WO2002085301A2 - Indole, azaindole and related heterocyclic amidopiperazine derivatives - Google Patents

Indole, azaindole and related heterocyclic amidopiperazine derivatives Download PDF

Info

Publication number
WO2002085301A2
WO2002085301A2 PCT/US2002/012856 US0212856W WO02085301A2 WO 2002085301 A2 WO2002085301 A2 WO 2002085301A2 US 0212856 W US0212856 W US 0212856W WO 02085301 A2 WO02085301 A2 WO 02085301A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
alkyl
formula
hydrogen
Prior art date
Application number
PCT/US2002/012856
Other languages
French (fr)
Other versions
WO2002085301A3 (en
Inventor
Tao Wang
Owen B. Wallace
Nicholas A. Meanwell
Zhongxing Zhang
John A. Bender
John F. Kadow
Kap-Sun Yeung
Original Assignee
Bristol-Myers Squibb Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol-Myers Squibb Company filed Critical Bristol-Myers Squibb Company
Priority to MXPA03009680A priority Critical patent/MXPA03009680A/en
Priority to EP02764315A priority patent/EP1381366B9/en
Priority to DK02764315T priority patent/DK1381366T3/en
Priority to BR0209153-4A priority patent/BR0209153A/en
Priority to HU0401503A priority patent/HU230215B1/en
Priority to JP2002582877A priority patent/JP4326221B2/en
Priority to DE60232065T priority patent/DE60232065D1/en
Priority to CA2445190A priority patent/CA2445190C/en
Priority to AT02764315T priority patent/ATE429229T1/en
Publication of WO2002085301A2 publication Critical patent/WO2002085301A2/en
Publication of WO2002085301A3 publication Critical patent/WO2002085301A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/24Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/20Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals substituted additionally by nitrogen atoms, e.g. tryptophane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/80Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/81Radicals substituted by nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • This invention provides compounds having drug and bio-affecting properties, their pharmaceutical compositions and method of use.
  • the invention is concerned with new heterocyclic amidopiperazine derivatives that possess unique antiviral activity.
  • the present invention relates to compounds useful for the treatment of HIV and AIDS.
  • HIV-1 human immunodeficiency virus -1 infection
  • HIV-1 human immunodeficiency virus -1 infection
  • HIV and AIDS abbreviations: 5.6 million new infections were reported, and 2.6 million people died from AIDS.
  • RT nucleoside reverse transcriptase
  • nevirapine didanosine, stavudine, lamivudine, zalcitabine and abacavir
  • non-nucleoside reverse transcriptase inhibitors nevirapine, delavirdine and efavirenz
  • peptidomimetic protease inhibitors saquinavir, indinavir, ritonavir, nelfinavir, amprenavir and lopinavir.
  • NNRTIs Non-nucleoside reverse transcriptase inhibitors
  • NNRTIs have been developed and application of NNRTIs.
  • Pedersen & Pedersen, Ref 15 A recent overview of non-nucleoside reverse transcriptase inhibitors: perspectives on novel therapeutic compounds and strategies for the treatment of HIV infection, has appeared (Buckheit, Robert W., Jr. Expert Opinion on Investigational Drugs 2001, 10(8), 1423-1442).
  • a review covering both NRTI and NNRTIs has appeared (Balzarini, J.; De Clercq, E..
  • indole derivatives including indole-3-sulfones, piperazino indoles, pyrazino indoles, and 5H-indolo[3,2-b][l,5]benzothiazepine derivatives have been reported as HIV-1 reverse transciptase inhibitors (Greenlee et al, Ref. 1; Williams et al, Ref. 2; Romero et al, Ref. 3; Font et al, Ref. 17; Romero et al, Ref. 18; Young et al, Ref. 19; Genin et al, Ref. 20; Silvestri et al, Ref. 21).
  • Indole 2-carboxamides have also been described as inhibitors of cell adhesion and HIV infection (Boschelli et al, US 5,424,329, Ref. 4). Finally, 3-substituted indole natural products (Semicochliodinol A and B, didemethylasterriquinone and isocochliodinol) were disclosed as inhibitors of HIV-1 protease (Fredenhagen et al, Ref. 22).
  • NRTIs non-nucleoside reverse transcriptase inhibitors
  • Bis(heteroaryl)piperazine (BHAP) reverse transcriptase inhibitors structure-activity relationships of novel substituted indole analogues and the identification of l-[(5- methanesulfonamido-lH-indol-2-yl)-carbonyl]-4-[3-[l-methylethyl)amino]- pyridinyl]piperazine momomethansulfonate (U-90152S), a second generation clinical candidate.
  • BHAP Bis(heteroaryl)piperazine
  • the present invention comprises compounds of Formula I, their pharmaceutical formulations, and their use in patients suffering from or susceptible to a virus such as HIV.
  • the compounds of Formula I which include nontoxic pharmaceutically acceptable salts and/or hydrates thereof, have the formula and meaning as described below. Each embodiment of a particular aspect of the invention depends from the preceding embodiment unless otherwise stated.
  • a first embodiment of a first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof,
  • A is selected from the group consisting of C,. 6 alkoxy, C
  • U is NR 7 , O, or S
  • V is C(H) k R', O or N(R 7' ) k ;
  • W is CR 3 or NR'°
  • X is CR 4 orNR 10 ;
  • Y is CR 5 or NR 10 ;
  • Z is CR 6 or NR 10 ;
  • k is 0 or 1 ;
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently selected from the group consisting of a bond, hydrogen, halogen, cyano, nitro, X'R 24 , C,. 6 alkyl, C 3.7 cycloalkyl, C 2.6 alkenyl, C 4 . 7 cycloalkenyl, C 2-6 alkynyl, aryl, heteroaryl, heteroahcychc, C(O)NR 28 R 29 , and CO 2 R 25 , wherein said C,. 6 alkyl, C 3 . 7 cycloalkyl, C 2 . 6 alkenyl, C 4 . 7 cycloalkenyl, C 2 . 6 alkynyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the substituents comprising group F;
  • R 7 and R 7 are each independently selected from the group consisting of a bond and (CH 2 ),H, wherein r is 0-6;
  • n, n, and p are each independently 0, 1, or 2 provided that the sum of m, n, and p must equal 1 or 2;
  • F is selected from the group consisting of C, .6 alkyl, hydroxy, C,. 6 alkoxy, cyano, halogen, benzyl, N-amido, NR 30 R 31 , C 1 . 6 alkylC(O)NR 30 R 31 , C(O)NR 30 R 31 , COOR 32 , and C ⁇ alkylCOOR 32 ;
  • R 9 is hydrogen or C,. 6 alkyl
  • R 10 is -(O) q , wherein q is 0 or 1 ;
  • R" are each independently selected from hydrogen or C ⁇ . 3 alkyl;
  • X' is selected from the group consisting of NR 9 , O, and S;
  • R 19 , R 20 , R 21 , R 22 , and R 23 are each independently selected from the group consisting of hydrogen, C,. 6 alkyl, C 2 . 6 alkenyl, C 2 . 6 alkynyl, halogen, cyano, X'R 26 , trifluoromethyl, and trifluoromethoxy, wherein each of said C,. 6 alkyl, C 2 . 6 alkenyl, and C 2.6 alkynyl are optionally substituted with one to three same or different substituents selected from halogen and C,. 6 alkyl;
  • R 24 is hydrogen or C,. 6 alkyl
  • R 25 is selected from the group consisting of hydrogen, C,. 6 alkyl, and C 3.7 cycloalkyl;
  • R 26 is selected from the group consisting of hydrogen, C,. 6 alkyl, C 3 . 7 cycloalkyl, trifluoromethyl and C(O)R 27 ;
  • R 27 is selected from the group consisting of C,. 6 alkyl, NH 2 and -NHC,. 3 alkyl;
  • R 28 and R 29 are independently selected from the group consisting of hydrogen, C, .6 alkyl, C 3 . 7 cycloalkyl, aryl, heteroaryl, and heteroahcychc wherein said C, .6 alkyl, C 3.7 cycloalkyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to nine same or different halogens or C,. 6 alkyl groups;
  • R 30 andR 31 are independently selected from the group consisting of hydrogen, C, .6 alkyl, C 3.7 cycloalkyl, aryl, wherein said C,. 6 alkyl, C 3 . 7 cycloalkyl, and aryl are optionally substituted with one to nine same or different halogens;
  • R 32 is selected from the group consisting of hydrogen, C,. 6 alkyl, and C 3 . 7 cycloalkyl;
  • V is C(H) k R' or N(R 7 ) k ;
  • U is NR 7 ;
  • X is CR 3 ;
  • Y is CR 4 ;
  • Z is CR 5 ;
  • m is 1 ;
  • n is 0; and
  • p is 1 then R 2 is not a bond;
  • U is NR 7 ;
  • V is C(H) k R'; one of the variables selected from W, X, Y, and Z is NR 10 ;
  • m is 1 ;
  • n is 0; and
  • p is 0 or 1 then R 2 is not a bond; provided that when V is O then - - does not represent a bond;
  • a second embodiment of the first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
  • R", R 12 , R 13 , R 14 , R", R 16 , R 17 , and R 18 are each independently hydrogen, methyl or ethyl; and - -represents a bond;
  • A is phenyl or heteroaryl.
  • a third embodiment of the first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
  • U is NR 7 ;
  • R 8 and R 8 are each independently hydrogen, hydroxy or cyano, with the proviso that only one of R 8 and R 8 is cyano.
  • a fourth embodiment of the first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
  • a fifth embodiment of the first aspect of the present invention which depends from the second embodiment of the first aspect, are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
  • U is O or S
  • V is CHor N
  • R 8 and R 8 are each independently hydrogen, hydroxy or cyano, with the proviso that only one of R 8 and R 8 is cyano.
  • a sixth embodiment of the first aspect of the present invention which depends from the fifth embodiment of the first aspect, are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
  • a seventh embodiment of the first aspect of the present invention which depends from the third embodiment of the first aspect, are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
  • U is -NR 7 ; and V is N.
  • Another embodiment of the seventh embodiment are compounds wherein U is NH, n is 0, and R 2 is the point of attachment to Q.
  • W,X,Y and Z are C.
  • Another embodiment of the third embodiment are compounds wherein m is 1; n is 0; and p is 0.
  • Another embodiment of the prior embodiment are compounds wherein R 2 is the point of attachment to Q and V is CH.
  • Another embodiment of the prior embodiment are compounds wherein W,X,Y and Z are C.
  • Another embodiment of the third embodiment are compounds wherein R 2 is the point of attachment to Q, V is CH, m is 0, and one of R 8 and R 8 are hydrogen and the other is hydroxy.
  • W,X,Y and Z are C.
  • Another embodiment of the third embodiment are compounds wherein R 2 is the point of attachment to Q, V is CH, m is 0, and R 8 and R 8 are each hydrogen.
  • Another embodiment of the prior embodiment are compounds wherein W,X,Y and Z are C.
  • Another embodiment of the second embodiment are compounds wherein R 2 is the point of attachment to Q, V is CH, m is 0, and one of R 8 and R 8 are hydrogen and the other is cyano.
  • Another embodiment of the prior embodiment are compounds wherein U is
  • a first embodiment of the second aspect of the present invention is a pharmaceutical composition which comprises an antiviral effective amount of a compound of Formula I, including pharmaceutically acceptable salts thereof, as defined in any of the prior embodiments of the first aspect of the present invention, and one or more pharmaceutically acceptable carriers, excipients or diluents.
  • a second embodiment of the second aspect of the present invention is the pharmaceutical composition of the first embodiment of the second aspect, useful for treating infection by HIV, which additionally comprises an antiviral effective amount of an AIDS treatment agent selected from the group consisting of an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and HIV entry inhibitors.
  • an AIDS treatment agent selected from the group consisting of an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and HIV entry inhibitors.
  • a first embodiment of a third aspect of the present invention is a method for treating a mammal infected with a virus, comprising administering to said mammal an antiviral effective amount of a compound of Formula I, including pharmaceutically accceptable salts thereof, as defined in any of the prior embodiments of the first aspect of the present invention, and one or more pharmaceutically acceptable carriers, excipients or diluents.
  • a second embodiment of a third aspect of the present invention is the method of the first embodiment of the third aspect, comprising administering to said mammal an antiviral effective amount of a compound of Formula I, in combination with an antiviral effective amount of an AIDS treatment agent selected from the group consisting of: an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and an HIV entry inhibitor.
  • an AIDS treatment agent selected from the group consisting of: an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and an HIV entry inhibitor.
  • the third embodiment of a third aspect of the present invention is the method of either the first or second embodiment of the third aspect, wherein said virus is HIV.
  • the present invention includes the individual diastereoisomeric and enantiomeric forms of the compounds of Formula I in addition to the mixtures thereof.
  • Halogen refers to chlorine, bromine, iodine or fluorine.
  • aryl group refers to an all carbon monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups having a completely conjugated pi-electron system. Examples, without limitation, of aryl groups are phenyl, napthalenyl and anthracenyl.
  • heteroaryl group refers to a monocyclic or fused ring (i.e., rings which share an adjacent pair of atoms) group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur and, in addition, having a completely conjugated pi-electron system.
  • heteroaryl groups are furyl, thienyl, benzothienyl, thiazolyl, imidazolyl, oxazolyl, oxadiazolyl, thiadiazolyl, benzthiazolyl, triazolyl, tetrazolyl, isoxazolyl, isothiazolyl, pyrrolyl, pyranyl, tetrahydropyranyl, pyrazolyl, pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, purinyl, carbazolyl, benzoxazolyl, benzimidazolyl, indolyl, isoindolyl, and pyrazinyl.
  • a "heteroahcychc” group refers to a monocyclic or fused ring group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur.
  • the rings may also have one or more double bonds. However, the rings do not have a completely conjugated pi-electron system.
  • heteroahcychc groups are azetidinyl, piperidyl, piperazinyl, imidazolinyl, thiazolidinyl, 3-pyrrolidin-l-yl, morpholinyl, thiomorpholinyl and tetrahydropyranyl.
  • alkyl group refers to a saturated aliphatic hydrocarbon including straight chain and branched chain groups.
  • the alkyl group has 1 to 20 carbon atoms (whenever a numerical range; e.g., "1-20", is stated herein, it means that the group, in this case the alkyl group may contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc. up to and including 20 carbon atoms). More preferably, it is a medium size alkyl having 1 to 10 carbon atoms.
  • C 6 alkyl as used herein and in the claims (unless specified otherwise) mean straight or branched chain alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, amyl, hexyl and the like.
  • a “cycloalkyl” group refers to a saturated all-carbon monocyclic or fused ring (i.e., rings which share and adjacent pair of carbon atoms) group wherein one or more rings does not have a completely conjugated pi-electron system.
  • Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and adamantane.
  • a "cycloalkenyl” group refers to an all-carbon monocyclic or fused ring (i.e., rings which share and adjacent pair of carbon atoms) group wherein one or more rings contains one or more carbon-carbon double bonds but does not have a completely conjugated pi-electron system.
  • Examples, without limitation, of cycloalkenyl groups are cyclopentene, cyclohexadiene, and cycloheptatriene.
  • alkenyl refers to an alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon double bond.
  • alkynyl refers to an alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon triple bond.
  • a "hydroxy” group refers to an -OH group.
  • alkoxy refers to both an -O-alkyl and an -O-cycloalkyl group as defined herein.
  • O-carboxy refers to a R"C(O)O-group, with R" as defined herein.
  • amino refers to an -NH 2 group.
  • a “cyano” group refers to a -CN group. It is known in the art that nitrogen atoms in heteroaryl systems can be "participating in a heteroaryl ring double bond", and this refers to the form of double bonds in the two tautomeric structures which comprise five-member ring heteroaryl groups. This dictates whether nitrogens can be substituted as well understood by chemists in the art.
  • the disclosure and claims of the present invention are based on the known general principles of chemical bonding. It is understood that the claims do not encompass structures known to be unstable or not able to exist based on the literature.
  • Physiologically acceptable salts and prodrugs of compounds disclosed herein are within the scope of this invention.
  • pharmaceutically acceptable salt as used herein and in the claims is intended to include nontoxic base addition salts. Suitable salts include those derived from organic and inorganic acids such as, without limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, tartaric acid, lactic acid, sulfinic acid, citric acid, maleic acid, fumaric acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, and the like.
  • salts of acidic groups such as a carboxylate
  • counterions such as ammonium, alkali metal salts, particularly sodium or potassium, alkaline earth metal salts, particularly calcium or magnesium
  • suitable organic bases such as lower alkylamines (methylamine, ethylamine, cyclohexylamine, and the like) or with substituted lower alkylamines (e.g. hydroxyl-substituted alkylamines such as diethanolamine, triethanolamine or tris(hydroxymethyl)- aminomethane), or with bases such as piperidine or morpholine.
  • the term "antiviral effective amount” means the total amount of each active component of the method that is sufficient to show a meaningful patient benefit, i.e., healing of acute conditions characterized by inhibition of the HIV infection.
  • a meaningful patient benefit i.e., healing of acute conditions characterized by inhibition of the HIV infection.
  • the term refers to that ingredient alone.
  • the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.
  • the terms "treat, treating, treatment” as used herein and in the claims means preventing or ameliorating diseases associated with HIV infection.
  • the present invention is also directed to combinations of the compounds with one or more agents useful in the treatment of AIDS.
  • the compounds of this invention may be effectively administered, whether at periods of pre-exposure and/or post-exposure, in combination with effective amounts of the AIDS antivirals, immunomodulators, antiinfectives, or vaccines, such as those in the following table.
  • Abacavir (1592U89) Glaxo Wellcome HIV infection, GW 1592 AIDS, ARC (RT inhibitor)
  • Cidofovir Gilead Science CMV retinitis, herpes, papillomavirus
  • Efavirenz DuPont Merck HIV infection (DMP 266) AIDS, ARC (-)6-Chloro-4-(S)- (non-nucleoside RT cyclopropylethynyl- inhibitor) 4(S)-trifluoro- methyl- 1 ,4-dihydro- 2H-3 , 1 -benzoxazin- 2-one, STOCRTNE
  • HBY097 Hoechst Marion HIV infection, Roussel AIDS, ARC (non-nucleoside reverse transcriptase inhibitor)
  • Interferon Beta (Almeda, CA) sarcoma, ARC
  • Lamivudine 3TC Glaxo Wellcome HIV infection, AIDS, ARC (reverse transcriptase inhibitor); also with AZT
  • Virazole Viratek/ICN asymptomatic HIV Ribavirin (Costa Mesa, CA) positive, LAS, ARC
  • IL-2 Cetus AIDS in combination Interleukin-2 w/AZT IL-2 Hoffman-LaRoche AIDS, ARC, HIV, in
  • Methionine- TNI Pharmaceutical AIDS, ARC Enkephalin (Chicago, IL)
  • Tumor Necrosis Genentech ARC in combination Factor; TNF w/gamma Interferon
  • Isethionate (IM & IV) (Rosemont, IL)
  • the compounds of the invention herein may be used in combination with another class of agents for treating AIDS which are called HIV entry inhibitors.
  • HIV entry inhibitors are discussed in Drugs Of The Future 1999, 24(12), pp. 1355-1362; Cell, Vol. 9, pp. 243-246, Oct. 29, 1999; and Drug Discovery Today, Vol. 5, No. 5, May 2000, pp. 183-194. It will be understood that the scope of combinations of the compounds of this invention with AIDS antivirals, immunomodulators, anti-infectives, HIV entry inhibitors or vaccines is not limited to the list in the above Table, but includes in principle any combination with any pharmaceutical composition useful for the treatment of AIDS.
  • Preferred combinations are simultaneous or alternating treatments of with a compound of the present invention and an inhibitor of HIV protease and/or a nonnucleoside inhibitor of HIV reverse transcriptase.
  • An optional fourth component in the combination is a nucleoside inhibitor of HIV reverse transcriptase, such as AZT, 3TC, ddC or ddl.
  • a preferred inhibitor of HIV protease is indinavir, which is the sulfate salt of N-(2(R)-hydroxy- 1 -(S)-indanyl)-2(R)-phenylmethyl-4-(S)-hydroxy-5- (l-(4-(3-pyridyl-methyl)-2(S)-N'-(t-butylcarboxamido)-piperazinyl))-pentaneamide ethanolate, and is synthesized according to U.S. 5,413,999.
  • Indinavir is generally administered at a dosage of 800 mg three times a day.
  • Other preferred protease inhibitors are nelfinavir and ritonavir.
  • HIV protease is saquinavir which is administered in a dosage of 600 or 1200 mg tid.
  • Preferred nonnucleoside inhibitors of HIV reverse transcriptase include efavirenz.
  • the preparation of ddC, ddl and AZT are also described in EPO 0,484,071. These combinations may have unexpected effects on limiting the spread and degree of infection of HIV.
  • Preferred combinations include those with the following (1) indinavir with efavirenz, and, optionally, AZT and/or 3TC and/or ddl and/or ddC; (2) indinavir, and any of AZT and/or ddl and/or ddC and/or 3TC, in particular, indinavir and AZT and 3TC; (3) stavudine and 3TC and/or zidovudine; (4) zidovudine and lamivudine and 141 W94 and 1592U89; (5) zidovudine and lamivudine.
  • the compound of the present invention and other active agents may be administered separately or in conjunction.
  • the administration of one element may be prior to, concurrent to, or subsequent to the administration of other agent(s).
  • the present invention comprises compounds of Formula I, their pharmaceutical formulations, and their use in patients suffering from or susceptible to
  • the compounds of Formula I include pharmaceutically acceptable salts thereof.
  • General procedures to construct compounds of Formula I and intermediates useful for their synthesis are described in the following Schemes.
  • Heterocyclic carboxylates of general formula QC(O)OR' or QC(O)L' may be purchased from commercial sources or synthesized.
  • R' is usually a simple alkyl, preferably methyl or alternatively ethyl.
  • Simple C,-C 6 alkyl esters or phenyl or substituted phenyl ethers also are suitable.
  • L 1 represents a leaving group and may represent OR' herein.
  • the heterocyclic carboxylates of formula Ila or II can be prepared by two basic strategies using numerous methods from the literature or the methods within this application.
  • the first strategy involves the synthesis of an appropriate heterocycle containing a carboxylate ester group while the second strategy involves the synthesis of the parent heterocycle followed by installation of a carboxylate ester moiety onto the parent heterocycle.
  • the following Schemes I-l through 1-17 represent various heterocyclic carboxylates which may serve as useful intermediates for the preparation of compounds of Formula I.
  • the methods used to prepare compounds of Formula I from the heterocyclic carboxylates are those described for Schemes 1, IA and 2.
  • Schemes I-l through 1-12 depict methods and conditions for the synthesis of azaindole and indole carboxylates according to the first strategy wherein an indole or azainole containing a carboxylate moiety is synthesized.
  • Literature references follow the depicted Schemes.
  • R' is alkyl
  • azaindole and indole carboxylates may be accomplished according to procedures which are known in the art. For example, the methods described in references such as Chikvaidze, I.; Megrelishvili, N.; Samsoniya, S.A.;
  • W, X, Y, and Z is NR'°as described in Molina, P.; Alajarin, M.; Sanchez-Andrada,
  • X, Y, and Z are CR 3 , CR 4 , CR 5 , and CR 6 , respectively, and which may be accomplished by the base induced cyclization of an ester intermediate according to methods such as those described in Boes, M.; Jenck, F.; Martin, J.R.; Moreau, J.L.; Mutel, V.; Sleight, A.J.; Widmer, U.; Eur. J. Med. Chem. 1997, 32(3), 253-261; Robertson, A.; J. Chem. Soc. 1927, 1937.
  • the corresponding azaindole-2- carboxylates may be prepared according to the methods described in Willette, R. E.; Adv. Heterocycl. Chem. 1968, 9, 27.
  • indole-2-carboxylates wherein W, X, Y, and Z are CR 3 , CR 4 , CR 5 , and CR 6 , respectively, may also be accomplished by a palladium mediated cyclization reaction as shown below in Scheme 1-6 and according to methods as described in Koerber-Ple, K.; Massiot, G.; Synlett. 1994, 9, 759-760; and Chen, C; Lieberman, D.R.; Larsen, R.D.; Verhoeven, T.R.; Reider, P.J.; J. Org. Chem. 1997, 62(9), 2676-2677.
  • azaindole-2-carboxylates wherein one of W, X, Y, and Z is NR 10 , may be accomplished according to methods such as those described by Morris, J.J.; Hughes, L.R.; Glen, A.T.; Taylor, P.J.; J. Med. Chem. 1991, 34(1), 447-455; and Kutney, J.P.; Noda, M.; Lewis, N.G.; Monteiro, B.; et al.; Heterocycles 1981, 16, 1469.
  • Indoles or aza indoles may be prepared via the well known Bartoli reaction in which vinyl magnesium bromide reacts with an aryl or heteroaryl nitro group, to form a five-membered nitrogen containing ring.
  • Some references for the above transformation include: Bartoli et al. a) Tetrahedron Lett. 1989, 30, 2129 b) J. Chem.
  • lH-Indole-4-carboxylic acid methyl ester is commercially available and more than 900 4 carboxy esters of indoles with various substitution are found in Scifinder showing that a chemist skilled in the art would be able to prepare such derivatives with varied substitution ind order to prepare compounds of claim 1.
  • 1H- Indole-5-carboxylic acid methyl ester is commercially available and more than 1600 5-carboxy esters of indoles with various substitution are found in Scifinder and 1H- Indole-6-carboxylic acid methyl ester is also commercially available and more than 1000 6-carboxy esters of indoles with various substitution are found by searching the same source.
  • lH-Indole-7-carboxylic acid methyl ester is commercially available and more than 400 7-carboxy esters of indoles with various substitution are found in Scifinder.
  • lH-Indole-2-carboxylic acid methyl ester is commercially available and more than 8000 2-carboxy esters of indoles with various substitution are found in Scifinder.
  • azaindoles may be prepared via the Bartoli reaction in which vinyl magnesium bromide reacts with a pyridine containing a nitro group, to form the five-membered nitrogen containing ring of the azaindole. Substituted azaindoles may be prepared by methods described in the literature or may be available from commercial sources.
  • Syntheses of aza indoles include those described in the following references (a-k below): a) Prokopov, A. A.; Yakhontov, L. N. Khim. -Farm. Zh. 1994, 28(7), 30-51; b) Lablache-Combier, A. Heteroaromatics. Photoinduced Electron Transfer 1988, Pt. C, 134-312; c) Saify, Zafar Said. Pak. J Pharmacol. 1986, 2(2), 43-6; d) Bisagni, E. Jerusalem Symp. Quantum Chem. Biochem. 1972, 4, 439-45; e) Yakhontov, L. N. Usp. Khim.
  • a method for the introduction of a carbomethoxy group at the 2 position of a 1-methoxyindole or 1-methoxyazaindole is shown below in Scheme I- 10.
  • the reaction may be accomplished by treating the 1-methoxyindole or 1- methoxyazaindole with a strong base, such as n-butyl lithium, in an aprotic solvent, such as tetrahydrofuran, and then reacting the anion thus generated with methyl carbonate.
  • a strong base such as n-butyl lithium
  • an aprotic solvent such as tetrahydrofuran
  • Fukuda, T.; Maeda, R.; Iwao, M.; Tetrahedron 1999, 55(30), 9151-9162 describes methodology for protecting the indole or azaindole nitrogen with a directing group, functionalizing the 7-position, and then subsequently removing the protecting group from the indole or azaindole nitrogen.
  • This method can be used to install a carboxylate ester or acid derivative at C-7 as depicted in the Scheme 1-12 below.
  • These C-7 derivatives provide a handle which can then be converted to almost any functional group or can be reacted with an appropriate cyanomethyl piperazine derivative using methods described herein for Schemes 1, IA and 2 to provide compounds of formula I.
  • Schemes 1-13, and 1-14 depict the preparation of benzisoxazole or azabenzisoxazole carboxylates which can serve as useful intermediates for the synthesis of compounds of Formula I using the methods described herein for Schemes 1, IA, and 2.
  • Scheme 1-13 depicts a general method for converting 2- hydroxybenzoic acid derivatives or the corresponding pyridine derivatives (where one of W, X, Y, and Z is N) to the corresponding benzisoxazole carboxylate.
  • Step e of Scheme 1-13 can be carried out by treating the acid with sulfuric acid in methanol as described in Can. J. Chem. 1988, 66(6), 1405-1409 to provide the methyl glyoxylate derivative.
  • Step e may be accomplished by first treating the hydroxy acid derivative with thionyl chloride, then with sodium cyanide and tetrabutylammonium bromide, and then with hydrochloric acid and water to provide the glyoxylic acid which may then be esterified under standard conditions to provide the glyoxylate derivative.
  • Step f of Scheme 1-13 may be accomplished by treating the methyl glyoxylate derivative with hydroxylamine hydrochloride in an appropriate solvent such as ethanol.
  • the oxime derivative thus obtained may then be converted to the corresponding (aza)benzisoxazole upon treatment with either tricloroacetylisocyanate or thionyl chloride as shown in Step g and as further described in Heterocycles 1987, 26(11), 2921.
  • Scheme 1-13
  • Steps a-d of Scheme 1-14 were accomplished as described by Shimano, M. et al. in Tetrahedron 1998, 54, 12745-12774 at page 12750.
  • Step a of Scheme 1-14 was carried out by O-alkylation of 3-hydroxypyridine with methoxymethyl chloride in tetrahydrofuran-dimethylf ormamide in the presence of potassium tertz ⁇ ry-butoxide as base.
  • the methoxymethyl ether was then brominated as shown in Step b by treatment with tert/ ⁇ ry-butyllifhium and 1 ,2- dibromotetrafluoroethane in diethyl ether at
  • Step c The bromide was converted to the corresponding methoxy derivative as shown in Step c by treatment with sodium methoxide in methanol.
  • the carboxylic acid was then prepared as shown in Step d by treatment with tert/ ⁇ ry-butyllithium followed by dry ice (CO 2 ) in tetrahydrofuran at -78 °C and then quenching the reaction with aqueous hydrochloric acid.
  • Steps e, f, and g were then carried out according to the same methods described for Steps e, f, and g of Scheme 1-13.
  • acetyl derivative may then be converted to the corresponding methyl oxalate derivative upon treatment with selenium dioxide and pyridine followed by treatment with diazomethane according to the method described in Tetrahedron Lett. 1994, 35(48), 8955-6. Steps f and g of Scheme I- 14-2 can then be carried out as described previously for Scheme 1-14.
  • Scheme 1-14-3 depicts an alternative method which may be used to prepare azabenzisoxazole derivatives such as 7-methoxy-4-azabenzisoxazole.
  • 3-hydroxy-4- methoxypyridine is iodinated as shown in step a according to the procedure described in J Med. Chem. 1974, 17, 1065.
  • the methyl oxalate side chain may then be introduced using the palladium catalyzed method as described in J Mol. Catal 1986, 34(3), 317-319 as shown in step b.
  • the methyl oxalate can then be reacted with hydroxyl amine and subsequently cyclized as depicted and previously described for steps f and g in Schemes 1-14 and 1-14-2.
  • Heterocyclic carboxylates may also be prepared from a heterocycle which contains an exocyclic methyl group as shown in Scheme 1-15.
  • Step a of Scheme 1-15 depicts the bromination of the exocyclic methyl group which may be carried out according to the method as described in J Med. Chem. 1997, 40, 2706-2725 by heating a mixture of the compound of formula QCH 3 with N-bromosuccinimide and benzoyl peroxide in a suitable solvent such as carbon tetrachloride.
  • the bromomethyl heterocycle of formula QCH 2 Br can then be converted to the hydroxymethyl heterocycle of formula QCH 2 OH by treatment with potassium superoxide as shown in Step b.
  • the heterocyclic carboxylate of formula QCO 2 CH 3 can then be prepared from the hydroxymethyl derivative by Swern oxidation of the hydroxymethyl derivative followed by treatment with silver nitrate in methanol and then treatment with diazomethane in a mixture of diethylether and tetrahydrofuran as depicted in Step c of Scheme 1-15.
  • the bromomethyl heterocycle can be converted directly to the heterocyclic carboxylate as shown in Step d of Scheme I- 15 by treatment with 1.2 equivalents of pyridine N-oxide followed by treatment with silver nitrate in methanol and then treatment with diazomethane in a mixture of diethylether and tetrahydrofuran.
  • Scheme 1-16 depicts the preparation of methyl (aza)benzisoxazole-3- carboxylates which were prepared according to the methods as previously described for the corresponding Steps a-d of Scheme 1-15.
  • the heterocyclic carboxylates prepared by the methodology described in Schemes 1-15 and 1-16 may then be used to prepare compounds of Formula I according to the methods as described herein in Schemes 1, IA, and 2.
  • Scheme 1-16-2 depicts the preparation of a 3-methyl-4-azabenzisoxazole derivative which may be used as starting material for Scheme 1-16. Steps a, b, and c of equation 1 may be carried out as previously described for Scheme 1-14-2. The acetyl derivative may then be treated with hydroxylamine to provide the oxime as depicted in step d and then cyclized as depicted in step e (as described for steps f and g of Scheme 1-14, respectively) to provide the 3-methyl-4-azabenzisoxazole shown.
  • Scheme 1-17 depicts the preparation of methyl 4-methoxybenzofuran-3- carboxylate which can then be used to prepare compounds of Formula I using the methods described for Schemes 1, IA, and 2.
  • 1,3-Cyclohexanedione is treated with aqueous potassium hydroxide, followed by bromopyruvic acid in methanol and then with hydrochloric acid to provide the furan carboxylic acid derivative shown.
  • the furan carboxylic acid derivative is then treated with 10% palladium on carbon and 1- dodecene in refluxing decalin to provide 3-carboxy-4-hydroxybenzofuran.
  • the 3- carboxy-4-hydroxybenzofuran may then be converted to the corresponding methoxy methyl ester derivative by treatment with methyl iodide and potassium carbonate in dimethylsulfoxide at approximately 60 °C.
  • the same transformation may be carried out by treatment with diazomethane in tetrahydrofuran/diethyl ether at room temperature.
  • the benzofuran derivative can then be used to prepare compounds of Formula I according to the methods described hereinafter for Schemes 1, IA and 2.
  • Scheme 1-18 shows the preparation of glyoxylic acid intermediates which can serve as useful intermediates for the preparation of compounds of Formula I. .
  • the methyl group of methyl containing heterocycle of formula QCH 3 may be converted to the bromide with N-bromosuccinimide as shown in step b.
  • Suitable conditions for the bromination include those as described inJ Med. Chem. 1997, 40, 2706-2725 and carried out by heating a mixture of QCH 3 with N-bromosuccinimide and benzoyl peroxide in carbon tetrachloride.
  • Bromide displacement with cyanide can be carried out by heating a mixture of the bromide with either copper cyanide or potassium cyanide in either dimethylformamide or aqueous ethanol to provide the nitrile.
  • Hydrolysis of the nitrile followed by esterification provides the methyl ester.
  • Acidic or basic hydrolysis of the nitrile may be employed.
  • Esterification of the resulting acid may be carried out under standard conditions or using a reagent such as diazomethane.
  • Oxidation of the methyl ester to the oxalate can then be carried out as depicted in step e.
  • the oxidation can be carried out in one step with selenium dioxide to provide the oxalate.
  • the methyl ester can be treated with a strong base such as lithium bistrimethylsilyl amide in tetrahydrofuran at reduced temperature followed by camphorsulfonyl oxaziridine to provide the corresponding ⁇ -hydroxy ester which may be oxidized with the Dess- Martin reagent in order to obtain the oxalate.
  • the oxalate may then be hydrolyzed under standard conditions as depicted by step f to provide the oxalic acid derivative.
  • the oxalic acid derivative may then be coupled to an appropriate piperazine derivative to provide a compound of Formula I.
  • methyl acetate derivative of formula QCH 2 CO 2 CH 3 prepared from step d may also be hydrolyzed to provide the acetic acid derivative of formula QCH 2 CO 2 H which may then also be coupled to an appropriate piperazine derivative to provide a compound of Formula I.
  • Scheme 1-19 depicts the preparation of isothiazolobenzene or isothiazolopyridine glyoxylic acid derivatives which may be employed to prepare compounds of formula I.
  • 3 -methyl isothiazolopyridines can be prepared as depicted in step a by using methodology as described in Taurins, A.; Khouw, V. T. Can. J. Chem. 1973, 57( ⁇ ), 1741-1748.
  • Isothiazolo [3, 4-b]pyridine was synthesized from 2-aminonicotinonitrile in three steps: by the reaction with NH 3 and H 2 S to produce 2-aminothionicotinamide; oxidative cyclization with H 2 O 2 to give 3- amino-isofhiazolo[3,4-b]pyridine, followed by diazotization and reduction with hypophosphorous acid.
  • 3-Aminoisothiazolo[4,3-b]pyridine was prepared in a similar way from 3-aminopicolinonitrile via 3-aminothiopicolinamide.
  • Isothiazolo[5,4- bjpyridine was synthesized from 2-chloronicotinonitrile in three steps: reduction with HCO 2 H in the presence of Raney Nickel to obtain 2-chloronicotinaldehyde; transformation of the latter into 2-thiocyanonicotinaldehyde; and cyclization with NH 3 to obtain isothiazolo [5 ,4-b]pyridine.
  • 3-Methylizothiazolo[5,4-c]pyridine was prepared by cyclization of 4-acetyl-3-thiocyanopyridine with NH 3 .
  • the 3-methylisothiazolopyridines may be prepared as described in Chimichi, S.; Giomi, D.; Tedeschi, P. Synth. Commun. 1993, 23(1), 73-78 in a single step procedure by treating a cyanomercaptopyridine with methyllithium in an appropriate solvent such as tetrahydrofuran to provide the 3-methylisothiazolopyridine derivative.
  • a cyanomercaptopyridine with methyllithium in an appropriate solvent such as tetrahydrofuran
  • the methyl group may be converted to the bromide with N-bromosuccinimide as shown in step b.
  • Bromide displacement with cyanide, as shown in step c, followed by hydrolysis and esterification, as shown in step d provides the methyl ester.
  • Oxidation of the methyl ester to the oxalate can then be carried out as depicted in step e.
  • the oxidation can be carried out in one step with selenium dioxide to provide the oxalate.
  • the methyl ester can be treated with a strong base such as lithium bistrimethylsilyl amide in tetrahydrofuran at reduced temperature followed by camphorsulfonyl oxaziridine to provide the corresponding ⁇ -hydroxy ester which may be oxidized with the Dess-Martin reagent in order to obtain the oxalate.
  • the oxalate may then be hydrolyzed under standard conditions as depicted by step f to provide the oxalic acid derivative.
  • the oxalic acid derivative may then be coupled to an appropriate piperazine derivative to provide a compound of Formula I.
  • Scheme 1-20 provides another example of the preparation of a glyoxylic acid intermediates suitable for the preparation of a compound of Formula I.
  • R represents a lower alkyl group, preferably methyl or ethyl.
  • the hydroxylation of the ester, as shown in step d, may be carried out using lithium bistrimethylsilylamide and 10-camphorsulfonyl oxaziridine or alternatively by treatment with bromine followed by potassium acetate and 18-crown-6 in acetonitrile followed by column chromatography purification on silica and finally treatment with 5% sodium carbonate, methanol at approximately 65 °C.
  • the ⁇ -hydroxy ester may then be oxidized as depicted in step e with the Dess-Martin reagent or with pyridinium dichromate or chromium trioxide pyridine complex to provide the glyoxylate which can then be hydrolyzed under standard conditions as shown in step f to provide the glyoxylic acid derivative.
  • Scheme 1-21 depicts an alternative preparation of glyoxylic acid derivatives useful as intermediates for the preparation of compounds of Formula I.
  • Step a of Scheme 1-21 (eq. 1) shows the introduction of the glyoxylate sidechain (where R is methyl or ethyl) onto the heterocycle of formula Q-H.
  • Step a can be carried out by treating the heterocycle with either methyl oxalyl chloride or ethyl oxalyl chloride in an appropriate solvent such as dichloromethane or diethyl ether in the presence of a Lewis acid catalyst such as aluminum trichloride to provide the glyoxylate,
  • the glyoxylate ester can then be hydrolyzed as depicted in steb b by treating the glyoxylate with aqueous base, such as sodium hydroxide or potassium hydroxide, in a suitable solvent such as ethanol or methanol, followed by acidification to provide the glyoxylic acid derivative, QC(O)CO 2 H.
  • aqueous base such as sodium hydroxide or potassium hydroxide
  • suitable solvent such as ethanol or methanol
  • the usual conditions employ methanolic or ethanolic sodium hydroxide followed by acidification with aqueous hydrochloric acid of varying molarity but 1M HCl is preferred. Lithium hydroxide or potassium hydroxide could also be employed and varying amounts of water could be added to the alcohols.
  • Propanols or butanols could also be used as solvents. Elevated temperatures up to the boiling points of the solvents may be utilized if ambient temperatures do not suffice. Alternatively, the hydrolysis may be carried out in a non polar solvent such as CH 2 C1 2 or THF in the presence of Triton B. Temperatures of -70 °C to the boiling point of the solvent may be employed but -10 °C is preferred. Other conditions for ester hydrolysis are listed in: Protective groups in organic synthesis 3rd ed. / Theodora W. Greene and Peter G.M. Wuts. New York : Wiley, 1999 and both this reference and many of the conditions for ester hydrolysis are well known to chemists of average skill in the art.
  • Equation 2 of Scheme 1-21 depicts the glyoxylation at the 3 -position of the heterocycle and is carried out according to the methods described for equation 1.
  • the glyoxylic acid derivatives may then be coupled with appropriately substituted piperazine derivatives of formula H-TC(O)A to provide compounds of Formula I.
  • Scheme 1-22 shows the preparation of glyoxylic acid chloride derivatives which are also useful intermediates for the preparation of compounds of Formula I.
  • the glyoxylic acid chloride derivative of formula QC(O)C(O)Cl can be prepared by treating an appropriate heterocycle of formula Q-H with oxalyl chloride in an appropriate solvent such as diethyl ether in the presence of an appropriate Lewis acid catalyst such as aluminum trichloride.
  • Equation 2 depicts the introduction of the glyoxylic acid chloride side chain at the 3 -position of the heterocycle using the method described for equation 1.
  • the glyoxylic acid chloride derivatives can then be reacted with an appropriately substituted piperazine derivative of formula H-TC(O)A in an appropriate solvent such as tetrahydrofuran or acetonitrile in the presence of a suitable base such as diisopropylethylamine or pyridine to provide compounds of formula I.
  • an appropriate solvent such as tetrahydrofuran or acetonitrile
  • a suitable base such as diisopropylethylamine or pyridine
  • 7-chloro-6-azaindole can be prepared as described in Eur. Pat. Application EP 737685 published in 1996 by Viaud and coworkers. A preparation is also described in S. Shiotani and H. Morita J Heterocyclic Chem. 1982, 19, 1207. It can be converted to compounds of Formula I using the chemistry in Sheme 4C.
  • the chloro group can be substituted to install alkoxy groups, heterocycles, cyano, amido, or aryl groups using methodology described below.
  • the 6-azabenzisoxazole shown above can be prepared as described in Heterocycles, 1982, 19 (8), 1511-15 by A. Comparini and coworkers. It can be converted to compounds of this invention using the chemistry as described in Schemes 4, 4A, and 4B.
  • the preparation of the 6-azabenzisothiazole shown above has also been described in the literature.
  • the related 6-azabenzisoxazole or 6- azabenzisothiazole derivatives which contain a chloro group in the six membered ring can be substituted to install alkoxy groups, heterocycles, cyano, amido, or aryl groups using methodology described below.
  • Indazoles may be prepared from indoles or azaindoles in a single step as described in Han-Cheng Zhang, J. Med. Chem. 2001, 44, 1021-1024.
  • the resulting aldehyde may be oxidized with PCC, silver carbonate, buffered NaClO 2 , CrO3 in sulfuric acid, or Jones reagent.
  • the acid may be esterified with diazomethane or MeOH, HCl to provide an ester.
  • the esters can be converted to the compounds of this invention using the alpha cyano piperazine methodology described elsewhere in the patent.
  • the acid may be decarboxylated and the indazole analogs converted to the desired dicarbonyl derivatives as described elsewhere in this patent application for indazoles.
  • Scheme 1 depicts a general method suitable for the synthesis of many of the compounds of formula I.
  • a suitable protected piperazine derivative, PG-TH, of Formula VI (wherein PG is an appropriate amine protecting group) is acylated with an appropriate acylating agent, AC(O)L, (wherein L is a suitable leaving group) to provide the protected acylated piperazine derivative of Formula V.
  • Compound V is then deprotected using standard methods to provide the acylated piperazine derivative of Formula IV.
  • the compound of Formula V when PG represents tert/ ⁇ ry-butoxycarbonyl the compound of Formula V can be deprotected to provide a compound of Formula IV by treatment with a strong acid, such as trifluoroacetic acid or hydrochloric acid, in an appropriate solvent such as dichloromethane.
  • a strong acid such as trifluoroacetic acid or hydrochloric acid
  • an appropriate solvent such as dichloromethane.
  • PG represents benzyl
  • the acylpiperazine derivative of Formula IV is then alkylated with 2- chloroacetonitrile in the presence of an appropriate base, such as triethylamine, 4- methylmorpholine or diisopropylethyl amine in an appropriate solvent, such as THF, to provide the cyanomethyl acylpiperazine derivative of Formula III.
  • peracids could also be utilized for the oxidation of a compound of Formula la to a compound of Formula lb, including peroxy acetic acid generated in situ.
  • Other methods for oxidation are shown in Table A which describes a one pot condensation /oxidation process which is usually preferred:
  • Compounds of Formula II can be esters, preferably methyl esters, however other simple alkyl esters or activated acid derivatives such as acid chlorides, acid anhydrides, or Weinreb amides could also find utility in preparing compounds as shown.
  • Schemes 1 through 9 describe general reaction schemes for preparing various compounds of Formula I. While these schemes are very general, other permutations such as carrying a precursor or precursors to substituents R 1 through R 7 through the reaction scheme and then converting it to a compound of Formula I in the last step are also contemplated methods of this invention. Nonlimiting examples of such strategies follow in subsequent schemes.
  • Scheme 1 A depicts a general method suitable for the synthesis of many of the compounds of Formula I using the methodology described for Scheme 1.
  • a piperazine derivative of formula IV may be alkylated with chloroacetonitrile in the presence of a suitable base, such as triethylamine, in an appropriate aprotic solvent, such as tetrahydrofuran, to provide a cyanomethylpiperazine derivative of formula III.
  • a suitable base such as triethylamine
  • an appropriate aprotic solvent such as tetrahydrofuran
  • Other tertiary amine bases such as 4-methylmorpholine may also be used in this step.
  • Reaction of a suitable heterocyclic carboxylate ester of formula II with an anion of a cyanomethyl piperazine derivative provides cyanomethyl esters of formula la.
  • the anion of the cyanomethyl piperazine derivative can be generated by treating a solution of the cyanomethyl piperazine derivative with an appropriate base, such as sodium hexamethyldisilazide (NaHMDS).
  • the esters of formula II are preferably methyl esters but other simple alkyl esters or activated acid derivatives such as acid chlorides, acid anhydrides, or Weinreb amides could also find utility.
  • Oxidation of the alpha cyano ketone of Formula la to a ketoamide of Formula lb is carried out preferentially using a peracid oxidant such as meta-chloroperoxybenzoic acid.
  • a peracid oxidant such as meta-chloroperoxybenzoic acid.
  • Other peracids may be useful for the oxidation of la to lb, including peroxy acetic acid generated in situ.
  • a general literature reference for some of the chemistry depicted in Scheme 1 is Takahashi, K.; Shibasaki, K.; Ogura, K.; Iida, H.; Chem Lett. 1983, 859.
  • Scheme IA A General method for the Synthesis of Compounds of Formula I
  • Scheme 2 provides a further example of the synthesis of compounds of Formula I according to the route previously described in Schemes 1 and 1 A.
  • the benzoylpiperazine derivative of Formula IVa is first alkylated with 2- chloroacetonitrile in tetrahydrofuran in the presence of triethylamine to provide the cyanomethyl derivative of Formula Ilia.
  • the anion of the cyanomethyl derivative is then generated by treating the intermediate of Formula Ilia with sodium hexamethyldisilazide (NaHMDS) in an aprotic solvent such as tetrahydrofuran.
  • NaHMDS sodium hexamethyldisilazide
  • the anion thus generated is then reacted with the heterocyclic carboxylate intermediate of Formula Ila to provide the (2-oxo-l-cyanoethyl) benzoylpiperazine derivative of Formula Ic.
  • the compound of Formula Ic may then be oxidized using an appropriate oxidant, such as 3-chloroperoxybenzoic acid (mCPBA) to provide compounds of Formula Id.
  • mCPBA 3-chloroperoxybenzoic acid
  • compounds of formula lb can be prepared by reaction of a heterocyclic glyoxylic acid derivative of Formula VII (QC(O)CO 2 H), with a piperazine derivative of Formula IV (HTC(O)A), under standard peptide coupling conditions to provide compounds of Formula lb.
  • Standard peptide coupling refers to coupling an amine with a carboxylic acid in the presence of an amine acid coupling reagent such as DCC, PyBop, EDC, or DEPBT.
  • the preparation of DEPBT is described by Li, H.; Jiang, X.; Ye, Y.-H.; Fan, C; Romoff, T.; and Goodman, M. in Organic Lett., 1999, 1, 91-93.
  • the group T as referred to herein is either
  • One preferred method for carrying out this reaction is to use the reagent 3-
  • the glyoxylic acid derivative of Formula VII may then be converted to a compound of Formula lb directly as described in Scheme 3, above.
  • the glyoxylic acid derivative of Formula VII can be converted to the corresponding glyoxylic acid chloride of Formula IX. This transformation can be carried out using thionyl chloride, reaction with oxalyl chloride, or other methods well known in the art.
  • the intermediates of Formula IX can also be obtained as described previously for Scheme 1-22.
  • Coupling of the piperazine derivative, H-T-C(O)A to the intermediate glyoxylic acid chloride of Formula IX may be carried out in a basic solvent such as pyridine or triethylamine, or in an inert solvent in the presence of pyridine as base or other tertiary amine bases to provide compounds of Formula lb. Schotten-Baumann conditions could also be employed for this coupling (aqueous base).
  • Scheme 4A provides a further depiction of routes used to prepare compounds of the invention.
  • an appropriate heterocycle is treated with oxalyl chloride in the presence of a Lewis acid catalyst, such as aluminum trichloride, in an aprotic solvent such as diethyl ether.
  • the intermediate heterocyclic oxalyl chloride derivative may then be coupled to the piperazine derivative of Formula HTC(O)A in the presence of a suitable base, such as diisopropylethylamine (Hunig's base) to provide compounds within Formula I.
  • a suitable base such as diisopropylethylamine (Hunig's base)
  • the heterocycle may be treated with ethyl oxalyl chloride or methyl oxalyl chloride in the presence of a Lewis acid catalyst, such as aluminum trichloride, in an appropriate aprotic solvent such as dichloromethane, to provide the corresponding heterocyclic oxalate (step a of eq. 2).
  • a Lewis acid catalyst such as aluminum trichloride
  • an appropriate aprotic solvent such as dichloromethane
  • Scheme 4B depicts the preparation of benzofuran derivatives within the scope of Formula I, using the methods described above for Schemes 4 and 4A.
  • the starting benzofuran derivatives can be prepared according to the methods described by Hertel, L. et al. in PCT Appl. WO 0000198 (for example where R 3 is F and R 6 is CH 3 ).
  • Scheme 4C equation 1, below, depicts the preparation of an azabenzofuran derivative within the scope of Formula I according to the methods previously described for Schemes 4, 4 A and 4B.
  • the starting 7-chloro-4-azabenzofuran was prepared as described by Shiotani, S. et al. in . J. Heterocyclic Chem. 1996, 33, 1051.
  • the chloro group can then be converted to an aryl or heteroaryl substituent by using methods well known in the art, such as the Suzuki coupling or Stille coupling as depicted in equation 2. Typical conditions which may be used for the Suzuki or Stille type couplings are described subsequently for equations 4-6 of Scheme 6.
  • (+,-)-Davis' reagent will afford the corresponding ⁇ -hydroxyamide derivatives of formula If.
  • oxidation of the ⁇ -hydroxyamide of Formula If, with an oxidant, such as Dess-Martin reagent, will provide the desired ⁇ -ketoamides of formula lb.
  • Formula lb involves the direct oxidation of the acetamide derivative of Formula le.
  • a preferred method is to treat the acetamide derivative of Formula le with an oxidant, such as selenium dioxide (SeO 2 ) in a polar solvent such as dioxane to provide the desired ⁇ -ketoamides of formula lb.
  • an oxidant such as selenium dioxide (SeO 2 ) in a polar solvent such as dioxane
  • Equation 2 of Scheme 6 depicts the conversion of the bromide to the cyano derivative. This transformation can be achieved by treating the bromide with a reagent such as sodium cyanide, copper cyanide or zinc cyanide in a solvent such as dimethylformamide .
  • Equations 3 and 4 of Scheme 6 show a suitable bromo derivative may undergo metal mediated couplings with various stannanes or boronic acid derivatives. Conditions for the Stille-type coupling, shown in equation 3, are well known in the art and involve treatment of the bromide (or iodide or triflate) with an aryl, heteroaryl or vinyl stannane in the presence of an appropriate palladium catalyst in an appropriate solvent.
  • Palladium catalysts used include, but are not limited to, tetrakis- triphenylphosphine palladium and palladium (II) acetate.
  • Appropriate solvents include, but are not limited to, polar solvents such as dioxane and 1 -methyl-2- pyrrolidinone.
  • polar solvents such as dioxane and 1 -methyl-2- pyrrolidinone.
  • Equation 4 of Scheme 6 depicts the Suzuki-type coupling of the bromide with an appropriate boronic acid derivative.
  • Appropriate boronic acid derivatives include aryl and heteroaryl boronic acid derivatives. This transformation may be carried out in the presence of an appropriate palladium catalyst, such as tetrakis- triphenylphosphine palladium, and a base, such as potassium carbonate, in a solvent or solvent mixture such as dimethylformamide and water.
  • an appropriate palladium catalyst such as tetrakis- triphenylphosphine palladium
  • a base such as potassium carbonate
  • substituted azabenzoxazoles or other heterocyclic groups of general formula Q containing a chloride, bromide, iodide, triflate, or phosphonate undergo coupling reactions with a boronate (Suzuki type reactions) or a stannane to provide the corresponding substituted heterocycles.
  • Triflates and boronates are prepared via standard literature procedures from the corresponding hydroxy bearing heterocycle.
  • the substitututed heterocyles may undergo metal mediated coupling to provide compounds of Formula I wherein R 6 is aryl, heteroaryl, or heteroahcychc for example.
  • the bromoheterocycle intermediates may undergo Stille-type coupling with heteroarylstannanes as shown in equation 3.
  • Conditions for this reaction are well known in the art and the following are three example references a) Farina, V.; Roth, G.P. Recent advances in the Stille reaction; Adv. Met.-Org. Chem. 1996, 5, 1-53. b) Farina, V.; Krishnamurthy, V.; Scott, W.J. The Stille reaction ; Org. React. (N. Y.) 1997, 50, 1-652. and c) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524.
  • the boronate or stannane may be formed on the heterocyclic moiety via methods known in the art and the coupling performed in the reverse manner with aryl or heteroaryl based halogens or triflates.
  • Scheme 7, below depicts various transformations of a carboxylic acid group at the R 6 position.
  • the carboxylic acid group is being converted to an amide by using standard peptide coupling techniques.
  • Standard peptide coupling refers to coupling an amine with a carboxylic acid in the presence of an amine acid coupling reagent such as DCC, PyBop, EDC, or DEPBT.
  • Equation 2 of Scheme 7 shows the conversion of the carboxylic acid group to an acylsulfonamide group by treating the carboxylic acid with a primary sulfonamide, such as methylsulfonamide or phenylsulfonamide in the presence of a peptide coupling agent, such as EDC, and a base, such as DMAP, in an appropriate aprotic solvent, such as dichloromethane.
  • a primary sulfonamide such as methylsulfonamide or phenylsulfonamide
  • a peptide coupling agent such as EDC
  • a base such as DMAP
  • the carboxylic acid group can also be converted to the corresponding acid chloride by treatment with thionyl chloride (neat or in an inert solvent) or oxalyl chloride in an inert solvent such as benzene, toluene, THF or dichloromethane as shown in equation 3 of Scheme 7.
  • the acid chloride may then be further reacted, for example with an excess of ammonia, primary amine or secondary amine in an inert solvent such as benzene, toluene, THF or dichloromethane to provide the corresponding amides.
  • the acid chloride may also be reacted with a stoichiometric amount of amine in the presence of a base, such as triethylamine, 4- methylmorpholine, 2,6-lutidine or pyridine.
  • a base such as triethylamine, 4- methylmorpholine, 2,6-lutidine or pyridine.
  • the acid chloride may be reacted with an amine under basic conditions (usually sodium hydroxide or potassium hydroxide) in solvent mixtures containing water and possibly a miscible cosolvent such as dioxane or THF.
  • the carboxylic acid group can also be esterified, as shown in equation 4 of Scheme 7, using standard conditions well known in the art.
  • the acid may be converted to the methyl ester by treatment with diazomethane or trimethylsilyldiazomethane in methanol/benzene.
  • Other standard esterification conditions such as those described by Richard C. Larock in Comprehensive Organic Transformations 2 nd Ed. 1999, John Wiley and Sons, New York or Theodora W. Greene and Peter G.M. Wuts in Protective Groups in Organic Synthesis 3 rd Ed. 1999, Wiley, New York may also be used.
  • Equation 5 of Scheme 7 shows the acid being used as a versatile precursor for the formation of various heterocycles.
  • the acid could be converted to hydrazonyl bromide and then a pyrazole via methods described by Shawali in J. Heterocyclic Chem. 1976, 13, 989.
  • One method for general heterocycle synthesis would be to convert the acid to an alpha bromo ketone by conversion to the acid chloride using standard methods, reaction with diazomethane, and finally reaction with HBr.
  • the alpha bromo ketone could be used to prepare many different compounds of Formula I as it can be converted to many heterocycles or other compounds of Formula I.
  • Alpha amino ketones can be prepared by displacement of the bromide with amines.
  • the alpha bromo ketone could be used to prepare heterocycles not available directly from the aldeheyde or acid.
  • the alpha bromo ketone would provide oxazoles.
  • Reaction of the alpha bromoketone with urea via the methods described by Pattanayak, B.K. et al. in Indian J. Chem. 1978, 16, 1030 would provide 2-amino oxazoles.
  • the alpha bromoketone could also be used to generate furans using beta keto esters as described in Chemische Berichte 1902, 35, 1545 and Chemische Bericte 1911, 44, 493; pyrroles (from beta dicarbonyls as in Indian J. Chem. 1973, 11, 1260; thiazoles by Hantsch methods as described by Roomi et al in Can. J. Chem. 1970, 48, 1689; or isoxazoles and imidazoles as described by Sorrel, T.N. in J Org. Chem. 1994, 59, 1589.
  • Equation 1 of Scheme 8 depicts the oxidation of an heterocyclic aldehyde to the corresponding carboxylic acid.
  • Numerous methods are suitable for the conversion of an aldehyde to an acid and many of these are well known in the art and described in standard organic chemistry texts such as Richard C. Larock in Comprehensive Organic Transformations 2 nd Ed. 1999, John Wiley and Sons, New York.
  • One preferred method is the use of silver nitrate or silver oxide in aqueous or anhydrous methanol at a temperature of about 25 °C or as high as reflux for 1 to 48 hours.
  • the aldehyde could be oxidized to the acid using other standard oxidants such as KMnO 4 or CrO 3 /H 2 SO 4 .
  • Equation 3 of Scheme 8 shows the conversion of the aldehyde group to an oxazole by using TOSMIC in the presence of potassium carbonate in methanol.
  • Suitable Grignard reagents would include reagents wherein R is alkyl, aryl or heteroaryl.
  • the oxidation of the secondary alcohols to the corresponding ketones, shown as the second step in equation 4, may be accomplished using oxidants such as TPAP, MnO 2 or PCC.
  • Equation 1 of Scheme 9 depicts the hydrolysis of a nitrile group to the corresponding carboxylic acid. Suitable conditions for carrying out this hydrolysis employ heating the nitrile at reflux with potassium hydroxide in a mixture of water and ethanol for 1 to 100 hours to provide the acid.
  • Equation 2 of Scheme 9 depicts the conversion of the nitrile to a tetrazole by reacting the nitrile with ammonium chloride and sodium azide in DMF.
  • the tetrazole can then be alkylated by treatment with an electrophile, such as an alkyl halide in the presence of potassium carbonate or alternatively by treatment with a reagent such as trimethylsilyldiazomethane in methanol/benzene.
  • equation 3 shows the preparation of an oxadiazole from the nitrile by the addition of hydroxylamine followed by ring closure upon treatment with phosgene.
  • the oxadiazole may then be methylated using trimethylsilyldiazomethane (TMSCHN 2 ) in a mixture of methanol and benzene.
  • TMSCHN 2 trimethylsilyldiazomethane
  • a suitable hydrazide such as p-toluenesulfonyl hydrazide in glacial acetic acid provides the desired hydrazide amide.
  • heating, sometimes at 90° C is needed to carry out the reaction.
  • the hydrazide amide is then reduced with sodium borohydride in a solvent such as THF to provide the desired methylene amide. This reaction may also need to be heated to reflux for best results.
  • Scheme 11 describes a method by which compounds of formula I can be prepared in which m is 0, n is 1, p is 1, and where one of R 8 or R 8 is hydroxy and the others are hydrogen. Reduction of the keto amide compound with sodium borohydride (1 to 10 equivalents may be required for best yield of reaction).
  • An exampleof the procedure described in Example 11 above can be found in Dillard, R. D.; Bach, N. J.; Draheim, S. E.; Berry, D. R.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson, L. M.; Jones, N. D.; McKinney, E. R.; Mihelich,.E.
  • Solvent A 10% MeOH / 90% H 2 O / 0.1 % Trifluoroacetic Acid
  • Solvent B 10% H 2 O / 90% MeOH / 0.1 % Trifluoroacetic Acid
  • Examples 1 through 4 were prepared according to the following general procedure and as described for Example 1.
  • Example 2 was prepared according to the above general procedure and analogous to the preparation of Example 1 starting from methyl 6-methoxy-lH- indole-2-carboxylate and l-benzoyl-4-cyanomethyl-3-methylpiperazine.
  • Examples 3 and 4 were prepared according to the above general procedure and analogous to the preparation of Example 1 starting from methyl 4-methoxybenzofuran-3-carboxylate, Preparation 6, and l-benzoyl-4-cyanomethylpiperazine, Preparation 4, or 1-benzoyl- 4-cyanomethyl-3-(R)-methylpiperazine, Preparation 5, respectively.
  • Examples 5-14 were prepared according to the following general procedure or as described for examples 5 and 6.
  • reaction mixture was concentrated in vacuo and the residue was purified using Shimadzu automated preparative HPLC System or by column chromatography or thin layer chromatography to provide the oxoacetylpiperazine derivative of formula QC(O)C(O)TC(O)A.
  • Typical procedure to prepare oxoacetyl-piperazines Preparation of l-(benzoyl)-4- [(indol-2-yl)-2-oxoacetyl]piperazine: NaHMDS (1.75 mL, 1.0 M in THF) was added into a solution of l-benzoyl-4-cyanomefhylpiperazine, Preparation 4, (100 mg, 0.44 mmol) and commercially available methyl lH-indolyl-2- carboxylate (83 mg, 0.44 mmol) in THF. After the reaction was stirred for 10 hours at room temperature, mCPBA (200 mg, >77%) was added and the resulted mixture was stirred for another 10 hours at room temperature.
  • mCPBA 200 mg, >77%) was added and the resulted mixture was stirred for another 10 hours at room temperature.
  • Examples 7-14 were prepared according to the general procedure described above, starting from an appropriate heterocyclic carboxylate of general formula QCO 2 R' and an appropriate amido cyanomethylpiperazine derivative. The compounds were characterized as described in Table 1 , below.
  • Examples 15-19 were prepared from the corresponding glyoxylic acid and benzoyl piperazine according to the general procedure described below.
  • the reaction mixture was stirred for 8 hours at room temperature then was concentrated in vacuo in order to remove solvent and excess oxalyl chloride and to provide a residue containing (lH-Indazol-3-yl)-2-oxo-acetyl chloride.
  • the crude residue containing (lH-Indazol-3-yl)-2-oxo-acetyl chloride (50mg) was dissolved in dry CH 3 CN (7 mL), and to the resulting solution was added 3-(R)- methyl- 1-benzoyl piperazine (50 mg) and pyridine (1 mL). The reaction mixture was stirred for 1 hour at room temperature then was concentrated in vacuo.
  • N-(benzoyl)-N'-[(4-fluorol-indolin-3-yl)-acetylJ-piperazine N-(benzoyl)-N'-[(4-fluoro-indol-3-yl)-2-oxoacetyl]-piperazine (500mg) was dissolved in a solution of Et3SiH (1ml) in TFA (10ml). The reaction was stirred for 10 hours.
  • Amide Z4 was prepared by coupling to the corresponding amine (1.5 equiv.) in DMF at r.t. using EDC (1.8 equiv.), DMAP (2 equiv.) and ⁇ MM (4.6 equiv.) (or in CH 2 C1 2 using polymer-bound cyclohexylcarbodiimide (3 equiv., ⁇ ovabiochem) and N, N-diisopropylethylamine (5 equiv.)). The reaction mixture was stirred overnight, added excess of IN hydrochloric acid and extracted with EtOAc (6 times). The combined organic extracts were back washed with IN hydrochloric acid and evaporated in vacuo to give a crude residue, which was purified by reverse phase preparative HPLC.
  • indole analogs e.g. 4-fluoroindole and 7-bromoindole, were prepared analogously.
  • Nirus production-Human embryonic Kidney cell line 293, propagated in Dulbecco's Modified Eagle Medium (Life Technologies, Gaithersburg, MD) containing 10% fetal Bovine serum (FBS, Sigma, St. Louis , MO).
  • Virus infection- Human epithelial cell line, HeLa, expressing the HIV-1 receptors CD4 and CCR5 was propagated in Dulbecco's Modified Eagle Medium (Life Technologies, Gaithersburg, MD) containing 10% fetal Bovine serum (FBS, Sigma, St. Louis , MO) and supplemented with 0.2 mg/ml Geneticin (Life Technologies, Gaithersburg, MD) containing 10% fetal Bovine serum (FBS, Sigma, St. Louis , MO) and supplemented with 0.2 mg/ml Geneticin (Life
  • Virus-Single-round infectious reporter virus was produced by co-transfecting human embryonic Kidney 293 cells with an HIV-1 envelope D ⁇ A expression vector and a proviral cD ⁇ A containing an envelope deletion mutation and the luciferase reporter gene inserted in place of HIV-1 nef sequences (Chen et al, Ref. 41). Transfections were performed using HpofectAMI ⁇ E PLUS reagent as described by the manufacturer (Life Technologies, Gaithersburg, MD).
  • Viral infection was monitored by measuring luciferase expression from viral D ⁇ A in the infected cells using a luciferase reporter gene assay kit (Roche Molecular Biochemicals, Indianapolis, IN). Infected cell supematants were removed and 50 ⁇ l of Dulbecco's Modified Eagle Medium (without phenol red) and 50 ⁇ l of luciferase assay reagent reconstituted as described by the manufacturer (Roche Molecular Biochemicals, Indianapolis, IN) was added per well. Luciferase activity was then quantified by measuring luminescence using a
  • An EC 50 provides a method for comparing the antiviral potency of the compounds of this invention.
  • the effective concentration for fifty percent inhibition (EC 50 ) was calculated with the Microsoft Excel Xlfit curve fitting software. For each compound, curves were generated from percent inhibition calculated at 10 different concentrations by using a four parameter logistic model (model 205).
  • the EC 50 data obtained is shown below in Table 3.
  • compounds with an EC 50 of greater than 5 ⁇ M are designated as Group C; compounds with an EC 50 of l ⁇ M to 5 ⁇ M are designated Group B; compounds with an EC 50 of less than
  • the compounds of the present invention may be administered orally, parenterally (including subcutaneous injections, intravenous, intramuscular, intrastemal injection or infusion techniques), by inhalation spray, or rectally, in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and diluents.
  • parenterally including subcutaneous injections, intravenous, intramuscular, intrastemal injection or infusion techniques
  • inhalation spray or rectally
  • dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and diluents e.g., a method of treating and a pharmaceutical composition for treating viral infections such as HIV infection and AIDS.
  • the treatment involves administering to a patient in need of such treatment a pharmaceutical composition comprising a pharmaceutical carrier and a therapeutically effective amount of a compound of the present invention.
  • the pharmaceutical composition may be in the form of orally administrable suspensions or tablets; nasal sprays, sterile injectable preparations, for example, as sterile injectable aqueous or oleagenous suspensions or suppositories.
  • these compositions When administered orally as a suspension, these compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may contain microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweetners/flavoring agents known in the art.
  • these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders, disintegrants, diluents, and lubricants known in the art.
  • the injectable solutions or suspensions may be formulated according to known art, using suitable non-toxic, parenterally acceptable diluents or solvents, such as mannitol, 1,3-butanediol, water, Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
  • suitable non-toxic, parenterally acceptable diluents or solvents such as mannitol, 1,3-butanediol, water, Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
  • the compounds of this invention can be administered orally to humans in a dosage range of 1 to 100 mg/kg body weight in divided doses.
  • One preferred dosage range is 1 to 10 mg/kg body weight orally in divided doses.
  • Another preferred dosage range is 1 to 20 mg/kg body weight in divided doses.
  • the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.

Abstract

This invention provides compounds having drug and bio-affecting properties, their pharmaceutical compositions and method of use. In particular, the invention is concerned with amido piperazine derivatives. These compounds possess unique antiviral activity, whether used alone or in combination with other antivirals, antiinfectives, immunomodulators or HIV entry inhibitors. More particularly, the present invention relates to the treatment of HIV and AIDS.

Description

INDOLE, AZAINDOLE AND RELATED HETEROCYCLIC AMIDOPIPERAZINE DERIVATIVES
Field of the Invention
This invention provides compounds having drug and bio-affecting properties, their pharmaceutical compositions and method of use. In particular, the invention is concerned with new heterocyclic amidopiperazine derivatives that possess unique antiviral activity. More particularly, the present invention relates to compounds useful for the treatment of HIV and AIDS.
Background Art
HIV-1 (human immunodeficiency virus -1) infection remains a major medical problem, with an estimated 33.6 million people infected worldwide. The number of cases of HIV and AIDS (acquired immunodeficiency syndrome) has risen rapidly. In 1999, 5.6 million new infections were reported, and 2.6 million people died from AIDS. Currently available drugs for the treatment of HIV include six nucleoside reverse transcriptase (RT) inhibitors (zidovudine, didanosine, stavudine, lamivudine, zalcitabine and abacavir), three non-nucleoside reverse transcriptase inhibitors (nevirapine, delavirdine and efavirenz), and six peptidomimetic protease inhibitors (saquinavir, indinavir, ritonavir, nelfinavir, amprenavir and lopinavir). Each of these drugs can only transiently restrain viral replication if used alone. However, when used in combination, these drugs have a profound effect on viremia and disease progression. In fact, significant reductions in death rates among AIDS patients have been recently documented as a consequence of the widespread application of combination therapy. However, despite these impressive results, 30 to 50% of patients ultimately fail combination drug therapies. Insufficient drug potency, non- compliance, restricted tissue penetration and drug-specific limitations within certain cell types (e.g. most nucleoside analogs cannot be phosphorylated in resting cells) may account for the incomplete suppression of sensitive viruses. Furthermore, the high replication rate and rapid turnover of HIV-1 combined with the frequent incorporation of mutations, leads to the appearance of drug-resistant variants and treatment failures when sub-optimal drug concentrations are present (Larder and Kemp; Gulick; Kuritzkes; Morris- Jones et al; Schinazi et al; Vacca and Condra; Flexner; Berkhout and Ren et al; (Ref. 6-14)). Therefore, novel anti-HIV agents exhibiting distinct resistance patterns, and favorable pharmacokinetic as well as safety profiles are needed to provide more treatment options.
Currently marketed HIV-1 drugs are dominated by either nucleoside reverse transcriptase inhibitors or peptidomimetic protease inhibitors. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have recently gained an increasingly important role in the therapy of HIV infections (Pedersen & Pedersen, Ref 15). At least 30 different classes of NNRTI have been described in the literature (De Clercq, Ref. 16) and several NNRTIs have been evaluated in clinical trials. Dipyridodiazepinone (nevirapine), benzoxazinone (efavirenz) and bis(heteroaryl) piperazine derivatives (delavirdine) have been approved for clinical use. However, the major drawback to the development and application of NNRTIs is the propensity for rapid emergence of drug resistant strains, both in tissue cell culture and in treated individuals, particularly those subject to monotherapy. As a consequence, there is considerable interest in the identification of NNRTIs less prone to the development of resistance (Pedersen & Pedersen, Ref 15). A recent overview of non-nucleoside reverse transcriptase inhibitors: perspectives on novel therapeutic compounds and strategies for the treatment of HIV infection, has appeared (Buckheit, Robert W., Jr. Expert Opinion on Investigational Drugs 2001, 10(8), 1423-1442). A review covering both NRTI and NNRTIs has appeared (Balzarini, J.; De Clercq, E..
Antiretroviral Therapy 2001, 31-62.). An overview of the current state of the HIV drugs has been published (E. De clercq Journal of Clinical Virology, 2001, 22, 73- 89).
Several indole derivatives including indole-3-sulfones, piperazino indoles, pyrazino indoles, and 5H-indolo[3,2-b][l,5]benzothiazepine derivatives have been reported as HIV-1 reverse transciptase inhibitors (Greenlee et al, Ref. 1; Williams et al, Ref. 2; Romero et al, Ref. 3; Font et al, Ref. 17; Romero et al, Ref. 18; Young et al, Ref. 19; Genin et al, Ref. 20; Silvestri et al, Ref. 21). Indole 2-carboxamides have also been described as inhibitors of cell adhesion and HIV infection (Boschelli et al, US 5,424,329, Ref. 4). Finally, 3-substituted indole natural products (Semicochliodinol A and B, didemethylasterriquinone and isocochliodinol) were disclosed as inhibitors of HIV-1 protease (Fredenhagen et al, Ref. 22).
Structurally related aza-indole amide derivatives have been disclosed previously (Kato et al, Ref. 23; Levacher et al, Ref. 24; Dompe Spa, WO-09504742, Ref. 5(a); SmithKline Beecham PLC, WO-09611929, Ref. 5(b); Schering Corp., US- 05023265, Ref. 5(c)). However, these structures differ from those claimed herein in that they are aza-indole mono-amide rather than unsymmetrical aza-indole piperazine diamide derivatives, and there is no mention of the use of these compounds for treating viral infections, particularly HIV. Nothing in these references can be construed to disclose or suggest the novel compounds of this invention and their use to inhibit HIV infection.
REFERENCES CITED
Patent documents
1. Greenlee, W.J.; Srinivasan, P. C. Indole reverse transcriptase inhibitors. U.S. Patent 5,124,327.
2. Williams, T.M.; Ciccarone, T.M.; Saari, W. S.; Wai, J.S.; Greenlee, W.J.; Balani, S.K.; Goldman, M.E.; Theohrides, A.D. Indoles as inhibitors of HIV reverse transcriptase. European Patent 530907.
3. Romero, D.L.; Thomas, R.C.; Preparation of substituted indoles as anti- AIDS pharmaceuticals. PCT WO 93 / 01181.
4. Boschelli, D.H.; Connor, D.T.; Unangst, P.C. Indole-2-carboxamides as inhibitors of cell adhesion. U.S. Patent 5,424,329.
5. (a) Mantovanini, M.; Melillo, G.; Daffonchio, L. Tropyl 7-azaindol-3- ylcarboxyamides as antitussive agents. PCT WO 95/04742 (Dompe Spa), (b)
Cassidy, F.; Hughes, I.; Rahman, S.; Hunter, D. J. Bisheteroaryl-carbonyl and carboxamide derivatives with 5HT 2C/2B antagonists activity. PCT WO 96/11929. (c) Scherlock, M. H.; Tom, W. C. Substituted lH-pyrrolopyridine-3-carboxamides. U. S. Patent 5,023,265.
Other Publications
6. Larder, B.A.; Kemp, S.D. Multiple mutations in the ΗIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science, 1989, 246,1155-1158. 7. Gulick, R.M. Current antiretroviral therapy: An overview. Quality of Life Research, 1997, 6, 471-474.
8. Kuritzkes, D.R. HIV resistance to current therapies. Antiviral Therapy, 1997, 2 (Supplement 3), 61-67.
9. Morris- Jones, S.; Moyle, G.; Easterbrook, P.J. Antiretroviral therapies in HIV-1 infection. Expert Opinion on Investigational Drugs, 1997, 6(8), 1049- 1061.
10. Schinazi, R.F.; Larder, B.A.; Mellors, J.W. Mutations in retroviral genes associated with drug resistance. International Antiviral News, 1997, 5,129-142,.
11. Vacca, J.P.; Condra, J.H. Clinically effective HIV-1 protease inhibitors. Drug Discovery Today, 1997, 2, 261 -272.
12. Flexner, D. HIV-protease inhibitors. Drug Therapy, 1998, 338, 1281-1292.
13. Berkhout, B. HIV-1 evolution under pressure of protease inhibitors: Climbing the stairs of viral fitness. J. Biomed. Sci., 1999, 6, 298-305.
14. Ren, S.; Lien, E. J. Development of HIV protease inhibitors: A survey. Prog. Drug Res., 1998, 57, 1-31.
15. Pedersen, O.S.; Pedersen, E.B. Non-nucleoside reverse transcriptase inhibitors: the NNRTI boom. Antiviral Chem. Chemother. 1999, 70, 285-314.
16. (a) De Clercq, E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Research, 1998, 38, 153-179. (b) De Clercq, E. Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV infection. IL. Farmaco, 1999, 54, 26-45.
17. Font, M.; Monge, A.; Cuartero, A.; Elorriaga, A.; Martinez-Irujo, J.J.; Alberdi, E.; Santiago, E.; Prieto, I.; Lasarte, J.J.; Sarobe, P. and Borras, F. Indoles and pyrazino[4,5-b]indoles as nonnucleoside analog inhibitors of HIV-1 reverse transcriptase. Eur. J. Med. Chem., 1995, 30, 963-971. 18. Romero, D.L.; Morge, R.A.; Genin, M.J.; Biles, C; Busso, M,; Resnick, L.; Althaus, I.W.; Reusser, F.; Thomas, R.C and Tarpley, W.G.
Bis(heteroaryl)piperazine (BHAP) reverse transcriptase inhibitors: structure-activity relationships of novel substituted indole analogues and the identification of l-[(5- methanesulfonamido-lH-indol-2-yl)-carbonyl]-4-[3-[l-methylethyl)amino]- pyridinyl]piperazine momomethansulfonate (U-90152S), a second generation clinical candidate. J. Med. Chem., 1993, 36, 1505-1508.
19. Young, S.D.; Amblard, M.C.; Britcher, S.F.; Grey, V.E.; Tran, L.O.; Lumma, W.C.; Huff, J.R.; Schleif, W.A.; Emini, E.E.; O'Brien, J.A.; Pettibone, D.J. 2-
Heterocyclic indole-3-sulfones as inhibitors of HIV-reverse transcriptase. Bioorg. Med. Chem. Lett., 1995, 5, 491-496.
20. Genin, M.J.; Poel, T.J.; Yagi, Y.; Biles, C; Althaus, I.; Keiser, B.J.; Kopta, L.A.; Friis, J.M.; Reusser, F.; Adams, W.J.; Olmsted, R.A.; Voorman, R.L.; Thomas,
R.C. and Romero, D.L. Synthesis and bioactivity of novel bis(heteroaryl)piperazine (BHAP) reverse transcriptase inhibitors: structure-activity relationships and increased metabolic stability of novel substituted pyridine analogs. J. Med. Chem., 1996, 39, 5267-5275.
21. Silvestri, R.; Artico, M.; Bruno, B.; Massa, S.; Novellino, E.; Greco, G.; Marongiu, M.E.; Pani, A.; De Montis, A and La Colla, P. Synthesis and biological evaluation of 5H-indolo[3,2-b][l,5]benzothiazepine derivatives, designed as conformationally constrained analogues of the human immunodeficiency virus type 1 reverse transcriptase inhibitor L-731, 126. Antiviral Chem. Chemother. 1998, 9, 139- 148.
22. Fredenhagen, A.; Petersen, F.; Tintelnot-Blomley, M.; Rosel, J.; Mett, Η and Hug, P. J. Semicochliodinol A and B: Inhibitors of HIV-1 protease and EGF-R protein Tyrosine Kinase related to Asterriquinones produced by the fungus Chrysosporium nerdarium. Antibiotics, 1997, 50, 395-401.
23. Kato, M.; Ito, K.; Nishino, S.; Yamakuni, H.; Takasugi, H. New 5-HT3 (Serotonin-3) receptor antagonists. IV. Synthesis and structure-activity relationships of azabicycloalkaneacetamide derivatives. Chem. Pharm. Bull, 1995, 43, 1351- 24. Levacher, V.; Benoit, R.; Duflos, J; Dupas, G.; Bourguignon, J.; Queguiner, G. Broadening the scope of NADH models by using chiral and non chiral pyrrolo [2,3-b] pyridine derivatives. Tetrahedron, 1991, 47, 429-440.
25. Shadrina, L.P.; Dormidontov, Yu.P.; Ponomarev, V,G.; Lapkin, I.I. Reactions of organomagnesium derivatives of 7-aza- and benzoindoles with diethyl oxalate and the reactivity of ethoxalylindoles. Khim. Geterotsikl Soedin., 1987, 1206-1209.
26. Sycheva, T.V.; Rubtsov, N.M.; Sheinker, Yu.N.; Yakhontov, L.N. Some reactions of 5-cyano-6-chloro-7-azaindoles and lactam-lactim tautomerism in 5- cyano-6-hydroxy-7-azaindolines. Khim. Geterotsikl. Soedin., 1987, 100-106.
27. (a) Desai, M.; Watthey, J.W.H.; Zuckerman, M. A convenient preparation of 1-aroylpiperazines. Org. Prep. Proced. Int., 1976, 8, 85-86. (b) Adamczyk, M.; Fino, J.R. Synthesis of procainamide metabolites. N-acetyl desethylprocainamide and desethylprocainamide. Org. Prep. Proced. Int. 1996, 28, 470-474. (c) Rossen, K; Weissman, S.A.; Sager, J.; Reamer, R.A.; Askin, D.; Volante, R.P.; Reider, P.J. Asymmetric Hydrogenation of tetrahydropyrazines: Synthesis of (S)-piperazine 2- tert-butylcarboxamide, an intermediate in the preparation of the HIV protease inhibitor Indinavir. Tetrahedron Lett., 1995, 36, 6419-6422. (d) Wang, T.; Zhang, Z.; Meanwell, N.A. Benzoylation of Dianions: Preparation of mono-Benzoylated Symmetric Secondary Diamines. J. Org. Chem., 1999, 64, 7661-7662.
28. Li, H.; Jiang, X.; Ye, Y.-H.; Fan, C; Romoff, T.; Goodman, M. 3- (Diethoxyphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one (DEPBT): A new coupling reagent with remarkable resistance to racemization. Organic Lett., 1999, 1, 91-93.
29. Ηarada, N.; Kawaguchi, T.; Inoue, I.; Ohashi, M.; Oda, K.; Ηashiyama, T.; Tsujihara, K. Synthesis and antitumor activity of quaternary salts of 2-(2'- oxoalkoxy)-9-hydroxyellipticines. Chem. Pharm. Bull, 1997, 45, 134-137.
30. Schneller, S. W.; Luo, J.-K. Synthesis of 4-amino-lH-pyrrolo[2,3-b]pyridine (1,7-Dideazaadenine) and lH-pyrrolo[2,3-b]pyridin-4-ol (1,7-Dideazahypoxanthine). J. Org. Chem., 1980, 45, 4045-4048.
31. Shiotani, S.; Tanigochi, K. Furopyridines. XXII [1]. Elaboration of the C- substitutents alpha to the heteronitrogen atom of furo[2,3-b]-, -[3.2-b]-, -[2.3-c]- and -[3,2-c]pyridine. J. Het. Chem., 1997, 34, 901-907. 32. Minakata, S.; Komatsu, M.; Ohshiro, Y. Regioselective functionalization of lH-pyrrolo[2,3-b]pyridine via its N-oxide. Synthesis, 1992, 661-663.
33. Klemm, L. Η.; Ηartling, R. Chemistry of thienopyridines. XXIV. Two transformations of thieno[2,3-b]pyridine 7-oxide (1). J. Het. Chem., 1976, 13, 1197- 1200.
34. Antonini, I.; Claudi, F.; Cristalli, G.; Franchetti, P.; Crifantini, M.; Martelli, S. Synthesis of 4-amino-l-D-D-ribofuranosyl-lH-pyrrolo[2,3-b]pyridine (1-
Deazatubercidin) as a potential antitumor agent. J Med. Chem., 1982, 25, 1258- 1261.
35. (a) Regnouf De Vains, J.B.; Papet, A.L.; Marsura, A. New symmetric and unsymmetric polyfunctionalized 2,2'-bipyridines. J. Het. Chem., 1994, 31, 1069-
1077. (b) Miura, Y.; Yoshida, M.; Ηamana, M. Synthesis of 2,3-fused quinolines from 3-substituted quinoline 1 -oxides. Part II, Heterocycles, 1993, 36, 1005-1016. (c) Profft, V.E.; Rolle, W. Uber 4-merkaptoverbindungendes 2-methylpyridins. J. Prakt. Chem., 1960, 283 (11), 22-34.
36. Nesi, R.; Giomi, D.; Turchi, S.; Tedeschi, P., Ponticelli, F. A new one step synthetic approach to the isoxazolo[4,5-b]pyridine system. Synth. Comm., 1992, 22, 2349-2355.
37. (a) Walser, A.; Zenchoff, G.; Fryer, R.I. Quinazolines and 1,4- benzodiazepines. 75. 7-Ηydroxyaminobenzodiazepines and derivatives. J. Med. Chem., 1976, 19, 1378-1381. (b) Barker, G.; Ellis, G.P. Benzopyrone. Part I. 6- Amino- and 6-hydroxy-2-subtituted chromones. J. Chem. Soc, 1970, 2230-2233.
38. Ayyangar, N.R.; Lahoti, R J.; Daniel, T. An alternate synthesis of 3,4- diaminobenzophenone and mebendazole. Org. Prep. Proced. Int., 1991, 23, 627-631.
39. Mahadevan, I.; Rasmussen, M. Ambident heterocyclic reactivity: The alkylation of pyrrolopyridines (azaindoles, diazaindenes). Tetrahedron, 1993, 49, 7337-7352.
40. Chen, B.K.; Saksela, K; Andino, R.; Baltimore, D. Distinct modes of human immunodeficiency type 1 proviral latency revealed by superinfection of nonproductively infected cell lines with recombinant luciferase-encoding viruses. J Virol, 1994, 68, 654-660.
41. Bodanszky, M.; Bodanszky, A. "The Practice of Peptide Synthesis " 2nd Ed., Springer- Ver lag: Berlin Heidelberg, Germany, 1994.
42. Albericio, F. et al. J. Org. Chem. 1998, 63, 9678.
43. Knorr, R. et al. Tetrahedron Lett. 1989, 30, 1927.
44. (a) Jaszay Z. M. et al. Synth. Commun., 1998 28, 2761 and references cited therein; (b) Bernasconi, S. et al. Synthesis, 1980, 385.
45. (a) Jaszay Z. M. et al. Synthesis, 1989, 745 and references cited therein; (b) Nicolaou, K. C. et al Angew. Chem. Int. Ed. 1999, 38, 1669.
46. Ooi, T. et al. Synlett. 1999, 729.
47. Ford, R. E. et al. J. Med. Chem. 1986, 29, 538.
48. (a) Yeung, K.-S. et al. Bristol-Myers Squibb Unpublished Results, (b) Wang, W. et al. Tetrahedron Lett. 1999, 40, 2501.
49. Brook, M. A. et al. Synthesis, 1983, 201.
50. Yamazaki, N. et al Tetrahedron Lett. 1972, 5047.
51. Barry A. Bunin "The Combinatorial Index" 1998 Academic Press, San Diego / London pages 78-82.
52. Richard C. Larock Comprehensive Organic Transormations 2nd Ed. 1999, John Wiley and Sons New York. 53. M.D. Mullican et.al. J.Med. Chem. 1991, 34, 2186-2194.
54. Protective groups in organic synthesis 3rd ed. / Theodora W. Greene and Peter G.M. Wuts. New York : Wiley, 1999.
55. Katritzky, Alan R. Lagowski, Jeanne M. The principles of heterocyclic ChemistryNew York : Academic Press, 1968
56. Paquette, Leo A. Principles of modern heterocyclic chemistry New York : Benjamin.
57. Katritzky, Alan R.; Rees, Charles W.; Comprehensive heterocyclic chemistry : the structure, reactions, synthesis, and uses of heterocyclic compounds 1st ed.Oxford (Oxfordshire) ; New York : Pergamon Press, 1984. 8 v.
58. Katritzky, Alan RHandbook of heterocyclic 1st edOxford (Oxfordshire) ; New York : Pergamon Press, 1985.
59. Davies, David I Aromatic Heterocyclic Oxford ; New York : Oxford University Press, 1991.
60. Ellis, G. P. Synthesis of fused Chichester [Sussex] ; New York : Wiley, cl987-cl992. Chemistry of heterocyclic compounds ; v. 47.
61. Joule, J. A Mills, K. , Smith, G. F. Heterocyclic Chemistry , 3rd ed London ;New York Chapman & Hall, 1995.
62. Katritzky, Alan R., Rees, Charles W. , Scriven, Eric F. V. Comprehensive heterocyclic chemistry II : a review of the literature 1982-1995.
63. The structure, reactions, synthesis, and uses of heterocyclic compounds 1st ed. Oxford ; New York : Pergamon, 1996. 1 1 v. in 12 : ill. ; 28 cm.
64. Eicher, Theophil, Hauptmann, Siegfried. The chemistry of heterocycles : structure, reactions, syntheses, and applications Stuttgart ; New York : G. Thieme, 65. Grimmett, M. R. Imidazole and benzimidazole Synthesis London ; San Diego : Academic Press, 1997.
66. Advances in heterocyclic chemistry. Published in New York by Academic Press, starting in 1963- present.
67. Gilchrist, T. L. (Thomas Lonsdale) Heterocyclic chemistry 3rd ed. Harlow, Essex : Longman, 1997. 414 p. : ill. ; 24 cm.
68. Farina, Vittorio; Roth, Gregory P. Recent advances in the Stille reaction; Adv. Met.-Org. Chem. 1996, 5, 1-53.
69. Farina, Vittorio; Krishnamurthy, Venkat; Scott, William J. The Stille reaction ; Org. React. (N. Y.) (1997), 50, 1-652.
70. Stille, J. K. Angew. Chem. Int. Ed. Engl 1986, 25, 508-524.
71. Norio Miyaura and Akiro Suzuki Chem Rev. 1995, 95, 2457.
72. Home, D.A. Heterocycles 1994, 39, 139.
73. Kamitori, Y. et.al. Heterocycles, 1994, 37(1), 153.
74. Shawali, J. Heterocyclic Chem. 1976, 13, 989.
75. a) Kende, A.S.et al. Org. Photochem. Synth. 1972, 1, 92. b) Hankes, L.V. Biochem. Prep. 1966, 11, 63. c) Synth. Meth. 22, 837.
76. Hulton et. al. Synth. Comm. 1979, 9, 789.
77. Pattanayak, B.K. et.al. Indian J. Chem. 1978, 16, 1030.
78. Chemische Berichte 1902, 35, 1545.
79. Chemische Berichte Ibid 1911, 44, 493.
80. Moubarak, I., Vessiere, R. Synthesis 1980, Vol. 1, 52-53. 81. IndJ. Chem. 1973, 11, 1260.
82. Roomi et.al. Can J. Chem. 1970, 48, 1689.
83. Sorrel, T.N. J. Org. Chem. 1994, 59, 1589.
84. Nitz, TJ. et. al. J. Org. Chem. 1994, 59, 5828-5832.
85. Bowden, K. et.al. J. Chem. Soc. 1946, 953.
86. Nitz, T.j. et. al. J. Org. Chem. 1994, 59, 5828-5832.
87. Scholkopf et. al. Angew. Int. Ed. Engl. 1971, 10(5), 333.
88. (a) Behun, J. D.; Levine, R. J Org. Chem. 1961, 26, 3379. (b) Rossen, K.; Weissman, S.A.; Sager, J.; Reamer, R.A.; Askin, D.; Volante, R.P.; Reider, P.J. Asymmetric Hydrogenation of tetrahydropyrazines: Synthesis of (S)-piperazine 2- tert-butylcarboxamide, an intermediate in the preparation of the HIV protease inhibitor Indinavir. Tetrahedron Lett., 1995, 36, 6419-6422. (c) Jenneskens, L. W.; Mahy, J.; den Berg, E. M. M. de B.-v.; Van der Hoef, I.; Lugtenburg, J. Reel Trav. Chim. Pays-Bas 1995, 114, 97.
89. Wang, T.; Zhang, Z.; Meanwell, N.A. Benzoylation of Dianions: Preparation of mono-Benzoylated Symmetric Secondary Diamines. J. Org. Chem., 1999, 64,
7661-7662.
90. (a) Adamczyk, M.; Fino, J.R. Synthesis of procainamide metabolites. N- acetyl desethylprocainamide and desethylprocainamide. Org. Prep. Proced. Int. 1996, 28, 470-474. (b) Wang, T.; Zhang, Z.; Meanwell, N.A. Regioselective mono- Benzoylation of Unsymmetrical Piperazines. J. Org. Chem., in press.
91. Masuzawa, K.; Kitagawa, M.; Uchida, H. Bull Chem. Soc. Jpn. 1967, 40,
244-245.
92. Furber, M.; Cooper, M. E.; Donald, D. K. Tetrahedron Lett. 1993, 34, 1351- 1354. SUMMARY OF THE INVENTION
The present invention comprises compounds of Formula I, their pharmaceutical formulations, and their use in patients suffering from or susceptible to a virus such as HIV. The compounds of Formula I, which include nontoxic pharmaceutically acceptable salts and/or hydrates thereof, have the formula and meaning as described below. Each embodiment of a particular aspect of the invention depends from the preceding embodiment unless otherwise stated.
A first embodiment of a first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof,
Figure imgf000013_0001
wherein:
Q is
Figure imgf000013_0002
- - may represent a bond;
A is selected from the group consisting of C,.6alkoxy, C|.6alkyl, C3.7cycloalkyl, phenyl, and heteroaryl; wherein said heteroaryl may be monocyclic or bicyclic and may be comprised of three to eleven atoms selected from the group consisting of C, N, NR9, 0, and S, and wherein each ring of said phenyl and heteroaryl is optionally substituted with one to five same or different substituents selected from the group consisting of Rl9-R23;
T is
Figure imgf000014_0001
U is NR7, O, or S;
V is C(H)kR', O or N(R7')k;
W is CR3 or NR'°;
X is CR4 orNR10;
Y is CR5 or NR10;
Z is CR6 or NR10;
k is 0 or 1 ;
R1, R2, R3, R4, R5, and R6are each independently selected from the group consisting of a bond, hydrogen, halogen, cyano, nitro, X'R24, C,.6alkyl, C3.7cycloalkyl, C2.6alkenyl, C4.7cycloalkenyl, C2-6alkynyl, aryl, heteroaryl, heteroahcychc, C(O)NR28R29, and CO2R25, wherein said C,.6alkyl, C3.7cycloalkyl, C2. 6alkenyl, C4.7cycloalkenyl, C2.6alkynyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the substituents comprising group F;
R7 and R7 are each independently selected from the group consisting of a bond and (CH2),H, wherein r is 0-6;
m, n, and p are each independently 0, 1, or 2 provided that the sum of m, n, and p must equal 1 or 2;
F is selected from the group consisting of C,.6alkyl, hydroxy, C,.6alkoxy, cyano, halogen, benzyl, N-amido, NR30R31, C1.6alkylC(O)NR30R31, C(O)NR30R31, COOR32 , and C^alkylCOOR32; R8 and R8' are each independently selected from the group consisting of hydrogen, hydroxy, C,.6alkyl, C,.6alkoxy, cyano, and fluoro, or R8 and R8' taken together form =O, =S, =NOR9, or =NH;
R9 is hydrogen or C,.6alkyl;
R10 is -(O)q, wherein q is 0 or 1 ;
R", R12, R13, R14, R15, R16, R17, and R18 are each independently selected from hydrogen or Cι.3alkyl;
X' is selected from the group consisting of NR9, O, and S;
R19, R20, R21, R22, and R23 are each independently selected from the group consisting of hydrogen, C,.6alkyl, C2.6alkenyl, C2.6alkynyl, halogen, cyano, X'R26, trifluoromethyl, and trifluoromethoxy, wherein each of said C,.6alkyl, C2.6alkenyl, and C2.6alkynyl are optionally substituted with one to three same or different substituents selected from halogen and C,.6alkyl;
R24 is hydrogen or C,.6alkyl;
R25 is selected from the group consisting of hydrogen, C,.6alkyl, and C3.7cycloalkyl;
R26 is selected from the group consisting of hydrogen, C,.6alkyl, C3.7cycloalkyl, trifluoromethyl and C(O)R27;
R27is selected from the group consisting of C,.6alkyl, NH2 and -NHC,.3alkyl;
R28 and R29 are independently selected from the group consisting of hydrogen, C,.6alkyl, C3.7cycloalkyl, aryl, heteroaryl, and heteroahcychc wherein said C,.6alkyl, C3.7cycloalkyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to nine same or different halogens or C,.6alkyl groups;
R30andR31 are independently selected from the group consisting of hydrogen, C,.6alkyl, C3.7cycloalkyl, aryl, wherein said C,.6alkyl, C3.7cycloalkyl, and aryl are optionally substituted with one to nine same or different halogens; R32 is selected from the group consisting of hydrogen, C,.6alkyl, and C3.7cycloalkyl;
provided that if one of the members selected from the group consisting of W, X, Y, and Z is NR10, then the remaining members selected from the group consisting of W, X, Y, and Z are not NR'°;
provided when U is O or S then V is C(H)kR' or N(R7 )k;
provided when U is NR7; V is C(H)kR';W is CR2; X is CR3; Y is CR4; Z is CR5; m is 1 ; n is 0; and p is 1 then R2 is not a bond;
provided when U is NR7; V is C(H)kR'; one of the variables selected from W, X, Y, and Z is NR10; m is 1 ; n is 0; and p is 0 or 1 then R2 is not a bond; provided that when V is O then - - does not represent a bond;
provided that when - - represents a bond then k is 0; and
provided that at any given time only one of the members selected from the group consisting of R1, R2, R3, R4, R5, R6, R7and R7 is a bond, and further provided that said bond is the point of attachment to the adjacent carbon atom in the compound of Formula I.
A second embodiment of the first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
T is
Figure imgf000016_0001
R", R12, R13, R14, R", R16, R17, and R18 are each independently hydrogen, methyl or ethyl; and - -represents a bond;
A is phenyl or heteroaryl.
A third embodiment of the first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
U is NR7; and
R8 and R8 are each independently hydrogen, hydroxy or cyano, with the proviso that only one of R8 and R8 is cyano.
A fourth embodiment of the first aspect of the present invention are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
m is 1 ; n is 0; and p is 1.
A fifth embodiment of the first aspect of the present invention, which depends from the second embodiment of the first aspect, are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
U is O or S;
V is CHor N; and
R8 and R8 are each independently hydrogen, hydroxy or cyano, with the proviso that only one of R8 and R8 is cyano.
A sixth embodiment of the first aspect of the present invention, which depends from the fifth embodiment of the first aspect, are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
m is 1; n is 0; and p is 1. A seventh embodiment of the first aspect of the present invention, which depends from the third embodiment of the first aspect, are compounds of Formula I, including pharmaceutically acceptable salts thereof, wherein:
U is -NR7; and V is N.
Another embodiment of the seventh embodiment are compounds wherein U is NH, n is 0, and R2 is the point of attachment to Q.
Another embodiment of the fourth embodiment are compounds wherein
W,X,Y and Z are C.
Another embodiment of the third embodiment are compounds wherein m is 1; n is 0; and p is 0. Another embodiment of the prior embodiment are compounds wherein R2 is the point of attachment to Q and V is CH.
Another embodiment of the prior embodiment are compounds wherein W,X,Y and Z are C.
Another embodiment of the third embodiment are compounds wherein R2 is the point of attachment to Q, V is CH, m is 0, and one of R8 and R8 are hydrogen and the other is hydroxy.
Another embodiment of the prior embodiment are compounds wherein
W,X,Y and Z are C.
Another embodiment of the third embodiment are compounds wherein R2 is the point of attachment to Q, V is CH, m is 0, and R8 and R8 are each hydrogen.
Another embodiment of the prior embodiment are compounds wherein W,X,Y and Z are C.
Another embodiment of the second embodiment are compounds wherein R2 is the point of attachment to Q, V is CH, m is 0, and one of R8 and R8 are hydrogen and the other is cyano. Another embodiment of the prior embodiment are compounds wherein U is
NR7.
A first embodiment of the second aspect of the present invention is a pharmaceutical composition which comprises an antiviral effective amount of a compound of Formula I, including pharmaceutically acceptable salts thereof, as defined in any of the prior embodiments of the first aspect of the present invention, and one or more pharmaceutically acceptable carriers, excipients or diluents.
A second embodiment of the second aspect of the present invention is the pharmaceutical composition of the first embodiment of the second aspect, useful for treating infection by HIV, which additionally comprises an antiviral effective amount of an AIDS treatment agent selected from the group consisting of an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and HIV entry inhibitors.
A first embodiment of a third aspect of the present invention is a method for treating a mammal infected with a virus, comprising administering to said mammal an antiviral effective amount of a compound of Formula I, including pharmaceutically accceptable salts thereof, as defined in any of the prior embodiments of the first aspect of the present invention, and one or more pharmaceutically acceptable carriers, excipients or diluents.
A second embodiment of a third aspect of the present invention is the method of the first embodiment of the third aspect, comprising administering to said mammal an antiviral effective amount of a compound of Formula I, in combination with an antiviral effective amount of an AIDS treatment agent selected from the group consisting of: an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and an HIV entry inhibitor.
The third embodiment of a third aspect of the present invention is the method of either the first or second embodiment of the third aspect, wherein said virus is HIV.
DETAILED DESCRIPTION OF THE INVENTION
Since the compounds of the present invention, may possess asymmetric centers and therefore occur as mixtures of diastereomers and enantiomers, the present invention includes the individual diastereoisomeric and enantiomeric forms of the compounds of Formula I in addition to the mixtures thereof.
DEFINITIONS
"Halogen" refers to chlorine, bromine, iodine or fluorine.
An "aryl" group refers to an all carbon monocyclic or fused-ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups having a completely conjugated pi-electron system. Examples, without limitation, of aryl groups are phenyl, napthalenyl and anthracenyl.
As used herein, a "heteroaryl" group refers to a monocyclic or fused ring (i.e., rings which share an adjacent pair of atoms) group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur and, in addition, having a completely conjugated pi-electron system. Examples, without limitation, of heteroaryl groups are furyl, thienyl, benzothienyl, thiazolyl, imidazolyl, oxazolyl, oxadiazolyl, thiadiazolyl, benzthiazolyl, triazolyl, tetrazolyl, isoxazolyl, isothiazolyl, pyrrolyl, pyranyl, tetrahydropyranyl, pyrazolyl, pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, purinyl, carbazolyl, benzoxazolyl, benzimidazolyl, indolyl, isoindolyl, and pyrazinyl.
As used herein, a "heteroahcychc" group refers to a monocyclic or fused ring group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur. The rings may also have one or more double bonds. However, the rings do not have a completely conjugated pi-electron system.
Examples, without limitation, of heteroahcychc groups are azetidinyl, piperidyl, piperazinyl, imidazolinyl, thiazolidinyl, 3-pyrrolidin-l-yl, morpholinyl, thiomorpholinyl and tetrahydropyranyl.
An "alkyl" group refers to a saturated aliphatic hydrocarbon including straight chain and branched chain groups. Preferably, the alkyl group has 1 to 20 carbon atoms (whenever a numerical range; e.g., "1-20", is stated herein, it means that the group, in this case the alkyl group may contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc. up to and including 20 carbon atoms). More preferably, it is a medium size alkyl having 1 to 10 carbon atoms. For example, the term "C 6alkyl" as used herein and in the claims (unless specified otherwise) mean straight or branched chain alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, amyl, hexyl and the like.
A "cycloalkyl" group refers to a saturated all-carbon monocyclic or fused ring (i.e., rings which share and adjacent pair of carbon atoms) group wherein one or more rings does not have a completely conjugated pi-electron system. Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and adamantane.
A "cycloalkenyl" group refers to an all-carbon monocyclic or fused ring (i.e., rings which share and adjacent pair of carbon atoms) group wherein one or more rings contains one or more carbon-carbon double bonds but does not have a completely conjugated pi-electron system. Examples, without limitation, of cycloalkenyl groups are cyclopentene, cyclohexadiene, and cycloheptatriene.
An "alkenyl" group refers to an alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon double bond.
An "alkynyl" group refers to an alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon triple bond.
A "hydroxy" group refers to an -OH group.
An "alkoxy" group refers to both an -O-alkyl and an -O-cycloalkyl group as defined herein.
An "O-carboxy" group refers to a R"C(O)O-group, with R" as defined herein.
An "amino" group refers to an -NH2 group.
A "N-amido" group refers to a RxC(=O)NRy- group, with Rx selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl, and heteroahcychc and Ry selected from hydrogen or alkyl.
A "cyano" group refers to a -CN group. It is known in the art that nitrogen atoms in heteroaryl systems can be "participating in a heteroaryl ring double bond", and this refers to the form of double bonds in the two tautomeric structures which comprise five-member ring heteroaryl groups. This dictates whether nitrogens can be substituted as well understood by chemists in the art. The disclosure and claims of the present invention are based on the known general principles of chemical bonding. It is understood that the claims do not encompass structures known to be unstable or not able to exist based on the literature.
Physiologically acceptable salts and prodrugs of compounds disclosed herein are within the scope of this invention. The term "pharmaceutically acceptable salt" as used herein and in the claims is intended to include nontoxic base addition salts. Suitable salts include those derived from organic and inorganic acids such as, without limitation, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulfonic acid, acetic acid, tartaric acid, lactic acid, sulfinic acid, citric acid, maleic acid, fumaric acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, and the like. The term "pharmaceutically acceptable salt" as used herein is also intended to include salts of acidic groups, such as a carboxylate, with such counterions as ammonium, alkali metal salts, particularly sodium or potassium, alkaline earth metal salts, particularly calcium or magnesium, and salts with suitable organic bases such as lower alkylamines (methylamine, ethylamine, cyclohexylamine, and the like) or with substituted lower alkylamines (e.g. hydroxyl-substituted alkylamines such as diethanolamine, triethanolamine or tris(hydroxymethyl)- aminomethane), or with bases such as piperidine or morpholine.
In the method of the present invention, the term "antiviral effective amount" means the total amount of each active component of the method that is sufficient to show a meaningful patient benefit, i.e., healing of acute conditions characterized by inhibition of the HIV infection. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously. The terms "treat, treating, treatment" as used herein and in the claims means preventing or ameliorating diseases associated with HIV infection.
The present invention is also directed to combinations of the compounds with one or more agents useful in the treatment of AIDS. For example, the compounds of this invention may be effectively administered, whether at periods of pre-exposure and/or post-exposure, in combination with effective amounts of the AIDS antivirals, immunomodulators, antiinfectives, or vaccines, such as those in the following table.
ANTIVIRALS
Drug Name Manufacturer Indication
097 Hoechst/Bayer HIV infection, AIDS, ARC (non-nucleoside reverse transcriptase (RT) inhibitor)
Amprenivir Glaxo Wellcome HIV infection, 141 W94 AIDS, ARC GW 141 (protease inhibitor)
Abacavir (1592U89) Glaxo Wellcome HIV infection, GW 1592 AIDS, ARC (RT inhibitor)
Acemannan Carrington Labs ARC (Irving, TX)
Acyclovir Burroughs Wellcome HIV infection, AIDS, ARC, in combination with AZT
AD-439 Tanox Biosystems HIV infection, AIDS, ARC
AD-519 Tanox Biosystems HIV infection, AIDS, ARC
Adefovir dipivoxil Gilead Sciences HIV infection AL-721 Ethigen ARC, PGL
(Los Angeles, CA) HIV positive, AIDS
Alpha Interferon Glaxo Wellcome Kaposi's sarcoma, HIV in combination w/Retrovir Ansamycin Adria Laboratories ARC
LM 427 (Dublin, OH) Erbamont (Stamford, CT)
Antibody which Advanced Biotherapy AIDS, ARC Neutralizes pH Concepts Labile alpha aberrant (Rockville, MD) Interferon
AR177 Aronex Pharm HIV infection, AIDS, ARC
Beta-fluoro-ddA Nat'l Cancer Institute AIDS-associated diseases
BMS-232623 Bristol-Myers Squibb/ HIV infection, (CGP-73547) Novartis AIDS, ARC (protease inhibitor)
BMS-234475 Bristol-Myers Squibb/ HIV infection, (CGP-61755) Novartis AIDS, ARC (protease inhibitor)
CI-1012 Warner-Lambert HIV-1 infection
Cidofovir Gilead Science CMV retinitis, herpes, papillomavirus
Curdlan sulfate AJI Pharma USA HIV infection
Cytomegalovirus Medlmmune CMV retinitis Immune globin
Cytovene Syntex Sight threatening
Ganciclovir CMV peripheral CMV retinitis
Delaviridine Pharmacia-Upj ohn HIV infection, AIDS, ARC (RT inhibitor)
Dextran Sulfate Ueno Fine Chem. AIDS, ARC, HIV Ind. Ltd. (Osaka, positive Japan) asymptomatic
ddC Hoffman-La Roche HIV infection, AIDS, Dideoxycytidine ARC
ddl Bristol-Myers Squibb HIV infection, AIDS, Dideoxyinosine ARC; combination with AZT/d4T
DMP-450 AVID HIV infection, (Camden, NJ) AIDS, ARC (protease inhibitor)
Efavirenz DuPont Merck HIV infection, (DMP 266) AIDS, ARC (-)6-Chloro-4-(S)- (non-nucleoside RT cyclopropylethynyl- inhibitor) 4(S)-trifluoro- methyl- 1 ,4-dihydro- 2H-3 , 1 -benzoxazin- 2-one, STOCRTNE
EL10 Elan Corp, PLC HIV infection (Gainesville, GA)
Famciclovir Smith Kline herpes zoster, herpes simplex FTC Emory University HIV infection, AIDS, ARC (reverse transcriptase inhibitor)
GS 840 Gilead HIV infection, AIDS, ARC (reverse transcriptase inhibitor)
HBY097 Hoechst Marion HIV infection, Roussel AIDS, ARC (non-nucleoside reverse transcriptase inhibitor)
Hypericin VIMRx Pharm. HIV infection, AIDS, ARC Recombinant Human Triton Biosciences AIDS, Kaposi's
Interferon Beta (Almeda, CA) sarcoma, ARC
Interferon alfa-n3 Interferon Sciences ARC, AIDS
Indinavir Merck HIV infection, AIDS, ARC, asymptomatic HIV positive, also in combination with AZT/ddl/ddC
ISIS 2922 ISIS Pharmaceuticals CMV retinitis
KNI-272 Nat'l Cancer Institute HIV-assoc. diseases
Lamivudine, 3TC Glaxo Wellcome HIV infection, AIDS, ARC (reverse transcriptase inhibitor); also with AZT
Lobucavir Bristol-Myers Squibb CMV infection
Nelfinavir Agouron HIV infection, Pharmaceuticals AIDS, ARC (protease inhibitor)
Nevirapine Boeheringer HIV infection, Ingleheim AIDS, ARC (RT inhibitor)
Novapren Novaferon Labs, Inc. HIV inhibitor (Akron, OH)
Peptide T Peninsula Labs AIDS
Octapeptide (Belmont, CA)
Sequence
Trisodium Astra Pharm. CMV retinitis, HIV
Phosphonoformate Products, Inc. infection, other CMV infections PNU- 140690 Pharmacia Upjohn HIV infection, AIDS, ARC (protease inhibitor)
Probucol Vyrex HIV infection, AIDS
RBC-CD4 Sheffield Med. HIV infection, Tech (Houston, TX) AIDS, ARC
Ritonavir Abbott HIV infection, AIDS, ARC (protease inhibitor)
Saquinavir Hoffmann- HIV infection, LaRoche AIDS, ARC (protease inhibitor)
Stavudine; d4T Bristol-Myers Squibb HIV infection, AIDS,
Didehydrodeoxy- ARC thymidine
Valaciclovir Glaxo Wellcome Genital HSV & CMV infections
Virazole Viratek/ICN asymptomatic HIV Ribavirin (Costa Mesa, CA) positive, LAS, ARC
VX-478 Vertex HIV infection, AIDS, ARC
Zalcitabine Hoffmann-LaRoche HIV infection, AIDS, ARC, with AZT
Zidovudine; AZT Glaxo Wellcome HIV infection, AIDS,
ARC, Kaposi's sarcoma, in combination with other therapies IMMUNOMODULATORS
Drug Name Manufacturer Indication
AS-101 Wyeth-Ayerst AIDS
Bropirimine Pharmacia Upjohn Advanced AIDS
Acemannan Carrington Labs, Inc. AIDS, ARC (Irving, TX)
CL246,738 American Cyanamid AIDS, Kaposi's Lederle Labs sarcoma
EL10 Elan Corp, PLC HIV infection (Gainesville, GA)
FP-21399 Fuki ImmunoPharm Blocks HIV fusion with CD4+ cells
Gamma Interferon Genentech ARC, in combination w/TNF (tumor necrosis factor)
Granulocyte Genetics Institute AIDS Macrophage Colony Sandoz Stimulating Factor
Granulocyte Hoechst-Roussel AIDS Macrophage Colony Immunex Stimulating Factor
Granulocyte Schering-Plough AIDS, Macrophage Colony combination Stimulating Factor w/AZT
HIV Core Particle Rorer Seropositive HIV Immunostimulant
IL-2 Cetus AIDS, in combination Interleukin-2 w/AZT IL-2 Hoffman-LaRoche AIDS, ARC, HIV, in
Interleukin-2 Immunex combination w/AZT
IL-2 Chiron AIDS, increase in Interleukin-2 CD4 cell counts (aldeslukin)
Immune Globulin Cutter Biological Pediatric AIDS, in Intravenous (Berkeley, CA) combination w/AZT (human)
IMREG-1 Imreg AIDS, Kaposi's
(New Orleans, LA) sarcoma, ARC, PGL
IMREG-2 Imreg AIDS, Kaposi's
(New Orleans, LA) sarcoma, ARC, PGL
Imuthiol Diethyl Merieux Institute AIDS, ARC Dithio Carbamate
Alpha-2 Schering Plough Kaposi's sarcoma Interferon w/AZT, AIDS
Methionine- TNI Pharmaceutical AIDS, ARC Enkephalin (Chicago, IL)
MTP-PE Ciba-Geigy Corp. Kaposi's sarcoma Muramyl-Tripeptide
Granulocyte Amgen AIDS, in combination
Colony Stimulating w/AZT Factor
Remune Immune Response Immunotherapeutic Corp.
rCD4 Genentech AIDS, ARC
Recombinant Soluble Human CD4
rCD4-IgG AIDS, ARC hybrids Recombinant Biogen AIDS, ARC
Soluble Human CD4
Interferon Hoffman-La Roche Kaposi's sarcoma Alfa 2a AIDS, ARC, in combination w/AZT
SK&F 106528 Smith Kline HIV infection Soluble T4
Thymopentin Immunobiology HIV infection Research Institute (Annandale, NJ)
Tumor Necrosis Genentech ARC, in combination Factor; TNF w/gamma Interferon
ANTI-INFECTIVES
Drug Name Manufacturer Indication
Clindamycin with Pharmacia Upjohn PCP Primaquine
Fluconazole Pfizer Cryptococcal meningitis, candidiasis
Pastille Squibb Corp. Prevention of Ny statin Pastille oral candidiasis
Ornidyl Merrell Dow PCP Eflornithine
Pentamidine LyphoMed PCP treatment
Isethionate (IM & IV) (Rosemont, IL)
Trimethoprim Antibacterial
Trimethoprim/sulfa Antibacterial Piritrexim Burroughs Wellcome PCP treatment
Pentamidine Fisons Corporation PCP prophylaxis Isethionate for Inhalation
Spiramycin Rhone-Poulenc Cryptosporidial diarrhea
Intraconazole- Janssen-Pharm. Histoplasmosis; R51211 cryptococcal meningitis
Trimetrexate Warner-Lambert PCP
Daunorubicin NeXstar, Sequus Kaposi's sarcoma
Recombinant Human Ortho Pharm. Corp. Severe anemia
Erythropoietin assoc. with AZT therapy
Recombinant Human Serono AIDS-related
Growth Hormone wasting, cachexia
Megestrol Acetate Bristol-Myers Squibb Treatment of anorexia assoc. W/AIDS
Testosterone Alza, Smith Kline AIDS-related wasting
Total Enteral Norwich Eaton Diarrhea and Nutrition Pharmaceuticals malabsorption related to AIDS
Additionally, the compounds of the invention herein may be used in combination with another class of agents for treating AIDS which are called HIV entry inhibitors. Examples of such HIV entry inhibitors are discussed in Drugs Of The Future 1999, 24(12), pp. 1355-1362; Cell, Vol. 9, pp. 243-246, Oct. 29, 1999; and Drug Discovery Today, Vol. 5, No. 5, May 2000, pp. 183-194. It will be understood that the scope of combinations of the compounds of this invention with AIDS antivirals, immunomodulators, anti-infectives, HIV entry inhibitors or vaccines is not limited to the list in the above Table, but includes in principle any combination with any pharmaceutical composition useful for the treatment of AIDS.
Preferred combinations are simultaneous or alternating treatments of with a compound of the present invention and an inhibitor of HIV protease and/or a nonnucleoside inhibitor of HIV reverse transcriptase. An optional fourth component in the combination is a nucleoside inhibitor of HIV reverse transcriptase, such as AZT, 3TC, ddC or ddl. A preferred inhibitor of HIV protease is indinavir, which is the sulfate salt of N-(2(R)-hydroxy- 1 -(S)-indanyl)-2(R)-phenylmethyl-4-(S)-hydroxy-5- (l-(4-(3-pyridyl-methyl)-2(S)-N'-(t-butylcarboxamido)-piperazinyl))-pentaneamide ethanolate, and is synthesized according to U.S. 5,413,999. Indinavir is generally administered at a dosage of 800 mg three times a day. Other preferred protease inhibitors are nelfinavir and ritonavir. Another preferred inhibitor of HIV protease is saquinavir which is administered in a dosage of 600 or 1200 mg tid. Preferred nonnucleoside inhibitors of HIV reverse transcriptase include efavirenz. The preparation of ddC, ddl and AZT are also described in EPO 0,484,071. These combinations may have unexpected effects on limiting the spread and degree of infection of HIV.
Preferred combinations include those with the following (1) indinavir with efavirenz, and, optionally, AZT and/or 3TC and/or ddl and/or ddC; (2) indinavir, and any of AZT and/or ddl and/or ddC and/or 3TC, in particular, indinavir and AZT and 3TC; (3) stavudine and 3TC and/or zidovudine; (4) zidovudine and lamivudine and 141 W94 and 1592U89; (5) zidovudine and lamivudine.
In such combinations the compound of the present invention and other active agents may be administered separately or in conjunction. In addition, the administration of one element may be prior to, concurrent to, or subsequent to the administration of other agent(s).
The preparative procedures and anti -HIV-1 activity of the novel heterocyclic amidopiperazine derivatives of Formula I are summarized below. Abbreviations
The following abbreviations, most of which are conventional abbreviations well known to those skilled in the art, are used throughout the description of the invention and the examples. Some of the abbreviations used are as follows:
h hour(s) rt room temperature mol = mole(s) mmol - millimole(s) g gram(s) mg milligram(s) mL = milliliter(s)
TFA Trifluoroacetic Acid
DCE 1 ,2-Dichloroethane
CH2C12 Dichloromethane
TPAP tetrapropylammonium perruthenate
THF Tetrahydofuran
DEPBT 3-(Diethoxyphosphoryloxy)-l,2,3-benzotriazin-4(3H) one
DMAP 4-dimethylaminopyridine
P-EDC Polymer supported l-(3-dimethylaminopropyl)-3- ethylcarbodiimide
EDC l-(3-dimethylaminopropyl)-3-ethylcarbodiimide
DMF N, N-dimethy lformamide
Hunig's Base = N N-Diisopropylethylamine mCPBA metα-Chloroperbenzoic Acid azaindole = 1 H-Pyrrolo-pyridine
PMB 4-Methoxybenzyl
DDQ 2, 3-Dichloro-5, 6-dicyano-l, 4-benzoquinone OTf Trifluoromethanesulfonoxy
NMM 4-Methylmorpholine
PIP-COPh 1 -Benzoylpiperazine
NaHMDS Sodium hexamethyldisilazide EDAC 1 -(3-Dimethylaminopropyl)-3-ethylcarbodiimide
TMS Trimethylsilyl
DCM Dichloromethane
DCC 1 ,3 -dicyclohexyl-carbodiimide
Chemistry
The present invention comprises compounds of Formula I, their pharmaceutical formulations, and their use in patients suffering from or susceptible to
HIV infection. The compounds of Formula I include pharmaceutically acceptable salts thereof. General procedures to construct compounds of Formula I and intermediates useful for their synthesis are described in the following Schemes.
Synthesis of Intermediates
It should be noted that in many cases reactions are depicted for only one position of an intermediate or compound of Formula I, such as the R6 position, for example. It is to be understood that such reactions could be used at other positions, such as R'-R4 or R7 of the various intermediates or compounds of Formula I. Reaction conditions and methods given in the specific examples are broadly applicable to compounds with other substitution and to other tranformations in this application.
Heterocyclic carboxylates of general formula QC(O)OR' or QC(O)L' (such as those of formula Ila in Scheme IA or formula II in Scheme 1, herein) or suitable surrogates may be purchased from commercial sources or synthesized. R' is usually a simple alkyl, preferably methyl or alternatively ethyl. Simple C,-C6 alkyl esters or phenyl or substituted phenyl ethers also are suitable. L1 represents a leaving group and may represent OR' herein. The heterocyclic carboxylates of formula Ila or II can be prepared by two basic strategies using numerous methods from the literature or the methods within this application. The first strategy involves the synthesis of an appropriate heterocycle containing a carboxylate ester group while the second strategy involves the synthesis of the parent heterocycle followed by installation of a carboxylate ester moiety onto the parent heterocycle. The following Schemes I-l through 1-17 represent various heterocyclic carboxylates which may serve as useful intermediates for the preparation of compounds of Formula I. The methods used to prepare compounds of Formula I from the heterocyclic carboxylates are those described for Schemes 1, IA and 2.
Schemes I-l through 1-12 depict methods and conditions for the synthesis of azaindole and indole carboxylates according to the first strategy wherein an indole or azainole containing a carboxylate moiety is synthesized. Literature references follow the depicted Schemes.
Scheme I-l
COOR'
Figure imgf000036_0001
R' is alkyl
The preparation of of azaindole and indole carboxylates may be accomplished according to procedures which are known in the art. For example, the methods described in references such as Chikvaidze, I.; Megrelishvili, N.; Samsoniya, S.A.;
Suvorov, N. N.; Khim Geterotsikl Soedin 1991, 11, 1508-1511; Murakami, Y.;
Takahashi, H.; Nakazawa, Y.; Koshimizu, M.; et al.; Tetrahedron Lett. 1989, 30,
2099; Rydon, H. N.; Siddappa, S.; J Chem. Soc. 1951, 2462; Justoni, R.; Pessina, R.; Farmaco, Ed. Sci. 1955, 10, 356; Ishii, H.; Murakami, Y.; Hosoya, K.; Takeda, H.; et al.; Chem. Pharm. Bull. 1973, 21, 1481 ; and Speicher, A.; Eicher, T.; Tevzadze, L.
M.; Khoshtariya, T. E.; J. Prakt Chem/Chem-Ztg 1997, 339(7), 669-671 may be used to prepare either indole or azaindole (wherein one of W, X, Y, or Z is NR10) carboxylates as shown in Scheme I-l, above.
Another method for the synthesis of indole-2-carboxylates or azaindole-2- carboxylates is shown below in Scheme 1-2. The preparation of the indole-2- carboxylates, wherein W, X, Y, and Z are CR2, CR3, CR4, and CR5, respectively, can be carried out according to methods as described numerous literature references. These references incude Martin, P.; Winkler, T.; Helv Chim Acta 1994, 77(1), 111- 120; Jones, G. B.; Moody, C. J.; J Chem. Soc, Perkin Trans. 1 1989, 2455; Gairns,
R. S.; Grant, R. D.; Moody, C. J.; Rees, C. W.; Tsoi, S. C; J. Chem. Soc, Perkin
Trans. 1 1986, 483; Mackenzie, A. R.; Moody, C. J.; Rees, C. W.; Tetrahedron 1986, 42, 3259; Hemetsberger, H.; Knittel, D.; Weidmann, H.; Monatsh Chem 1970,
101, 161; Kawase, M.; Sinhababu, A.K.; Borchardt, R.T.; Chem. Pharm. Bull. 1990,
38(11), 2939-2946; Watanabe, T; Takahashi, H.; Kamakura, H.; Sakaguchi, S.;
Osaki, M.; Toyama, S.; Mizuma, Y.; Ueda, I.; Murakami, Y.; Chem. Pharm. Bull.
1991, 39(12), 3145-3152; Molina, P.; Tarraga, A.; Ferao, A.; Gaspar, C; Heterocycles 1993, 35(1), 427-432; Bolton, R.E.; Moody, C.J.; Rees, C.W.; J. Chem.
Soc, Perkin Trans. 1 1989, 2136; Bolton, R.E.; Moody, C.J.; Rees, C.W.; Tojo, G. J.
Chem. Soc, Perkin Trans. 1 1987, 931; Samanta, S.S.; Ghosh, S.C.; De, A.; J. Chem.
Soc, Perkin Trans. 1 1997, 24, 3673-3677; Romero, A.G.; Leiby, J.A.; McCall, R.B.;
Piercey, M.F.; Smith, M.W.; Han, F.; J. Med. Chem. 1993, 36(15), 2066-2074; and Boger, D.L.; Coleman, R.S.; Invergo, B.J.; J. Org. Chem. 1987, 52, 1521. Similar methodology can be extended to synthesize azaindole-2-carboxylates wherein one of
W, X, Y, and Z is NR'°as described in Molina, P.; Alajarin, M.; Sanchez-Andrada,
P.; Synthesis 1993, 2, 225-228.
Scheme 1-2
Figure imgf000037_0001
Another method for preparing indole-2-carboxylates or azaindole-2- carboxylates is shown below in Scheme 1-3 wherein the nitro group is reductively cyclized with the alkenyl ester moiety shown to provide the indole-2-carboxylate carboxylates or azaindole-2-carboxylate as depicted. The preparation of the indole-2- carboxylates, wherein W, X, Y, and Z are CR3, CR4, CR5, and CR6, respectively, can be carried out according to the conditions shown and as further described in references such as Akazome, M.; Kondo, T.; Watanabe, Y.; J. Org. Chem. 1994,
59(12), 3375-3380; Kametani, T.; Nyu, K.; Yamanaka, T.; Yagi, H.; Ogasawara, K.; Tetrahedron Lett. 1969, 1027; Crotti, C; Cenini, S.; et al.; J. Chem. Soc, Chem. Commun. 1986, 10, 784; and Mali, R.S.; Yadav, V.J.; Synthesis 1984, 10, 862. The same methodology can be extended to synthesize azaindole-2-carboxylates wherein one ofW, X, Y, and Z is NR10. Scheme 1-3
Figure imgf000038_0001
PdCI2(PP 3)2/SnCl2 (cat.)
Another similar synthesis of either indole-2-carboxylates or azaindole-2- carboxylates is shown below in Scheme 1-4 and may be carried out according to methods descibed in literature references such as Yakhontov, L. N.; Azimov, V. A.; Lapan, E. I.; Tetrahedron Lett. 1969, 1909; Scott, A. I.; Townsend, C. A.; Okada, K.; Kajiwara, M.; J Am. Chem. Soc 1974, 96, 8054; Frydman, B.; Baldain, G.; Repetto, J.C; J. Org. Chem. 1973, 38, 1824 and Fisher, M. H.; Matzuk, A. R.; J. Heterocycl. Chem. 1969, 6, 775.
Scheme 1-4
Figure imgf000038_0002
Scheme 1-5
Figure imgf000038_0003
R = H, OR
Scheme 1-5, above, depicts the formation of indole-2-carboxylates where W,
X, Y, and Z are CR3, CR4, CR5, and CR6, respectively, and which may be accomplished by the base induced cyclization of an ester intermediate according to methods such as those described in Boes, M.; Jenck, F.; Martin, J.R.; Moreau, J.L.; Mutel, V.; Sleight, A.J.; Widmer, U.; Eur. J. Med. Chem. 1997, 32(3), 253-261; Robertson, A.; J. Chem. Soc. 1927, 1937. The corresponding azaindole-2- carboxylates may be prepared according to the methods described in Willette, R. E.; Adv. Heterocycl. Chem. 1968, 9, 27.
The preparation of indole-2-carboxylates, wherein W, X, Y, and Z are CR3, CR4, CR5, and CR6, respectively, may also be accomplished by a palladium mediated cyclization reaction as shown below in Scheme 1-6 and according to methods as described in Koerber-Ple, K.; Massiot, G.; Synlett. 1994, 9, 759-760; and Chen, C; Lieberman, D.R.; Larsen, R.D.; Verhoeven, T.R.; Reider, P.J.; J. Org. Chem. 1997, 62(9), 2676-2677. The preparation of azaindole-2-carboxylates, wherein one of W, X, Y, and Z is NR10, may be accomplished according to methods such as those described by Morris, J.J.; Hughes, L.R.; Glen, A.T.; Taylor, P.J.; J. Med. Chem. 1991, 34(1), 447-455; and Kutney, J.P.; Noda, M.; Lewis, N.G.; Monteiro, B.; et al.; Heterocycles 1981, 16, 1469.
Scheme 1-6
Figure imgf000039_0001
The following schemes depict the second strategy for the preparation of heterocyclic carboxylates such as indole carboxylates or azaindole carboxylates by using methods for adding carboxy ester groups to heterocycles such as indoles or aza indoles. Starting indole inteπnediates or precursors for carbomethoxylation are known or are readily prepared according to literature procedures, such as those described in Gobble, G. W., Recent developments in indole ring synthesis- methodology and applications, Contemp. Org. Synth. 1994, 1, 145-72 and in Gobble, G.; J.Chem Soc. Perkin Trans 1, 2000, 1045-1075.
Indoles or aza indoles may be prepared via the well known Bartoli reaction in which vinyl magnesium bromide reacts with an aryl or heteroaryl nitro group, to form a five-membered nitrogen containing ring. Some references for the above transformation include: Bartoli et al. a) Tetrahedron Lett. 1989, 30, 2129 b) J. Chem.
Soc Perkin Trans. 1 1991, 2757 c) /. Chem. Soc. Perkin Trans. II 1991, 657; and d)
Synthesis (1999), 1594. Other methods for indole synthesis are described in Pindur, U.; Adam, R.; J. Heterocyclic Chem. 1988, 25, 1; or the book by Richard A. Sundberg The Chemistry of Indoles 1970 Academic Press London. Additional methods for the preparation of indole intermediates include the Leimgruber-Batcho Indole synthesis (R.D. Clark et. al. Heterocycles, 1984, 22, 195); the Fisher Indole synthesis (references: D. Hughes; Organic Preparations and Procedures 1993, 609; Guy, A. et.al Synthesis 1980, 222; or the 2,3-rearrangement protocol developed by Gassman (Gassman, P.G.; Van Bergen, T. J.; Gilbert, D.P.; Cue, B.W., Jr; J. Am. Chem. Soc 1974, 96(17), 5495-508; the annelation of pyrroles (Muratake et.al. Heterocycles 1990, 31, 683); tin mediated cyclizations (Fukuyama, T. et. al. J. Am. Chem. Soc. 1994, 116, 3127); and the Larock palladium mediated cyclization of 2- alkynyl anilines. A method for the preparation of 2-substituted indoles is described in Hamel, P.; Zajac, N.; Atkinson, J.G.; Girard, Y.; J. Org. Chem. 1994, 59(21), 6372-6377.
Indole syntheses and methdology for manipulating and preparing 3 -piperazine containing derivatives have been disclosed in two PCT patent applications (Blair, Wade S.; Deshpande, Milind; Fang, Haiquan; Lin, Pin-fang; Spicer, Timothy P.; Wallace, Owen B.; Wang, Hui; Wang, Tao; Zhang, Zhongxing; Yeung, Kap-sun. Preparation of antiviral indoleoxoacetyl piperazine derivatives. PCT Int. Appl. (2000), 165 pp. WO 0076521 Al and Wallace, Owen B.; Wang, Tao; Yeung, Kap-Sun; Pearce, Bradley C; Meanwell, Nicholas A.; Qiu, Zhilei; Fang, Haiquan; Xue, Qiufen May; Yin, Zhiwei. Composition and antiviral activity of substituted indoleoxoacetic piperazine derivatives. PCT Int. Appl. (2002), WO 0204440 Al)These published applications describe methodology for functionalizing indoles which is hereby incorporated as available and instructive to someone skilled in the art. lH-Indole-4-carboxylic acid methyl ester is commercially available and more than 900 4 carboxy esters of indoles with various substitution are found in Scifinder showing that a chemist skilled in the art would be able to prepare such derivatives with varied substitution ind order to prepare compounds of claim 1. Similarly , 1H- Indole-5-carboxylic acid methyl ester is commercially available and more than 1600 5-carboxy esters of indoles with various substitution are found in Scifinder and 1H- Indole-6-carboxylic acid methyl ester is also commercially available and more than 1000 6-carboxy esters of indoles with various substitution are found by searching the same source. lH-Indole-7-carboxylic acid methyl ester is commercially available and more than 400 7-carboxy esters of indoles with various substitution are found in Scifinder. lH-Indole-2-carboxylic acid methyl ester is commercially available and more than 8000 2-carboxy esters of indoles with various substitution are found in Scifinder. As mentioned above, azaindoles may be prepared via the Bartoli reaction in which vinyl magnesium bromide reacts with a pyridine containing a nitro group, to form the five-membered nitrogen containing ring of the azaindole. Substituted azaindoles may be prepared by methods described in the literature or may be available from commercial sources. Syntheses of aza indoles include those described in the following references (a-k below): a) Prokopov, A. A.; Yakhontov, L. N. Khim. -Farm. Zh. 1994, 28(7), 30-51; b) Lablache-Combier, A. Heteroaromatics. Photoinduced Electron Transfer 1988, Pt. C, 134-312; c) Saify, Zafar Said. Pak. J Pharmacol. 1986, 2(2), 43-6; d) Bisagni, E. Jerusalem Symp. Quantum Chem. Biochem. 1972, 4, 439-45; e) Yakhontov, L. N. Usp. Khim. 1968, 37(7), 1258-87; f) Willette, R. E. Advan. Heterocycl Chem. 1968, 9, 27-105; g) Mahadevan, I.; Rasmussen, M. Tetrahedron 1993, 49(33), 7337-52; h) Mahadevan, I.; Rasmussen, M. J. Heterocycl. Chem. 1992, 29(2), 359-67; i) Spivey, A. C; Fekner, T.; Spey, S. E.; Adams, H. J. Org. Chem. 1999, 64(26), 9430-9443; j) Spivey, A.C; Fekner, T.; Adams, H. Tetrahedron Lett. 1998, 39(48), 8919-8922; k) Advances in Heterocyclic Chemistry (Academic press) 1991, Vol. 52, pg 235-236 and references therein. Palladium catalyzed methods can be utilized for the introduction of the carboxylate moiety onto the indole or azaindole according to methods such as those described in Kondo, Y.; Yoshida, A.; Sakamoto, T.; J. Chem. Soc, Perkin Trans 1 1996, 19, 2331 -2332; [Carbon monoxide, MeOH, PdCl2, LiCl, CH3C(O)ONa trihydrate, triethylamine, R1 = (CH3)2NCH2]; Tollari, S.; et al.; J. Organomet. Chem. 1997, 527(1-2), 93; [palladium catalyst, MeOH, CO gas, 4 equivalents triethylamine, R ' = (CH3)2NCH2]; or using 1) Li2PdCl4, CH3C(O)ONa, ethanol; 2) methanol, CO, triethylamine and as depicted in Scheme 1-7.
Scheme 1-7
Figure imgf000041_0001
Azaindole syntheses and methods for preparing 3 position piperazine containing derivatives have been disclosed in a PCT patent application (Wang, Tao; Wallace, Owen B.; Zhang, Zhongxing; Meanwell, Nicholas A.; Bender, John A. Preparation of antiviral azaindole derivatives. PCT Int. Appl. (2001), WO 0162255 Al). This published application describes methodology for functionalizing azaindoles which is hereby incorporated as available and instructive to someone skilled in the art.
The synthesis of lH-Pyrrolo[2,3-b]pyridine-2-carboxylic acid, methyl ester has been described in the literature by Davies et. al. PCT Patent Application (2002), WO 0208224 A 1 and more than 34 2-carboxy esters of such azaindoles with various substitution are found in Scifinder.
The synthesis of lH-Pyrrolo[2,3-b]pyridine-4-carboxylic acid, methyl ester has been described in the literature by Allegretti et. al. Synlett (2001), (5), 609- 612.
The synthesis of lH-Pyrrolo[3,2-c]pyridine-6-carboxylic acid, ethyl ester has been described in the literature by Biere et. al. Liebigs Ann. Chem. (1987), (6), 491-4.
lH-Pyrrolo[2,3-c]pyridine-5-carboxylic acid, methyl ester has been described by Dodd et. al. in PCT patent application (1992) WO 9221680 Al and the similar esters with additional substituents have also been described in the literature and can be found with Scifinder.
The following references describe additional methodologies for converting indoles to indole carboxylate esters via formation of anions and subsequent trapping with either carbon dioxide or other ester precursors such as chloroformates or alkyl cyano formates. One such method is described in Sundberg, R.J.; Broome, R.;
Walters, C.P.; Schnur, D.; J. Heterocycl. Chem. 1981, 18, 807 and is carried out as depicted below in Scheme 1-8 for indole derivatives in which W, X, Y, and Z are CR3, CR4, CR5, and CR6, respectively. This chemistry can also be employed to prepare azaindole -2-carboxylates, wherein one of W, X, Y, and Z is NR10, according to methods described in Desarbre, E.; Coudret, S.; Meheust, C; Merour, J.-Y.; Tetrahedron 1997, 53(10), 3637-3648.
Scheme 1-8
Figure imgf000042_0001
A method for installing a carbomethoxy group using a Grignard reagent, carbon dioxide, and diazomethane is shown below in Scheme 1-9 and may be carried out according to procedures described in J Organomet. Chem. 1997, 527(1-2), 93- 102.
Scheme 1-9
Figure imgf000043_0001
A method for the introduction of a carbomethoxy group at the 2 position of a 1-methoxyindole or 1-methoxyazaindole is shown below in Scheme I- 10. The reaction may be accomplished by treating the 1-methoxyindole or 1- methoxyazaindole with a strong base, such as n-butyl lithium, in an aprotic solvent, such as tetrahydrofuran, and then reacting the anion thus generated with methyl carbonate. The conditions employed are as further described in Heterocycles 1991, 32(2), 221-227.
Scheme 1-10 w 1) BuLi, THF w r n . r r cooMa
Y^Z^ 2) Me2C03( THF **Z^
OMe 0Me The preparation of 2-carboxymethyl-3-methyl(aza)indole derivatives is depicted in the Scheme I-l 1 below and may be accomplished according to the procedure as described in Synth. Commun. 1988, 18(10), 1 151-65. Other references which utilize anion formation and trapping to generate indole and azaindole carboxylates include Kawasaki, T.; Kodama, A.; Nishida, T.; Shimizu, K.; Somei, M.; Heterocycles 1991, 32(2), 221-227; and Katritzky, A.R.; Akutagawa, K.; Jones, RA.; Synth. Commun. 1988, 18(10), 1151-65.
Scheme 1-11
Figure imgf000043_0002
Fukuda, T.; Maeda, R.; Iwao, M.; Tetrahedron 1999, 55(30), 9151-9162 describes methodology for protecting the indole or azaindole nitrogen with a directing group, functionalizing the 7-position, and then subsequently removing the protecting group from the indole or azaindole nitrogen. This method can be used to install a carboxylate ester or acid derivative at C-7 as depicted in the Scheme 1-12 below. These C-7 derivatives provide a handle which can then be converted to almost any functional group or can be reacted with an appropriate cyanomethyl piperazine derivative using methods described herein for Schemes 1, IA and 2 to provide compounds of formula I.
Scheme 1-12
protection
Figure imgf000044_0001
Figure imgf000044_0002
Schemes 1-13, and 1-14 depict the preparation of benzisoxazole or azabenzisoxazole carboxylates which can serve as useful intermediates for the synthesis of compounds of Formula I using the methods described herein for Schemes 1, IA, and 2. Scheme 1-13 depicts a general method for converting 2- hydroxybenzoic acid derivatives or the corresponding pyridine derivatives (where one of W, X, Y, and Z is N) to the corresponding benzisoxazole carboxylate. Step e of Scheme 1-13 can be carried out by treating the acid with sulfuric acid in methanol as described in Can. J. Chem. 1988, 66(6), 1405-1409 to provide the methyl glyoxylate derivative. Alternatively, Step e may be accomplished by first treating the hydroxy acid derivative with thionyl chloride, then with sodium cyanide and tetrabutylammonium bromide, and then with hydrochloric acid and water to provide the glyoxylic acid which may then be esterified under standard conditions to provide the glyoxylate derivative. Step f of Scheme 1-13 may be accomplished by treating the methyl glyoxylate derivative with hydroxylamine hydrochloride in an appropriate solvent such as ethanol. The oxime derivative thus obtained may then be converted to the corresponding (aza)benzisoxazole upon treatment with either tricloroacetylisocyanate or thionyl chloride as shown in Step g and as further described in Heterocycles 1987, 26(11), 2921. Scheme 1-13
Figure imgf000045_0001
Scheme 1-14 shows the synthesis of methyl-7-mefhoxy-4-azabenzisoxazole-
3 -carboxylate. Steps a-d of Scheme 1-14 were accomplished as described by Shimano, M. et al. in Tetrahedron 1998, 54, 12745-12774 at page 12750. Step a of Scheme 1-14 was carried out by O-alkylation of 3-hydroxypyridine with methoxymethyl chloride in tetrahydrofuran-dimethylf ormamide in the presence of potassium tertzαry-butoxide as base. The methoxymethyl ether was then brominated as shown in Step b by treatment with tert/αry-butyllifhium and 1 ,2- dibromotetrafluoroethane in diethyl ether at
-78 °C The bromide was converted to the corresponding methoxy derivative as shown in Step c by treatment with sodium methoxide in methanol. The carboxylic acid was then prepared as shown in Step d by treatment with tert/αry-butyllithium followed by dry ice (CO2) in tetrahydrofuran at -78 °C and then quenching the reaction with aqueous hydrochloric acid. Steps e, f, and g were then carried out according to the same methods described for Steps e, f, and g of Scheme 1-13.
Scheme 1-14
Figure imgf000046_0001
Alternative reaction schemes which may be used to prepare benzisoxazole intermediates useful for the preparation of compounds of Formula I are shown in Scheme 1-14-2. The 3-hydroxypyridine may be iodinated in step a according to the method described in J Med. Chem. 1974, 17, 1065. The iodo derivative may then be converted to the cyano derivative as shown in step b according to the method described in Heterocycles 1987, 26(11), 2921 followed by conversion to the acetyl derivative as depicted in step c according to the method described in Chem. Pharm. Bull. 1977, 25, 1150. The acetyl derivative may then be converted to the corresponding methyl oxalate derivative upon treatment with selenium dioxide and pyridine followed by treatment with diazomethane according to the method described in Tetrahedron Lett. 1994, 35(48), 8955-6. Steps f and g of Scheme I- 14-2 can then be carried out as described previously for Scheme 1-14.
Scheme 1-14-2
Figure imgf000047_0001
Scheme 1-14-3 depicts an alternative method which may be used to prepare azabenzisoxazole derivatives such as 7-methoxy-4-azabenzisoxazole. 3-hydroxy-4- methoxypyridine is iodinated as shown in step a according to the procedure described in J Med. Chem. 1974, 17, 1065. The methyl oxalate side chain may then be introduced using the palladium catalyzed method as described in J Mol. Catal 1986, 34(3), 317-319 as shown in step b. The methyl oxalate can then be reacted with hydroxyl amine and subsequently cyclized as depicted and previously described for steps f and g in Schemes 1-14 and 1-14-2.
Scheme 1-14-3
Figure imgf000047_0002
Heterocyclic carboxylates may also be prepared from a heterocycle which contains an exocyclic methyl group as shown in Scheme 1-15. Step a of Scheme 1-15 depicts the bromination of the exocyclic methyl group which may be carried out according to the method as described in J Med. Chem. 1997, 40, 2706-2725 by heating a mixture of the compound of formula QCH3 with N-bromosuccinimide and benzoyl peroxide in a suitable solvent such as carbon tetrachloride. The bromomethyl heterocycle of formula QCH2Br can then be converted to the hydroxymethyl heterocycle of formula QCH2OH by treatment with potassium superoxide as shown in Step b. The heterocyclic carboxylate of formula QCO2CH3 can then be prepared from the hydroxymethyl derivative by Swern oxidation of the hydroxymethyl derivative followed by treatment with silver nitrate in methanol and then treatment with diazomethane in a mixture of diethylether and tetrahydrofuran as depicted in Step c of Scheme 1-15. Alternatively, the bromomethyl heterocycle can be converted directly to the heterocyclic carboxylate as shown in Step d of Scheme I- 15 by treatment with 1.2 equivalents of pyridine N-oxide followed by treatment with silver nitrate in methanol and then treatment with diazomethane in a mixture of diethylether and tetrahydrofuran.
Scheme 1-15
Figure imgf000048_0001
Scheme 1-16 depicts the preparation of methyl (aza)benzisoxazole-3- carboxylates which were prepared according to the methods as previously described for the corresponding Steps a-d of Scheme 1-15. The heterocyclic carboxylates prepared by the methodology described in Schemes 1-15 and 1-16 may then be used to prepare compounds of Formula I according to the methods as described herein in Schemes 1, IA, and 2.
Scheme 1-16
Figure imgf000048_0002
Scheme 1-16-2 depicts the preparation of a 3-methyl-4-azabenzisoxazole derivative which may be used as starting material for Scheme 1-16. Steps a, b, and c of equation 1 may be carried out as previously described for Scheme 1-14-2. The acetyl derivative may then be treated with hydroxylamine to provide the oxime as depicted in step d and then cyclized as depicted in step e (as described for steps f and g of Scheme 1-14, respectively) to provide the 3-methyl-4-azabenzisoxazole shown. In equation 2 of Scheme 1-16-2 the 3-hydroxy-4-mefhoxypyridine is first acetylated (step a) then is treated with hydroxylamine and cyclized as previously described to provide 3-methyl-7-methoxy-4-azabenzisoxazole.
Scheme 1-16-2
Figure imgf000049_0001
Scheme 1-17 depicts the preparation of methyl 4-methoxybenzofuran-3- carboxylate which can then be used to prepare compounds of Formula I using the methods described for Schemes 1, IA, and 2. 1,3-Cyclohexanedione is treated with aqueous potassium hydroxide, followed by bromopyruvic acid in methanol and then with hydrochloric acid to provide the furan carboxylic acid derivative shown. The furan carboxylic acid derivative is then treated with 10% palladium on carbon and 1- dodecene in refluxing decalin to provide 3-carboxy-4-hydroxybenzofuran. The 3- carboxy-4-hydroxybenzofuran may then be converted to the corresponding methoxy methyl ester derivative by treatment with methyl iodide and potassium carbonate in dimethylsulfoxide at approximately 60 °C. Alternatively, the same transformation may be carried out by treatment with diazomethane in tetrahydrofuran/diethyl ether at room temperature. The benzofuran derivative can then be used to prepare compounds of Formula I according to the methods described hereinafter for Schemes 1, IA and 2. Scheme 1-17
Figure imgf000050_0001
MeOH 3) HCl, 95 °C
Figure imgf000050_0002
Scheme 1-18 shows the preparation of glyoxylic acid intermediates which can serve as useful intermediates for the preparation of compounds of Formula I. . The methyl group of methyl containing heterocycle of formula QCH3 may be converted to the bromide with N-bromosuccinimide as shown in step b. Suitable conditions for the bromination include those as described inJ Med. Chem. 1997, 40, 2706-2725 and carried out by heating a mixture of QCH3 with N-bromosuccinimide and benzoyl peroxide in carbon tetrachloride. Bromide displacement with cyanide, as shown in step c, can be carried out by heating a mixture of the bromide with either copper cyanide or potassium cyanide in either dimethylformamide or aqueous ethanol to provide the nitrile. Hydrolysis of the nitrile followed by esterification, as shown in step d, provides the methyl ester. Acidic or basic hydrolysis of the nitrile may be employed. Esterification of the resulting acid may be carried out under standard conditions or using a reagent such as diazomethane. Oxidation of the methyl ester to the oxalate can then be carried out as depicted in step e. The oxidation can be carried out in one step with selenium dioxide to provide the oxalate. Alternatively, the methyl ester can be treated with a strong base such as lithium bistrimethylsilyl amide in tetrahydrofuran at reduced temperature followed by camphorsulfonyl oxaziridine to provide the corresponding α-hydroxy ester which may be oxidized with the Dess- Martin reagent in order to obtain the oxalate. The oxalate may then be hydrolyzed under standard conditions as depicted by step f to provide the oxalic acid derivative. The oxalic acid derivative may then be coupled to an appropriate piperazine derivative to provide a compound of Formula I. It is to be understood that the methyl acetate derivative of formula QCH2CO2CH3 prepared from step d may also be hydrolyzed to provide the acetic acid derivative of formula QCH2CO2H which may then also be coupled to an appropriate piperazine derivative to provide a compound of Formula I.
Scheme 1-18
Figure imgf000051_0001
Figure imgf000051_0002
Scheme 1-19 depicts the preparation of isothiazolobenzene or isothiazolopyridine glyoxylic acid derivatives which may be employed to prepare compounds of formula I. 3 -methyl isothiazolopyridines can be prepared as depicted in step a by using methodology as described in Taurins, A.; Khouw, V. T. Can. J. Chem. 1973, 57( ^), 1741-1748. For example Isothiazolo [3, 4-b]pyridine was synthesized from 2-aminonicotinonitrile in three steps: by the reaction with NH3 and H2S to produce 2-aminothionicotinamide; oxidative cyclization with H2O2 to give 3- amino-isofhiazolo[3,4-b]pyridine, followed by diazotization and reduction with hypophosphorous acid. 3-Aminoisothiazolo[4,3-b]pyridine was prepared in a similar way from 3-aminopicolinonitrile via 3-aminothiopicolinamide. Isothiazolo[5,4- bjpyridine was synthesized from 2-chloronicotinonitrile in three steps: reduction with HCO2H in the presence of Raney Nickel to obtain 2-chloronicotinaldehyde; transformation of the latter into 2-thiocyanonicotinaldehyde; and cyclization with NH3 to obtain isothiazolo [5 ,4-b]pyridine. 3-Methylizothiazolo[5,4-c]pyridine was prepared by cyclization of 4-acetyl-3-thiocyanopyridine with NH3. Alternatively, the 3-methylisothiazolopyridines may be prepared as described in Chimichi, S.; Giomi, D.; Tedeschi, P. Synth. Commun. 1993, 23(1), 73-78 in a single step procedure by treating a cyanomercaptopyridine with methyllithium in an appropriate solvent such as tetrahydrofuran to provide the 3-methylisothiazolopyridine derivative. As described previously for Scheme 1-18 the methyl group may be converted to the bromide with N-bromosuccinimide as shown in step b. Bromide displacement with cyanide, as shown in step c, followed by hydrolysis and esterification, as shown in step d, provides the methyl ester. Oxidation of the methyl ester to the oxalate can then be carried out as depicted in step e. The oxidation can be carried out in one step with selenium dioxide to provide the oxalate. Alternatively, the methyl ester can be treated with a strong base such as lithium bistrimethylsilyl amide in tetrahydrofuran at reduced temperature followed by camphorsulfonyl oxaziridine to provide the corresponding α-hydroxy ester which may be oxidized with the Dess-Martin reagent in order to obtain the oxalate. The oxalate may then be hydrolyzed under standard conditions as depicted by step f to provide the oxalic acid derivative. The oxalic acid derivative may then be coupled to an appropriate piperazine derivative to provide a compound of Formula I.
Scheme 1-19
Figure imgf000052_0001
Scheme 1-20 provides another example of the preparation of a glyoxylic acid intermediates suitable for the preparation of a compound of Formula I. The methods employed are the same as previously described for the corresponding steps in Schemes 1-18 and 1-19. R represents a lower alkyl group, preferably methyl or ethyl. The hydroxylation of the ester, as shown in step d, may be carried out using lithium bistrimethylsilylamide and 10-camphorsulfonyl oxaziridine or alternatively by treatment with bromine followed by potassium acetate and 18-crown-6 in acetonitrile followed by column chromatography purification on silica and finally treatment with 5% sodium carbonate, methanol at approximately 65 °C. The α-hydroxy ester may then be oxidized as depicted in step e with the Dess-Martin reagent or with pyridinium dichromate or chromium trioxide pyridine complex to provide the glyoxylate which can then be hydrolyzed under standard conditions as shown in step f to provide the glyoxylic acid derivative. Scheme 1-20
Figure imgf000053_0001
Scheme 1-21 depicts an alternative preparation of glyoxylic acid derivatives useful as intermediates for the preparation of compounds of Formula I. Step a of Scheme 1-21 (eq. 1) shows the introduction of the glyoxylate sidechain (where R is methyl or ethyl) onto the heterocycle of formula Q-H. Step a can be carried out by treating the heterocycle with either methyl oxalyl chloride or ethyl oxalyl chloride in an appropriate solvent such as dichloromethane or diethyl ether in the presence of a Lewis acid catalyst such as aluminum trichloride to provide the glyoxylate,
QC(O)CO2R. The glyoxylate ester can then be hydrolyzed as depicted in steb b by treating the glyoxylate with aqueous base, such as sodium hydroxide or potassium hydroxide, in a suitable solvent such as ethanol or methanol, followed by acidification to provide the glyoxylic acid derivative, QC(O)CO2H. 37 The usual conditions employ methanolic or ethanolic sodium hydroxide followed by acidification with aqueous hydrochloric acid of varying molarity but 1M HCl is preferred. Lithium hydroxide or potassium hydroxide could also be employed and varying amounts of water could be added to the alcohols. Propanols or butanols could also be used as solvents. Elevated temperatures up to the boiling points of the solvents may be utilized if ambient temperatures do not suffice. Alternatively, the hydrolysis may be carried out in a non polar solvent such as CH2C12 or THF in the presence of Triton B. Temperatures of -70 °C to the boiling point of the solvent may be employed but -10 °C is preferred. Other conditions for ester hydrolysis are listed in: Protective groups in organic synthesis 3rd ed. / Theodora W. Greene and Peter G.M. Wuts. New York : Wiley, 1999 and both this reference and many of the conditions for ester hydrolysis are well known to chemists of average skill in the art. Equation 2 of Scheme 1-21 depicts the glyoxylation at the 3 -position of the heterocycle and is carried out according to the methods described for equation 1. The glyoxylic acid derivatives may then be coupled with appropriately substituted piperazine derivatives of formula H-TC(O)A to provide compounds of Formula I.
Scheme 1-21
Figure imgf000054_0001
Scheme 1-22 shows the preparation of glyoxylic acid chloride derivatives which are also useful intermediates for the preparation of compounds of Formula I. The glyoxylic acid chloride derivative of formula QC(O)C(O)Cl can be prepared by treating an appropriate heterocycle of formula Q-H with oxalyl chloride in an appropriate solvent such as diethyl ether in the presence of an appropriate Lewis acid catalyst such as aluminum trichloride. Equation 2 depicts the introduction of the glyoxylic acid chloride side chain at the 3 -position of the heterocycle using the method described for equation 1. The glyoxylic acid chloride derivatives can then be reacted with an appropriately substituted piperazine derivative of formula H-TC(O)A in an appropriate solvent such as tetrahydrofuran or acetonitrile in the presence of a suitable base such as diisopropylethylamine or pyridine to provide compounds of formula I. Additional methodology for attaching the -C(O)C(O)TC(O)A moiety to an appropriate heterocycle is described in WO-0076521 published by the World Patent Office on 12/21/00.
Scheme 1-22
Figure imgf000054_0002
The following heterocycles, which exemplify compounds which may serve as useful intermediates for the preparation of compounds within the scope of Formula I. These compounds may be converted to compounds within the scope of Formula I using the methods described herein or known in the art.
Figure imgf000055_0001
Compounds with oxygenated functionality at position 4 and an aldehyde handle at position 7 of a benzofuran, such as the benzofuran derivative shown above, have been prepared as shown by L. Rene et. al. in Bull. Chim. Fr. 1975, (11-12 Pt.2), 2763-6. The phenolic hydroxy can be converted to a methyl ether with diazomethane or iodomethane and KOH in DMSO. The aldehyde at position 7 can be transformed to numerous other functionalities. The compounds may then be converted to compounds of Formula I by methods described herein.
Figure imgf000055_0002
7-chloro-6-azaindole can be prepared as described in Eur. Pat. Application EP 737685 published in 1996 by Viaud and coworkers. A preparation is also described in S. Shiotani and H. Morita J Heterocyclic Chem. 1982, 19, 1207. It can be converted to compounds of Formula I using the chemistry in Sheme 4C. The chloro group can be substituted to install alkoxy groups, heterocycles, cyano, amido, or aryl groups using methodology described below.
Figure imgf000055_0003
The 6-azabenzisoxazole shown above can be prepared as described in Heterocycles, 1982, 19 (8), 1511-15 by A. Comparini and coworkers. It can be converted to compounds of this invention using the chemistry as described in Schemes 4, 4A, and 4B. The preparation of the 6-azabenzisothiazole shown above has also been described in the literature. The related 6-azabenzisoxazole or 6- azabenzisothiazole derivatives which contain a chloro group in the six membered ring can be substituted to install alkoxy groups, heterocycles, cyano, amido, or aryl groups using methodology described below.
Figure imgf000056_0001
The three oxalic acid derivativess shown above or their corresponding acid chlorides have been described in the literature and methods for coupling to amines has been described by Da Settimo, F. et. al. in Eur J. Med. Chem. 1996, 31, 951- 956. Methods for preparing these compounds are referenced in this paper and thus could be applied to more substituted benzothiophenes or benzofurans. These benzofuran or benzothiophene derivatives may then be coupled with an appropriately substituted piperazine derivative according to the conditions described herein for Scheme 3 to provide compounds within Formula I.
Indazoles may be prepared from indoles or azaindoles in a single step as described in Han-Cheng Zhang, J. Med. Chem. 2001, 44, 1021-1024. The resulting aldehyde may be oxidized with PCC, silver carbonate, buffered NaClO2, CrO3 in sulfuric acid, or Jones reagent. The acid may be esterified with diazomethane or MeOH, HCl to provide an ester. The esters can be converted to the compounds of this invention using the alpha cyano piperazine methodology described elsewhere in the patent. Alternatively, the acid may be decarboxylated and the indazole analogs converted to the desired dicarbonyl derivatives as described elsewhere in this patent application for indazoles.
Figure imgf000056_0002
The synthesis of lH-Indazole-6-carboxylic acid, methyl ester ester has been described in the literature in seven different references and one example is Batt et. al. J. Med. Chem. (2000), 43(1), 41-58. The synthesis of lH-Indazole-4-carboxylic acid, methyl ester has been described in the literature in three different references and one example is Batt et. al. J. Med. Chem. (2000), 43(1), 41-58.
The synthesis of lH-Indazole-5-carboxylic acid, ethyl ester has been described in the literature in four different references and one example is Batt et. al. J. Med. Chem. (2000), 43(1), 41-58.
lH-Indazole-3 -carboxylic acid, ethyl ester is commercially available. Similar esters with additional substitution are described in the literature.
Preparation of Compounds of Formula I
Scheme 1 depicts a general method suitable for the synthesis of many of the compounds of formula I. As shown in Scheme 1 , a suitable protected piperazine derivative, PG-TH, of Formula VI, (wherein PG is an appropriate amine protecting group) is acylated with an appropriate acylating agent, AC(O)L, (wherein L is a suitable leaving group) to provide the protected acylated piperazine derivative of Formula V. Compound V is then deprotected using standard methods to provide the acylated piperazine derivative of Formula IV. For example, when PG represents tert/αry-butoxycarbonyl the compound of Formula V can be deprotected to provide a compound of Formula IV by treatment with a strong acid, such as trifluoroacetic acid or hydrochloric acid, in an appropriate solvent such as dichloromethane. Alternatively, when PG represents benzyl the deprotection may be effected by hydrogenation. The acylpiperazine derivative of Formula IV is then alkylated with 2- chloroacetonitrile in the presence of an appropriate base, such as triethylamine, 4- methylmorpholine or diisopropylethyl amine in an appropriate solvent, such as THF, to provide the cyanomethyl acylpiperazine derivative of Formula III. Reaction of a heterocyclic derivative of formula II (wherein L1 is an appropriate leaving group, such as OCH3) with an anion of the cyanomethyl acylpiperizine of Formula III, provides cyanomethyl amide derivative of Formula la. Oxidation of the cyanomethyl amide derivative of Formula la to a ketoamide derivative of Formula lb is carried out preferentially using a peracid such as meta-chloroperoxybenzoic acid (mCPBA). The cheap and simple oxidant sodium hypochlorite solution (common bleach) is also useful.
Other peracids could also be utilized for the oxidation of a compound of Formula la to a compound of Formula lb, including peroxy acetic acid generated in situ. Other methods for oxidation are shown in Table A which describes a one pot condensation /oxidation process which is usually preferred:
Table A. Oxidation Conditions
O cAθ'
Figure imgf000058_0001
oxldant THF
Figure imgf000058_0002
Oxidation Conditions
mCPBA (1 eq.)
mCPBA (1.5 eq.)
mCPBA (2 eq.)
Oxone (2 eq.,with H2O)
H2O2 (2eq., 30% in H2O)
H2O2-Urea (2eq.)
AcOOH (2 eq., 32% in AcOH)
Clorox
(2 eq., 5.25%
NaOCl)
Compounds of Formula II can be esters, preferably methyl esters, however other simple alkyl esters or activated acid derivatives such as acid chlorides, acid anhydrides, or Weinreb amides could also find utility in preparing compounds as shown.
Scheme 1
A General method for the Synthesis of Compounds of Formula I O
A AA L T A deprotect τ A
PG^H " G^ γ H γ v, v ° ι 0 0 0 base
+ T ^A c ^CN solvent NC^
IV III
Figure imgf000060_0001
II la lb
A general literature reference for some of the chemistry depicted in Scheme 1 is Takahashi, K.; Shibasaki, K.; Ogura, K.; Iida, H.; Chem Lett. 1983, 859.
Schemes 1 through 9 describe general reaction schemes for preparing various compounds of Formula I. While these schemes are very general, other permutations such as carrying a precursor or precursors to substituents R1 through R7 through the reaction scheme and then converting it to a compound of Formula I in the last step are also contemplated methods of this invention. Nonlimiting examples of such strategies follow in subsequent schemes. Scheme 1 A depicts a general method suitable for the synthesis of many of the compounds of Formula I using the methodology described for Scheme 1. As shown in Scheme 1 , a piperazine derivative of formula IV may be alkylated with chloroacetonitrile in the presence of a suitable base, such as triethylamine, in an appropriate aprotic solvent, such as tetrahydrofuran, to provide a cyanomethylpiperazine derivative of formula III. Other tertiary amine bases such as 4-methylmorpholine may also be used in this step.
Reaction of a suitable heterocyclic carboxylate ester of formula II with an anion of a cyanomethyl piperazine derivative provides cyanomethyl esters of formula la. The anion of the cyanomethyl piperazine derivative can be generated by treating a solution of the cyanomethyl piperazine derivative with an appropriate base, such as sodium hexamethyldisilazide (NaHMDS). The esters of formula II are preferably methyl esters but other simple alkyl esters or activated acid derivatives such as acid chlorides, acid anhydrides, or Weinreb amides could also find utility. Oxidation of the alpha cyano ketone of Formula la to a ketoamide of Formula lb is carried out preferentially using a peracid oxidant such as meta-chloroperoxybenzoic acid. Other peracids may be useful for the oxidation of la to lb, including peroxy acetic acid generated in situ. A general literature reference for some of the chemistry depicted in Scheme 1 is Takahashi, K.; Shibasaki, K.; Ogura, K.; Iida, H.; Chem Lett. 1983, 859. Scheme IA A General method for the Synthesis of Compounds of Formula I
Figure imgf000061_0001
Scheme 2 more specific synthesis of compounds of Formula I
Figure imgf000061_0002
Scheme 2 provides a further example of the synthesis of compounds of Formula I according to the route previously described in Schemes 1 and 1 A. The benzoylpiperazine derivative of Formula IVa is first alkylated with 2- chloroacetonitrile in tetrahydrofuran in the presence of triethylamine to provide the cyanomethyl derivative of Formula Ilia. The anion of the cyanomethyl derivative is then generated by treating the intermediate of Formula Ilia with sodium hexamethyldisilazide (NaHMDS) in an aprotic solvent such as tetrahydrofuran. The anion thus generated is then reacted with the heterocyclic carboxylate intermediate of Formula Ila to provide the (2-oxo-l-cyanoethyl) benzoylpiperazine derivative of Formula Ic. The compound of Formula Ic may then be oxidized using an appropriate oxidant, such as 3-chloroperoxybenzoic acid (mCPBA) to provide compounds of Formula Id.
Alternatively, as shown in Scheme 3 below, compounds of formula lb can be prepared by reaction of a heterocyclic glyoxylic acid derivative of Formula VII (QC(O)CO2H), with a piperazine derivative of Formula IV (HTC(O)A), under standard peptide coupling conditions to provide compounds of Formula lb. Standard peptide coupling refers to coupling an amine with a carboxylic acid in the presence of an amine acid coupling reagent such as DCC, PyBop, EDC, or DEPBT. The preparation of DEPBT is described by Li, H.; Jiang, X.; Ye, Y.-H.; Fan, C; Romoff, T.; and Goodman, M. in Organic Lett., 1999, 1, 91-93. The group T as referred to herein is either
Figure imgf000062_0001
One preferred method for carrying out this reaction is to use the reagent 3-
(diethoxyphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one (DEPBT) and an amine HTC(O)A in DMF as solvent containing a tertiary amine such as diisopropylethylamine. Another preferred method is to use the reagent l-(3- Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride in an appropriate solvent and in the presence of diisopropylethylamine. Typical stoichiometries are given in the specific examples but these ratios may be modified. The amide bond construction reactions depicted in Scheme 3 could be carried out using the specialized conditions described herein or alternatively by applying the conditions or coupling reagents for amide bond construction described in the literature. Some specific non-limiting examples are given in this application.
Scheme 3
Glyoxylic acid method for preparation of compounds of Formula lb
Q
Figure imgf000062_0002
Another method for the synthesis of compounds of Formula lb is shown in Scheme 4, below. The hydrolysis of the heterocyclic oxoacetic acid ester intermediate of Formula VIII, to form the heterocyclic oxoacetic acid of Formula VII, is shown in Step 1 of Scheme 4. The usual conditions employ methanolic or ethanolic sodium hydroxide followed by acidification with aqueous hydrochloric acid of varying molarity but 1M HCl is preferred. Lithium hydroxide or potassium hydroxide could also be employed and varying amounts of water could be added to the alcohols. Propanols or butanols could also be used as solvents. Elevated temperatures up to the boiling points of the solvents may be utilized if ambient temperatures do not suffice. Alternatively, the hydrolysis may be carried out in a non polar solvent such as CH2C12 or THF in the presence of Triton B. Temperatures of-
70 °C to the boiling point of the solvent may be employed but -10 °C is preferred. Other conditions for ester hydrolysis are well known to chemists of average skill in the art. It is to be understood that these hydrolysis conditions are applicable to other regioisomeric heterocyclic oxoacetic acid esters. The glyoxylic acid derivative of Formula VII may then be converted to a compound of Formula lb directly as described in Scheme 3, above. Alternatively, as Step 2 of Scheme 4 depicts, the glyoxylic acid derivative of Formula VII can be converted to the corresponding glyoxylic acid chloride of Formula IX. This transformation can be carried out using thionyl chloride, reaction with oxalyl chloride, or other methods well known in the art. Alternatively, the intermediates of Formula IX can also be obtained as described previously for Scheme 1-22. Coupling of the piperazine derivative, H-T-C(O)A to the intermediate glyoxylic acid chloride of Formula IX, may be carried out in a basic solvent such as pyridine or triethylamine, or in an inert solvent in the presence of pyridine as base or other tertiary amine bases to provide compounds of Formula lb. Schotten-Baumann conditions could also be employed for this coupling (aqueous base).
Scheme 4
Glyoxylic acid chloride method
Figure imgf000063_0001
Scheme 4A provides a further depiction of routes used to prepare compounds of the invention. In equation 1, an appropriate heterocycle is treated with oxalyl chloride in the presence of a Lewis acid catalyst, such as aluminum trichloride, in an aprotic solvent such as diethyl ether. The intermediate heterocyclic oxalyl chloride derivative may then be coupled to the piperazine derivative of Formula HTC(O)A in the presence of a suitable base, such as diisopropylethylamine (Hunig's base) to provide compounds within Formula I. Alternatively, the heterocycle may be treated with ethyl oxalyl chloride or methyl oxalyl chloride in the presence of a Lewis acid catalyst, such as aluminum trichloride, in an appropriate aprotic solvent such as dichloromethane, to provide the corresponding heterocyclic oxalate (step a of eq. 2). The oxalate may then be hydrolyzed (step b of eq. 2) to provide the corresponding oxalic acid derivative which can then be coupled to the piperazine derivative of formula HTC(O)A using the conditions shown (step c of eq. 2) or other standard peptide coupling methods as previously described.
Scheme 4A
Figure imgf000064_0001
Figure imgf000064_0002
Scheme 4B, below, depicts the preparation of benzofuran derivatives within the scope of Formula I, using the methods described above for Schemes 4 and 4A. The starting benzofuran derivatives can be prepared according to the methods described by Hertel, L. et al. in PCT Appl. WO 0000198 (for example where R3 is F and R6 is CH3).
Scheme 4B
Figure imgf000065_0001
CIC(0)C(0)COEt (or methyl ester) b) KOH, aq EtOH or MeOH c) DEPBT, H-T-C(0)A, Hunigs Base, DMF (or DCC, DMAP, THF)
Scheme 4C, equation 1, below, depicts the preparation of an azabenzofuran derivative within the scope of Formula I according to the methods previously described for Schemes 4, 4 A and 4B. The starting 7-chloro-4-azabenzofuran was prepared as described by Shiotani, S. et al. in.J. Heterocyclic Chem. 1996, 33, 1051. The chloro group can then be converted to an aryl or heteroaryl substituent by using methods well known in the art, such as the Suzuki coupling or Stille coupling as depicted in equation 2. Typical conditions which may be used for the Suzuki or Stille type couplings are described subsequently for equations 4-6 of Scheme 6.
Scheme 4C
Figure imgf000066_0001
b) KOH, aq EtOH or MeOH c) DEPBT, H-T-C(0)A, Hunigs Base, DMF (or DCC, DMAP, THF)
Figure imgf000066_0002
palladium catalyst
An alternate method (three step procedure) for preparing compounds of Formula I is shown in Scheme 5, below. Reaction of a known or synthesized heterocyclic acetic acid derivative of Formula X with a piperazine derivative of Formula IV, under standard peptide coupling conditions will afford the desired amides of Formula le. Preferred peptide coupling conditions include the use of EDC in the presence of diisopropylethylamine. Treatment of the amide derivative, le, with a strong base, such as lithium diisopropylamide (LDA), followed by quenching with
(+,-)-Davis' reagent will afford the corresponding α-hydroxyamide derivatives of formula If. Finally, oxidation of the α-hydroxyamide of Formula If, with an oxidant, such as Dess-Martin reagent, will provide the desired α-ketoamides of formula lb.
An alternative route which may be used to obtain the α-ketoamides of
Formula lb involves the direct oxidation of the acetamide derivative of Formula le. A preferred method is to treat the acetamide derivative of Formula le with an oxidant, such as selenium dioxide (SeO2) in a polar solvent such as dioxane to provide the desired α-ketoamides of formula lb. Scheme 5
Figure imgf000067_0001
If lb
It will be appreciated by one skilled in the art that certain functional groups present on the heterocyclic moiety represented by the variable Q of a compound of Formula I or its precursor may be converted to other groups by transformations known in the art. Schemes 6-9 provide nonlimiting examples of transformations useful to provide various compounds of Formula I. In Schemes 6-9 various functional group transformations are shown for the R6 position of the heterocyclic moiety represented by Q in the general formula (with the point of attachment being at one of positions R'-R5). It is to be understood that the same functional group conversions may be applicable to any of the R'-R6 positions of the heterocyclic moiety (other than the R'-R6 position which is the point of attachment). The transformations depicted in Schemes 6-9 are applicable to both intermediates which can then be converted to compounds of Formula I and to compounds of Formula I.
Scheme 6
Conversion of halides:
Figure imgf000068_0001
cyanation
Figure imgf000068_0002
R SnBu3, Pd catalyst dioxane, 120 C
Figure imgf000068_0004
Figure imgf000068_0005
Figure imgf000068_0003
Scheme 6, above, depicts the conversion of a bromide to various other functional groups. In equation 1, treatment of the bromide with a strong base, such as H-butyl lithium, in an aprotic solvent, such as THF, followed by treatment with dimethylformamide results in the aldehyde shown.
Equation 2 of Scheme 6 depicts the conversion of the bromide to the cyano derivative. This transformation can be achieved by treating the bromide with a reagent such as sodium cyanide, copper cyanide or zinc cyanide in a solvent such as dimethylformamide . Equations 3 and 4 of Scheme 6 show a suitable bromo derivative may undergo metal mediated couplings with various stannanes or boronic acid derivatives. Conditions for the Stille-type coupling, shown in equation 3, are well known in the art and involve treatment of the bromide (or iodide or triflate) with an aryl, heteroaryl or vinyl stannane in the presence of an appropriate palladium catalyst in an appropriate solvent. Palladium catalysts used include, but are not limited to, tetrakis- triphenylphosphine palladium and palladium (II) acetate. Appropriate solvents include, but are not limited to, polar solvents such as dioxane and 1 -methyl-2- pyrrolidinone. Numerous examples of conditions for carrying out the Stille reaction may be found in references such as Farina, V.; Roth G.P.; Adv. Met. -Org. Chem. 1996, 5, 1-53; Farina, V.; Krishnamurthy, V.; Scott, W.J.; Org. React. (N.Y.) 1997, 50, 1-652; and Stille, J.K.; Angew. Chem. Int. Ed. Engl 1986, 25, 508-524.
Equation 4 of Scheme 6 depicts the Suzuki-type coupling of the bromide with an appropriate boronic acid derivative. Appropriate boronic acid derivatives include aryl and heteroaryl boronic acid derivatives. This transformation may be carried out in the presence of an appropriate palladium catalyst, such as tetrakis- triphenylphosphine palladium, and a base, such as potassium carbonate, in a solvent or solvent mixture such as dimethylformamide and water. Typical reaction conditions for carrying out the Suzuki -type reaction can be found in Miyaura, N.; Suzuki, A.; Chem. Rev. 1995, 95, 2457.
Alternative methods are available to one skilled in the art for carrying out transformations analogous to those shown in equations 3 and 4 of Scheme 6. For example, substituted azabenzoxazoles or other heterocyclic groups of general formula Q containing a chloride, bromide, iodide, triflate, or phosphonate undergo coupling reactions with a boronate (Suzuki type reactions) or a stannane to provide the corresponding substituted heterocycles. Triflates and boronates are prepared via standard literature procedures from the corresponding hydroxy bearing heterocycle. The substitututed heterocyles may undergo metal mediated coupling to provide compounds of Formula I wherein R6 is aryl, heteroaryl, or heteroahcychc for example. The bromoheterocycle intermediates, (or heterocyclic triflates or iodides) may undergo Stille-type coupling with heteroarylstannanes as shown in equation 3. Conditions for this reaction are well known in the art and the following are three example references a) Farina, V.; Roth, G.P. Recent advances in the Stille reaction; Adv. Met.-Org. Chem. 1996, 5, 1-53. b) Farina, V.; Krishnamurthy, V.; Scott, W.J. The Stille reaction ; Org. React. (N. Y.) 1997, 50, 1-652. and c) Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524. Other references for general coupling conditions are also in the reference by Richard C. Larock Comprehensive Organic Transformations 2nd Ed. 1999, John Wiley and Sons New York. All of these references provide numerous conditions at the disposal of those skilled in the art to carry out transformations such as those depicted in equation 3 and 4 of Scheme 6. It can be well recognized that a heterocyclic stannane could also be coupled to a heterocyclic or aryl halide or triflate to construct compounds of Formula I . Suzuki coupling (Norio Miyaura and Akiro Suzuki Chem Rev. 1995, 95, 2457.) between a bromo heterocycle intermediate and a suitable boronate could also be employed.
Suzuki couplings between chloroheterocycle intermediates, as depicted in equation 5 of Scheme 6, are also feasible. If standard conditions fail new specialized catalysts and conditions can be employed. Some references (and the references therein) describing catalysts which are useful for coupling with aryl and heteroaryl chlorides are : Littke, A. F.; Dai, C; Fu, G. C. J. Am. Chem. Soc. 2000, 122(17), 4020-4028; Varma, R. S.; Naicker, K. P. Tetrahedron Lett. 1999, 40(3), 439-442; Wallow, T. I.; Novak, B. M. J. Org. Chem. 1994, 59(17), 5034-7; Buchwald, S.; Old, D. W.; Wolfe, J. P.; Palucki, M.; Kamikawa, K.; Chieffi, A.; Sadighi, J. P.; Singer, R. A.; Ahman, J PCT Int. Appl. WO 0002887 2000; Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38(23), 3415; Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121(41), 9550-9561; Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38(16), 2413-2416; Bracher, F.; Hildebrand, D.; Liebigs Ann. Chem. 1992, 12, 1315-1319; and Bracher, F.; Hildebrand, D.; Liebigs Ann. Chem. 1993, 8, 837-839.
Alternatively, the boronate or stannane may be formed on the heterocyclic moiety via methods known in the art and the coupling performed in the reverse manner with aryl or heteroaryl based halogens or triflates.
Methods for direct addition of aryl or heteroaryl organometallic reagents to alpha chloro nitrogen containing heterocyles or the N-oxides of nitrogen containing heterocycles are known and applicable to the compounds described herein. Some examples are Shiotani et. al. J. Heterocyclic Chem. 1997, 34(3), 901-907; Fourmigue et.al. JOrg. Chem. 1991, 56(16), 4858-4864.
Scheme 7, below, depicts various transformations of a carboxylic acid group at the R6 position. In equation 1, the carboxylic acid group is being converted to an amide by using standard peptide coupling techniques. Standard peptide coupling refers to coupling an amine with a carboxylic acid in the presence of an amine acid coupling reagent such as DCC, PyBop, EDC, or DEPBT.
Scheme 7
Conversion of carboxylic acids:
Figure imgf000071_0001
Figure imgf000071_0002
Figure imgf000071_0003
R6 = heterocycle
Equation 2 of Scheme 7 shows the conversion of the carboxylic acid group to an acylsulfonamide group by treating the carboxylic acid with a primary sulfonamide, such as methylsulfonamide or phenylsulfonamide in the presence of a peptide coupling agent, such as EDC, and a base, such as DMAP, in an appropriate aprotic solvent, such as dichloromethane.
The carboxylic acid group can also be converted to the corresponding acid chloride by treatment with thionyl chloride (neat or in an inert solvent) or oxalyl chloride in an inert solvent such as benzene, toluene, THF or dichloromethane as shown in equation 3 of Scheme 7. The acid chloride may then be further reacted, for example with an excess of ammonia, primary amine or secondary amine in an inert solvent such as benzene, toluene, THF or dichloromethane to provide the corresponding amides. The acid chloride may also be reacted with a stoichiometric amount of amine in the presence of a base, such as triethylamine, 4- methylmorpholine, 2,6-lutidine or pyridine. Alternatively, the acid chloride may be reacted with an amine under basic conditions (usually sodium hydroxide or potassium hydroxide) in solvent mixtures containing water and possibly a miscible cosolvent such as dioxane or THF.
The carboxylic acid group can also be esterified, as shown in equation 4 of Scheme 7, using standard conditions well known in the art. For example, the acid may be converted to the methyl ester by treatment with diazomethane or trimethylsilyldiazomethane in methanol/benzene. Other standard esterification conditions, such as those described by Richard C. Larock in Comprehensive Organic Transformations 2nd Ed. 1999, John Wiley and Sons, New York or Theodora W. Greene and Peter G.M. Wuts in Protective Groups in Organic Synthesis 3rd Ed. 1999, Wiley, New York may also be used.
Equation 5 of Scheme 7 shows the acid being used as a versatile precursor for the formation of various heterocycles. The acid could be converted to hydrazonyl bromide and then a pyrazole via methods described by Shawali in J. Heterocyclic Chem. 1976, 13, 989. One method for general heterocycle synthesis would be to convert the acid to an alpha bromo ketone by conversion to the acid chloride using standard methods, reaction with diazomethane, and finally reaction with HBr. The alpha bromo ketone could be used to prepare many different compounds of Formula I as it can be converted to many heterocycles or other compounds of Formula I. Alpha amino ketones can be prepared by displacement of the bromide with amines. Alternatively, the alpha bromo ketone could be used to prepare heterocycles not available directly from the aldeheyde or acid. For example, using the conditions described by Hulton et al. in Synth. Comm. 1979, 9, 789 to react the alpha bromo ketone would provide oxazoles. Reaction of the alpha bromoketone with urea via the methods described by Pattanayak, B.K. et al. in Indian J. Chem. 1978, 16, 1030 would provide 2-amino oxazoles. The alpha bromoketone could also be used to generate furans using beta keto esters as described in Chemische Berichte 1902, 35, 1545 and Chemische Bericte 1911, 44, 493; pyrroles (from beta dicarbonyls as in Indian J. Chem. 1973, 11, 1260; thiazoles by Hantsch methods as described by Roomi et al in Can. J. Chem. 1970, 48, 1689; or isoxazoles and imidazoles as described by Sorrel, T.N. in J Org. Chem. 1994, 59, 1589. Coupling of the aforementioned acid chloride with N-methyl-Ο-methyl hydroxyl amine would provide a "Weinreb Amide" which could be used to react with alkyl lithiums or Grignard reagents to generate ketones. Reaction of the Weinreb anion with a dianion of a hydroxyl amine would generate isoxazoles as in Nitz, T. J. et al. J Org. Chem. 1994, 59, 5828-5832. Reaction with an acetylenic lithium or other carbanion would generate alkynyl indole ketones. Reaction of this alkynyl intermediate with diazomethane or other diazo compounds would give pyrazoles as in Bowden, K. et al. J. Chem. Soc. 1946, 953. Reaction with azide or hydroxyl amine would give heterocycles after elimination of water. Nitrile oxides would react with the alkynyl ketone to give isoxazoles as described in Chimichi, S. Synth. Comm. 1992, 22, 2909. Reaction of the initial acid to provide an acid chloride using for example oxalyl chloride or thionyl chloride or triphenyl phosphine/ carbon tetrachloride provides a useful intermediate as noted above. Reaction of the acid chloride with an alpha ester substituted isocyanide and base would give 2-substituted oxazoles as described by Scholkopf et al. in Angew. Int. Ed. Engl. 1971, 10(5), 333. These could be converted to amines, alcohols, or halides using standard reductions or Hoffman/Curtius type rearrangements.
Equation 1 of Scheme 8 depicts the oxidation of an heterocyclic aldehyde to the corresponding carboxylic acid. Numerous methods are suitable for the conversion of an aldehyde to an acid and many of these are well known in the art and described in standard organic chemistry texts such as Richard C. Larock in Comprehensive Organic Transformations 2nd Ed. 1999, John Wiley and Sons, New York. One preferred method is the use of silver nitrate or silver oxide in aqueous or anhydrous methanol at a temperature of about 25 °C or as high as reflux for 1 to 48 hours. Alternatively, the aldehyde could be oxidized to the acid using other standard oxidants such as KMnO4 or CrO3/H2SO4. Equation 2 of Scheme 8 depicts the reaction of the aldehyde with hydroxylamine (R=H) or a hydroxylamine derivative (R=alkyl or substituted alkyl) in a suitable solvent, such as ethanol to provide the oximes shown.
Scheme 8
Conversion of aldehydes:
Figure imgf000074_0001
Equation 3 of Scheme 8 shows the conversion of the aldehyde group to an oxazole by using TOSMIC in the presence of potassium carbonate in methanol. The aldehyde could also be reacted with a metal reagent (RM) or Grignard reagent (RMgX, X=halide) to generate secondary alcohols which could then be oxidized to the corresponding ketones as shown in equation 4 of Scheme 8. Suitable Grignard reagents would include reagents wherein R is alkyl, aryl or heteroaryl. The oxidation of the secondary alcohols to the corresponding ketones, shown as the second step in equation 4, may be accomplished using oxidants such as TPAP, MnO2 or PCC.
Scheme 9
Conversion of nitriles:
Figure imgf000075_0001
Equation 1 of Scheme 9 depicts the hydrolysis of a nitrile group to the corresponding carboxylic acid. Suitable conditions for carrying out this hydrolysis employ heating the nitrile at reflux with potassium hydroxide in a mixture of water and ethanol for 1 to 100 hours to provide the acid.
Equation 2 of Scheme 9 depicts the conversion of the nitrile to a tetrazole by reacting the nitrile with ammonium chloride and sodium azide in DMF. The tetrazole can then be alkylated by treatment with an electrophile, such as an alkyl halide in the presence of potassium carbonate or alternatively by treatment with a reagent such as trimethylsilyldiazomethane in methanol/benzene.
Scheme 9, equation 3 shows the preparation of an oxadiazole from the nitrile by the addition of hydroxylamine followed by ring closure upon treatment with phosgene. The oxadiazole may then be methylated using trimethylsilyldiazomethane (TMSCHN2) in a mixture of methanol and benzene.
Scheme 10
Figure imgf000076_0001
reflux
Scheme 10 describes a method by which compounds of formula I can be prepared in which m is 0, n is 1 , p is 1 , and R8 = R8 = hydrogen. Reaction of the keto amide compound with a suitable hydrazide such as p-toluenesulfonyl hydrazide in glacial acetic acid provides the desired hydrazide amide. Frequently heating, sometimes at 90° C is needed to carry out the reaction. The hydrazide amide is then reduced with sodium borohydride in a solvent such as THF to provide the desired methylene amide. This reaction may also need to be heated to reflux for best results. The procedures in the sequence of example 10 for the reduction of the carbonyl to the methylene via the p-toluensulphonhydrazone intermediate is adapted from: Guan, X.; Borchardt, R. T. Tetrahedron Lett., 1994, 35, 19, 3013-3016. Scheme 11
Figure imgf000077_0001
Scheme 11 describes a method by which compounds of formula I can be prepared in which m is 0, n is 1, p is 1, and where one of R8 or R8 is hydroxy and the others are hydrogen. Reduction of the keto amide compound with sodium borohydride (1 to 10 equivalents may be required for best yield of reaction). An exampleof the procedure described in Example 11 above can be found in Dillard, R. D.; Bach, N. J.; Draheim, S. E.; Berry, D. R.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson, L. M.; Jones, N. D.; McKinney, E. R.; Mihelich,.E. D.; Olkowski, J. L.; Schevitz, R. W.; Smith, A. C; Snyder, D. W.; Sommers, C. D.; Wery, J.-P. J Med. Chem., 1996, 39, 5119-5136 (example 21a of the reference).
Experimental Procedures
The following examples represent typical syntheses of the compounds of Formula I as described generally above. These examples are illustrative only and are not intended to limit the invention in any way. The reagents and starting materials are readily available to one of ordinary skill in the art.
Chemistry Typical Procedures and Characterization of Selected Examples:
Unless otherwise stated, solvents and reagents were used directly as obtained from commercial sources, and reactions were performed under a nitrogen atmosphere. Flash chromatography was conducted on Silica gel 60 (0.040-0.063 particle size; EM Science supply). Η NMR spectra were recorded on Bruker DRX- 500f at 500 MHz (or Bruker DPX-300B or Varian Gemini 300 at 300 MHz as stated).
The chemical shifts were reported in ppm on the δ scale relative to δTMS = 0. The following internal references were used for the residual protons in the following solvents: CDC13H 7.26), CD3OD (δH 3.30), and DMSO- 6 (δH 2.50). Standard acronyms were employed to describe the multiplicity patterns: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), b (broad), app (apparent). The coupling constant (J) is in Hertz. All Liquid Chromatography (LC) data were recorded on a Shimadzu LC-10AS liquid chromatograph using a SPD-10AV UV-Vis detector with Mass Spectrometry (MS) data determined using a Micromass Platform for LC in electrospray mode.
LC/MS Method (i.e., compound identification)
Column A: YMC ODS-A S7 3.0x50 mm column
Column B: PHX-LUNA C18 4.6x30 mm Column
Column C: XTERRA ms Cl 8 4.6x30 mm column
Column D: YMC ODS-A C18 4.6x30 mm column
Column E: YMC ODS-A C18 4.6x33 mm column
Column F: YMC C18 S5 4.6x50 mm column
Column G: XTERRA C18 S7 3.0x50 mm column
Column H: YMC C18 S5 4.6x33 mm column
Column I: YMC ODS-A C18 S7 3.0x50 mm column
Gradient: 100% Solvent A / 0% Solvent B to 0% Solvent A / 100% Solvent B
Gradient time: 2 minutes
Hold time 1 minute
Flow rate: 5 mL/min
Detector Wavelength: 220 nm
Solvent A: 10% MeOH / 90% H,O / 0.1% Trifluoroacetic Acid Solvent B : 10% H2O / 90% MeOH / 0.1 % Trifluoroacetic Acid
Compounds purified by preparative HPLC were diluted in methanol (1.2 mL) and purified using the following methods on a Shimadzu LC-10A automated preparative HPLC system.
Preparative HPLC Method (i.e., compound purification)
Purification Method: Initial gradient (40% B, 60% A) ramp to final gradient (100% B, 0% A) over 20 minutes, hold for 3 minutes (100% B, 0% A)
Solvent A: 10% MeOH / 90% H2O / 0.1 % Trifluoroacetic Acid
Solvent B : 10% H2O / 90% MeOH / 0.1 % Trifluoroacetic Acid
Column: YMC Cl 8 S5 20x100 mm column
Detector Wavelength: 220 nm
Preparation of Intermediates
Preparation 1
Figure imgf000079_0001
To a solution of tert-butyl-1-piperazinecarboxylate (15.0 g. 80.5 mmol) and benzoic acid (8.94 g, 73.2 mmol) in CH2C12 (500 mL), was added DMAP (9.84 g, 80.5 mmol) and EDC (15.39 g, 80.5 mmol). The reaction mixture was stirred at rt for 17 h, and then washed with excess hydrochloric acid (5 x 250 mL, 1 Naq.) and water (350 mL). The organic layer was dried over MgSO4, filtered and the filtrate concentrated in vacuo to provide Preparation 1 as an off white solid (21 g, 99%). 'H
ΝMR: (300 MHz, CD3OD) δ 7.46 (m, 5H), 3.80 - 3.30 (b m, 8H), 1.47 (s, 9H); LC/MS: (ES+) m/z (M+H)+= 291, (2M+H) + = 581, HPLC R,= 1.430. Preparation 2
To Preparation 1 was charged a solution of HCl in Dioxane (80 mL, 4 M), and the mixture stirred at room temperature for 5 h. The reaction mixture was concentrated in vacuo to afford the hydrochloride salt of Preparation 2 as a white solid (100% conversion). Η NMR: (300 MHz, CD3OD) δ 7.5 (m, 5H), 4.0 - 3.7 (b, 4H), 3.7 - 3.6 (b m, 4H); LC/MS: (ES+) m/z (M+H)+= 191, (2M+H) + = 381, HPLC R, = 0.210.
Preparation 3
Figure imgf000080_0002
Prepared in the same manner as Preparations 1 and 2 starting from tert-butyl- l-(2-(R)-methylpiperazine)carboxylate (15.0 g. 80.5 mmol) and benzoic acid (8.94 g,
73.2 mmol). *H NMR: (300 MHz, CD3OD) δ 7.47 (m, 5H), 4.50 (app d, J= 10.6, IH), 3.59 (b s, IH), 3.14 - 2.57(b m, 5H), 1.15 - 0.97 (b m, 3H); LC/MS: (ES+) m/z (M+H)+= 205, (2M+H) + = 409, HPLC R, = 0.310.
Preparations 4-5
Preparations 4 and 5 were prepared according to the following general procedure and as further described below.
General Procedures:
j? EtaN, THF j?
HT^A + ci^CN NC^T^A
Typical procedure to prepare l-carbonyl-4-cyanomethylpiperazine derivatives: An excess of chloroacetonitrile (7 mL) was added to a solution of piperazine derivative of formula HTC(O)A (10.5 mmol) in THF (100 mL) and Et3N (10 mL). The reaction was stirred for 10 hours then was quenched with saturated aqueous NaHCO3 (100 mL). The aqueous phase was extracted with EtOAc (3 x 100 mL). The combined organic layer was dried over MgSO4, filtered, and the filtrate concentrated to a residue, which was used in the further reactions without any purification.
Preparation 4
Figure imgf000081_0001
An excess of chloroacetonitrile (7 mL) was added in to a solution of 1- benzoylpiperazine (2 g, 10.5 mmol) in THF (100 mL) and Et3N (10 mL). The reaction was stirred for 10 h before being quenched with saturated aqueous NaHCO3 (100 mL). The aqueous phase was extracted with EtOAc (3 x lOOmL). The combined organic layer was dried over MgSO4 and concentrated to a residue, Preparation 4, which was used in the further reactions without any purification. Characterization of Compounds which were prepared via the same method described above:
Figure imgf000081_0002
Preparation 5
Figure imgf000082_0001
An excess of chloroacetonitrile (7 mL) was added in to a solution of 1 - benzoyl-3-(R)-piperazine (2 g, 10.5 mmol) in THF (100 mL) and Et3N (10 mL). The reaction was stirred for 10 h before being quenched with saturated aqueous NaHCO3 (100 mL). The aqueous phase was extracted with EtOAc (3 x lOOmL). The combined organic layer was dried over MgSO4 and concentrated to a residue, Preparation 5, which was used in the further reactions without any purification.
Preparation 6
Figure imgf000082_0002
In a sealed tube 3 -carboxy-4-hydroxy benzofuran, prepared according to the method of Kneen, G.; Maddocks, P.J., Syn. Comm. 1986, 1635, (250 mg, 1.40 mmol), K2CO3 (500 mg, 3.62 mmol), acetone (10 mL) and iodomethane (6 mL) were combined and heated to 60 °C for 3 days. The reaction was cooled, concentrated, slurried with Et2O and filtered. The filtrate was concentrated and purified by preparative thin layer chromagraphy (SiO2, 9:1 hexanes/EtOAc (eluting twice)) to yield Preparation 6 (184 mg, 0.89 mmol, 64%) as a white solid. Η NMR: (500
MHz, CDC13) δ 8.14 (s, IH), 7.92 (dd, J= 8.2, 8.2 Hz, IH), 7.15 (d, J= 8.3 Hz, IH),
6.77 (d, J= 8.1 Hz, IH), 3.98 (s, 3H), 3.90 (s, 3H); 13C NMR: (125 MHz, CDC13) δ 163.1, 157.3, 154.5, 150.3, 126.4, 114.7, 113.9, 105.3, 104.8, 56.1, 51.8. MS: m/z (M+H)+calcd for C„H10O4: 207.06; found 207.09. HPLC retention time: 1.36 minutes (column B). Preparation of Compounds of Formula I
EXAMPLES
Examples 1-4
Examples 1 through 4 were prepared according to the following general procedure and as described for Example 1.
General procedure to prepare cyano-ketone derivatives:
° O
A .R + NC^T^ A NaHMDS II
° CN O
NaHMDS (1.75 mL, 1.0 M in THF) was added into a solution of an amido cyanomethylpiperazine derivative of formula AC(O)TCH2CN ( 0.44 mmol) and carboxylate of formula QC(O)OR (R is methyl or ethyl, 0.44 mmol) in THF. The reaction was stirred for 10 hours at room temperature then was concentrated in vacuo. The residue was purified using Shimadzu automated preparative HPLC System to give the product of general formula QC(O)CH(CN)TC(O)A.
Example 1
Figure imgf000083_0001
Preparation ofN-(benzoyl)-N'-[2-(indol-2-yl)-2-oxo-l-cyano-ethyl]-piperazine, according to the general procedure above, as follows: NaHMDS (1.75 mL, 1.0 M in THF) was added into a solution of l-benzoyl-4-cyanomethylpiperazine (100 mg, 0.44 mmol) and commercially available methyl- lH-indole-2 carboxylate (83 mg, 0.44 mmol) in THF. The reaction was stirred for 10 hours at room temperature then was concentrated in vacuo. The residue was purified using Shimadzu automated preparative HPLC System to give l-(benzoyl)-4-[2-(indol-2-yl)-2-oxo-l- cyanoethyl]piperazine. Example 2 was prepared according to the above general procedure and analogous to the preparation of Example 1 starting from methyl 6-methoxy-lH- indole-2-carboxylate and l-benzoyl-4-cyanomethyl-3-methylpiperazine. Examples 3 and 4 were prepared according to the above general procedure and analogous to the preparation of Example 1 starting from methyl 4-methoxybenzofuran-3-carboxylate, Preparation 6, and l-benzoyl-4-cyanomethylpiperazine, Preparation 4, or 1-benzoyl- 4-cyanomethyl-3-(R)-methylpiperazine, Preparation 5, respectively.
Figure imgf000084_0001
Q R11 MS (M+H)+ MS (M+H)+ HPLC HPLC
Example Ca|cd Qbserv Retention Column
Time (Min.) Used
Figure imgf000084_0002
4 (R)-Me 418.17 418.20 1.55 A
Figure imgf000084_0003
Examples 5-14
Examples 5-14 were prepared according to the following general procedure or as described for examples 5 and 6.
General Procedure to Prepare Oxoacetylpiperazine derivatives:
X R- + NC T A 1>Na MDS N
O 2) m-CPBA o II o II
General procedure to prepare oxoacetyl-piperazines: NaHMDS (1.75 mL, 1.0 M in THF) was added into a solution of an appropriate cyanomethylpiperazine derivative of formula AC(O)TCH2CN, (0.44 mmol), and an appropriate heterocyclic carboxylate of formula QCO2R', where R' is methyl or ethyl, (0.44 mmol) in an appropriate solvent such as THF. After the reaction was stirred for 10 hours at room temperature, mCPBA (200 mg, >77%) was added and the resulting mixture was stirred for another 10 hours at room temperature. Then the reaction mixture was concentrated in vacuo and the residue was purified using Shimadzu automated preparative HPLC System or by column chromatography or thin layer chromatography to provide the oxoacetylpiperazine derivative of formula QC(O)C(O)TC(O)A.
Example 5
1) NaHMDS
Figure imgf000085_0001
2) mCPBA
Figure imgf000085_0002
Typical procedure to prepare oxoacetyl-piperazines: Preparation of l-(benzoyl)-4- [(indol-2-yl)-2-oxoacetyl]piperazine: NaHMDS (1.75 mL, 1.0 M in THF) was added into a solution of l-benzoyl-4-cyanomefhylpiperazine, Preparation 4, (100 mg, 0.44 mmol) and commercially available methyl lH-indolyl-2- carboxylate (83 mg, 0.44 mmol) in THF. After the reaction was stirred for 10 hours at room temperature, mCPBA (200 mg, >77%) was added and the resulted mixture was stirred for another 10 hours at room temperature. Then the reaction mixture was concentrated in vacuo and the residue was purified using Shimadzu automated preparative HPLC System to give l-(benzoyl)-4-[(indol-2-yl)-2-oxoacetyl]piperazine (3.9 mg).
Example 6
1) NaHMDS
2) mCPBA
Figure imgf000085_0003
Figure imgf000085_0004
Preparation of l-(benzoyl)-4-[(benzofuran-3-yl)-2-oxoacetyl]piperazine Sodium hexamethyldisilazide (1.0 M in THF, 1.90 ml, 1.90 mmol) was added dropwise to a stirring solution of methyl 4-mefhoxybenzofuran-3-carboxylate, Preparation 6 (128 mg, 0.62 mmol) and l-benzoyl-4-cyanomethylpiperazine, Preparation 4 (149 mg, 0.65 mmol) in THF (10 mL) and stirred 16 hours at room temperature. A solution of m-chloroperoxybenzoic acid (-75% pure, 290 mg, 1.25 mmol) in THF (3 mL) was then added to the reaction mixture and stirring continued 30 min. The viscous solution was diluted with THF (4 mL) and CH2C12 (4 mL), stirred 30 min. and then partitioned between CH2C12 (40 mL) and saturated aqueous NaHCO3 (40 mL). The aqueous layer was further extracted with CH2C12 (2 x 30 mL) and the combined organics were washed with brine (30 mL), dried over MgSO4, filtered, and the filtrate was concentrated in vacuo. The residue was purified by preparative thin layer chromatography (SiO2, EtOAc) to provide the titled compound (24 mg, contaminated with ~20% of an unknown impurity, 0.050 mmol, 8%) as a yellow solid. 'H NMR: (500 MHz, CDC13) δ 8.34 (s, IH), 7.55-7.36 (m, 5H), 7.35 (dd, J = 8.2, 8.2 Hz, IH), 7.19 (d, J = 8.3 Hz, IH), 6.80 (d, J = 8.1 Hz, IH), 3.95 (s, 3H), 4.05-3.28 (m, 8H). MS m/z (M+H)+ calcd for C22H20N2O5: 393.14; found 393.13. HPLC retention time: 1.38 minutes (column B).
Examples 7-14
Examples 7-14 were prepared according to the general procedure described above, starting from an appropriate heterocyclic carboxylate of general formula QCO2R' and an appropriate amido cyanomethylpiperazine derivative. The compounds were characterized as described in Table 1 , below.
Table 1
Figure imgf000087_0001
Example R11 MS(M+Hr MS(M+H)+ ^te C nt.on Column Number Calcd. Observ. Time (Min.) Used
Figure imgf000087_0002
** (M + methanol + H)+ instead of (M + H)+ * (M+Na)+ instead of (M+H)+ Examples 15-19
Examples 15-19 were prepared from the corresponding glyoxylic acid and benzoyl piperazine according to the general procedure described below.
Figure imgf000088_0001
To a solution of glyoxylic acid derivative (QCOCOOH, 1 equiv.) in DMF was added 3 -(R)-methyl-l -benzoylpiperazine hydrochloride, for examples 15-17 (1.5 equiv) or 1 -benzoylpiperazine hydrochloride, for examples 18-19 (1.5 equiv), followed by EDC (1.5 equiv.) and diisopropylethylamine (3 equiv). The reaction mixture was stirred at room temperature for 16 hours and the crude product was purified by preparative HPLC. The compounds were characterized as shown in Table 2 or the following examples.
Table 2
Figure imgf000088_0002
Figure imgf000088_0003
Example 18
Figure imgf000089_0001
l-(benzoyl)-4-[(benzothiophen-3-yl)-2-oxoacetyl]piperazine: Η NMR (300
MHz, CDC13) δ 8.74 (d, IH, J = 7.8 Hz), 8.51 (s, IH), 7.90 (d, IH, J = 8.1 Hz), 7.27 (m, 7H), 3.65 (m, 8H). MS m/z: (M+H)+ calcd for C21H19N2O3S: 379.11; found 379.07. HPLC retention time: 1.64 minutes (column A).
Example 19
Figure imgf000089_0002
l-(benzoyl)-4-[(benzothiophen-2-yl)-2-oxoacetylJpiperazine: Η NMR (500 MHz, CDC13) δ 8.00 (m, 2H), 7.76 (s, IH), 7.68 (m, 7H), 4.0 (m, 8H).
Example 20
Figure imgf000089_0003
Preparation ofl-(benzoyl)- 4-[(indazol-3-yl)-2-oxoacetyl]-piperazine: To a solution of indazole (1.0 g) in THF (50 mL), 3.1 mL of methyl magnesium iodide (3.0 M in diethyl ether) was added at room temperature. The resulting mixture was stirred at room temperature for 1 hour then ZnCl2 (1.0 M in diethyl ether) was added. The reaction mixture was then stirred 1 hour, then an excess of oxalyl chloride (7.39 mL) was added slowly. The reaction mixture was stirred for 8 hours at room temperature then was concentrated in vacuo in order to remove solvent and excess oxalyl chloride and to provide a residue containing (lH-Indazol-3-yl)-2-oxo-acetyl chloride. The crude residue containing (lH-Indazol-3-yl)-2-oxo-acetyl chloride (50mg) was dissolved in dry CH3CN (7 mL), and to the resulting solution was added 3-(R)- methyl- 1-benzoyl piperazine (50 mg) and pyridine (1 mL). The reaction mixture was stirred for 1 hour at room temperature then was concentrated in vacuo. The resulting residue was purified using Shimadzu automated preparative HPLC System to give 1- (benzoyl)- 4-[(lH-indazol-3-yl)-2-oxoacetyl]piperazine (2.5 mg). Η NMR (500
MHz, MeOD) δ 8.42 (m, 2H), 7.90 (m, IH), 7.69 (m, IH), 7.46 (m, 5H), 5.00 - 3.00 (m, 8H), 1.30 (m, 3H). MS m/z: (M+H)+ calcd for C21H21N4O3: 377.16; found 377.28. HPLC retention time: 1.49 minutes (column A).
Figure imgf000090_0001
Example R11 MS (M+H)+ MS (M+H)+ HPLC HPLC Number Calcd. Observ. Retention Column
Time Used
20 (R)-Me 377.16 377.28 1.36
Figure imgf000090_0002
Example 21
Figure imgf000090_0003
Preparation ofN-(benzoyl)- N'-[(4-fluorol-indolin-3-yl)-acetylJ-piperazine: N-(benzoyl)-N'-[(4-fluoro-indol-3-yl)-2-oxoacetyl]-piperazine (500mg) was dissolved in a solution of Et3SiH (1ml) in TFA (10ml). The reaction was stirred for 10 hours. Solvents were removed under vaccum, and the residue was purified using Shimadzu automated preparative HPLC System to give N-(benzoyl)- N'-[(4-fluorol- indolin-3-yl)-acetyl]-piperazin (2.5mg).
Figure imgf000091_0001
>11 MS (M+H)+ MS (M+H)+ HPLC HPLC
Retention Column
Calcd. Observ. Time Used
Figure imgf000091_0002
Example 22
1) NaHMDS, THF
2) mCPBA
Figure imgf000091_0003
1 H-lndolθ- -carboxy lie (4-Benzoyl-piperazin-
Figure imgf000091_0004
acid methyl ester 1-yl)-acetonitrile 1 -(4-Bβnzoyl-piperazin-1 -yl)- 2-(1H-indol-4-yl)-ethane-1,2-dione
Preparation of 1 -(4-benzoyl-piperazin- 1 -yl)-2-( 1 H-indol-4-yl)-ethane- 1 ,2- dione: NaHMDS (1.3 mL of a 1.0 M in THF solution, 1.3 mmol) was added to a stirring solution of lH-indole-4-carboxylic acid methyl ester (0.048 g, 0.27 mmol) and (4-benzoyl-piperazin- l-yl)-acetonitrile (63 mmol, 0.27 mmol) in THF (3 mL) and the reaction mixture was stirred overnight. mCPBA (0.01 g of 77% max., 0.43 mmol) was added to the reaction mixture, stirred Id, and the solution was partitioned between brine (15 mL) and EtOAc (3 x 10 mL). The combined organic layers were dried (MgSO4), filtered, concentrated and purified using Shimadzu automated preparative HPLC System to give 1 -(4-benzoyl-piperazin- l-yl)-2-(lH-indol-4-yl)- ethane-l,2-dione (0.028 mg, 77 mmol, 29% ) as a yellow solid: MS m/z: (M+H)+ calcd for C21H19N3O3: 362.14; found 362.09. HPLC retention time: 1.13 minutes (column A).
Examples 23-25
The following compounds were prepared by methods described for the products and intermediates in Example 22 except that lH-indole-7-carboxylic acid methyl ester, lH-indole-5-carboxylic acid methyl ester, or lH-indole-6-carboxylic acid methyl ester were used as the starting materials. Characterization of intermediates or final products with the following substructure:
Figure imgf000092_0001
Figure imgf000092_0003
Example 26
Figure imgf000092_0002
To a mixture of 4-methoxy-7-cyanoindole Zl (603 mg, 3.50 mmol) in 1,2- dichloroethane (30 ml) at r.t. was added dropwise oxalyl chloride (3.5 ml, 40 mmol), and the resulting mixture refluxed at 100°C for 16 h (Ref. Taber, D. F.; Sethuraman M. R. J. Org. Chem. 2000, 65, 254). The excess reagent and volatile were then evaporated in vacuo and the residue further dried under high vacuum. To a mixture of the crude residue in THF (20 ml) at r.t. was added benzoylpiperazine hydrochloride (965 mg, 4.26 mmol). The mixture was stirred for about 10 min and then cooled to 0°C before adding N,N-diisopropylefhylamine (3.0 ml, 17.2 mmol). The reaction mixture was stirred at r.t. for 3 h, evaporated in vacuo and the residue obtained partitioned between IN hydrochloric acid and dichloromethane. The organic mixture was evaporated in vacuo and the residue purified by preparative TLC (5% MeOH/CH2Cl2). To the purified material (80 mg) in a reusable sealed tube at r.t. was added a solution of HCl in 1,4-dioxane (2.3 ml, 4 N), followed by ethanol (0.46 ml, 200 proof, anhydrous). The resulting reaction mixture was cooled to -5°C and then bubbled anhydrous HCl gas through for 50 min. The mixture was then warmed to r.t. and stirred overnight in the tightly closed sealed tube. The mixture was transferred to a round bottom flask and evaporated to give a crude yellowish oil. To this crude oil in ethanol (2.0 ml, 200 proof, anhydrous) was added N,N- diisopropylethylamine (77 mg, 0.6 mmol) and acetic hydrazide (69 mg, 0.93 mmol, dried under high vacuum before use). The reaction mixture was stirred at 60°C for 17 h and added acetic hydrazide (69 mg, 0.93 mmol). The mixture was then further stirred at 80 to 95°C for about 30 h and 105°C for 2 days before evaporated to give a residue, from which the product of example 26 was isolated by preparative TLC (5% MeOH/CH2Cl2). 'H ΝMR: (CDC13) D 10.55 (b s, IH), 7.80 (b s, IH), 7.41 (b s, 5H), 7.34 (b s, IH), 6.55 (b d, IH), 4.00-3.30 (b m, 8H), 3.89 (s, 3H), 2.44 (s, 3H); LC/MS: (ES+) m/z (M+H)+= 445; HPLC R, = 1.047 (HPLC conditions: Start %B = 0, Final %B = 100, Gradient time = 2 min, Flow rate = 5 ml/min, Wavelength = 220 nm, Solvent A = 10% MeOH/90%H2O/0.1 % TFA, Solvent B = 90%
MeOH/10%H2O/0.1% TFA, Column YMC ODS-A C18 S7 3.0 X 50 mm).
General procedures for preparation of Examples 27-29
Figure imgf000093_0001
Z1 Z2 Z3 Z4
Representative procedures:
To a solution of indole Zl (650 mg, 3.78 mmol) in THF (6 ml) at r.t. was added trifluoroacetic anhydride (1.8 ml, 12.7 mmol). The reaction flask was cooled in an ice-water bath and pyridine (0.35 ml, 4.33 mmol) added to the mixture, which was then stirred at r.t. for about 30 h. the reaction was quenched with water and the mixture extracted twice with ethyl acetate. The combined organic extracts were evaporated in vacuo to give a crude yellowish solid, which was titurated with MeOH and the solid filtered to obtain the trifluoromethylketone Z2.
A mixture of the trifluoromethylketone Z2 (302 mg, 1.15 mmol) in DMF (4 ml) was stirred at r.t. with the reaction flask open to air for about 10 min. The mixture was then added dropwise to a suspension of NaH (318 mg, 13.3 mmol) in DMF (4 ml), and the resulting mixture stirred at 60°C for 30 min. The reaction mixture was then cooled to 0°C and added excess of IN hydrochloric acid. The precipitates were filtered and dried to give the acid Z3, and the filtrate extracted with ether (12 times). The combined organic extracts were evaporated in vacuo and the residue washed with MeOH to give another batch of acid Z3. (Ref. Delgado, A.; Clardy, J.; Tetrahedron Lett. 1992, 33, 2789.)
Amide Z4 was prepared by coupling to the corresponding amine (1.5 equiv.) in DMF at r.t. using EDC (1.8 equiv.), DMAP (2 equiv.) and ΝMM (4.6 equiv.) (or in CH2C12 using polymer-bound cyclohexylcarbodiimide (3 equiv., Νovabiochem) and N, N-diisopropylethylamine (5 equiv.)). The reaction mixture was stirred overnight, added excess of IN hydrochloric acid and extracted with EtOAc (6 times). The combined organic extracts were back washed with IN hydrochloric acid and evaporated in vacuo to give a crude residue, which was purified by reverse phase preparative HPLC.
Other indole analogs, e.g. 4-fluoroindole and 7-bromoindole, were prepared analogously.
Figure imgf000094_0001
Figure imgf000095_0001
HPLC conditions for examples 27-29: Start %B = 0, Final %B = 100, Gradient time = 2 min, Flow rate = 5 ml/min, Wavelength = 220 nm, Solvent A = 10% MeOH/90%H2O/0.1% TFA, Solvent B = 90% MeOH/10%H2O/0.1% TFA, Column XTERRA C18 S7 3.0 X 50 mm.
Example 30
The following compound was prepared by methods described for the products and intermediates in Example 22 except that lH-indole-7-carboxylic acid methyl ester was used as the starting materials.
Characterization of intermediates or final products with the following substructure:
Figure imgf000095_0002
Figure imgf000095_0003
Example 31
Preparation of
3-[2-(4-Benzoyl-piperazin-l-yl)-2-oxo-ethyl]-4-fluoro-lH-indole-7-carboxylic acid methylamide
Step A
3-[2-(4-Benzoyl-piperazin-l-yl)-l-pαrα-toluenesulfonhydrazono-2-oxo-ethyl]-4- fluoro-lH-indole-7-carboxylic acid methylamide.
Figure imgf000096_0001
(A'") (B"
A suspension of 3-[2-(4-benzoyl-piperazin- 1 -yl)-2-oxo-acetyl]-4-fluoro- 1 H- indole-7-carboxylic acid methylamide (A'", 0.400 g 0.92 mmol) in 2,2,2- trifluoroethanol (5 mL) was treated with^-toluenesulfonhydrazide (0.256 g, 1.37 mmol) and glacial acetic acid (0.5 mL), and heated at refluxing temperature (oil bath,
90°C). The suspension became a solution upon warming. The reaction was stirred at reflux under nitrogen atmosphere for 36 hours. Solvent was removed by rotary evaporator, and the crude residue was purified by flash silica gel column chromatography, eluting with ethyl acetate :methanol (100:0 changing to 90:10). The combined mixture of syn- and αnt -addition products was dried by rotary evaporation to give the title compound (B,M) as a yellow solid (0.335 g, 0.55 mmol, Y 59.8%). 'H-NMR (500 MHz, d-6 DMSO): 12.02 and 11.85 (s, IH); 11.01 and 10.89 (s, IH) 8.60 (br, IH, CONH); 7.8-7.4 (m, 10H, aromatic); 7.14 (br s, IH, C2-H); 6.93 (m, IH, C5-H); 3.9-3.4 (2 x br, 8H, piperazine); 3.17 (s, 3H, CT Ph); 2.85 and 2.83 (d, 3H, CH3). LRMS (ES+) m/z [M+H]+ = 605.2, (ES-) m/z [M-H]" = 603.3. 3-[2-(4-Benzoyl-piperazin-l-yl)-2-oxo-ethyl]-4-fluoro-lH-indole-7-carboxylic acid methylamide (Example 31).
Figure imgf000097_0001
(Example 31)
Figure imgf000097_0002
A suspension of B"' (0.270 g, 0.45 mmol) in anhydrous tetrahydrofuran (12 mL) under nitrogen atmosphere was treated with sodium borohydride (1.678 g, 9.0 mmol) and the suspension was warmed to refluxing temperature (oil bath, 90°C). At the elevated temperature the reaction mixture was treated with a minimum amount of 0 anhydrous methanol (dropwise addition until dissolution occurred), and the reaction was stirred at reflux overnight. After cooling, glacial acetic acid (3 mL) was added and the whole reaction mixture was passed quickly through a short path silica gel column, eluting with dichloromethane followed by 1 :10 methanol: dichloromethane. The fractions containing product were dried in vacuo and the residue was purified by 5 flash silica gel column chromatography eluting with dichloromethane and 1 :20 mefhano dichloromefhane. Product was recovered as a pale yellow solid (0.018g, 0.043 mmol, Y. 9.6%). Η-NMR (300 MHz, d-4 methanol): 8.4 (br, 0.4H, NH); 7.53-7.42 (m, 7H, aromatic); 7.17 (s, IH, C2-H); 6.71 (m, IH, C5-H); 4-3.4 (2 x br, 8H, piperazine); 3.35 (m, 2H, CH2CO); 2.94 (d, 3H, CH3). LRMS (ES+) m/z [M+H]+ 0 = 423.14, (ES-) m/z [M-H]' = 421.2.
Note: The procedure for the reduction of the carbonyl to the methylene via the p- toluensulphonhydrazone intermediate is adapted from: Guan, X.; Borchardt, R. T. Tetrahedron Lett., 1994, 35, 19, 3013-3016. 5
Example 32
Figure imgf000097_0003
3-[2-(4-Benzoyl-piperazin-l-yl)-l-hydroxy-2-oxo-ethyl]-4-fluoro-lH-indole-7- carboxylic acid methylamide (2): A suspension of 3-[2-(4-Benzoyl-piperazin-l-yl)- 2-oxo-acetyl]-4-fluoro-lH-indole-7-carboxylic acid methylamide (A'", 0.260 g., 0.60 mmol) in absolute ethanol (5 mL) under nitrogen atmosphere was treated with sodium borohydride (0.03 lg, 0.8 mmol). The suspension became a solution within several minutes. The reaction was stirred overnight. Solvent was removed in-vaccuo and the residue was purified by silica gel column chromatography, eluting with ethyl acetate:methanol (100:0 changing to 90:10). Product fractions were pooled and dried in-vaccuo to give the title compound (Example 32, 0.106 g, 0.24 mmol, Y 40%). IH-NMR (300 MHz, d-6 DMSO): 11.33 (s, IH indole NH); 8.51 (d, IH, CONH); 7.7-7.1 (m, 7H, aromatic); 6.85 (m, IH, C5-H); 5.70 (b, IH, OH); 5.27 (d, IH, CHCO); 3.8-3.3 (2 x br, 8H, piperazine)2.83 (d, 3H, CH3). LRMS (ES+) m/z [M+Na]+ = 460.9, (ES-) [M-H]" = 437.0.
Procedure adapted from: Dillard, R. D.; Bach, N. J.; Draheim, S. E.; Berry,
D. R.; Carlson, D. G.; Chirgadze, N. Y.; Clawson, D. K.; Hartley, L. W.; Johnson, L.
M.; Jones, N. D.; McKinney, E. R.; Mihelich,.E. D.; Olkowski, J. L.; Schevitz, R.
W.; Smith, A. C; Snyder, D. W.; Sommers, C. D.; Wery, J.-P. J Med. Chem., 1996,
39, 5119-5136 (example 21a).
Characterization of Biological Active Compounds:
Biology
In Table 3 and hereafter, the following definitions apply.
• "μM" means micromolar;
• "ml" means milliliter;
• "μl" means microliter; • "mg" means milligram;
The materials and experimental procedures used to obtain the results reported in Table 3 are described below. Cells:
• Nirus production-Human embryonic Kidney cell line, 293, propagated in Dulbecco's Modified Eagle Medium (Life Technologies, Gaithersburg, MD) containing 10% fetal Bovine serum (FBS, Sigma, St. Louis , MO).
• Virus infection- Human epithelial cell line, HeLa, expressing the HIV-1 receptors CD4 and CCR5 was propagated in Dulbecco's Modified Eagle Medium (Life Technologies, Gaithersburg, MD) containing 10% fetal Bovine serum (FBS, Sigma, St. Louis , MO) and supplemented with 0.2 mg/ml Geneticin (Life
Technologies, Gaithersburg, MD) and 0.4 mg/ml Zeocin (Invitrogen, Carlsbad, CA).
Virus-Single-round infectious reporter virus was produced by co-transfecting human embryonic Kidney 293 cells with an HIV-1 envelope DΝA expression vector and a proviral cDΝA containing an envelope deletion mutation and the luciferase reporter gene inserted in place of HIV-1 nef sequences (Chen et al, Ref. 41). Transfections were performed using HpofectAMIΝE PLUS reagent as described by the manufacturer (Life Technologies, Gaithersburg, MD).
Experiment
1. Compound was added to HeLa CD4 CCR5 cells plated in 96 well plates at a cell density of 5 X 104 cells per well in 100 μl Dulbecco's Modified Eagle Medium containing 10 % fetal Bovine serum at a concentration of <20 μM.
2. 100 μl of single-round infectious reporter virus in Dulbecco's Modified Eagle Medium was then added to the plated cells and compound at an approximate multiplicity of infection (MOI) of 0.01, resulting in a final volume of 200 μl per well and a final compound concentration of <10 μM.
3. Samples were harvested 72 hours after infection.
4. Viral infection was monitored by measuring luciferase expression from viral DΝA in the infected cells using a luciferase reporter gene assay kit (Roche Molecular Biochemicals, Indianapolis, IN). Infected cell supematants were removed and 50 μl of Dulbecco's Modified Eagle Medium (without phenol red) and 50 μl of luciferase assay reagent reconstituted as described by the manufacturer (Roche Molecular Biochemicals, Indianapolis, IN) was added per well. Luciferase activity was then quantified by measuring luminescence using a
Wallac microbeta scintillation counter.
5. An EC50 provides a method for comparing the antiviral potency of the compounds of this invention. The effective concentration for fifty percent inhibition (EC50) was calculated with the Microsoft Excel Xlfit curve fitting software. For each compound, curves were generated from percent inhibition calculated at 10 different concentrations by using a four parameter logistic model (model 205). The EC50 data obtained is shown below in Table 3. In Table 3, compounds with an EC50 of greater than 5μM are designated as Group C; compounds with an EC50 of lμM to 5μM are designated Group B; compounds with an EC50 of less than
1 μM are designated as Group A; and compounds with a potency of greater than
0.5μM which were not evaluated at higher doses to determine the EC50 value are designated Group D.
Table 3
Figure imgf000100_0001
Figure imgf000100_0002
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
The compounds of the present invention may be administered orally, parenterally (including subcutaneous injections, intravenous, intramuscular, intrastemal injection or infusion techniques), by inhalation spray, or rectally, in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and diluents. Thus, in accordance with the present invention, there is further provided a method of treating and a pharmaceutical composition for treating viral infections such as HIV infection and AIDS. The treatment involves administering to a patient in need of such treatment a pharmaceutical composition comprising a pharmaceutical carrier and a therapeutically effective amount of a compound of the present invention.
The pharmaceutical composition may be in the form of orally administrable suspensions or tablets; nasal sprays, sterile injectable preparations, for example, as sterile injectable aqueous or oleagenous suspensions or suppositories.
When administered orally as a suspension, these compositions are prepared according to techniques well known in the art of pharmaceutical formulation and may contain microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweetners/flavoring agents known in the art. As immediate release tablets, these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders, disintegrants, diluents, and lubricants known in the art.
The injectable solutions or suspensions may be formulated according to known art, using suitable non-toxic, parenterally acceptable diluents or solvents, such as mannitol, 1,3-butanediol, water, Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
The compounds of this invention can be administered orally to humans in a dosage range of 1 to 100 mg/kg body weight in divided doses. One preferred dosage range is 1 to 10 mg/kg body weight orally in divided doses. Another preferred dosage range is 1 to 20 mg/kg body weight in divided doses. It will be understood, however, that the specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.

Claims

CLAIMSWhat is claimed is:
1. A compound of Formula I, including pharmaceutically acceptable salts thereof,
Figure imgf000105_0001
wherein:
Q is
Figure imgf000105_0002
may represent a bond;
A is selected from the group consisting of C,.6alkoxy, C^alkyl, C3.7cycloalkyl, phenyl, and heteroaryl; wherein said heteroaryl may be monocyclic or bicyclic and may be comprised of three to eleven atoms selected from the group consisting of C, N, NR9, 0, and S, and wherein each ring of said phenyl and heteroaryl is optionally substituted with one to five same or different substituents selected from the group consisting of R19-R23;
T is
Figure imgf000105_0003
U is NR7, O, or S; V is CCH R'. O or NCR7'^
W is CR3 or NR10;
X is CR4 or NR10;
Y is CR5 or NR10;
Z is CR6 or NR10;
k is 0 or 1 ;
R1, R2, R3, R4, R5, and R6are each independently selected from the group consisting of a bond, hydrogen, halogen, cyano, nitro, X'R24, C,.6alkyl, C3.7cycloalkyl, C2.6alkenyl, C4.7cycloalkenyl, C^alkynyl, aryl, heteroaryl, heteroahcychc, C(O)NR28R29, and CO2R25, wherein said C^alkyl, C3.7cycloalkyl, C2.
6alkenyl, C4.7cycloalkenyl, C2.6alkynyl, aryl, heteroaryl, and heteroalicyclic are optionally substituted with one to nine same or different halogens or from one to five same or different substituents selected from the substituents comprising group F;
R7 and R7 are each independently selected from the group consisting of a bond and
(CH2),H, wherein r is 0-6;
m, n, and p are each independently 0, 1, or 2 provided that the sum of m, n, and p must equal 1 or 2;
F is selected from the group consisting of C,.6alkyl, hydroxy, C,.6alkoxy, cyano, halogen, benzyl, N-amido, NR30R31, CwalkylC(O)NR30R31, C(O)NR30R31, COOR32 , and C,.6alkylCOOR32;
R8 and R8 are each independently selected from the group consisting of hydrogen, hydroxy, C,.6alkyl, C,.6alkoxy, cyano, and fluoro, or R8 and R8 taken together form =O, =S, =NOR9, or =NH;
R9 is hydrogen or C,.6alkyl;
R10 is -(O) , wherein q is 0 or 1 ; R", R12, R13, R14, R15, R16, R17, and R18 are each independently selected from hydrogen or C,.3alkyl;
X' is selected from the group consisting of NR9, O, and S;
R19, R20, R21, R22, and R23 are each independently selected from the group consisting of hydrogen, C,.6alkyl, C2.6alkenyl, C2.6alkynyl, halogen, cyano, X'R26, trifluoromethyl, and trifluoromethoxy, wherein each of said C,.6alkyl, C2.6alkenyl, and C2.6alkynyl are optionally substituted with one to three same or different substituents selected from halogen and C,.6alkyl;
R24 is hydrogen or C^alkyl;
R25 is selected from the group consisting of hydrogen, C^alkyl, and C3.7cycloalkyl;
R26 is selected from the group consisting of hydrogen, C,.6alkyl, C3.7cycloalkyl, trifluoromethyl and C(O)R27;
R27 is selected from the group consisting of C,.6alkyl, NH2 and -NHC,.3alkyl;
R28 and R29 are independently selected from the group consisting of hydrogen, C,.6alkyl, C3.7cycloalkyl, aryl, heteroaryl, and heteroahcychc wherein said C^alkyl, C3.7cycloalkyl, aryl, heteroaryl, and heteroahcychc are optionally substituted with one to nine same or different halogens or Chalky 1 groups;
R30andR31 are independently selected from the group consisting of hydrogen, C,.6alkyl, C3.7cycloalkyl, aryl, wherein said C,.6alkyl, C3.7cycloalkyl, and aryl are optionally substituted with one to nine same or different halogens;
R32 is selected from the group consisting of hydrogen, C,.6alkyl, and C3.7cycloalkyl;
provided that if one of the members selected from the group consisting of W, X, Y, and Z is NR10, then the remaining members selected from the group consisting of W, X, Y, and Z are not NR10;
provided when U is O or S then V is C(H)kR' or N(R7')k; provided when U is NR7; V is C(H)kR';W is CR2; X is CR3; Y is CR4; Z is CR5; m is 1 ; n is 0; and p is 1 then R2 is not a bond;
provided when U is NR7; V is C(H)kR'; one of the variables selected from W, X, Y, and Z is NR10; m is 1 ; n is 0; and p is 0 or 1 then R2 is not a bond;
provided that when V is O then - - does not represent a bond;
provided that when - - represents a bond then k is 0; and
provided that at any given time only one of the members selected from the group consisting of R1, R2, R3, R4, R5, R6, R7 and R7' is a bond, and further provided that said bond is the point of attachment to the adjacent carbon atom in the compound of Formula I.
2. A compound of claim 1, including pharmaceutically acceptable salts thereof, wherein:
T is
Figure imgf000108_0001
R", R12, R13, R14, R", R16, R17, and R18 are each independently hydrogen, methyl or ethyl; and
- -represents a bond;
A is phenyl or heteroaryl.
3. A compound of claim 2, including pharmaceutically acceptable salts thereof, wherein:
U is NR7; and R8 and R8 are each independently hydrogen, hydroxy or cyano, with the proviso that only one of R8 and R8 is cyano.
4. A compound of claim 3, including pharmaceutically acceptable salts thereof, wherein:
m is 1; n is 0; and p is 1.
5. A compound of claim 2, including pharmaceutically acceptable salts thereof, wherein:
U is O or S;
V is CHor N; and
R8 and R8 are each independently hydrogen, hydroxy or cyano, with the proviso that only one of R and R is cyano.
6. A compound of claim 5, including pharmaceutically acceptable salts thereof, wherein:
m is l; n is 0; and p is 1.
7. A compound of claim 3, including pharmaceutically acceptable salts thereof, wherein:
U is -NR7; and V is N.
8. A compound of claim 7 in which U is NH, n is 0, and R2 is the point of attachment to Q.
9. A compound of claim 4, including pharmaceutically acceptable salts thereof, wherein: W,X,Y, and Z are C.
10. A compound of claim 3 in which m is 1 ; n is 0; and p is 0
11. A compound of claim 10 in which R2 is the point of attachment to Q and V is CH.
12. A compound of claim 11 in which W,X, Y, and Z are C.
13. A compound of claim 3 in which R2 is the point of attachment to Q, V is CH, m is 0, and one of R8 and R8 are hydrogen and the other is hydroxy.
14. A compound of claim 13 in which W,X, Y, and Z are C.
15. A compound of claim 3 in which R2 is the point of attachment to Q,
V is CH, m is 0, and R8 and R8' are each hydrogen.
16. A compound of claim 15 in which W,X, Y, and Z are C and R7 is H.
17. A compound of claim 2 in which R2 is the point of attachment to Q,
V is CH, m is 0, and one of R8 and R8 are hydrogen and the other is cyano.
18. A compound of claim 17 in which U is NR7.
19. A pharmaceutical composition which comprises an antiviral effective amount of a compound of Formula I, including pharmaceutically acceptable salts thereof, as claimed in any of claims 1-18, and one or more pharmaceutically acceptable carriers, excipients or diluents.
20. The pharmaceutical composition of claim 19, useful for treating infection by HIV, which additionally comprises an antiviral effective amount of an AIDS treatment agent selected from the group consisting of:
(a) an AIDS antiviral agent;
(b) an anti-infective agent;
(c) an immunomodulator; and (d) HIV entry inhibitors.
21. A method for treating a mammal infected with a virus comprising administering to said mammal an antiviral effective amount of a compound of Formula I, including pharmaceutically accceptable salts thereof, as claimed in any of claims 1-18, and one or more pharmaceutically acceptable carriers, excipients or diluents.
22. The method of claim 21, comprising administering to said mammal an antiviral effective amount of a compound of Formula I in combination with an antiviral effective amount of an AIDS treatment agent selected from the group consisting of: an AIDS antiviral agent; an anti-infective agent; an immunomodulator; and an HIV entry inhibitor.
23. The method of claim 21 wherein said virus is HIV.
24. The method of claim 22 wherein said virus is HIV.
PCT/US2002/012856 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic amidopiperazine derivatives WO2002085301A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MXPA03009680A MXPA03009680A (en) 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic amidopiperazine derivatives.
EP02764315A EP1381366B9 (en) 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic amidopiperazine derivatives
DK02764315T DK1381366T3 (en) 2001-04-25 2002-04-23 Indole, azaindole, and related heterocyclic amidopiperazine derivatives
BR0209153-4A BR0209153A (en) 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic amidopiperazine derivatives
HU0401503A HU230215B1 (en) 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic aminopiperazine derivatives
JP2002582877A JP4326221B2 (en) 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic amidopiperazine derivatives
DE60232065T DE60232065D1 (en) 2001-04-25 2002-04-23 INDOL, AZAINDOL AND RELATED HETEROCYCLIC AMIDOPIPERAZINE DERIVATIVES
CA2445190A CA2445190C (en) 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic amidopiperazine derivatives
AT02764315T ATE429229T1 (en) 2001-04-25 2002-04-23 INDOLE, AZAINDOLE AND RELATED HETEROCYCLIC AMIDOPIPERAZINE DERIVATIVES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28634701P 2001-04-25 2001-04-25
US60/286,347 2001-04-25

Publications (2)

Publication Number Publication Date
WO2002085301A2 true WO2002085301A2 (en) 2002-10-31
WO2002085301A3 WO2002085301A3 (en) 2003-02-27

Family

ID=23098194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/012856 WO2002085301A2 (en) 2001-04-25 2002-04-23 Indole, azaindole and related heterocyclic amidopiperazine derivatives

Country Status (15)

Country Link
US (1) US6825201B2 (en)
EP (1) EP1381366B9 (en)
JP (1) JP4326221B2 (en)
CN (1) CN1330307C (en)
AT (1) ATE429229T1 (en)
BR (1) BR0209153A (en)
CA (1) CA2445190C (en)
CY (1) CY1109219T1 (en)
DE (1) DE60232065D1 (en)
DK (1) DK1381366T3 (en)
ES (1) ES2323859T3 (en)
HU (1) HU230215B1 (en)
MX (1) MXPA03009680A (en)
PT (1) PT1381366E (en)
WO (1) WO2002085301A2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005016344A1 (en) * 2003-08-14 2005-02-24 Pfizer Limited Piperazine derivatives for the treatment of hiv infections
WO2006085199A1 (en) * 2005-02-14 2006-08-17 Pfizer Limited Piperazine derivatives
US7183284B2 (en) 2004-12-29 2007-02-27 Bristol-Myers Squibb Company Aminium salts of 1,2,3-triazoles as prodrugs of drugs including antiviral agents
JP2007516205A (en) * 2003-07-01 2007-06-21 ブリストル−マイヤーズ スクイブ カンパニー Indole, azaindole, and related heterocyclic N-substituted piperazine derivatives
US7781436B2 (en) 2005-07-29 2010-08-24 Hoffmann-La Roche Inc. Indol-3-y-carbonyl-piperidin and piperazin-derivatives
US7807671B2 (en) 2006-04-25 2010-10-05 Bristol-Myers Squibb Company Diketo-piperazine and piperidine derivatives as antiviral agents
US7829711B2 (en) 2004-11-09 2010-11-09 Bristol-Myers Squibb Company Crystalline materials of 1-(4-benzoyl-piperazin-1-yl)-2-[4-methoxy-7-(3-methyl-[1,2,4]triazol-1-yl)-1H-pyrrolo[2,3-C]pyridine-3-yl]-ethane-1,2-dione
US7851476B2 (en) 2005-12-14 2010-12-14 Bristol-Myers Squibb Company Crystalline forms of 1-benzoyl-4-[2-[4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-YL)-1-[(phosphonooxy)methyl]-1H-pyrrolo[2,3-C]pyridin-3-YL]-1,2-dioxoethyl]-piperazine
US7902204B2 (en) 2003-11-26 2011-03-08 Bristol-Myers Squibb Company Diazaindole-dicarbonyl-piperazinyl antiviral agents
US7960406B2 (en) 2008-06-25 2011-06-14 Bristol-Myers Squibb Company Diketo substituted pyrrolo[2,3-c] pyridines
US8242124B2 (en) 2008-06-25 2012-08-14 Bristol-Myers Squibb Company Diketopiperidine derivatives as HIV attachment inhibitors
WO2012142080A1 (en) 2011-04-12 2012-10-18 Bristol-Myers Squibb Company Thioamide, amidoxime and amidrazone derivatives as hiv attachment inhibitors
WO2013033059A1 (en) 2011-08-29 2013-03-07 Bristol-Myers Squibb Company Spiro bicyclic diamine derivatives as hiv attachment inhibitors
WO2013033061A1 (en) 2011-08-29 2013-03-07 Bristol-Myers Squibb Company Fused bicyclic diamine derivatives as hiv attachment inhibitors
CZ303750B6 (en) * 2001-02-02 2013-04-17 Bristol-Myers Squibb Company Preparations containing substituted azaindoleoxoacetyl piperazine derivatives and their antiviral activity
WO2013138436A1 (en) 2012-03-14 2013-09-19 Bristol-Myers Squibb Company Cyclolic hydrazine derivatives as hiv attachment inhibitors
US8993574B2 (en) 2008-04-24 2015-03-31 F2G Ltd Pyrrole antifungal agents
US9505752B2 (en) 2012-08-09 2016-11-29 Viiv Healthcare Uk (No. 5) Limited Piperidine amide derivatives as HIV attachment inhibitors
US9655888B2 (en) 2012-08-09 2017-05-23 VIIV Healthcare UK (No.5) Limited Tricyclic alkene derivatives as HIV attachment inhibitors
WO2017144624A1 (en) * 2016-02-23 2017-08-31 Servicio Andaluz De Salud Piperazine derivatives as antiviral agents with increased therapeutic activity
US10201524B2 (en) 2014-11-21 2019-02-12 F2G Limited Antifungal agents
US10973821B2 (en) 2016-05-25 2021-04-13 F2G Limited Pharmaceutical formulation
WO2021155196A1 (en) * 2020-01-31 2021-08-05 The General Hospital Corporation Modulators of metabotropic glutamate receptor 2
US11819503B2 (en) 2019-04-23 2023-11-21 F2G Ltd Method of treating coccidioides infection

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040110785A1 (en) * 2001-02-02 2004-06-10 Tao Wang Composition and antiviral activity of substituted azaindoleoxoacetic piperazine derivatives
US6900206B2 (en) * 2002-06-20 2005-05-31 Bristol-Myers Squibb Company Indole, azaindole and related heterocyclic sulfonylureido piperazine derivatives
AU2004293013B2 (en) * 2003-11-19 2011-04-28 Metabasis Therapeutics, Inc. Novel phosphorus-containing thyromimetics
AU2006249350B2 (en) 2003-11-19 2012-02-16 Metabasis Therapeutics, Inc. Thyromimetics for the treatment of fatty liver diseases
US7868037B2 (en) * 2004-07-14 2011-01-11 Ptc Therapeutics, Inc. Methods for treating hepatitis C
US7781478B2 (en) * 2004-07-14 2010-08-24 Ptc Therapeutics, Inc. Methods for treating hepatitis C
US7772271B2 (en) * 2004-07-14 2010-08-10 Ptc Therapeutics, Inc. Methods for treating hepatitis C
EP1771169A1 (en) * 2004-07-14 2007-04-11 PTC Therapeutics, Inc. Methods for treating hepatitis c
WO2006019832A1 (en) * 2004-07-22 2006-02-23 Ptc Therapeutics, Inc. Thienopyridines for treating hepatitis c
WO2006011670A1 (en) * 2004-07-28 2006-02-02 Takeda Pharmaceutical Company Limited PYRROLO[2,3-c]PYRIDINE COMPOUND, PROCESS FOR PRODUCING THE SAME, AND USE
EP2256124A1 (en) 2004-09-17 2010-12-01 IDENIX Pharmaceuticals, Inc. Phospho-indoles as HIV inhibitors
US20060100209A1 (en) * 2004-11-09 2006-05-11 Chong-Hui Gu Formulations of 1-(4-benzoyl-piperazin-1-yl)-2-[4-methoxy-7-(3-methyl-[1,2,4]triazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-3-yl]-ethane-1,2-dione
CN101243080A (en) * 2005-06-27 2008-08-13 阿姆布里利亚生物制药公司 Pyrazolo[3,4-B]pyridin-2-yl]-benzoic acid derivatives as HIV integrase inhibitors
US7598380B2 (en) * 2005-08-03 2009-10-06 Bristol-Myers Squibb Company Method of preparation of azaindole derivatives
BRPI0717511A2 (en) 2006-09-29 2013-11-19 Idenix Pharmaceuticals Inc PURE COMPOUND, PHARMACEUTICAL COMPOSITION, METHODS TO TREAT HIV INFECTION, PREVENT HIV INFECTION, INHIBIT HIV REPLICATION, AND USE OF COMPOUND
TW200946541A (en) * 2008-03-27 2009-11-16 Idenix Pharmaceuticals Inc Solid forms of an anti-HIV phosphoindole compound
WO2010028108A2 (en) * 2008-09-04 2010-03-11 Bristol-Myers Squibb Company Stable pharmaceutical composition for optimized delivery of an hiv attachment inhibitor
GB0817576D0 (en) * 2008-09-25 2008-11-05 Lectus Therapeutics Ltd Calcium ion channel modulators & uses thereof
MX350974B (en) * 2010-11-18 2017-09-27 Univ Yale Bifunctional molecules with antibody-recruiting and entry inhibitory activity against the human immunodeficiency virus.
EP2978763B1 (en) * 2013-03-27 2018-03-07 VIIV Healthcare UK (No.5) Limited 2-keto amide derivatives as hiv attachment inhibitors
CN105229006A (en) * 2013-03-27 2016-01-06 百时美施贵宝公司 As piperazine and the homopiperazine derivative of HIV adsorption inhibitor
EP3541395A4 (en) 2016-11-21 2020-07-01 Viking Therapeutics, Inc. Method of treating glycogen storage disease
US20190322676A1 (en) * 2016-12-20 2019-10-24 Biomarin Pharmaceutical Inc. Ceramide galactosyltransferase inhibitors for the treatment of disease
CA3064940A1 (en) 2017-06-05 2018-12-13 Viking Therapeutics, Inc. Compositions for the treatment of fibrosis
WO2018227940A1 (en) * 2017-12-29 2018-12-20 邦泰生物工程(深圳)有限公司 Method for preparing ursodeoxycholic acid via chemical-enzymatic process
JP2021518403A (en) 2018-03-22 2021-08-02 バイキング・セラピューティクス・インコーポレイテッド Crystal form of compound and method of producing crystal form of compound
CN108794559A (en) * 2018-07-31 2018-11-13 重庆波克底科技开发有限责任公司 A method of using hyodesoxycholic acid as Material synthesis lithocholic acid
US20230026271A1 (en) * 2019-11-22 2023-01-26 Eisai R&D Management Co., Ltd. Piperazine Compounds for Inhibiting CPS1

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791104A (en) * 1986-06-25 1988-12-13 Maggioni-Winthrop S.P.A. Dihydrobenzothiophene and thiochromane aminoalcohols
WO2000051984A1 (en) * 1999-03-04 2000-09-08 Merck Sharp & Dohme Limited 2-aryl indole derivatives as antagonists of tachykinins
US6172085B1 (en) * 1996-08-29 2001-01-09 Takeda Chemical Industries, Ltd. Cyclic ether compounds as sodium channel modulators

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023265A (en) 1990-06-01 1991-06-11 Schering Corporation Substituted 1-H-pyrrolopyridine-3-carboxamides
DE69217224T2 (en) 1991-07-03 1997-06-05 Upjohn Co SUBSTITUTED INDOLE AS ANTI-AIDS PHARMACEUTICAL PREPARATIONS
US5124327A (en) 1991-09-06 1992-06-23 Merck & Co., Inc. HIV reverse transcriptase
WO1993005020A1 (en) 1991-09-06 1993-03-18 Merck & Co., Inc. Indoles as inhibitors of hiv reverse transcriptase
IT1265057B1 (en) 1993-08-05 1996-10-28 Dompe Spa TROPIL 7-AZAINDOLIL-3-CARBOXYAMIDE
US5424329A (en) 1993-08-18 1995-06-13 Warner-Lambert Company Indole-2-carboxamides as inhibitors of cell adhesion
GB9420521D0 (en) 1994-10-12 1994-11-30 Smithkline Beecham Plc Novel compounds
CA2342251A1 (en) * 1998-08-28 2000-03-09 Scios Inc. Use of piperidines and/or piperazines as inhibitors of p38-alpha kinase
US6469006B1 (en) * 1999-06-15 2002-10-22 Bristol-Myers Squibb Company Antiviral indoleoxoacetyl piperazine derivatives
US20020061892A1 (en) * 2000-02-22 2002-05-23 Tao Wang Antiviral azaindole derivatives
US6573262B2 (en) * 2000-07-10 2003-06-03 Bristol-Myers Sqibb Company Composition and antiviral activity of substituted indoleoxoacetic piperazine derivatives
ES2250422T3 (en) * 2000-07-10 2006-04-16 Bristol-Myers Squibb Company COMPOSITION AND ANTIVIRAL ACTIVITY OF SUBSTITUTED INDOLOXOACETIC PIPERAZINE DERIVATIVES.
US6632810B2 (en) * 2001-06-29 2003-10-14 Kowa Co., Ltd. Cyclic diamine compound with condensed-ring groups

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791104A (en) * 1986-06-25 1988-12-13 Maggioni-Winthrop S.P.A. Dihydrobenzothiophene and thiochromane aminoalcohols
US6172085B1 (en) * 1996-08-29 2001-01-09 Takeda Chemical Industries, Ltd. Cyclic ether compounds as sodium channel modulators
WO2000051984A1 (en) * 1999-03-04 2000-09-08 Merck Sharp & Dohme Limited 2-aryl indole derivatives as antagonists of tachykinins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICOLAOU K.C. ET AL.: 'A novel strategy for the solid-phase synthesis of substituted indolines' J. AM. CHEM. SOC. vol. 122, no. 12, March 2000, pages 2966 - 2967, XP002958218 *
See also references of EP1381366A2 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303750B6 (en) * 2001-02-02 2013-04-17 Bristol-Myers Squibb Company Preparations containing substituted azaindoleoxoacetyl piperazine derivatives and their antiviral activity
JP2007516205A (en) * 2003-07-01 2007-06-21 ブリストル−マイヤーズ スクイブ カンパニー Indole, azaindole, and related heterocyclic N-substituted piperazine derivatives
US8039486B2 (en) 2003-07-01 2011-10-18 Bristol-Myers Squibb Company Indole, azaindole and related heterocyclic N-substituted piperazine derivatives
WO2005016344A1 (en) * 2003-08-14 2005-02-24 Pfizer Limited Piperazine derivatives for the treatment of hiv infections
US7902204B2 (en) 2003-11-26 2011-03-08 Bristol-Myers Squibb Company Diazaindole-dicarbonyl-piperazinyl antiviral agents
US7829711B2 (en) 2004-11-09 2010-11-09 Bristol-Myers Squibb Company Crystalline materials of 1-(4-benzoyl-piperazin-1-yl)-2-[4-methoxy-7-(3-methyl-[1,2,4]triazol-1-yl)-1H-pyrrolo[2,3-C]pyridine-3-yl]-ethane-1,2-dione
US7183284B2 (en) 2004-12-29 2007-02-27 Bristol-Myers Squibb Company Aminium salts of 1,2,3-triazoles as prodrugs of drugs including antiviral agents
WO2006085199A1 (en) * 2005-02-14 2006-08-17 Pfizer Limited Piperazine derivatives
US7781436B2 (en) 2005-07-29 2010-08-24 Hoffmann-La Roche Inc. Indol-3-y-carbonyl-piperidin and piperazin-derivatives
US7851476B2 (en) 2005-12-14 2010-12-14 Bristol-Myers Squibb Company Crystalline forms of 1-benzoyl-4-[2-[4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-YL)-1-[(phosphonooxy)methyl]-1H-pyrrolo[2,3-C]pyridin-3-YL]-1,2-dioxoethyl]-piperazine
US7807671B2 (en) 2006-04-25 2010-10-05 Bristol-Myers Squibb Company Diketo-piperazine and piperidine derivatives as antiviral agents
US7807676B2 (en) 2006-04-25 2010-10-05 Bristol-Myers Squibb Company Diketo-Piperazine and Piperidine derivatives as antiviral agents
US9452168B2 (en) 2008-04-24 2016-09-27 F2G Ltd Pyrrole antifungal agents
US8993574B2 (en) 2008-04-24 2015-03-31 F2G Ltd Pyrrole antifungal agents
US7960406B2 (en) 2008-06-25 2011-06-14 Bristol-Myers Squibb Company Diketo substituted pyrrolo[2,3-c] pyridines
US8242124B2 (en) 2008-06-25 2012-08-14 Bristol-Myers Squibb Company Diketopiperidine derivatives as HIV attachment inhibitors
US8124615B2 (en) 2008-06-25 2012-02-28 Bristol-Myers Squibb Company Diketo substituted pyrrolo[2,3-C]pyridines
WO2012142080A1 (en) 2011-04-12 2012-10-18 Bristol-Myers Squibb Company Thioamide, amidoxime and amidrazone derivatives as hiv attachment inhibitors
WO2013033061A1 (en) 2011-08-29 2013-03-07 Bristol-Myers Squibb Company Fused bicyclic diamine derivatives as hiv attachment inhibitors
WO2013033059A1 (en) 2011-08-29 2013-03-07 Bristol-Myers Squibb Company Spiro bicyclic diamine derivatives as hiv attachment inhibitors
US8664213B2 (en) 2011-08-29 2014-03-04 Bristol-Myers Squibb Company Spiro bicyclic diamine derivatives as HIV attachment inhibitors
WO2013138436A1 (en) 2012-03-14 2013-09-19 Bristol-Myers Squibb Company Cyclolic hydrazine derivatives as hiv attachment inhibitors
US9655888B2 (en) 2012-08-09 2017-05-23 VIIV Healthcare UK (No.5) Limited Tricyclic alkene derivatives as HIV attachment inhibitors
US9505752B2 (en) 2012-08-09 2016-11-29 Viiv Healthcare Uk (No. 5) Limited Piperidine amide derivatives as HIV attachment inhibitors
US10201524B2 (en) 2014-11-21 2019-02-12 F2G Limited Antifungal agents
US10596150B2 (en) 2014-11-21 2020-03-24 F2G Limited Antifungal agents
US11065228B2 (en) 2014-11-21 2021-07-20 F2G Limited Antifungal agents
WO2017144624A1 (en) * 2016-02-23 2017-08-31 Servicio Andaluz De Salud Piperazine derivatives as antiviral agents with increased therapeutic activity
US10973821B2 (en) 2016-05-25 2021-04-13 F2G Limited Pharmaceutical formulation
US11819503B2 (en) 2019-04-23 2023-11-21 F2G Ltd Method of treating coccidioides infection
WO2021155196A1 (en) * 2020-01-31 2021-08-05 The General Hospital Corporation Modulators of metabotropic glutamate receptor 2

Also Published As

Publication number Publication date
EP1381366B1 (en) 2009-04-22
US20030096825A1 (en) 2003-05-22
HUP0401503A2 (en) 2004-12-28
DE60232065D1 (en) 2009-06-04
ES2323859T3 (en) 2009-07-27
PT1381366E (en) 2009-07-21
EP1381366A4 (en) 2005-02-16
CA2445190C (en) 2011-08-09
MXPA03009680A (en) 2004-02-12
DK1381366T3 (en) 2009-08-17
CA2445190A1 (en) 2002-10-31
ATE429229T1 (en) 2009-05-15
JP4326221B2 (en) 2009-09-02
EP1381366A2 (en) 2004-01-21
BR0209153A (en) 2004-07-20
CN1520295A (en) 2004-08-11
JP2004527538A (en) 2004-09-09
WO2002085301A3 (en) 2003-02-27
HUP0401503A3 (en) 2009-06-29
CY1109219T1 (en) 2014-07-02
US6825201B2 (en) 2004-11-30
CN1330307C (en) 2007-08-08
EP1381366B9 (en) 2009-10-21
HU230215B1 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
US6825201B2 (en) Indole, azaindole and related heterocyclic amidopiperazine derivatives
US7531552B2 (en) Indole, azaindole and related heterocyclic pyrrolidine derivatives
US8039486B2 (en) Indole, azaindole and related heterocyclic N-substituted piperazine derivatives
US7037913B2 (en) Bicyclo 4.4.0 antiviral derivatives
US7915283B2 (en) Indole, azaindole and related heterocyclic 4-alkenyl piperidine amides
US6900206B2 (en) Indole, azaindole and related heterocyclic sulfonylureido piperazine derivatives
EP1513832B1 (en) Indole, azaindole and related heterocyclic 4-alkenyl piperidine amides
US20060094717A1 (en) Indole, azaindole and related heterocyclic ureido and thioureido piperazine derivatives
AU2002307505A1 (en) Indole, azaindole and related heterocyclic amidopiperazine derivatives
AU2007237294A1 (en) Indole, azaindole and related heterocyclic amidopiperazine derivatives
ES2368430T3 (en) INDOL, AZAINDOL AND RELATED HETEROCYCLIC N-SUBSTITUTED PIPERAZINE DERIVATIVES.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2445190

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002764315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/009680

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002307505

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002582877

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 028126297

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002764315

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642