WO2002080421A1 - Alignment of tdm-based signals - Google Patents

Alignment of tdm-based signals Download PDF

Info

Publication number
WO2002080421A1
WO2002080421A1 PCT/US2002/004451 US0204451W WO02080421A1 WO 2002080421 A1 WO2002080421 A1 WO 2002080421A1 US 0204451 W US0204451 W US 0204451W WO 02080421 A1 WO02080421 A1 WO 02080421A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
packet
tdm
packets
packet engine
Prior art date
Application number
PCT/US2002/004451
Other languages
French (fr)
Other versions
WO2002080421A8 (en
Inventor
Michael Mcclary
Sharath Narahari
David R. Stiles
Original Assignee
Redback Networks Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Redback Networks Inc. filed Critical Redback Networks Inc.
Priority to GB0323562A priority Critical patent/GB2390278B/en
Priority to AU2002306492A priority patent/AU2002306492A1/en
Publication of WO2002080421A1 publication Critical patent/WO2002080421A1/en
Publication of WO2002080421A8 publication Critical patent/WO2002080421A8/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1623Plesiochronous digital hierarchy [PDH]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13003Constructional details of switching devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13174Data transmission, file transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13216Code signals, frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1329Asynchronous transfer mode, ATM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13292Time division multiplexing, TDM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13296Packet switching, X.25, frame relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13332Broadband, CATV, dynamic bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13389LAN, internet

Definitions

  • the invention related to the field of telecommunications. More specifically the invention relates to alignment of Time Division Multiplexing (TDM) signals for packet transmission using framed and unframed operations.
  • TDM Time Division Multiplexing
  • TDM Time Division Multiplexing
  • IP Internet Protocol
  • PPP Point-to-Point Protocol
  • Figure 1 illustrates a prior art traffic or line card within a network element for processing of packet-based data that is wrapped in different formats for transmission
  • line card 100 that includes receiving unit 120 and transmitting unit 122.
  • Receiving unit 120 includes deframer unit 102 that is coupled to packet engine unit 104, which in turn is coupled to packet processor 106.
  • Transmitting unit 122 includes packet processor 108 that is coupled to packet engine unit 110, which in turn is coupled to framer unit 112.
  • the packet-based data being received by and transmitted out from deframer unit 102 and framer unit 112, respectively, is encapsulated or wrapped into different formats or protocols.
  • one type of such format could include Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH).
  • SONET Synchronous Optical Network
  • SDH Synchronous Digital Hierarchy
  • deframer unit 102 receives the encapsulated packet- based data and removes the payload of this encapsulated data, which is the packet- based data. Deframer unit 102 then forwards this payload to packet engine unit 104. Packet engine unit 104 locates the packet boundaries within the payload and forwards the packets to packet processor 106. Accordingly, packet processor 106 can perform various packet operations on such packets. For example, if the packets are Internet Protocol (IP) packets, packet processor 106 can include a forwarding table for forwarding these IP packets to other locations within the network that contains the network element that includes line card 100.
  • IP Internet Protocol
  • packet processor 108 receives packets from other locations in the networks, such as IP routers for IP packets, and forwards such packets to packet engine unit 110.
  • Packet engine unit 110 combines these packets into payloads of the protocol associated with the transmitting line coupled to framing unit 112. Packet engine unit 110 then forwards these payloads to framer unit 112.
  • Framer unit 112 then encapsulates these payloads into the protocol for the transmitting line and forwards these encapsulated payloads thereon.
  • Figure 2 illustrates a different prior art traffic or line card within a network element for processing of TDM traffic, including telephone calls, through a packet- based network.
  • Figure 2 includes line card 200 that allows for voice over IP and includes receiving unit 220 and transmitting unit 222.
  • Receiving unit 220 includes deframer unit 202 that is coupled to interface unit 204 that is coupled to digital signal processor 206, which in turn is coupled to packet processor 208.
  • Transmitting unit 222 includes packet processor 210 that is coupled to digital signal processor 212 that is coupled to interface unit 214, which in turn is coupled to framer unit 216.
  • the input into receiving unit 220 is TDM carrying telephone lines, such as Data Signal (DS)-3s and DSls.
  • DS Data Signal
  • 24 DS0 data streams, each associated with a given telephone call, are interleaved within a DS
  • 28 DS1 data streams can be interleaved into a single DS3.
  • Deframer unit 202 receives the DS3s or DSl s and removes the DSOs contained therein.
  • the DS3 and DSl data streams contain overhead bits that indicate the beginning of the DS3, DSl and DSO frames within such data streams.
  • deframer unit 202 transmits signals indicating the beginning and ending points of these DSO data streams (i.e., frame alignment data) based on the overhead bits contained in the DS3 and DSl data streams. In other words, deframer unit 202 removes overhead bits, including framing bits, and transmits the payload (the DSOs data streams) along with frame alignment data indicating the beginning and ending points of the DSO data streams to interface unit 204.
  • Interface unit 204 receives the interleaved DSO data streams and formats such streams for processing by digital signal processor 206.
  • Digital signal processor 206 receives the 24 interleaved DSO data streams, which are effectively 24 separate telephone calls, and separates the DSO data streams and creates 24 separate packet streams for subsequent packet processing and transmission. Moreover, digital signal processor 206 may compress some or all of 24 packet streams for subsequent transmission. Digital signal processor 206 then transmits these packet streams to packet processor 208. Packet processor 208 typically acts as a router using a forwarding table to router the packets through the network to the destined location.
  • line card 200 is typically located within a network element wherein the real estate for the racks holding the line cards of such network elements is considered to be expensive due to space limitations.
  • such network elements are typically located a central office or on the premises of large customers.
  • all of the hardware within line card 200, including interface unit 204 and digital signal processor 206, are considered very costly in terms of real estate.
  • digital signal processor 206 tends to consume a relatively large amount of power, which needs to be limited in this location.
  • digital signal processor 206 conventionally includes processing power that can handle more TDM signals than is provided at such locations.
  • FIG. 3 illustrates a prior art TDM switch for switching of DSO data streams.
  • This TDM switch also termed a class 4 or class 5 switch, includes TDM bus 304, which is coupled to time-slot interchanger 302, (de)framer units 306-310 and DSO interface 312.
  • DSO interface 312 is an interface that couples a number of DSOs from a number of different sources to TDM bus 304.
  • DSO interface 312 could receive such DSOs from a Plain Old Telephone Service (POTS) line or to other sources that generate DSOs.
  • POTS Plain Old Telephone Service
  • (De)framer units 306-310 typically receive a number of DS3 and/or DSl signals from external transmission lines and break such signals down into the DSOs contained therein.
  • DSOs are placed onto TDM bus 304 from (de)framer units 306-310 and DSOs 312. Such DSOs are then transmitted to time-slot interchanger 302 wherein the DSOs are re-ordered and routed back out from the TDM switch through (de)framer units 306-310 and DSOs 213.
  • time-slot interchanger 302 could receive a first DSO originating from a DS3 signal from (de)framer unit 306 and transmit this DSO out (de)framer unit 310.
  • time-slot interchanger 302 could receive a second DSO originating from a DSl signal from (de)framer unit 308 and transmit this DSO out (de)framer unit 310.
  • (de)framer unit 310 could place these two DSOs along with 22 other DSOs into a DSl signal and transmit this DSl signal out from the TDM switch of Figure 3.
  • the TDM switch of Figure 3 acts as a TDM cross-connect by allowing for the switching of TDM data at the DSO level.
  • a line card in a network element includes a deframer unit that receives a Time Division Multiplexing (TDM) signal.
  • the TDM signal includes a payload and overhead data.
  • the deframer generates frame alignment data based on the overhead data.
  • the line card also includes a packet engine unit coupled to the deframer unit.
  • the packet engine unit receives the payload, the overhead data and the frame alignment data and generates a number of packet engine packets.
  • the packet engine packets represent a frame within the TDM signal such that the packet engine packets include the payload, the overhead data and the frame alignment data.
  • the line card includes a packet processor coupled to the deframer unit. The packet processor receives the packet engine packets and generates network packets based on the packet engine packets.
  • a method in another embodiment, includes receiving a TDM signal that includes overhead data and payload data. Frame alignment data is generated based on locations of frame boundaries within the TDM signal. The method also includes placing the TDM signal into packet engine packets based on the frame boundaries within the TDM signal. The overhead data, the payload data and the frame alignment data are within packet engine packets. Each packet engine packet corresponds to a frame within the TDM signal. The method also includes encapsulating the packet engine packets into network packets.
  • Figure 1 illustrates a prior art traffic or line card within a network element for processing of packet-based data that is wrapped in different formats for transmission;
  • Figure 2 illustrates a different prior art traffic or line card within a network element for processing of TDM traffic through a packet-based network
  • FIG. 3 illustrates a prior art TDM switch for switching of DSO data streams
  • Figure 4 is block diagram illustrating a system that incorporates embodiments of the present invention.
  • Figure 5 illustrates portions of in-ring network elements 102-108, according to embodiments of the present invention
  • FIG. 6 illustrates portions of line card 502, according to embodiments of the present invention.
  • Figure 7 illustrates a superframe DSl signal and packet engine packets created there from, according to embodiments of the present invention.
  • Figure 8 shows packet engine packets corresponding to DSl frames within a DSl superframe, according to embodiments of the present invention.
  • Figure 4 is block diagram illustrating a system that incorporates embodiments of the present invention.
  • system 400 that includes network ring 414, which is comprised of in-ring network element 402, in-ring network element 404, in-ring network element 406 and in-ring network element 408.
  • System 400 also include non-ring network element 410, non-ring element 411 and non-ring network element 412, which are coupled to network ring 414 through in-ring network element 402, in-ring network element 404 and in-ring network element 406, respectively.
  • non-ring elements 410-412 can be routers, switches, bridges or other types of network element that switch data across a network.
  • connection among in-ring network element 402, in-ring network element 404, in-ring network element 406 and in-ring network element 408 allow for bi-directional traffic. Accordingly, this bi-directional capability allows for redundancy in the communication between the different network elements, such that if a given line of communication is lost, the data traffic to be transmitted thereon can be rerouted in the opposite direction to reach its intended destination within the ring architecture.
  • system 400 transmits data traffic among the different network elements, both in-ring and non-ring, employing the Synchronous Optical Network (SONET) standard or Synchronous Digital Hierarchy (SDH).
  • SONET Synchronous Optical Network
  • SDH Synchronous Digital Hierarchy
  • embodiments of the present invention are not so limited, as data traffic among the different network elements can be transferred using other types of transmission standards. Examples of other types of transmission standards can include, but are not limited to, TI, T3, Jl, El, E3, Data Signal (DS)3 and DSl signals.
  • data traffic among in-ring network element 402, in-ring network element 404, in-ring network element 406 and in-ring network element 408 includes TDM traffic and packet traffic within a same Time Division Multiplexing (TDM) signal.
  • TDM Time Division Multiplexing
  • network elements are used that can transmit and receive TDM ring traffic.
  • the network elements provide two different switching techniques - TDM and packet.
  • the packet switching can support any number of protocols including layer 2 and layer 3 type protocols such as ATM, Ethernet, Frame Relay, etc.
  • the network elements are implemented to be able to: l)programmably select on an STS basis certain of the incoming TDM traffic to be extracted and packet switched rather than TDM switched; and/or 2) receive packet traffic in another form and to be packet switched.
  • the switched traffic going back onto the ring is put in TDM format and transmitted out.
  • each time traffic is packet switched, that traffic can be statistically multiplexed (e.g., the packets can be selectively dropped based on various criteria).
  • system 400 is by way of example and not by way of limitation, as embodiments of the present invention can be incorporated in other types of systems.
  • other such systems could incorporate less or more network elements into the network ring and/or network elements attached thereto.
  • embodiments of the present invention are not limited to the network ring architecture as illustrated in Figure 4.
  • Examples of other types of network architectures that can incorporate embodiments of the present invention include, but are not limited to, a point-to-point configuration, point-to-multipoint configuration and/or a hub configuration, hi addition, embodiments of the present invention are not limited to TDM networks, but also apply to Wave Division Multiplexing (WDM) networks.
  • WDM Wave Division Multiplexing
  • Network element 402 includes line cards 502a-d and control card(s) 520, such that control card(s) 520 are coupled to each of line cards 502a-d.
  • the number of line cards illustrated are for the sake of simplicity and not by way of limitation, as a lesser or greater number of line cards can be included within network element 402.
  • network element 402 includes a first switch fabric, packet mesh 526, which includes a full mesh such that each of line cards 502a-d is coupled to one another.
  • line card 502a is coupled to line cards 502b-d through packet mesh 526.
  • embodiments of the present invention are not limited to a full mesh for the transmission of packets among line cards 502a-d, as any type of switching method that switches based on the addressing scheme described herein can be incorporated into embodiments of the present invention.
  • line cards 502a-d could be coupled together using a switch fabric, such that the line cards are coupled to a control card, which provides for the switching therein.
  • Line cards 502a-d include physical connection circuitry 510a-d, ingress packet processing circuitry 512a-d and egress packet processing 514a-d, respectively.
  • Physical connection circuitry 510a-d can be coupled to lines external to network element 402, as shown, which can carry optical and/or electrical signals, which is described in more' detail below in conjunction with Figure 7.
  • line cards 502a-d of network element 402 may be connected to an optical line transmitting SONET OC-N signals.
  • line cards 502a-d of network element 402 may be connected to an electrical line such as a TI, T3, Jl, El, E3, Ethernet, Gigabit Ethernet, etc.
  • control cards(s) 520 include TDM switching circuitry 516.
  • each line card 502a-d can be coupled to four optical and/or electrical lines. In another embodiment, each line card 502a-d can be coupled to eight optical and/or electrical lines. In one embodiment, each line card 502a-d can be coupled to 12 electrical (T3) lines. However, embodiments of the present invention are not so limited, as a lesser or greater number of optical and/or electrical lines can be coupled to network element 402 through line cards 502a-d.
  • physical connection circuitry 510a-d are coupled to ingress packet processing circuitry 512a-d, respectively, such that packet data being received from the optical and/or electrical lines is passed from physical connection circuitry 510a-d to ingress packet processing circuitry 512a-d, respectively, hi one embodiment, the packet data is extracted from a TDM signal, which is described in more detail below.
  • Ingress packet processing circuitry 512a-d is coupled to packet mesh 526. Accordingly, each ingress packet processing circuitry 512a-d is coupled to each egress packet processing circuitry 514a-d, respectively, on other line cards 502a-d through packet mesh 526. Moreover, egress packet processing circuitry 514a-d is respectively coupled to physical connection circuitry 51 Oa-d, such that packet data traffic coming in from packet mesh 526 from ingress packet processing circuitry 512a-d is transmitted from egress packet processing circuitry 514a-d to physical connection circuitry 51 Oa-d, respectively. Line cards incorporated into embodiments of the present invention are not limited to those illustrated by line cards 502a-d.
  • the network elements can have different line card configurations from that shown by line cards 502a-d.
  • a given in-ring network element could be limited to a single line card that can receive and transmit TDM traffic(which may include packet traffic) within network ring 414, employing multiple interfaces for the receipt and transmittal of TDM traffic.
  • a given in-ring network element can include a first line card to receive TDM traffic (which may include packet traffic) from another in-ring element, while a second line card can transmit TDM traffic to another or same in-ring network element.
  • a third line card can be incorporated into this given in-ring network element to add, drop and transmit different types of traffic including different types of packet traffic, such as ATM, Frame Relay, IP, etc, received and transmitted to a non-ring network element.
  • a given network element may include a single line card with multiple interfaces such that a first interface receives TDM traffic from another in-ring network element, a second interface transmits TDM traffic to another in-ring network element and a third interface adds, drops and transmits traffic, such as packet traffic to a non-ring network element.
  • a line card is used either to connect to an in-ring network element to form part of the ring, or to provide communication with out-of ring network elements.
  • layer 2/3 traffic from out-of-ring network element can come in, go through the packet mesh to a line card connected to an in-ring network element, and then out onto the ring being carried by a SONET frame; 2) layer 2/3 traffic coming from an out-of-ring network element can be de-mapped into SONET, go through the TDM switch fabric to a line card connected to an in-ring network element, and then out onto the ring being carried by a SONET frame; 3) TDM traffic coming from an out-of-ring network element can come in, go through the TDM switch fabric to a line card connected to an in-ring network element, and then out onto the ring being carried by a SONET frame; 4) TDM traffic carrying layer 2/3 traffic can be processed to extract the layer 2/3 traffic, with the layer
  • a second switch fabric (in addition to packet mesh 526) is formed among line cards 502a-d and TDM switching circuitry 516 of control cards 520, as illustrated by the dashed lines in Figure 5.
  • physical connection circuitry 51 Oa-d is coupled to TDM switching circuitry 516 for the receiving and transmitting of TDM traffic into and out of network element 402. Accordingly, TDM switching circuitry 516 receive TDM traffic from physical connection circuitry 51 Oa-d and switches this traffic to any of physical connection circuitry 51 Oa-d, based on configuration data for the timeslots of the TDM traffic.
  • TDM switching circuitry 516 could be configured such that data within the first ten timeslots of a TDM signal, such as a SONET/SDH signal, received on a first interface of physical connection circuitry 510a are forwarded out the first five timeslots of a TDM signal being transmitted out from a first interface of physical connection circuitry 51 Od.
  • a TDM signal such as a SONET/SDH signal
  • Figure 6 illustrates portions of line card 502, according to embodiments of the present invention.
  • Figure 6 illustrates portions of physical connection circuitry 510, ingress packet processing circuitry 512 and egress packet processing circuitry 514.
  • Physical connection circuifry 510 includes those blocks to the left of dashed line 650, while ingress packet processing circuitry 512 and egress packet processing circuitry 514 include those blocks to the right of dashed line 650.
  • Physical connection circuitry 510 includes deframer unit 602, packet engine 604, framer unit 612 and packet engine 610.
  • Ingress packet processing circuitry 512 includes packet processor 606, while egress packet processing circuitry 514 includes packet processor 608.
  • line card 502 of Figure 6 is broken into ingress and egress units, as described above in conjunction with Figure 5.
  • Ingress unit 620 includes those blocks above dashed line 652, and egress unit 622 includes those blocks below dashed line 652.
  • ingress unit 620 includes deframer unit 602, packet engine 604 and packet processor 606, while egress unit 622 includes framer unit 612, packet engine 610 and packet processor 608.
  • Ingress unit 602 receives a data signal, such as a number of DS3 signals, external to the network element, containing line card 502, through deframer unit 602.
  • Deframer unit 602 is coupled to packet engine unit 604 through payload signal 630, frame alignment signal 632 and overhead data signal 634.
  • signals 630-634 are for the sake of clarity and not by way of limitation.
  • Packet engine unit 604 is coupled to packet processor 604, which is coupled to packet mesh 526 (shown in Figure 5).
  • Egress unit 622 receives packets from packet mesh 526 (shown in Figure 5) through packet processor 608.
  • Packet processor 608 is coupled to packet engine unit 610.
  • packet engine unit 610 is coupled to framer unit 612 through payload signal 636, frame alignment signal 638 and overhead data signal 640.
  • the delineation of signals 636-640 is for the sake of clarity and not by way of limitation.
  • Framer unit 612 is coupled to an external data signal, such as a number of DS3 signals.
  • Ingress unit 620 receives a data signal, such as a number of DS3 signals, external to the network element, containing line card 502, through deframer unit 602.
  • deframer unit 602 receives a DS3 signal and extracts the 28 DSl signals contained therein, as is known in the art.
  • the subsequent operation of deframer unit 602, packet engine 604 and packet processor 606 will be described in terms of one of the 28 DSl signals extracted from the incoming DS3 signal.
  • the given DSl signal used to illustrate the operation of line card 502 will be a DSl superframe signal, as is known in the art. This is by way of example and not by way of limitation as signals employing other formats can be incorporated into embodiments of the present invention.
  • an extended superframe could be processed by line card 502.
  • other types of TDM-based signals such as a DS3, El or Jl signal, could be used.
  • Figure 7 illustrates a DSl superframe according to embodiments of the present invention.
  • Figure 7 includes DSl superframe 700.
  • a DSl superframe includes 12 DSl frames.
  • DSl superframe 700 includes the first two and the last DSl frame within a DSl superframe.
  • DSl superframe 700 includes DSl frame 702, DSl frame 712 and DSl frame 732.
  • each of DSl frames 702, 712 and 732 include overhead bits and a number of DSOs, as is known in the art.
  • a given DSl frame includes 24 DSOs.
  • DSl frame 702 includes overhead bit 704 and DSOs 706, while DSl frame 712 includes overhead bit 714 and DSOs 716.
  • DSl frame 732 includes overhead bit 734 and DSOs 736.
  • deframer unit 602 locates the beginning of DSl superframe 700 as well as the locations of each DSl frame contained therein. For example, deframer unit 602 identifies the beginning of DSl 702, 712 and 732. Moreover, in an embodiment, deframer unit 602 extracts overhead bits 704, 714 and 734 from DSl 702, 712 and 732, respectively. Accordingly, deframer unit 602 transmits DSOs 706, 716 and 736 across payload signal 630 and overhead bits 704, 714 and 734 across overhead data signal 634.
  • deframer unit 602 transmits frame alignment data, including the beginning of DSl superframe 700 as well as the beginning of each of DSl 702, 712 and 732, across frame alignment signal 632. As illustrated, deframer unit 602 transmits the payload (e.g., the DSOs), the overhead data (i.e., overhead bits) as well as frame alignment data (not just the payload of an incoming signal) to packet engine unit 604.
  • the payload e.g., the DSOs
  • the overhead data i.e., overhead bits
  • frame alignment data not just the payload of an incoming signal
  • Packet engine unit 604 receives the DSOs, the overhead bits and the framing alignment data from deframer unit 602 and processes the data.
  • the processing of data by packet engine unit 604 includes the generation of packet engine packets such that each packet engine packet corresponds to a DSl frame including the payload of DSOs and the overhead bits.
  • Packet engine packets 800 include packets 802, 808 and 814 that correspond to DSl frames 702, 712 and 732 of Figure 7, respectively.
  • a packet engine packet includes a header byte along with a payload. The payload of such packets includes the DSOs from the DSl frames.
  • packet engine packet 802 includes DSOs 706 of DSl frame 702 along with header byte 806, which includes start of frame group (SOFG) 804 and overhead bit 704.
  • SOFG 804 is part of the frame alignment data generated by deframer unit 602 and indicates whether the DSl frame contained in the payload of the network engine packet is the first DSl frame within the superframe. For example, for DSl frame 702, which is the first DSl frame in DSl superframe 700, SOFG 804 will indicate that this is the first frame in DSl superframe 700, while SOFG 810 and 816 of packets 808 and 814, respectively, would indicate that they are not the first frame within DSl superframe 700.
  • this SOFG data could indicate other frame alignment data.
  • the signal being transmitted to packet engine unit 604 is a DS3 signal
  • this SOFG data could indicate the first subframe within the DS3 signal.
  • Overhead bit 704 is the overhead bit from DSl frame 702.
  • packet engine packet 808 includes DSOs 716 of DSl frame 712 along with header byte 812, which includes start of frame group (SOFG) 810 and overhead bit 714.
  • Packet engine packet 814 includes DSOs 736 of DSl frame 732 along with header byte 818, which includes start of frame group (SOFG) 816 and overhead bit 734.
  • packet engine unit 604 generates packet engine packets based on DSl frames such that the entire framing structure including the payload and overhead bits are included therein. Moreover, these packet engine packets also included the framing alignment data generated by deframer unit 602 within the header bytes of these packets.
  • Packet engine unit 604 transmits packet engine packets 800 to packet processor 606.
  • Packet processor 606 generates a header for deployment as a network packet through packet mesh 526 (shown in Figure 5) to egress unit 622 of another or same line card within a given network element.
  • the network packet generated is an IP packet.
  • embodiments of the present invention are not so limited, as any other type of packet can be generated by packet processor 606.
  • packet processor 608 receives a number of packets from packet mesh 526 (shown in Figure 5) destined to be outputted from line card 502 on which packet processor 608 is residing.
  • each packet being received is associated with a frame for a given TDM signal.
  • the packet could include a DSl subframe within a DS3 signal.
  • the packet could include a frame within a DSl superframe or extended superframe signal.
  • the above examples of the types of frames that can be included within the packets being received by packet processor 608 are by way of example and not by way of limitation, as other types of frames within TDM signals can be included.
  • Packet processor 608 removes the packet header placed on the packet by packet processor 606 from which the packet originated, thereby leaving packet engine packets as illustrated by Figure 8. Packet processor 608 forwards these packets to packet engine unit 610. In an embodiment, packet unit 610 forwards the payload of a packet engine packet across payload signal 636. Using the example used for ingress unit 620 of a DSl superframe signal, the payload for the packet engine packets will include the DSOs for the DSl frame included in the packet. Returning to Figure 8 to help illustrate, for packet 802, DSOs 706 will be transmitted across payload signal 636.
  • packet engine unit 610 transmits the overhead bits for the DSl frame to framer unit 612 across overhead data signal 638. For example, for packet 802, overhead bit 704 is transmitted across overhead data signal 638. In one embodiment, packet engine unit 610 also transmits frame alignment data for the DSl frame to framer unit 612 across frame alignment signal 640. For example for packet 802, SOFG 804 is transmitted across frame alignment signal 640. Framer unit 612 receives the DSOs, the overhead data and the frame alignment data and aligns the DSl signal using bit stuffing operations when necessary and transmitting the DSl signal out from egress unit 622, as is known in the art.
  • frame alignment data would be transmitted by framer unit 612 to packet engine unit 610 across frame alignment signal 640, thereby allowing packet engine unit 610 to locate the boundaries for the signal to be transmitted.
  • packet engine unit 610 performs the necessary bit stuffing operations for alignment the signal.
  • framer unit 612 receives a timing reference and generates the frame structure of the signals by counting positions.
  • the timing reference may include a synchronization pulse to mark the start of a frame.
  • the internal counter of framer unit 612 counts along independently at the rate provided by the timing reference. Accordingly, the associated deframer receiving the signal being framed by framer unit 612 synchronizes with framer unit 612.
  • Packet engine unit 610 then forwards the signal to framer unit 612.
  • Framer unit 612 transmits the signal out h an embodiment, wherein the TDM signal being transmitted from deframer unit 602 and packet engine unit 604 includes a DS3 signal, deframer unit 602 does not extract the overhead bits from the DS3 signal. Rather, the payload being transmitted across payload signal 630 will include the DS3 subframe for the given DS3 signal along with the overhead bits for the DS3 signal. Accordingly, the overhead bits are not placed within the header bytes of the packet engine packets, but remain within the payload of such packets.
  • header byte 806 will still include SOFG 804.
  • the overhead bits will not be extracted from the payload and inserted into header byte 806. hi contrast, these overhead bits will be included in the payload of packet 802.
  • embodiments of the present invention are not so limited.
  • the overhead bits are extracted from the DS3 subframes and are inserted into the header bytes of the packet engine packets.
  • line card 502 may still frame the incoming signal, but are not required for the subsequently described operations.
  • ingress unit 620 may still frame to ease the processing burden of another network element that receive this data and may required framing of such data.
  • deframer unit 602 receives the DS3 signal and forwards the signal to packet engine unit 604 through payload signal 630, frame alignment signal 632 and/or overhead data signal 634. In other words, in an embodiment, deframer unit 602 does not locate the frames within the incoming signal or generate framing information there from.
  • packet engine unit 604 receives this incoming bit stream, including the payload and overhead data, and breaks this stream into a defined number of bits independent of framing boundaries and places these bits into the payload of a packet engine packet.
  • the defined number of bits are such that the packet engine packets are 32 bytes in size.
  • embodiments of the present invention are not so limited, as greater or lesser size packet engine packets can be incorporated into embodiments of the present invention.
  • the incoming signal into deframer unit 602 includes a DS3 signal.
  • Deframer unit 602 separates this DS3 signal into its component DSl signals.
  • the individual DSl signals are not framed. Instead, a given DSl signal is arbitrarily broken into frame-sized pieces without regard to the actual frame boundaries within the DSl signal.
  • the bits of such frame-sized pieces are placed into packet engine packets 800 having the appropriate SOFG, overhead bit and payload format, as if the bits were overhead and payload bits of a given frame. However, the SOFG bit of the packet would not be set, as no framing is involved herein.
  • the defined number of bits are placed into the location designated for DSOs. For example, for packet 802, this defined number of bits from the incoming bit stream are placed into the location for DSOs 706. Similar to the framed-based operations, header byte 806 is generated for packet 802. However, header byte 806 does not include SOFG 804 or overhead bit 704, as there is no framing involved in this embodiment. Overhead bit 704 is, however, included in the incoming bit stream.
  • Packet engine unit 604 transmits packet engine packets 800 to packet processor 606. Similar to the framed-based operations, packet processor 606 generates a header for deployment as a network packet through packet mesh 526 (shown in Figure 5) to egress unit 622 of another or same line card.
  • the header includes the source and destination for the packet. The source is determined based on the line card and if multiple ports on the line card, which port the data within the packet is being received from. The destination is determined based on forwarding tables, which are known in the art, that packet processor 606 accesses from a memory location internal or external to packet processor 606 (not shown).
  • the network packet generated is an IP packet. However, embodiments of the present invention are not so limited, as any other type of packet can be generated by packet processor 606.
  • packet engine unit 604 does not processes the incoming bits (i.e., the generation of a packet engine packet), including the division of the incoming bits and the placement of a header thereon to form these packets. Rather, packet engine unit 604 passes these incoming bits to packet processor 606. In such an embodiment, packet processor 606 delineates these incoming bits to place such bits into packets of a given size, which varies depending on the protocol or standard employed for transmission out from packet processor 606.
  • packet processor 608 receives a number of packets from packet mesh 526 (shown in Figure 5) destined to be outputted from line card 502 on which packet processor 608 is residing. Packet processor 608 removes the packet header placed on the packet by packet processor 606 from which the packet originated, thereby leaving packet engine packets as illustrated by Figure 8. Packet processor 608 forwards these packets to packet engine unit 610. Packet engine unit 610 removes the bits from the payload of packet engine packets 800 and forwards these bits to framer unit 612 through payload signal 636, frame alignment signal 638 and/or overhead data signal 640. Framer unit 612 passes these bits onto the outgoing line, independent of any framing, hi other words, framer unit 612 dumps the bits onto the outgoing line without regard for framing of such bits.
  • embodiments of the present invention break down the incoming TDM signals into their constituent parts for transmission as network packets, while maintaining the framing structure of the original TDM signals, including the payload and the overhead bits contained therein, as well as frame alignment data related to the signal.
  • embodiments of the present invention can provide the functionality of the prior art illustrated in Figure 2, independent of interface units 204 and 214 and digital signal processors 206 and 212, thereby reducing the real estate as well as the power consumption required there from.
  • packet processor can break the DSOs within the payload into individual DSOs packet streams.
  • the individual DSOs are buffered and packetized independent of other DSOs within the DSl frames.
  • the first DSO of a first DSl frame are buffered with the first DSOs of the subsequent DSl frames and packetized based on the number of bits to be included in the payloads of the packets to be transmitted out from packet processor 606.
  • packet processor 606 can compress one to any number of the DSOs packet sfreams, as provided by digital signal processor 206, using standard compression techniques.
  • packet processor 606 can transmit one to any number of the DSOs packet streams to a remote location for compression of such streams. Accordingly, the compression can be performed by processors, such as a digital signal processor, located in remote locations (e.g., other network elements) without occupying expensive real estate on the line cards of this network element.
  • packet processor 606 encapsulates these packets with headers that include the source and destination, as described above with other packets being processed by packet processor 606. Packet processor 606 forwards these DSO packet streams to egress units 622 of this or other line cards of the given network element for external transmission.
  • the overhead bits and frame alignment data are fransmitted to the receiving egress unit 622 through the packet stream.
  • Packet processor 608 of the receiving egress unit 622 receives the DSO packets and interleaves the DSOs into DSl frames. Additionally, packet processor 608 generates packet engine packets 800 using the interleaved DSOs as payload along with overhead bits and frame alignment data with the headers, as illustrated by Figure 8. Packet engine unit 610 and framer unit 612 generate the outgoing TDM signals, as described above.
  • packet processor 606 can separate the individual DSOs within the payloads of packet engine packets 800 and generate individual DSO packet streams across a number of DSl frames. Accordingly, in one embodiment of the frame-based operations, packet mesh 526 (shown in Figure 5) of network elements 402-408 can act as a full DSO-level cross connect.
  • these DSOs can be mapped into packet size data that can be processed by packet processor 606 and packet processor 608 as well as being switched through packet mesh 526.
  • 24 DSOs could be generated by packet processor 606 of line card 502a.
  • an additional 24 DSOs could be generated by packet processor 606 of line card 502b.
  • the first 14 DSOs signals from line card 502a are to be combined with the last 10 DSOs from line card 502b and are to be transmitted out as a DSl signal through an interface on line card 502d.
  • the last 10 DSOs from line card 502a are to be combined with the first 14 DSOs from line card 502b and are to be transmitted out as a DSl signal through an interface on line card 502c.
  • the above-described switching and combining of DSOs is by way of example and not by way of limitation, as DSOs from any number of locations can be combined and switched based on forwarding tables and or databases that packet processors 606 and 608 can access. As shown, DSOs can be switched through packet mesh 526 and interleaved within DSls in different combinations such that a given outgoing TDM signal can include one to a number of DSOs from different incoming TDM signals.
  • packet mesh 526 (shown in Figure 5) of network elements 402-408 can act as a full DSl or DS3 level cross connect.
  • these TDM signals can be mapped into packet size data that can be processed by packet processor 606 and packet processor 608 as well as being switched through packet mesh 526, independent of locating framing boundaries within such signals.
  • 28 DSl signals could be received by line card 502a. Additionally, an additional 28 DSl signals could be received by line card 502b. Based on configuration of network element 402, the first 14 DSl signals coming into line card 502a are to be combined with the last 14 DSl signals coming into line card 502b and are to be transmitted out as a single DS3 signal through an interface on line card 502d. Moreover, based on configuration of network element 402, the last 14 DSl signals coming into line card 502a are to be combined with the first 14 DSl signals coming into line card 502b and are to be transmitted out as a single DS3 signal through an interface on line card 502c. These operations can be performed employing packet processors 606-608 and packet mesh 526.
  • each of the 28 DSl signals being received by line card 502a and each of the 28 DSl signals being received by line card 502b are mapped into packet size data and processed as packets through packet processor 606 and packet mesh 526, independent of the frames within such signals.
  • the packets making up the first 14 DSl signals being received by line card 502a and the first 14 DSl signals being received by line card 502b are received by packet processor 608 of line card 502d and are reassembled into their original DSl signals by packet engine unit 610 and framer unit 612 of line card 502d. Moreover, framer unit 612 interleaves these 28 DSl signals into a DS3 signal and transmits this DS3 signal out from line card 502.
  • Embodiments of the present invention are not such that the framed or unframed- based operations on the ingress side dictate the framed or unframed-based operations on the egress side.
  • ingress unit 620 frames the incoming signal based on the frame and/or frame group boundaries, as described above, while the receiving egress unit 622 performs the framing operations related to both the frame and frame group (e.g., DSl superframe) boundaries for the outgoing signal from framer unit 612.
  • framer unit 612 replaces the overhead bits and aligns the payload with the frame and/or frame group boundaries. Accordingly, robbed-bit signaling and subrate formats that require alignment to frame group boundaries are passed intact, hi such an embodiment, the input and output data links are treated as separate links for the purposes of line maintenance signaling.
  • ingress unit 620 frames the incoming signal based on the frame and/or frame group boundaries, as described above, while the receiving egress unit 622 performs the framing operations related to only to the frame boundaries and not the frame group (e.g., DSl superframe) boundaries for the outgoing signal from framer unit 612.
  • the receiving egress unit 622 ignores the SOFG such that the frame group boundary is not aligned but the individual frames therein are. Accordingly, in the event of frame slippage due to clock differences, the slips occur in units of one frame.
  • the input and output data links are treated as separate links for the purposes of line maintenance signaling.
  • ingress unit 620 frames the incoming signal based on the frame and/or frame group boundaries, as described above, while the receiving egress unit 622 does not perform framing operations of the received signal. Therefore, the payload along with the overhead data is passed, thereby allowing the monitoring of the overhead information.
  • the input and output data links are treated as parts of a single link for the purposes of line maintenance signaling.
  • ingress unit 620 does not frame the incoming signal, while the receiving egress unit 622 also does not perform framing operations on this signal.
  • the payload of this signal is forwarded with all of the overhead data still within the signal.
  • the overhead data on this signal cannot be monitored.
  • the input and output data links are treated as parts of a single link for the purposes of line maintenance signaling. Moreover, slippage within the signal is within framed-sized units.
  • ingress unit 620 and the receiving egress unit 622 processes the signal in a transparent mode.
  • the data is sent across packet mesh 526 as certain-sized packets without placing such data into the format of packet engine packets 800, illustrated in Figure 8.
  • slippage within the signal is within packet-sized units.
  • the framer on the line card where the TDM signal is packetized and the framer on the line card where the signal is reconstructed from packetized data are timed from a common network clock, while the far end network element sending the TDM signal to be packetized is loop timed (i.e., its framer is timed according to the signal received by its deframer).
  • the framer where the TDM signal is reconstructed and the framer at the far end network element where the signal originated are both timed from a common network clock that is distributed by some other transmission path.
  • the framer where the TDM signal is reconstructed and the framer where such signal originates are not constrained to have common timing, thereby allowing frame-slips to occur, hi one embodiment, the timing of the framer where the signal is reconstructed is adjusted according to timing information inferred from the arrival time of the packets and/or the length of the queue of packetized TDM data to be sent. In an embodiment, the timing of the TDM signal to be packetized is compared against the network clock. Accordingly, a measure of the deviation is placed in the packets of the TDM data and transmitted to where the TDM signal is reconstructed and used to adjust the timing of the framer therein.
  • embodiments of the present invention are not so limited.
  • the deviation from the network clock can be communicated to the reconstructing line card by other means or transmission paths.
  • the above-described embodiments of the techniques to provide timing between a given deframer and framer are by way of example and not by way of limitation, as other teclmiques to allowing for such timing can be incorporated into embodiments of the present invention.
  • the line cards and control cards included in the different network elements include memories, processors and/or Application Specific Integrated Circuits (ASICs).
  • Such memory includes a machine-readable medium on which is stored a set of instructions (i.e., software) embodying any one, or all, of the methodologies described herein.
  • Software can reside, completely or at least partially, within this memory and/or within the processor and/or ASICs.
  • machine-readable medium shall be taken to include any mechanism that provides (i.e., stores and/or transmits) information in a form readable by a machine (e.g., a computer).
  • a machine-readable medium includes read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
  • embodiments of the present invention illustrated with Figures and 8 were described with regard to a DSl superframe.
  • embodiments of the present invention are not so limited, as other transmission standards can be employed.
  • the El standard could be used. Therefore, the overhead bits illustrated in Figures 7 and 8 would become overhead bytes, hi one such embodiment, the overhead bytes would be included within the payload of the signal.
  • embodiments of the present invention are described within a line card in an in-ring network element (illustrated in Figure 1). However, embodiments of the present invention are not so limited. For example, embodiments of the present invention can be incorporated into other network elements, such as non-ring network elements.

Abstract

A method and apparatus for alignment of TDM-based signals for packet transmission using framed and unframed operations are described. In an embodiment, a line card (502) in a network element includes a deframer (602) unit that receives a Time Division Multiplexing (TDM) signal. The TDM signal includes a payload and overhead data. The deframer (602) generates frame alignment data based on the overhead data. The line card (502) also includes a packet engine (604) unit coupled to the deframer (602). The packet engine (604) receives the payload, the overhead data and the frame alignment data and generates a number of packet engine packets. The packet engine packets represent a frame within the TDM signal such that the packet engine packet include the payload, the overhead data and the frame alignment data. Additionally, the line card (502) includes a packet processor (606) coupled to the deframer (602). The packet processor (606) receives the packet engine packets and generates network packets based on the packet engine packets.

Description

ALIGNMENT OF TDM-BASED SIGNALS FOR PACKET TRANSMISSION USING FRAMED AND UNFRAMED
OPERATIONS
RELATED APPLICATIONS
This is a continuation of U.S. Provisional Patent Application Serial Number 60/280,661, entitled "Alignment of TDM-based signals for Packet Transmission using Framed and Unframed Operations" filed March 31, 2001.
FIELD OF THE INVENTION
The invention related to the field of telecommunications. More specifically the invention relates to alignment of Time Division Multiplexing (TDM) signals for packet transmission using framed and unframed operations.
BACKGROUND OF THE INVENTION
With the advent of the Internet and the World Wide Web (WWW), the need for high-speed transmission of data including video and audio has continued to increase. Moreover, in addition to the demand for higher bandwidth, there has also been an increased need for various types of services that employ different protocols. For example, certain customers (e.g., companies providing voice services) of high-speed networks want to operate on a Time Division Multiplexing (TDM) Network, which combines different data streams, such as voice traffic, such that each data stream is assigned a time slot within the combined data stream. Moreover, other customers of high-speed networks may desire to transport data employing packet-based data streams, which do not have dedicated timeslots to given packets. Examples of the types of packets that can be placed into such data streams can include Asynchronous Transfer Mode (ATM), Internet Protocol (IP), Frame Relay, voice over IP and Point-to-Point Protocol (PPP).
Figure 1 illustrates a prior art traffic or line card within a network element for processing of packet-based data that is wrapped in different formats for transmission, hi particular, Figure 1 includes line card 100 that includes receiving unit 120 and transmitting unit 122. Receiving unit 120 includes deframer unit 102 that is coupled to packet engine unit 104, which in turn is coupled to packet processor 106. Transmitting unit 122 includes packet processor 108 that is coupled to packet engine unit 110, which in turn is coupled to framer unit 112. The packet-based data being received by and transmitted out from deframer unit 102 and framer unit 112, respectively, is encapsulated or wrapped into different formats or protocols. For example, one type of such format could include Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH).
Within receiving unit 102, deframer unit 102 receives the encapsulated packet- based data and removes the payload of this encapsulated data, which is the packet- based data. Deframer unit 102 then forwards this payload to packet engine unit 104. Packet engine unit 104 locates the packet boundaries within the payload and forwards the packets to packet processor 106. Accordingly, packet processor 106 can perform various packet operations on such packets. For example, if the packets are Internet Protocol (IP) packets, packet processor 106 can include a forwarding table for forwarding these IP packets to other locations within the network that contains the network element that includes line card 100.
Within transmitting unit 122, packet processor 108 receives packets from other locations in the networks, such as IP routers for IP packets, and forwards such packets to packet engine unit 110. Packet engine unit 110 combines these packets into payloads of the protocol associated with the transmitting line coupled to framing unit 112. Packet engine unit 110 then forwards these payloads to framer unit 112. Framer unit 112 then encapsulates these payloads into the protocol for the transmitting line and forwards these encapsulated payloads thereon.
Figure 2 illustrates a different prior art traffic or line card within a network element for processing of TDM traffic, including telephone calls, through a packet- based network. In particular, Figure 2 includes line card 200 that allows for voice over IP and includes receiving unit 220 and transmitting unit 222. Receiving unit 220 includes deframer unit 202 that is coupled to interface unit 204 that is coupled to digital signal processor 206, which in turn is coupled to packet processor 208. Transmitting unit 222 includes packet processor 210 that is coupled to digital signal processor 212 that is coupled to interface unit 214, which in turn is coupled to framer unit 216.
The input into receiving unit 220 is TDM carrying telephone lines, such as Data Signal (DS)-3s and DSls. In particular, 24 DS0 data streams, each associated with a given telephone call, are interleaved within a DS Moreover, under current transmission standards, 28 DS1 data streams can be interleaved into a single DS3. Deframer unit 202 receives the DS3s or DSl s and removes the DSOs contained therein. Moreover, the DS3 and DSl data streams contain overhead bits that indicate the beginning of the DS3, DSl and DSO frames within such data streams. Accordingly, in addition to transmitting the DSO data streams to interface unit 204, deframer unit 202 transmits signals indicating the beginning and ending points of these DSO data streams (i.e., frame alignment data) based on the overhead bits contained in the DS3 and DSl data streams. In other words, deframer unit 202 removes overhead bits, including framing bits, and transmits the payload (the DSOs data streams) along with frame alignment data indicating the beginning and ending points of the DSO data streams to interface unit 204.
Interface unit 204 receives the interleaved DSO data streams and formats such streams for processing by digital signal processor 206. Digital signal processor 206 receives the 24 interleaved DSO data streams, which are effectively 24 separate telephone calls, and separates the DSO data streams and creates 24 separate packet streams for subsequent packet processing and transmission. Moreover, digital signal processor 206 may compress some or all of 24 packet streams for subsequent transmission. Digital signal processor 206 then transmits these packet streams to packet processor 208. Packet processor 208 typically acts as a router using a forwarding table to router the packets through the network to the destined location.
Disadvantageously, line card 200 is typically located within a network element wherein the real estate for the racks holding the line cards of such network elements is considered to be expensive due to space limitations. In particular, such network elements are typically located a central office or on the premises of large customers. Accordingly, all of the hardware within line card 200, including interface unit 204 and digital signal processor 206, are considered very costly in terms of real estate. Moreover, digital signal processor 206 tends to consume a relatively large amount of power, which needs to be limited in this location. Moreover, digital signal processor 206 conventionally includes processing power that can handle more TDM signals than is provided at such locations.
Figure 3 illustrates a prior art TDM switch for switching of DSO data streams. This TDM switch, also termed a class 4 or class 5 switch, includes TDM bus 304, which is coupled to time-slot interchanger 302, (de)framer units 306-310 and DSO interface 312. DSO interface 312 is an interface that couples a number of DSOs from a number of different sources to TDM bus 304. For example, DSO interface 312 could receive such DSOs from a Plain Old Telephone Service (POTS) line or to other sources that generate DSOs. (De)framer units 306-310 typically receive a number of DS3 and/or DSl signals from external transmission lines and break such signals down into the DSOs contained therein. Additionally, a number of different DSOs are placed onto TDM bus 304 from (de)framer units 306-310 and DSOs 312. Such DSOs are then transmitted to time-slot interchanger 302 wherein the DSOs are re-ordered and routed back out from the TDM switch through (de)framer units 306-310 and DSOs 213.
For example, time-slot interchanger 302 could receive a first DSO originating from a DS3 signal from (de)framer unit 306 and transmit this DSO out (de)framer unit 310. Similarly, time-slot interchanger 302 could receive a second DSO originating from a DSl signal from (de)framer unit 308 and transmit this DSO out (de)framer unit 310. Accordingly, (de)framer unit 310 could place these two DSOs along with 22 other DSOs into a DSl signal and transmit this DSl signal out from the TDM switch of Figure 3. As illustrated, the TDM switch of Figure 3 acts as a TDM cross-connect by allowing for the switching of TDM data at the DSO level.
SUMMARY OF THE INVENTION
A method and apparatus for alignment of TDM-based signals for packet transmission using framed and unframed operations are described. In an embodiment, a line card in a network element includes a deframer unit that receives a Time Division Multiplexing (TDM) signal. The TDM signal includes a payload and overhead data. The deframer generates frame alignment data based on the overhead data. The line card also includes a packet engine unit coupled to the deframer unit. The packet engine unit receives the payload, the overhead data and the frame alignment data and generates a number of packet engine packets. The packet engine packets represent a frame within the TDM signal such that the packet engine packets include the payload, the overhead data and the frame alignment data. Additionally, the line card includes a packet processor coupled to the deframer unit. The packet processor receives the packet engine packets and generates network packets based on the packet engine packets.
In another embodiment, a method includes receiving a TDM signal that includes overhead data and payload data. Frame alignment data is generated based on locations of frame boundaries within the TDM signal. The method also includes placing the TDM signal into packet engine packets based on the frame boundaries within the TDM signal. The overhead data, the payload data and the frame alignment data are within packet engine packets. Each packet engine packet corresponds to a frame within the TDM signal. The method also includes encapsulating the packet engine packets into network packets.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention may be best understood by referring to the following description and accompanying drawings which illustrate such embodiments. The numbering scheme for the Figures included herein are such that the leading number for a given element in a Figure is associated with the number of the Figure. For example, system 400 can be located in Figure 4. However, element numbers are the same for those elements that are the same across different Figures, hi the drawings:
Figure 1 illustrates a prior art traffic or line card within a network element for processing of packet-based data that is wrapped in different formats for transmission;
Figure 2 illustrates a different prior art traffic or line card within a network element for processing of TDM traffic through a packet-based network;
Figure 3 illustrates a prior art TDM switch for switching of DSO data streams;
Figure 4 is block diagram illustrating a system that incorporates embodiments of the present invention;
Figure 5 illustrates portions of in-ring network elements 102-108, according to embodiments of the present invention;
Figure 6 illustrates portions of line card 502, according to embodiments of the present invention;
Figure 7 illustrates a superframe DSl signal and packet engine packets created there from, according to embodiments of the present invention; and
Figure 8 shows packet engine packets corresponding to DSl frames within a DSl superframe, according to embodiments of the present invention.
DETAILED DESCRIPTION
A method and apparatus for alignment of TDM-based signals for packet transmission using framed and unframed operations are described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details. SYSTEM DESCRIPTION
Figure 4 is block diagram illustrating a system that incorporates embodiments of the present invention. In particular, Figure 4 illustrates system 400 that includes network ring 414, which is comprised of in-ring network element 402, in-ring network element 404, in-ring network element 406 and in-ring network element 408. System 400 also include non-ring network element 410, non-ring element 411 and non-ring network element 412, which are coupled to network ring 414 through in-ring network element 402, in-ring network element 404 and in-ring network element 406, respectively. In an embodiment, non-ring elements 410-412 can be routers, switches, bridges or other types of network element that switch data across a network.
In one embodiment, the connection among in-ring network element 402, in-ring network element 404, in-ring network element 406 and in-ring network element 408 allow for bi-directional traffic. Accordingly, this bi-directional capability allows for redundancy in the communication between the different network elements, such that if a given line of communication is lost, the data traffic to be transmitted thereon can be rerouted in the opposite direction to reach its intended destination within the ring architecture.
In an embodiment, system 400 transmits data traffic among the different network elements, both in-ring and non-ring, employing the Synchronous Optical Network (SONET) standard or Synchronous Digital Hierarchy (SDH). However, embodiments of the present invention are not so limited, as data traffic among the different network elements can be transferred using other types of transmission standards. Examples of other types of transmission standards can include, but are not limited to, TI, T3, Jl, El, E3, Data Signal (DS)3 and DSl signals. In one embodiment, data traffic among in-ring network element 402, in-ring network element 404, in-ring network element 406 and in-ring network element 408 includes TDM traffic and packet traffic within a same Time Division Multiplexing (TDM) signal.
In this ring network, network elements are used that can transmit and receive TDM ring traffic. In addition, at least certain of the network elements provide two different switching techniques - TDM and packet. The packet switching provided can support any number of protocols including layer 2 and layer 3 type protocols such as ATM, Ethernet, Frame Relay, etc. In addition to typical operations of a TDM network element, the network elements are implemented to be able to: l)programmably select on an STS basis certain of the incoming TDM traffic to be extracted and packet switched rather than TDM switched; and/or 2) receive packet traffic in another form and to be packet switched. Regardless of which switching technique is used, the switched traffic going back onto the ring is put in TDM format and transmitted out. However, each time traffic is packet switched, that traffic can be statistically multiplexed (e.g., the packets can be selectively dropped based on various criteria). A further description of the operation of system 400 and the network elements therein is described in more detail below.
The architecture and configuration of system 400 is by way of example and not by way of limitation, as embodiments of the present invention can be incorporated in other types of systems. For example, other such systems could incorporate less or more network elements into the network ring and/or network elements attached thereto. Moreover, embodiments of the present invention are not limited to the network ring architecture as illustrated in Figure 4. Examples of other types of network architectures that can incorporate embodiments of the present invention include, but are not limited to, a point-to-point configuration, point-to-multipoint configuration and/or a hub configuration, hi addition, embodiments of the present invention are not limited to TDM networks, but also apply to Wave Division Multiplexing (WDM) networks.
NETWORK ELEMENT DESCRIPTION Figure 5 illustrates portions of in-ring network elements 402-408 (for purposes of Figure 5, hereinafter "network element 402"), according to embodiments of the present invention. As shown, network element 402 includes line cards 502a-d and control card(s) 520, such that control card(s) 520 are coupled to each of line cards 502a-d. The number of line cards illustrated are for the sake of simplicity and not by way of limitation, as a lesser or greater number of line cards can be included within network element 402. Additionally, network element 402 includes a first switch fabric, packet mesh 526, which includes a full mesh such that each of line cards 502a-d is coupled to one another. For example, line card 502a is coupled to line cards 502b-d through packet mesh 526. However, embodiments of the present invention are not limited to a full mesh for the transmission of packets among line cards 502a-d, as any type of switching method that switches based on the addressing scheme described herein can be incorporated into embodiments of the present invention. For example, in one embodiment, line cards 502a-d could be coupled together using a switch fabric, such that the line cards are coupled to a control card, which provides for the switching therein.
Line cards 502a-d include physical connection circuitry 510a-d, ingress packet processing circuitry 512a-d and egress packet processing 514a-d, respectively. Physical connection circuitry 510a-d can be coupled to lines external to network element 402, as shown, which can carry optical and/or electrical signals, which is described in more' detail below in conjunction with Figure 7. hi one embodiment, line cards 502a-d of network element 402 may be connected to an optical line transmitting SONET OC-N signals. Moreover, in an embodiment, line cards 502a-d of network element 402 may be connected to an electrical line such as a TI, T3, Jl, El, E3, Ethernet, Gigabit Ethernet, etc. However, embodiments of the present invention are not limited to the above-described examples, as any other type of optical or electrical data transmission can be incorporated into embodiments of the present invention. Additionally, control cards(s) 520 include TDM switching circuitry 516.
In an embodiment, each line card 502a-d can be coupled to four optical and/or electrical lines. In another embodiment, each line card 502a-d can be coupled to eight optical and/or electrical lines. In one embodiment, each line card 502a-d can be coupled to 12 electrical (T3) lines. However, embodiments of the present invention are not so limited, as a lesser or greater number of optical and/or electrical lines can be coupled to network element 402 through line cards 502a-d. Additionally, physical connection circuitry 510a-d are coupled to ingress packet processing circuitry 512a-d, respectively, such that packet data being received from the optical and/or electrical lines is passed from physical connection circuitry 510a-d to ingress packet processing circuitry 512a-d, respectively, hi one embodiment, the packet data is extracted from a TDM signal, which is described in more detail below.
Ingress packet processing circuitry 512a-d is coupled to packet mesh 526. Accordingly, each ingress packet processing circuitry 512a-d is coupled to each egress packet processing circuitry 514a-d, respectively, on other line cards 502a-d through packet mesh 526. Moreover, egress packet processing circuitry 514a-d is respectively coupled to physical connection circuitry 51 Oa-d, such that packet data traffic coming in from packet mesh 526 from ingress packet processing circuitry 512a-d is transmitted from egress packet processing circuitry 514a-d to physical connection circuitry 51 Oa-d, respectively. Line cards incorporated into embodiments of the present invention are not limited to those illustrated by line cards 502a-d. Moreover, the network elements can have different line card configurations from that shown by line cards 502a-d. For example, a given in-ring network element could be limited to a single line card that can receive and transmit TDM traffic(which may include packet traffic) within network ring 414, employing multiple interfaces for the receipt and transmittal of TDM traffic. In another embodiment, a given in-ring network element can include a first line card to receive TDM traffic (which may include packet traffic) from another in-ring element, while a second line card can transmit TDM traffic to another or same in-ring network element. In one such embodiment, a third line card can be incorporated into this given in-ring network element to add, drop and transmit different types of traffic including different types of packet traffic, such as ATM, Frame Relay, IP, etc, received and transmitted to a non-ring network element. In another embodiment, a given network element may include a single line card with multiple interfaces such that a first interface receives TDM traffic from another in-ring network element, a second interface transmits TDM traffic to another in-ring network element and a third interface adds, drops and transmits traffic, such as packet traffic to a non-ring network element.
Accordingly, a line card is used either to connect to an in-ring network element to form part of the ring, or to provide communication with out-of ring network elements. To provide some examples with regard to a line card connected with an out- of-ring network element: 1) layer 2/3 traffic from out-of-ring network element can come in, go through the packet mesh to a line card connected to an in-ring network element, and then out onto the ring being carried by a SONET frame; 2) layer 2/3 traffic coming from an out-of-ring network element can be de-mapped into SONET, go through the TDM switch fabric to a line card connected to an in-ring network element, and then out onto the ring being carried by a SONET frame; 3) TDM traffic coming from an out-of-ring network element can come in, go through the TDM switch fabric to a line card connected to an in-ring network element, and then out onto the ring being carried by a SONET frame; 4) TDM traffic carrying layer 2/3 traffic can be processed to extract the layer 2/3 traffic, with the layer 2/3 traffic going through the packet mesh to a line card connected to an in-ring network element, and then out onto the ring carried by a SONET frame; layer 2/3 traffic coming form an out-of-ring network element can go through the packet mesh to an line card connected to an out-of-ring network element, and then go out of the ring being carried by the protocol of the interface of that egress line card; etc.
With regard to the TDM traffic, a second switch fabric (in addition to packet mesh 526) is formed among line cards 502a-d and TDM switching circuitry 516 of control cards 520, as illustrated by the dashed lines in Figure 5. hi particular, physical connection circuitry 51 Oa-d is coupled to TDM switching circuitry 516 for the receiving and transmitting of TDM traffic into and out of network element 402. Accordingly, TDM switching circuitry 516 receive TDM traffic from physical connection circuitry 51 Oa-d and switches this traffic to any of physical connection circuitry 51 Oa-d, based on configuration data for the timeslots of the TDM traffic. For example, TDM switching circuitry 516 could be configured such that data within the first ten timeslots of a TDM signal, such as a SONET/SDH signal, received on a first interface of physical connection circuitry 510a are forwarded out the first five timeslots of a TDM signal being transmitted out from a first interface of physical connection circuitry 51 Od.
LINE CARD 502
Figure 6 illustrates portions of line card 502, according to embodiments of the present invention. In particular, Figure 6 illustrates portions of physical connection circuitry 510, ingress packet processing circuitry 512 and egress packet processing circuitry 514. Physical connection circuifry 510 includes those blocks to the left of dashed line 650, while ingress packet processing circuitry 512 and egress packet processing circuitry 514 include those blocks to the right of dashed line 650. Physical connection circuitry 510 includes deframer unit 602, packet engine 604, framer unit 612 and packet engine 610. Ingress packet processing circuitry 512 includes packet processor 606, while egress packet processing circuitry 514 includes packet processor 608.
Additionally, line card 502 of Figure 6 is broken into ingress and egress units, as described above in conjunction with Figure 5. Ingress unit 620 includes those blocks above dashed line 652, and egress unit 622 includes those blocks below dashed line 652. In particular, ingress unit 620 includes deframer unit 602, packet engine 604 and packet processor 606, while egress unit 622 includes framer unit 612, packet engine 610 and packet processor 608. Ingress unit 602 receives a data signal, such as a number of DS3 signals, external to the network element, containing line card 502, through deframer unit 602. Deframer unit 602 is coupled to packet engine unit 604 through payload signal 630, frame alignment signal 632 and overhead data signal 634. The delineation of signals 630-634 is for the sake of clarity and not by way of limitation. For example, in one embodiment, there could be a single transmission line between deframer unit 602 and packet engine unit 604 for passing of the payload, frame alignment and overhead data signals. Packet engine unit 604 is coupled to packet processor 604, which is coupled to packet mesh 526 (shown in Figure 5).
Egress unit 622 receives packets from packet mesh 526 (shown in Figure 5) through packet processor 608. Packet processor 608 is coupled to packet engine unit 610. Moreover, packet engine unit 610 is coupled to framer unit 612 through payload signal 636, frame alignment signal 638 and overhead data signal 640. The delineation of signals 636-640 is for the sake of clarity and not by way of limitation. For example, in one embodiment, there could be a single transmission line between packet engine unit 610 and framer unit 612 for passing of the payload, frame alignment and overhead data signals. Framer unit 612 is coupled to an external data signal, such as a number of DS3 signals. The operation of the portions of line card 502 illustrated in Figure 6 will now be described in terms of framed-based and unframed-based operations.
FRAMED-BASED OPERATIONS
The operation of the portions of line card 502 illustrated in Figure 6 will now be described in terms of framed-based operations. In other words, in addition to other operations, line card 502 will locate the frame boundaries of the incoming TDM signals. Ingress unit 620 receives a data signal, such as a number of DS3 signals, external to the network element, containing line card 502, through deframer unit 602.
In one embodiment, with regard to ingress unit 620, deframer unit 602 receives a DS3 signal and extracts the 28 DSl signals contained therein, as is known in the art. The subsequent operation of deframer unit 602, packet engine 604 and packet processor 606 will be described in terms of one of the 28 DSl signals extracted from the incoming DS3 signal. The given DSl signal used to illustrate the operation of line card 502 will be a DSl superframe signal, as is known in the art. This is by way of example and not by way of limitation as signals employing other formats can be incorporated into embodiments of the present invention. For example, in another embodiment an extended superframe could be processed by line card 502. h an embodiment, other types of TDM-based signals, such as a DS3, El or Jl signal, could be used.
Figure 7 illustrates a DSl superframe according to embodiments of the present invention. In particular, Figure 7 includes DSl superframe 700. As is known in the art, a DSl superframe includes 12 DSl frames. However, for the sake of clarity DSl superframe 700 includes the first two and the last DSl frame within a DSl superframe. In particular, DSl superframe 700 includes DSl frame 702, DSl frame 712 and DSl frame 732. Moreover, each of DSl frames 702, 712 and 732 include overhead bits and a number of DSOs, as is known in the art. In one embodiment, a given DSl frame includes 24 DSOs. Accordingly, DSl frame 702 includes overhead bit 704 and DSOs 706, while DSl frame 712 includes overhead bit 714 and DSOs 716. Additionally, DSl frame 732 includes overhead bit 734 and DSOs 736.
In one embodiment, deframer unit 602 locates the beginning of DSl superframe 700 as well as the locations of each DSl frame contained therein. For example, deframer unit 602 identifies the beginning of DSl 702, 712 and 732. Moreover, in an embodiment, deframer unit 602 extracts overhead bits 704, 714 and 734 from DSl 702, 712 and 732, respectively. Accordingly, deframer unit 602 transmits DSOs 706, 716 and 736 across payload signal 630 and overhead bits 704, 714 and 734 across overhead data signal 634. Moreover, deframer unit 602 transmits frame alignment data, including the beginning of DSl superframe 700 as well as the beginning of each of DSl 702, 712 and 732, across frame alignment signal 632. As illustrated, deframer unit 602 transmits the payload (e.g., the DSOs), the overhead data (i.e., overhead bits) as well as frame alignment data (not just the payload of an incoming signal) to packet engine unit 604.
Packet engine unit 604 receives the DSOs, the overhead bits and the framing alignment data from deframer unit 602 and processes the data. In one embodiment, the processing of data by packet engine unit 604 includes the generation of packet engine packets such that each packet engine packet corresponds to a DSl frame including the payload of DSOs and the overhead bits.
To help illustrate, Figure 8 shows packet engine packets corresponding to DSl frames within a DSl superframe, according to embodiments of the present invention. Packet engine packets 800 include packets 802, 808 and 814 that correspond to DSl frames 702, 712 and 732 of Figure 7, respectively. As illusfrated, a packet engine packet includes a header byte along with a payload. The payload of such packets includes the DSOs from the DSl frames.
For example, packet engine packet 802 includes DSOs 706 of DSl frame 702 along with header byte 806, which includes start of frame group (SOFG) 804 and overhead bit 704. SOFG 804 is part of the frame alignment data generated by deframer unit 602 and indicates whether the DSl frame contained in the payload of the network engine packet is the first DSl frame within the superframe. For example, for DSl frame 702, which is the first DSl frame in DSl superframe 700, SOFG 804 will indicate that this is the first frame in DSl superframe 700, while SOFG 810 and 816 of packets 808 and 814, respectively, would indicate that they are not the first frame within DSl superframe 700.
However, embodiments of the present invention are not so limited, as this SOFG data could indicate other frame alignment data. For example, in another embodiment wherein the signal being transmitted to packet engine unit 604 is a DS3 signal, this SOFG data could indicate the first subframe within the DS3 signal. Overhead bit 704 is the overhead bit from DSl frame 702.
Similarly, packet engine packet 808 includes DSOs 716 of DSl frame 712 along with header byte 812, which includes start of frame group (SOFG) 810 and overhead bit 714. Packet engine packet 814 includes DSOs 736 of DSl frame 732 along with header byte 818, which includes start of frame group (SOFG) 816 and overhead bit 734. As illustrated by Figure 8, packet engine unit 604 generates packet engine packets based on DSl frames such that the entire framing structure including the payload and overhead bits are included therein. Moreover, these packet engine packets also included the framing alignment data generated by deframer unit 602 within the header bytes of these packets.
Packet engine unit 604 transmits packet engine packets 800 to packet processor 606. Packet processor 606 generates a header for deployment as a network packet through packet mesh 526 (shown in Figure 5) to egress unit 622 of another or same line card within a given network element. In one embodiment, the network packet generated is an IP packet. However, embodiments of the present invention are not so limited, as any other type of packet can be generated by packet processor 606.
Returning to Figure 6, in one embodiment, with regard to egress unit 622, packet processor 608 receives a number of packets from packet mesh 526 (shown in Figure 5) destined to be outputted from line card 502 on which packet processor 608 is residing. In one such embodiment, each packet being received is associated with a frame for a given TDM signal. For example, the packet could include a DSl subframe within a DS3 signal. In another embodiment, the packet could include a frame within a DSl superframe or extended superframe signal. The above examples of the types of frames that can be included within the packets being received by packet processor 608 are by way of example and not by way of limitation, as other types of frames within TDM signals can be included.
Packet processor 608 removes the packet header placed on the packet by packet processor 606 from which the packet originated, thereby leaving packet engine packets as illustrated by Figure 8. Packet processor 608 forwards these packets to packet engine unit 610. In an embodiment, packet unit 610 forwards the payload of a packet engine packet across payload signal 636. Using the example used for ingress unit 620 of a DSl superframe signal, the payload for the packet engine packets will include the DSOs for the DSl frame included in the packet. Returning to Figure 8 to help illustrate, for packet 802, DSOs 706 will be transmitted across payload signal 636.
Additionally, packet engine unit 610 transmits the overhead bits for the DSl frame to framer unit 612 across overhead data signal 638. For example, for packet 802, overhead bit 704 is transmitted across overhead data signal 638. In one embodiment, packet engine unit 610 also transmits frame alignment data for the DSl frame to framer unit 612 across frame alignment signal 640. For example for packet 802, SOFG 804 is transmitted across frame alignment signal 640. Framer unit 612 receives the DSOs, the overhead data and the frame alignment data and aligns the DSl signal using bit stuffing operations when necessary and transmitting the DSl signal out from egress unit 622, as is known in the art. hi an alternative embodiment, frame alignment data would be transmitted by framer unit 612 to packet engine unit 610 across frame alignment signal 640, thereby allowing packet engine unit 610 to locate the boundaries for the signal to be transmitted. In such an embodiment, packet engine unit 610 performs the necessary bit stuffing operations for alignment the signal. In one embodiment, framer unit 612 receives a timing reference and generates the frame structure of the signals by counting positions. In one such embodiment, the timing reference may include a synchronization pulse to mark the start of a frame. In an embodiment, the internal counter of framer unit 612 counts along independently at the rate provided by the timing reference. Accordingly, the associated deframer receiving the signal being framed by framer unit 612 synchronizes with framer unit 612. Packet engine unit 610 then forwards the signal to framer unit 612. Framer unit 612 transmits the signal out
Figure imgf000017_0001
h an embodiment, wherein the TDM signal being transmitted from deframer unit 602 and packet engine unit 604 includes a DS3 signal, deframer unit 602 does not extract the overhead bits from the DS3 signal. Rather, the payload being transmitted across payload signal 630 will include the DS3 subframe for the given DS3 signal along with the overhead bits for the DS3 signal. Accordingly, the overhead bits are not placed within the header bytes of the packet engine packets, but remain within the payload of such packets. Returning to Figures 7 and 8 to help illustrate, for packet 802 used to packetize a DS3 subframe, header byte 806 will still include SOFG 804. However, the overhead bits will not be extracted from the payload and inserted into header byte 806. hi contrast, these overhead bits will be included in the payload of packet 802. However, embodiments of the present invention are not so limited. In another embodiment, for the processing of a DS3 signal, the overhead bits are extracted from the DS3 subframes and are inserted into the header bytes of the packet engine packets.
UNFRAMED-BASED OPERATIONS
The operation of the portions of line card 502 illustrated in Figure 6 will now be described in terms of unframed-based operations. In other words, operations will be described within line card 502 such that the frame boundaries of the incoming TDM signals are not located and such that the outgoing TDM signals are not framed. Even though described in terms of not framing the incoming signals, embodiments of the present invention are not so limited. In one embodiment, line card 502 may still frame the incoming signal, but are not required for the subsequently described operations. For example, ingress unit 620 may still frame to ease the processing burden of another network element that receive this data and may required framing of such data.
The following description of the unframed-based operations will be described such that a DS3 signal is framed to locate its DSl signals, wherein the DSl signals are processed independent of any such framing. This is by way of example and not by way of limitation, as other types of TDM-based signals can be incorporated into embodiments of the present invention. For example, in an embodiment, the incoming TDM signal could be an El or E3 signal. With regard to ingress unit 620, deframer unit 602 receives the DS3 signal and forwards the signal to packet engine unit 604 through payload signal 630, frame alignment signal 632 and/or overhead data signal 634. In other words, in an embodiment, deframer unit 602 does not locate the frames within the incoming signal or generate framing information there from.
In one embodiment, packet engine unit 604 receives this incoming bit stream, including the payload and overhead data, and breaks this stream into a defined number of bits independent of framing boundaries and places these bits into the payload of a packet engine packet. In one embodiment, the defined number of bits are such that the packet engine packets are 32 bytes in size. However, embodiments of the present invention are not so limited, as greater or lesser size packet engine packets can be incorporated into embodiments of the present invention.
For example, in one embodiment, the incoming signal into deframer unit 602 includes a DS3 signal. Deframer unit 602 separates this DS3 signal into its component DSl signals. However, in one such embodiment, the individual DSl signals are not framed. Instead, a given DSl signal is arbitrarily broken into frame-sized pieces without regard to the actual frame boundaries within the DSl signal. Moreover, in an embodiment, the bits of such frame-sized pieces are placed into packet engine packets 800 having the appropriate SOFG, overhead bit and payload format, as if the bits were overhead and payload bits of a given frame. However, the SOFG bit of the packet would not be set, as no framing is involved herein.
Returning to Figure 8 to help illustrate, the defined number of bits are placed into the location designated for DSOs. For example, for packet 802, this defined number of bits from the incoming bit stream are placed into the location for DSOs 706. Similar to the framed-based operations, header byte 806 is generated for packet 802. However, header byte 806 does not include SOFG 804 or overhead bit 704, as there is no framing involved in this embodiment. Overhead bit 704 is, however, included in the incoming bit stream.
Packet engine unit 604 transmits packet engine packets 800 to packet processor 606. Similar to the framed-based operations, packet processor 606 generates a header for deployment as a network packet through packet mesh 526 (shown in Figure 5) to egress unit 622 of another or same line card. In one embodiment, the header includes the source and destination for the packet. The source is determined based on the line card and if multiple ports on the line card, which port the data within the packet is being received from. The destination is determined based on forwarding tables, which are known in the art, that packet processor 606 accesses from a memory location internal or external to packet processor 606 (not shown). In one embodiment, the network packet generated is an IP packet. However, embodiments of the present invention are not so limited, as any other type of packet can be generated by packet processor 606.
In another embodiment, packet engine unit 604 does not processes the incoming bits (i.e., the generation of a packet engine packet), including the division of the incoming bits and the placement of a header thereon to form these packets. Rather, packet engine unit 604 passes these incoming bits to packet processor 606. In such an embodiment, packet processor 606 delineates these incoming bits to place such bits into packets of a given size, which varies depending on the protocol or standard employed for transmission out from packet processor 606.
With regard to egress unit 622, packet processor 608 receives a number of packets from packet mesh 526 (shown in Figure 5) destined to be outputted from line card 502 on which packet processor 608 is residing. Packet processor 608 removes the packet header placed on the packet by packet processor 606 from which the packet originated, thereby leaving packet engine packets as illustrated by Figure 8. Packet processor 608 forwards these packets to packet engine unit 610. Packet engine unit 610 removes the bits from the payload of packet engine packets 800 and forwards these bits to framer unit 612 through payload signal 636, frame alignment signal 638 and/or overhead data signal 640. Framer unit 612 passes these bits onto the outgoing line, independent of any framing, hi other words, framer unit 612 dumps the bits onto the outgoing line without regard for framing of such bits.
SYSTEM APPLICATIONS System applications related to both framed-based and unframed-based operations will now be described. As illusfrated, by Figures 7 and 8, for frame-based operations, embodiments of the present invention break down the incoming TDM signals into their constituent parts for transmission as network packets, while maintaining the framing structure of the original TDM signals, including the payload and the overhead bits contained therein, as well as frame alignment data related to the signal. Moreover, embodiments of the present invention can provide the functionality of the prior art illustrated in Figure 2, independent of interface units 204 and 214 and digital signal processors 206 and 212, thereby reducing the real estate as well as the power consumption required there from.
In particular, upon receipt of packet engine packets 800 from packet engine unit 610, packet processor can break the DSOs within the payload into individual DSOs packet streams. Accordingly, in an embodiment, the individual DSOs are buffered and packetized independent of other DSOs within the DSl frames. For example, the first DSO of a first DSl frame are buffered with the first DSOs of the subsequent DSl frames and packetized based on the number of bits to be included in the payloads of the packets to be transmitted out from packet processor 606. Moreover, packet processor 606 can compress one to any number of the DSOs packet sfreams, as provided by digital signal processor 206, using standard compression techniques. In one embodiment, packet processor 606 can transmit one to any number of the DSOs packet streams to a remote location for compression of such streams. Accordingly, the compression can be performed by processors, such as a digital signal processor, located in remote locations (e.g., other network elements) without occupying expensive real estate on the line cards of this network element. hi an embodiment, packet processor 606 encapsulates these packets with headers that include the source and destination, as described above with other packets being processed by packet processor 606. Packet processor 606 forwards these DSO packet streams to egress units 622 of this or other line cards of the given network element for external transmission. Moreover, in an embodiment, the overhead bits and frame alignment data are fransmitted to the receiving egress unit 622 through the packet stream. Packet processor 608 of the receiving egress unit 622 receives the DSO packets and interleaves the DSOs into DSl frames. Additionally, packet processor 608 generates packet engine packets 800 using the interleaved DSOs as payload along with overhead bits and frame alignment data with the headers, as illustrated by Figure 8. Packet engine unit 610 and framer unit 612 generate the outgoing TDM signals, as described above.
Another system application for the frame-based operations could include the functionality provided by the prior art illustrated in Figure 3 to allow for switching at the DSO level. In particular, as set forth above in the other-described system application for frame-based operations, packet processor 606 can separate the individual DSOs within the payloads of packet engine packets 800 and generate individual DSO packet streams across a number of DSl frames. Accordingly, in one embodiment of the frame-based operations, packet mesh 526 (shown in Figure 5) of network elements 402-408 can act as a full DSO-level cross connect.
As described above, these DSOs can be mapped into packet size data that can be processed by packet processor 606 and packet processor 608 as well as being switched through packet mesh 526. Returning to Figure 5 to help illustrate, 24 DSOs could be generated by packet processor 606 of line card 502a. Additionally, an additional 24 DSOs could be generated by packet processor 606 of line card 502b. Based on configuration of network element 402, the first 14 DSOs signals from line card 502a are to be combined with the last 10 DSOs from line card 502b and are to be transmitted out as a DSl signal through an interface on line card 502d. Moreover, based on configuration of network element 402, the last 10 DSOs from line card 502a are to be combined with the first 14 DSOs from line card 502b and are to be transmitted out as a DSl signal through an interface on line card 502c. The above-described switching and combining of DSOs is by way of example and not by way of limitation, as DSOs from any number of locations can be combined and switched based on forwarding tables and or databases that packet processors 606 and 608 can access. As shown, DSOs can be switched through packet mesh 526 and interleaved within DSls in different combinations such that a given outgoing TDM signal can include one to a number of DSOs from different incoming TDM signals.
System applications for unframed-based operations will now be described. In one embodiment of the unframed-based operations, packet mesh 526 (shown in Figure 5) of network elements 402-408 can act as a full DSl or DS3 level cross connect. In particular, as described above, these TDM signals can be mapped into packet size data that can be processed by packet processor 606 and packet processor 608 as well as being switched through packet mesh 526, independent of locating framing boundaries within such signals.
Returning to Figure 5 to help illustrate, 28 DSl signals could be received by line card 502a. Additionally, an additional 28 DSl signals could be received by line card 502b. Based on configuration of network element 402, the first 14 DSl signals coming into line card 502a are to be combined with the last 14 DSl signals coming into line card 502b and are to be transmitted out as a single DS3 signal through an interface on line card 502d. Moreover, based on configuration of network element 402, the last 14 DSl signals coming into line card 502a are to be combined with the first 14 DSl signals coming into line card 502b and are to be transmitted out as a single DS3 signal through an interface on line card 502c. These operations can be performed employing packet processors 606-608 and packet mesh 526.
In particular, each of the 28 DSl signals being received by line card 502a and each of the 28 DSl signals being received by line card 502b are mapped into packet size data and processed as packets through packet processor 606 and packet mesh 526, independent of the frames within such signals. These packets are received by packet processor 608 of the given line cards for which the DSl signals are destined and reassembled into their original DSl signals by the associated packet engine unit 610 and framer unit 612. For example, the packets making up the first 14 DSl signals being received by line card 502a and the first 14 DSl signals being received by line card 502b are received by packet processor 608 of line card 502d and are reassembled into their original DSl signals by packet engine unit 610 and framer unit 612 of line card 502d. Moreover, framer unit 612 interleaves these 28 DSl signals into a DS3 signal and transmits this DS3 signal out from line card 502.
Embodiments of the present invention are not such that the framed or unframed- based operations on the ingress side dictate the framed or unframed-based operations on the egress side. In one embodiment, ingress unit 620 frames the incoming signal based on the frame and/or frame group boundaries, as described above, while the receiving egress unit 622 performs the framing operations related to both the frame and frame group (e.g., DSl superframe) boundaries for the outgoing signal from framer unit 612. In other words, using the SOFG, framer unit 612 replaces the overhead bits and aligns the payload with the frame and/or frame group boundaries. Accordingly, robbed-bit signaling and subrate formats that require alignment to frame group boundaries are passed intact, hi such an embodiment, the input and output data links are treated as separate links for the purposes of line maintenance signaling.
In another embodiment, ingress unit 620 frames the incoming signal based on the frame and/or frame group boundaries, as described above, while the receiving egress unit 622 performs the framing operations related to only to the frame boundaries and not the frame group (e.g., DSl superframe) boundaries for the outgoing signal from framer unit 612. In such an embodiment, the receiving egress unit 622 ignores the SOFG such that the frame group boundary is not aligned but the individual frames therein are. Accordingly, in the event of frame slippage due to clock differences, the slips occur in units of one frame. Such an embodiment can be used for long distance voice traffic. In such an embodiment, the input and output data links are treated as separate links for the purposes of line maintenance signaling.
In an embodiment, ingress unit 620 frames the incoming signal based on the frame and/or frame group boundaries, as described above, while the receiving egress unit 622 does not perform framing operations of the received signal. Therefore, the payload along with the overhead data is passed, thereby allowing the monitoring of the overhead information. In such an embodiment, the input and output data links are treated as parts of a single link for the purposes of line maintenance signaling.
In one embodiment, ingress unit 620 does not frame the incoming signal, while the receiving egress unit 622 also does not perform framing operations on this signal. The payload of this signal is forwarded with all of the overhead data still within the signal. In one such embodiment, the overhead data on this signal cannot be monitored. In such an embodiment, the input and output data links are treated as parts of a single link for the purposes of line maintenance signaling. Moreover, slippage within the signal is within framed-sized units.
In another embodiment, ingress unit 620 and the receiving egress unit 622 processes the signal in a transparent mode. The data is sent across packet mesh 526 as certain-sized packets without placing such data into the format of packet engine packets 800, illustrated in Figure 8. In one such embodiment, slippage within the signal is within packet-sized units.
Moreover, with regard to timing between a given deframer at the line card where a TDM signal is to be packetized and the corresponding framer where the packetized signal is reconstructed, a number of mechanisms may be employed. In an embodiment, the framer on the line card where the TDM signal is packetized and the framer on the line card where the signal is reconstructed from packetized data are timed from a common network clock, while the far end network element sending the TDM signal to be packetized is loop timed (i.e., its framer is timed according to the signal received by its deframer). In one embodiment, the framer where the TDM signal is reconstructed and the framer at the far end network element where the signal originated are both timed from a common network clock that is distributed by some other transmission path.
In an embodiment, the framer where the TDM signal is reconstructed and the framer where such signal originates are not constrained to have common timing, thereby allowing frame-slips to occur, hi one embodiment, the timing of the framer where the signal is reconstructed is adjusted according to timing information inferred from the arrival time of the packets and/or the length of the queue of packetized TDM data to be sent. In an embodiment, the timing of the TDM signal to be packetized is compared against the network clock. Accordingly, a measure of the deviation is placed in the packets of the TDM data and transmitted to where the TDM signal is reconstructed and used to adjust the timing of the framer therein. However, embodiments of the present invention are not so limited. For example, in another embodiment, the deviation from the network clock can be communicated to the reconstructing line card by other means or transmission paths. The above-described embodiments of the techniques to provide timing between a given deframer and framer are by way of example and not by way of limitation, as other teclmiques to allowing for such timing can be incorporated into embodiments of the present invention.
The line cards and control cards included in the different network elements include memories, processors and/or Application Specific Integrated Circuits (ASICs). Such memory includes a machine-readable medium on which is stored a set of instructions (i.e., software) embodying any one, or all, of the methodologies described herein. Software can reside, completely or at least partially, within this memory and/or within the processor and/or ASICs. For the purposes of this specification, the term "machine-readable medium" shall be taken to include any mechanism that provides (i.e., stores and/or transmits) information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes read only memory (ROM); random access memory (RAM); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
Thus, a method and apparatus for alignment of TDM-based signals for packet transmission using framed and unframed operations have been described. Although the present invention has been described with reference to specific exemplary embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the invention.
For example, embodiments of the present invention illustrated with Figures and 8 were described with regard to a DSl superframe. However, embodiments of the present invention are not so limited, as other transmission standards can be employed. For example, the El standard could be used. Therefore, the overhead bits illustrated in Figures 7 and 8 would become overhead bytes, hi one such embodiment, the overhead bytes would be included within the payload of the signal.
Moreover, embodiments of the present invention are described within a line card in an in-ring network element (illustrated in Figure 1). However, embodiments of the present invention are not so limited. For example, embodiments of the present invention can be incorporated into other network elements, such as non-ring network elements.
Additionally, the processing was described across line cards and control cards. However, embodiments of the present invention are not so limited. For example, a single line card could incorporate the processing described across multiple line cards and/or control cards in the network elements. Moreover, the functionality described in card could be moved to a different card. For example, the functionality described in a line card could be incorporated into the control card. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims

CLAIMSWhat is claimed is:
1. A line card in a network element comprising: a deframer unit to receive a Time Division Multiplexing (TDM) signal, the TDM signal including a payload and overhead data, the deframer to generate frame alignment data based on the overhead data; a packet engine unit coupled to the deframer unit, the packet engine unit to receive the payload, the overhead data and the frame alignment data and to generate a number of packet engine packets, the packet engine packets representing a frame within the TDM signal such that the packet engine packets include the payload and the frame alignment data; and a packet processor coupled to the deframer unit, the packet processor to receive the packet engine packets and to generate network packets based on the packet engine packets.
2. The line card of claim 1, wherein the packet engine packets include the payload, the overhead data and the frame alignment data.
3. The line card of claim 1, wherein the TDM signal includes a Digital Signal (DS)-l signal.
4. The line card of claim 1, wherein the TDM signal includes a Digital Signal (DS) - 3 signal.
5. The line card of claim 1, wherein the TDM signal includes an El signal.
6. The line card of claim 5, wherein the packet processor compresses the DSO signals.
7. The line card of claim 1, wherein the packet processor separates Digital Signal (DS) - 0 signals from within the TDM signal.
8. A network element comprising: a number of line cards, each of the number of line cards including: a deframer unit to receive a Time Division Multiplexing (TDM) signal, the TDM signal including a payload and overhead data, the deframer to generate frame alignment data based on the overhead data; a packet engine unit coupled to the deframer unit, the packet engine unit to receive the payload, the overhead data and the frame alignment data and to generate a number of packet engine packets, the packet engine packets representing a frame within the TDM signal such that the packet engine packets includes the payload, the overhead data and the frame alignment data; and a packet processor coupled to the deframer unit, the packet processor to receive the packet engine packets and to generate network packets based on the packet engine packets; and at least one control card coupled to the number of line cards.
9. The network element of claim 8, wherein the TDM signal includes a Digital Signal (DS)-l signal.
10. The network element of claim 8, wherein the TDM signal includes a Digital Signal (DS) - 3 signal.
11. The network element of claim 8, wherein the TDM signal includes a Jl signal.
12. The network element of claim 8, wherein the packet processor separates a number of Digital Signal (DS) - 0 signals from within the TDM signal.
13. The network element of claim 12, wherein the packet processor for each of the line cards forwards the number of DSO signals out to any of the number of line cards based on forwarding tables, wherein any of the number of DSO signals from any of the number of line cards can be combined to form a DSl signal.
14. The network element of claim 13, wherein the DSl signal is fransmitted out from the line cards.
15. The network element of claim 12, wherein the packet processor compresses the DSO signals.
16. A method comprising: receiving a TDM signal that includes overhead data and payload data; generating frame alignment data based on locations of frame boundaries within the TDM signal; placing the TDM signal into packet engine packets based on the frame boundaries within the TDM signal, wherein the overhead data, the payload data and the frame alignment data are within packet engine packets, such that each packet engine packet corresponds to a frame within the TDM signal; and encapsulating the packet engine packets into network packets.
17. The method of claim 16, wherein the TDM signal includes a Digital Signal (DS) - 1 superframe signal, such that each packet engine packet includes a DSl frame of the DSl superframe signal.
18. The method of claim 16, wherein the TDM signal includes a Digital Signal (DS) - 1 extended superframe signal, such that each packet engine packet includes a DSl frame of the DSl extended superframe signal.
19. The method of claim 16, wherein the TDM signal includes a Digital Signal (DS) - 3 signal, such that each packet engine packet includes a subframe of the DS3 signal.
20. The method of claim 16, wherein the network packets include Internet Protocol packets.
21. A method comprising: receiving a first Time Division Multiplexing (TDM) signal that includes overhead data and payload data; determining frame boundaries within the first TDM signal; placing the first TDM signal into first packet engine packets based on the frame boundaries within the first TDM signal; receiving a second TDM signal; placing the second TDM signal into second packet engine packets, independent of frame boundaries within the second TDM signal; and generating network packets from the first and second packet engine packets using a same packet processor.
22. The method of claim 21, wherein determining the frame boundaries with the first TDM signal includes generating frame alignment data for the first TDM signal.
23. The method of claim 22, wherein placing the first TDM signal into first packet engine packets includes placing the overhead data, the frame alignment data and the payload data into the first packet engine packets.
24. The method of claim 21 , wherein the first and second TDM signals include a Digital Signal (DS) - 3 signal.
25. The method of claim 21, wherein the first and second TDM signals include a Digital Signal (DS) - 1 signal.
26. The method of claim 21, wherein the TDM signal includes an E3 signal.
27. A machine-readable medium that provides instructions, which when executed by a machine, cause said machine to perform operations comprising: receiving a TDM signal that includes overhead data and payload data; generating frame alignment data based on locations of frame boundaries within the TDM signal; placing the TDM signal into packet engine packets based on the frame boundaries within the TDM signal, wherein the overhead data, the payload data and the frame alignment data into packet engine packets, such that packet engine packet corresponds to a frame within the TDM signal; and encapsulating the packet engine packets into network packets.
28. The machine-readable medium of claim 27, wherein the TDM signal includes a Digital Signal (DS) - 1 superframe signal, such that each packet engine packet includes a DSl frame of the DSl superframe signal.
29. The machine-readable medium of claim 27, wherein the TDM signal includes a Digital Signal (DS) - 1 extended superframe signal, such that each packet engine packet includes a DSl frame of the DSl extended superframe signal.
30. The machine-readable medium of claim 27, wherein the TDM signal includes a Digital Signal (DS) - 3 signal, such that each packet engine packet includes a subframe of the DS3 signal.
31. The machine-readable medium of claim 27, wherein the TDM signal includes an El signal.
32. The machine-readable medium of claim 27, wherein the network packets include Internet Protocol packets.
33. A machine-readable medium that provides instructions, which when executed by a machine, cause said machine to perform operations comprising: receiving a first Time Division Multiplexing (TDM) signal that includes overhead data and payload data; determining frame boundaries within the first TDM signal; placing the first TDM signal into first packet engine packets based on the frame boundaries within the first TDM signal; receiving a second TDM signal; placing the second TDM signal into second packet engine packets, independent of frame boundaries within the second TDM signal; and generating network packets from the first and second packet engine packets using a same packet processor.
34. The machine-readable medium of claim 33, wherein determining the frame boundaries with the first TDM signal includes generating frame alignment data for the first TDM signal.
35. The machine-readable medium of claim 34, wherein placing the first TDM signal into first packet engine packets includes placing the overhead data, the frame alignment data and the payload data into the first packet engine packets.
36. The machine-readable medium of claim 33, wherein the first and second TDM signals include a Digital Signal (DS) - 3 signal.
37. The machine-readable medium of claim 33, wherein the first and second TDM signals include a Digital Signal (DS) - 1 signal.
38. The machine-readable medium of claim 33, wherein the TDM signal includes a Jl signal.
PCT/US2002/004451 2001-03-31 2002-02-14 Alignment of tdm-based signals WO2002080421A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0323562A GB2390278B (en) 2001-03-31 2002-02-14 Alignment of TDM-based signals for packet transmission using framed and unframed operations
AU2002306492A AU2002306492A1 (en) 2001-03-31 2002-02-14 Alignment of tdm-based signals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US28066101P 2001-03-31 2001-03-31
US60/280,661 2001-03-31
US09/837,448 2001-04-17
US09/837,448 US6959008B2 (en) 2001-03-31 2001-04-17 Alignment of TDM-based signals for packet transmission using framed and unframed operations

Publications (2)

Publication Number Publication Date
WO2002080421A1 true WO2002080421A1 (en) 2002-10-10
WO2002080421A8 WO2002080421A8 (en) 2002-10-31

Family

ID=26960434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/004451 WO2002080421A1 (en) 2001-03-31 2002-02-14 Alignment of tdm-based signals

Country Status (4)

Country Link
US (1) US6959008B2 (en)
AU (1) AU2002306492A1 (en)
GB (1) GB2390278B (en)
WO (1) WO2002080421A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075501A2 (en) * 2001-07-06 2003-09-12 Lycium Networks (B.V.I.) Ltd. System and method for performing combined tdm and packet switching in a tdm cross connect
US6950446B2 (en) 2001-03-31 2005-09-27 Redback Networks Inc. Method and apparatus for simultaneously sync hunting signals
US6959008B2 (en) 2001-03-31 2005-10-25 Redback Networks Inc. Alignment of TDM-based signals for packet transmission using framed and unframed operations

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212517B2 (en) * 2001-04-09 2007-05-01 Lucent Technologies Inc. Method and apparatus for jitter and frame erasure correction in packetized voice communication systems
US7468988B2 (en) * 2001-08-22 2008-12-23 Tekelec Methods and systems for improving utilization of high-speed time division multiplexed communications links at signal transfer point
US7233587B2 (en) * 2002-02-01 2007-06-19 Harris Corporation Method and system for encapsulating time division multiplex data into individual packets of a packet based network
US7177305B2 (en) * 2002-04-25 2007-02-13 Lucent Technologies Inc. Inter-switch telecommunications system for interconnecting packet-capable Time Division Multiplexed switches with non-packet-capable Time Division Multiplexed switches via an asynchronous transfer mode network
WO2003094453A1 (en) 2002-05-03 2003-11-13 Cedar Point Communications, Inc. Communications switching architecture
CA2388792A1 (en) * 2002-05-31 2003-11-30 Catena Networks Canada Inc. An improved system and method for transporting multiple services over a backplane
US7848259B2 (en) * 2003-08-01 2010-12-07 Opnet Technologies, Inc. Systems and methods for inferring services on a network
US7577222B2 (en) * 2005-05-17 2009-08-18 Intel Corporation Methods and apparatus with logic to determine a relative change relationship between modem and frame clocks
JP4899782B2 (en) * 2006-10-24 2012-03-21 日本電気株式会社 Ring transmission device
US20100284425A1 (en) * 2009-05-11 2010-11-11 David Hood System and method of using tdm variable frame lengths in a telecommunications network
US8712251B2 (en) * 2011-04-19 2014-04-29 Google Inc. Transport of multiple asynchronous data streams using higher order modulation
WO2012162596A1 (en) * 2011-05-26 2012-11-29 3Derm Systems, Llc Stereoscopic plug-and-play dermatoscope and web interface
KR101631651B1 (en) * 2013-12-04 2016-06-20 주식회사 쏠리드 Optical Repeater of Ring Topology type

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519700A (en) * 1994-12-07 1996-05-21 At&T Corp. Telecommunication system with synchronous-asynchronous interface
US6038226A (en) * 1997-03-31 2000-03-14 Ericcson Inc. Combined signalling and PCM cross-connect and packet engine
US6075788A (en) * 1997-06-02 2000-06-13 Lsi Logic Corporation Sonet physical layer device having ATM and PPP interfaces
US6272144B1 (en) * 1997-09-29 2001-08-07 Agere Systems Guardian Corp. In-band device configuration protocol for ATM transmission convergence devices
US6385209B1 (en) * 2000-06-14 2002-05-07 Pluris, Inc. Method and apparatus for mapping data packets between lines of differing capacity at a router interface

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1232693A (en) * 1985-09-05 1988-02-09 Alan F. Graves Network multiplex structure
CA1245327A (en) * 1985-09-06 1988-11-22 Northern Telecom Limited Path oriented routing system and method for packet switching networks
US4893306A (en) * 1987-11-10 1990-01-09 Bell Communications Research, Inc. Method and apparatus for multiplexing circuit and packet traffic
US4819226A (en) * 1987-11-10 1989-04-04 Bell Communications Research, Inc. Framer circuit for use in a DTDM network
US5159595A (en) * 1988-04-08 1992-10-27 Northern Telecom Limited Ring transmission system
US5187711A (en) * 1988-09-20 1993-02-16 Fujitsu Limited Error correction method for multicarrier radio transmission system
US5113395A (en) * 1989-09-14 1992-05-12 Nec Corporation Frame phase aligning system using a buffer memory with a reduced capacity
US5072449A (en) * 1989-12-21 1991-12-10 Stratacom, Inc. Packet framing using cyclic redundancy checking
US5128945A (en) * 1989-12-21 1992-07-07 Stratacom, Inc. Packet framing using cyclic redundancy checking
US5268936A (en) * 1991-07-08 1993-12-07 At&T Bell Laboratories Synchronous digital signal to asynchronous digital signal desynchronizer
JP2732759B2 (en) * 1992-07-15 1998-03-30 沖電気工業株式会社 Frame synchronization control method
US5550820A (en) * 1992-09-29 1996-08-27 Com 21, Inc. Multiple protocol personal communications network system
US5511077A (en) * 1993-06-30 1996-04-23 Nec Corporation Frame transmission system
US5608733A (en) * 1994-11-29 1997-03-04 Valle; Richard ATM inverse multiplexing
US5533018A (en) * 1994-12-21 1996-07-02 National Semiconductor Corporation Multi-protocol packet framing over an isochronous network
US5963564A (en) * 1995-06-13 1999-10-05 Telefonaktiebolaget Lm Ericsson Synchronizing the transmission of data via a two-way link
US6237029B1 (en) * 1996-02-26 2001-05-22 Argosystems, Inc. Method and apparatus for adaptable digital protocol processing
US5621773A (en) * 1996-03-08 1997-04-15 Lsi Logic Corporation Method and apparatus for fast synchronization of T1 extended superframes
US5825770A (en) * 1996-06-06 1998-10-20 Northern Telecom Limited Multiple algorithm processing on a plurality of digital signal streams via context switching
US6122281A (en) * 1996-07-22 2000-09-19 Cabletron Systems, Inc. Method and apparatus for transmitting LAN data over a synchronous wide area network
DE69738484T2 (en) * 1996-08-16 2008-05-21 Nortel Networks Ltd., St. Laurent INVERTED MULTIPLEXING OF DIGITAL DATA
US5987030A (en) * 1996-09-27 1999-11-16 Cisco Technology, Inc. Transparent circuit emulation for packet switching network
US6198751B1 (en) * 1997-11-19 2001-03-06 Cabletron Systems, Inc. Multi-protocol packet translator
US6498667B1 (en) * 1999-09-10 2002-12-24 Quantum Bridge Communications, Inc. Method and system for packet transmission over passive optical network
JP3511988B2 (en) * 2000-08-10 2004-03-29 日本電気株式会社 Frame transfer device, frame transfer method, and frame transfer system
US6466591B1 (en) * 2000-12-30 2002-10-15 Redback Networks Inc. Method and apparatus for processing of multiple protocols within data and control channels in data transmission signals
US6959008B2 (en) 2001-03-31 2005-10-25 Redback Networks Inc. Alignment of TDM-based signals for packet transmission using framed and unframed operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519700A (en) * 1994-12-07 1996-05-21 At&T Corp. Telecommunication system with synchronous-asynchronous interface
US6038226A (en) * 1997-03-31 2000-03-14 Ericcson Inc. Combined signalling and PCM cross-connect and packet engine
US6075788A (en) * 1997-06-02 2000-06-13 Lsi Logic Corporation Sonet physical layer device having ATM and PPP interfaces
US6272144B1 (en) * 1997-09-29 2001-08-07 Agere Systems Guardian Corp. In-band device configuration protocol for ATM transmission convergence devices
US6385209B1 (en) * 2000-06-14 2002-05-07 Pluris, Inc. Method and apparatus for mapping data packets between lines of differing capacity at a router interface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950446B2 (en) 2001-03-31 2005-09-27 Redback Networks Inc. Method and apparatus for simultaneously sync hunting signals
US6959008B2 (en) 2001-03-31 2005-10-25 Redback Networks Inc. Alignment of TDM-based signals for packet transmission using framed and unframed operations
WO2003075501A2 (en) * 2001-07-06 2003-09-12 Lycium Networks (B.V.I.) Ltd. System and method for performing combined tdm and packet switching in a tdm cross connect
WO2003075501A3 (en) * 2001-07-06 2003-12-04 Orton Business Ltd System and method for performing combined tdm and packet switching in a tdm cross connect

Also Published As

Publication number Publication date
GB0323562D0 (en) 2003-11-12
US20030016699A1 (en) 2003-01-23
GB2390278B (en) 2004-11-03
WO2002080421A8 (en) 2002-10-31
GB2390278A (en) 2003-12-31
AU2002306492A1 (en) 2002-10-15
US6959008B2 (en) 2005-10-25

Similar Documents

Publication Publication Date Title
US7460554B2 (en) Any size and location of concatenated packet data across SONET frames in a SONET signal
AU777645B2 (en) Circuit emulation service over an internet protocol network
US6963561B1 (en) Facility for transporting TDM streams over an asynchronous ethernet network using internet protocol
US6466591B1 (en) Method and apparatus for processing of multiple protocols within data and control channels in data transmission signals
US7852880B2 (en) Provision of TDM service over GPON using VT encapsulation
US6959008B2 (en) Alignment of TDM-based signals for packet transmission using framed and unframed operations
US7317725B2 (en) System and method for implementing combined packetized TDM streams and TDM cross connect functions
US20040190548A1 (en) Efficient transport of TDM services over packet networks
US6990121B1 (en) Method and apparatus for switching data of different protocols
US20040252688A1 (en) Routing packets in frame-based data communication networks
US7130276B2 (en) Hybrid time division multiplexing and data transport
US6765916B1 (en) Method and apparatus for processing of multiple protocols within data transmission signals
US20080219669A1 (en) SDH/SONET Convergent Network
JP2003501873A (en) High-speed Ethernet based on SONET technology
US6373837B1 (en) System for transmitting data between circuit boards in a housing
JP2001060931A (en) Method for converting continuous connection to virtual connection in synchronous digital communication network
US20050053028A1 (en) Data adaptation protocol
EP1701495A1 (en) Hybrid digital cross-connect for switching circuit and packet based data traffic
US20020154647A1 (en) Frame handler for high-speed fiber optic communication interface
US6510166B2 (en) Stuffing filter mechanism for data transmission signals
US20050053053A1 (en) Method and apparatus for synchronized transport of data through an asynchronous medium
US11916662B2 (en) System and method for performing rate adaptation of constant bit rate (CBR) client data with a fixed number of idle blocks for transmission over a metro transport network (MTN)
US6778538B2 (en) Virtual junctors
EP2197131B1 (en) Method and apparatus for synchronized transport of data through an asynchronous medium
US11838111B2 (en) System and method for performing rate adaptation of constant bit rate (CBR) client data with a variable number of idle blocks for transmission over a metro transport network (MTN)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 0323562

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20020214

Format of ref document f/p: F

AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page

Free format text: UNDER (54) PUBLISHED TITLE REPLACED BY CORRECT TITLE

Free format text: UNDER (54) PUBLISHED TITLE REPLACED BY CORRECT TITLE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP