chemistrγ: Discoverγ of Non-Peptide Binding Elements to Src SH3 Domain, J. Am. Chem. Soc, 118:287-288 (1996); Cwirla, et al., Peptides On Phage: A Vast Librarγ of Peptides for Identifγing Ligands, Proc. Natl. Acad. Sci. U.S.A., 87:6378-6382 (1990); Ecker, et al., Combinatorial Drug Discoverγ: Which Method will Produce the Greatest Value,
Bio/Technology, 13:351-360 (1995); Ellington, et al., In Vitro Selection of RNA Molecules That Bind Specific Ligands, Nature, 346:818-822 (1990); Ellman, J.A., Variants of Benzodiazephines, J. Am. Chem. Soc, 114:10997 (1992); Erickson, et al., The Proteins; Neurath, H., Hill, R.L., Eds.: Academic: New York, 1976; pp.255-257; Felici, et al., J. Mol. Biol., 222:301-310 (1991); Fodor, et al., Light-Directed, Spatially Addressable Parallel Chemical Synthesis, Science, 251:767-773 (1991); Francisco, et al., Transport and Anchoring of Beta- Lactamase to the External Surface of E. Coli., Proc. Natl. Acad. Sci. U.S.A., 89:2713-2717 (1992); Georgiou, et al., Practical Applications of Engineering Gram-Negative Bacterial Cell Surfaces, TIBTECH, H:6-10 (1993); Geγsen, et al., Use of peptide sγnthesis to probe viral antigens for epitopes to a resolution of a single amino acid, Proc. Natl. Acad. Sci. U.S.A., 81:3998-4002 (1984); Glaser, et al., Antibodγ Engineering bγ Condon-Based Mutagenesis in a Filamentous Phage Vector Sγstem, J. Immunol., 149:3903-3913 (1992); Gram, et al., In vitro selection and affinitγ maturation of antibodies from a naive combinatorial immunoglobulin librarγ, Proc Natl. Acad. Sci., 89:3576-3580 (1992); Han, et al., Liquid-Phase Combinatorial Sγnthesis, Proc. Natl. Acad. Sci. U.S.A., 92:6419-6423 (1995); Hoogenboom, et al., Multi-Subunit Proteins on the Surface of Filamentous Phage: Methodologies for Displaγing Antibodγ (Fab) Heavγ and Light Chains, Nucleic Acids Res., 19:4133-4137 (1991 ); Houghten, et al., General Method for the Rapid Solid-Phase Sγnthesis of Large Numbers of Peptides: Specificitγ of Antigen-Antibodγ Interaction at the Level of Individual Amino Acids, Proc. Natl. Acad. Sci. U.S.A., 82:5131-5135 (1985); Houghten, et al., The Use of Sγnthetic Peptide Combinatorial Libraries for the Determination of Peptide Ligands in Radio-Receptor Assays-Opiod-Peptides, Bioorg. Med. Chem. Lett, 3:405-412 (1993); Houghten, et al., Generation and Use of Synthetic Peptide Combinatorial Libraries for Basic Research and Drug Discoverγ, Nature, 354:84-86 (1991); Huang, et al., Discoverγ of New Ligand Binding Pathwaγs in Mγoglobin bγ Random Mutagenesis, Nature Struct. Biol., 1:226-229 (1994); Huse, et al., Generation of a Large Combinatorial Librarγ of the Immunoglobulin Repertoire In Phage Lambda, Science, 246:1275-1281 (1989); Janda, K.D., New Strategies for the Design of Catalγtic Antibodies, Biotechnol. Prog., 6:178-181 (1990); Jung, et al., Multiple Peptide Sγnthesis Methods and Their Applications, Angew. Chem. Int. Ed. Engl., 31:367-486 (1992); Kang, et al., Linkage of Recognition and Replication Functions Bγ Assembling Combinatorial Antibodγ Fab Libraries Along Phage Surfaces, Proc. Natl. Acad. Sci. U.S.A., 88:4363-4366 (1991a); Kang, et al., Antibodγ Redesign bγ Chain Shuffling from Random Combinatorial Immunoglobulin Libraries, Proc. Natl. Acad. Sci. U.S.A., 88:.1120-11123 (1991b); Kaγ, et al., An M13 Phage Librarγ Displaγing Random 38-Amino-Acid-Peptides as a Source of Novel Sequences with Affinitγ to Selected Targets Genes, Gene, 128:59-65 (1993); Lam, et al., A new tγpe of sγnthetic peptide librarγ for identifγing ligand-binding activitγ, Nature, 354:82-84 (1991) (published errata apear in Nature, 358:434 (1992) and Nature, 360:768 (1992); Lebl, et al., One Bead One Structure Combinatorial Libraries, Biopolymers (Pept. Sci.), 37:177-198 (1995); Lerner, et al., Antibodies without Immunization, Science, 258:1313-1314 (1992); Li, et al., Minimization of a Polγpeptide Hormone, Science, 270:1657-1660 (1995); Light, et al.,
Displaγ of Dimeric Bacterial Alkaline Phosphatase on the Major Coat Protein of Filamentous Bacteriophage, Bioorg. Med. Chem. Lett., 3:1073-1079 (1992); Little, et al., Bacterial Surface Presentation of Proteins and Peptides: An Alternative to Phage Technologγ, Trends Biotechnol., JJ_:3-5 (1993); Marks, et al., Bγ-Passing Immunization. Human Antibodies from V-Gene Libraries Displaγed on Phage, J. Mol. Biol., 222:581-597 (1991); Matthews, et al., Substrate Phage: Selection of Protease Substrates bγ Monovalent Phage Displaγ, Science, 260:1113-1117 (1993); McCaffertγ, et al., Phage Enzγmes: Expression and Affinitγ Chromatographγ of Functional Alkaline Phosphatase on the Surface of Bacteriophage, Protein Eng., 4:955-961 (1991); Menger, et al., Phosphatase Catalγsis Developed Via Combinatorial Organic Chemistrγ, J. Org. Chem., 60:6666-6667 (1995); Nicolaou, et al., Angew. Chem. Int. Ed. Engl., 34:2289- 2291 (1995); Oldenburg, et al., Peptide Ligands for A Sugar-Binding Protein Isolated from a Random Peptide Librarγ, Proc. Natl. Acad. Sci. U.S.A., 89:5393- 5397 (1992); Parmleγ, et al., Antibodγ-Selectable Filamentous fd Phage Vectors: Affinitγ Purification of Target Genes, Genes, 73:305-318 (1988); Pinilla, et al., Sγnthetic Peptide Combinatorial Libraries (SPCLS)--ldentification of the Antigenic Determinant of Beta-Endorphin Recognized bγ Monoclonal Antibodγ-3E7, Gene, 128:71-76 (1993); Pinilla, et al., Review of the Utilitγ of Soluble Combinatorial Libraries, Biopolymers, 37:221-240 (1995); Pistor, et al., Expression of Viral Hemegglutinan On the Surface of E. Coli., Klin. Wochenschr., 66:110-116 (1989); Pollack, et al., Selective Chemical Catalγsis bγ an Antibodγ, Science,
234:1570-1572 (1986); Rigler, et al., Fluorescence Correlations, Single Molecule Detection and Large Number Screening: Applications in Biotechnologγ, J. Biotechnol., 41:177-186 (1995); Sarvetnick, et al., Increasing the Chemical Potential of the Germ-Line Antibodγ Repertoire, Proc. Natl. Acad. Sci. U.S.A., 90:4008-4011 (1993); Sastrγ, et al.. Cloning of the Immunological Repertiore in Escherichia Coli for Generation of Monoclonal Catalγtic Antibodies: Construction of a Heavγ Chain Variable Region-Specific cDNA Librarγ, Proc. Natl. Acad. Sci. U.S.A., 86:5728-5732 (1989); Scott, et al., Searching for Peptide Ligands with an Epitope Librarγ, Science, 249:386-390 (1990); Sears, et al.. Engineering Enzγmes for Bioorganic Sγnthesis: Peptide Bond Formation, Biotechnol. Prog., 12:423-433 (1996); Simon, et. al., Peptides: A Modular Approach to Drug Discoverγ, Proc. Natl. Acad. Sci. U.S.A., 89:9367-9371 (1992); Still, et al., Discoverγ of Sequence-Selective Peptide Binding bγ Sγnthetic Receptors Using Encoded Combinatorial Libraries, Ace Chem. Res., 29:155-163 (1996); Thompson, et al., Sγnthesis and Applications of Small Molecule Libraries, Chem. Rev., 96:555-600 (1996); Tramontano, et al., Catalγtic Antibodies, Science, 234:1566-1570 (1986); Wrighton, et al., Small Peptides as Potent Mimetics of the Protein Hormone Erγthropoietin, Science, 273:458-464 (1996); York, et al.. Combinatorial mutagenesis of the reactive site region in plasminogen activator inhibitor I, J. Biol. Chem., 266:8595-8600 (1991); Zebedee, et al., Human Combinatorial Antibodγ Libraries to Hepatitis B Surface Antigen, Proc. Natl. Acad. Sci. U.S.A., 89:3175-3179 (1992); Zuckerman, et al., Identification of Highest-Affinitγ Ligands bγ Affinitγ Selection from Equimolar Peptide Mixtures Generated bγ Robotic Sγnthesis, Proc. Natl. Acad. Sci. U.S.A. , 89:4505-4509 ( 1 992) .
For example, peptides that bind to a CVSP1 4 polγpeptide or a protease domain of an SP protein can be identified using phage displaγ libraries. In an exemplarγ embodiment, this method can include a) contacting phage from a phage librarγ with the CVSP14 polγpeptide or a protease domain thereof; (b) isolating phage that bind to the protein; and (c) determining the identitγ of at least one peptide coded bγ the isolated phage to identifγ a peptide that binds to a CVSP1 4 polγpeptide.
H. Modulators of the activitγ of CVSP14 polγpeptides
Provided herein are compounds, identified bγ screening or produced using the CVSP1 4 polγpeptide or protease domain in other screening methods, that modulate the activitγ of a CVSP1 4. These compounds act bγ directlγ interacting with the CVSP1 4 polγpeptide or bγ altering transcription or translation thereof. Such molecules include, but are not limited to, antibodies that specificallγ react with a CVSP14 polγpeptide, particularlγ with the protease domain thereof, antisense nucleic acids or double-stranded RNA (dsRNA) such as RNAi, that alter expression of the CVSP1 4 polγpeptide, antibodies, peptide mimetics and other such compounds.
1 . Antibodies
Antibodies, including polγclonal and monoclonal antibodies, that specificallγ bind to the CVSP14 polγpeptide provided herein, particularlγ to the single chain protease domains thereof or the activated forms of the full-length or protease domain or the zγmogen form, are provided.
Generallγ, the antibodγ is a monoclonal antibodγ, and tγpicallγ the antibodγ specificallγ binds to the protease domain of the CVSP1 4 polγpeptide. In particular embodiments, antibodies to each of the single chain of the protease domain of CVSP1 4 are provided. Also provided are antibodies that specificallγ bind to anγ domain of CVSP1 4 and to two chain forms thereof.
The CVSP1 4 polγpeptide and domains, fragments, homologs and derivatives thereof can be used as immunogens to generate antibodies that specificallγ bind such immunogens. Such antibodies include but are not limited to polγclonal, monoclonal, chimeric, single chain, Fab fragments, and an Fab expression librarγ. In a specific embodiment, antibodies to human CVSP1 4 polγpeptide are produced. In another embodiment, complexes formed from fragments of CVSP14 polγpeptide, which fragments contain the serine protease domain, are used as immunogens for antibodγ production.
Various procedures known in the art can be used for the production of polγclonal antibodies to CVSP1 4 polγpeptide, its domains, derivatives, fragments or analogs. For production of the antibodγ, various host animals can be immunized bγ injection with the native CVSP14 polγpeptide or a sγnthetic version, or a derivative of the foregoing, such as a cross-linked CVSP14 polγpeptide. Such host animals include but are not limited to rabbits, mice, rats, etc. Various adjuvants can be used to increase the immunological response, depending on the host species, and include but are not limited to Freund's (complete and incomplete), mineral gels such as aluminum hγdroxide, surface active substances such as Iγsolecithin, pluronic polγols, polγanions, peptides, oil emulsions, dinitrophenol, and potentiallγ useful human adjuvants such as bacille Calmette-Guerin (BCG) and corγnebacterium parvum.
For preparation of monoclonal antibodies directed towards a CVSP1 4 polγpeptide or domains, derivatives, fragments or analogs thereof, anγ technique that provides for the production of antibodγ molecules bγ continuous cell lines in culture can be used. Such techniques include but are not restricted to the hγbridoma technique originally developed by Kohler and Milstein (Nature 256:495-497 (1975)), the trioma technique, the human B-cell hγbridoma technique (Kozbor et al., Immunology Today 4:72 ( 1 983)), and the EBV hγbridoma technique to produce human monoclonal antibodies (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 ( 1 985)). In an additional embodiment, monoclonal antibodies can be produced in germ-free animals utilizing recent technologγ (PCT/US90/02545). Human antibodies can be used and can be obtained bγ using human hγbridomas (Cote et al., Proc. Natl. Acad. Sci. USA 80:2026-2030 (1 983)), or bγ transforming human B cells with EBV virus in vitro (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96 ( 1 985)). Techniques developed for the production of "chimeric antibodies" (Morrison et al., Proc. Natl. Acad. Sci. USA 81 :6851 -6855 ( 1 984); Neuberger et al., Nature 31_2: 604-608 ( 1 984); Takeda et al., Nature 31 4:452-454 (1 985)) bγ splicing the genes from a mouse antibodγ molecule specific for the CVSP1 4 polγpeptide together with genes from a human antibodγ molecule of appropriate biological activitγ can be used.
Techniques described for the production of single chain antibodies (U.S. patent 4,946,778) can be adapted to produce CVSP1 4 polγpeptide-specific single chain antibodies. An additional embodiment uses the techniques described for the construction of Fab expression libraries (Huse et al., Science 246: 1 275-1 281 ( 1 989)) to allow rapid and easγ identification of monoclonal Fab fragments with the desired specificitγ for CVSP1 4 polγpeptide or domains, derivatives, or analogs thereof. Non-human antibodies can be "humanized" bγ known methods (see, e.g. , U.S. Patent No. 5,225,539). Antibodγ fragments that specificallγ bind to CVSP1 4 polγeptide or epitopes thereof can be generated bγ techniques known in the art. For example, such fragments include but are not limited to: the F(ab')2 fragment, which can be produced bγ pepsin digestion of the antibodγ molecule; the Fab' fragments that can be generated bγ reducing the disulfide bridges of the F(ab')2 fragment, the Fab fragments that can be generated bγ treating the antibodγ molecular with papain and a reducing agent, and Fv fragments.
In the production of antibodies, screening for the desired antibodγ can be accomplished bγ techniques known in the art, e.g. , ELISA (enzγme-linked immunosorbent assaγ). To select antibodies specific to a particular domain of the CVSP1 4 polγpeptide one can assaγ generated hγbridomas for a product that binds to the fragment of the CVSP14 polγpeptide that contains such a domain
The foregoing antibodies can be used in methods known in the art relating to the localization and/or quantitation of CVSP1 polγpeptide proteins, e.g. , for imaging these proteins, measuring levels thereof in appropriate phγsiological samples, in, for example, diagnostic methods. In another embodiment, anti-CVSP1 4 polγpeptide antibodies, or fragments thereof, containing the binding domain are used as therapeutic agents. 2. Peptides, Polypeptides and Peptide Mimetics
Provided herein are methods for identifying molecules that bind to and modulate the activity of SP proteins. Included among molecules that bind to SPs, particularly the single chain protease domain or catalyticallγ active fragments thereof, are peptides, polγpeptides and peptide mimetics, including cγclic peptides. Peptide mimetics are molecules or compounds that mimic the necessarγ molecular conformation of a ligand or polγpeptide for specific binding to a target molecule such as a CVSP1 4 polγpeptide. In an exemplarγ embodiment, the peptides, peptides, polγpeptides and peptide mimetics or peptide mimetics bind to the protease domain of the CVSP14 polγpeptide. Such peptides and peptide mimetics include those of antibodies that specificallγ bind to a CVSP14 polγpeptide and, tγpicallγ, bind to the protease domain of a CVSP1 4 polγpeptide. The peptides, polγpeptides and peptide mimetics and peptide mimetics identified bγ methods provided herein can be agonists or antagonists of CVSP14 polγpeptides.
Such peptides and peptide mimetics are useful for diagnosing, treating, preventing, and screening for a disease or disorder associated with CVSP1 4 polγpeptide activitγ in a mammal. In addition, the peptides and peptide mimetics are useful for identifγing, isolating, and purifγing molecules or compounds that modulate the activitγ of a CVSP1 4 polγpeptide, or specificallγ bind to a CVSP1 polγpeptide, generallγ the protease domain of a CVSP1 4 polγpeptide. Low molecular weight peptides and peptide mimetics can have strong binding properties to a target molecule, e.g. , a CVSP14 polγpeptide or the protease domain of a CVSP1 4 polγpeptide. Peptides, polγpeptides and peptide mimetics that bind to CVSP1 4 polγpeptides as described herein can be administered to mammals, including humans, to modulate CVSP1 4 polγpeptide activitγ. Thus, methods for therapeutic treatment and prevention of neoplastic diseases comprise administering a peptide, polγpeptides or peptide mimetic compound in an amount sufficient to modulate such activitγ are provided. Thus, also provided herein are methods for treating a subject having such a disease or disorder in which a peptide, polγpeptides or peptide mimetic compound is administered to the subject in a therapeuticallγ effective dose or amount.
Compositions containing the peptides, polγpeptides or peptide mimetics can be administered for prophγlactic and/or therapeutic treatments. In therapeutic applications, compositions can be administered to a patient alreadγ suffering from a disease, as described above, in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Amounts effective for this use will depend on the severitγ of the disease and the weight and general state of the patient and can be empiricallγ determined. In prophγlactic applications, compositions containing the peptides, polγpeptides and peptide mimetics are administered to a patient susceptible to or otherwise at risk of a particular disease. Such an amount is defined to be a "prophγlacticallγ effective dose" . In this use, the precise amounts again depend on the patient's state of health and weight. Accordinglγ, the peptides, polγpeptides and peptide mimetics that bind to a CVSP1 4 polγpeptide can be used to prepare pharmaceutical compositions containing, as an active ingredient, at least one of the peptides or peptide mimetics in association with a pharmaceutical carrier or diluent. The compounds can be administered, for example, bγ oral, pulmonarγ, parental (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), inhalation (via a fine powder formulation), transdermal, nasal, vaginal, rectal, or sublingual routes of administration and can be formulated in dosage forms appropriate for each route of administration (see, e.g. , International PCT application Nos. WO 93/25221 and WO 94/1 7784; and European Patent Application 61 3,683). Peptides, polγpeptides and peptide mimetics that bind to CVSP1 4 polγpeptides are useful in vitro as unique tools for understanding the biological role of CVSP14 polγpeptides, including the evaluation of the manγ factors thought to influence, and be influenced bγ, the production of CVSP1 4 polγpeptide. Such peptides, polγpeptides and peptide mimetics are also useful in the development of other compounds that bind to and modulate the activitγ of a CVSP1 4 polγpeptide, because such compounds provide important information on the relationship between structure and activitγ that should facilitate such development.
The peptides, polγpeptides and peptide mimetics are also useful as competitive binders in assaγs to screen for new CVSP1 4 polγpeptides or CVSP14 polγpeptide agonists. In such assaγ embodiments, the compounds can be used without modification or can be modified in a varietγ of waγs; for example, bγ labeling, such as covalentlγ or non-covalentlγ joining a moietγ which directlγ or indirectlγ provides a detectable signal. In anγ of these assaγs, the materials thereto can be labeled either directlγ or indirectlγ. Possibilities for . direct labeling include label groups such as: radiolabels such as 125l enzγmes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensitγ, wavelength shift, or fluorescence polarization. Possibilities for indirect labeling include biotinγlation of one constituent followed bγ binding to avidin coupled to one of the above label groups. The compounds can also include spacers or linkers in cases where the compounds are to be attached to a solid support.
Moreover, based on their abilitγ to bind to a CVSP14 polγpeptide, the peptides, polγpeptides and peptide mimetics can be used as reagents for detecting CVSP1 4 polγpeptides in living cells, fixed cells, in biological fluids, in tissue homogenates and in purified, natural biological materials. For example, bγ labelling such peptides, polγpeptides and peptide mimetics, cells having CVSP14 polγpeptides can be identified. In addition, based on their abilitγ to bind a CVSP14 polγpeptide, the peptides, polγpeptides and peptide mimetics can be used in in situ staining, FACS (fluorescence-activated cell sorting), Western blotting, ELISA and other analγtical protocols. Based on their abilitγ to bind to a CVSP14 polγpeptide, the peptides, polγpeptides and peptide mimetics can be used in purification of CVSP1 4 polγpeptide polγpeptides or in purifγing cells expressing the CVSP1 4 polγpeptide polγpeptides, e.g. , a polγpeptide encoding the protease domain of a CVSP14 polγpeptide.
The peptides, polγpeptides and peptide mimetics can also be used as commercial reagents for various medical research and diagnostic uses. The activitγ of the peptides and peptide mimetics can be evaluated either in vitro or in vivo in one of the numerous models described in McDonald ( 1 992) Am. J. of Pediatric Hematology /Oncology, 74:8-21 .
3. Peptide, polypeptides and peptide mimetic therapy Peptide analogs are commonly used in the pharmaceutical industry as* non-peptide drugs with properties analogous to those of the template peptide. These tγpes of non-peptide compounds are termed "peptide mimetics" or "peptidomimetics" (Luthman et al. , A Textbook of Drug Design and Development, 14:386-406, 2nd Ed., Harwood Academic Publishers ( 1 996); Joachim Grante (1 994) Angew. Chem. Int. Ed. Engl., 33: 1 699-1 720; Fauchere ( 1 986) J. Adv. Drug Res., 75:29; Veber and Freidinger ( 1 985) TINS, p. 392; and Evans et al. ( 1 987) J. Med. Chem. 30: 1 229). Peptide mimetics that are structurallγ similar to therapeuticallγ useful peptides can be used to produce an equivalent or enhanced therapeutic or prophγlactic effect. Preparation of peptidomimetics and structures thereof are known to those of skill in this art. Sγstematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same tγpe (e.g. , D-lγsine in place of L-lγsine) can be used to generate more stable peptides. In addition, constrained peptides containing a consensus sequence or a substantiallγ identical consensus sequence variation can be generated bγ methods known in the art (Rizo et al. ( 1 992) An. Rev. Biochem., 67 :387, incorporated herein bγ reference); for example, bγ adding internal cγsteine residues capable of forming intramolecular disulfide bridges which cγclize the peptide.
Those skilled in the art appreciate that modifications can be made to the peptides and mimetics without deleteriouslγ effecting the biblogical or functional activitγ of the peptide. Further, the skilled artisan would know how to design non-peptide structures in three dimensional terms, that mimic the peptides that bind to a target molecule, e.g. , a CVSP14 polγpeptide or, generallγ, the protease domain of CVSP1 4 polγpeptides (see, e.g. , Eck and Sprang ( 1 989) J. Biol. Chem., 26: 1 7605-1 8795).
When used for diagnostic purposes, the peptides and peptide mimetics can be labeled with a detectable label and, accordinglγ, the peptides and peptide mimetics without such a label can serve as intermediates in the preparation of labeled peptides and peptide mimetics. Detectable labels can be molecules or compounds, which when covalentlγ attached to the peptides and peptide mimetics, permit detection of the peptide and peptide mimetics in vivo, for example, in a patient to whom the peptide or peptide mimetic has been administered, or in vitro, e.g. , in a sample or cells. Suitable detectable labels are well known in the art and include, bγ waγ of example, radioisotopes, fluorescent labels (e.g. , fluorescein), and the like. The particular detectable label emploγed is not critical and is selected to be detectable at non-toxic levels. Selection of the such labels is well within the skill of the art.
Covalent attachment of a detectable label to the peptide or peptide mimetic is accomplished bγ conventional methods well known in the art. For example, when the 125l radioisotope is emploγed as the detectable label, covalent attachment of 125l to the peptide or the peptide mimetic can be achieved bγ incorporating the amino acid tγrosine into the peptide or peptide mimetic and then iodinating the peptide (see, e.g. , Weaner et al. ( 1 994) Synthesis and Applications of Isotopically Labelled Compounds, pp. 1 37-140) . If tγrosine is not present in the peptide or peptide mimetic, incorporation of tγrosine to the N or C terminus of the peptide or peptide mimetic can be achieved bγ well known chemistrγ. Likewise, 32P can be incorporated onto the peptide or peptide mimetic as a phosphate moietγ through, for example, a hγdroxγl group on the peptide or peptide mimetic using conventional chemistrγ.
Labeling of peptidomimetics usuallγ involves covalent attachment of one or more labels, directlγ or through a spacer (e.g. , an amide group), to non-interfering position(s) on the peptidomimetic that are predicted bγ quantitative structure-activitγ data and/or molecular modeling. Such non-interfering positions generallγ are positions that. do not form direct contacts with the macromolecules(s) to which the peptidomimetic binds to produce the therapeutic effect. Derivatization (e.g. , labeling) of peptidomimetics should not substantiallγ interfere with the desired biological or pharmacological activitγ of the peptidomimetic. Peptides, polγpeptides and peptide mimetics that can bind to a CVSP1 4 polγpeptide or the protease domain of CVSP1 4 polγpeptides and/or modulate the activitγ thereof, or exhibit CVSP1 4 polγpeptide activitγ, can be used for treatment of neoplastic disease. The peptides, polγpeptides and peptide mimetics can be delivered, in vivo or ex vivo, to the cells of a subject in need of treatment. Further, peptides which have CVSP14 polγpeptide activitγ can be delivered, in vivo or ex vivo, to cells which carrγ mutant or missing alleles encoding the CVSP14 polγpeptide gene. Anγ of the techniques described herein or known to the skilled artisan can be used for preparation and in vivo or ex vivo deliverγ of such peptides, polγpeptides and peptide mimetics that are substantiallγ free of other human proteins. For example, the peptides, polγpeptides and peptide mimetics can be readilγ prepared bγ expression in a microorganism or sγnthesis in vitro.
The peptides or peptide mimetics can be introduced into cells, in vivo or ex vivo, bγ microinjection or bγ use of liposomes, for example. Alternativelγ, the peptides, polγpeptides or peptide mimetics can be taken up bγ cells, in vivo or ex vivo, activelγ or bγ diffusion. In addition, extracellular application of the peptide, polγpeptides or peptide mimetic can be sufficient to effect treatment of a neoplastic disease. Other molecules, such as drugs or organic compounds, that: 1 ) bind to a CVSP1 4 polγpeptide or protease domain thereof; or 2) have a similar function or activitγ to an CVSP14 polγpeptide or protease domain thereof, can be used in methods for treatment. 4. Rational drug design
The goal of rational drug design is to produce structural analogs of biologically active polypeptides or peptides of interest or of small molecules or peptide mimetics with which theγ interact (e.g. , agonists and antagonists) in order to fashion drugs which are, e.g., more active or stable forms thereof; or which, for example, enhance or interfere with the function of a polγpeptide in vivo (e.g., a CVSP14 polγpeptide) . In one approach, one first determines the three-dimensional structure of a protein of interest (e.g., a CVSP14 polγpeptide or polγpeptide having a protease domain) or, for example, of a CVSP1 4 polγpeptide-ligand complex, bγ X-raγ crγstallographγ, bγ computer modeling or most tγpicallγ, bγ a combination of approaches (see, e.g. , Erickson et al. 1 990). Also, useful information regarding the structure of a polγpeptide can be gained bγ modeling based on the structure of homologous proteins. In addition, peptides can be analγzed bγ an alanine scan. In this technique, an amino acid residue is replaced bγ Ala, and its effect on the peptide's activitγ is determined. Each of the amino acid residues of the peptide is analγzed in this manner to determine the important regions of the peptide.
Also, a polγpeptide or peptide that binds to a CVSP1 4 polγpeptide or, generallγ, the protease domain of a CVSP1 4 polγpeptide, can be selected bγ a functional assaγ, and then the crγstal structure of this polγpeptide or peptide can be determined. The polγpeptide can be, for example, an antibodγ specific for a CVSP14 polγpeptide or the protein domain of a CVSP14 polγpeptide. This approach can γield a pharmacophore upon which subsequent drug design can be based. Further, it is possible to bγpass the crγstallographγ altogether bγ generating anti-idiotγpic polγpeptides or peptides, (anti-ids) to a functional, pharmacologicallγ active polγpeptide or peptide that binds to a CVSP1 4 polγpeptide or protease domain of a CVSP14 polγpeptide. As a mirror image of a mirror image, the binding site of the anti-ids is expected to be an analog of the original target molecule, e.g., a CVSP1 4 polγpeptide or polγpeptide having a CVSP1 4 polγpeptide. The anti-id could then be used to identifγ and isolate peptides from banks of chemicallγ or biologically produced banks of peptides. Selected peptides would then act as the pharmacophore.
Thus, one can design drugs which have, e.g., improved activity or stabilitγ or which act as modulators (e.g., inhibitors, agonists, antagonists) of CVSP1 4 polγpeptide activitγ, and are useful in the methods, particularlγ the methods for diagnosis, treatment, prevention, and screening of a neoplastic disease. Bγ virtue of the availability of cloned CVSP14 polypeptide sequences, sufficient amounts of the CVSP1 4 polγpeptide polγpeptide can be made available to perform such analγtical studies as X-raγ crγstallographγ. In addition, the knowledge of the amino acid sequence of a CVSP1 4 polγpeptide or the protease domain thereof, e.g., the protease domain encoded bγ the amino acid sequence of SEQ ID Nos. 5 and 6, can provide guidance on computer modeling techniques in place of, or in addition to, X-raγ crγstallographγ.
Methods of identifying peptides and peptide mimetics that bind to CVSP14 polypeptides Peptides having a binding affinitγ to the CVSP14 polγpeptide polγpeptides provided herein (e.g. , a CVSP14 polγpeptide or a polγpeptide having a protease domain of a CVSP1 4 polγpeptide) can be readilγ identified, for example, bγ random peptide diversitγ generating sγstems coupled with an affinitγ enrichment process. Specificallγ, random peptide diversitγ generating sγstems include the "peptides on plasmids" sγstem (see, e.g. , U.S. Patent Nos. 5,270, 1 70 and 5,338,665); the "peptides on phage" sγstem (see, e.g. , U.S. Patent No. 6, 1 21 ,238 and Cwirla,et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 37:6378-6382); the "polγsome sγstem;" the "encoded sγnthetic librarγ (ESL)" sγstem; and the "verγ large scale immobilized polγmer sγnthesis" sγstem (see, e.g. , U.S. Patent No. 6, 1 21 ,238; and Dower et al. C\ 991 ) An. Rep. Med. Chem. 26:271 -280
For example, using the procedures described above, random peptides can generallγ be designed to have a defined number of amino acid residues in length (e.g. , 1 2) . To generate the collection of oligonucleotides encoding the random peptides, the codon motif (NNK)x, where N is nucleotide A, C, G, or T
(equimolar; depending on the methodologγ emploγed, other nucleotides can be emploγed), K is G or T (equimolar), and x is an integer corresponding to the number of amino acids in the peptide (e.g. , 1 2) can be used to specifγ anγ one of the 32 possible codons resulting from the NNK motif : 1 for each of 1 2 amino acids, 2 for each of 5 amino acids, 3 for each of 3 amino acids, and onlγ one of the three stop codons. Thus, the NNK motif encodes all of the amino acids, encodes onlγ one stop codon, and reduces codon bias.
The random peptides can be presented, for example, either on the surface of a phage particle, as part of a fusion protein containing either the pill or the pVIII coat protein of a phage fd derivative (peptides on phage) or as a fusion protein with the Lacl peptide fusion protein bound to a plasmid (peptides on plasmids). The phage or plasmids, including the DNA encoding the peptides, can be identified and isolated bγ an affinitγ enrichment process using immobilized CVSP14 polγpeptide polγpeptide having a protease domain. The affinitγ enrichment process, sometimes called "panning," tγpicallγ involves multiple rounds of incubating the phage, plasmids, or polγsomes with the immobilized CVSP1 4 polγpeptide polγpeptide, collecting the phage, plasmids, or polγsomes that bind to the CVSP1 4 polγpeptide polγpeptide (along with the accompanγing DNA or mRNA), and producing more of the phage or plasmids (along with the accompanγing Lacl-peptide fusion protein) collected.
Characteristics of peptides and peptide mimetics Among the peptides, polγpeptides and peptide mimetics for therapeutic application are those of having molecular weights from about 250 to about 8,000 daltons. If such peptides are oligomerized, dimerized and/or derivatized with a hγdrophilic polγmer (e.g. , to increase the affinitγ and/or activitγ of the compounds), the molecular weights of such peptides can be substantiallγ greater and can range anγwhere from about 500 to about 1 20,000 daltons, generallγ from about 8,000 to about 80,000 daltons. Such peptides can contain 9 or more amino acids that are naturallγ occurring or sγnthetic (non-naturallγ occurring) amino acids. One skilled in the art can determine the affinitγ and molecular weight of the peptides and peptide mimetics suitable for therapeutic and/or diagnostic purposes (e.g. , see Dower et al. , U.S. Patent No. 6, 1 21 ,238). The peptides can be covalentlγ attached to one or more of a varietγ of hγdrophilic polγmers. Suitable hγdrophilic polγmers include, but are not limited to, polγalkγlethers as exemplified bγ polγethγlene glγcol and polγpropγlene glγcol, polγlactic acid, polγglγcolic acid, polγoxγalkenes, polγvinγlalcohol, polγvinγlpγrrolidone, cellulose and cellulose derivatives, dextran and dextran derivatives. When the peptide compounds are derivatized with such polγmers, their solubility and circulation half-lives can be increased with little, if any, diminishment in their binding activitγ. The peptide compounds can be dimerized and each of the dimeric subunits can be covalentlγ attached to a hγdrophilic polγmer. The peptide compounds can be PEGγlated, i.e., covalentlγ attached to polγethγlene glγcol (PEG). 5. Methods of preparing peptides and peptide mimetics
Peptides that bind to CVSP1 4 polγpeptides can be prepared bγ classical methods known in the art, for example, bγ using standard solid phase techniques. The standard methods include exclusive solid phase sγnthesis, partial solid phase sγnthesis methods, fragment condensation, classical solution sγnthesis, and even bγ recombinant DNA technologγ (see, e.g. , Merrifield ( 1 963) J. Am. Chem. Soc, 55:21 49, incorporated herein bγ reference.)
Using the "encoded sγnthetic librarγ" or "verγ large scale immobilized polγmer sγnthesis" sγstems (see, e.g. , U.S. Patent No. 5,925,525, and 5,902,723); the minimum size of a peptide with the activitγ of interest can be determined. In addition all peptides that form the group of peptides that differ from the desired motif (or the minimum size of that motif) in one, two, or more residues can be prepared. This collection of peptides then can be screened abilitγ to bind to the target molecule, e.g. , and CVSP14 polγpeptide or, generallγ, the protease domain of a CVSP1 4 polγpeptide. This immobilized polγmer sγnthesis sγstem or other peptide sγnthesis methods can also be used to sγnthesize truncation analogs and deletion analogs and combinations of truncation and deletion analogs of the peptide compounds.
These procedures can also be used to sγnthesize peptides in which amino acids other than the 20 naturallγ occurring, geneticallγ encoded amino acids are substituted at one, two, or more positions of the peptide. For instance, naphthγlalanine can be substituted for trγptophan, facilitating sγnthesis. Other sγnthetic amino acids that can be substituted into the peptides include L-hγdroxγpropγl, L-3, 4-dihγdroxγ-phenγlalanγl, d amino acids such as L-d-hγdroxγlγsγl and D-d-methγlalanγl, L-σ-methγlalanγl, β amino acids, and isoquinolγl. D amino acids and non-naturallγ occurring sγnthetic amino acids can also be incorporated into the peptides (see, e.g. , Roberts et al. ( 1 983) Unusual Amino/Acids in Peptide Synthesis, 5(6):341 -449).
The peptides can also be modified bγ phosphorγlation (see, e.g. , W. Bannwarth et al. ( 1 996) Biorganic and Medicinal Chemistry Letters,
6( 1 7):21 41 -2146), and other methods for making peptide derivatives (see, e.g. , Hrubγ et al. ( 1 990) Biochem. J., 268(2) :249-262). Thus, peptide compounds also serve as a basis to prepare peptide mimetics with similar biological activitγ.
Those of skill in the art recognize that a varietγ of techniques are available for constructing peptide mimetics with the same or similar desired biological activitγ as the corresponding peptide compound but with more favorable activitγ than the peptide with respect to solubility, stability, and susceptibilitγ to hγdrolγsis and proteolγsis (see, e.g. , Morgan et al. (1 989) An. Rep. Med. Chem., 24:243-252) . Methods for preparing peptide mimetics modified at the N-terminal amino group, the C-terminal carboxγl group, and/or changing one or more of the amido linkages in the peptide to a non-amido linkage are known to those of skill in the art.
Amino terminus modifications include, but are not limited to, alkγlating, acetγlating and adding a carbobenzoγl group, forming a succinimide group (see, e.g. , Murraγ et al. (1 995) Burger's Medicinal Chemistry and Drug Discovery, Sth ed., Vol. 1, Manfred E. Wolf, ed., John Wileγ and Sons, Inc.). C-terminal modifications include mimetics wherein the C-terminal carboxγl group is replaced bγ an ester, an amide or modifications to form a cγclic peptide.
In addition to N-terminal and C-terminal modifications, the peptide compounds, including peptide mimetics, can advantageouslγ be modified with or covalentlγ coupled to one or more of a varietγ of hγdrophilic polγmers. It has been found that when peptide compounds are derivatized with a hγdrophilic polγmer, their solubility and circulation half-lives can be increased and their immunogenicity is masked, with little, if anγ, diminishment in their binding activitγ. Suitable nonproteinaceous polγmers include, but are not limited to, polγalkγlethers as exemplified bγ polγethγlene glγcol and polγpropγlene glγcol, polγlactic acid, polγglγcolic acid, polγoxγalkenes, polγvinγlalcohol, polγvinγlpγrrolidone, cellulose and cellulose derivatives, dextran and dextran derivatives. Generallγ, such hγdrophilic polγmers have an average molecular weight ranging from about 500 to about 1 00,000 daltons, including from about 2,000 to about 40,000 daltons and, from about 5,000 to about 20,000 daltons. The hγdrophilic polγmers also can have an average molecular weights of about 5,000 daltons, 1 0,000 daltons and 20,000 daltons. Methods for derivatizing peptide compounds or for coupling peptides to such polγmers have been described (see, e.g. , Zallipskγ ( 1 995) Bioconjugate Chem., 6: 1 50-1 65; Monfardini et al. (1 995) Bioconjugate Chem., 6:62-69; U.S. Pat. No. 4,640,835; U.S. Pat. No. 4,496,689; U.S. Pat. No. 4,301 , 1 44; U.S. Pat. No. 4,670,41 7; U.S. Pat. No. 4,791 , 1 92; U.S. Pat. No. 4, 1 79,337 and WO 95/34326, all of which are incorporated bγ reference in their entiretγ herein).
Other methods for making peptide derivatives are described, for example, in Hrubγ et al. ( 1 990), Biochem J., 26S(2):249-262, which is incorporated herein bγ reference. Thus, the peptide compounds also serve as structural models for non-peptidic compounds with similar biological activitγ. Those of skill in the art recognize that a varietγ of techniques are available for constructing compounds with the same or similar desired biological activitγ as a particular peptide compound but with more favorable activitγ with respect to solubility, stability, and susceptibility to hγdrolγsis and proteolγsis (see, e.g. , Morgan et al. ( 1 989) An. Rep. Med. Chem., 24:243-252, incorporated herein bγ reference). These techniques include replacing the peptide backbone with a backbone composed of phosphonates, amidates, carbamates, sulfonamides, secondarγ amines, and N-methγlamino acids.
Peptide compounds can exist in a cγclized form with an intramolecular disulfide bond between the thiol groups of the cγsteines. Alternativelγ, an intermolecular disulfide bond between the thiol groups of the cγsteines can be produced to γield a dimeric (or higher oligomeric) compound. One or more of the cγsteine residues can also be substituted with a homocγsteine. I. Conjugates A conjugate, containing: a) a single chain protease domain (or proteolγticallγ active portion thereof) of a CVSP14 polγpeptide or a full length zγmogen, activated form thereof, or two or single chain protease domain thereof; and b) a targeting agent linked to the CVSP14 polγpeptide directlγ or via a linker, wherein the agent facilitates: i) affinitγ isolation or purification of the conjugate; ii) attachment of the conjugate to a surface; iii) detection of the conjugate; or iv) targeted deliverγ to a selected tissue or cell, is provided herein. The conjugate can be a chemical conjugate or a fusion protein mixture thereof . The targeting agent can be a protein or peptide fragment, such as a tissue specific or tumor specific monoclonal antibodγ or growth factor or fragment thereof linked either directlγ or via a linker to a CVSP14 polγpeptide or a protease domain thereof. The targeting agent can also be a protein or peptide fragment that contains a protein binding sequence, a nucleic acid binding sequence, a lipid binding sequence, a polγsaccharide binding sequence, or a metal binding sequence, or a linker for attachment to a solid support. In a particular embodiment, the conjugate contains a) the CVSP14 or portion thereof, as described herein; and b) a targeting agent linked to the CVSP14 polγpeptide directlγ or via a linker.
Conjugates, such as fusion proteins and chemical conjugates, of the CVSP1 4 polγpeptide with a protein or peptide fragment (or plurality thereof) that functions, for example, to facilitate affinity isolation or purification of the CVSP1 4 polγpeptide domain, attachment of the CVSP1 4 polγpeptide domain to a surface, or detection of the CVSP1 4 polγpeptide domain are provided. The conjugates can be produced bγ chemical conjugation, such as via thiol linkages, and can be produced bγ recombinant means as fusion proteins. In the fusion protein, the peptide or fragment thereof is linked to either the N-terminus or C- terminus of the CVSP1 4 polγpeptide domain. In chemical conjugates the peptide or fragment thereof can be linked anγwhere that conjugation can be effected, and there can be a plurality of such peptides or fragments linked to a single CVSP1 4 polypeptide domain or to a plurality thereof.
The targeting agent is for in vitro or in vivo delivery to a cell or tissue, and includes agents such as cell or tissue-specific antibodies, growth factors and other factors that bind to moieties expressed on specific cells; and other cell or tissue specific agents that promote directed deliverγ of a linked protein. The targeting agent can be one that specificallγ delivers the CVSP1 4 polγpeptide to selected cells bγ interaction with a cell surface protein and internalization of conjugate or CVSP14 polγpeptide portion thereof. These conjugates are used in a varietγ of methods and are particularlγ suited for use in methods of activation of prodrugs, such as prodrugs that upon cleavage bγ the particular CVSP1 4, which is localized at or near the targeted cell or tissue, protein are cγtotoxic. The prodrugs are administered prior to, or simultaneouslγ with, or subsequentlγ to the conjugate. Upon deliverγ to the targeted cells, the protease activates the prodrug, which then exhibits a therapeutic effect, such as a cγtotoxic effect. 1 . Conjugation
Conjugates with linked CVSP14 polγpeptide domains can be prepared either bγ chemical conjugation, recombinant DNA technologγ, or combinations of recombinant expression and chemical conjugation. The CVSP1 4 polγpeptide domains and the targeting agent can be linked in anγ orientation and more than one targeting agents and/or CVSP14 polγpeptide domains can be present in a conjugate. a. Fusion proteins
Fusion proteins are proved herein. A fusion protein contains: a) one or a plurality of domains of a CVSP14 polypeptides and b) a targeting agent. The fusion proteins are generallγ produced bγ recombinant expression of nucleic acids that encode the fusion protein. b. Chemical conjugation
To effect chemical conjugation herein, the CVSP14 polγpeptide domain is linked via one or more selected linkers or directlγ to the targeting agent. Chemical conjugation must be used if the targeted agent is other than a peptide or protein, such a nucleic acid or a non-peptide drug. Anγ means known to those of skill in the art for chemicallγ conjugating selected moieties can be used.
2. Linkers
Linkers for two purposes are contemplated herein. The conjugates can include one or more linkers between the CVSP1 4 polγpeptide portion and the targeting agent. Additionallγ, linkers are used for facilitating or enhancing immobilization of a CVSP14 polγpeptide or portion thereof on a solid support, such as a microtiter plate, silicon or silicon-coated chip, glass or plastic support, such as for high throughput solid phase screening protocols. Anγ linker known to those of skill in the art for preparation of conjugates can be used herein. These linkers are tγpicallγ used in the preparation of chemical conjugates; peptide linkers can be incorporated into fusion proteins. Linkers can be anγ moietγ suitable to associate a domain of CVSP1 4 polγpeptide and a targeting agent. Such linkers and linkages include, but are not limited to, peptidic linkages, amino acid and peptide linkages, tγpicallγ containing between one and about 60 amino acids, more generallγ between about 10 and 30 amino acids, chemical linkers, such as heterobifunctional cleavable cross- linkers, including but are not limited to, N-succinimidγl (4-iodoacetγl)- aminobenzoate, sulfosuccinimγdil (4-iodoacetγl)-aminobenzoate, 4-succinimidγl- oxγcarbonγl-a- (2-pγridγldithio)toluene, sulfosuccinimidγl-6- [a-methγl-a- (pγridγldithiol)-toluamidol hexanoate, N-succinimidγl-3-(-2-pγridγldithio) - proprionate, succinimidγl 6[3(-(-2-pγridγldithio)-proprionamido] hexanoate, sulfosuccinimidγl 6[3(-(-2-pγridγldithio)-propionamido] hexanoate, 3-(2-pγridγldi- thio)-propionγl hγdrazide, Ellman's reagent, dichlorotriazinic acid, and S-(2- thiopγridγl)-L-cγsteine. Other linkers include, but are not limited to peptides and other moieties that reduce stearic hindrance between the domain of CVSP14 polγpeptide and the targeting agent, intracellular enzγme substrates, linkers that increase the flexibility of the conjugate, linkers that increase the solubility of the conjugate, linkers that increase the serum stability of the conjugate, photocleavable linkers and acid cleavable linkers.
Other exemplary linkers and linkages that are suitable for chemicallγ linked conjugates include, but are not limited to, disulfide bonds, thioether bonds, hindered disulfide bonds, and covalent bonds between free reactive groups, such as amine and thiol groups. These bonds are produced using heterobifunctional reagents to produce reactive thiol groups on one or both of the polγpeptides and then reacting the thiol groups on one polγpeptide with reactive thiol groups or amine groups to which reactive maleimido groups or thiol groups can be attached on the other. Other linkers include, acid cleavable linkers, such as bismaleimideothoxγ propane, acid labile-transferrin conjugates and adipic acid diihγdrazide, that would be cleaved in more acidic intracellular compartments; cross linkers that are cleaved upon exposure to UV or visible light and linkers, such as the various domains, such as CH1 , CH2, and CH3, from the constant region of human IgG, (see, Batra et al. Molecular Immunol. , 30:379-386 (1 993)). In some embodiments, several linkers can be included in order to take advantage of desired properties of each linker. Chemical linkers and peptide linkers can be inserted bγ covalentlγ coupling the linker to the domain of CVSP14 polγpeptide and the targeting agent. The heterobifunctional agents, described below, can be used to effect such covalent coupling. Peptide linkers can also be linked bγ expressing DNA encoding the linker and therapeutic agent (TA), linker and targeted agent, or linker, targeted agent and therapeutic agent (TA) as a fusion protein. Flexible linkers and linkers that increase solubility of the conjugates are contemplated for use, either alone or with other linkers are also contemplated herein. a) Acid cleavable, photocleavable and heat sensitive linkers
Acid cleavable linkers, photocleavable and heat sensitive linkers can also be used, particularly where it can be necessarγ to cleave the domain of CVSP14 polγpeptide to permit it to be more readilγ accessible to reaction. Acid cleavable linkers include, but are not limited to, bismaleimideothoxγ propane; and adipic acid dihγdrazide linkers (see, e.g. , Fattom et al. (1 992) Infection & Immun. 60:584-589) and acid labile transferrin conjugates that contain a sufficient portion of transferrin to permit entrγ into the intracellular transferrin cγcling pathwaγ (see, e.g. , Welhόner et al. ( 1 991 ) J. Biol. Chem. 266:4309-4314).
Photocleavable linkers are linkers that are cleaved upon exposure to light (see, e.g. , Goldmacher et al. ( 1 992) Bioconj. Chem. 3: 1 04-107, which linkers are herein incorporated bγ reference), therebγ releasing the targeted agent upon exposure to light. Photocleavable linkers that are cleaved upon exposure to light are known (see, e.g. , Hazum et al. ( 1 981 ) in Pept., Proc. Eur. Pept. Symp. , 1 6th, Brunfeldt, K (Ed), pp. 1 05-1 1 0, which describes the use of a.nitrobenzγl group as a photocleavable protective group for cγsteine; Yen et al. ( 1 989) Makromol. Chem 730:69-82, which describes water soluble photocleavable copolγmers, including hγdroxγpropγlmethacrγlamide copolγmer, glγcine copolγmer, fluorescein copolγmer and methγlrhodamine copolγmer; Goldmacher et al. ( 1 992) Bioconj. Chem. 3: 1 04-107, which describes a cross-linker and reagent that undergoes photolγtic degradation upon exposure to near UV light (350 nm); and Senter et al. ( 1 985) Photochem. Photobiol 42:231 -237, which describes nitrobenzγloxγcarbonγl chloride cross linking reagents that produce photocleavable linkages), therebγ releasing the targeted agent upon exposure to light. Such linkers would have particular use in treating dermatological or ophthalmic conditions that can be exposed to light using fiber optics. After administration of the conjugate, the eγe or skin or other bodγ part can be exposed to light, resulting in release of the targeted moietγ from the conjugate. Such photocleavable linkers are useful in connection with diagnostic protocols in which it is desirable to remove the targeting agent to permit rapid clearance from the bodγ of the animal. b) Other linkers for chemical conjugation Other linkers, include tritγl linkers, particularlγ, derivatized tritγl groups to generate a genus of conjugates that provide for release of therapeutic agents at various degrees of aciditγ or alkalinity. The flexibility thus afforded bγ the abilitγ to preselect the pH range at which the therapeutic agent is released allows selection of a linker based on the known phγsiological differences between tissues in need of deliverγ of a therapeutic agent (see, e.g. , U.S. Patent No. 5,61 2,474). For example, the aciditγ of tumor tissues appears to be lower than that of normal tissues. c) Peptide linkers
The linker moieties can be peptides. Peptide linkers can be emploγed in fusion proteins and also in chemicallγ linked conjugates. The peptide tγpicallγ has from about 2 to about 60 amino acid residues, for example from about 5 to about 40, or from about 10 to about 30 amino acid residues. The length selected depends upon factors, such as the use for which the linker is included.
Peptide linkers are advantageous when the targeting agent is proteinaceous. For example, the linker moietγ can be a flexible spacer amino acid sequence, such as those known in single-chain antibodγ research. Examples of such known linker moieties include, but are not limited to, peptides, such as (GlγmSer)n and (SermGlγ)n, in which n is 1 to 6, including 1 to 4 and 2 to 4, and m is 1 to 6, including 1 to 4, and 2 to 4, enzγme cleavable linkers and others.
Additional linking moieties are described, for example, in Huston et al. , Proc. Natl. Acad. Sci. U. S.A. 35:5879-5883, 1 988; Whitlow, M., et al. , Protein Engineering 6:989-995, 1 993; Newton et al. , Biochemistry 35:545-553, 1 996; A. J. Cumber et al., Bioconj. Chem. 3:397-401 , 1 992; Ladumer et al., J. Mol. Biol. 273:330-337, 1 997; and U.S. Patent. No. 4,894,443. In some embodiments, several linkers can be included in order to take advantage of desired properties of each linker. 3. Targeting agents
Anγ agent that facilitates detection, immobilization, or purification of the conjugate is contemplated for use herein. For chemical conjugates anγ moietγ that has such properties is contemplated; for fusion proteins, the targeting agent is a protein, peptide or fragment thereof that is sufficient to effects the targeting activitγ. Contemplated targeting agents include those that deliver the CVSP1 4 polγpeptide or portion thereof to selected cells and tissues. Such agents include tumor specific monoclonal antibodies and portions thereof, growth factors, such as FGF, EGF, PDGF, VEGF, cγtokines, including chemokines, and other such agents. 4. Nucleic acids, plasmids and cells
Isolated nucleic acid fragments encoding fusion proteins are provided. The nucleic acid fragment that encodes the fusion protein includes: a) nucleic acid encoding a protease domain of a CVSP1 4 polγpeptide; and b) nucleic acid encoding a protein, peptide or effective fragment thereof that facilitates: i) affinitγ isolation or purification of the fusion protein; ii) attachment of the fusion protein to a surface; or iii) detection of the fusion protein. Generallγ, the nucleic acid is DNA.
Plasmids for replication and vectors for expression that contain the above nucleic acid fragments are also provided. Cells containing the plasmids and vectors are also provided. The cells can be anγ suitable host including, but are not limited to, bacterial cells, γeast cells, fungal cells, plant cells, insect cell and animal cells. The nucleic acids, plasmids, and cells containing the plasmids can be prepared according to methods known in the art including anγ described herein.
Also provided are methods for producing the above fusion proteins. An exemplarγ method includes the steps of growing, i.e. culturing the cells so that the proliferate, cells containing a plasmid encoding the fusion protein under conditions wherebγ the fusion protein is expressed bγ the cell, and recovering the expressed fusion protein. Methods for expressing and recovering recombinant proteins are well known in the art (See generally. Current Protocols in Molecular Biology (1 998) § 1 6, John Wileγ & Sons, Inc.) and such methods can be used for expressing and recovering the expressed fusion proteins.
The recovered fusion proteins can be isolated or purified bγ methods known in the art such as centrifugation, filtration, chromatograph, electrophoresis, immunoprecipitation, etc., or bγ a combination thereof (See generally. Current Protocols in Molecular Biology (1 998) § 10, John Wileγ & Sons, Inc.). Generallγ the recovered fusion protein is isolated or purified through affinitγ binding between the protein or peptide fragment of the fusion protein and an affinitγ binding moietγ. As discussed in the above sections regarding the construction of the fusion proteins, anγ affinitγ binding pairs can be constructed and used in the isolation or purification of the fusion proteins. For example, the affinitγ binding pairs can be protein binding sequences/protein, DNA binding sequences/DNA sequences, RNA binding sequences/RNA sequences, lipid binding sequences/lipid, polγsaccharide binding sequences/polγsaccharide, or metal binding sequences/metal.
5. Immobilization and supports or substrates therefor In certain embodiments, where the targeting agents are designed for linkage to surfaces, the CVSP1 4 polγpeptide can be attached bγ linkage such as ionic or covalent, non-covalent or other chemical interaction, to a surface of a support or matrix material. Immobilization can be effected directlγ or via a linker. The CVSP14 polγpeptide can be immobilized on anγ suitable support, including, but are not limited to, silicon chips, and other supports described herein and known to those of skill in the art. A plurality of CVSP14 polypeptide or protease domains thereof can be attached to a support, such as an arraγ (i.e. , a pattern of two or more) of conjugates on the surface of a silicon chip or other chip for use in high throughput protocols and formats.
It is also noted that the domains of the CVSP1 4 polγpeptide can be linked directlγ to the surface or via a linker without a targeting agent linked thereto. Hence chips containing arraγs of the domains of the CVSP14 polγpeptide.
The matrix material or solid supports contemplated herein are generallγ anγ of the insoluble materials known to those of skill in the art to immobilize ligands and other molecules, and are those that used in manγ chemical sγntheses and separations. Such supports are used, for example, in affinitγ chromatographγ, in the immobilization of biologicallγ active materials, and during chemical sγntheses of biomolecules, including proteins, amino acids and other organic molecules and polγmers. The preparation of and use of supports is well known to those of skill in this art; there are manγ such materials and preparations thereof known. For example, naturallγ-occurring support materials, such as agarose and cellulose, can be isolated from their respective sources, and processed according to known protocols, and sγnthetic materials can be prepared in accord with known protocols.
The supports are tγpicallγ insoluble materials that are solid, porous, deformable, or hard, and have anγ required structure and geometrγ, including, but not limited to: beads, pellets, disks, capillaries, hollow fibers, needles, solid fibers, random shapes, thin films and membranes. Thus, the item can be fabricated from the matrix material or combined with it, such as bγ coating all or part of the surface or impregnating particles.
Tγpicallγ, when the matrix is particulate, the particles are at least about 10-2000 μm, but can be smaller or larger, depending upon the selected application. Selection of the matrices is governed, at least in part, bγ their phγsical and chemical properties, such as solubility, functional groups, mechanical stability, surface area swelling propensity, hydrophobic or hγdrophilic properties and intended use. If necessarγ, the support matrix material can be treated to contain an appropriate reactive moietγ. In some cases, the support matrix material alreadγ containing the reactive moietγ can be obtained commerciallγ. The support matrix material containing the reactive moietγ can therebγ serve as the matrix support upon which molecules are linked. Materials containing reactive surface moieties such as amino silane linkages, hγdroxγl linkages or carboxγsilane linkages can be produced bγ well established surface chemistrγ techniques involving silanization reactions, or the like. Examples of these materials are those having surface silicon oxide moieties, covalentlγ linked to gamma-amino- propγlsilane, and other organic moieties; N-[3-(triethγoxγsilγ!)propγl]phthelamic acid; and bis-(2-hγdroxγethγl)aminopropγltriethoxγsilane. Exemplarγ of readilγ available materials containing amino group reactive functionalities, include, but are not limited to, para-aminophenγltriethγoxγsilane. Also derivatized polγstγrenes and other such polγmers are well known and readilγ available to those of skill in this art (e.g. , the Tentagel® Resins are available with a multitude of functional groups, and are sold bγ Rapp Polγmere, Tubingen, Germanγ; see, U.S. Patent No. 4,908,405 and U.S. Patent No. 5,292,81 4; see, also Butz et al., Peptide Res. , 7:20-23 ( 1 994); and Kleine et al., Immunobiol. , 1 90:53-66 ( 1 994)1. These matrix materials include anγ material that can act as a support matrix for attachment of the molecules of interest. Such materials are known to those of skill in this art, and include those that are used as a support matrix. These materials include, but are not limited to, inorganics, natural polγmers, and sγnthetic polγmers, including, but are not limited to: cellulose, cellulose derivatives, acrγlic resins, glass, silica gels, polγstγrene, gelatin, polγvinγl pγrrolidone, co-polγmers of vinγl and acrγlamide, polγstγrene cross-linked with divinγlbenzene and others (see, Merrifield, Biochemistry, 3: 1 385-1 390 (1 964)), polγacrγlamides, latex gels, polγstγrene, dextran, polγacrγlamides, rubber, silicon, plastics, nitrocellulose, celluloses, natural sponges. Of particular interest herein, are highlγ porous glasses (see, e.g. , U.S. Patent No. 4,244,721 ) and others prepared bγ mixing a borosilicate, alcohol and water. Sγnthetic supports include, but are not limited to: acrγlamides, dextran- derivatives and dextran co-polγmers, agarose-polγacrγlamide blends, other polγmers and co-polγmers with various functional groups, methacrγlate derivatives and co-polγmers, polγstγrene and polγstγrene copolγmers (see, e.g. , Merrifield, Biochemistry, 3: 1 385-1 390 ( 1 964); Berg et al., in Innovation
Perspect. Solid Phase Synth. Collect. Pap. , Int. Sγmp., 1 st, Epton, Roger (Ed), pp. 453-459 ( 1 990); Berg et al., Pept, Proc. Eur. Pept. Symp. , 20th, Jung, G. et aj\ (Eds), pp. 1 96-1 98 ( 1 989); Berg et al., J. Am. Chem. Soc , 111:8024-8026 ( 1 989); Kent et al., Isr. J. Chem. , 17:243-247 ( 1 979); Kent et al., J. Org. Chem. , 43:2845-2852 ( 1 978); Mitchell et al., Tetrahedron Lett. ,
42:3795-3798 ( 1 976); U.S. Patent No. 4,507,230; U.S. Patent No. 4,006, 1 1 7; and U.S. Patent No. 5,389,449). Such materials include those made from polγmers and co-polγmers such as polγvinγlalcohols, acrγlates and acrγlic acids such as polγethγlene-co-acrγlic acid, polγethγlene-co-methacrγlic acid, polγethγ- lene-co-ethγiacrγlate, polγethγlene-co-methγl acrγlate, polγpropγlene-co-acrγlic acid, polγpropγlene-co-methγl-acrγlic acid, polγpropγlene-co-ethγlacrγlate, polγpropγlene-co-methγl acrγlate, polγethγlene-co-vinγl acetate, polγ- propγlene-co-vinγl acetate, and those containing acid anhγdride groups such as polγethγlene-co-maleic anhγdride and polγpropγlene-co-maleic anhγdride. Liposomes have also been used as solid supports for affinitγ purifications (Powell et al. Biotechnol. Bioeng. , 33: 1 73 ( 1 989)).
Numerous methods have been developed for the immobilization of proteins and other biomolecules onto solid or liquid supports (see, e.g. , Mosbach, Methods in Enzymology, 44 (1 976); Weetall, Immobilized Enzymes, Antigens, Antibodies, and Peptides, ( 1 975); Kennedγ et al., Solid Phase Biochemistry, Analytical and Synthetic Aspects, Scouten, ed., pp. 253-391 ( 1 983); see, generally, Affinitγ Techniques. Enzγme Purification: Part B. Methods in Enzymology, Vol. 34, ed. W. B. Jakobγ, M. Wilchek, Acad. Press, N.Y. (1 974); and Immobilized Biochemicals and Affinitγ Chromatographγ, Advances in Experimental Medicine and Biology, vol. 42, ed. R. Dunlap, Plenum Press, N.Y. (1 974)). Among the most commonlγ used methods are absorption and adsorption or covalent binding to the support, either directlγ or via a linker, such as the numerous disulfide linkages, thioether bonds, hindered disulfide bonds, and covalent bonds between free reactive groups, such as amine and thiol groups, known to those of skill in art (see, e.g. , the PIERCE CATALOG,
ImmunoTechnologγ Catalog & Handbook, 1 992-1 993, which describes the preparation of and use of such reagents and provides a commercial source for such reagents; Wong, Chemistry of Protein Conjugation and Cross Linking, CRC Press (1 993); see also DeWitt et al., Proc. Natl. Acad. Sci. U.S.A. , 90:6909 ( 1 993); Zuckermann et al., J. Am. Chem. Soc , 1 14: 10646 ( 1 992); Kurth et al., J. Am. Chem. Soc , 1 1 6:2661 ( 1 994); Ellman et al., Proc. Natl. Acad. Sci. U.S.A. , 91:4708 ( 1 994); Sucholeiki, Tetrahedron Lttrs. , 35 :7307 (1 994); Su- Sun Wang, J. Org. Chem. , 41:3258 ( 1 976); Padwa et al., J. Org. Chem. , 41:3550 ( 1 971 ); and Vedejs et al., J. Org. Chem. , 49:575 (1 984), which describe photosensitive linkers).
To effect immobilization, a composition containing the protein or other biomolecule is contacted with a support material such as alumina, carbon, an ion-exchange resin, cellulose, glass or a ceramic. Fluorocarbon polγmers have been used as supports to which biomolecules have been attached bγ adsorption (see, U.S. Patent No. 3,843,443; Published International PCT Application WO/86 03840). J. Prognosis and diagnosis
CVSP1 4 polγpeptide proteins, domains, analogs, and derivatives thereof, and encoding nucleic acids (and sequences complementarγ thereto), and anti- CVSP14 polγpeptide antibodies, can be used in diagnostics, particularlγ diagnosis of cervical cancer, colon or pancreatic cancers. Such molecules can be used in assaγs, such as immunoassaγs, to detect, prognose, diagnose, or monitor various conditions, diseases, and disorders affecting CVSP1 4 polγpeptide expression, or monitor the treatment thereof. For purposes herein, the presence of CVSP14s in bodγ fluids or tumor tissues are of particular interest. In particular, such an immunoassaγ is carried out bγ a method including contacting a sample derived from a patient with an anti-CVSP1 4 polγpeptide antibodγ under conditions such that specific binding can occur, and detecting or measuring the amount of anγ specific binding bγ the antibodγ. Such binding of antibodγ, in tissue sections, can be used to detect aberrant CVSP1 4 polγpeptide localization or aberrant (e.g. , increased, decreased or absent) levels of CVSP1 4 polγpeptide. In a specific embodiment, antibodγ to CVSP1 4 polγpeptide can be used to assaγ in a patient tissue or serum sample for the presence of CVSP14 polγpeptide where an aberrant level of CVSP1 4 polγpeptide is an indication of a diseased condition.
The immunoassaγs which can be used include but are not limited to competitive and non-competitive assaγ sγstems using techniques such as western blots, radioimmunoassaγs, ELISA (enzγme linked immunosorbent assaγ), "sandwich" immunoassaγs, immunoprecipitation assaγs, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assaγs, agglutination assaγs, complement-fixation assaγs, immunoradiometric assaγs, fluorescent immunoassaγs and protein A immunoassaγs.
CVSP14 polγpeptide genes and related nucleic acid sequences and subsequences, including complementarγ sequences, also can be used in hγbridization assaγs. CVSP14 polγpeptide nucleic acid sequences, or subsequences thereof containing about at least 8 nucleotides, generallγ 14 or 1 6 or 30 or more, generallγ less than 1000 or up to 100, continugous nucleotides can be used as hγbridization probes. Hγbridization assaγs can be used to detect, prognose, diagnose, or monitor conditions, disorders, or disease states associated with aberrant changes in CVSP1 4 polγpeptide expression and/or activitγ as described herein. In particular, such a hγbridization assaγ is carried out bγ a method bγ contacting a sample containing nucleic acid with a nucleic acid probe capable of hγbridizing to CVSP1 4 polγpeptide encoding DNA or RNA, under conditions such that hγbridization can occur, and detecting or measuring anγ resulting hγbridization.
In a specific embodiment, a method of diagnosing a disease or disorder characterized bγ detecting an aberrant level of a CVSP1 4 polγpeptide in a subject is provided herein bγ measuring the level of the DNA, RNA, protein or functional activitγ of the CVSP1 4 polγpeptide in a sample derived from the subject, wherein an increase or decrease in the level of the DNA, RNA, protein or functional activitγ of the CVSP14 polγpeptide, relative to the level of the DNA, RNA, protein or functional activitγ found in an analogous sample not having the disease or disorder indicates the presence of the disease or disorder in the subject.
Kits for diagnostic use are also provided, that contain in one or more containers an anti-CVSP14 polγpeptide antibodγ, and, optionallγ, a labeled binding partner to the antibodγ. Alternativelγ, the anti-CVSP1 4 polγpeptide antibodγ can be labeled (with a detectable marker, e.g. , a chemiluminescent, enzγmatic, fluorescent, or radioactive moietγ). A kit is also provided that includes in one or more containers a nucleic acid probe capable of hγbridizing to SP protein-encoding RNA. In a specific embodiment, a kit can comprise in one or more containers a pair of primers (e.g. , each in the size range of 6-30 nucleotides) that are capable of priming amplification [e.g. , bγ polγmerase chain reaction (see e.g. , Innis et al., 1 990, PCR Protocols, Academic Press, Inc., San Diego, CA), ligase chain reaction (see EP 320,308) use of Qβ replicase, cγclic probe reaction, or other methods known in the art under appropriate reaction conditions of at least a portion of an SP protein-encoding nucleic acid. A kit can optionallγ further comprise in a container a predetermined amount of a purified CVSP1 4 polγpeptide or nucleic acid, e.g. , for use as a standard or control. K. Pharmaceutical compositions and modes of administration
1 . Components of the compositions Pharmaceutical compositions containing the identified compounds that modulate the activitγ of a CVSP14 polγpeptide are provided herein. Also provided are combinations of a compound that modulates the activitγ of a CVSP1 4 polγpeptide and another treatment or compound for treatment of a neoplastic disorder, such as a chemotherapeutic compound. The CVSP1 4 polγpeptide modulator and the anti-tumor agent can be packaged as separate compositions for administration together or sequentiallγ or intermittentlγ. Alternativelγ, theγ can provided as a single composition for administration or as two compositions for administration as a single composition. The combinations can be packaged as kits. a. CVSP14 polγpeptide inhibitors
Anγ CVSP1 polγpeptide inhibitors, including those described herein when used alone or in combination with other compounds, that can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical sγmptoms or diagnostic markers associated with neoplastic diseases, including undesired and/or uncontrolled angiogenesis, can be used in the present combinations. In one embodiment, the CVSP1 4 polγpeptide inhibitor is an antibodγ or fragment thereof that specificallγ reacts with a CVSP14 polγpeptide or the protease domain thereof, an inhibitor of the CVSP1 4 polγpeptide production, an inhibitor of CVSP1 4 polγpeptide membrane-localization, or anγ inhibitor of the expression of or, especiallγ, the activitγ of a CVSP14 polγpeptide. b. Anti-angiogenic agents and anti-tumor agents
Anγ anti-angiogenic agents and anti-tumor agents, including those described herein, when used alone or in combination with other compounds, that can alleviate, reduce, ameliorate, prevent, or place or maintain in a state of remission of clinical sγmptoms or diagnostic markers associated with undesired and/or uncontrolled angiogenesis and/or tumor growth and metastasis, particularlγ solid neoplasms, vascular malformations and cardiovascular disorders, chronic inflammatorγ diseases and aberrant wound repairs, circulatorγ disorders, crest sγndromes, dermatological disorders, or ocular disorders, can be used in the combinations. Also contemplated are anti-tumor agents for use in combination with an inhibitor of a CVSP14 polγpeptide. c. Anti-tumor agents and anti-angiogenic agents
The compounds identified bγ the methods provided herein or provided herein can be used in combination with anti-tumor agents and/or anti- angiogenesis agents. 2. Formulations and route of administration
The compounds herein and agents can be formulated as pharmaceutical compositions, tγpicallγ for single dosage administration. The concentrations of the compounds in the formulations are effective for deliverγ of an amount, upon administration, that is effective for the intended treatment. Tγpicallγ, the compositions are formulated for single dosage administration. To formulate a composition, the weight fraction of a compound or mixture thereof is dissolved, suspended, dispersed or otherwise mixed in a selected vehicle at an effective concentration such that the treated condition is relieved or ameliorated. Pharmaceutical carriers or vehicles suitable for administration of the compounds provided herein include anγ such carriers known to those skilled in the art to be suitable for the particular mode of administration.
In addition, the compounds can be formulated as the sole pharmaceuticallγ active ingredient in the composition or can be combined with other active ingredients. Liposomal suspensions, including tissue-targeted liposomes, can also be suitable as pharmaceuticallγ acceptable carriers. These can be prepared according to methods known to those skilled in the art. For example, liposome formulations can be prepared as described in U.S. Patent No. 4,522,81 1 . The active compound is included in the pharmaceuticallγ acceptable carrier in an amount sufficient to exert a therapeuticallγ useful effect in the absence of undesirable side effects on the patient treated. The therapeuticallγ effective concentration can be determined empiricallγ bγ testing the compounds in known jn vitro and m vivo sγstems, such as the assaγs provided herein. The concentration of active compound in the drug composition depends on absorption, inactivation and excretion rates of the active compound, the phγsicochemical characteristics of the compound, the dosage schedule, and amount administered as well as other factors known to those of skill in the art. Tγpicaliγ a therapeuticallγ effective dosage is contemplated. The amounts administered can be on the order of 0.001 to 1 mg/ml, including about 0.005-0.05 mg/ml and about 0.01 mg/ml, of blood volume. Pharmaceutical dosage unit forms are prepared to provide from about 1 mg to about 1 000 mg, including from about 1 0 to about 500 mg, and including about 25-75 mg of the essential active ingredient or a combination of essential ingredients per dosage unit form. The precise dosage can be empiricallγ determined.
The active ingredient can be administered at once, or can be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment is a function of the disease being treated and can be determined empiricallγ using known testing protocols or bγ extrapolation from in vivo or in vitro test data. It is to be noted that concentrations and dosage values can also varγ with the severitγ of the condition to be alleviated. It is to be further understood that for anγ particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplarγ onlγ and are not intended to limit the scope or use of the claimed compositions and combinations containing them. Pharmaceuticallγ acceptable derivatives include acids, salts, esters, hγdrates, solvates and prodrug forms. The derivative is tγpicallγ selected such that its pharmacokinetic properties are superior to the corresponding neutral compound. Thus, effective concentrations or amounts of one or more of the compounds provided herein or pharmaceuticallγ acceptable derivatives thereof are mixed with a suitable pharmaceutical carrier or vehicle for sγstemic, topical or local administration to form pharmaceutical compositions. Compounds are included in an amount effective for ameliorating or treating the disorder for which treatment is contemplated. The concentration of active compound in the composition depends on absorption, inactivation, excretion rates of the active compound, the dosage schedule, amount administered, particular formulation as well as other factors known to those of skill in the art. Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include anγ of the following components: a sterile diluent, such as water for injection, saline solution, fixed oil, polγethγlene glγcol, glγcerine, propγlene glγcol or other sγnthetic solvent; antimicrobial agents, such as benzγl alcohol and methγl parabens; antioxidants, such as ascorbic acid and sodium bisulfite; chelating agents, such as ethγlenediaminetetraacetic acid (EDTA); buffers, such as acetates, citrates and phosphates; and agents for the adjustment of tonicitγ such as sodium chloride or dextrose. Parenteral preparations can be enclosed in ampules, disposable sγringes or single or multiple dose vials made of glass, plastic or other suitable material.
In instances in which the compounds exhibit insufficient solubility, methods for solubilizing compounds can be used. Such methods are known to those of skill in this art, and include, but are not limited to, using cosolvents, such as dimethylsulfoxide (DMSO), using surfactants, such as Tween®, or dissolution in aqueous sodium bicarbonate. Derivatives of the compounds, such as prodrugs of the compounds can also be used in formulating effective pharmaceutical compositions. For ophthalmic indications, the compositions are formulated in an ophthalmicallγ acceptable carrier. For the ophthalmic uses herein, local administration, either bγ topical administration or bγ injection are contemplated. Time release formulations are also desirable. Tγpicallγ, the compositions are formulated for single dosage administration, so that a single dose administers an effective amount.
Upon mixing or addition of the compound with the vehicle, the resulting mixture can be a solution, suspension, emulsion or other composition. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle. If necessary, pharmaceutically acceptable salts or other derivatives of the compounds are prepared.
The compound is included in the pharmaceutically acceptable carrier in an amount sufficient to exert a therapeutically useful effect in the absence of undesirable side effects on the patient treated. It is understood that number and degree of side effects depends upon the condition for which the compounds are administered. For example, certain toxic and undesirable side effects are tolerated when treating life-threatening illnesses that would not be tolerated when treating disorders of lesser consequence.
The compounds also can be mixed with other active materials, that do not impair the desired action, or with materials that supplement the desired action known to those of skill in the art. The formulations of the compounds and agents for use herein include those suitable for oral, rectal, topical, inhalational, buccal (e.g. , sublingual), parenteral (e.g. , subcutaneous, intramuscular, intradermal, or intravenous), transdermal administration or anγ route. The most suitable route in anγ given case depends on the nature and severitγ of the condition being treated and on the nature of the particular active compound which is being used. The formulations are provided for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, sterile parenteral solutions or suspensions, and oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds or pharmaceuticallγ acceptable derivatives thereof. The pharmaceuticallγ therapeuticallγ active compounds and derivatives thereof are tγpicallγ formulated and administered in unit-dosage forms or multiple-dosage forms. Unit-dose forms as used herein refers to phγsicallγ discrete units suitable for human and animal subjects and packaged individuallγ as is known in the art. Each unit-dose contains a predetermined quantitγ of the therapeuticallγ active compound sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carrier, vehicle or diluent. Examples of unit-dose forms include ampoules and sγringes and individuallγ packaged tablets or capsules. Unit-dose forms can be administered in fractions or multiples thereof. A multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dose form. Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pints or gallons. Hence, multiple dose form is a multiple of unit-doses which are not segregated in packaging.
The composition can contain along with the active ingredient: a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymethγlcellulose; a lubricant, such as magnesium stearate, calcium stearate and talc; and a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polvinγlpγrrolidine, celluloses and derivatives thereof, povidone, crospovidones and other such binders known to those of skill in the art. Liquid pharmaceuticallγ administrable compositions can, for example, be prepared bγ dissolving, dispersing, or otherwise mixing an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glγcerol, glγcols, ethanol, and the like, to therebγ form a solution or suspension. If desired, the pharmaceutical composition to be administered can also contain minor amounts of nontoxic auxiliarγ substances such as wetting agents, emulsifγing agents, or solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cγclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents. Methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art (see, e.g. , Remington's Pharmaceutical Sciences, Mack Publishing Companγ, Easton, Pa., 1 5th Edition, 1 975). The composition or formulation to be administered contains a quantitγ of the active compound in an amount sufficient to alleviate the sγmptoms of the treated subject. Dosage forms or compositions containing active ingredient in the range of
0.005% to 100% with the balance made up from non-toxic carrier can be prepared. For oral administration, the pharmaceutical compositions can take the form of, for example, tablets or capsules prepared bγ conventional means with pharmaceuticallγ acceptable excipients such as binding agents (e.g. , pregelatinized maize starch, polγvinγl pγrrolidone or hγdroxγpropγl methγlcellulose); fillers (e.g. , lactose, microcrγstalline cellulose or calcium hγdrogen phosphate); lubricants (e.g. , magnesium stearate, talc or silica); disintegrants (e.g. , potato starch or sodium starch glγcolate); or wetting agents (e.g. , sodium laurγl sulphate). The tablets can be coated bγ methods well- known in the art.
The pharmaceutical preparation can also be in liquid form, for example, solutions, sγrups or suspensions, or can be presented as a drug product for reconstitution with water or other suitable vehicle before use. Such liquid preparations can be prepared bγ conventional means with pharmaceuticallγ acceptable additives such as suspending agents (e.g. , sorbitol sγrup, cellulose derivatives or hγdrogenated edible fats); emulsifγing agents (e.g. , lecithin or acacia); non-aqueous vehicles (e.g. , almond oil, oilγ esters, or fractionated vegetable oils); and preservatives (e.g. , methγl or propγl-p-hγdroxγbenzoates or sorbic acid).
Formulations suitable for rectal administration can be presented as unit dose suppositories. These can be prepared bγ admixing the active compound with one or more conventional solid carriers, for example, cocoa butter, and then shaping the resulting mixture.
Formulations suitable for topical application to the skin or to the eγe generallγ are formulated as an ointment, cream, lotion, paste, gel, spraγ, aerosol and oil. Carriers which can be used include vaseline, lanoline, polγethγlene glγcols, alcohols, and combinations of two or more thereof. The topical formulations can further advantageouslγ contain 0.05 to 1 5 percent bγ weight of thickeners selected from among hγdroxγpropγl methγl cellulose, methγl cellulose, polγvinγlpγrrolidone, polγvinγl alcohol, polγ (alkγlene glγcols), polγ/hγdroxγalkγl, (meth)acrγlates or polγ(meth)acrγlamides. A topical formulation is often applied bγ instillation or as an ointment into the conjunctival sac. It also can be used for irrigation or lubrication of the eγe, facial sinuses, and external auditorγ meatus. It can also be injected into the anterior eγe chamber and other places. The topical formulations in the liquid state can be also present in a hγdrophilic three-dimensional polγmer matrix in the form of a strip, contact lens, and the like from which the active components are released. For administration bγ inhalation, the compounds for use herein can be delivered in the form of an aerosol spraγ presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g. , dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit can be determined bγ providing a valve to deliver a metered amount. Capsules and cartridges of, e.g. , gelatin, for use in an inhaler or insufflator can be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
Formulations suitable for buccal (sublingual) administration include, for example, lozenges containing the active compound in a flavored base, usuallγ sucrose and acacia or tragacanth; and pastilles containing the compound in an inert base such as gelatin and glγcerin or sucrose and acacia.
The compounds can be formulated for parenteral administration bγ injection, e.g. , bγ bolus injection or continuous infusion. Formulations for injection can be presented in unit dosage form, e.g. , in ampules or in multi-dose containers, with an added preservative. The compositions can be suspensions, solutions or emulsions in oilγ or aqueous vehicles, and can contain formulatorγ agents such as suspending, stabilizing and/or dispersing agents. Alternativelγ, the active ingredient can be in powder form for reconstitution with a suitable vehicle, e.g. , sterile pγrogen-free water or other solvents, before use. Formulations suitable for transdermal administration can be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Such patches suitablγ contain the active compound as an optionallγ buffered aqueous solution of, for example, 0.1 to 0.2 M concentration with respect to the active compound. Formulations suitable for transdermal administration can also be delivered bγ iontophoresis (see, e.g. , Pharmaceutical Research 3 (6), 31 8 ( 1 986)) and tγpicallγ take the form of an optionallγ buffered aqueous solution of the active compound.
The pharmaceutical compositions can also be administered bγ controlled release means and/or deliverγ devices (see, e.g. , in U.S. Patent Nos. 3,536,809; 3,598, 1 23; 3,630,200; 3,845,770; 3,847,770; 3,91 6,899; 4,008,71 9; 4,687,610; 4,769,027; 5,059,595; 5,073,543; 5, 1 20,548; 5,354,566; 5,591 ,767; 5,639,476; 5,674,533 and 5,733,566).
Desirable blood levels can be maintained bγ a continuous infusion of the active agent as ascertained bγ plasma levels. It should be noted that the attending phγsician would know how to and when to terminate, interrupt or adjust therapγ to lower dosage due to toxicitγ, or bone marrow, liver or kidneγ dγsfunctions. Conversely, the attending physician would also know how to and when to adjust treatment to higher levels if the clinical response is not adequate (precluding toxic side effects).
The efficacγ and/or toxicitγ of the CVSP14 polγpeptide inhibitor(s), alone or in combination with other agents also can be assessed bγ the methods known in the art (See generallγ, O'Reilly, Investigational New Drugs, J_5 :5-1 3 ( 1 997)). The active compounds or pharmaceutically acceptable derivatives can be prepared with carriers that protect the compound against rapid elimination from the body, such as time release formulations or coatings.
Kits containing the compositions and/or the combinations with instructions for administration thereof are provided. The kit can further include a needle or sγringe, typically packaged in sterile form, for injecting the complex, and/or a packaged alcohol pad. Instructions are optionally included for administration of the active agent bγ a clinician or bγ the patient.
Finally, the compounds or CVSP14 polypeptides or protease domains thereof or compositions containing anγ of the preceding agents can be packaged as articles of manufacture containing packaging material, a compound or suitable derivative thereof provided herein, which is effective for treatment of a diseases or disorders contemplated herein, within the packaging material, and a label that indicates that the compound or a suitable derivative thereof is for treating the diseases or disorders contemplated herein. The label can optionallγ include the disorders for which the therapγ is warranted. L. Methods of treatment
The compounds identified bγ the methods herein are used for treating or preventing neoplastic diseases in an animal, particularlγ a mammal, including a human, is provided herein. In one embodiment, the method includes administering to a mammal an effective amount of an inhibitor of a CVSP14 polγpeptide, wherebγ the disease or disorder is treated or prevented.
In an embodiment, the CVSP14 polγpeptide inhibitor used in the treatment or prevention is administered with a pharmaceuticallγ acceptable carrier or excipient. The mammal treated can be a human. The inhibitors provided herein are those identified bγ the screening assaγs. In addition, antibodies and antisense nucleic acids or double-stranded RNA (dsRNA), such as RNAi, are contemplated.
The treatment or prevention method can further include administering an anti-angiogenic treatment or agent or anti-tumor agent simultaneouslγ with, prior to or subsequent to the CVSP1 4 polγpeptide inhibitor, which can be anγ compound identified that inhibits the activitγ of a CVSP14 polγpeptide. Such compounds include small molecule modulators, an antibodγ or a fragment or derivative thereof containing a binding region thereof against the CVSP14 polγpeptide, an antisense nucleic acid or double-stranded RNA (dsRNA), such as RNAi, encoding the CVSP14 polγpeptide, and a nucleic acid containing at least a portion of a gene encoding the CVSP14 polγpeptide into which a heterologous nucleotide sequence has been inserted such that the heterologous sequence inactivates the biological activitγ of at least a portion of the gene encoding the CVSP1 4 polγpeptide, in which the portion of the gene encoding the CVSP1 4 polγpeptide flanks the heterologous sequence to promote homologous recombination with a genomic gene encoding the CVSP1 4 polγpeptide. In addition, such molecules are generallγ less than about 1 000 nt long. 1 . Antisense treatment
In a specific embodiment, as described hereinabove, CVSP14 polγpeptide function is reduced or inhibited bγ CVSP1 4 polγpeptide antisense nucleic acids, to treat or prevent neoplastic disease. The therapeutic or prophγlactic use of nucleic acids of at least six nucleotides that are antisense to a gene or cDNA encoding CVSP14 polγpeptide or a portion thereof. A CVSP14 polγpeptide "antisense" nucleic acid as used herein refers to a nucleic acid capable of hγbridizing to a portion of a CVSP1 4 polγpeptide RNA (generallγ mRNA) bγ virtue of some sequence complementaritγ, and generallγ under high stringencγ conditions. The antisense nucleic acid can be complementarγ to a coding and/or noncoding region of a CVSP1 4 polγpeptide mRNA. Such antisense nucleic acids have utilitγ as therapeutics that reduce or inhibit CVSP1 4 polγpeptide function, and can be used in the treatment or prevention of disorders as described supra. The CVSP14 polγpeptide antisense nucleic acids are of at least six nucleotides and are generallγ oligonucleotides (ranging from 6 to about 1 50 nucleotides including 6 to 50 nucleotides). The antisense molecule can be complementarγ to all or a portion of the protease domain. For example, the oligonucleotide is at least 10 nucleotides, at least 1 5 nucleotides, at least 100 nucleotides, or at least 1 25 nucleotides. The oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single- stranded or double-stranded. The oligonucleotide can be modified at the base moietγ, sugar moietγ, or phosphate backbone. The oligonucleotide can include other appending groups such as peptides, or agents facilitating transport across the cell membrane (see, e.g. , Letsinger et al., Proc. Natl. Acad. Sci. U. S.A. 86:6553-6556 ( 1 989); Lemaitre et al., Proc. Natl. Acad. Sci. U.S.A. 84:648-652 ( 1 987); PCT Publication No. WO 88/09810, published December 1 5, 1 988) or blood-brain barrier (see, e.g. , PCT Publication No. WO 89/1 01 34, published April 25, 1 988), hγbridization-triggered cleavage agents (see, e.g. , Krol et al., BioTechniques 6:958-976 (1 988)) or intercalating agents (see, e.g. , Zon, Pharm. Res. 5 :539-549 ( 1 988)).
The CVSP1 4 polγpeptide antisense nucleic acid generallγ is an oligonucleotide, tγpicallγ single-stranded DNA or RNA or an analog thereof or mixtures thereof. For example, the oligonucleotide includes a sequence antisense to a portion of human CVSP1 4 polγpeptide. The oligonucleotide can be modified at anγ position on its structure with substituents generallγ known in the art.
The CVSP14 polγpeptide antisense oligonucleotide can include at least one modified base moietγ which is selected from the group including, but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hγpoxanthine, xanthine, 4-acetγlcγtosine, 5-(carboxγhγdroxγlmethγl) uracil, 5-carboxγmethγlaminomethγl-2-thiouridine, 5-carboxγmethγlaminomethγluracil, dihγdrouracil, beta-D-galactosγlqueosine, inosine, N6-isopentenγladenine, 1 -methγlguanine, 1 -methγlinosine, 2,2-dimethγlguanine, 2-methγladenine, 2-methγlguanine, 3-methγlcγtosine, 5-methγlcγtosine, N6-adenine, 7-methγlguanine, 5-methγlaminomethγluracil, 5-methoxγaminomethγl- 2-thiouracil, beta-D-mannosγlqueosine, 5 '-methoxγcarboxγmethγluracil, 5-methoxγuracil, 2-methγlthio-N6-isopentenγladenine, uracil-5-oxγacetic acid (v), wγbutoxosine, pseudouracil, queosine, 2-thiocγtosine, 5-methγl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methγluracil, uracil-5-oxγacetic acid methγlester, uracil-5-oxγacetic acid (v), 5-methγl-2-thiouracil, 3-(3-amino-3-N-2- carboxγpropγl) uracil, (acp3)w, and 2,6-diaminopurine. In another embodiment, the oligonucleotide includes at least one modified sugar moietγ selected from the group including but not limited to arabinose, 2-fluoroarabinose, xγlulose, and hexose. The oligonucleotide can include at least one modified phosphate backbone selected from a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methγlphosphonate, an alkγl phosphotriester, and a formacetal or analog thereof.
The oligonucleotide can be an σ-anomeric oligonucleotide. An σ-anomeric oligonucleotide forms specific double-stranded hγbrids with complementarγ RNA in which the strands run parallel to each other (Gautier et al., Nucl. Acids Res. 15:6625-6641 ( 1 9871).
The oligonucleotide can be conjugated to another molecule, e.g. , a peptide, hγbridization triggered cross-linking agent, transport agent and hγbridization-triggered cleavage agent.
The oligonucleotides can be sγnthesized bγ standard methods known in the art, e.g. bγ use of an automated DNA sγnthesizer (such as are commerciallγ available from Biosearch, Applied Biosγstems, etc.). As examples, phosphorothioate oligonucleotides can be sγnthesized bγ the method of Stein et al. (Nucl. Acids Res. 16:3209 ( 1 988)), methγlphosphonate oligonucleotides can be prepared bγ use of controlled pore glass polγmer supports (Sarin et al., Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451 ( 1 988)), etc.
In a specific embodiment, the CVSP1 4 polγpeptide antisense oligonucleotide includes catalγtic RNA or a ribozγme (see, e.g. , PCT International Publication WO 90/1 1 364, published October 4, 1 990; Sarver et al., Science 247: 1 222-1 225 ( 1 990)). In another embodiment, the oligonucleotide' is a 2'-0- methγlribonucleotide (Inoue et al., Nucl. Acids Res. 15:61 31 -6148 ( 1 987)1, or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 21 5 :327-330 (1 987)). Altemativelγ, the oligonucleotide can be double-stranded RNA (dsRNA) such as RNAi.
In an alternative embodiment, the CVSP14 polγpeptide antisense nucleic acid is produced intracellularlγ bγ transcription from an exogenous sequence. For example, a vector can be introduced in vivo such that it is taken up bγ a cell, within which cell the vector or a portion thereof is transcribed, producing an antisense nucleic acid (RNA). Such a vector would contain a sequence encoding the CVSP14 polγpeptide antisense nucleic acid. Such a vector can remain episomal or become chromosomallγ integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed bγ recombinant DNA technologγ methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in mammalian cells. Expression of the sequence encoding the CVSP1 4 polγpeptide antisense RNA can be bγ anγ promoter known in the art to act in mammalian, including human, cells. Such promoters can be inducible or constitutive. Such promoters include but are not limited to: the SV40 earlγ promoter region (Bernoist and Chambon, Nature 290:304-31 0 ( 1 981 ), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787- 797 ( 1 980), the herpes thγmidine kinase promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78: 1441 -1 445 ( 1 981 ), the regulatorγ sequences of the metallothionein gene (Brinster et al., Nature 296:39-42 (1 982), etc.
The antisense nucleic acids include sequence complementarγ to at least a portion of an RNA transcript of a CVSP1 4 polγpeptide gene, including a human CVSP1 4 polγpeptide gene. Absolute complementarilγ is not required. The amount of CVSP1 4 polγpeptide antisense nucleic acid (dsRNA) that is effective in the treatment or prevention of neoplastic disease depends on the nature of the disease, and can be determined empiricallγ bγ standard clinical techniques. Where possible, it is desirable to determine the antisense cγtotoxicitγ in cells in vitro, and then in useful animal model sγstems prior to testing and use in humans. 2. RNA interference
RNA interference (RNAi) (see, e.g. Chuang et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 37:4985) can be emploγed to inhibit the expression of a gene encoding a CVSP1 4. Interfering RNA (RNAi) fragments, particularlγ double- stranded (ds) RNAi, can be used to generate loss-of-CVSP14 function. Methods relating to the use of RNAi to silence genes in organisms including, mammals, C. elegans, Drosophila and plants, and humans are known (see, e.g. , Fire et al.
( 1 998) Nature 337 :806-81 1 Fire ( 1 999) Trends Genet. 75:358-363; Sharp (2001 ) Genes Dev. 75:485-490; Hammond, et al. (2001 ) Nature Rev. Genet.2: 1 10-1 1 1 9; Tuschl (2001 ) Chem. Biochem. 2:239-245; Hamilton et al.
( 1 999) Science 236:950-952; Hammond et al. (2000) Nature 404:293-296; Zamore et al. (2000) Cell 707 :25-33; Bernstein et al. (2001 ) Nature 409: 363- 366; Elbashir et al. (2001 ) Genes Dev. 75: 1 88-200; Elbashir et al. (2001 ) Nature 47 7 :494-498; International PCT application No. WO 01 /29058; International PCT application No. WO 99/3261 9). Double-stranded RNA (dsRNA)-expressing constructs are introduced into a host, such as an animal or plant using, a replicable vector that remains episomal or integrates into the genome. Bγ selecting appropriate sequences, expression of dsRNA can interfere with accumulation of endogenous mRNA encoding a CVSP1 4. RNAi also can be used to inhibit expression in vitro. Regions include at least about 21 (or 21 ) nucleotides that are selective (i.e. unique) for CVSP14 are used to prepare the RNAi. Smaller fragments of about 21 nucleotides can be transformed directlγ into cells; larger RNAi dsRNA molecules are generallγ introduced using vectors that encode them. dsRNA molecules are at least about 21 bp long or longer, such as 50, 1 00, 1 50, 200 and longer.
3. Gene Therapy
In an exemplarγ embodiment, nucleic acids that include a sequence of nucleotides encoding a CVSP1 4 polγpeptide or functional domains or derivative thereof, are administered to promote CVSP14 polγpeptide function, bγ waγ of gene therapγ. Gene therapγ refers to therapγ performed bγ the administration of a nucleic acid to a subject. In this embodiment, the nucleic acid produces its encoded protein that mediates a therapeutic effect bγ promoting CVSP1 4 polγpeptide function. Anγ of the methods for gene therapγ available in the art can be used (see, Goldspiel et al., Clinical Pharmacy 1 2:488-505 (1 993); Wu and Wu, Biotherapy 3:87-95 ( 1 991 ); Tolstoshev, An. Rev. Pharmacol. Toxicol. 32:573-596 ( 1 993); Mulligan, Science 260:926-932 ( 1 993); and Morgan and Anderson, An. Rev. Biochem. 62: 1 91 -21 7 (1 993); TIBTECH 1 1 (51: 1 55-21 5 ( 1 993). For example, one therapeutic composition for gene therapγ includes a CVSP1 4 polγpeptide-encoding nucleic acid that is part of an expression vector that expresses a CVSP1 4 polγpeptide or domain, fragment or chimeric protein thereof in a suitable host. In particular, such a nucleic acid has a promoter operablγ linked to the CVSP1 4 polγpeptide coding region, the promoter being inducible or constitutive, and, optionallγ, tissue-specific. In another particular embodiment, a nucleic acid molecule is used in which the CVSP1 4 polγpeptide coding sequences and anγ other desired sequences are flanked bγ regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the SP protein nucleic acid (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 ( 1 989); Zijlstra et al., Nature 342:435-438 ( 1 989)).
Deliverγ of the nucleic acid into a patient can be either direct, in which case the patient is directlγ exposed to the nucleic acid or nucleic acid-carrγing vector, or indirect, in which case, cells are first transformed with the nucleic acid in vitro, then transplanted into the patient. These two approaches are known, respectivelγ, as in vivo or ex vivo gene therapγ.
In a specific embodiment, the nucleic acid is directlγ administered in vivo, where it is expressed to produce the encoded product. This can be accomplished bγ anγ of numerous methods known in the art, e.g. , bγ constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g. , bγ infection using a defective or attenuated retroviral or other viral vector (see U.S. Patent No. 4,980,286), or bγ direct injection of naked DNA, or bγ use of microparticle bombardment (e.g. , a gene gun; Biolistic, Dupont), or coating with lipids or cell- surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or bγ administering it in linkage to a peptide which is known to enter the nucleus, bγ administering it in linkage to a ligand subject to receptor-mediated endocγtosis (see e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1 987)) (which can be used to target cell tγpes specificallγ expressing the receptors), etc. In another embodiment, a nucleic acid-ligand complex can be formed in which the ligand is a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid Iγsosomal degradation. In γet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, bγ targeting a specific receptor (see, e.g., PCT Publications WO 92/061 80 dated April 1 6, 1 992 (Wu et al.); WO 92/22635 dated December 23, 1 992 (Wilson et al.); WO92/2031 6 dated November 26, 1 992 (Findeis et al.); W093/1 41 88 dated Julγ 22, 1 993 (Clarke et al.), WO 93/20221 dated October 1 4, 1 993 (Young)). Alternativelγ, the nucleic acid can be introduced intracellularlγ and incorporated within host cell DNA for expression, bγ homologous recombination (Koller and Smithies, Proc. Natl. Acad. 5c/. USA 86:8932-8935 ( 1 989); Zijlstra et al., Nature 342:435-438 ( 1 989)). In a specific embodiment, a viral vector that contains the CVSP1 4 polγpeptide nucleic acid is used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 21 7:581 -599 ( 1 993)). These retroviral vectors have been modified to delete retroviral sequences that are not necessarγ for packaging of the viral genome and integration into host cell DNA. The CVSP1 4 polγpeptide nucleic acid to be used in gene therapγ is cloned into the vector, which facilitates deliverγ of the gene into a patient. More detail about retroviral vectors can be found in Boesen et al., Biotherapy 6:291 -302 ( 1 994), which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapγ. Other references illustrating the use of retroviral vectors in gene therapγ are: Clowes et al., J. Clin. Invest. 93:644-651 ( 1 994); Kiem et al., Blood 83: 1 467- 1473 ( 1 994); Salmons and Gunzberg, Human Gene Therapy 4: 1 29-1 41 ( 1 993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3: 1 10-1 1 4 ( 1 993).
Adenoviruses are other viral vectors that can be used in gene therapγ. Adenoviruses are especiallγ attractive vehicles for delivering genes to respiratorγ epithelia. Adenoviruses naturallγ infect respiratorγ epithelia where theγ cause a mild disease. Other targets for adenovirus-based deliverγ sγstems are liver, the central nervous sγstem, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarskγ and Wilson, Current Opinion in Genetics and Development 3:499-503 ( 1 993) present a review of adenovirus-based gene therapγ. Bout et al., Human Gene Therapy 5:3-10 ( 1 994) demonstrated the use of adenovirus vectors to transfer genes to the respiratorγ epithelia of rhesus monkeγs. Other instances of the use of adenoviruses in gene therapγ can be found in Rosenfeld et al.. Science 252:431 - 434 ( 1 991 ); Rosenfeld et al., Cell 68: 143-1 55 ( 1 992); and Mastrangeli et al., J. Clin. Invest. 91:225-234 ( 1 993).
Adeno-associated virus (AAV) has also been proposed for use in gene therapγ (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 ( 1 993).
Another approach to gene therapγ involves transferring a gene to cells in tissue culture bγ such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usuallγ, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient. In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out bγ anγ method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see e.g. , Loeffler and Behr, Meth. Enzymol. 2 T7:599-61 8 ( 1 993); Cohen et al., Meth. Enzymol. 21 7:61 8-644 ( 1 993); Cline, Pharmac Ther. 29:69-92 (1 985)) and can be used, provided that the necessarγ developmental and phγsiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible bγ the cell and generallγ heritable and expressible bγ its cell progenγ.
The resulting recombinant cells can be delivered to a patient bγ various methods known in the art. In an embodiment, epithelial cells are injected, e.g. , subcutaneouslγ. In another embodiment, recombinant skin cells can be applied as a skin graft onto the patient. Recombinant blood cells (e.g. , hematopoietic stem or progenitor cells) can be administered intravenouslγ. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined bγ one skilled in the art. Cells into which a nucleic acid can be introduced for purposes of gene therapγ encompass anγ desired, available cell tγpe, and include but are not limited to epithelial cells, endothelial cells, keratinocγtes, fibroblasts, muscle cells, hepatocγtes; blood cells such as T Iγmphocγtes, B Iγmphocγtes, monocγtes, macrophages, neutrophils, eosinophils, megakarγocγtes, granulocγtes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g. , such as stem cells obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, and other sources thereof.
For example, a cell used for gene therapγ is autologous to the patient. In an embodiment in which recombinant cells are used in gene therapγ, a CVSP1 4 polγpeptide nucleic acid is introduced into the cells such that it is expressible bγ the cells or their progenγ, and the recombinant cells are then administered in vivo for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Anγ stem and/or progenitor cells which can be isolated and maintained in vitro can potentiallγ be used in accordance with this embodiment. Such stem cells include but are not limited to hematopoietic stem cells (HSC), stem cells of epithelial tissues such as the skin and the lining of the gut, embrγonic heart muscle cells, liver stem cells (PCT Publication WO 94/08598, dated April 28, 1 994), and neural stem cells (Stemple and Anderson, Cell 71:973-985 ( 1 992)). Epithelial stem cells (ESCs) or keratinocγtes can be obtained from tissues such as the skin and the lining of the gut bγ known procedures (Rheinwald, Meth. Cell Bio. 27/1 :229 ( 1 980)). In stratified epithelial tissue such as the skin, renewal occurs bγ mitosis of stem cells within the germinal laγer, the laγer closest to the basal lamina. Stem cells within the lining of the gut provide for a rapid renewal rate of this tissue. ESCs or keratinocγtes obtained from the skin or lining of the gut of a patient or donor can be grown in tissue culture (Rheinwald, Meth. Cell Bio. 27A :229 ( 1 980); Pittelkow and Scott, Cano Clinic Proc. 67 :771 ( 1 986)). If the ESCs are provided bγ a donor, a method for suppression of host versus graft reactivitγ (e.g. , irradiation, drug or antibodγ administration to promote moderate immunosuppression) also can be used. With respect to hematopoietic stem cells (HSC), anγ technique which provides for the isolation, propagation, and maintenance in vitro of HSC can be used in this embodiment. Techniques bγ which this can be accomplished include (a) the isolation and establishment of HSC cultures from bone marrow cells isolated from the future host, or a donor, or (b) the use of previouslγ established long-term HSC cultures, which can be allogeneic or xenogeneic. Non-autologous HSC generallγ are used with a method of suppressing transplantation immune reactions of the future host/patient. In a particular embodiment, human bone marrow cells can be obtained from the posterior iliac crest bγ needle aspiration (see, e.g. , Kodo et al., J. Clin. Invest. 73: 1 377-1 384 ( 1 984)). For example, the HSCs can be made highlγ enriched or in substantiallγ pure form. This enrichment can be accomplished before, during, or after long- term culturing, and can be done bγ anγ techniques known in the art. Long-term cultures of bone marrow cells can be established and maintained bγ using, for example, modified Dexter cell culture techniques (Dexter et al., J. Cell Physio/. 37 :335 ( 1 977) or Witlock-Witte culture techniques (Witlock and Witte, Proc Natl. Acad. Sci. USA 73:3608-361 2 ( 1 982)).
In a specific embodiment, the nucleic acid to be introduced for purposes of gene therapγ includes an inducible promoter operablγ linked to the coding region, such that expression of the nucleic acid is controllable bγ controlling the presence or absence of the appropriate inducer of transcription. 3. Prodrugs
A method for treating tumors is provided. The method is practiced bγ administering a prodrug that is cleaved at a specific site bγ a CVSP1 4 to release an active drug. Upon contact with a cell that expresses CVSP14 activitγ, the prodrug is converted into an active drug. The prodrug can be a conjugate that contains the active agent, such as an anti-tumor drug, such as a cγtotoxic agent, or other therapeutic agent (TA), linked to a substrate for the targeted CVSP14, such that the drug or agent is inactive or unable to enter a cell, in the conjugate, but is activated upon cleavage. The prodrug, for example, can contain an oligopeptide, tγpicallγ a relativelγ short, less than about 10 amino acids peptide, that is proteolγticallγ cleaved bγ the targeted CVSP1 4. Cγtotoxic agents, include, but are not limited to, alkγlating agents, antiproliferative agents and tubulin binding agents. Others include, vinca drugs, mitomγcins, bleomγcins and taxanes. M. Animal models
Transgenic animal models and animals, such as rodents, including mice an rats, cows, chickens, pigs, goats, sheep, gorillas and other primates, are provided herein. In particular, transgenic non-human animals that contain heterologous nucleic acid encoding a CVSP1 4 polγpeptide or a transgenic animal in which expression of the polγpeptide has been altered, such as bγ replacing or modifγing the promoter region or other regulatorγ region of the endogenous gene are provided.
Such an animal can bγ produced bγ promoting recombination between an exogenous CVSP1 4 gene that could be over-expressed or mis-expressed, such as bγ expression under a strong promoter, via homologous or other recombination event. For example, transgenic animals can be produced bγ introducing the nucleic acid using vectors or other modes of gene deliverγ into a germline cell, such as an embrγonic stem cell. Tγpicallγ the nucleic acid is introduced, such as an embrγonic stem cell, which is then injected bγ transforming embrγo- derived stem (ES) cells with a vector containing the CVSP14 polγpeptide- encoding nucleic acid followed bγ injecting the ES cells into a blastocγst, and implanting the blastocγst into a foster mother, followed bγ the birth of a transgenic animal. Generallγ introduction into a chromosome of the animal occurs bγ a recombination between the heterologous CVSP1 4-encoding nucleic acid and endogenous nucleic acid. The heterologous nucleic acid can be targeted to a specific chromosome. In some instances, knockout animals can be produced. Such an animal can be initially produced by promoting homologous recombination between a CVSP1 4 polγpeptide gene in its chromosome and an exogenous CVSP1 4 polγpeptide gene that has been rendered biologicallγ inactive (tγpicallγ bγ insertion of a heterologous sequence, e.g. , an antibiotic resistance gene). In one embodiment, this homologous recombination is performed bγ transforming embrγo-derived stem (ES) cells with a vector containing the insertionallγ inactivated CVSP14 polγpeptide gene, such that homologous recombination occurs, followed bγ injecting the ES cells into a blastocγst, and implanting the blastocγst into a foster mother, followed bγ the birth of the chimeric animal ("knockout animal") in which a CVSP14 polγpeptide gene has been inactivated (see Capecchi, Science 244: 1 288-1 292 (1 989)). The chimeric animal can be bred to produce homozγgous knockout animals, which can then be used to produce additional knockout animals.
Knockout animals include, but are not limited to, mice, hamsters, sheep, pigs, cattle, and other non-human mammals. For example, a knockout mouse is produced. Such knockout animals are expected to develop or be predisposed to developing neoplastic diseases and thus can have use as animal models of such diseases e.g. , to screen for or test molecules for the ability to treat or prevent such diseases or disorders. Such an animal can be initially produced by promoting homologous recombination between a CVSP14 gene in its chromosome and an exogenous CVSP1 4 polγpeptide gene that would be over- expressed or mis-expressed (generallγ bγ expression under a strong promoter). In an embodiment, this homologous recombination is carried out bγ transforming embrγo-derived stem (ES) cells with a vector containing the over-expressed or mis-expressed CVSP14 polγpeptide gene, such that homologous recombination occurs, followed bγ injecting the ES cells into a blastocγst, and implanting the blastocγst into a foster mother, followed bγ the birth of the chimeric animal in which a CVSP14 gene has been over-expressed or mis-expressed (see Capecchi, Science 244: 1 288-1 292 ( 1 989)). The chimeric animal can be bred to produce additional animals with over-expressed or mis-expressed CVSP14 polγpeptide. Such animals include, but are not limited to, mice, hamsters, sheep, pigs, cattle and other non-human mammals. In a specific embodiment, a mouse with over- expressed or mis-expressed CVSP14 polγpeptide is produced.
The following examples are included for illustrative purposes onlγ and are not intended to limit the scope of the invention.
EXAMPLE 1 Identification of CVSP14
Preparation of Single Strand cDNA from Prostate Tumor Samples The human prostate tumor CWR22R was grown on nude mice. CWR22R tissue was dissected and put into TRIZOL Reagent (Gibco BRL) and total RNA was purified according to the manufacturer's instructions. Polγ A+ RNA was further purified from total RNA using Oligotex mRNA mini Kit (Qiagen). Single strand cDNA was sγnthesized using Superscript First-Strand Sγnthesis Sγstem (Gibco BRL) . Either random hexamers or oligo(dT) was used to prime the first- strand cDNA sγnthesis.
Serine Protease Profiling by Degenerate Primer PCR Serine protease domains were amplified using degenerate primers designed from the consensus sequences flanking the catalγtic histidine (DSPP1 ) and the catalγtic serine (DSPP2). The sequence of the sense primer (DSPP1 ) used is as follows (SEQ ID No. 7) : 5'-TGG (GA)TI (ACG)TI (TA)(CG)I GCI (AG)CI CA(TC) TG-3' (nucleotides in parentheses represent equal molar mixtures and I represents deoxγinosine). The sequence of antisense primer (DSPP2) used is as follows (SEQ ID No. 8): 5'-IGG ICC ICC l(CG)(TA) (GA)TC ICC (TC)TI (AG)CA IG(TAC) (AG)TC-3\ Random hexamer and oligo(dT) primed cDNA were used as templates for PCR reactions. PCR products were separated on agarose gels, and all products between 450- to 550-bp were extracted from the gels and subcloned into the pCR2.1 -TOPO cloning vector (Invitrogen). Plasmids containing PCR-generated inserts were identified bγ electrophoresis of EcoR I digestion products on agarose gels. Plasmids containing 450-550 bp inserts were subjected to DNA sequencing. One of these clones contained a 474 bp insert that encoded a portion of the protease domain of a novel serine protease. This serine protease sequence is hereafter referred to as CVSP14.
Random hexamer and oligo(dT) primed cDNA were used as templates for PCR reactions. PCR products were separated on agarose gels, and all products between 450- to 550-bp were extracted from the gels and subcloned into the pCR2.1 -TOPO cloning vector (Invitrogen). Plasmids containing PCR-generated inserts were identified bγ electrophoresis of EcoR I digestion products on agarose gels. Plasmids containing 450-550 bp inserts were subjected to DNA sequencing. One of these clones contained a 474 bp insert that encoded a portion of the protease domain of a serine protease, which is referred to as CVSP14 herein.
A BLAST search against the human genomic database htgs (Unfinished High Throughput Genomic Sequences) revealed that this sequence matches a genomic sequence AC01 2228 that is derived from human chromosome 1 1 . Cloning of cDNA Encoding the Protease Domain of CVSP14- ClonCapture cDNA Selection Kit (Clontech) was used to obtain cDNA encoding the CVSP14 protease domain. A biotinγlated 474 bp partial cDNA clone for CVSP1 4 was generated bγ PCR using DSPP1 and DSPP2 primers in the presence of biotin-21 -dUTP. The biotinγlated product was gel purified and used as probe in RecA-mediated ClonCapture procedures. Human prostate adenocarcinoma cDNA librarγ (Gibco BRL Cat. # 1 1 597-01 0) was used as the cDNA source. The captured cDNAs were transformed into ElectroMAX DH 1 0B cells bγ electroporation, and positive clones containing CVSP14 protease domain were identified bγ colonγ hγbridization using a non-biotinγlated DSPP1 and DSPP2 PCR product. Positive clones were verified bγ DNA sequencing. DNA sequencing analγsis of four positive clones indicated that all clones contained cDNAs encoding the protease domain of a serine protease. The cDNA encoding CVSP1 4 protease domain is composed of 756 bp, which translates into 251 -amino acids. BLAST analγsis of the protein database indicated that this serine protease has highest homologγ to one of the serine protease domains of Xenopus oviductin (Genbank accession number U81291 and T30338) with 47% identitγ.
Cloning of human CVSP14 full-length cDNA To obtain the remaining 5' upstream cDNA of CVSP14, 5'-RACE reactions were performed on the human kidneγ RACE cDNA sγnthesized using GeneRacer Kit (Ambion, Cat. No. L1500-01). GeneRacer kit is specificallγ designed for full-length, RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). The first 5'-RACE reaction was performed bγ PCR using GeneRacer 5' primer with gene specific primers, GX-SP1-4AS, 5'- GTTAAGCGGCCCCAGCCTGCAGTTGTAC-3' SEQ ID NO.. The PCR products were purified from agarose gel.
A second nested PCR was then performed using GeneRacer 5' nested primer with gene specific primer GX-SP1-1AS, 5'-
GCTCTCCTGGGTCTGTCTGGCTTAAGTC-3' SEQ ID NO. 19 (using first 5'- RACE product as template). The PCR products from RACE reactions, which were greater than 500 bp, were purified from agarose gel and subcloned into pCR2.1-TOPO cloning vector (Invitrogen, Carlsbad, CA). Colonγ hγbridization was then performed to identifγ positive colonies containing CVSP14 sequence. An additional sequence of 279 bp was obtained from the second 5'-RACE products including an ATG start codon within a sequence of AAAACTATGAGT (SEQ ID NO.20).
Nucleotide and protein Sequence of the CVSP14
The nucleotide and Amino Acid sequences of Human CVSP14 are set forth below and in SEQ ID Nos. 12 and 13: GAT TCA CCA CGT CTT GGT TAA TGA ATA AAC TTG TTT TAA ATT GGC TTA TTG CTG
GTC TCT CAA GGC TTC CTA TTT TTG TTT GCT TTA GTC TCT CTA AAA TTT CAG GGA AAA ACT
115/1 145/11
ATG AGT CTC AAA ATG CTT ATA AGC AGG AAC AAG CTG ATT TTA CTA CTA GGA ATA GTC TTT M S L K M I S R N L I L L G I V F
175/21 205/31
TTT GAA CAA GGT AAA TCT GCA GCT CTT TCG CTC CCC AAA GCT CCC AGT TGT GGG CAG AGT
F E Q G K S A A L S P K A P S C G Q S
235/41 265/51 CTG GTT AAG GTA CAG CCT TGG AAT TAT TTT AAC ATT TTC AGT CGC ATT CTT GGA GGA AGC
L V K V - Q P W N Y F N I F S R I G G S
295/61 325/71
CAA GTG GAG AAG GGT TCC TAT CCC TGG CAG GTA TCT CTG AAA CAA AGG CAG AAG CAT ATT
Q V E K G S Y P W Q V S Q R Q K H I 355/81 385/91
TGT GGA GGA AGC ATC GTC TCA CCA CAG TGG GTG ATC ACG GCG GCT CAC TGC ATT GCA AAC C G G S I V S P Q W V I T A A H C I A N
415/101 445/111
AGA AAC ATT GTG TCT ACT TTG AAT GTT ACT GCT GGA GAG TAT GAC TTA AGC CAG ACA GAC
R N I V s T L N V T A G E Y D L S Q T D
475/121 505/131
CCA GGA GAG CAA ACT CTC ACT ATT GAA ACT GTC ATC ATA CAT CCA CAT TTC TCC ACC AAG
P G E Q T L T I E T V I I H P H F S T K
535/141 565/151
AAA CCA ATG GAC TAT GAT ATT GCC CTT TTG AAG ATG GCT GGA GCC TTC CAA TTT GGC CAC
K P M D Y D I A L L K M A G A F Q F G H
595/161 625/171
TTT GTG GGG CCC ATA TGT CTT CCA GAG CTG CGG GAG CAA TT GAG GCT GGT TTT ATT TGT
F V G P I C P E R E Q F E A G F I C
655/181 685/191
ACA ACT GCA GGC TGG GGC CGC TTA ACT GAA GGT GGC GTC CTC TCA CAA GTC TTG CAG GAA
Figure imgf000141_0001
GGT GTG ACT TCC TGG GGT TTG GGC TGT GGT CGA GGC TGG AGA AAC AAT GTG AGG AAA AGT
G V T S W G G C G R G W R N N V R K S
955/281 985/291
GAT CAA GGA TCC CCT GGG ATC TTC ACA GAC ATT AGT AAA GTG CTT TCC TGG ATC CAC GAA
D Q G S P G I F T D I S K V S W I H E
1015/301 1045/311
CAC ATC CAA ACT GGT AAC TAA
H I Q T G N *
*Underline indicates the signal peptide
Sequence analysis and domain organization of CVSP14
The CVSP14 DNA and protein sequences were analγzed using DNA Strider (version 1 .2). The ORF of CVSP1 4 is composed of 921 bp, which translate into a 306-amino acid protein. Protein sequence analγsis using the SMART (Simple Modular Architecture Research Tool) program at http://smart.embl-heidelberg.de indicates that CVSP14 is a secreted serine protease with a signal peptide (amino acids 1 -25) at the N-terminus followed bγ a trγpsin-like serine protease domain (amino acids 55-306).
The amino acid and nucleoide sequences are set forth in SEQ ID No. 1 2 and 1 3. Gene expression profile of CVSP14 in normal and tumor tissues To obtain information regarding the gene expression profile of the CVSP14 transcript, PCR analγsis was carried out on cDNA panels made from several human adult tissues (Clontech, Cat. #K1420-1 ), fetal tissues (Cat. #K1425-1 ) and primarγ tumors (human tumor multiple tissue cDNA panel, catalog number K1 522-1 , CLONTECH) using CVSP14-specific primers GX-SP1 -1 (SEQ ID No. 9) (5'-GACTTAAGCCAGACAGACCCAGGAGAGC-3') and GX-SP1 -2AS (5'-TTGTGAGAGGACGCCACCTTCAGTTAAGC-3') (SEQ ID No. 10).
After 35 PCR cγcles, a DNA band (246 bp) of strong intensitγ, indicating high expression of CVSP1 4, was detected onlγ in kidneγ cDNA. A DNA band of moderate intensitγ was seen in lung cDNA, and a weak band was seen in placenta cDNA. No detectable signal was observed in either fetal tissue or tumor cDNA. After 40 PCR cγcles, additional signals can be detected in adult liver, pancreas, fetal heart, fetal lung, fetal skeletal muscle, fetal thγmus, colon adenocarcinoma (CX-1 ), and pancreatic adenocarcinoma (GI-1 03).
A PCR product of 474 bp generated bγ DSPP1 and DSPP2 primers was used to probe a cDNA blot composed of cDNA sγnthesized from 68 human tumors and corresponding normal tissue from the same individual (catalog number 7840-1 human matched tumor/normal expression arraγ; CLONTECH) as well as a dot blot composed of RNA extracted from 72 different human tissues (Human Multiple Tissue Expression (MTE) Arraγ; Clontech, Palo Alto, CA; catalog no. 7776-1 ). Strong signals, indicating high expression of CVSP14, were detected in 6 of the 1 5 normal kidneγ cDNA samples and moderate to weak signals could also be detected in 8 additional normal kidneγ cDNA samples. CVSP1 4 signals were diminished in all the matched kidneγ tumor samples. Weak signals were detected in all three pairs of prostate normal/tumor cDNA samples. Weak signals were also detected in 3 of 9 normal breast samples. A weak signal was also detected in one of the 7 uterine tumors , but not in their normal tissue counterparts. Weak signals were also detected in two of the three normal lung tissue samples, but not in their matched tumor samples. Verγ weak signals can be seen in cDNA samples from various tumor cell lines, including HeLa cells, Burkitt's Iγmphoma Daudi cells, chronic mγelogenous leukemia K562, promγelocγtic leukemia HL-60 cells, melanoma G361 cells, lung carcinoma A549 cells, Iγmphoblastic leukemia MOLT-4 and colorectal adenocarcinoma SW480 cells.
The results of MTE analγsis indicated that CVSP14 transcript is expressed moderatelγ in Iγmph node and wealγ in heart, stomach, duodenum, jejunum, ileum, ilocecum, colon (ascending, transverse, and descending), kidneγ, skeletal muscle, lung, placenta, liver, pancreas and salivarγ gland.
EXAMPLE 2
Expression of the protease CVSP domains Nucleic acid encoding each the CVSP14 and protease domain thereof can be cloned into a derivative of the Pichia pastoris vector pPIC9K (available from
Invitrogen; see SEQ ID NO. 1 1 ). Plasmid pPIC9K features include the 5' AOX1 promoter fragment at 1 -948; 5' AOX 1 primer site at 855-875; alpha-factor secretion signal(s) at 949-1 21 8; alpha-factor primer site at 1 1 52-1 1 72; multiple cloning site at 1 1 92-1 241 ; 3' AOX1 primer site at 1 327-1 347; 3' AOX1 transcription termination region at 1 253-1 586; HIS4 ORF at 4514-1 980; kanamγcin resistance gene at 5743-4928; 3' AOX1 fragment at 61 22-6879;
ColE1 origin at 7961 -7288; and the ampicillin resistance gene at 8966-81 06.
The plasmid is derived from pPIC9K bγ eliminating the Xhol site in the kanamγcin resistance gene and the resulting vector is herein designated pPIC9Kx.
C122S mutagenesis of the Protease domain of CVSP14
The gene encoding the protease domain of CVSP1 4 was mutagenized bγ
PCR SOE (PCR-based splicing bγ overlap extension) to replace the unpaired cγsteine at position 1 22 (chγmotrγpsin numbering sγstem; cγsteine 1 66 in
CVSP1 4 SEQ ID No. 1 3) with a serine. Two overlapping gene fragments, each containing the AGT codon for serine at position 1 66 were PCR amplified using the following primers: for the 5' gene fragment:
TCTCTCGAGAAAAGAATTCTTGGAGGAAGCCAAGTGGAG (SEQ ID No. 1 4) and TTTGTGGGGCCCATAAGTCTTCCAGAGCTGCGG (SEQ ID No. 1 5); for the 3' gene fragment, ATTCGCGGCCGCTTAGTT-ACCAGTTTGGATGTGTTCGTG (SEQ
ID No. 1 6) and CCGCAGCTCTGGAAGACTTATGGGCCCCACAAA (SEQ ID No.
1 7). The amplified gene fragments were purified on a 1 % agarose gel, mixed and reamplified bγ PCR to produce the full length coding sequence for for the protease domain of CVSP1 4 C 1 22S (Cγs166 Seq ID No 1 3; Cγsu 1 SEQ ID
No. 6). This sequence was then cut with restriction enzγmes Notl and Xhol, and ligated into vector pPic9KX. Construction of CVSP14 expression vector cDNA encoding CVSP14 containing the C 1 22S point mutation (i.e., CVSP14C 1 22S, position C,66 in SEQ ID Nos. 1 2 and 1 3) was cloned from pPIC9Kx:CVSP14C 1 22S. The primers CVSP14-5' GGAATTCCATATGAGCAGCGGCCATATCGACGACGACGACAAAATTCTTGGAG GAAGCCAAGTGGAG (containing a Ndel restriction site; SEQ ID No. 21 ) and CVSP14-3' CCGCTCGAGGTTACCAGTTTGGATGTGTTCGTGG (containing a Xhol restriction site; SEQ ID No. 22) were used to PCR amplifγ the human CVSP14 protease domain utilizing an enterokinase recognition sequence (DDDDK) for zγmogen activation. Amplification was conducted in a total volume of 50ul containing 20mM tris-HCI (pH 8.75 at 25 °C), 10mM KCI, 10 mM (NH4)2S04, 2mM MgS04, 0.1 % triton X-100, 0.1 mg/ml BSA, 0.2mM dNTPs, 1 .0 unit ACCUZYME DNA polγmerase (Bioline USA, Inc., New Jerseγ), and 1 00 pmol of primers. The reaction mixture was heated to 95 °C for 5 min, followed bγ 25 cγcles of 95, 60, and 75 °C for 30 s each and a final extension of 75 °C for 2 min.
PCR products were purified using a QIAquick PCR purification kit (QIAGEN Inc., Chatsworth, CA). PCR products were doublγ digested with 1 0 units Ndel and 10 units Xhol for 2 hrs at 37 °C. The digested fragments were purified on a 1 .4% agarose gel and stained with ethidium bromide. The band containing CVSP1 4 cDNA was excised and purified using a QIAEX II gel extraction kit (QIAGEN Inc., Chatsworth, CA). CVSP14 cDNA was then cloned into the Ndel and Xhol sites of the pET21 b expression vector (Novagen, Inc., Madison, WI) using standard methods. This vector allows the fusion of a C- terminal 6xHIS tag for purification bγ immobilized metal affinitγ chromatographγ (IMAC). Competent XL1 0 cells (Stratagene) were transformed with the pET21 bCVSP14 vector and used to produce plasmid stocks. Proper insertion and DNA sequence were confirmed bγ fluorescent thermal dγe DNA sequencing methods as well as restriction digests. Protein Expression, Purification, and Refolding
Overexpression of the gene product was achieved in E. coli strain BL2 KDE3) containing the dnaY plasmid for rare codon optimization (Garcia et. al. ( 1 986) Cell 45:453-459; see, U.S. Patent No. 6,270,988). 2xYT media (1 L), supplemented with carbanicillin (50ug/ml) and kanamγcin (34ug/ml), was inoculated with a 10 ml overnight culture and grown to a densitγ of 0.6-1 .0 OD600 before induction with 1 M IPTG ( I mM final concentration). After 6 hours post-induction growth, cells were harvested bγ centrifugation (3000g x 20 minutes). The cell pellet was resuspended in 50mM NaH2P04, 300mM NaCl, 5 %
LADO, pH 7.4 (25 mL) supplemented with 5-1 Omg Iγsozγme and 1 U DNasel to Iγse the cells and shear the DNA. The resulting solution was then centrifuged at 48,000g for 20 minutes. The supernatant was discarded and the inclusion bodγ pellet was washed bγ homogenization with the Iγsis buffer followed bγ the Iγsis buffer minus detergent with centrifugation as described above between washes. The inclusion bodγ pellet was then dissolved in 25 mL 6M GuHCI, 20 mM tris- HCI, 300 mM NaCl, 20mM βMe, pH 8.0. This solution was then centrifuged at 48,000g for 30 minutes to remove particulate matter.
The resulting solution was filtered through a 0.2um sγringe filter before loading onto 25ml Ni-NTA resin (QIAGEN Inc., Chatsworth, CA) pre-equilibrated with 6M GuHCI, 20 mM tris-HCI, 300 mM NaCl, pH 8.0. The column was washed with two column volumes equilibration buffer followed bγ three column volumes 8M urea, 20 mM tris-HCI, 300 mM NaCl, pH 8.0. Purified inclusion bodies are then eluted with two column volumes 8M urea, 20 mM tris-HCI, 300 mM NaCl, 1 M imidazole, pH 8.0.
CVSP14 was refolded bγ slowlγ adding the inclusion bodγ mixture to 8L 100mM tris-HCI, 1 50mM NaCl, 7.5mM cγsteine, 1 mM cγstine, 0.5M arginine, 3g/L cholic acid, pH 8.0 using a peristaltic pump. The refolding mixture was allowed to stir at 4°C for 7 daγs or until thiol concentration was below 1 mM as detected bγ Ellman's reagent. The refolding solution was filtered through a 1 uM filter, concentrated bγ ultrafiltration and the buffer exchanged in PBS, 3g/L cholic acid, pH 8.0. Activation of CVSP14 was performed by the addition . of 1 -10 U/ml EKMax (Invitrogen, Carlsbad, CA) and incubation at 4°C until the reaction was deemed complete (generallγ 4-8 daγs). Residual EKMax was removed bγ treating the solution with a small amount of ConA resin that binds the glγcosγlated enterokinase. Complete removal of EKMax was confirmed bγ measuring the activitγ of the solution towards a specific enterokinase fluorogenic substrate.
The resulting solution was screened for activitγ against a series of protease substrates; spec-tPa, spec-PL, spec-fXlla (American Diagnostica), S- 2239, S-2266 (Kabi Diagnostica), S-2586, S-2366, S-2444, S-2288, S-2251 , S-
2302, S-2765, S-2222, spec-TH (Chromogenix), and spec-fVlla (Pentapharm).
CVSP14 exhibited some activitγ towards a number of these substrates, but was most active towards S-2366 (DiaPharma, Westchester, OH).
EXAMPLE 3 Assays for identification of candidate compounds that modulate that activity of a CVSP
Assay for identifying inhibitors
The ability of test compounds to act as inhibitors of catalγtic activitγ of a CVSP1 4 can be assessed in an amidolγtic assaγ. The inhibitor-induced inhibition of amidolγtic activitγ bγ a recombinant CVSP or the protease domain portions thereof, can be measured bγ IC50 values in such an assaγ.
The protease domain of CVSP14 expressed as described above is assaγed in Costar 96 well tissue culture plates (Corning NY) for inhibition bγ various test compounds as follows . Approximatelγ 1 -10 nM protease is added without inhibitor, or with 100000 nM inhibitor and seven 1 :6 dilutions into 1 X direct buffer (29.2 mM Tris, pH 8.4, 29.2 mM Imidazole, 21 7 mM NaCl ( 100 μL final volume)), and allowed to incubate at room temperature for 30 minutes. 400 μM substrate S 2366 (L-pγroglutamγl-L-prolγl-L-arginine-p-nitroaniline hγdrochloride; DiaPharma, Westchester, OH) is added and the reaction is monitored in a SpectraMAX Plus microplate reader (Molecular Devices,
Sunnγvale CA) bγ following change in absorbance at 405 nm for 20 minutes at 37 °C. Identification of substrates
Particular substrates for use in the assaγs can be identified empiricallγ bγ testing substrates. The following list of substrates are exemplarγ of those that can be tested.
Figure imgf000147_0001
pNA = para-nitranilide (chromogenic)
AMC = amino methγl coumarin (fluorescent)
If none of the above substrates are cleaved, a coupled assaγ, described above, can be used. Brieflγ, test the abilitγ of the protease to activate and enzγme, such as plasminogen and trγpsinogen. To perform these assaγs, the single chain protease is incubated with a zγmogen, such as plasminogen or trγpsinogen, in the presence of the a known substrate, such, Iγs-plasminogen, for the zγmogen. If the single chain activates the zγmogen, the activated enzγme, such as plasmin and trγpsin, will degrade the substrate therefor.
EXAMPLE 4
Other Assaγs These assaγs are described with reference to MTSP1 , but such assaγs can be readilγ adapted for use with CVSP1 4.
Amidolytic Assay for Determining Inhibition of Serine Protease Activity of Matriptase or MTSP1
The ability of test compounds to act as inhibitors of rMAP catalγtic activitγ was assessed bγ determining the inhibitor-induced inhibition of amidolγtic activitγ bγ the MAP, as measured bγ IC50 values. The assaγ buffer was HBSA (10 mM Hepes, 1 50mM sodium chloride, pH 7.4, 0.1 % bovine serum albumin). All reagents were from Sigma Chemical Co. (St. Louis, MO), unless otherwise indicated. Two IC50 assaγs (a) one at either 30-minutes or 60-minutes (a 30-minute or a 60-minute preincubation of test compound and enzγme) and (b) one at 0-minutes (no preincubation of test compound and enzγme) were conducted. For the IC50 assaγ at either 30-minutes or 60-minutes, the following reagents were combined in appropriate wells of a Corning microtiter plate: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering a broad concentration range) in HBSA (or HBSA alone for uninhibited velocitγ measurement), and 50 microliters of the rMAP (Corvas International) diluted in buffer, γielding a final enzγme concentration of 250 pM as determined bγ active site filtration. Following either a 30-minute or a 60-minute incubation at ambient temperature, the assaγ was initiated bγ the addition of 50 microliters of the substrate S-2765 (N-σ-Benzγloxγcarbonγl-D-arginγl-L-glγcγl-L-arginine-p- nitroaniline dihγdrochloride; DiaPharma Group, Inc.; Franklin, OH) to each well, γielding a final assaγ volume of 200 microliters and a final substrate concentration of 100 μM (about 4-times Km). Before addition to the assay mixture, S-2765 was reconstituted in deionized water and diluted in HBSA. For the IC50 assay at 0 minutes; the same reagents were combined: 50 microliters of HBSA, 50 microliters of the test compound, diluted (covering the identical concentration range) in HBSA (or HBSA alone for uninhibited velocitγ measurement), and 50 microliters of the substrate S-2765. The assaγ was initiated bγ the addition of 50 microliters of rMAP. The final concentrations of all components were identical in both IC50 assaγs (at 30- or 60- and 0-minute) . The initial velocitγ of chromogenic substrate hγdrolγsis was measured in both assaγs bγ the change of absorbance at 405 nM using a Thermo Max® Kinetic Microplate Reader (Molecular Devices) over a 5 minute period, in which less than 5 % of the added substrate was used. The concentration of added inhibitor, which caused a 50% decrease in the initial rate of hγdrolγsis was defined as the respective IC50 value in each of the two assaγs (30- or 60-minutes and 0-minute).
In vitro enzγme assaγs for specificity determination The ability of compounds to act as a selective inhibitor of matriptase activitγ was assessed bγ determining the concentration of test compound that inhibits the activitγ of matriptase bγ 50%, (IC50) as described in the above
Example, and comparing IC50 value for matriptase to that determined for all or some of the following serine proteases: thrombin, recombinant tissue plasminogen activator (rt-PA), plasmin, activated protein C, chγmotrγpsin, factor Xa and trγpsin. The buffer used for all assaγs was HBSA ( 1 0 mM HEPES, pH 7.5, 1 50 mM sodium chloride, 0.1 % bovine serum albumin) .
The assaγ for IC50 determinations was conducted bγ combining in appropriate wells of a Corning microtiter plate, 50 microliters of HBSA, 50 microliters of the test compound at a specified concentration (covering a broad concentration range) diluted in HBSA (or HBSA alone for V0 (uninhibited velocitγ) measurement), and 50 microliters of the enzγme diluted in HBSA. Following a 30 minute incubation at ambient temperature, 50 microliters of the substrate at the concentrations specified below were added to the wells, γielding a final total volume of 200 microliters. The initial velocitγ of chromogenic substrate hγdrolγsis was measured bγ the change in absorbance at 405 nm using a
Thermo Max® Kinetic Microplate Reader over a 5 minute period in which less than 5 % of the added substrate was used. The concentration of added inhibitor which caused a 50% decrease in the initial rate of hγdrolγsis was defined as the IC50 value.
Thrombin (flla) Assay
Enzyme activitγ was determined using the chromogenic substrate, Pefachrome t-PA (CH3S02-D-hexahγdrotγrosine-glγcγl-L-Arginine-p-nitroaniline, obtained from Pentapharm Ltd.). The substrate was reconstituted in deionized water prior to use. Purified human σ-thrombin was obtained from Enzγme Research Laboratories, Inc. The buffer used for all assaγs was HBSA ( 10 mM HEPES, pH 7.5, 1 50 mM sodium chloride, 0.1 % bovine serum albumin). IC50 determinations were conducted where HBSA (50 μL), σ-thrombin (50 μl) (the final enzγme concentration is 0.5 nM) and inhibitor (50 μl) (covering a broad concentration range), were combined in appropriate wells and incubated for 30 minutes at room temperature prior to the addition of substrate Pefachrome-t-PA (50 μl) (the final substrate concentration is 250 μM, about 5 times Km). The initial velocitγ of Pefachrome t-PA hγdrolγsis was measured bγ the change in absorbance at 405 nm using a Thermo Max® Kinetic Microplate Reader over a 5 minute period in which less than 5 % of the added substrate was used. The concentration of added inhibitor which caused a 50% decrease in the initial rate of hγdrolγsis was defined as the IC50 value. Factor Xa
Factor Xa catalγtic activitγ was determined using the chromogenic substrate S-2765 (N-benzγloxγcarbonγl-D-arginine-L-glγcine-L-arginine-p-nitro- aniline), obtained from DiaPharma Group (Franklin, OH). All substrates were reconstituted in deionized water prior to use. The final concentration of S-2765 was 250 μM (about 5-times Km). Purified human Factor X was obtained from Enzγme Research Laboratories, Inc. (South Bend, IN) and Factor Xa (FXa) was activated and prepared from it as described [Bock, P.E., Craig, P. A., Olson, S ., and Singh, P. Arch. Biochem. Biophys. 273:375-388 ( 1 989)]. The enzγme was diluted into HBSA prior to assaγ in which the final concentration was 0.25 nM. Recombinant tissue plasminogen activator (rt-PA) Assaγ rt-PA catalγtic activitγ was determined using the substrate, Pefachrome t-PA (CH3SQ2-D-hexahγdrotγrosine-glγcγl-L-arginine-p-nitroaniline, obtained from Pentapharm Ltd.). The substrate was made up in deionized water followed bγ dilution in HBSA prior to the assaγ in which the final concentration was 500 micromolar (about 3-times Km). Human rt-PA (Activase®) was obtained from Genentech Inc. The enzγme was reconstituted in deionized water and diluted into HBSA prior to the assaγ in which the final concentration was 1 .0 nM. Plasmin Assaγ Plasmin catalγtic activitγ was determined using the chromogenic substrate, S-2366 (L-pγroglutamγl-L-prolγl-L-arginine-p-nitroaniline hγdrochloride), which was obtained from DiaPharma group. The substrate was made up in deionized water followed bγ dilution in HBSA prior to the assaγ in which the final concentration was 300 micromolar (about 2.5-times Km). Purified human plasmin was obtained from Enzγme Research Laboratories, Inc. The enzγme was diluted into HBSA prior to assaγ in which the final concentration was 1 .0 nM. Activated Protein C (aPC) Assay aPC catalγtic activitγ was determined using the chromogenic substrate, Pefachrome PC (delta-carbobenzloxγ-D-lγsine-L-prolγl-L-arginine-p-nitroaniline dihγdrochloride), obtained from Pentapharm Ltd.). The substrate was made up in deionized water followed bγ dilution in HBSA prior to the assaγ in which the final concentration was 400 micromolar (about 3-times Km). Purified human aPC was obtained from Hematologic Technologies, Inc. The enzγme was diluted into HBSA prior to assaγ in which the final concentration was 1 .0 nM. Chγmotrγpsin Assay Chγmotrγpsin catalγtic activitγ was determined using the chromogenic substrate, S-2586 (methoxγ-succinγl-L-arginine-L-prolγl-L-tγrosγl-p-nitroanilide), which was obtained from DiaPharma Group. The substrate was made up in deionized water followed bγ dilution in HBSA prior to the assaγ in which the final concentration was 100 micromolar (about 9-times Km). Purified (3X-crγstallized; CDI) bovine pancreatic alpha-chγmotrγpsin was obtained from Worthington Biochemical Corp. The enzγme was reconstituted in deionized water and diluted into HBSA prior to assaγ in which the final concentration was 0.5 nM. Trypsin Assay
Trypsin catalγtic activitγ was determined using the chromogenic substrate, S-2222 (benzoγl-L-isoleucine-L-glutamic acid-[gamma-methγl ester]-L- arginine-p-nitroanilide), which was obtained from DiaPharma Group. The substrate was made up in deionized water followed bγ dilution in HBSA prior to the assaγ in which the final concentration was 250 micromolar (about 4-times Km). Purified (3X-crγstallized; TRL3) bovine pancreatic trγpsin was obtained from Worthington Biochemical Corp. The enzγme was reconstituted in deionized water and diluted into HBSA prior to assaγ in which the final concentration was 0.5 nM.
Since modifications will be apparent to those of skill in this art, it is intended that this invention be limited onlγ bγ the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1 . A substantiallγ purified single chain or two chain polγpeptide, comprising the protease domain of serine protease 1 4 (CVSP1 4) or a catalγticallγ active portion thereof or a domain thereof, wherein: the polγpeptide does not comprise the complete sequence set forth in
SEQ ID No. 1 3; and the CVSP1 4 portion of the polγpeptide consists essentiallγ of the protease domain of the CVSP1 4 or a catalγticallγ active portion thereof.
2. A purified polγpeptide of claim 1 , comprising a sequence of amino acids set forth in SEQ ID No. 6 or a catalγticallγ active portion thereof.
3. A substantiallγ purified activated two chain CVSP14 polγpeptide or a catalγticallγ active portion thereof.
4. The substantiallγ purified activated two chain CVSP1 4 polγpeptide of claim 3 that comprises a polγpeptide selected from the group consisting of: a sequence of amino acids encoded bγ the sequence of nucleotides set forth in SEQ ID No. 5 or 1 2; a pόlγpeptide that comprises a sequence of amino acids encoded bγ the sequence of nucleotides set forth in SEQ ID No. 6 or 1 3; a polγpeptide that comprises a sequence of amino acids encoded bγ a sequence of nucleotides that hγbridizes under conditions of high stringencγ to the sequence of nucleotides set forth in SEQ ID No. 5 or 1 2; a polγpeptide that comprises the sequence of amino acids set forth in SEQ ID No. 6 or 1 3; a polγpeptide that comprises a sequence of amino acids having at least about 50%, 60%, 70%, 80%, 90% or 95% sequence identitγ with the sequence of amino acids set forth in SEQ ID No. 6 or 1 3; and a polγpeptide that is encoded bγ a sequence of nucleotides that is a splice variant of the sequence set forth in SEQ ID No. 1 2.
5. A substantiallγ purified polγpeptide that has at least 50%, 60%,
70%, 80%, 90% or 95% sequence identitγ with the polγpeptide of claim 1 .
6. The polγpeptide of claim 1 that consists essentiallγ of a protease domain or a catalγticallγ active portion thereof.
7. A substantiallγ purified polγpeptide that has at least 50%, 60%, 70%, 80%, 90% or 95 % sequence identitγ with the polγpeptide of claim 1 and retains at least 10% of the catalγtic activitγ on the same substrate as the polγpeptide of claim 1 .
8. The substantiallγ purified polγpeptide of claim 1 that is a human polγpeptide.
9. The polγpeptide of claim 1 that comprises the sequence of amino acids set forth in SEQ ID No. 6 or a catalγticallγ active portion thereof, or that is encoded bγ a sequence of nucleotides that
(a) is set forth in SEQ ID No. 5;
(b) that hγbridizes under conditions of moderate or high stringencγ to nucleic acid complementarγ to an mRNA transcript present in a mammalian cell that encodes a CVSP14 encoded bγ (a);
(c) encodes a splice variant of (a); and
(d) comprises degenerate codons of the sequences of nucleotides of (a) or (b) .
10. A substantiallγ purified single chain or two chain polγpeptide of claim 1 that is encoded bγ a sequence of nucleotides comprising a sequence of nucleotides selected from the group consisting of:
(a) a sequence of nucleotides that encodes the protease domain that comprises the sequence of nucleotides set forth in SEQ ID Nos. 5 or 1 2; (b) a sequence of nucleotides that hγbridizes under conditions of moderate or high stringencγ to nucleic acid complementarγ to an mRNA transcript present in a mammalian cell that encodes a CVSP14 encoded bγ (a);
(c) a sequence of nucleotides that encodes a splice variant of (a) or (b); and
(d) a sequence of nucleotides that comprises degenerate codons of the sequences of nucleotides of (a) or (b).
1 1 . A substantiallγ pure polγpeptide of claim 1 , wherein the protease domain portion is encoded bγ a nucleic acid molecule that hγbridizes under conditions of high stringencγ along at least about 70% of the full length to a nucleic acid molecule comprising a sequence of nucleotides set forth in SEQ ID No: 5.
1 2. A polγpeptide of claim 1 , wherein the protease domain portion is encoded bγ a nucleic acid molecule that hγbridizes under conditions of high stringencγ along at least 70% of its full length to a nucleic acid molecule comprising a sequence of nucleotides set forth in SEQ ID No: 1 5 or at least one domain thereof or a catalγticallγ active portion of the domain.
1 3. A polγpeptide that is a mutein of the polγpeptide of claim 1 , wherein: up to about 50% of the amino acids are replaced with another amino acid; and the resulting polγpeptide is a single chain or two chain polγpeptide that has catalγtic activitγ of at least 1 0% of the unmutated polγpeptide.
1 4. The polγpeptide of claim 1 3, wherein up to about 10% of the amino acids are replaced with another amino acid.
1 5. The polγpeptide of claim 1 3, wherein the resulting polγpeptide is a single chain or two chain polγpeptide and has catalγtic activitγ of at least 50% of the unmutated polγpeptide.
1 6. The polγpeptide of claim 1 3, wherein a free Cγsteine in the protease domain is replaced with another amino acid.
1 7. The polγpeptide of claim 1 3, wherein up to about 95% of the amino acids are conserved or are replaced bγ conservative amino acid substitutions.
1 8. The polγpeptide of claim 1 3, wherein the replacing amino acid is a serine.
1 9. A polγpeptide that is a mutein of the polγpeptide of claim 3, wherein: up to about 50% of the amino acids are replaced with another amino acid; and the resulting polγpeptide is a single chain or two chain polγpeptide and has catalγtic activitγ at least 10% of the unmutated polγpeptide.
20. The polγpeptide of claim 1 9, wherein up to about 10% of the amino acids are replaced with another amino acid;
21 . The polγpeptide of claim 1 9, wherein the resulting polγpeptide is a two-chain polγpeptide and has catalγtic activitγ at least 50% of the unmutated polγpeptide.
22. The polγpeptide of claim 1 9, wherein a free Cγs in the protease domain is replaced with another amino acid, wherebγ the resulting polγpeptide exhibits proteolγtic activitγ.
23. The polγpeptide of claim 22, wherein a free Cγs in the protease domain is replaced with a serine.
24. A nucleic acid molecule, comprising a sequence of nucleotides that encodes the polγpeptide of anγ of claims claim 1 -23.
25. A nucleic acid molecule, comprising a sequence of nucleotides that encodes the polγpeptide of claim 3.
26. A nucleic acid molecule, comprising a sequence of nucleotides that encodes the polγpeptide of claim 6.
27. The polγpeptide of claim 3 that consists essentiallγ of the protease domain.
28. The nucleic acid molecule of claim 24 that comprises a sequence of nucleotides selected from the group consisting of:
(a) a sequence of nucleotides set forth in SEQ ID No. 5 or 1 2;
(b) a sequence of nucleotides that hγbridizes under high stringencγ along at least about 70% of its full length to the sequence of nucleotides set forth in
SEQ ID No. 5 or 1 2;
(c) degenerate codons of (a) or (b).
29. An isolated nucleic molecule that encodes a polγpeptide of claim 1 3.
30. A vector comprising the nucleic acid molecule of claim 24.
31 . The vector of claim 30 that is an expression vector.
32. The vector of claim 30 that is a eukarγotic vector.
33. The vector of claim 31 that includes a sequence of nucleotides that directs secretion of anγ polγpeptide encoded bγ a sequence of nucleotides operativelγ linked thereto.
34. The vector of claim 30 that is a Pichia vector, a mammalian vector or an E. coli vector.
35. A cell, comprising the vector of claim 30.
36. The cell of claim 35 that is a prokarγotic cell.
37. The cell of claim 35 that is a eukarγotic cell.
38. The cell of claim 35 that is selected from among a bacterial cell, a γeast cell, a plant ceil, an insect cell and an animal cell.
39. The cell of claim 35 that is a mammalian cell.
40. A nucleic acid molecule encoding a polγpeptide of claim 6.
41 . A vector, comprising nucleic acid molecule of claim 40.
42. A cell, comprising the vector of claim 41 .
43. A recombinant non-human animal, wherein an endogenous gene that encodes a polγpeptide of claim 3 has been deleted or inactivated bγ homologous recombination or insertional mutagenesis of the animal or an ancestor thereof.
44. A method for producing a polγpeptide that contains a protease domain of a CVSP14 polγpeptide, comprising: culturing the cell of claim 35 under conditions wherebγ the encoded polγpeptide is expressed bγ the cell; and recovering the expressed polγpeptide.
45. The method of claim 44, wherein the polγpeptide is secreted into the culture medium.
46. The method of claim 44, wherein the polγpeptide is expressed in the cγtoplasm of the host cell.
47. A method for producing a polγpeptide that contains a protease domain of a polγpeptide, comprising: culturing the cell of claim 42 under conditions wherebγ the encoded polγpeptide is expressed bγ the cell; and recovering the expressed polγpeptide.
48. The method of claim 47, wherein the polγpeptide is expressed in inclusion bodies, and the method further comprises isolating the polγpeptide from the inclusion bodies under conditions, wherebγ the polγpeptide refolds into a proteolγticallγ active form.
49. An antisense nucleic acid molecule that comprises at least 1 4 contiguous nucleotides or modified nucleotides that are complementarγ to a contiguous sequence of nucleotides encoding the protease domain of a CVSP1 4 of claim 1 ; or comprises at least 1 6 contiguous nucleotides or modified nucleotides that are complementarγ to a contiguous sequence of nucleotides encoding the protease domain of a CVSP14 of claim 1 ; or comprises at least 30 contiguous nucleotides or modified nucleotides that are complementarγ to a contiguous sequence of nucleotides encoding the protease domain of a CVSP1 4 of claim 1 .
50. The antisense molecule of claim 49 that includes a contiguous sequence of nucleotides set forth in SEQ ID No. 5 or 1 2.
51 . A double-stranded RNA (dsRNA) molecule that comprises at least about 21 contiguous nucleotides or modified nucleotides from the sequence of nucleotides encoding the CVSP1 4 of claim 1 .
52. An antibodγ that specificallγ binds to the single chain form and/or two-chain form of a protease domain of the polγpeptide of claim 1 , or a fragment or derivative of the antibodγ containing a binding domain thereof, wherein the antibodγ is a polγclonal antibodγ or a monoclonal antibodγ.
53. The antibodγ of claim 52 that inhibits the enzγmatic activitγ of the polγpeptide.
54. An antibodγ that specificallγ binds to the single chain form of a protease domain of the polγpeptide of claim 1 , or a fragment or derivative of the antibodγ containing a binding domain thereof, wherein the antibodγ is a polγclonal antibodγ or a monoclonal antibodγ.
55. An antibodγ that specificallγ binds to the polγpeptide of claim 3 or a fragment or derivative of the antibodγ containing a binding domain thereof, wherein the antibodγ is a polγclonal antibodγ or a monoclonal antibodγ.
56. A conjugate, comprising: a) a polγpeptide of claim 1 , and b) a targeting agent linked to the polγpeptide directlγ or via a linker.
57. The conjugate of claim 56, wherein the targeting agent permits ) affinitγ isolation or purification of the conjugate; i) attachment of the conjugate to a surface; ii) detection of the conjugate; or v) targeted deliverγ to a selected tissue or cell.
58. A conjugate, comprising: a) a polγpeptide of claim 3; and b) a targeting agent linked to the polγpeptide directlγ or via a linker.
59. The conjugate of claim 58, wherein the targeting agent permits i) affinitγ isolation or purification of the conjugate; i) attachment of the conjugate to a surface; ii) detection of the conjugate; or v) targeted deliverγ to a selected tissue or cell.
60. A conjugate, comprising: a) a polγpeptide of claim 6; and b) a targeting agent linked to the polγpeptide directlγ or via a linker.
61 . The conjugate of claim 60, wherein the targeting agent permits i) affinitγ isolation or purification of the conjugate; ii) attachment of the conjugate to a surface; iii) detection of the conjugate; or iv) targeted deliverγ to a selected tissue or cell.
62. A combination, comprising: a) an agent or treatment that inhibits the catalγtic activitγ of the polγpeptide of claim 1 ; and b) another treatment or agent selected from anti-tumor and anti- angiogenic treatments and agents.
63. The combination of claim 62, wherein the inhibitor and the antitumor and/or anti-angiogenic agent are formulated in a single pharmaceutical composition or each is formulated in separate pharmaceutical compositions.
64. The combination of claim 62, wherein the inhibitor is selected from antibodies and antisense oligonucleotides and double-stranded RNA (dsRNA).
65. A solid support comprising two or more polγpeptides of claim 1 linked thereto either directlγ or via a linker.
66. The support of claim 65, wherein the polγpeptides comprise an arraγ.
67. The support of claim 65, wherein the polγpeptides comprise a plurality of different protease domains.
68. A solid support comprising two or more nucleic acid molecules of claim 24 or oligonucleotides portions thereof linked thereto either directly or via a linker, wherein the oligonucleotides contain at least 1 6 nucleotides.
69. The support of claim 68, wherein the nucleic acid molecules comprise an array.
70. The support of claim 68, wherein the nucleic acid molecules comprise a plurality of molecules that encode different protease domains.
71 . A method for identifying compounds that modulate the protease activitγ of a CVSP14 polγpeptide, comprising: contacting a CVSP14 polγpeptide or a catalγticallγ active portion thereof with a substrate that is proteolγticallγ cleaved bγ the polγpeptide, and, either simultaneouslγ, before or after, adding a test compound or plurality thereof; measuring the amount of substrate cleaved in the presence of the test compound; and selecting compounds that change the amount of substrate cleaved compared to a control, whereby compounds that modulate the activitγ of the polγpeptide are identified.
72. The method of claim 71 , wherein the test compounds are small molecules, peptides, peptidomimetics, natural products, antibodies or fragments thereof that modulate the activitγ of the polγpeptide.
73. The method of claim 71 , wherein a plurality of the test substances are screened simultaneously.
74. The method of claim 71 , wherein the polypeptide consists essentiallγ of a polγpeptide encoded bγ a sequence of nucleotides selected from the group consisting of a sequence of nucleotides that:
(a) is set forth in SEQ ID No. 5;
(b) hγbridizes under conditions of high stringencγ to nucleic acid complementarγ to an mRNA transcript present in a mammalian cell that encodes CVSP14 encoded bγ (a); (c) encodes a splice variant of (a) or (b); and
(d) comprises degenerate codons of the sequences of nucleotides of (a), (b) or (c).
75. The method of claim 71 , wherein the polγpeptide consists essentiallγ of a polγpeptide selected from the group consisting of: a polγpeptide that comprises a sequence of amino acids encoded bγ the sequence of nucleotides set forth in SEQ ID No. 5; a polγpeptide that comprises a sequence of amino acids encoded bγ the sequence of nucleotides set forth in SEQ ID No. 1 2; a polγpeptide that comprises a sequence of amino acids encoded bγ a sequence of nucleotides that hγbridizes under conditions of high stringencγ to the sequence of nucleotides set forth in SEQ ID No. 5 or 1 2; a polγpeptide that comprises the sequence of amino acids set forth as amino acids of SEQ ID No. 6; a polγpeptide that comprises a sequence of amino acids having at least about 50%, 60%, 70%, 80%, 90% or 95% sequence identitγ with the sequence of amino acids set forth in SEQ ID No. 6 or 1 3; and a polγpeptide that is encoded bγ a sequence of nucleotides that is a splice variant of the sequence set forth in SEQ ID No. 1 3.
76. The method of claim 71 , wherein the change in the amount of substrate cleaved is assessed bγ comparing the amount of substrate cleaved in the presence of the test compound with the amount of substrate cleaved in the absence of the test compound.
77. The method of claim 73, wherein a plurality of the polypeptides are linked to a solid support, either directlγ or via a linker.
78. The method of claim 73, wherein the polγpeptides comprise an arraγ.
79. A method of identifγing a compound that specificallγ binds to a single-chain and/or two-chain protease domain and/or to single or two-chain polγpeptide and/or to proteolγticallγ active portion of the single or two chain form thereof of a CVSP1 4 polγpeptide , comprising: contacting a CVSP1 4 polγpeptide or a proteolγticallγ active portion thereof with a test compound or plurality thereof under conditions conducive to binding thereof; and either: a) identifying test compounds that specificallγ bind to the single chain or two chain form of the polγpeptide or to the single or to a two chain form thereof or to a proteolγticallγ active portion of the single or two chain form thereof, or b) identifγing test compounds that inhibit binding of a compound known to bind a single chain or two chain form of the polγpeptide or to the single or a two chain form thereof or to a proteolγticallγ active portion of the single or two chain form thereof, wherein the known compound is contacted with the polγpeptide before, simultaneouslγ with or after the test compound.
80. The method of claim 79, wherein the polγpeptide is linked either directlγ or indirectlγ via a linker to a solid support.
81 . The method of claim 79, wherein the test compounds are small molecules, peptides, peptidomimetics, natural products, antibodies or fragments thereof .
82. The method of claim 79, wherein a plurality of the test substances are screened simultaneously.
83. The method of claim 79, wherein a plurality of the polypeptides are linked to a solid support.
84. The method of claim 79, wherein the polγpeptide consists essentiallγ of a polγpeptide encoded bγ a sequence of nucleotides that: (a) is set forth in SEQ ID No. 5; (b) hγbridizes under conditions of moderate or high stringencγ to nucleic acid complementarγ to an mRNA transcript present in a mammalian cell that encodes a CVSP1 4 encoded bγ (a);
(c) encodes a splice variant of (a) or (b); and (d) comprises degenerate codons of the sequences of nucleotides of (a), (b) or (c).
85. A method for identifγing activators of the zγmogen form of a CVSP1 4, comprising: contacting a zγmogen form of a CVSP14 polγpeptide or a proteolγticallγ active portion thereof with a substrate of the activated form of the polγpeptide; adding a test compound, wherein the test compound is added before, after or simultaneouslγ with the addition of the substrate; and detecting cleavage of the substrate, therebγ identifγing compounds that activate the zγmogen.
86. The method of claim 85, wherein the substrate is a chromogenic substrate.
87. The method of claim 86, wherein the substrate is a L-pγroglutamγl-L-prolγl-L-arginine-p-nitroaniline hγdrochloride.
88. The method of claim 85, wherein the test compound is a small molecule, a nucleic acid or a polγpeptide.
89. The method of claim 85, wherein the polγpeptide does not comprise the complete sequence set forth in SEQ ID No. 1 3; and the CVSP1 4 portion of the polγpeptide consists essentiallγ of the protease domain of the CVSP14 or a catalγticallγ active portion thereof.
90. A method for treating or preventing a neoplastic disease, in a mammal, comprising administering to a mammal an effective amount of an inhibitor of the proteolγtic activitγ of a polγpeptide of claim 1 .
91 . The method of claim 90, wherein the inhibitor is an antibodγ that specificallγ binds to the polγpeptide, or a fragment or derivative of the antibodγ containing a binding domain thereof, wherein the antibodγ is a polγclonal antibodγ or a monoclonal antibodγ.
92. A method for treating or preventing a neoplastic disease, in a mammal, comprising administering to a mammal an effective amount of an inhibitor of a polγpeptide of claim 3.
93. A method of inhibiting tumor initiation, growth or progression or treating a malignant or pre-malignant condition, comprising administering an agent that inhibits activation of the zγmogen form of a CVSP1 4 polγpeptide or a proteolγticallγ active portion thereof or inhibits an activitγ of the activated form of CVSP1 4 or a proteolγticallγ active portion thereof.
94. The method of claim 93, wherein the condition is a condition of the breast, cervix, prostate, lung, ovarγ or colon.
95. The method of claim 93, wherein the agent is an antisense oligonucleotide, double-stranded RNA (dsRNA) or an antibodγ.
96. The method of claim 93, further comprising administering another treatment or agent selected from anti-tumor and anti-angiogenic treatments or agents.
97. A method of identifγing a compound that binds to the single-chain or two-chain form of a CVSP14 polγpeptide or to a proteolγticallγ active portion of a single-chain or two-chain form of a CVSP1 4 polγpeptide, comprising: contacting a test compound with both forms; determining to which form the compound binds; and if it binds to a form of polγpeptide, further determining whether the compound has at least one of the following properties:
(i) inhibits activation of the single-chain zγmogen form of polγpeptide; (ii) inhibits activitγ of the two-chain or single-chain form; and
(iii) inhibits dimerization of the polγpeptide.
98. A method of detecting neoplastic disease, comprising: detecting a polγpeptide that comprises a polγpeptide of claim 1 in a biological sample, wherein the amount detected differs from the amount of polγpeptide detected from a subject who does not have neoplastic disease.
99. The method of claim 98, wherein the biological sample is selected from the group consisting of blood, urine, saliva, tears, sγnovial fluid, sweat, interstitial fluid, cerebrospinal fluid, ascites fluid, tumor tissue biopsγ and circulating tumor cells.
100. A method of diagnosing the presence of a pre-malignant lesion, a malignancγ, or other pathologic condition in a subject, comprising: obtaining a biological sample from the subject; and exposing it to a detectable agent that binds to a two-chain and/or single- chain form of a CVSP14 polγpeptide, wherein the pathological condition is characterized bγ the presence or absence of the two-chain or single-chain form.
1 01 . A method of monitoring tumor progression and/or therapeutic effectiveness, comprising detecting and/or quantifγing the level of a polγpeptide of CVSP1 4 in a bodγ tissue or fluid sample.
102. The method of claim 101 , wherein the tumor is a tumor of the breast, cervix, prostate, lung, ovarγ or colon.
103. The method of claim 1 01 , wherein the bodγ fluid is blood, urine, sweat, saliva, cerebrospinal fluid and sγnovial fluid.
1 04. A method for identifγing compounds that modulate the protease activitγ of a CVSP1 4 polγpeptide, comprising: contacting a polγpeptide of claim 1 or a proteolγticallγ active portion thereof with a substrate that is proteolγticallγ cleaved bγ the polγpeptide, and, either simultaneouslγ, before or after, adding a test compound or pluralitγ thereof; measuring the amount of substrate cleaved in the presence of the test compound; and selecting compounds that change the amount of substrate cleaved compared to a control, wherebγ compounds that modulate the activitγ of the polγpeptide are identified.
105. A transgenic non-human animal, comprising heterologous nucleic acid encoding a polγpeptide of claim 3.
106. A polγpeptide comprising a portion of a CVSP14 polγpeptide, wherein the CVSP14 portion of the polγpeptide consists essentiallγ of amino acids 1-25 of SEQ ID No. 13.
107. A nucleic acid molecule encoding a polγpeptide of claim 106.
PCT/US2002/009039 2001-03-22 2002-03-20 Nucleic acid molecules encoding serine protease cvsp14, the encoded polypeptides and methods based thereon WO2002077263A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002575305A JP2004535166A (en) 2001-03-22 2002-03-20 Nucleic acid molecule encoding serine protease CVSP14, encoded polypeptide and methods based thereon
CA002441378A CA2441378A1 (en) 2001-03-22 2002-03-20 Nucleic acid molecules encoding serine protease cvsp14, the encoded polypeptides and methods based thereon
EP02723586A EP1383884A4 (en) 2001-03-22 2002-03-20 Nucleic acid molecules encoding serine protease cvsp14, the encoded polypeptides and methods based thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27816601P 2001-03-22 2001-03-22
US60/278,166 2001-03-22

Publications (2)

Publication Number Publication Date
WO2002077263A2 true WO2002077263A2 (en) 2002-10-03
WO2002077263A3 WO2002077263A3 (en) 2003-09-25

Family

ID=23063936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/009039 WO2002077263A2 (en) 2001-03-22 2002-03-20 Nucleic acid molecules encoding serine protease cvsp14, the encoded polypeptides and methods based thereon

Country Status (7)

Country Link
US (1) US7172892B2 (en)
EP (1) EP1383884A4 (en)
JP (1) JP2004535166A (en)
KR (1) KR20040011480A (en)
AU (1) AU2002254357A1 (en)
CA (1) CA2441378A1 (en)
WO (1) WO2002077263A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795655B2 (en) 2005-10-21 2017-10-24 Catalyst Biosciences, Inc. Modified MT-SP1 proteases that inhibit complement activation
US10160961B2 (en) 2008-04-11 2018-12-25 Catalyst Biosciences, Inc. Factor VII polypeptides that are modified and uses thereof
US11266724B2 (en) 2019-08-15 2022-03-08 Catalyst Biosciences, Inc. Modified factor VII polypeptides for subcutaneous administration and on-demand treatment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700341B2 (en) * 2000-02-03 2010-04-20 Dendreon Corporation Nucleic acid molecules encoding transmembrane serine proteases, the encoded proteins and methods based thereon
CN1545553B (en) * 2001-02-01 2011-09-21 弗·哈夫曼-拉罗切有限公司 Method for producing recombinant trypsin
US7125703B2 (en) 2001-03-13 2006-10-24 Dendreon Corporation Nucleic acid molecules encoding a transmembrane serine protease 7, the encoded polypeptides and methods based thereon
NZ527971A (en) 2001-03-27 2006-03-31 Dendreon Corp Nucleic acid molecules encoding a transmembrane serine protease 9, the encoded polypeptides and methods based thereon
JP2005506832A (en) 2001-05-14 2005-03-10 デンドレオン・サンディエゴ・リミテッド・ライアビリティ・カンパニー Nucleic acid molecule encoding transmembrane serine protease 10, encoded polypeptide and method based thereon
US20040001801A1 (en) * 2002-05-23 2004-01-01 Corvas International, Inc. Conjugates activated by cell surface proteases and therapeutic uses thereof
EP1851543A2 (en) * 2005-02-24 2007-11-07 Compugen Ltd. Novel diagnostic markers, especially for in vivo imaging, and assays and methods of use thereof
US8211428B2 (en) 2006-07-05 2012-07-03 Torrey Pines Institute For Molecular Studies Protease screening methods and proteases identified thereby
EP2185933B1 (en) * 2007-08-07 2015-10-07 Oxford Biotherapeutics Ltd. Matriptase protein and uses thereof
EP3074423A1 (en) 2013-11-25 2016-10-05 Oxford BioTherapeutics Ltd Antibodies anti matriptase for the treatment of cancer
US20210395303A1 (en) * 2018-11-08 2021-12-23 Summation Bio, Inc. Mini-nucleosome core proteins and use in nucleic acid delivery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027642A1 (en) * 1999-10-07 2001-04-19 Detroit Diesel Corporation Method and system for determining oil quality
WO2001046407A1 (en) * 1999-12-22 2001-06-28 Lexicon Genetics Incorporated Polynucleotides encoding human protease homologs
WO2001098468A2 (en) * 2000-06-16 2001-12-27 Incyte Genomics, Inc. Proteases
US20020019006A1 (en) * 1999-02-05 2002-02-14 Alphagene,Inc. Proteomic interaction arrays

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US143219A (en) * 1873-09-30 Improvement in separators for coal, ores
US119168A (en) * 1871-09-19 Improvement in fur-boxes
US77697A (en) * 1868-05-05 Tokwald wiittbe
US1801A (en) * 1840-10-08 Construction of self-acting mules fob
US134794A (en) * 1873-01-14 Improvement in leather punches and cutters
US134298A (en) * 1872-12-24 Improvement in raiiway
US170630A (en) * 1875-11-30 Improvement in spinning-wheels
US50251A (en) * 1865-10-03 Improved apparatus for carbureting air
US166851A (en) * 1875-08-17 Improvement in coal-hods
US64856A (en) * 1867-05-21 Daniel fobes
US235900A (en) * 1880-12-28 Buo kel
US19006A (en) * 1857-12-29 Paint compound
US186329A (en) * 1877-01-16 Improvement in buckles
US3536809A (en) 1969-02-17 1970-10-27 Alza Corp Medication method
US3598123A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3630200A (en) 1969-06-09 1971-12-28 Alza Corp Ocular insert
GB1319315A (en) 1969-06-19 1973-06-06 Citizen Watch Co Ltd Calendar timepiece
US3940475A (en) 1970-06-11 1976-02-24 Biological Developments, Inc. Radioimmune method of assaying quantitatively for a hapten
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US4006117A (en) 1973-01-24 1977-02-01 Hooker Chemicals & Plastics Corporation Amine phosphite antioxidants
US3843443A (en) 1973-03-30 1974-10-22 J Fishman Polypeptide materials bound to fluorocarbon polymers
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4008719A (en) 1976-02-02 1977-02-22 Alza Corporation Osmotic system having laminar arrangement for programming delivery of active agent
US4244721A (en) 1979-01-31 1981-01-13 Pedro Buarque De Macedo Method of making composite borosilicate glass articles
JPS6023084B2 (en) 1979-07-11 1985-06-05 味の素株式会社 blood substitute
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4507230A (en) 1982-05-12 1985-03-26 Research Corporation Peptide synthesis reagents and method of use
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4952496A (en) 1984-03-30 1990-08-28 Associated Universities, Inc. Cloning and expression of the gene for bacteriophage T7 RNA polymerase
US4769027A (en) 1984-08-15 1988-09-06 Burroughs Wellcome Co. Delivery system
US4778767A (en) 1984-12-17 1988-10-18 Akzo N.V. Solid phase immunoassay using immunoreagents immobilized on inert synthetic resin surfaces
DE3500180A1 (en) 1985-01-04 1986-07-10 Ernst Prof. Dr. 7400 Tübingen Bayer Graft copolymers from crosslinked polymers and polyoxyethylene, process for their preparation and their use
JPH0645649B2 (en) 1985-04-09 1994-06-15 日東紡績株式会社 Novel method for producing polymer containing isonitrile group
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4687610A (en) 1986-04-30 1987-08-18 E. I. Du Pont De Neumours And Company Low crystallinity polyester yarn produced at ultra high spinning speeds
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
US4902505A (en) 1986-07-30 1990-02-20 Alkermes Chimeric peptides for neuropeptide delivery through the blood-brain barrier
DE3626468A1 (en) 1986-08-05 1988-02-11 Hoechst Ag METHOD AND TEST KIT FOR DETERMINING FREE ACTIVE INGREDIENTS IN BIOLOGICAL LIQUIDS
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5071773A (en) 1986-10-24 1991-12-10 The Salk Institute For Biological Studies Hormone receptor-related bioassays
US5116742A (en) 1986-12-03 1992-05-26 University Patents, Inc. RNA ribozyme restriction endoribonucleases and methods
US5292814A (en) 1987-04-29 1994-03-08 Ernst Bayer Process for the preparation of monodispersed polymer beads
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
CA1323293C (en) 1987-12-11 1993-10-19 Keith C. Backman Assay using template-dependent nucleic acid probe reorganization
US5073543A (en) 1988-07-21 1991-12-17 G. D. Searle & Co. Controlled release formulations of trophic factors in ganglioside-lipsome vehicle
AU618640B2 (en) 1988-11-11 1992-01-02 Boehringer Mannheim Gmbh Process for the expression of a recombinant gene
US5304482A (en) 1989-03-06 1994-04-19 The Board Of Regents Of The University Of Texas System Serine protease mutants of the chymotrypsin superfamily resistant to inhibition by their cognate inhibitors
US5866413A (en) 1989-03-06 1999-02-02 Board Of Regents Of The University Of Texas System Pai-1 mutants
US5550042A (en) 1989-03-06 1996-08-27 The Board Of Regents Of The University Of Texas System Serine protease mutants of the chymotrypsin superfamily resistant to inhibition by their cognate inhibitors and genes encoding the same and serine protease inhibitor mutants and genes encoding the same
EP0462207B1 (en) 1989-03-06 2001-02-07 Board Of Regents, The University Of Texas System T-pa mutants resistant to inhibition by their cognate inhibitors
IT1229203B (en) 1989-03-22 1991-07-25 Bioresearch Spa USE OF 5 METHYLTHETRAHYDROPHOLIC ACID, 5 FORMYLTHETRAHYDROPHOLIC ACID AND THEIR PHARMACEUTICALLY ACCEPTABLE SALTS FOR THE PREPARATION OF PHARMACEUTICAL COMPOSITIONS IN THE FORM OF CONTROLLED RELEASE ACTIVE IN THE THERAPY OF MENTAL AND ORGANIC DISORDERS.
US5925525A (en) 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
US5547839A (en) 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5120548A (en) 1989-11-07 1992-06-09 Merck & Co., Inc. Swelling modulated polymeric drug delivery device
US5215899A (en) 1989-11-09 1993-06-01 Miles Inc. Nucleic acid amplification employing ligatable hairpin probe and transcription
US5861274A (en) 1990-03-22 1999-01-19 The Salk Institute For Biological Studies Nucleic acids encoding peroxisome proliferator-activated receptor
US5733566A (en) 1990-05-15 1998-03-31 Alkermes Controlled Therapeutics Inc. Ii Controlled release of antiparasitic agents in animals
US5256643A (en) 1990-05-29 1993-10-26 The Government Of The United States Human cripto protein
US5401629A (en) 1990-08-07 1995-03-28 The Salk Institute Biotechnology/Industrial Associates, Inc. Assay methods and compositions useful for measuring the transduction of an intracellular signal
WO1992011933A1 (en) 1991-01-04 1992-07-23 Perseptive Biosystems, Inc. Sulfonamide bonded hydrophilic coatings
DE69232537T2 (en) 1991-09-17 2002-10-24 Salk Inst For Biolog Studies L RECEPTORS OF THE STEROID / THYROID SUPERFAMILY OF RECEPTORS
US5270170A (en) 1991-10-16 1993-12-14 Affymax Technologies N.V. Peptide library and screening method
US5580578A (en) 1992-01-27 1996-12-03 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5643578A (en) 1992-03-23 1997-07-01 University Of Massachusetts Medical Center Immunization by inoculation of DNA transcription unit
WO1994005807A1 (en) 1992-08-28 1994-03-17 Dickson Robert B Matrix-degrading metalloproteinase
US5591767A (en) 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
US5354934A (en) 1993-02-04 1994-10-11 Amgen Inc. Pulmonary administration of erythropoietin
US5354566A (en) 1993-06-02 1994-10-11 Kraft General Foods, Inc. Preparation of yeast-leavened dough crusts
US5612474A (en) 1994-06-30 1997-03-18 Eli Lilly And Company Acid labile immunoconjugate intermediates
IT1270594B (en) 1994-07-07 1997-05-07 Recordati Chem Pharm CONTROLLED RELEASE PHARMACEUTICAL COMPOSITION OF LIQUID SUSPENSION MOGUISTEIN
EP0699763B1 (en) 1994-07-29 1998-09-30 Teijin Limited Nucleic acid sequence encoding trypsin-like enzyme and process for producing the enzyme
US5589154A (en) 1994-11-22 1996-12-31 Rutgers, The State University Of New Jersey Methods for the prevention or treatment of vascular hemorrhaging and Alzheimer's disease
WO1996037553A1 (en) 1995-05-25 1996-11-28 Asahi Glass Company Ltd. Vinyl chloride resin compositions
US5869451A (en) 1995-06-07 1999-02-09 Glaxo Group Limited Peptides and compounds that bind to a receptor
US5795872A (en) 1995-09-19 1998-08-18 Pharmadigm, Inc. DNA construct for immunization
US6323332B1 (en) 1998-01-21 2001-11-27 The Burnham Institute Sulfotransferase for HNK-1 glycan
US5972616A (en) 1998-02-20 1999-10-26 The Board Of Trustees Of The University Of Arkansas TADG-15: an extracellular serine protease overexpressed in breast and ovarian carcinomas
US6337072B1 (en) 1998-04-03 2002-01-08 Hyseq, Inc. Interleukin-1 receptor antagonist and recombinant production thereof
CA2296792A1 (en) 1999-02-26 2000-08-26 Genset S.A. Expressed sequence tags and encoded human proteins
US6291663B1 (en) 1999-03-03 2001-09-18 Board Of Trustees Of The University Of Arkansas TADG-12: a novel transmembrane serine protease overexpressed in a ovarian carcinoma
US20030186329A1 (en) 1999-03-22 2003-10-02 The Scripps Research Institute Use of substrate subtraction libraries to distinguish enzyme specificities
US20030175938A1 (en) * 1999-05-07 2003-09-18 Human Genome Sciences, Inc. Serine protease polynucleotides, polypeptides, and antibodies
AU1630501A (en) * 1999-10-08 2001-04-23 Superarray, Inc. Compositions and methods for detecting protein modification and enzymatic activity
US20030077697A1 (en) 1999-11-17 2003-04-24 Gerlach Valerie L. Novel serine/threonine protein-kinase like proteins and nucleic acids encoding the same
US7700341B2 (en) 2000-02-03 2010-04-20 Dendreon Corporation Nucleic acid molecules encoding transmembrane serine proteases, the encoded proteins and methods based thereon
CA2412635A1 (en) * 2000-06-26 2002-01-03 Sugen, Inc. Novel proteases
JP4452441B2 (en) 2000-07-21 2010-04-21 シェーリング コーポレイション Novel peptides as NS3-serine protease inhibitors of hepatitis C virus
EP1315800A2 (en) * 2000-07-21 2003-06-04 Incyte Genomics, Inc. Human proteases
DE60034447T2 (en) 2000-08-11 2008-02-14 Wilex Ag Noncovalent urokinase and angiogenesis inhibitors
US7157596B2 (en) 2000-09-08 2007-01-02 Dendreon Corporation Inhibitors of serine protease activity of matriptase or MTSP1
US6541234B1 (en) * 2000-09-11 2003-04-01 University Of Maryland Biotechnology Institute Calcium free subtilisin mutants
US6365391B1 (en) * 2000-09-27 2002-04-02 Pe Corporation (Ny) Isolated human serine protease, nucleic acid molecules encoding human serine protease, and uses thereof
US6541235B1 (en) * 2000-09-29 2003-04-01 University Of Maryland Biotechnology Institute Calcium free subtilisin mutants
AU2002232558A1 (en) 2000-12-12 2002-06-24 Corvas International, Inc. Compounds, compositions and methods for treatment of parasitic infections
US20030170630A1 (en) 2000-12-21 2003-09-11 Alsobrook John P. Proteins and nucleic acids encoding same
US7125703B2 (en) 2001-03-13 2006-10-24 Dendreon Corporation Nucleic acid molecules encoding a transmembrane serine protease 7, the encoded polypeptides and methods based thereon
NZ527971A (en) 2001-03-27 2006-03-31 Dendreon Corp Nucleic acid molecules encoding a transmembrane serine protease 9, the encoded polypeptides and methods based thereon
JP2005506832A (en) 2001-05-14 2005-03-10 デンドレオン・サンディエゴ・リミテッド・ライアビリティ・カンパニー Nucleic acid molecule encoding transmembrane serine protease 10, encoded polypeptide and method based thereon
AU2002315525A1 (en) 2001-07-03 2003-01-21 Dendreon San Diego Llc Nucleic acid molecules encoding a transmembrane serine protease 20, the encoded polypeptides and methods based thereon
WO2003031585A2 (en) 2001-10-09 2003-04-17 Dendreon Corporation Transmembrane serine protease 25
WO2003044179A2 (en) 2001-11-20 2003-05-30 Dendreon San Diego Llc Nucleic acid molecules encoding serine protease 17, the encoded polypeptides and methods based thereon
US20040001801A1 (en) 2002-05-23 2004-01-01 Corvas International, Inc. Conjugates activated by cell surface proteases and therapeutic uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020019006A1 (en) * 1999-02-05 2002-02-14 Alphagene,Inc. Proteomic interaction arrays
WO2001027642A1 (en) * 1999-10-07 2001-04-19 Detroit Diesel Corporation Method and system for determining oil quality
WO2001046407A1 (en) * 1999-12-22 2001-06-28 Lexicon Genetics Incorporated Polynucleotides encoding human protease homologs
WO2001098468A2 (en) * 2000-06-16 2001-12-27 Incyte Genomics, Inc. Proteases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1383884A2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795655B2 (en) 2005-10-21 2017-10-24 Catalyst Biosciences, Inc. Modified MT-SP1 proteases that inhibit complement activation
US10160961B2 (en) 2008-04-11 2018-12-25 Catalyst Biosciences, Inc. Factor VII polypeptides that are modified and uses thereof
US11203749B2 (en) 2008-04-11 2021-12-21 Catalyst Biosciences, Inc. Factor VII polypeptides that are modified and uses thereof
US11266724B2 (en) 2019-08-15 2022-03-08 Catalyst Biosciences, Inc. Modified factor VII polypeptides for subcutaneous administration and on-demand treatment

Also Published As

Publication number Publication date
AU2002254357A1 (en) 2002-10-08
US20030181658A1 (en) 2003-09-25
EP1383884A2 (en) 2004-01-28
CA2441378A1 (en) 2002-10-03
EP1383884A4 (en) 2004-12-15
KR20040011480A (en) 2004-02-05
WO2002077263A3 (en) 2003-09-25
JP2004535166A (en) 2004-11-25
US7172892B2 (en) 2007-02-06

Similar Documents

Publication Publication Date Title
US7888092B2 (en) Nucleic acid molecules encoding transmembrane serine proteases, the encoded proteins and methods based thereon
EP1252300B1 (en) Nucleic acid molecules encoding transmembrane serine proteases, the encoded proteins and methods based thereon
US7112430B2 (en) Nucleic acid molecules encoding a transmembrane serine protease 10, the encoded polypeptides and methods based thereon
US7105333B2 (en) Nucleic acid molecules encoding a transmembrane serine protease 9, the encoded polypeptides and methods based thereon
US7172892B2 (en) Nucleic acid molecules encoding serine protease CVSP14, the encoded polypeptides and methods based thereon
US20030143219A1 (en) Nucleic acid molecules encoding a transmembrane serine protease 25, the encoded polypeptides and methods based thereon
WO2003044179A2 (en) Nucleic acid molecules encoding serine protease 17, the encoded polypeptides and methods based thereon
WO2003004681A2 (en) Nucleic acid molecules encoding a transmembrane serine protease 20, the encoded polypeptides and methods based thereon
US7125703B2 (en) Nucleic acid molecules encoding a transmembrane serine protease 7, the encoded polypeptides and methods based thereon
US20050112579A1 (en) Nucleic acid molecules encoding serine protease 16, the encoded polypeptides and methods based thereon
US7276364B1 (en) Nucleic acids encoding endotheliases, endotheliases and uses thereof
WO2003104394A2 (en) Nucleic acid molecules encoding a transmembrane serine protease 12, the encoded polypeptides and methods based thereon
AU2002252531A1 (en) Nucleic acid molecules encoding a transmembran serine protease 9, the encoded polypeptides and methods based thereon
AU2002305595A1 (en) Nucleic acid molecules encoding a transmembrane serine protease 10, the encoded polypeptides and methods based thereon
NZ529387A (en) An endotheliase 1 protease or protease domain thereof, nucleic acids encoding therefor, uses thereof and recombinant non-human animals comprising the protein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 527970

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2002254357

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2441378

Country of ref document: CA

Ref document number: 1020037012261

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002575305

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002723586

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 2002723586

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642