WO2003001075A1 - Explosive assisted expanding fastener - Google Patents

Explosive assisted expanding fastener Download PDF

Info

Publication number
WO2003001075A1
WO2003001075A1 PCT/US2002/019627 US0219627W WO03001075A1 WO 2003001075 A1 WO2003001075 A1 WO 2003001075A1 US 0219627 W US0219627 W US 0219627W WO 03001075 A1 WO03001075 A1 WO 03001075A1
Authority
WO
WIPO (PCT)
Prior art keywords
fastener
explosive
section
tip section
assisted
Prior art date
Application number
PCT/US2002/019627
Other languages
French (fr)
Inventor
Michael O'banion
William Sauerwein
Original Assignee
Black & Decker, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Black & Decker, Inc. filed Critical Black & Decker, Inc.
Publication of WO2003001075A1 publication Critical patent/WO2003001075A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/04Rivets; Spigots or the like fastened by riveting
    • F16B19/08Hollow rivets; Multi-part rivets
    • F16B19/12Hollow rivets; Multi-part rivets fastened by fluid pressure, including by explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/04Rivets; Spigots or the like fastened by riveting
    • F16B19/08Hollow rivets; Multi-part rivets
    • F16B19/12Hollow rivets; Multi-part rivets fastened by fluid pressure, including by explosion
    • F16B19/125Hollow rivets; Multi-part rivets fastened by fluid pressure, including by explosion fastened by explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/04Rivets; Spigots or the like fastened by riveting
    • F16B19/08Hollow rivets; Multi-part rivets
    • F16B19/086Self-piercing rivets

Definitions

  • the present invention relates generally to steel framing and, more particularly, to an improved cost-effective method for fastening steel framing.
  • Steel framing is revolutionizing the construction industry. Steel is a high quality framing material that will not shrink, warp, or attract termites and other wood boring insects. In recent years, the price of steel has become more competitive with wood and other construction materials. However, despite its advantages, steel framing has not become prevalent in the residential construction industry. The lack of a quick and cost effective technique for fastening steel members has prevented steel framing from emerging as the predominant building material in residential construction.
  • the steel fastening technique will be comparable in speed to an air nailer used to fasten wood materials. It is further envisioned that the steel fastening technique will provide a minimal gap between steel members, a pullout force of at least 216 lb., a shear force of at least 164 lb., as well as cause minimal destruction of any galvanize coating on the steel members.
  • an explosive assisted fastener for joining steel framing members.
  • the fastener is comprised of an integrally formed member having a head section, a stem section and a tip section, such that the head section is disposed at a first end of the stem section and adapted to be linearly driven by a driving device into the framing members, and the tip section is disposed at a distal second end of the stem section and adapted to penetrate the framing members.
  • the fastener further includes an explosive material embedded in the tip section of the fastener. In operation, the fastener is driven through the framing members until the head section of the fastener seats against an outer surface of the framing members. Once driven into place, the explosive material residing in the fastener is detonated, thereby radially expanding the tip section of the fastener and preventing removal of the fastener from the framing members.
  • Figure 1 is a fragmentary prospective view of a steel framing member having two additional steel framing members fastened thereto in accordance with the present invention
  • Figure 2 is a side view of a first preferred embodiment of an explosive assisted fastener in accordance with the present invention.
  • Figures 3 and 4 are cross-sectional views, taken along line 5-5 of Figure 1 , illustrating the explosive assisted fastener being driven through the steel members in accordance with the present invention
  • Figure 5 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating detonation of explosive material embedded in the explosive assisted fastener in accordance with the present invention.
  • Figure 6 is a side view of a second preferred embodiment of an explosive assisted fastener in accordance with the present invention.
  • Figure 7 is a bottom view of the second preferred embodiment of the explosive assisted fastener in accordance with the present invention
  • Figure 8 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating the explosive assisted fastener penetrating partially through the steel members in accordance with the present invention
  • Figure 9 is a cross-sectional view, taken along line 5-5 of Figure 1, illustrating the explosive assisted fastener being driven against the outer surface of the steel members in accordance with the present invention.
  • Figure 10 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating a pin being driven into a bottom portion of the explosive assisted fastener in accordance with the present invention
  • Figure 11 is a side view of a third preferred embodiment of an explosive assisted fastener in accordance with the present invention.
  • Figures 12 and 13 are cross-sectional views, taken along line 5-5 of Figure 1 , illustrating the explosive assisted fastener being driven through the steel members in accordance with the present invention.
  • Figure 14 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating detonation of the explosive material embedded in the explosive assisted fastener in accordance with the present invention.
  • FIG. 1 a fragmentary prospective view of a longitudinal steel framing member 12 having two upright steel framing members 14 and 16 fastened thereto.
  • Each c-shaped framing member includes a bottom wall and two side walls having a thickness in the range from 0.018" to 0.071". Additionally, each steel member may range from 33 ksi to 80 ksi as is well known in the art.
  • one or more fasteners 20 may be used to join the upright steel framing members 14 and 16 to the longitudinal steel framing member 12.
  • fastening technique of the present invention is applicable to any two or more adjacent members made of steel (e.g., carbon steel, hardened steel, stainless steel, tool steel, etc.) or other material having similar attributes to those of steel (e.g., nonferrous metals, including nickel, alloys, titanium, copper and aluminum).
  • steel e.g., carbon steel, hardened steel, stainless steel, tool steel, etc.
  • other material having similar attributes to those of steel e.g., nonferrous metals, including nickel, alloys, titanium, copper and aluminum.
  • one or more explosive assisted fasteners 20 may be used to join the steel members.
  • a first exemplary embodiment of an explosive assisted fastener 20 is depicted in Figure 2.
  • the fastener 20 is comprised of an integrally formed member having a head section 22, a stem section 24 and a tip section 26.
  • the fastener 20 is preferably comprised of a harded steel material or, alternatively, a softer steel material having a tip section formed of a harded material such as carbide, ceramic, or a harden steel.
  • a small explosive charge 28 is embedded in either the tip section 26 or the stem section 24 of the fastener 20.
  • the fastener 20 is driven into the steel members until the head of the fastener seats against the outer surface of the steel members as shown in
  • the driving device is configured to engage the head section 22 of the fastener and may provide a back plate to prevent unwanted deformation of the steel members at the point at which the fastener pierces the steel members.
  • the driving device drives the fasteners at relatively high speeds (e.g., greater than 50 feet per second).
  • the driving device may drive the fastener at lower speeds, but apply a relatively high force.
  • an air nailer or other known driving devices may be configured to drive the fasteners 20 of the present invention into the steel members.
  • the embedded explosive charge 28 is detonated, thereby outwardly expanding the tip section 26 of the fastener 20.
  • the radially flared tip section 26 engages the underside of the steel members, thereby preventing removal of the fastener from the steel members.
  • a thin copper wire or other electrical conducting material 30 may be embedded in the fastener 20.
  • the wire 30 is externally accessible via the head section 22 of the fastener and extends through the stem section 24 to electrically couple to the explosive material 28 embedded in the fastener 20.
  • An external detonating device 32 electrically connected to the wire 30 may be used to detonate the explosive material 28. It is readily understood that the detonating device 32 may be associated with and cooperatively operable with the driving device used to drive the fastener into the steel members
  • a second exemplary embodiment of an explosive assisted fastener 20' is depicted in Figure 6.
  • the fastener 20' is comprised of an integrally formed member having a head section 22', a stem section 24', a tip section 26', and an embedded explosive material 28'.
  • the explosive material 28' may be one or many commercially available mechanically denotated materials, such as lead styphate, lead azide or a combination thereof.
  • the fastener 20' is further defined to include a circular bore 30' which is formed in the head section 22' of the fastener 20'. The bore 30' extends downwardly through the stem section 24' and then tapers inwardly to mimic the outer shape of the tip section 26'.
  • the bore 30' is adapted to receive a pin therein.
  • the expanding fastener 20' is driven into the steel members until the head of the fastener seats against the outer surface of the steel members as shown in Figures 8 and 9.
  • the embedded explosive material 28' may be mechanically detonated as shown in Figure 10.
  • a pin 34' may be driven into the bore 30' and into contact with the explosive material 28' residing in the tip section 26' of the fastener. The impact force of the pin 34' detonates the explosive material 28'. It is envisioned that the pin 34' may be integrated into the driving device that drives the fastener 20' into the steels members.
  • the driving device may be configured to provide a two-step actuator: a first step for driving the fastener into the steel members, and a second step for driving the pin 34' into contact with the explosive material.
  • a portion of the fastener extending beyond the underside of the steel members expands radially outward as best seen in Figure 10.
  • the radially flared portions of the tip section 26' prevents removal of the fastener from the steel members.
  • one or more fracture lines may be formed in the tip section 26' of the fastener 20' as depicted in Figure 7. It is, envisioned that the fracture lines may not extend to the distal end of the tip section 26', thereby maintaining the structural integrity of the tip section 26'. It is further envisioned that a plurality of raised ridges 32' may extend outwardly from the outer surface of the stem section 24' to further prevent removal of the fastener from the steel members.
  • the explosive material 28' may be detonated upon impact of the fastener with the outer surface of the steel framing members.
  • the fastener 20 is similarly driven into the steel members until the head section of the fastener seats against the outer surface of the steel members with the fastener 20".
  • the burn time of the explosive material 28' is configured such that the outward expansion of the tip section 26' does not occur until it extends beyond the underside of the steel members. As described above, the radially flared portions of the tip section 26' prevents removal of the fastener from the steel members.
  • FIG. 11-14 A third exemplary embodiment of an explosive assisted fastener 20" is depicted in Figures 11-14.
  • the fastener 20" is primarily comprised of an integrally formed member having a head section 22", a stem section 24", a tip section 26", and an embedded explosive material 28".
  • the fastener 20" includes a circular bore 30" which is formed in the head section 22" of the fastener 20".
  • the bore 30' extends downwardly into the stem section 24", but does not substantially extend into the tip section 26" of the fastener 20".
  • the explosive charge 28" is embedded in the stem section 24" of the fastener 20".
  • a plurality of raised ridges 32" extend outwardly from the outer surface of the stem section 24".
  • the stem section 24" may be comprised of a more ductile material than the remainder of the fastener.
  • the explosive assisted fastener 20" is driven into the steel members until the head of the fastener seats against the outer surface of the steel members as shown in Figures 12 and 13.
  • the embedded explosive charge 28" may be mechanically detonated as shown in Figure 13.
  • a pin 34" is driven into the bore 30" and into contact with the explosive material 28", such that the impact force of the pin 34" detonates the explosive material 28".
  • the outer walls of the stem section 24" expand outwardly into the adjacent surface of the framing members as shown in Figure 14.
  • the ridges 32" along the outer surface of the stem section 24" serve as teeth which prevent the removal of the fastener from the steel members.

Abstract

An explosive assisted fastener (20) is provided for joining steel framing members (12, 14, 16). The fastener (20) is comprised of an integrally formed member having a head section (22), a stem section (24) and a tip section (26), such that the head section (22) is disposed at a first end of the stem section (24) and adapted to be linearly driven by a driving device into the framing members, and the tip section (26) is disposed at a distal second end of the stem section (24) and adapted to penetrate the framing members. The fastener (20) further includes an explosive material embedded in the tip section (26) of the fastener. In operation, the fastener (20) is driven through the framing members until the head section (22) of the fastener seats against an outer surface of the framing members. Once driven into place, the explosive material (28) residing in the fastener is detonated, thereby radially expanding the tip section (26) of the fastener and preventing removal of the fastener from the framing members.

Description

EXPLOSIVE ASSISTED EXPANDING FASTENER
Cross-Reference to Related Applications
[0001] This application claims the benefit of U.S. Provisional Application No. 60/299,950, filed June 21 , 2001.
Background of the Invention
[0002] The present invention relates generally to steel framing and, more particularly, to an improved cost-effective method for fastening steel framing.
[0003] Steel framing is revolutionizing the construction industry. Steel is a high quality framing material that will not shrink, warp, or attract termites and other wood boring insects. In recent years, the price of steel has become more competitive with wood and other construction materials. However, despite its advantages, steel framing has not become prevalent in the residential construction industry. The lack of a quick and cost effective technique for fastening steel members has prevented steel framing from emerging as the predominant building material in residential construction.
[0004] Therefore, it is desirable to provide a quick and cost-effective technique for fastening steel members. It is envisioned that the steel fastening technique will be comparable in speed to an air nailer used to fasten wood materials. It is further envisioned that the steel fastening technique will provide a minimal gap between steel members, a pullout force of at least 216 lb., a shear force of at least 164 lb., as well as cause minimal destruction of any galvanize coating on the steel members.
Summary of the Invention
[0005] In accordance with the present invention, an explosive assisted fastener is provided for joining steel framing members. The fastener is comprised of an integrally formed member having a head section, a stem section and a tip section, such that the head section is disposed at a first end of the stem section and adapted to be linearly driven by a driving device into the framing members, and the tip section is disposed at a distal second end of the stem section and adapted to penetrate the framing members. The fastener further includes an explosive material embedded in the tip section of the fastener. In operation, the fastener is driven through the framing members until the head section of the fastener seats against an outer surface of the framing members. Once driven into place, the explosive material residing in the fastener is detonated, thereby radially expanding the tip section of the fastener and preventing removal of the fastener from the framing members.
[0006] Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Brief Description of the Drawings
[0007] Figure 1 is a fragmentary prospective view of a steel framing member having two additional steel framing members fastened thereto in accordance with the present invention;
[0008] Figure 2 is a side view of a first preferred embodiment of an explosive assisted fastener in accordance with the present invention;
[0009] Figures 3 and 4 are cross-sectional views, taken along line 5-5 of Figure 1 , illustrating the explosive assisted fastener being driven through the steel members in accordance with the present invention;
[0010] Figure 5 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating detonation of explosive material embedded in the explosive assisted fastener in accordance with the present invention; and
[0011] Figure 6 is a side view of a second preferred embodiment of an explosive assisted fastener in accordance with the present invention;
[0012] Figure 7 is a bottom view of the second preferred embodiment of the explosive assisted fastener in accordance with the present invention; [0013] Figure 8 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating the explosive assisted fastener penetrating partially through the steel members in accordance with the present invention;
[0014] Figure 9 is a cross-sectional view, taken along line 5-5 of Figure 1, illustrating the explosive assisted fastener being driven against the outer surface of the steel members in accordance with the present invention; and
[0015] Figure 10 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating a pin being driven into a bottom portion of the explosive assisted fastener in accordance with the present invention;
[0016] Figure 11 is a side view of a third preferred embodiment of an explosive assisted fastener in accordance with the present invention;
[0017] Figures 12 and 13 are cross-sectional views, taken along line 5-5 of Figure 1 , illustrating the explosive assisted fastener being driven through the steel members in accordance with the present invention; and
[0018] Figure 14 is a cross-sectional view, taken along line 5-5 of Figure 1 , illustrating detonation of the explosive material embedded in the explosive assisted fastener in accordance with the present invention.
Detailed Description of the Preferred Embodiments
[0019] Referring to Figure 1 , a fragmentary prospective view of a longitudinal steel framing member 12 having two upright steel framing members 14 and 16 fastened thereto. Each c-shaped framing member includes a bottom wall and two side walls having a thickness in the range from 0.018" to 0.071". Additionally, each steel member may range from 33 ksi to 80 ksi as is well known in the art. As will be more fully described below, one or more fasteners 20 may be used to join the upright steel framing members 14 and 16 to the longitudinal steel framing member 12. While the following description is provided with reference to this particular configuration, it is readily understood that the fastening technique of the present invention is applicable to any two or more adjacent members made of steel (e.g., carbon steel, hardened steel, stainless steel, tool steel, etc.) or other material having similar attributes to those of steel (e.g., nonferrous metals, including nickel, alloys, titanium, copper and aluminum).
[0020] In accordance with the present invention, one or more explosive assisted fasteners 20 may be used to join the steel members. A first exemplary embodiment of an explosive assisted fastener 20 is depicted in Figure 2. The fastener 20 is comprised of an integrally formed member having a head section 22, a stem section 24 and a tip section 26. The fastener 20 is preferably comprised of a harded steel material or, alternatively, a softer steel material having a tip section formed of a harded material such as carbide, ceramic, or a harden steel. In addition, a small explosive charge 28 is embedded in either the tip section 26 or the stem section 24 of the fastener 20.
It is envisioned that barium styphnate, nitro cellulose, or other known explosive materials which are commonly electrically detonated may be used for the explosive charge 28. [0021 ] In operation, a two-step process is used to set the fastener 20.
First, the fastener 20 is driven into the steel members until the head of the fastener seats against the outer surface of the steel members as shown in
Figures 3 and 4. It is readily understood that the driving device is configured to engage the head section 22 of the fastener and may provide a back plate to prevent unwanted deformation of the steel members at the point at which the fastener pierces the steel members. In one embodiment, the driving device drives the fasteners at relatively high speeds (e.g., greater than 50 feet per second). In an alternative embodiment, the driving device may drive the fastener at lower speeds, but apply a relatively high force. One skilled in the art will readily recognize that an air nailer or other known driving devices may be configured to drive the fasteners 20 of the present invention into the steel members.
[0022] Once the fastener 20 is driven into place, the embedded explosive charge 28 is detonated, thereby outwardly expanding the tip section 26 of the fastener 20. Referring to Figure 5, the radially flared tip section 26 engages the underside of the steel members, thereby preventing removal of the fastener from the steel members. To detonate the explosive charge 28, a thin copper wire or other electrical conducting material 30 may be embedded in the fastener 20. The wire 30 is externally accessible via the head section 22 of the fastener and extends through the stem section 24 to electrically couple to the explosive material 28 embedded in the fastener 20. An external detonating device 32 electrically connected to the wire 30 may be used to detonate the explosive material 28. It is readily understood that the detonating device 32 may be associated with and cooperatively operable with the driving device used to drive the fastener into the steel members
[0023] A second exemplary embodiment of an explosive assisted fastener 20' is depicted in Figure 6. Similarly, the fastener 20' is comprised of an integrally formed member having a head section 22', a stem section 24', a tip section 26', and an embedded explosive material 28'. In this embodiment, the explosive material 28' may be one or many commercially available mechanically denotated materials, such as lead styphate, lead azide or a combination thereof. The fastener 20' is further defined to include a circular bore 30' which is formed in the head section 22' of the fastener 20'. The bore 30' extends downwardly through the stem section 24' and then tapers inwardly to mimic the outer shape of the tip section 26'. As will be more fully explained below, the bore 30' is adapted to receive a pin therein. [0024] In operation, the expanding fastener 20' is driven into the steel members until the head of the fastener seats against the outer surface of the steel members as shown in Figures 8 and 9. Once the fastener 20 has been driven into place, the embedded explosive material 28' may be mechanically detonated as shown in Figure 10. For instance, a pin 34' may be driven into the bore 30' and into contact with the explosive material 28' residing in the tip section 26' of the fastener. The impact force of the pin 34' detonates the explosive material 28'. It is envisioned that the pin 34' may be integrated into the driving device that drives the fastener 20' into the steels members. In other words, the driving device may be configured to provide a two-step actuator: a first step for driving the fastener into the steel members, and a second step for driving the pin 34' into contact with the explosive material. [0025] As a result, a portion of the fastener extending beyond the underside of the steel members expands radially outward as best seen in Figure 10. The radially flared portions of the tip section 26' prevents removal of the fastener from the steel members. To facilitate flaring, one or more fracture lines may be formed in the tip section 26' of the fastener 20' as depicted in Figure 7. It is, envisioned that the fracture lines may not extend to the distal end of the tip section 26', thereby maintaining the structural integrity of the tip section 26'. It is further envisioned that a plurality of raised ridges 32' may extend outwardly from the outer surface of the stem section 24' to further prevent removal of the fastener from the steel members.
[0026] Alternatively, the explosive material 28' may be detonated upon impact of the fastener with the outer surface of the steel framing members. In this case, the fastener 20 is similarly driven into the steel members until the head section of the fastener seats against the outer surface of the steel members with the fastener 20". Although the explosive material 28' is detonated upon impact of the tip section 26' with the framing members, the burn time of the explosive material 28' is configured such that the outward expansion of the tip section 26' does not occur until it extends beyond the underside of the steel members. As described above, the radially flared portions of the tip section 26' prevents removal of the fastener from the steel members.
[0027] A third exemplary embodiment of an explosive assisted fastener 20" is depicted in Figures 11-14. Referring to Figure 11 , the fastener 20" is primarily comprised of an integrally formed member having a head section 22", a stem section 24", a tip section 26", and an embedded explosive material 28". In addition, the fastener 20" includes a circular bore 30" which is formed in the head section 22" of the fastener 20". In this case, the bore 30' extends downwardly into the stem section 24", but does not substantially extend into the tip section 26" of the fastener 20". Thus, the explosive charge 28" is embedded in the stem section 24" of the fastener 20". In this embodiment, a plurality of raised ridges 32" extend outwardly from the outer surface of the stem section 24". It is also envisioned that the stem section 24" may be comprised of a more ductile material than the remainder of the fastener.
[0028] In operation, the explosive assisted fastener 20" is driven into the steel members until the head of the fastener seats against the outer surface of the steel members as shown in Figures 12 and 13. Once the fastener 20 has been driven into place, the embedded explosive charge 28" may be mechanically detonated as shown in Figure 13. Specifically, a pin 34" is driven into the bore 30" and into contact with the explosive material 28", such that the impact force of the pin 34" detonates the explosive material 28". As a result, the outer walls of the stem section 24" (adjacent to the explosion) expand outwardly into the adjacent surface of the framing members as shown in Figure 14. The ridges 32" along the outer surface of the stem section 24" serve as teeth which prevent the removal of the fastener from the steel members.
[0029] While the invention has been described in its presently preferred form, it will be understood that the invention is capable of modification without departing from the spirit of the invention as set forth herein.

Claims

CLAIMS What is claimed is:
1. An explosive assisted fastener for joining framing members, comprising: an integrally formed member having a head section, a stem section and a tip section, wherein the head section is disposed at a first end of the stem section and adapted to be linearly driven by a driving device into the framing members, and the tip section is disposed at a distal second end of the stem section and adapted to penetrate the framing members; and an explosive material embedded in the tip section of the fastener.
2. The explosive assisted fastener of Claim 1 further comprises a bore that is formed into the head section and extending through the stem section into the tip section of the fastener, such that the bore is adapted to receive a pin therein for detonating the explosive material residing in the tip section of the fastener.
3. The explosive assisted fastener of Claim 1 wherein the tip section further includes one or more fracture points to facilitate radially outward expansion of the tip section.
4. The explosive assisted fastener of Claim 1 wherein the stem section is a cylindrical body having a plurality of annular grooves formed in an outer surface of the cylindrical body.
5. The explosive assisted fastener of Claim 1 further comprises a conductive material embedded in the fastener and electrically connected to the explosive material, thereby enabling detonation of the explosive material.
PCT/US2002/019627 2001-06-21 2002-06-21 Explosive assisted expanding fastener WO2003001075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29995001P 2001-06-21 2001-06-21
US60/299,950 2001-06-21

Publications (1)

Publication Number Publication Date
WO2003001075A1 true WO2003001075A1 (en) 2003-01-03

Family

ID=23157014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/019627 WO2003001075A1 (en) 2001-06-21 2002-06-21 Explosive assisted expanding fastener

Country Status (2)

Country Link
US (1) US7008157B2 (en)
WO (1) WO2003001075A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004063575A1 (en) * 2003-01-14 2004-07-29 Kerb-Konus-Vertriebs-Gmbh Punched/stamped rivet
US6862864B2 (en) 2001-06-21 2005-03-08 Black & Decker Inc. Method and apparatus for fastening steel framing members
US6905299B2 (en) 2001-06-21 2005-06-14 Black & Decker Inc. Method and apparatus for fastening steel framing with a harpoon nail
US6938452B2 (en) 2001-06-21 2005-09-06 Black & Decker Inc. Method and apparatus for fastening steel framing by crimping
US7008157B2 (en) * 2001-06-21 2006-03-07 Black & Decker Inc. Explosive assisted expanding fastener
US7077613B2 (en) 2001-06-21 2006-07-18 Black & Decker Inc. Method and apparatus for fastening steel framing using helical features
CN100406756C (en) * 2004-01-21 2008-07-30 德尔菲技术公司 Destruction free press connection on pyromechanical securing elements
WO2013110630A1 (en) * 2012-01-25 2013-08-01 Johnson Controls Gmbh Fastening element and method for mounting same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7731467B2 (en) * 1999-07-09 2010-06-08 Profil Verbindungstechnik Gmbh & Co., Kg Bolt element having a shaft part and a spherical head, component assembly and method for the manufacture of a bolt element
CA2433134C (en) * 2000-12-29 2010-05-25 Profil Verbindungstechnik Gmbh & Co. Kg Bolt element having a shaft part and a spherical head, component assembly and method for the manufacture of a bolt element
DE10338394A1 (en) * 2002-10-02 2004-04-15 Dynamit Nobel Ais Gmbh Automotive Ignition Systems Pyro-mechanical fastening element for non-releasable fixed mechanical connection of two components on a motor vehicle, has a metal casing with a pyrotechnic propelling charge adjacent to an adapter
US6817079B2 (en) * 2002-11-20 2004-11-16 Falcon Fasteners Reg'd Method of riveting a headed fastener
US20060282084A1 (en) * 2005-06-03 2006-12-14 Ken Blier System and method for sealing tissue
US8303228B2 (en) 2008-06-13 2012-11-06 Illinois Tool Works Inc. Metal to metal cleat
US9168581B2 (en) * 2012-01-19 2015-10-27 Ford Global Technologies, Llc Electro-hydraulic rivet and method of riveting and welding parts
DE102014208513B4 (en) * 2014-05-07 2021-01-21 Bayerische Motoren Werke Aktiengesellschaft Method for fastening several workpieces by means of a hollow rivet element
US9624954B2 (en) 2014-12-17 2017-04-18 Powernail Company Plural tapered fastener with material receiving inward region
US11274695B2 (en) * 2020-01-14 2022-03-15 Eve Ventures Llc Expanding, anchoring screw

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE369395C (en) * 1920-10-27 1923-02-19 Frank Allan Method for fastening or securing bolts or rivets in metal plates and bolts or rivets for carrying out the method
US3332311A (en) * 1966-01-19 1967-07-25 Du Pont Electrically fired explosive fasteners

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE308681C (en)
DE155135C (en)
US1444618A (en) 1921-06-07 1923-02-06 Vernon L Levingston Driven-headed fastening
US1912222A (en) 1930-04-29 1933-05-30 Rosenberg Heyman Fastener
US2006813A (en) 1934-06-06 1935-07-02 Nor Bolt Holding Corp Self-locking drive expansion fastener
US2178187A (en) 1937-11-11 1939-10-31 Joseph E Sake Grommet securing tool
US2429239A (en) * 1941-09-20 1947-10-21 George D Rogers Explosive rivet
US2410047A (en) * 1942-01-09 1946-10-29 Du Pont Method of explosively blasting joints
US2378118A (en) * 1944-02-25 1945-06-12 Widrich Anton Explosive rivet
GB608373A (en) 1946-02-21 1948-09-14 Anthony Cooney Improvements in or relating to nails or the like
US2944262A (en) 1958-04-14 1960-07-12 Richman Oscar Corner crimper
US2994243A (en) 1958-05-02 1961-08-01 Langstroth Hall Fastening device
US3322017A (en) 1965-01-11 1967-05-30 Maurice J Dufficy Truss connector plaste with self-crimping tooth
US3563439A (en) * 1968-06-18 1971-02-16 Omark Industries Inc Powder actuated tool
US3548705A (en) * 1968-09-12 1970-12-22 Star Expansion Ind Corp Quarter turn connector
US3722280A (en) 1971-03-25 1973-03-27 Aluminum Co Of America Portable fastening tool
US3925875A (en) 1973-05-29 1975-12-16 Angeles Metal Trim Co Method of constructing a prefabricated wall module
US3882755A (en) 1973-11-15 1975-05-13 Illinois Tool Works Sheet metal drive fastener
DE2557845A1 (en) * 1975-12-22 1977-06-30 Hilti Ag Gun for explosive driving of rivets or bolts - has stepped guide for firing pin sparking charge at rivet head
US4183239A (en) 1977-09-14 1980-01-15 Potomac Applied Mechanics, Inc. Two-piece fastener air hammer
US4218953A (en) 1978-03-21 1980-08-26 Haytayan Harry M Self-piercing pop rivet fasteners
DE3014745A1 (en) 1980-04-17 1981-10-22 Itw-Ateco Gmbh, 2000 Norderstedt ONE-PIECE FASTENING ELEMENT FROM PLASTIC (SELF-CENTERING TREE CLIP)
DE3147430A1 (en) 1981-11-30 1983-06-01 Agfa-Gevaert Ag, 5090 Leverkusen Resilient attachment bracket
US4511296A (en) * 1983-03-16 1985-04-16 Invocas, Inc. Anchor bolt with mechanical keys deployed by internal pressurization
US4601625A (en) 1984-05-11 1986-07-22 Illinois Tool Works Inc. Self drilling threaded insert for drywall
US4810150A (en) 1984-06-26 1989-03-07 Toshiba Monofrax Company, Ltd. Ceramic fiber layer fixing pin
US4708552A (en) 1984-09-12 1987-11-24 Clairson International Expansible mounting assembly
DE3535210A1 (en) 1985-10-02 1987-04-16 United Carr Gmbh Trw HOLDING DOWEL
FR2595609B1 (en) 1986-03-14 1990-09-07 Faucigny Ste Indle Meca Automa DEVICE AND METHOD FOR LAYING AN EXPANDABLE INSERT IN A HOLE OF A PIECE OF SOFT MATERIAL
JPS6414912U (en) 1987-07-16 1989-01-25
US4902182A (en) 1988-10-06 1990-02-20 Trw Inc. Push-in fastener
FR2651283B1 (en) * 1989-08-25 1991-11-22 Badanjak Claude BLIND RIVET WITH INTERNAL EXPLOSION.
JPH0755374Y2 (en) 1989-09-12 1995-12-20 株式会社ニフコ Screw rivet
WO1992003664A1 (en) 1990-08-15 1992-03-05 Avantech Pty Limited Fastener
US5567101A (en) 1990-10-23 1996-10-22 Martin; Donald A. Lock-in grip arm shank nail
DE4034129C1 (en) 1990-10-26 1992-05-07 Gkn Cardantec International Gesellschaft Fuer Antriebstechnik Mbh, 4300 Essen, De
US5203864A (en) 1991-04-05 1993-04-20 Phillips Edward H Surgical fastener system
US5240361A (en) 1991-05-03 1993-08-31 The Boeing Company Limited force cartridge for temporary fasteners
JPH04127973U (en) 1991-05-13 1992-11-20 アルプス電気株式会社 Caulking structure and caulking jig
US5333483A (en) 1992-04-10 1994-08-02 Smith Steven W Bull nose applicator
US5253965A (en) 1992-04-13 1993-10-19 Progressive Tool & Industries Co. Piercing fastener with adhesive
US5207750A (en) 1992-06-24 1993-05-04 Illinois Tool Works Inc. Insert moldable ratchet rivet assembly
US5375957A (en) 1992-09-29 1994-12-27 John Lysaght (Australia) Limited Impact drivable fastener
DE19504113A1 (en) 1995-02-08 1996-08-22 United Carr Gmbh Trw Plastic fastener
US5718142A (en) 1995-07-20 1998-02-17 Ferraro; Ronald M. Metal stitcher
FR2745863A1 (en) * 1996-03-07 1997-09-12 Pilling James Hollow shouldered rivet with blind end for joining two panels
US5829817A (en) 1996-09-19 1998-11-03 Trw Inc. Vehicle sunshade mounting fastener
US5855099A (en) 1997-03-14 1999-01-05 Hoffman; Robert E. Sectional storm panel assembly
US5775860A (en) 1997-05-15 1998-07-07 Illinois Tool Works Inc. Plastic rivet having integral drive pin and body
US6023898A (en) 1998-06-01 2000-02-15 Ground Star, Llc Metal frame building construction
DE19934998A1 (en) 1999-07-26 2001-02-01 Volkswagen Ag Detachable connecting element has shaft with spiral spring, clamping elements and ends
US6659700B1 (en) 1999-11-29 2003-12-09 Evening Star International, Inc. Metal piercing fastener
LU90537B1 (en) 2000-03-02 2001-09-04 Trefil Arbed Bissen S A nail
US6276644B1 (en) 2000-03-20 2001-08-21 Gilbert M. Jennings Compact cable anchor for retainment and attachment of cables and tubing
US6273656B1 (en) 2000-05-10 2001-08-14 Daimlerchrysler Corporation Push pin fastener
US6354683B1 (en) * 2000-11-30 2002-03-12 Christopher B. Benbow Apparatus and method for aligning and securing a drawer slide
US6805525B2 (en) * 2000-12-12 2004-10-19 Hkn Associates, Llc Drive pin for fastening to a sheet-metal framing member
US7008157B2 (en) * 2001-06-21 2006-03-07 Black & Decker Inc. Explosive assisted expanding fastener

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE369395C (en) * 1920-10-27 1923-02-19 Frank Allan Method for fastening or securing bolts or rivets in metal plates and bolts or rivets for carrying out the method
US3332311A (en) * 1966-01-19 1967-07-25 Du Pont Electrically fired explosive fasteners

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077613B2 (en) 2001-06-21 2006-07-18 Black & Decker Inc. Method and apparatus for fastening steel framing using helical features
US7097405B2 (en) 2001-06-21 2006-08-29 Black & Decker Inc. Method and apparatus for fastening steel framing with staggered teeth nails
US6905299B2 (en) 2001-06-21 2005-06-14 Black & Decker Inc. Method and apparatus for fastening steel framing with a harpoon nail
US6938452B2 (en) 2001-06-21 2005-09-06 Black & Decker Inc. Method and apparatus for fastening steel framing by crimping
US7008157B2 (en) * 2001-06-21 2006-03-07 Black & Decker Inc. Explosive assisted expanding fastener
US7478987B2 (en) 2001-06-21 2009-01-20 Black & Decker Inc. Method and apparatus for fastening steel framing using helical features
US6862864B2 (en) 2001-06-21 2005-03-08 Black & Decker Inc. Method and apparatus for fastening steel framing members
WO2004063575A1 (en) * 2003-01-14 2004-07-29 Kerb-Konus-Vertriebs-Gmbh Punched/stamped rivet
JP2006513377A (en) * 2003-01-14 2006-04-20 ケルブ−コヌス−フェルトリーブス−ゲーエムベーハー Punching / stamping rivet
CN100406756C (en) * 2004-01-21 2008-07-30 德尔菲技术公司 Destruction free press connection on pyromechanical securing elements
WO2013110630A1 (en) * 2012-01-25 2013-08-01 Johnson Controls Gmbh Fastening element and method for mounting same
CN104067006A (en) * 2012-01-25 2014-09-24 约翰逊控股公司 Fastening element and method for mounting same
KR101670648B1 (en) 2012-01-25 2016-10-31 존슨 컨트롤스 게엠베하 Fastening element and method for mounting same
US9541114B2 (en) 2012-01-25 2017-01-10 Johnson Controls Technology Company Fastening element and method for mounting same

Also Published As

Publication number Publication date
US20030017029A1 (en) 2003-01-23
US7008157B2 (en) 2006-03-07

Similar Documents

Publication Publication Date Title
US7008157B2 (en) Explosive assisted expanding fastener
US20080086979A1 (en) Method and apparatus for fastening steel framing members using helical features
JP2971120B2 (en) Riveting fasteners
JP4114908B2 (en) Blind fasteners
JP2899092B2 (en) Fixing member to fix insulating plate to building member
US6805525B2 (en) Drive pin for fastening to a sheet-metal framing member
AU2007213932B2 (en) Gun rivet
US7014408B2 (en) Method and apparatus for fastening steel framing with self-locking nails
US7077613B2 (en) Method and apparatus for fastening steel framing using helical features
JP2004060855A (en) Self piercing rivet
RU2745053C2 (en) Torque limiting apparatus with fixating grabs
JPH0637884B2 (en) Driven type expansion plug
JP3543267B2 (en) Aluminum driven rivets
JPS6162611A (en) Previously formed anchor bolt of one piece
US4261245A (en) Fastener
US4634326A (en) Expansion anchor
US6749384B1 (en) Drive rivet
US4906149A (en) Wall plug anchor assembly for mounting in a preformed hole
US4231280A (en) Interpenetrating nailable fastener for sheet metal
US3477336A (en) Method of and rivet assembly for joining metal panels
US4181060A (en) Helical anchor
JP4481462B2 (en) Piercing die for piercing nut driving
JP2002035858A (en) Caulking hole forming method for caulking nut and caulking nut fitting method
JP2001159409A (en) Self-punching type rivet and junction method thereof
JP2002089529A (en) Piercing nut and fixing method of double layered work with the piercing nut

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG US

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP