WO2002084127A1 - Accumulator - Google Patents

Accumulator Download PDF

Info

Publication number
WO2002084127A1
WO2002084127A1 PCT/JP2001/003199 JP0103199W WO02084127A1 WO 2002084127 A1 WO2002084127 A1 WO 2002084127A1 JP 0103199 W JP0103199 W JP 0103199W WO 02084127 A1 WO02084127 A1 WO 02084127A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure receiving
receiving
flange portion
pressure
pressurized
Prior art date
Application number
PCT/JP2001/003199
Other languages
French (fr)
Japanese (ja)
Inventor
Kimihisa Kikkawa
Original Assignee
Nippon Accumulator Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000012531A priority Critical patent/JP2001208001A/en
Application filed by Nippon Accumulator Co., Ltd. filed Critical Nippon Accumulator Co., Ltd.
Priority to PCT/JP2001/003199 priority patent/WO2002084127A1/en
Publication of WO2002084127A1 publication Critical patent/WO2002084127A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/04Accumulators
    • F15B1/08Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
    • F15B1/22Liquid port constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/20Accumulator cushioning means
    • F15B2201/205Accumulator cushioning means using gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/30Accumulator separating means
    • F15B2201/315Accumulator separating means having flexible separating means
    • F15B2201/3152Accumulator separating means having flexible separating means the flexible separating means being bladders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/41Liquid ports
    • F15B2201/411Liquid ports having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/415Gas ports
    • F15B2201/4155Gas ports having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/40Constructional details of accumulators not otherwise provided for
    • F15B2201/43Anti-extrusion means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2201/00Accumulators
    • F15B2201/60Assembling or methods for making accumulators
    • F15B2201/605Assembling or methods for making housings therefor

Definitions

  • the present invention relates to an accumulator, and more particularly to an accumulator that must not be subjected to fatigue failure.
  • Conventional technology
  • a supply / discharge cylinder through which the pressure liquid enters and exits is provided.
  • the supply / discharge cylinder is fitted into the through hole at the bottom, and its flange is locked to a stepped receiving portion formed in the through hole.
  • the step-shaped receiving portion locked with the flange portion receives a large force.
  • the pressure receiving surface of the step-shaped receiving portion abutting on the flange portion is formed in a substantially flat shape, and the load from the flange portion is received by the flat pressure receiving surface.
  • the present invention has been made in view of the above circumstances, and has as its object to prevent fatigue failure from occurring. Disclosure of the invention
  • An accumulator in which a through hole is provided at the bottom of the container body, and a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole;
  • the pressure receiving surface of the stepped receiving portion and the pressurizing surface of the flange portion of the supply / discharge cylinder are opposed to each other, and one of the two portions is deformed by a load applied to the flange portion so that one surface is deformed. Match with the other side.
  • the pressure-receiving surface of the step-shaped receiving portion has an inner pressure-receiving surface formed along the diametric direction. And an outer pressure receiving R surface.
  • the pressing surface of the flange portion includes: an inner pressing R surface facing the inner pressure receiving R surface; and an outer pressing R surface facing the outer pressure receiving R surface.
  • the contact center angle between the inner R-faces of the two parts and the outer R-faces of the two parts is formed at 30 degrees, and is appropriately selected within a range of less than 70 ° as necessary.
  • FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention
  • FIG. 2 is an enlarged view of a main part of FIG. 1
  • FIG. 3 is a view showing another state of FIG. 2
  • FIG. 4 is an enlarged view of a main part of FIG. 5 is a longitudinal sectional view showing a comparative example, and is a view corresponding to FIG.
  • FIG. 6 is a longitudinal sectional view showing a second embodiment of the present invention, and corresponds to FIG.
  • FIG. 7 is a longitudinal sectional view showing a third embodiment of the present invention, and corresponds to FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • Conventional accumulators are designed by calculating the surface pressure and calculating the pressure receiving surface in an area that does not cause plastic deformation.
  • the present inventor has formed a pressurized surface and a pressure-receiving surface that face each other and have an R surface with materials having different hardnesses, and when the flange portion receives a load, the material with the smaller hardness is used. Plastic deformation or elastic deformation was performed to match the surface with the surface of another material with high hardness.
  • the surfaces of the pressurized and pressure-receiving surfaces that are pressed against each other are subjected to high compressive and tensile loads, causing fatigue failure.
  • this fatigue failure does not occur even at high compressive loads, but does occur when tensile loads are applied repeatedly.
  • the present invention utilizes the above properties, and suppresses fatigue fracture by reducing the compressive load and the tensile load.
  • Example 1
  • the accumulator ACC has a bladder 2 built in a container body 1.
  • the bladder 2 is a so-called pleated bladder which is folded so as to be folded into a predetermined shape.
  • the flange 3 of the bladder 2 is locked on the upper la of the container body 1 and is fixed by the lid 5.
  • the lid 5 is provided with a supply / exhaust port 6 communicating with the inside of the bladder 2.
  • a through hole 10 is provided in the bottom 1 b of the container body 1, and a supply / discharge cylinder 13 is inserted into the through hole 10.
  • the flange portion 14 of the supply / discharge cylinder 13 is pressed against the stepped receiving portion 11 of the through hole 10.
  • the pressure-receiving surface 11A of the step-shaped receiving portion 11 includes an inner pressure-receiving surface 11a, a central pressure-receiving surface 11b, and an outer pressure-receiving surface 11c, which are successively arranged in the radial direction.
  • Radius of the inner pressure R surface 11 a is, for example, 3.2 thigh, radius R 2 of the outer pressure bearing R surface 11 c is formed, for example, 1.8 Hall.
  • the inclined surface 11 d continuous to the inner pressure receiving R surface 1 la is inclined, for example, by 20 ° with respect to the center line 10 c of the through hole 10.
  • the supply / discharge cylinder 13 is formed of a material having a lower hardness than the material of the stepped receiving portion 11, and the pressurizing surface 14 A of the flange portion 14 of the supply / discharge cylinder 13 has a gap with the inner pressure receiving R surface 11 a.
  • the inner pressure R surface 14a opposing through t, the central pressure surface 14b pressed against the central pressure receiving surface 11b, and the outer pressure surface facing the outer pressure receiving surface 11c via the gap t. Pressure R surface 14c.
  • Radius R 3 of the inner pressure R surface 14 a is, for example, 3 mm
  • the radius R 4 of the outer pressure R surfaces 14c for example, is formed in two thigh.
  • a povet valve 16 with a cushion cap 15 is slidably supported on the supply / discharge cylinder 13.
  • the supply / discharge cylinder 13 is fixed to the container body 1 by a nut 17. Next, the operation of the present embodiment will be described.
  • the inner pressurized R surface 14a and the outer pressurized R surface 14c also come into pressure contact with the opposing inner pressurized R surface 1la and outer pressurized R surface 1lc, respectively, and undergo plastic deformation while being elastically deformed.
  • the deformation does not progress.
  • the two R surfaces 11 a of the inner both parts, 14 a of the contact center angle 0I, the contact center angle 0 2 of the two R surfaces 11 c, 14 c of the outer surfaces of the parts is less than 70 °
  • the central angle 0 2 is 30 ° each.
  • this R surface can receive more than 50% of the load.
  • the radius of the inner pressurized R surface 14a changes to R3a as shown in FIG.
  • the central pressure plane 14b, the inner and outer pressure R-faces 14a, 14c can easily conform to the central pressure-receiving plane 11b, the inner and outer pressure-receiving R faces 11a, 11c. It is transformed into a shape.
  • the total load applied to the flange portion 14 is shared by the central pressure receiving plane 11b, the inner pressure receiving R surface 11a, and the outer pressure receiving R surface 11c.
  • the tensile load of the accumulator of this embodiment is calculated by the finite element method, when the total load applied to the flange portion 14 is set to 332 and 62 ON, the maximum internal load of the flange portion 14
  • the maximum tensile load of the R surface 14a is 405NZ ⁇ 2
  • the maximum tensile load of the outer pressure R surface 11 c of the stepped sockets 11 was 48 lNZmm 2.
  • the radius R2 of the outer pressure receiving R surface 1 lc is 0.8 thigh
  • the radius R4 of the outer pressing R surface 14c is 0.8
  • the radius of the inner pressing R surface 14a is 0.8
  • R 3 is 1.2 fiber
  • inner pressure is R radius of 11a is 0.4 thigh
  • slope angle of 1 d is 15 °
  • the same load is applied to flange 14 as above.
  • Finite element Analysis As a result, the maximum tensile load of the inner pressurized R surface 14 a of the flange portion 14 was 79 ON / thigh 2 , and the maximum tensile load of the outer pressurized R surface 11 c was 87 1 N / thigh 2 .
  • the inner pressurized R surface 14a and the outer pressurized R surface 14c are directly continuous, and the inner pressurized R surface 11a and the outer pressurized R surface 11c are directly connected, This means that the entire load acting on the flange portion 14 is received on this R surface.
  • the inner pressurized R surface 14a and the outer pressurized R surface 14c are connected via the central pressurized curved surface 14d, and the inner pressurized R surface 11a and the outer pressurized R surface 1 1 c is the central pressure receiving surface Connected via 1 1 d.
  • the centers of the radii R t and R 3 are located on the same straight line 1 ⁇ parallel to the center line 10 c of the through hole 10, and the centers of the radii R 2 and R 4 are the centers of the through holes 10 It is located on line 1 0 c parallel same straight line L 2.
  • the present invention has the following remarkable effects. That is,

Abstract

The pressure receiving surface (11A) of a stepped support (11) in a through-hole (10) in a container main body (1) is opposed to the pressing surface (14A) of the flange (14) of a supply and exhaust sleeve (13). When the flange (14) of the supply and exhaust sleeve (13) is loaded, it is deformed and the pressing surface (14A) is pressed against the pressure receiving surface (11A) to conform with the latter.

Description

明 細 書  Specification
アキュムレータ 技術分野 Accumulator technical field
この発明は、 アキュムレータに関するもので、 特に、 疲労破壊をしてはいけな いアキュムレータに関するものである。 従来の技術  The present invention relates to an accumulator, and more particularly to an accumulator that must not be subjected to fatigue failure. Conventional technology
アキュムレータの容器本体の底部には、 圧力液体が出入りする給排筒が設けら れている。 この給排筒は、 前記底部の貫通穴に嵌着されそのフランジ部は貫通穴 に形成した段状受部に係止されている。  At the bottom of the container body of the accumulator, a supply / discharge cylinder through which the pressure liquid enters and exits is provided. The supply / discharge cylinder is fitted into the through hole at the bottom, and its flange is locked to a stepped receiving portion formed in the through hole.
アキュムレータに圧力液体を加えると、 該給排筒のフランジ部に大きな力が加 わる。 そのため、 該フランジ部と係止している段状受部は大きな力を受ける。 ところが、 該フランジ部に当接する段状受部の受圧面は、 ほぼ平面状に形成さ れ、 フランジ部からの荷重はこの平面状の受圧面で受けている。  When pressurized liquid is applied to the accumulator, a large force is applied to the flange portion of the supply / discharge cylinder. Therefore, the step-shaped receiving portion locked with the flange portion receives a large force. However, the pressure receiving surface of the step-shaped receiving portion abutting on the flange portion is formed in a substantially flat shape, and the load from the flange portion is received by the flat pressure receiving surface.
そのため、 引っ張り力が働くフランジ部の内側下面角部及び段状受部の外側角 部には、 大きな表面応力が働くので、 疲労破壊が発生する。  As a result, a large surface stress acts on the inner lower surface corner of the flange portion where the tensile force acts and the outer corner of the stepped receiving portion, and fatigue fracture occurs.
この発明は、 上記事情に鑑み、 疲労破壊が発生しないようにすることを目的と する。 発明の開示  The present invention has been made in view of the above circumstances, and has as its object to prevent fatigue failure from occurring. Disclosure of the invention
容器本体の底部に貫通穴を設け、 該貫通穴に給排筒を嵌着して該貫通穴の段状 受部に該給排筒のフランジ部を圧接せしめたアキュムレータであって;前記貫通 穴の段状受部の受圧面と前記給排筒のフランジ部の加圧面とは、 互いに対向して おり、 前記フランジ部にかかる負荷により前記両部のいずれか一方を変形させて 一方の面を他方の面に一致させる。  An accumulator in which a through hole is provided at the bottom of the container body, and a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole; The pressure receiving surface of the stepped receiving portion and the pressurizing surface of the flange portion of the supply / discharge cylinder are opposed to each other, and one of the two portions is deformed by a load applied to the flange portion so that one surface is deformed. Match with the other side.
例えば、 前記段状受部の受圧面は、 直径方向に沿って形成された内側受圧 R面 と外側受圧 R面とから構成され、 前記フランジ部の加圧面は、 前記内側受圧 R面 に対向する内側加圧 R面と、 前記外側受圧 R面に対向する外側加圧 R面と、 から 構成され、 前記両部の内側の R面同志及び前記両部の外側の R面同志の接触中心 角は、 3 0度に形成されるが、 必要に応じて 7 0 ° 未満の範囲で適宜選択される c 図面の簡単な説明 For example, the pressure-receiving surface of the step-shaped receiving portion has an inner pressure-receiving surface formed along the diametric direction. And an outer pressure receiving R surface. The pressing surface of the flange portion includes: an inner pressing R surface facing the inner pressure receiving R surface; and an outer pressing R surface facing the outer pressure receiving R surface. The contact center angle between the inner R-faces of the two parts and the outer R-faces of the two parts is formed at 30 degrees, and is appropriately selected within a range of less than 70 ° as necessary. a brief description of that c drawings
図 1は本発明の実施例を示す縦断面図、 図 2は図 1の要部拡大図、 図 3は図 2 の他の状態を示す図、 図 4は図 3の要部拡大図、 図 5は比較例を示す縦断面図で、 図 2に対応する図である。  1 is a longitudinal sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged view of a main part of FIG. 1, FIG. 3 is a view showing another state of FIG. 2, FIG. 4 is an enlarged view of a main part of FIG. 5 is a longitudinal sectional view showing a comparative example, and is a view corresponding to FIG.
図 6は本発明の第 2実施例を示す縦断面図で、 図 2に対応する図である。  FIG. 6 is a longitudinal sectional view showing a second embodiment of the present invention, and corresponds to FIG.
図 7は本発明の第 3実施例を示す縦断面図で、 図 2に対応する図である。 発明を実施するための最良の形態  FIG. 7 is a longitudinal sectional view showing a third embodiment of the present invention, and corresponds to FIG. BEST MODE FOR CARRYING OUT THE INVENTION
従来のアキュムレータでは、 面圧を計算して塑性変形を起こさない面積で受圧 面を計算して設計している。  Conventional accumulators are designed by calculating the surface pressure and calculating the pressure receiving surface in an area that does not cause plastic deformation.
また、 応力集中を防止する為互いに当接する加圧面と受圧面とを R面にするこ とが考えられるが、 この R面を設計とおりに精密に加工することは困難である。 そこで、 本発明者は、 互いに対向し、 かつ、 R面を有する加圧面と受圧面とを 互いに異なる硬度の素材で形成し、 フランジ部が荷重を受けたとき、 硬度の小さ い方の素材を塑性変形又は弾性変形させてその面を硬度の大きい他の素材の面に 一致させるようにした。  In order to prevent stress concentration, it is conceivable to make the pressing surface and the pressure receiving surface that come into contact with each other R-shaped surfaces, but it is difficult to precisely process these R-surfaces as designed. Therefore, the present inventor has formed a pressurized surface and a pressure-receiving surface that face each other and have an R surface with materials having different hardnesses, and when the flange portion receives a load, the material with the smaller hardness is used. Plastic deformation or elastic deformation was performed to match the surface with the surface of another material with high hardness.
互いに圧接する加圧面と受圧面の表面は、 高い圧縮荷重と引張荷重を受け、 疲 労破壊の原因となる。 しかし、 この疲労破壊は圧縮荷重が高い値でも発生しない が、 引張荷重が繰り返しかかるとそれが発生する。  The surfaces of the pressurized and pressure-receiving surfaces that are pressed against each other are subjected to high compressive and tensile loads, causing fatigue failure. However, this fatigue failure does not occur even at high compressive loads, but does occur when tensile loads are applied repeatedly.
本発明は、 前記性質を利用するものであり、 圧縮荷重が大きく、 引張荷重が小 さくなるようにして疲労破壊を抑制するものである。 実施例 1 The present invention utilizes the above properties, and suppresses fatigue fracture by reducing the compressive load and the tensile load. Example 1
この発明の実施例 1を図 1〜図 5により説明する。  First Embodiment A first embodiment of the present invention will be described with reference to FIGS.
アキュムレータ ACCは、 容器本体 1内にブラダ 2を内蔵している。 このブラ ダ 2は、 所定形状に折り畳まれるように折りぐせを付けた、 所謂プリーツブラダ である。 このブラダ 2のフランジ 3は、 容器本体 1の上部 laに係止され、 蓋体 5 により固定されている。 この蓋体 5には、 ブラダ 2内に連通する給排気口 6が設 けられている。 容器本体 1の底部 1 bには、 貫通穴 10が設けられ、 この貫通穴 10には給排筒 13が挿着されている。 この給排筒 13のフランジ部 14は、 貫 通穴 10の段状受部 11に圧接されている。  The accumulator ACC has a bladder 2 built in a container body 1. The bladder 2 is a so-called pleated bladder which is folded so as to be folded into a predetermined shape. The flange 3 of the bladder 2 is locked on the upper la of the container body 1 and is fixed by the lid 5. The lid 5 is provided with a supply / exhaust port 6 communicating with the inside of the bladder 2. A through hole 10 is provided in the bottom 1 b of the container body 1, and a supply / discharge cylinder 13 is inserted into the through hole 10. The flange portion 14 of the supply / discharge cylinder 13 is pressed against the stepped receiving portion 11 of the through hole 10.
段状受部 1 1の受圧面 11Aは、 直径方向に沿って順次連続する内側受圧 R面 11 a、 中央受圧平面 11 b、 外側受圧 R面 11 c、 を備えている。  The pressure-receiving surface 11A of the step-shaped receiving portion 11 includes an inner pressure-receiving surface 11a, a central pressure-receiving surface 11b, and an outer pressure-receiving surface 11c, which are successively arranged in the radial direction.
内側受圧 R面 11 aの半径 は、 例えば、 3.2腿、 外側受圧 R面 11 cの半 径 R2は、 例えば 1.8廳に形成されている。 内側受圧 R面 1 l aに連続する傾斜 面 11 dは、 貫通穴 10の中心線 10 cに対しひ、 例えば、 20° 傾斜している。 給排筒 13は前記段状受部 11の素材より硬度の小さい素材で形成されており、 該給排筒 13のフランジ部 14の加圧面 14 Aは、 前記内側受圧 R面 11 aと隙 間 tを介して対向する内側加圧 R面 14 aと、 前記中央受圧平面 11 bに圧接する 中央加圧平面 14 bと、 前記外側受圧 R面 1 1 cと隙間 tを介して対向する外側加 圧 R面 14 c、 とを備えている。 Radius of the inner pressure R surface 11 a is, for example, 3.2 thigh, radius R 2 of the outer pressure bearing R surface 11 c is formed, for example, 1.8 Hall. The inclined surface 11 d continuous to the inner pressure receiving R surface 1 la is inclined, for example, by 20 ° with respect to the center line 10 c of the through hole 10. The supply / discharge cylinder 13 is formed of a material having a lower hardness than the material of the stepped receiving portion 11, and the pressurizing surface 14 A of the flange portion 14 of the supply / discharge cylinder 13 has a gap with the inner pressure receiving R surface 11 a. The inner pressure R surface 14a opposing through t, the central pressure surface 14b pressed against the central pressure receiving surface 11b, and the outer pressure surface facing the outer pressure receiving surface 11c via the gap t. Pressure R surface 14c.
内側加圧 R面 14 aの半径 R3は、 例えば、 3mm、 外側加圧 R面 14cの半径 R4は、 例えば、 2腿に形成されている。 前記半径 R!、 R3の中心は、 それそれ貫 通穴 10の中心線 10 cと平行な直線 L3上に位置し、 又、 前記半径 R2、 R4の中 心は、 それぞれ貫通穴 10の中心線 10 cと平行な直線 L4上に位置している。 給排筒 13には、 クッションカヅプ 15の付いたポベット弁 16が摺動自在に 支持されている。 この給排筒 13は、 ナット 17により容器本体 1に固定されて いる。 次に、 本実施例の作動につき説明する。 Radius R 3 of the inner pressure R surface 14 a is, for example, 3 mm, the radius R 4 of the outer pressure R surfaces 14c, for example, is formed in two thigh. The center of the radius R !, R 3, it it is located on the center line 10 c and the parallel line L3 transmembrane throughbore 10, also center of the said radius R 2, R 4 are each through hole 10 Is located on a straight line L4 parallel to the center line 10c of. A povet valve 16 with a cushion cap 15 is slidably supported on the supply / discharge cylinder 13. The supply / discharge cylinder 13 is fixed to the container body 1 by a nut 17. Next, the operation of the present embodiment will be described.
アキュムレータに接続されている液圧回路の液圧が変化しアキュムレータが加 圧されると、 給排筒 13は、 矢印 A 13方向に押圧され、 図 3、 図 4に示すよう に、 中央加圧平面 14bは中央受圧平面 11 bに圧接して弾性変形しながら塑性 変形する。  When the hydraulic pressure of the hydraulic circuit connected to the accumulator changes and the accumulator is pressurized, the supply / discharge cylinder 13 is pressed in the direction of arrow A13, and the central pressurization is performed as shown in FIGS. 3 and 4. The plane 14b is plastically deformed while being elastically deformed by being pressed against the central pressure receiving plane 11b.
次に、 内側加圧 R面 14 a及び外側加圧 R面 14 cもそれぞれ対向する内側受 圧 R面 1 l a及び外側受圧 R面 1 l cに圧接し、 弾性変形しながら塑性変形する。 そして、 加圧力と変形力とのバランスがとれると、 それぞれ変形は進行しなく なる。 この時、 前記両部の内側の両 R面 11 a、 14 aの接触中心角 0ί、 前記両 部の外側の両 R面 11 c、 14 cの接触中心角 02、 は 70° 未満であり、 例えば 該中心角 0 02はそれそれ 30° である。 また、 この R面では 50%以上の荷 重が受けられる。 なお、 内側加圧 R面 14 aの半径は、 図 4に示すように、 R3a に変化する。 Next, the inner pressurized R surface 14a and the outer pressurized R surface 14c also come into pressure contact with the opposing inner pressurized R surface 1la and outer pressurized R surface 1lc, respectively, and undergo plastic deformation while being elastically deformed. When the applied force and the deformation force are balanced, the deformation does not progress. In this case, the two R surfaces 11 a of the inner both parts, 14 a of the contact center angle 0I, the contact center angle 0 2 of the two R surfaces 11 c, 14 c of the outer surfaces of the parts, is less than 70 ° For example, the central angle 0 2 is 30 ° each. In addition, this R surface can receive more than 50% of the load. The radius of the inner pressurized R surface 14a changes to R3a as shown in FIG.
前記のように、 中央加圧平面 14 b、 内側及び外側加圧 R面 14 a, 14 cは 簡単に中央受圧平面 1 1 b、 内側及び外側受圧 R面 1 1 a、 11 cに合致する形 状に変形される。 フランジ部 14にかかる全荷重は、 中央受圧平面 11 b、 内側 受圧 R面 11 a、 外側受圧 R面 11 c、 により分担される。  As described above, the central pressure plane 14b, the inner and outer pressure R-faces 14a, 14c can easily conform to the central pressure-receiving plane 11b, the inner and outer pressure-receiving R faces 11a, 11c. It is transformed into a shape. The total load applied to the flange portion 14 is shared by the central pressure receiving plane 11b, the inner pressure receiving R surface 11a, and the outer pressure receiving R surface 11c.
この時、 フランジ部 14の内側加圧 R面 14a及び段状受部 11の外側受圧 R 面 11 cには引っ張り荷重がかかる。  At this time, a tensile load is applied to the inner pressurized R surface 14a of the flange portion 14 and the outer pressurized R surface 11c of the stepped receiving portion 11.
この実施例のアキュムレータについて、 有限要素法で引っ張り荷重の計算を行 うと、 フランジ部 14にかかる全荷重を 332, 62 ONとした場合、 フランジ 部 14の内側加圧 R面 14 aの最大引張荷重は、 405NZ顧2であり、 又、 段状 受部 11の外側受圧 R面 11 cの最大引張荷重は 48 lNZmm2であった。 When the tensile load of the accumulator of this embodiment is calculated by the finite element method, when the total load applied to the flange portion 14 is set to 332 and 62 ON, the maximum internal load of the flange portion 14 The maximum tensile load of the R surface 14a is 405NZ顧2, also, the maximum tensile load of the outer pressure R surface 11 c of the stepped sockets 11 was 48 lNZmm 2.
これに対し、 図 5に示す様に、 外側受圧 R面 1 lcの半径 R2を 0.8腿、 外側加圧 R面 14 cの半径 R4を 0.8画に形成し、 内側加圧 R面 14 aの半径 R3を 1.2纖、 内側受圧 R面 11 aの半径 を 0.4腿、 傾斜面 1 1 dの傾斜角度ひ を 15° 、 に形成して、 フランジ部 14に前記と同一の荷重をかけた場合について有限要素 法で分析した。 その結果、 フランジ部 1 4の内側加圧 R面 1 4 aの最大引張荷重 は 7 9 O N/腿2、 外側受圧 R面 1 1 cの最大引張荷重は 8 7 1 N/腿2であった。 また、 前記両アキュムレータに l/3Hz、 最大加圧カ47.9〜48.3 &、 最低加圧力 0.1〜0.3MPa、 の圧力を加えたところ、 図 2のアキュムレータでは 1,000,000回の 作動試験でも破損しなかったが、 図 5のアキュムレータは 326, 550回で疲労破壊が 発生した。 On the other hand, as shown in Fig. 5, the radius R2 of the outer pressure receiving R surface 1 lc is 0.8 thigh, the radius R4 of the outer pressing R surface 14c is 0.8, and the radius of the inner pressing R surface 14a is 0.8. R 3 is 1.2 fiber, inner pressure is R radius of 11a is 0.4 thigh, slope angle of 1 d is 15 °, and the same load is applied to flange 14 as above. Finite element Analysis. As a result, the maximum tensile load of the inner pressurized R surface 14 a of the flange portion 14 was 79 ON / thigh 2 , and the maximum tensile load of the outer pressurized R surface 11 c was 87 1 N / thigh 2 . When a pressure of l / 3 Hz, a maximum pressurizing force of 47.9 to 48.3 & a minimum pressing force of 0.1 to 0.3 MPa was applied to both accumulators, the accumulator shown in Fig. 2 failed even after 1,000,000 operation tests. However, the accumulator in Fig. 5 had fatigue failures at 326 and 550 times.
これからも明らかな様に、 R面の接触中心角を大きくして受圧面積を増やすと、 荷重が分散し、 加圧 R面にかかる引っ張り荷重も減少するので、 疲労破壊の発生 を防止することができる。 実施例 2  As is evident from the above, if the contact center area of the R surface is increased to increase the pressure receiving area, the load is dispersed and the tensile load applied to the pressurized R surface is reduced, so that it is possible to prevent the occurrence of fatigue fracture. it can. Example 2
この発明の実施例 2を図 6により説明する。  Second Embodiment A second embodiment of the present invention will be described with reference to FIG.
この実施例と第 1実施例 (図 1〜図 5 ) との相違点は、 中央加圧平面部及び中 央受圧平面が省略されていることである。 即ち、  The difference between this embodiment and the first embodiment (FIGS. 1 to 5) is that the central pressure plane and the central pressure receiving plane are omitted. That is,
内側加圧 R面 1 4 aと外側加圧 R面 1 4 cとが直接連続しており、 また、 内側 受圧 R面 1 1 aと外側受圧 R面 1 1 cとが直接接続されており、 この R面でフラ ンジ部 1 4にかかる全荷重を受けていることである。  The inner pressurized R surface 14a and the outer pressurized R surface 14c are directly continuous, and the inner pressurized R surface 11a and the outer pressurized R surface 11c are directly connected, This means that the entire load acting on the flange portion 14 is received on this R surface.
なお、 半径 1^〜1 4の中心は貫通穴 1 0の中心線 1 0 cと平行な同一直線 L上 に位置している。 実施例 3 The center of radius 1 ^ to 1 4 are located in the through hole 1 0 centerline 1 0 c parallel collinear L. Example 3
この発明の実施例 3を図 7により説明する。  Third Embodiment A third embodiment of the present invention will be described with reference to FIG.
この実施例と第 1実施例 (図 1〜図 5 ) との相違点は、 中央加圧平面部及び中 央受圧平面の代わりに、 中央加圧曲面 1 4 d及び中央受圧曲面 1 1 dが設けられ ていることである。 即ち、  The difference between this embodiment and the first embodiment (FIGS. 1 to 5) is that the center pressurized curved surface 14 d and the central pressurized curved surface 11 d are replaced with the central pressurized flat surface and the central pressurized flat surface. It is provided. That is,
内側加圧 R面 1 4 aと外側加圧 R面 1 4 cとは中央加圧曲面 1 4 dを介して連 続しており、 また、 内側受圧 R面 1 1 aと外側受圧 R面 1 1 cとは中央受圧曲面 1 1 dを介して接続されている。 The inner pressurized R surface 14a and the outer pressurized R surface 14c are connected via the central pressurized curved surface 14d, and the inner pressurized R surface 11a and the outer pressurized R surface 1 1 c is the central pressure receiving surface Connected via 1 1 d.
なお、 半径 R t、 R 3の中心は貫通穴 1 0の中心線 1 0 cと平行な同一直線 1^上 に位置し、 また、 半径 R 2、 R 4の中心は貫通穴 1 0の中心線 1 0 cと平行な同一直 線 L 2上に位置している。 発明の効果 The centers of the radii R t and R 3 are located on the same straight line 1 ^ parallel to the center line 10 c of the through hole 10, and the centers of the radii R 2 and R 4 are the centers of the through holes 10 It is located on line 1 0 c parallel same straight line L 2. The invention's effect
本発明は、 次のような顕著な効果を奏する。 即ち、  The present invention has the following remarkable effects. That is,
( 1 ) フランジ部にかかる負荷により前記フランジ部又は段状受部のいずれか一 方を変形させて一方の面を他方の面に一致させるので、 簡単に両面を密着させる ことができる。 そのため、 R面の加工を精密に加工しなくとも、 対向する R面同 志を容易に密着させることができる。  (1) Since one of the flange portion and the stepped receiving portion is deformed by the load applied to the flange portion to make one surface thereof coincide with the other surface, both surfaces can be easily brought into close contact with each other. Therefore, the opposing R surfaces can be easily brought into close contact without processing the R surface precisely.
( 2 ) 前記両部の内側の R面同志の接触中心角及び前記両部の外側の R面同志の 接触中心角は、 それぞれ 7 0 ° 未満の面積にしたので、 従来例に比べ受圧面積が 小さくなり単位面積当たりの圧縮応力が大きくなり弾性変形や塑性変形する。 又、 大きな R面で力を受けるため、 表面引っ張り応力が分散して小さくなるの で、 疲労破壊が発生しにくい。 そのため、 使用寿命が伸びるので、 アキュムレ一 夕は、 半永久的に使用できる。  (2) The contact center angle between the inner R-faces inside the two parts and the contact center angle between the outer R-faces outside the two parts were each smaller than 70 °. It becomes smaller and the compressive stress per unit area increases, causing elastic deformation and plastic deformation. In addition, since a large radius surface receives a force, the surface tensile stress is dispersed and reduced, so that fatigue fracture hardly occurs. As a result, the service life is extended, and the accumule can be used semi-permanently.

Claims

請 求 の 範 囲 The scope of the claims
1 . 容器本体の底部に貫通穴を設け、 該貫通穴に給排筒を嵌着して該貫通穴の 段状受部に該給排筒のフランジ部を圧接せしめたアキュムレータにおいて; 前記貫通穴の段状受部の受圧面と前記給排筒のフランジ部の加圧面とは、 互い に対向しており、 前記フランジ部にかかる負荷により前記両部のいずれか一方を 変形させて一方の面を他方の面に一致させることを特徴とするアキュムレ一夕。  1. An accumulator in which a through hole is provided at the bottom of the container body, and a supply / discharge cylinder is fitted into the through hole, and a flange portion of the supply / discharge cylinder is pressed against a stepped receiving portion of the through hole; The pressure receiving surface of the stepped receiving portion and the pressing surface of the flange portion of the supply / discharge cylinder are opposed to each other, and one of the two portions is deformed by a load applied to the flange portion to deform one of the two portions. Accumure night, characterized by matching with the other side.
2 . 前記段状受部の受圧面は、 直径方向に沿って形成された内側受圧 R面と外 側受圧 R面とを備えており、 前記フランジ部の加圧面は、 前記内側受圧 R面に対 向する内側加圧 R面と、 前記外側受圧 R面に対向する外側加圧 R面と、 を備えて いることを特徴とする請求項 1記載のアキュムレータ。 2. The pressure receiving surface of the stepped receiving portion includes an inner pressure receiving R surface and an outer pressure receiving R surface formed along a diametric direction, and the pressing surface of the flange portion is formed on the inner pressure receiving R surface. 2. The accumulator according to claim 1, further comprising: an opposed inner pressurized R surface, and an outer pressurized R surface facing the outer pressure receiving R surface.
3 . 前記段状受部の受圧面は、 直径方向に沿って順次連続する内側受圧 R面と 中央受圧曲面と外側受圧 R面とを備えており、 前記フランジ部の加圧面は、 前記 内側受圧 R面に対向する内側加圧 R面と、 前記中央受圧平面に対向する中央加圧 曲面と、 前記外側受圧 R面に対向する外側加圧 R面と、 を備えていることを特徴 とする請求項 1記載のアキュムレータ。 3. The pressure receiving surface of the stepped receiving portion includes an inner pressure receiving R surface, a central pressure receiving curved surface, and an outer pressure receiving R surface that are successively arranged in a diametrical direction, and the pressing surface of the flange portion is the inner pressure receiving surface. An inner pressure R surface facing the R surface, a central pressure curved surface facing the central pressure receiving plane, and an outer pressure R surface facing the outer pressure reception R surface. The accumulator according to item 1.
4 . 前記両部の内側の R面同志の接触中心角及び前記両部の外側の R面同志の 接触中心角は、 それそれ 7 0 ° 未満にしたことを特徴とする請求項 2、 又は、 3 記載のアキュムレータ。 4. The contact center angle between the inside R-faces of the two parts and the contact center angle between the outside R-faces of the two parts are less than 70 °, respectively. Accumulator according to 3.
5 . 変形が、 塑性変形又は弾性変形であることを特徴とする請求項 1、 2、 又 は、 3記載のアキュムレータ。 5. The accumulator according to claim 1, wherein the deformation is plastic deformation or elastic deformation.
6 . 内側受圧 R面の曲率半径が、 内側加圧 R面のそれより小さいことを特徴と する請求項 2、 又は、 3記載のアキュムレータ。 6. The accumulator according to claim 2, wherein the radius of curvature of the inner pressure receiving R surface is smaller than that of the inner pressure receiving R surface.
PCT/JP2001/003199 2000-01-21 2001-04-13 Accumulator WO2002084127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000012531A JP2001208001A (en) 2000-01-21 2000-01-21 Accumulator
PCT/JP2001/003199 WO2002084127A1 (en) 2000-01-21 2001-04-13 Accumulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000012531A JP2001208001A (en) 2000-01-21 2000-01-21 Accumulator
PCT/JP2001/003199 WO2002084127A1 (en) 2000-01-21 2001-04-13 Accumulator

Publications (1)

Publication Number Publication Date
WO2002084127A1 true WO2002084127A1 (en) 2002-10-24

Family

ID=26345065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003199 WO2002084127A1 (en) 2000-01-21 2001-04-13 Accumulator

Country Status (2)

Country Link
JP (1) JP2001208001A (en)
WO (1) WO2002084127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411280A1 (en) * 2001-07-24 2004-04-21 Nobuyuki Sugimura Pressurized container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491459Y1 (en) * 1969-02-03 1974-01-16
US3794078A (en) * 1972-03-15 1974-02-26 J Mercier Pressure vessel
JPS6362903A (en) * 1986-09-02 1988-03-19 アライド・コーポレーション Light-weight linear hydraulic actuator
JPH07332304A (en) * 1992-10-14 1995-12-22 Nobuyuki Sugimura Multiple diaphragm type accumulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491459Y1 (en) * 1969-02-03 1974-01-16
US3794078A (en) * 1972-03-15 1974-02-26 J Mercier Pressure vessel
JPS6362903A (en) * 1986-09-02 1988-03-19 アライド・コーポレーション Light-weight linear hydraulic actuator
JPH07332304A (en) * 1992-10-14 1995-12-22 Nobuyuki Sugimura Multiple diaphragm type accumulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411280A1 (en) * 2001-07-24 2004-04-21 Nobuyuki Sugimura Pressurized container
EP1411280A4 (en) * 2001-07-24 2008-07-09 Nobuyuki Sugimura Pressurized container

Also Published As

Publication number Publication date
JP2001208001A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP5226310B2 (en) Long service life joints for high pressure fluid systems
JP5211175B2 (en) Sealed threaded tubular connection device resistant to continuous pressure loads
NO20130400A1 (en) Device by well plug
US20160186908A1 (en) Fluid end manifolds and fluid end manifold assemblies
WO2007055306A1 (en) Sealing device
CN106248290A (en) Sensor main body for flow-through pressure sensor
CN108291681A (en) Coupling element for the coupling device for connecting pressure medium conduit
WO2002084127A1 (en) Accumulator
JP5876012B2 (en) Fitting
US9719472B2 (en) Valve arrangement
JPH02217639A (en) Elastic silent block
WO2014078783A1 (en) Component with deformable pads
US20090269157A1 (en) Anchor
WO2007055307A1 (en) Carbon dioxide gas sealing enclosed device
US7247006B2 (en) Method and apparatus for sealing an ultrahigh-pressure fluid system
US11207752B2 (en) LNK type clamp device
US7536818B1 (en) Mechanical coupling arrangement between initiator and firing pins
JP4239487B2 (en) Self-tightening method for ultra-high pressure vessel
CN106460900B (en) Method and component for connecting sphere with first component form locking connect system
CN104379468A (en) Pressure relief device for pressurized container
GB2587124A (en) Downhole plug comprising protection member
JPWO2003010447A1 (en) Internal pressure vessel
US8333387B2 (en) High pressure fluid sealing mechanism
JPS63135689A (en) Easily detachable pipe joint
JPS58170914A (en) Flexible coupling device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase