WO2002086190A1 - Method for preparing thin porous layers of inorganic oxides - Google Patents

Method for preparing thin porous layers of inorganic oxides Download PDF

Info

Publication number
WO2002086190A1
WO2002086190A1 PCT/ES2002/000193 ES0200193W WO02086190A1 WO 2002086190 A1 WO2002086190 A1 WO 2002086190A1 ES 0200193 W ES0200193 W ES 0200193W WO 02086190 A1 WO02086190 A1 WO 02086190A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
inorganic oxides
thin layers
porous thin
substrates
Prior art date
Application number
PCT/ES2002/000193
Other languages
Spanish (es)
French (fr)
Inventor
Angel Barranco Quero
Francisco Yubero Valencia
Juan Pedro Espinos Manzorro
Agustín RODRÍGUEZ GONZALEZ-ELIPE
José COTRINO BAUTISTA
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad De Sevilla filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2002086190A1 publication Critical patent/WO2002086190A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Definitions

  • TECHNICAL SECTOR A first sector of application of the procedure is framed, within the new chemical technologies, in the development of selective membranes for fluid separation and purification. Other sectors of interest are related to the manufacture and modification of gas and humidity sensors and physical properties modification technologies of optical fibers and electronic components.
  • the object of the present invention is a process for the preparation of thin layers of inorganic oxides on substrates by means of plasma-assisted vapor phase deposition that differs from the usual procedures in that they are intercalated between the successive stages of deposition of inorganic oxide stages of deposition of organic layers, so that during the deposition step of the inorganic layer the combustion removal of the previously deposited organic part occurs.
  • An alternative method that allows working either at room temperature or under heating of the substrate is the use of cold plasmas that, by decomposing volatile metal precursors, enable the deposition of thin layers of metal oxides or nitrides or similar systems (EC Tracy , J A. Turner, DK Benson, P. Liu, J-G. Zhang, W09919534, 1999; A. Koganei, Z. Motomiya, JP9272978, 1997; MS Ameen, J. Hillman, US5989652, 1999; R. Avni, D. Morvan, J.
  • PECVD plasma enhanced Chemical Vapor Deposition
  • these procedures can also be used for the preparation of layers of organic polymers (P. Giordano, RC Smierciak, US4784769, 1988; Y. Hayashi, US4347139, 1982; CG Guizard, EHJ Durand, IHLecacheux, JD Martin, EP1013335, 2000; H. Nomura, US5439736, 1995; R. Nakase, EP1035569, 2000; FUZ Chowdhury, AH Bhuiyaa Thin Sol. Films, 360 (2000) 69; T. Schwarz-Selinger, A.
  • the type of volatile precursor, the plasma gas precursor and the working conditions and the type of the plasma source are the variables that allow one type or another of preparation to proceed.
  • PECVD methods have previously been used to obtain porous layers of inorganic oxides and siloxane-like composites, of interest as gas separation membranes (Ch. Nelson, R. Domanik, US5002652, 1991; R. Vos, DE19603829, 1997; S.
  • the method claimed here involves performing successive deposition cycles of organic and inorganic parts, achieving control of the texture of the deposited layer by means of adequate sequencing of these cycles.
  • An object of the present invention is a process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor phase deposition consisting of the following steps: a) placement of the substrate in the plasma reaction chamber b ) introduction of a volatile precursor containing the inorganic element whose oxide is to be deposited c) supply with oxygen or O 2 / inert gas mixtures from the plasma source in the plasma reaction chamber d) activation of the plasma source in said chamber to react the precursor gas with the oxygen plasma causing the inorganic oxide layer to deposit on the substrate
  • stages of deposition of organic layers are interspersed, so that during the deposition stage of the inorganic layer, the combustion removal of the previously deposited organic part occurs.
  • the deposition of the organic layer consists of the following steps: a) introduction of a volatile precursor containing the organic compound to be deposited b) feeding with oxygen or O 2 / inert gas mixtures from the plasma source into the reaction chamber plasma c) activation of the plasma source in said chamber to react the precursor gas with the oxygen plasma causing deposition of the organic compound layer on the substrate.
  • the substrate can be any metallic, ceramic, glass or optical fiber material whose shape can be flat, tube-shaped or with other geometries.
  • the volatile precursor can be any compound of metallic elements from the periodic table that decomposed by an oxidizing plasma causes an oxide.
  • the plasma source is a microwave generator, a radio frequency generator or a direct current source that is supported by a magnetic field or an electron source and which can work in cyclotron electronic resonance mode ("electron cyclotron resonance", ECR ) at a pressure between 10 "2 and 10 " 4 Torr and at a temperature between room temperature and the decomposition or graphitization temperature of the organic compound or in the conventional regime at a pressure between 100 and 10 "2 Torr and at a temperature also comprised between the ambient temperature and the decomposition or graphitization temperature of the organic compound.
  • ECR cyclotron electronic resonance
  • Oxygen is supplied in a ratio of at least 4: 1 with respect to the volatile precursor and at least 10: 1 with respect to the organic compound.
  • the organic compound can be any volatile organic compound formed by carbon, hydrogen and / or oxygen, in particular aliphatic, alicyclic or aromatic hydrocarbons and in particular toluene.
  • the procedure can be applied to a volatile single metal precursor or to metallic precursors of two or more metals.
  • Another object of the present invention is the porous thin layers prepared by the described procedure, as well as the use of said porous thin layers as gas sensors (in particular deposited on a fiber optic substrate), as gas separation membranes or as materials for microelectronic use.
  • FIG 1 Schematic of the experimental system, in which: 1. Plasma source
  • Figure 3 Experimental results of the analysis by means of spectroscopic ellipsometry of a porous SiO 2 layer exposed under controlled conditions to atmospheres with different degrees of relative humidity from 5 to 76%.
  • the size and shape of the pores is a critical parameter when defining the separation capacity of inorganic membranes.
  • the porous structure itself together with the thickness of the layer, determines the sensitivity and responsiveness of the sensors in the case of using thin film technology for their preparation or to modify their response.
  • the fact that the proposed method involves synthesis procedures at room temperature represents an undoubted advantage over chemical synthesis methods under aggressive conditions or others that involve heating the parts to high temperatures.
  • the porous thin layers have to be prepared on substrates, these acting as active elements, as in the case of sensors, or merely passive as carriers of the layers.
  • the first case the need to avoid causing changes in the functionality, composition and other characteristics of the sensors is evident.
  • the second case it is important to maintain low preparation temperatures, when the substrates cannot be altered by chemical reaction. This is the case, for example, in the use of metal fiber agglomerates as a substrate for filter membranes, or also the case of ceramic micro-porous substrates when any reaction that alters its composition should be avoided.
  • the characteristics of the method make it suitable for preparing layers of variable chemical composition in depth. This possibility may be of great interest to chemically make compatible a porous layer and a specific substrate, avoiding delamination problems. Also, this possibility allows to alleviate problems of mechanical stress between materials with different coefficients of expansion when the layer / substrate system has to be used at high temperatures
  • the method of preparation developed consists of the deposition from the vapor phase induced by an oxygen plasma. This method is based on the decomposition of volatile precursors dosed in a controlled manner on the substrate to be covered by the porous layer.
  • a diagram of the experimental system is presented in Figure 1.
  • a 16 cm diameter microwave-excited external plasma source (1) is used, which can operate in the ECR regime at low pressures of the order of 10 "3 Torrs and in the conventional mode at pressures of some Torrs.
  • the deposition cycles of the organic material are carried out under high pressure conditions, using toluene as the organic precursor and oxygen as the gas that feeds the plasma source.
  • This process constitutes one of the novel points of procedure since the formation of organic polymeric layers is generally not achieved using oxygen plasmas; under these conditions, the removal of the formed organic layer usually occurs.
  • the microwave power used is of the order of 700 w, with the oxygen flows being the source and. of toluene on the substrate in a ratio of at least ten to one.
  • Typical values of oxygen fluxes used are in the ord 50 sccm In order to achieve the necessary working pressures, it may be necessary to decrease the pumping capacity of the system by throttling it.
  • the organic layer is burned at room temperature through the oxygen plasma while the inorganic oxide in question is simultaneously deposited.
  • toluene is replaced by a volatile precursor of the metal to be deposited and the plasma working mode is established within the ECR conditions at low pressure.
  • the working pressures in this case are of the order of 1 * 10 "2 Torr, being the ratio of flows between the oxygen that feeds the source and the volatile metallic precursor of at least 4
  • the process of Pore generation is the result of the evolution of the combustion products of the previously deposited organic part (C0 2 and H 2 0) and the simultaneous deposition of the inorganic component.
  • Controlling the porous structure of the layer is achieved by regulating the number of cycles and the deposition time of the organic and inorganic layers within each cycle.
  • a larger pore volume is achieved by increasing the relative thickness of the organic layer and decreasing the deposition time of the oxide layer with each cycle.
  • depth-variable porosity layers could be prepared using the proposed methodology. Also, by combining inorganic precursors of different chemical elements, it is possible to control the chemical composition of the layer in depth and / or prepare layers of mixed oxides. In the latter case, two or more inorganic precursors would be dosed simultaneously into the plasma chamber.
  • Si (CH 3 ) 3 Cl As a volatile precursor of Si, Si (CH 3 ) 3 Cl has been used, the flow of this compound being 5 cubic centimeters under standard conditions per minute (sccm) when the inorganic part is deposited. ECR working conditions were achieved with a microwave power of 400 w, and a source feed oxygen flow of 20 sccm. With the pumping conditions used, these flow values resulted in a pressure in the plasma chamber of 1 * 10 "2 Torr.
  • FIG. 2 shows a series of SEM microscopy images of the layers obtained according to the three previous protocols. It can be clearly seen that the porosity increases from protocol a) to c), in the sense that the deposition time of the organic layer or layers increases. The characterization of these layers by adsorption methods (BET method) shows that they have specific surfaces greater than 30 m 2 g "1 and a well defined pore structure.
  • the SiO 2 layers can be used as optical gas sensors.
  • a typical application is for use as a humidity sensor.
  • Figure 3 shows the experimental results of the analysis by means of spectroscopic ellipsometry of a porous SiO 2 layer exposed under controlled conditions to atmospheres with different degrees of relative humidity from 5 to 76%.
  • the optical parameters tan ⁇ and eos ⁇ vary significantly and reversibly with the degree of humidity, being able to establish a direct correlation between the optical characteristics of the layer and the degree of ambient humidity.
  • the observed evolution has its origin in the reversible adsorption of water vapor in the porous structure of the layer.
  • the preparation conditions of the layer whose behavior is reflected are:

Abstract

The invention relates to a method for preparing thin layers of inorganic oxides on substrates by means of plasma-assisted vapour phase deposition. The inventive method is different from other common methods in that organic layer deposition steps are included between the successive inorganic oxide deposition steps such that, during the inorganic layer deposition step, the previously-deposited organic part is eliminated by combustion. Said method is suitable for developing selective membranes that are used to separate and purify fluids and to produce and modify sensors for gases and humidity and electronic components.

Description

TITULOTITLE
Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos.Procedure for the preparation of fine porous layers of inorganic oxides.
SECTOR DE LA TÉCNICA Un primer sector de aplicación del procedimiento se enmarca, dentro de las nuevas tecnologías químicas, en el desarrollo de membranas selectivas para separación y purificación de fluidos. Otros sectores de interés se relacionan con la fabricación y modificación de sensores de gases y de humedad y tecnologías físicas de modificación de propiedades de fibras ópticas y componentes electrónicos.TECHNICAL SECTOR A first sector of application of the procedure is framed, within the new chemical technologies, in the development of selective membranes for fluid separation and purification. Other sectors of interest are related to the manufacture and modification of gas and humidity sensors and physical properties modification technologies of optical fibers and electronic components.
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
El objeto de la presente invención es un procedimiento para la preparación de capas finas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma que se diferencia de los procedimientos habituales porque se intercalan entre las sucesivas etapas de deposición del óxido inorgánico etapas de deposición de capas orgánicas, de forma que durante la etapa de deposición de la capa inorgánica se produzca la eliminación por combustión de la parte orgánica previamente depositada.The object of the present invention is a process for the preparation of thin layers of inorganic oxides on substrates by means of plasma-assisted vapor phase deposition that differs from the usual procedures in that they are intercalated between the successive stages of deposition of inorganic oxide stages of deposition of organic layers, so that during the deposition step of the inorganic layer the combustion removal of the previously deposited organic part occurs.
ESTADO DE LA TÉCNICASTATE OF THE ART
Los métodos de deposición de láminas delgadas tipo sol/gel, utilización de materiales en forma de polvo y similares basados en métodos químicos se han usado previamente para la síntesis de capas porosas de interés como membranas, sensores, soporte de catalizadores, etc. (C. G. Gólner, M. Antonietti, Avd. Mater. 9 (1997) 432, S. Singh, D. Y. Sasaki, J. Cesarano III, A. J. Hurd, Thin Solids Films, 339 (1999) 209, A. Julbe, C. Guizard, A. Larbot, L. Cot, A. Giroir-Fendler, J. Membrane Sci. 77 (1993) 137, P. Piagio, A. Bottino, G. Capanneli, E. Carosini, A. Julbe, Langmuir 11 (1995) 3970, H. Lao, C. Detellier, T. Matsuura, A. Y. Tremblay, J. Mater. Sci. Lect 13 (1994) 895. A. Sayari, Che . Mater. 8 (1996) 1840, M.S. Dutraive, R. Lalauze, C Pijolat, Sensors and Actuators B 26/27 (1995) 38; G. Behr, W. Fliegel, Sensors and Actuators B 26/27 (1995) 33; W. F. Maier, I-C. Tilgner, M. Wiedorn, H-Ch. Ko, Advanced materials 5 (1993) 726). En todos estos procesos es necesario proceder, en alguna etapa de la preparación, a calentar el material para bien activar reacciones químicas (combustión) y/o para acelerar la reestructuración y sinterización de la capa. Un método alternativo que permite trabajar o bien a temperatura ambiente o bajo calentamiento del substrato consiste en la utilización de plasmas fríos que, mediante la descomposición de precursores metálicos volátiles, posibilitan la deposición de capas finas de óxidos o nitruros metálicos o sistemas similares (E.C. Tracy, J A. Turner, D.K. Benson, P. Liu, J- G. Zhang, W09919534, 1999; A. Koganei, Z. Motomiya, JP9272978, 1997; M.S. Ameen, J. Hillman, US5989652, 1999; R. Avni, D. Morvan, J. Amouroux, S. Miralai, FR2729400, 1996; J.C. Alonso, S. J. Ramírez, M. García, A Ortiz, J. Vac. Sci. Technol. A 13 (1995) 2924; M. Matsuoka, S-I. Tohno, J. Vac. Sci. Technol. A 13 (1995) 2427; U. Beck, D.T. Smith, G. Reiners, S.J. Dapkunas, Thin Sol. Films 332The methods of deposition of thin sol / gel type sheets, use of materials in powder form and the like based on chemical methods have been previously used for the synthesis of porous layers of interest such as membranes, sensors, catalyst support, etc. (CG Gólner, M. Antonietti, Avd. Mater. 9 (1997) 432, S. Singh, DY Sasaki, J. Cesarano III, AJ Hurd, Thin Solids Films, 339 (1999) 209, A. Julbe, C. Guizard , A. Larbot, L. Cot, A. Giroir-Fendler, J. Membrane Sci. 77 (1993) 137, P. Piagio, A. Bottino, G. Capanneli, E. Carosini, A. Julbe, Langmuir 11 (1995 ) 3970, H. Lao, C. Detellier, T. Matsuura, AY Tremblay, J. Mater. Sci. Lect 13 (1994) 895. A. Sayari, Che. Mater. 8 (1996) 1840, MS Dutraive, R. Lalauze, C Pijolat, Sensors and Actuators B 26/27 (1995) 38; G. Behr, W. Fliegel, Sensors and Actuators B 26/27 (1995) 33; WF Maier, IC. Tilgner, M. Wiedorn, H- Ch. Ko, Advanced materials 5 (1993) 726). In all these processes it is necessary to proceed, at some stage of the preparation, to heat the material to either activate chemical reactions (combustion) and / or to accelerate the restructuring and sintering of the layer. An alternative method that allows working either at room temperature or under heating of the substrate is the use of cold plasmas that, by decomposing volatile metal precursors, enable the deposition of thin layers of metal oxides or nitrides or similar systems (EC Tracy , J A. Turner, DK Benson, P. Liu, J-G. Zhang, W09919534, 1999; A. Koganei, Z. Motomiya, JP9272978, 1997; MS Ameen, J. Hillman, US5989652, 1999; R. Avni, D. Morvan, J. Amouroux, S. Miralai, FR2729400, 1996; JC Alonso, SJ Ramírez, M. García, A Ortiz, J. Vac. Sci. Technol. A 13 (1995) 2924; M. Matsuoka, SI. Tohno, J. Vac. Sci. Technol. A 13 (1995) 2427; U. Beck, DT Smith, G. Reiners, SJ Dapkunas, Thin Sol. Films 332
(1998) 164). Estos métodos suelen reconocerse bajo el nombre genérico inglés de "plasma enhanced Chemical Vapour Deposition" (PECVD). Además de para la preparación de capas de compuestos metálicos, estos procedimientos pueden también utilizarse para la preparación de capas de polímeros orgánicos (P. Giordano, R.C. Smierciak, US4784769, 1988; Y. Hayashi, US4347139, 1982; C.G Guizard, E.H.J. Durand, I.H.Lecacheux, J.D. Martin, EP1013335, 2000; H. Nomura, US5439736, 1995; R. Nakase, EP1035569, 2000; F.U.Z. Chowdhury, A.H. Bhuiyaa Thin Sol. Films, 360 (2000) 69; T. Schwarz-Selinger, A. Von Keudell, W. Jacob, J. Appl. Physics 86 (1999) 3988; N. Tanigaki, H. Kyotani, M. Wada, A. Kaito, Y. Yoshida, E-M. Han, K. Abe, K. Yase, Thin Sol. Films 331 (1998) 229). El tipo de precursor volátil, el de gas del plasma y las condiciones de trabajo y el tipo de la fuente de plasma son las variables que permiten proceder a un tipo u otro de preparación. Los métodos de PECVD se han utilizado previamente para la obtención de capas porosas de óxidos inorgánicos y de materiales compuestos tipo siloxano,de interés como membranas separadoras de gases (Ch. Nelson, R. Domanik, US5002652, 1991; R. Vos, DE19603829, 1997; S. Matsuo, M. Kiuchi, M. Sekimoto, US4543266, 1985; Z. Chu, P. Gao, R. Ye, CN1185041, 1998; S. Roualdes, A. Van der Lee, R. Berjoan, j. Sánchez, J. Durand, AIChE Journal 45(1998) 164). These methods are often recognized under the generic English name "plasma enhanced Chemical Vapor Deposition" (PECVD). In addition to the preparation of layers of metal compounds, these procedures can also be used for the preparation of layers of organic polymers (P. Giordano, RC Smierciak, US4784769, 1988; Y. Hayashi, US4347139, 1982; CG Guizard, EHJ Durand, IHLecacheux, JD Martin, EP1013335, 2000; H. Nomura, US5439736, 1995; R. Nakase, EP1035569, 2000; FUZ Chowdhury, AH Bhuiyaa Thin Sol. Films, 360 (2000) 69; T. Schwarz-Selinger, A. Von Keudell, W. Jacob, J. Appl. Physics 86 (1999) 3988; N. Tanigaki, H. Kyotani, M. Wada, A. Kaito, Y. Yoshida, EM. Han, K. Abe, K. Yase, Thin Sol. Films 331 (1998) 229). The type of volatile precursor, the plasma gas precursor and the working conditions and the type of the plasma source are the variables that allow one type or another of preparation to proceed. PECVD methods have previously been used to obtain porous layers of inorganic oxides and siloxane-like composites, of interest as gas separation membranes (Ch. Nelson, R. Domanik, US5002652, 1991; R. Vos, DE19603829, 1997; S. Matsuo, M. Kiuchi, M. Sekimoto, US4543266, 1985; Z. Chu, P. Gao, R. Ye, CN1185041, 1998; S. Roualdes, A. Van der Lee, R. Berjoan, j. Sánchez, J. Durand, AIChE Journal 45
(1999) 1566, O. Górbig, S. Nehlsen, J. Müller, J. Memb. Sci. 138 (1998) 115, A.S. da Silva Sobrino, G. Czremuszkin, M. Latreche, M.R. Wertheimer, J. Vac. Sci. Technol. A(1999) 1566, O. Górbig, S. Nehlsen, J. Müller, J. Memb. Sci. 138 (1998) 115, A.S. da Silva Sobrino, G. Czremuszkin, M. Latreche, M.R. Wertheimer, J. Vac. Sci. Technol. TO
18 (2000) 149), habiéndose conseguido en este caso un cierto control sobre la estructura porosa de la capa depositada mediante el manejo de condiciones adecuadas del plasma (presión de trabajo, gas de plasma, etc.) durante el proceso de descomposición del precursor inorgánico. El método que aquí se reivindica plantea la realización de ciclos de deposición sucesivos de partes orgánicas e inorgánicas, consiguiéndose el control de la textura de la capa depositada mediante una secuenciación adecuada de estos ciclos.18 (2000) 149), having in this case achieved some control over the porous structure of the deposited layer by managing adequate plasma conditions (working pressure, plasma gas, etc.) during the decomposition process of the inorganic precursor. The method claimed here involves performing successive deposition cycles of organic and inorganic parts, achieving control of the texture of the deposited layer by means of adequate sequencing of these cycles.
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Constituye un objeto de la presente invención un procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma que consta de las siguientes etapas: a) colocación del substrato en la cámara de reacción del plasma b) introducción de un precursor volátil que contiene el elemento inorgánico cuyo óxido se quiere depositar c) alimentación con oxígeno o mezclas O2/gas inerte de la fuente de plasma en la cámara de reacción del plasma d) activación de la fuente de plasma en dicha cámara para hacer reaccionar el gas precursor con el plasma de oxígeno provocando la deposición de la capa de óxido inorgánico sobre el sustratoAn object of the present invention is a process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor phase deposition consisting of the following steps: a) placement of the substrate in the plasma reaction chamber b ) introduction of a volatile precursor containing the inorganic element whose oxide is to be deposited c) supply with oxygen or O 2 / inert gas mixtures from the plasma source in the plasma reaction chamber d) activation of the plasma source in said chamber to react the precursor gas with the oxygen plasma causing the inorganic oxide layer to deposit on the substrate
Entre las sucesivas etapas de deposición del óxido inorgánico se intercalan etapas de deposición de capas orgánicas, de forma que durante la etapa de deposición de la capa inorgánica se produzca la eliminación por combustión de la parte orgánica previamente depositada. La deposición de la capa orgánica consta de las siguientes etapas: a) introducción de un precursor volátil que contiene el compuesto orgánico que se quiere depositar b) alimentación con oxígeno o mezclas O2/gas inerte de la fuente de plasma en la cámara de reacción del plasma c) activación de la fuente de plasma en dicha cámara para hacer reaccionar el gas precursor con el plasma de oxígeno provocando la deposición de la capa del compuesto orgánico sobre el substrato.Between successive stages of deposition of the inorganic oxide, stages of deposition of organic layers are interspersed, so that during the deposition stage of the inorganic layer, the combustion removal of the previously deposited organic part occurs. The deposition of the organic layer consists of the following steps: a) introduction of a volatile precursor containing the organic compound to be deposited b) feeding with oxygen or O 2 / inert gas mixtures from the plasma source into the reaction chamber plasma c) activation of the plasma source in said chamber to react the precursor gas with the oxygen plasma causing deposition of the organic compound layer on the substrate.
El substrato puede ser cualquier material metálico, cerámico, vidrio o fibra óptica cuya forma puede ser plana, en forma de tubo o con otras geometría.The substrate can be any metallic, ceramic, glass or optical fiber material whose shape can be flat, tube-shaped or with other geometries.
El precursor volátil puede ser cualquier compuesto de elementos metálicos de la tabla periódica que descompuesto por un plasma oxidante origine un óxido. La fuente de plasma es un generador de microondas, un generador de radiofrecuencias o una fuente de corriente continua que se apoya mediante un campo magnético o una fuente de electrones y que puede trabaja en régimen de resonancia electrónica ciclotrónica ("electrón ciclotrón resonance", ECR) a una presión comprendida entre 10"2 y 10"4 Torr y a una temperatura comprendida entre la temperatura ambiente y la temperatura de descomposición o grafitización del compuesto orgánico o bien en régimen convencional a una presión comprendida entre 100 y 10"2 Torr y a una temperatura comprendida igualmente entre la temperatura ambiente y la temperatura de descomposición o grafitización del compuesto orgánico. El oxígeno se alimenta en una relación de al menos 4: 1 con respecto al precursor volátil y de al menos 10:1 con respecto al compuesto orgánico.The volatile precursor can be any compound of metallic elements from the periodic table that decomposed by an oxidizing plasma causes an oxide. The plasma source is a microwave generator, a radio frequency generator or a direct current source that is supported by a magnetic field or an electron source and which can work in cyclotron electronic resonance mode ("electron cyclotron resonance", ECR ) at a pressure between 10 "2 and 10 " 4 Torr and at a temperature between room temperature and the decomposition or graphitization temperature of the organic compound or in the conventional regime at a pressure between 100 and 10 "2 Torr and at a temperature also comprised between the ambient temperature and the decomposition or graphitization temperature of the organic compound.Oxygen is supplied in a ratio of at least 4: 1 with respect to the volatile precursor and at least 10: 1 with respect to the organic compound.
El compuesto orgánico puede ser cualquier compuesto orgánico volátil formado por carbono, hidrógeno y/o oxígeno, en particular hidrocarburos alifáticos, alicíclicos o aromáticos y en particular tolueno. El procedimiento puede aplicarse a un precursor volátil de un solo metal o a precursores metálicos de dos o más metales.The organic compound can be any volatile organic compound formed by carbon, hydrogen and / or oxygen, in particular aliphatic, alicyclic or aromatic hydrocarbons and in particular toluene. The procedure can be applied to a volatile single metal precursor or to metallic precursors of two or more metals.
Constituye otro objeto de la presente invención las capas finas porosas preparadas mediante el procedimiento descrito, así como la utilización de dichas capas finas porosas como sensores de gases (en particular depositadas sobre un substrato de fibra óptica), como membranas separadoras de gases o como materiales de uso microelectrónico.Another object of the present invention is the porous thin layers prepared by the described procedure, as well as the use of said porous thin layers as gas sensors (in particular deposited on a fiber optic substrate), as gas separation membranes or as materials for microelectronic use.
BREVE DESCRIPCIÓN DE LA FIGURABRIEF DESCRIPTION OF THE FIGURE
Figura 1: Esquema del sistema experimental, en el cual: 1. Fuente de plasmaFigure 1: Schematic of the experimental system, in which: 1. Plasma source
2. Cámara de reacción en acero inoxidable2. Reaction chamber in stainless steel
3. Sistema de dosificación de los precursores3. Precursor dosing system
4. Sistema de bombeo a base de bombas turbomolecular y rotatoria4. Pumping system based on turbomolecular and rotary pumps
5. Alimentación de gases para la fuente de plasma 6. Portamuestras para la colocación del substrato ' Figura 2: Imágenes de microscopía electrónica de barrido (SEM) de las capas obtenidas en el ejemplo de realización de la invención.5. Gas supply for the plasma source 6. Sample holder for substrate placement ' Figure 2: Scanning electron microscopy (SEM) images of the layers obtained in the embodiment of the invention.
Figura 3: Resultados experimentales del análisis por medio de elipsometría espectroscópica de una capa de SiO2 porosa expuesta en condiciones controladas a atmósferas con distintos grados de humedad relativa desde 5 a 76%.Figure 3: Experimental results of the analysis by means of spectroscopic ellipsometry of a porous SiO 2 layer exposed under controlled conditions to atmospheres with different degrees of relative humidity from 5 to 76%.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
El control preciso de la porosidad en láminas delgadas de óxidos de metales y otros materiales inorgánicos es muy importante para muchas aplicaciones de tales sistemas. Por ejemplo, el tamaño y forma de los poros es un parámetro crítico a la hora de definir la capacidad de separación de membranas inorgánicas. La propia estructura porosa, junto con el espesor de la capa, determina la sensibilidad y capacidad de respuesta de los sensores en el caso de utilizarse la tecnología de láminas delgadas para su preparación o para modificar su respuesta. Por otro lado, el hecho que el método propuesto implique procedimientos de síntesis a temperatura ambiente representa una ventaja indudable frente a los métodos químicos de síntesis en condiciones agresivas u otros que involucren calentar las piezas a elevadas temperaturas. En efecto, por las características de su utilización, las capas finas porosas han de prepararse sobre substratos, actuando estos como elementos activos, como en el caso de los sensores, o meramente pasivos como portadores de las capas. En el primer caso es evidente la necesidad de no provocar cambios en la funcionalidad, composición y otras características de los sensores. En el segundo caso, es importante mantener temperaturas de preparación bajas, cuando los substratos no pueden ser alterados por reacción química. Este es el caso por ejemplo en la utilización de aglomerados de fibras metálicas como substrato para membranas filtrantes o también el caso de substratos micro-porosos cerámicos cuando deba evitarse cualquier reacción que altere su composición.Precise control of the porosity in thin sheets of metal oxides and other inorganic materials is very important for many applications of such systems. For example, the size and shape of the pores is a critical parameter when defining the separation capacity of inorganic membranes. The porous structure itself, together with the thickness of the layer, determines the sensitivity and responsiveness of the sensors in the case of using thin film technology for their preparation or to modify their response. On the other hand, the fact that the proposed method involves synthesis procedures at room temperature represents an undoubted advantage over chemical synthesis methods under aggressive conditions or others that involve heating the parts to high temperatures. Indeed, due to the characteristics of their use, the porous thin layers have to be prepared on substrates, these acting as active elements, as in the case of sensors, or merely passive as carriers of the layers. In the first case, the need to avoid causing changes in the functionality, composition and other characteristics of the sensors is evident. In the second case, it is important to maintain low preparation temperatures, when the substrates cannot be altered by chemical reaction. This is the case, for example, in the use of metal fiber agglomerates as a substrate for filter membranes, or also the case of ceramic micro-porous substrates when any reaction that alters its composition should be avoided.
Las características del método lo hacen apto para preparar capas de composición química variable en profundidad. Esta posibilidad puede ser de gran interés para hacer compatible químicamente una capa porosa y un substrato determinado, evitándose problemas de delaminación. Asimismo, esta posibilidad permite paliar problemas de tensión mecánica entre materiales de distintos coeficientes de dilatación cuando el sistema capa/substrato tenga que utilizarse a temperaturas elevadasThe characteristics of the method make it suitable for preparing layers of variable chemical composition in depth. This possibility may be of great interest to chemically make compatible a porous layer and a specific substrate, avoiding delamination problems. Also, this possibility allows to alleviate problems of mechanical stress between materials with different coefficients of expansion when the layer / substrate system has to be used at high temperatures
Dado que se trata de un procedimiento secuencial es posible asimismo preparar capas con porosidad controlada y variable en espesor desde el interior al exterior de la misma. Esta posibilidad puede tener gran interés para limitar procesos de colmatación con cenizas o polvos o, simplemente, para mejorar la resistencia a la abrasión de la capa porosa.Since it is a sequential procedure, it is also possible to prepare layers with controlled porosity and variable in thickness from the inside to the outside of the same. This possibility may be of great interest to limit clogging processes with ash or powders or, simply, to improve the abrasion resistance of the porous layer.
El método de preparación desarrollado consiste en la deposición desde fase vapor inducida por un plasma de oxígeno. Este método se basa en la descomposición de precursores volátiles dosificados de manera controlada sobre el substrato a cubrir por la capa porosa. Un esquema del sistema experimental se presenta en ia Figura 1. Se utiliza una fuente de plasma externo (1) de 16 cm de diámetro excitada por microondas, que puede funcionar en el régimen ECR a bajas presiones del orden de 10"3 Torrs y en el modo convencional a presiones de algunos Torrs. Los ciclos de deposición del material orgánico se realizan en las condiciones de alta presión, utilizando tolueno como precursor orgánico y oxígeno como gas que alimenta la fuente de plasma. Este proceso constituye uno de los puntos novedosos del procedimiento ya que generalmente no se consigue la formación de capas poliméricas orgánicas utilizando plasmas de oxígeno; en esas condiciones ae suele producir la eliminación de la capa orgánica formada. La potencia de microondas utilizada es del orden de 700 w, estando los flujos de oxígeno en la fuente y. de tolueno sobre el substrato en una relación de al menos diez a uno. Valores típicos de flujos de oxígeno utilizados están en el orden de 50 sccm. Para alcanzar las presiones de trabajo necesarias puede ser necesario disminuir la capacidad de bombeo del sistema por estrangulamiento del mismo.The method of preparation developed consists of the deposition from the vapor phase induced by an oxygen plasma. This method is based on the decomposition of volatile precursors dosed in a controlled manner on the substrate to be covered by the porous layer. A diagram of the experimental system is presented in Figure 1. A 16 cm diameter microwave-excited external plasma source (1) is used, which can operate in the ECR regime at low pressures of the order of 10 "3 Torrs and in the conventional mode at pressures of some Torrs. The deposition cycles of the organic material are carried out under high pressure conditions, using toluene as the organic precursor and oxygen as the gas that feeds the plasma source. This process constitutes one of the novel points of procedure since the formation of organic polymeric layers is generally not achieved using oxygen plasmas; under these conditions, the removal of the formed organic layer usually occurs.The microwave power used is of the order of 700 w, with the oxygen flows being the source and. of toluene on the substrate in a ratio of at least ten to one. Typical values of oxygen fluxes used are in the ord 50 sccm In order to achieve the necessary working pressures, it may be necessary to decrease the pumping capacity of the system by throttling it.
Cambiando el modo de trabajo del sistema, la capa orgánica se quema a temperatura ambiente por mediación del plasma de oxígeno mientras que se deposita simultáneamente el óxido inorgánico de que se trate. En ese momento se sustituye el tolueno por un precursor volátil del metal a depositar v el modo de trabajo del plasma se establece dentro de las condiciones ECR a baja presión. Las presiones de trabajo en este caso son del orden de 1*10"2 Torr, siendo la relación de flujos entre el oxígeno que alimenta la fuente y el precursor metálico volátil de al menos 4 El proceso de generación de poros es el resultado de la evolución de los productos de combustión de la parte orgánica previamente depositada (C02 y H20) y de la deposición simultánea del componente inorgánico.By changing the way the system works, the organic layer is burned at room temperature through the oxygen plasma while the inorganic oxide in question is simultaneously deposited. At that time toluene is replaced by a volatile precursor of the metal to be deposited and the plasma working mode is established within the ECR conditions at low pressure. The working pressures in this case are of the order of 1 * 10 "2 Torr, being the ratio of flows between the oxygen that feeds the source and the volatile metallic precursor of at least 4 The process of Pore generation is the result of the evolution of the combustion products of the previously deposited organic part (C0 2 and H 2 0) and the simultaneous deposition of the inorganic component.
Se logra controlar la estructura porosa de la capa regulando el número de ciclos y el tiempo de deposición de las capas orgánica e inorgánica dentro de cada ciclo. Un volumen de poro mayor se consigue aumentando el espesor relativo de la capa orgánica y disminuyendo el tiempo de deposición de la capa de óxido en cada ciclo.Controlling the porous structure of the layer is achieved by regulating the number of cycles and the deposition time of the organic and inorganic layers within each cycle. A larger pore volume is achieved by increasing the relative thickness of the organic layer and decreasing the deposition time of the oxide layer with each cycle.
Variando convenientemente el tiempo de los ciclos de deposición de las capas orgánica e inorgánica se podrían preparar mediante la metodología propuesta capas de porosidad variable en profundidad. Asimismo, combinando precursores inorgánicos de distintos elementos químicos es posible controlar la composición química de la capa en profundidad y/o preparar capas de óxidos mixtos. En este último caso se dosificarían en la cámara de plasma simultáneamente dos o más precursores inorgánicos.By conveniently varying the deposition cycle times of the organic and inorganic layers, depth-variable porosity layers could be prepared using the proposed methodology. Also, by combining inorganic precursors of different chemical elements, it is possible to control the chemical composition of the layer in depth and / or prepare layers of mixed oxides. In the latter case, two or more inorganic precursors would be dosed simultaneously into the plasma chamber.
Ejemplo de realización de la invenciónExample of embodiment of the invention
Un ejemplo de aplicación del procedimiento lo constituye la preparación de capas porosas de SiO2. Como precursor volátil de Si se ha utilizado Si(CH3)3Cl, siendo el flujo de este compuesto de 5 centímetros cúbicos en condiciones standard por minuto (sccm) cuando se procede a la deposición de la parte inorgánica. Las condiciones de trabajo ECR se consiguieron con una potencia de microondas de 400 w, y un flujo de oxígeno de alimentación de la fuente de 20 sccm. Con las condiciones de bombeo utilizadas, estos valores de flujo daban como resultado una presión en la cámara de plasma de 1*10"2 Torr. Para la obtención del depósito orgánico se utilizó un flujo de tolueno de 5 sccm y uno de oxígeno de 50 sccm. Tras estrangular el sistema de bombeo se obtuvo una presión de trabajo dentro de la cámara de plasma de 1.5 Torrs. Un ejemplo de ciclos utilizados para controlar la porosidad de la capa consistió en los siguientes protocolos:An example of application of the procedure is the preparation of porous SiO 2 layers. As a volatile precursor of Si, Si (CH 3 ) 3 Cl has been used, the flow of this compound being 5 cubic centimeters under standard conditions per minute (sccm) when the inorganic part is deposited. ECR working conditions were achieved with a microwave power of 400 w, and a source feed oxygen flow of 20 sccm. With the pumping conditions used, these flow values resulted in a pressure in the plasma chamber of 1 * 10 "2 Torr. To obtain the organic deposit, a toluene flow of 5 sccm and an oxygen flow of 50 sccm After throttling the pumping system, a working pressure was obtained within the plasma chamber of 1.5 Torrs An example of cycles used to control the porosity of the layer consisted of the following protocols:
Protocolo a) 1.- SiO2 75 nm 2.- Polímero 10 nm 3.- SiO2 150 nm 4.- Polímero 10 nm 5.- SiO2 375 nm Protocolo b) 1 - SiO2 75 nm 2.- Polímero 20 nm 3.- SiO? 150 nm 4.- PolímeroProtocol a) 1.- SiO 2 75 nm 2.- Polymer 10 nm 3.- SiO 2 150 nm 4.- Polymer 10 nm 5.- SiO 2 375 nm Protocol b) 1 - SiO 2 75 nm 2.- Polymer 20 nm 3.- SiO? 150 nm 4.- Polymer
20 nm 5.- SiO2 375 nm Protocolo c) 1.- SiO275 nm 2.- Polímero 200 nm 3.- SiO2 150 nm 4.- Polímero20 nm 5.- SiO 2 375 nm Protocol c) 1.- SiO 2 75 nm 2.- Polymer 200 nm 3.- SiO 2 150 nm 4.- Polymer
200 nm 5.- SiO2 375 nm En la Figura 2 se muestran una serie de imágenes de microscopía SEM de las capas obtenidas según los tres protocolos anteriores. Puede observarse claramente que la porosidad aumenta del protocolo a) al c), en el sentido en que aumenta el tiempo de deposición de la capa o capas orgánicas. La caracterización de estas capas por métodos de adsorción (método BET) muestra que tienen superficies específicas mayores de 30 m2 g"1 y una estructura de poros bien definida.200 nm 5.- SiO 2 375 nm Figure 2 shows a series of SEM microscopy images of the layers obtained according to the three previous protocols. It can be clearly seen that the porosity increases from protocol a) to c), in the sense that the deposition time of the organic layer or layers increases. The characterization of these layers by adsorption methods (BET method) shows that they have specific surfaces greater than 30 m 2 g "1 and a well defined pore structure.
Ejemplo de utilización como sensores ópticosExample of use as optical sensors
Gracias a la microestructura porosa las capas de SiO2 pueden utilizarse como sensores ópticos de gases. Una aplicación típica es la de su uso como sensor de humedad. En la Figura 3 se muestran los resultados experimentales del análisis por medio de elipsometría espectroscópica de una capa de SiO2 porosa expuesta en condiciones controladas a atmósferas con distintos grados de humedad relativa desde 5 a 76%. Los parámetros ópticos tanψ y eos Δ varían significativamente y de forma reversible con el grado de humedad, pudiéndose establecer una correlación directa entre las características ópticas de la capa y el grado de humedad ambiente. La evolución observada tiene su origen en la adsorción reversible de vapor de agua en la estructura porosa de la capa. En el caso concreto de la Figura 3 las condiciones de preparación de la capa cuyo comportamiento se refleja son:Thanks to the porous microstructure, the SiO 2 layers can be used as optical gas sensors. A typical application is for use as a humidity sensor. Figure 3 shows the experimental results of the analysis by means of spectroscopic ellipsometry of a porous SiO 2 layer exposed under controlled conditions to atmospheres with different degrees of relative humidity from 5 to 76%. The optical parameters tanψ and eos Δ vary significantly and reversibly with the degree of humidity, being able to establish a direct correlation between the optical characteristics of the layer and the degree of ambient humidity. The observed evolution has its origin in the reversible adsorption of water vapor in the porous structure of the layer. In the specific case of Figure 3, the preparation conditions of the layer whose behavior is reflected are:
- capa polimérica: espesor 5nm- polymeric layer: thickness 5nm
- capa SiO2 : espesor 150 nm- SiO 2 layer: thickness 150 nm
- capa polimérica: espesor 5 nm - capa SiO2 : espesor 300 nm - polymeric layer: thickness 5 nm - SiO 2 layer: thickness 300 nm

Claims

REIVINDICACIONES
1.- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma que consta de las siguientes etapas: a) colocación del substrato en la cámara de reacción del plasma b) introducción de un precursor volátil ue contiene el elemento inorgánico cuyo óxido se quiere depositar c) alimentación con oxígeno o mezclas O2/gas inerte de la fuente de plasma en la cámara de reacción del plasma d) activación de la fuente de plasma en dicha cámara para hacer reaccionar el gas precursor con el plasma de oxígeno provocando la deposición de la capa de óxido inorgánico sobre el substrato y caracterizado porque se intercalan entre las sucesivas etapas de deposición del óxido inorgánico etapas de deposición de capas orgánicas, de forma que durante la etapa de deposición de la capa inorgánica se produzca la eliminación por combustión de la parte orgánica previamente depositada.1.- Procedure for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma-assisted vapor deposition consisting of the following stages: a) placement of the substrate in the plasma reaction chamber b) introduction of a precursor volatile ue contains the inorganic element whose oxide is to be deposited c) feeding with oxygen or mixtures O 2 / inert gas from the plasma source in the plasma reaction chamber d) activation of the plasma source in said chamber to react the precursor gas with the oxygen plasma causing the deposition of the inorganic oxide layer on the substrate and characterized in that the stages of deposition of organic layers are intercalated between the successive stages of deposition of the organic layers, so that during the deposition stage of the Inorganic layer occurs combustion removal of previously deposited organic part.
2 - Procedimiento para la preparación de capas finas porosas dé óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según la reivindicación 1, caracterizado porque la deposición de la capa orgánica consta de las siguientes etapas: a) introducción de un precursor volátil que contiene el compuesto orgánico que se quiere depositar b) alimentación con oxígeno o mezclas O2/gas inerte de la fuente de plasma en la cámara de reacción del plasma c) activación de la fuente de plasma en dicha cámara para hacer reaccionar el gas precursor con el plasma de oxígeno provocando la deposición de la capa del compuesto orgánico sobre el substrato. 2 - Procedure for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claim 1, characterized in that the deposition of the organic layer consists of the following steps: a) introduction of a volatile precursor containing the organic compound to be deposited b) feeding with oxygen or O 2 / inert gas mixtures of the plasma source in the plasma reaction chamber c) activation of the plasma source in said chamber to react the precursor gas with the oxygen plasma causing the deposition of the organic compound layer on the substrate.
3 - Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1 y 2, caracterizado porque el substrato puede ser cualquier material metálico, cerámico, vidrio o fibra óptica cuya forma puede ser plana, en forma de tubo o con otras geometrías.3 - Procedure for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma-assisted vapor deposition according to claims 1 and 2, characterized in that the substrate can be any metallic, ceramic, glass or optical fiber material whose shape can be be flat, tube-shaped or with other geometries.
4 - Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1-3, caracterizado porque el precursor volátil es cualquier compuesto de elementos metálicos de la tabla periódica que descompuesto por un plasma oxidante origine un óxido.4 - Process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 1-3, characterized in that the volatile precursor is any composite of metallic elements of the periodic table that decomposed by a Oxidizing plasma causes an oxide.
5.- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1-4, caracterizado porque la fuente de plasma es un generador de microondas, un generador de radiofrecuencias o una fuente de corriente continua.5. Process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 1-4, characterized in that the plasma source is a microwave generator, a radio frequency generator or a DC power source
6 - Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según la reivindicación 5, caracterizado porque la fuente de plasma se apoya mediante un campo magnético o una fuente de electrones.6 - Method for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claim 5, characterized in that the plasma source is supported by a magnetic field or an electron source.
7.- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 5 y 6, caracterizado porque la fuente de plasma trabaja en régimen de resonancia electrónica ciclotrónica ("electrón ciclotrón resonance", ECR) a una presión comprendida entre 10"2 y 10"4 Torr y a una temperatura comprendida entre la temperatura ambiente y la temperatura de descomposición o grafitización del compuesto orgánico. 7. Procedure for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 5 and 6, characterized in that the plasma source works in cyclotronic electron resonance regime ("electron cyclotron resonance"", ECR) at a pressure between 10 " 2 and 10 "4 Torr and at a temperature between room temperature and the decomposition or graphite temperature of the organic compound.
8 - Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 5 y 6, caracterizado porque la fuente de plasma trabaja en régimen convencional a una presión comprendida entre 100 y 10"2 Torr y a una temperatura comprendida entre la temperatura ambiente y la temperatura de descomposición o grafitización del compuesto orgánico.8 - Procedure for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 5 and 6, characterized in that the plasma source works in a conventional regime at a pressure between 100 and 10 " 2 Torr and at a temperature between room temperature and the decomposition or graphite temperature of the organic compound.
9.- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1-8, caracterizado porque el oxígeno se alimenta en una relación de al menos 4: 1 con respecto al precursor volátil.9. Process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma-assisted vapor deposition according to claims 1-8, characterized in that the oxygen is fed in a ratio of at least 4: 1 with respect to the volatile precursor
10.- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1-9, caracterizado porque el oxígeno se alimenta en una relación de al menos 10: 1 con respecto al compuesto orgánico.10. Process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 1-9, characterized in that the oxygen is fed in a ratio of at least 10: 1 with respect to the organic compound
11 - Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1-10, caracterizado porque el compuesto orgánico es cualquier compuesto orgánico volátil formado por carbono, hidrógeno y/o oxígeno, en particular hidrocarburos alifáticos, alicíclicos o aromáticos.11 - Process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 1-10, characterized in that the organic compound is any volatile organic compound formed by carbon, hydrogen and / or oxygen , in particular aliphatic, alicyclic or aromatic hydrocarbons.
12.- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicación 11, caracterizado porque el compuesto orgánico es tolueno.12. Process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claim 11, characterized in that the organic compound is toluene.
13.- .- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1-12, caracterizado porque el procedimiento se aplica a un precursor volátil de un solo metal. 13.- Method for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 1-12, characterized in that the procedure is applied to a single metal volatile precursor.
14.- Procedimiento para la preparación de capas finas porosas de óxidos inorgánicos sobre substratos mediante la deposición desde fase vapor asistida por plasma según las reivindicaciones 1-12, caracterizado porque se el procedimiento se aplica a precursores metálicos de dos o más metales.14. Process for the preparation of porous thin layers of inorganic oxides on substrates by means of plasma assisted vapor deposition according to claims 1-12, characterized in that the process is applied to metal precursors of two or more metals.
15 - Capas finas porosas de óxidos inorgánicos preparadas mediante un procedimiento según las reivindicaciones 1-14.15 - Porous thin layers of inorganic oxides prepared by a process according to claims 1-14.
16.- Utilización de las capas finas porosas de óxidos inorgánicos según la reivindicación 15 como sensores de gases, en particular depositadas sobre un substrato de fibra óptica.16. Use of the porous thin layers of inorganic oxides according to claim 15 as gas sensors, in particular deposited on a fiber optic substrate.
17.- Utilización de las capas finas porosas de óxidos inorgánicos según la reivindicación 15 como membranas separadoras de gases.17. Use of the porous thin layers of inorganic oxides according to claim 15 as gas separating membranes.
18 - Utilización de las capas finas porosas de óxidos inorgánicos según la reivindicación 15 como materiales de uso microelectrónico. 18 - Use of the porous thin layers of inorganic oxides according to claim 15 as microelectronic materials.
PCT/ES2002/000193 2001-04-19 2002-04-18 Method for preparing thin porous layers of inorganic oxides WO2002086190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200100911 2001-04-19
ES200100911A ES2186530B1 (en) 2001-04-19 2001-04-19 PROCEDURE FOR THE PREPARATION OF POROUS THIN LAYERS OF INORGANIC OXIDES.

Publications (1)

Publication Number Publication Date
WO2002086190A1 true WO2002086190A1 (en) 2002-10-31

Family

ID=8497485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000193 WO2002086190A1 (en) 2001-04-19 2002-04-18 Method for preparing thin porous layers of inorganic oxides

Country Status (2)

Country Link
ES (1) ES2186530B1 (en)
WO (1) WO2002086190A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619380A1 (en) * 1993-04-06 1994-10-12 Ce.Te.V. Centro Tecnologie Del Vuoto Thin film deposition apparatus and process utilizing PECVD and sputtering
WO1999057330A1 (en) * 1998-05-01 1999-11-11 Desu Seshu B Oxide/organic polymer multilayer thin films deposited by chemical vapor deposition
EP0962549A2 (en) * 1998-05-28 1999-12-08 John T. Felts Multiple source plasma deposition apparatus
US6054188A (en) * 1999-08-02 2000-04-25 Becton Dickinson And Company Non-ideal barrier coating architecture and process for applying the same to plastic substrates
EP1119035A2 (en) * 2000-01-18 2001-07-25 Applied Materials, Inc. Method for depositing a low dielectric constant film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0619380A1 (en) * 1993-04-06 1994-10-12 Ce.Te.V. Centro Tecnologie Del Vuoto Thin film deposition apparatus and process utilizing PECVD and sputtering
WO1999057330A1 (en) * 1998-05-01 1999-11-11 Desu Seshu B Oxide/organic polymer multilayer thin films deposited by chemical vapor deposition
EP0962549A2 (en) * 1998-05-28 1999-12-08 John T. Felts Multiple source plasma deposition apparatus
US6054188A (en) * 1999-08-02 2000-04-25 Becton Dickinson And Company Non-ideal barrier coating architecture and process for applying the same to plastic substrates
EP1119035A2 (en) * 2000-01-18 2001-07-25 Applied Materials, Inc. Method for depositing a low dielectric constant film

Also Published As

Publication number Publication date
ES2186530A1 (en) 2003-05-01
ES2186530B1 (en) 2005-05-01

Similar Documents

Publication Publication Date Title
TWI759365B (en) Method for deposition of thin film and metal oxide thin film on substrate surface
TWI748046B (en) Plasma resistant coating of porous body by atomic layer deposition
Li et al. Modification of ceramic membranes for pore structure tailoring: The atomic layer deposition route
Chen et al. Ceramic tubular nanofiltration membranes with tunable performances by atomic layer deposition and calcination
Ott et al. Modification of porous alumina membranes using Al2O3 atomic layer controlled deposition
CN108330467A (en) The multilayer plasma resistant coating obtained by atomic layer deposition
US8377730B2 (en) Method of manufacturing vertically aligned nanotubes, method of manufacturing sensor structure, and sensor element manufactured thereby
Gu et al. Precise control of highly ordered arrays of nested semiconductor/metal nanotubes
JP4562565B2 (en) Inorganic porous separation membrane and method for producing the same
Pardon et al. Pt–Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores
RU2014127540A (en) COATED WITH HIGH-STRENGTH MATERIAL PRODUCTS FROM METAL, CARBON ALLOY, METAL CERAMICS OR CERAMICS AND METHOD FOR PRODUCING SUCH PRODUCTS
JP4534565B2 (en) Method for producing ceramic porous
JP2003238270A (en) Method of producing porous ceramic material
Preiß et al. Characterization of WO3 thin films prepared by picosecond laser deposition for gas sensing
Li et al. Sol-gel derived zirconia membrane on silicon carbide substrate
Han et al. Electrochemical vapor deposition synthesis and oxygen permeation properties of dense zirconia–yttria–ceria membranes
Nagasawa et al. High-temperature stability of PECVD-derived organosilica membranes deposited on TiO2 and SiO2–ZrO2 intermediate layers using HMDSO/Ar plasma
WO2002086190A1 (en) Method for preparing thin porous layers of inorganic oxides
Yamaguchi et al. Reaction control of tetraethyl orthosilicate (TEOS)/O 3 and tetramethyl orthosilicate (TMOS)/O 3 counter diffusion chemical vapour deposition for preparation of molecular-sieve membranes
Hemmer et al. Nanostructured ZrO2 membranes prepared by liquid-injection chemical vapor deposition
Stano et al. Ultralight interconnected metal oxide nanotube networks
JP6683365B2 (en) Method for manufacturing gas separation filter
áde Vries Kinetic study of the modified chemical vapour deposition process in porous media
Li et al. Selective-area ALD for positively and negatively charged layers into the ion-beam track-etched conical pores in polyethylene terephthalate
Suda et al. Preparation and Characterization of SiC Membranes for High Temperature Hydrogen Separation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP