WO2003010853A1 - Antenna arrangement - Google Patents

Antenna arrangement Download PDF

Info

Publication number
WO2003010853A1
WO2003010853A1 PCT/IB2002/002575 IB0202575W WO03010853A1 WO 2003010853 A1 WO2003010853 A1 WO 2003010853A1 IB 0202575 W IB0202575 W IB 0202575W WO 03010853 A1 WO03010853 A1 WO 03010853A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
arrangement
conductor
antenna
ground
Prior art date
Application number
PCT/IB2002/002575
Other languages
French (fr)
Inventor
Kevin R. Boyle
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to KR10-2004-7000987A priority Critical patent/KR20040017828A/en
Priority to JP2003516124A priority patent/JP2004522380A/en
Priority to EP02743475A priority patent/EP1413006A1/en
Publication of WO2003010853A1 publication Critical patent/WO2003010853A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates to an antenna arrangement comprising a substantially planar patch conductor, and to a radio communications apparatus incorporating such an arrangement.
  • Wireless terminals such as mobile phone handsets, typically incorporate either an external antenna, such as a normal mode helix or meander line antenna, or an internal antenna, such as a Planar Inverted-F Antenna (PI FA) or similar.
  • an external antenna such as a normal mode helix or meander line antenna
  • an internal antenna such as a Planar Inverted-F Antenna (PI FA) or similar.
  • PI FA Planar Inverted-F Antenna
  • Such antennas are small (relative to a wavelength) and therefore, owing to the fundamental limits of small antennas, narrowband.
  • cellular radio communication systems typically have a fractional bandwidth of 10% or more.
  • PIFAs become reactive at resonance as the patch height is increased, which is necessary to improve bandwidth.
  • European patent application EP 0,867,967 discloses a PIFA in which the feed pin is meandered to increase its length, thereby increasing its inductance in an attempt to make the antenna easier to match. A broadband match is difficult to achieve with such an antenna, requiring a small matching capacitance.
  • Our co-pending unpublished International patent application PCT/IB02/00051 discloses a variation on a conventional PIFA in which a slot is introduced in the PIFA between the feed pin and shorting pin. Such an arrangement provided an antenna having substantially improved impedance characteristics while requiring a smaller volume than a conventional PIFA. Disclosure of Invention
  • An object of the present invention is to provide an improved planar antenna arrangement.
  • a antenna arrangement comprising a substantially planar patch conductor, a feed pin connected to the patch conductor at a first point and a ground pin connected between a second point on the patch conductor and a ground plane, wherein the arrangement further comprises a linking conductor connecting the feed and ground pins and shunt capacitance means coupled between the feed and ground pins, wherein the location and dimensions of the linking conductor and value of the capacitance means are selected to enable a good match to the antenna to be achieved.
  • the presence of the linking conductor acts to reduce the length of the short circuit transmission line formed by the feed and ground pins, and hence its inductance, enabling the value of the shunt capacitance to be increased which provides improved bandwidth.
  • the linking conductor may also be connected to the patch conductor, or there may be gaps between the pins both above and below the linking conductor. By arranging for the matching inductance to be provided as part of the antenna structure, the inductance has a higher Q than that provided by circuit solutions at no additional cost.
  • the feed and ground pins may have different cross-sectional areas, to provide an impedance transformation.
  • one or both of the feed and ground pins may be formed of a plurality of conductors to provide an impedance transformation.
  • the impedance transformation may also be provided by a slot in the patch conductor between the feed and ground pins, as disclosed in PCT/IB02/00051.
  • Figure 1 is a perspective view of a PIFA mounted on a handset
  • Figure 2 is a graph of simulated return loss S-n in dB against frequency in MHz for the antenna of Figure 1 matched with a 0.45pF capacitor
  • Figure 3 is a Smith chart showing the simulated impedance of the antenna of Figure 1 , matched with a 0.45pF capacitor, over the frequency range 800 to 3000MHz;
  • Figure 4 is a Smith chart showing the simulated impedance of the antenna of Figure 1 , without matching, over the frequency range 800 to 3000MHz;
  • FIG. 5 is a side view of an antenna feed arrangement made in accordance with the present invention.
  • Figure 6 is a graph of simulated return loss Sn in dB against frequency in MHz for a PIFA fed via the feed arrangement of Figure 5 and matched with a 1 .75pF capacitor;
  • Figure 7 is a Smith chart showing the simulated impedance of a PIFA fed via the feed arrangement of Figure 5 and matched with a 1.75pF capacitor over the frequency range 800 to 3000MHz;
  • Figure 8 is a Smith chart showing the simulated impedance of a PIFA fed via the feed arrangement of Figure 5, without matching, over the frequency range 800 to 3000MHz.
  • the PIFA comprises a rectangular patch conductor 102 supported parallel to a ground plane 104 forming part of the handset.
  • the antenna is fed via a feed pin 106, and connected to the ground plane 104 by a shorting pin 108 (also known as a ground pin).
  • the feed and shorting pins are typically parallel for convenience of construction, but this is not essential for the functioning of the antenna.
  • the patch conductor 102 has dimensions 20* 10mm and is located 8mm above the ground plane 104 which measures 40 ⁇ 100 ⁇ 1mm.
  • the feed pin 106 is located at a corner of both the patch conductor 102 and ground plane 104, and the shorting pin 108 is separated from the feed pin 106 by 3mm.
  • Each of the pins 106,108 is planar with a width of 1 mm.
  • the impedance of a PIFA is inductive.
  • the currents on the feed and shorting pins 106,108 are the sum of differential mode (equal and oppositely directed, non-radiating) and common mode (equally directed, radiating) currents.
  • the feed and shorting pins 106,108 form a short-circuit transmission line, which has an inductive reactance because of its very short length relative to a wavelength (8mm, or 0.05 ⁇ at 2GHz, in the embodiment shown in Figure 1 ).
  • This inductive reactance acts like a shunt inductance across the antenna feed.
  • shunt capacitance needs to be provided between the feed and shorting pins 106,108 to tune out the inductance by resonating with it at the resonant frequency of the antenna.
  • this can be provided by a shunt capacitor, in known PIFAs it is typically provided by modifying the antenna geometry. For example, this may be done by extending the patch conductor 102 towards the ground plane 104 close to the feed pin 106 to provide some additional capacitance to ground.
  • the return loss Sn of the combined antenna 102 and ground plane 104 shown in Figure 1 was simulated using the High Frequency Structure Simulator (HFSS), available from Ansoft Corporation. When matched with a 0.45pF shunt capacitor, the results are shown in Figure 2 for frequencies f between 800 and 3000MHz (referenced to 120 ⁇ ).
  • HFSS High Frequency Structure Simulator
  • Figure 3 A Smith chart illustrating the simulated impedance over the same frequency range is shown in Figure 3.
  • a further Smith chart illustrating the simulated impedance without the matching capacitor is shown in Figure 4, demonstrating the inductive nature of the impedance without matching.
  • This antenna arrangement has a 6dB bandwidth of approximately 440MHz and a 10dB bandwidth of approximately 200MHz.
  • the bandwidth could be significantly improved if the shunt inductance of the transmission line were reduced and the value of the capacitor increased. This is because, as a first approximation, the antenna looks like a series resonant LCR circuit with substantially constant resistance.
  • Such a circuit is best broadbanded by a complementary parallel LC circuit. Reducing the inductance of the parallel circuit (provided by the short circuit transmission line) and increasing the capacitance provides a response which complements the antenna response better and is therefore more effective at improving bandwidth.
  • a linking conductor 510 is provided which connects the feed and shorting pins 106,108 together over most of their length.
  • the linking conductor connects the feed and shorting pins 106,108 from the points at which they contact the patch conductor 102 and is therefore also connected to the patch conductor 102.
  • this arrangement is not essential and in alternative embodiments there could be a gap between the pins 106,108 both above and below the linking conductor 510. This is because the linking conductor provides a path between the pins 106,108 for differential mode current while having minimal effect on the common mode current.
  • linking conductor 510 has sufficient height to form (together with the feed and shorting pins 106,108) a short circuit transmission line, it is not necessary for it to continue as far as the patch conductor and the linking conductor 510 could simply comprise a thin strap.
  • FIG 8 A further Smith chart illustrating the simulated impedance without the matching capacitor is shown in Figure 8, which demonstrates that the match without the capacitor is very poor. This is in complete contrast to the antenna arrangement disclosed in WO 01/37369, in which no additional matching components are employed. Such an arrangement requires a low common mode resistance, so that when a shunt inductance is applied a match to 500 can be achieved. This restriction means that the antenna will be inherently narrowband. It is clear that even better performance could be achieved by increasing the length of the linking conductor 510 and using a higher-valued capacitor.
  • the impedance to which the antenna is matched can be changed by altering the relative thicknesses of the feed and shorting pins 106,108, as discussed in our co-pending unpublished International patent application PCT/IB02/00051 . (Applicant's reference PHGB010009).
  • Such an effect could also be achieved by replacing one or both of the feed and shorting pins 106,108 by a plurality of conductors connected in parallel, or by a combination of the two approaches.
  • An impedance transformation could also be arranged by the provision of a slot in the patch conductor 102 between the feed and shorting pins 106,108, as disclosed in PCT/IB02/00051. By arranging the slot asymmetrically in the patch conductor the relative currents carried by the feed and shorting pins 106,108 can be varied since the patch conductor 102 then appears as a short- circuit two-conductor transmission line having conductors of different dimensions.
  • the patch conductor 102 could be printed on an internal surface of the phone casing
  • such an arrangement has the advantage of enabling a range of antenna impedances to be provided by different patch conductor configurations while using common feed and ground pins 106,108 (which could be provided as sprung contacts).
  • a suitable capacitance for each band could easily be provided via a frequency-selective passive network.
  • the required capacitance could be provided as an integrated part of the antenna structure, by a range of known techniques, instead of being provided as one or more discrete capacitors.
  • the present invention has wider applicability and can be used with any monopole-like antenna arrangement where the antenna feed arrangement can be considered as comprising two transmission lines and where the lengths of the transmission lines are selected so that the transmission line impedances can be used in conjunction with complementary circuit elements, thereby providing broader bandwidth and better filtering.
  • a PIFA may be considered as a very short monopole antenna having a large top-load.
  • the transmission lines were short-circuit transmission lines and the circuit elements were capacitors.
  • the transmission lines are open circuit (with a capacitive impedance) and the complementary circuit elements are inductors.
  • Such an arrangement could be formed by modifying the PIFA of Figure 5 by removing the linking conductor 510 and providing a slot in the patch conductor 102, the slot extending to the edge of the patch .conductor and having its length chosen to provide a suitable capacitive impedance for matching with an inductor.
  • an open-circuit arrangement is possible, use of short-circuit transmission lines is still preferred since this enables the use of capacitors as the complementary circuit element.
  • Capacitors generally have a higher Q (typically about 200 at mobile communications frequencies) compared to inductors (typically about 40), and also have better tolerances.
  • Putting the inductance on the antenna substrate air in the case of a PIFA means that it can be high quality and used in conjunction with a high quality discrete capacitor. In some cases it may be beneficial to form a capacitor directly on the antenna substrate (for example in the case of an open-circuit transmission line), particularly if the available circuit technology is poor.

Abstract

An antenna arrangement comprises a patch conductor (102) supported substantially parallel to a ground plane (104), a feed pin (106) connected to the patch conductor at a first point and a ground pin (108) connected between a second point on the patch conductor and the ground plane. The feed and ground pins are connected by a linking conductor (510) and have shunt capacitance means coupled across them. Suitable values of the capacitance means and the location and dimensions of the linking conductor enable a good match to the antenna to be achieved. The linking conductor may be directly connected to the patch conductor or there may be gaps between the feed and ground pins both above and below the linking conductor. An impedance transformation may be provided by the feed and ground pins having different cross-sectional areas and/or by the provision of a slot in the patch conductor.

Description

ANTENNA ARRANGEMENT
Technical Field The present invention relates to an antenna arrangement comprising a substantially planar patch conductor, and to a radio communications apparatus incorporating such an arrangement. Background Art
Wireless terminals, such as mobile phone handsets, typically incorporate either an external antenna, such as a normal mode helix or meander line antenna, or an internal antenna, such as a Planar Inverted-F Antenna (PI FA) or similar.
Such antennas are small (relative to a wavelength) and therefore, owing to the fundamental limits of small antennas, narrowband. However, cellular radio communication systems typically have a fractional bandwidth of 10% or more. To achieve such a bandwidth from a PI FA for example requires a considerable volume, there being a direct relationship between the bandwidth of a patch antenna and its volume, but such a volume is not readily available with the current trends towards small handsets. Further, PIFAs become reactive at resonance as the patch height is increased, which is necessary to improve bandwidth.
International patent application WO 01/37369 discloses a PIFA in which matching is achieved by linking feed and shorting pins with a conductive matching element whose dimensions are chosen to provide a suitable impedance match to the antenna. Such an antenna is inherently narrowband.
European patent application EP 0,867,967 discloses a PIFA in which the feed pin is meandered to increase its length, thereby increasing its inductance in an attempt to make the antenna easier to match. A broadband match is difficult to achieve with such an antenna, requiring a small matching capacitance. Our co-pending unpublished International patent application PCT/IB02/00051 (Applicant's reference PHGB 010009) discloses a variation on a conventional PIFA in which a slot is introduced in the PIFA between the feed pin and shorting pin. Such an arrangement provided an antenna having substantially improved impedance characteristics while requiring a smaller volume than a conventional PIFA. Disclosure of Invention
An object of the present invention is to provide an improved planar antenna arrangement. According to a first aspect of the present invention there is provided a antenna arrangement comprising a substantially planar patch conductor, a feed pin connected to the patch conductor at a first point and a ground pin connected between a second point on the patch conductor and a ground plane, wherein the arrangement further comprises a linking conductor connecting the feed and ground pins and shunt capacitance means coupled between the feed and ground pins, wherein the location and dimensions of the linking conductor and value of the capacitance means are selected to enable a good match to the antenna to be achieved.
The presence of the linking conductor acts to reduce the length of the short circuit transmission line formed by the feed and ground pins, and hence its inductance, enabling the value of the shunt capacitance to be increased which provides improved bandwidth. The linking conductor may also be connected to the patch conductor, or there may be gaps between the pins both above and below the linking conductor. By arranging for the matching inductance to be provided as part of the antenna structure, the inductance has a higher Q than that provided by circuit solutions at no additional cost.
The feed and ground pins may have different cross-sectional areas, to provide an impedance transformation. Alternatively, or in addition, one or both of the feed and ground pins may be formed of a plurality of conductors to provide an impedance transformation. The impedance transformation may also be provided by a slot in the patch conductor between the feed and ground pins, as disclosed in PCT/IB02/00051. According to a second aspect of the present invention there is provided a radio communications apparatus including an antenna arrangement made in accordance with the present invention. Brief Description of Drawings Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings, wherein:
Figure 1 is a perspective view of a PIFA mounted on a handset;
Figure 2 is a graph of simulated return loss S-n in dB against frequency in MHz for the antenna of Figure 1 matched with a 0.45pF capacitor; Figure 3 is a Smith chart showing the simulated impedance of the antenna of Figure 1 , matched with a 0.45pF capacitor, over the frequency range 800 to 3000MHz;
Figure 4 is a Smith chart showing the simulated impedance of the antenna of Figure 1 , without matching, over the frequency range 800 to 3000MHz;
Figure 5 is a side view of an antenna feed arrangement made in accordance with the present invention;
Figure 6 is a graph of simulated return loss Sn in dB against frequency in MHz for a PIFA fed via the feed arrangement of Figure 5 and matched with a 1 .75pF capacitor;
Figure 7 is a Smith chart showing the simulated impedance of a PIFA fed via the feed arrangement of Figure 5 and matched with a 1.75pF capacitor over the frequency range 800 to 3000MHz; and
Figure 8 is a Smith chart showing the simulated impedance of a PIFA fed via the feed arrangement of Figure 5, without matching, over the frequency range 800 to 3000MHz.
In the drawings the same reference numerals have been used to indicate corresponding features. Modes for Carrying Out the Invention A perspective view of a PIFA mounted on a handset is shown in Figure
1. The PIFA comprises a rectangular patch conductor 102 supported parallel to a ground plane 104 forming part of the handset. The antenna is fed via a feed pin 106, and connected to the ground plane 104 by a shorting pin 108 (also known as a ground pin). The feed and shorting pins are typically parallel for convenience of construction, but this is not essential for the functioning of the antenna. In a typical example embodiment of a PIFA the patch conductor 102 has dimensions 20* 10mm and is located 8mm above the ground plane 104 which measures 40χ100χ1mm. The feed pin 106 is located at a corner of both the patch conductor 102 and ground plane 104, and the shorting pin 108 is separated from the feed pin 106 by 3mm. Each of the pins 106,108 is planar with a width of 1 mm.
It is well known that the impedance of a PIFA is inductive. One explanation for this is provided by considering the currents on the feed and shorting pins 106,108 as the sum of differential mode (equal and oppositely directed, non-radiating) and common mode (equally directed, radiating) currents. For the differential mode currents, the feed and shorting pins 106,108 form a short-circuit transmission line, which has an inductive reactance because of its very short length relative to a wavelength (8mm, or 0.05λ at 2GHz, in the embodiment shown in Figure 1 ). This inductive reactance acts like a shunt inductance across the antenna feed. In order to match to the antenna 102, shunt capacitance needs to be provided between the feed and shorting pins 106,108 to tune out the inductance by resonating with it at the resonant frequency of the antenna. Although this can be provided by a shunt capacitor, in known PIFAs it is typically provided by modifying the antenna geometry. For example, this may be done by extending the patch conductor 102 towards the ground plane 104 close to the feed pin 106 to provide some additional capacitance to ground.
The return loss Sn of the combined antenna 102 and ground plane 104 shown in Figure 1 was simulated using the High Frequency Structure Simulator (HFSS), available from Ansoft Corporation. When matched with a 0.45pF shunt capacitor, the results are shown in Figure 2 for frequencies f between 800 and 3000MHz (referenced to 120Ω). A Smith chart illustrating the simulated impedance over the same frequency range is shown in Figure 3. A further Smith chart illustrating the simulated impedance without the matching capacitor is shown in Figure 4, demonstrating the inductive nature of the impedance without matching.
This antenna arrangement has a 6dB bandwidth of approximately 440MHz and a 10dB bandwidth of approximately 200MHz. The bandwidth could be significantly improved if the shunt inductance of the transmission line were reduced and the value of the capacitor increased. This is because, as a first approximation, the antenna looks like a series resonant LCR circuit with substantially constant resistance. Such a circuit is best broadbanded by a complementary parallel LC circuit. Reducing the inductance of the parallel circuit (provided by the short circuit transmission line) and increasing the capacitance provides a response which complements the antenna response better and is therefore more effective at improving bandwidth.
This aim can be achieved, in accordance with the present invention, by modifying the feeding arrangement as shown in side view in Figure 5. In this modification, a linking conductor 510 is provided which connects the feed and shorting pins 106,108 together over most of their length. As shown in Figure 5 the linking conductor connects the feed and shorting pins 106,108 from the points at which they contact the patch conductor 102 and is therefore also connected to the patch conductor 102. However, this arrangement is not essential and in alternative embodiments there could be a gap between the pins 106,108 both above and below the linking conductor 510. This is because the linking conductor provides a path between the pins 106,108 for differential mode current while having minimal effect on the common mode current. Hence, providing the linking conductor 510 has sufficient height to form (together with the feed and shorting pins 106,108) a short circuit transmission line, it is not necessary for it to continue as far as the patch conductor and the linking conductor 510 could simply comprise a thin strap.
As an example, simulations to determine return loss S-n were performed in which the conductor 510 had a length of 6mm, leaving the feed and shorting pins 106,108 unconnected for 2mm of their length. When matched with a 1.75pF shunt capacitor, the results are shown in Figure 6 for frequencies f between 800 and 3000MHz (referenced to 120Ω). A Smith chart illustrating the simulated impedance over the same frequency range is shown in Figure 7. Compared to the conventional PIFA of Figure 1 the 6dB bandwidth is improved by 25% to 550MHz, while the 10dB bandwidth is almost doubled, to 390MHz. This improved bandwidth can clearly be seen by comparing the Smith charts shown in Figures 7 and 3.
A further Smith chart illustrating the simulated impedance without the matching capacitor is shown in Figure 8, which demonstrates that the match without the capacitor is very poor. This is in complete contrast to the antenna arrangement disclosed in WO 01/37369, in which no additional matching components are employed. Such an arrangement requires a low common mode resistance, so that when a shunt inductance is applied a match to 500 can be achieved. This restriction means that the antenna will be inherently narrowband. It is clear that even better performance could be achieved by increasing the length of the linking conductor 510 and using a higher-valued capacitor.
The impedance to which the antenna is matched can be changed by altering the relative thicknesses of the feed and shorting pins 106,108, as discussed in our co-pending unpublished International patent application PCT/IB02/00051 . (Applicant's reference PHGB010009). This is because the common mode current is the sum of the currents in the feed and shorting pins 106,108, and hence by altering their relative thicknesses (and hence impedances) the ratio of current between the pins can be varied. For example, if the cross-sectional area of the shorting pin 108 is increased, reducing its impedance, the common mode current on the feed pin 106 will be reduced and the effective impedance of the antenna will be increased. Such an effect could also be achieved by replacing one or both of the feed and shorting pins 106,108 by a plurality of conductors connected in parallel, or by a combination of the two approaches. An impedance transformation could also be arranged by the provision of a slot in the patch conductor 102 between the feed and shorting pins 106,108, as disclosed in PCT/IB02/00051. By arranging the slot asymmetrically in the patch conductor the relative currents carried by the feed and shorting pins 106,108 can be varied since the patch conductor 102 then appears as a short- circuit two-conductor transmission line having conductors of different dimensions. In a mobile phone embodiment, where the patch conductor 102 could be printed on an internal surface of the phone casing, such an arrangement has the advantage of enabling a range of antenna impedances to be provided by different patch conductor configurations while using common feed and ground pins 106,108 (which could be provided as sprung contacts). Although the present invention has been described in relation to a single band PIFA, it will be apparent that it could easily be applied to dual or multi-band configurations. In such embodiments, a suitable capacitance for each band could easily be provided via a frequency-selective passive network. It will also be apparent that the required capacitance could be provided as an integrated part of the antenna structure, by a range of known techniques, instead of being provided as one or more discrete capacitors.
Although described in detail above with reference to a PIFA, the present invention has wider applicability and can be used with any monopole-like antenna arrangement where the antenna feed arrangement can be considered as comprising two transmission lines and where the lengths of the transmission lines are selected so that the transmission line impedances can be used in conjunction with complementary circuit elements, thereby providing broader bandwidth and better filtering. (A PIFA may be considered as a very short monopole antenna having a large top-load.)
In the PIFA arrangement described above the transmission lines were short-circuit transmission lines and the circuit elements were capacitors. However, an alternative arrangement is possible in which the transmission lines are open circuit (with a capacitive impedance) and the complementary circuit elements are inductors. Such an arrangement could be formed by modifying the PIFA of Figure 5 by removing the linking conductor 510 and providing a slot in the patch conductor 102, the slot extending to the edge of the patch .conductor and having its length chosen to provide a suitable capacitive impedance for matching with an inductor. Although an open-circuit arrangement is possible, use of short-circuit transmission lines is still preferred since this enables the use of capacitors as the complementary circuit element. Capacitors generally have a higher Q (typically about 200 at mobile communications frequencies) compared to inductors (typically about 40), and also have better tolerances. Putting the inductance on the antenna substrate (air in the case of a PIFA) means that it can be high quality and used in conjunction with a high quality discrete capacitor. In some cases it may be beneficial to form a capacitor directly on the antenna substrate (for example in the case of an open-circuit transmission line), particularly if the available circuit technology is poor.

Claims

1. A antenna arrangement comprising a substantially planar patch conductor, a feed pin connected to the patch conductor at a first point and a ground pin connected between a second point on the patch conductor and a ground plane, wherein the arrangement further comprises a linking conductor connecting the feed and ground pins and shunt capacitance means coupled between the feed and ground pins, wherein the location and dimensions of the linking conductor and value of the capacitance means are selected to enable a good match to the antenna to be achieved.
2. An arrangement as claimed in claim 1 , characterised in that the ground plane is spaced from, and co-extensive with, the patch conductor.
3. An arrangement as claimed in claim 1 or 2, characterised in that cross-sectional areas of the feed and ground pins are different.
4. An arrangement as claimed in any one of claims 1 to 3, characterised in that the feed pin comprises a plurality of conductors.
5. An arrangement as claimed in any one of claims 1 to 4, characterised in that the ground pin comprises a plurality of conductors.
6. An arrangement as claimed in any one of claims 1 to 5, characterised in that the feed and ground pins are substantially parallel.
7. An arrangement as claimed in any one of claims 1 to 6, characterised in that the capacitance means comprises a discrete capacitor.
8. An arrangement as claimed in any one of claims 1 to 7, characterised in that the upper edge of the linking conductor is connected to the patch conductor.
9. An arrangement as claimed in any one of claims 1 to 8, characterised in that the patch conductor incorporates a slot between the first and second points.
10. A radio communications apparatus including an antenna arrangement as claimed in any one of claims 1 to 9.
PCT/IB2002/002575 2001-07-21 2002-06-24 Antenna arrangement WO2003010853A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2004-7000987A KR20040017828A (en) 2001-07-21 2002-06-24 Antenna arrangement
JP2003516124A JP2004522380A (en) 2001-07-21 2002-06-24 Antenna device
EP02743475A EP1413006A1 (en) 2001-07-21 2002-06-24 Antenna arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0117882.1A GB0117882D0 (en) 2001-07-21 2001-07-21 Antenna arrangement
GB0117882.1 2001-07-21

Publications (1)

Publication Number Publication Date
WO2003010853A1 true WO2003010853A1 (en) 2003-02-06

Family

ID=9918998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/002575 WO2003010853A1 (en) 2001-07-21 2002-06-24 Antenna arrangement

Country Status (7)

Country Link
US (1) US6747601B2 (en)
EP (1) EP1413006A1 (en)
JP (1) JP2004522380A (en)
KR (1) KR20040017828A (en)
CN (1) CN100375334C (en)
GB (1) GB0117882D0 (en)
WO (1) WO2003010853A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047025A1 (en) * 2001-11-28 2003-06-05 Koninklijke Philips Electronics N.V. Dual-band antenna arrangement
WO2004059785A2 (en) * 2002-12-30 2004-07-15 Nokia Corporation An internal antenna element

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039754A (en) * 2003-06-26 2005-02-10 Alps Electric Co Ltd Antenna system
US7773041B2 (en) 2006-07-12 2010-08-10 Apple Inc. Antenna system
US8350761B2 (en) * 2007-01-04 2013-01-08 Apple Inc. Antennas for handheld electronic devices
US7595759B2 (en) * 2007-01-04 2009-09-29 Apple Inc. Handheld electronic devices with isolated antennas
US7889139B2 (en) 2007-06-21 2011-02-15 Apple Inc. Handheld electronic device with cable grounding
US8018389B2 (en) 2007-01-05 2011-09-13 Apple Inc. Methods and apparatus for improving the performance of an electronic device having one or more antennas
US7672142B2 (en) * 2007-01-05 2010-03-02 Apple Inc. Grounded flexible circuits
US8289219B2 (en) 2007-05-02 2012-10-16 Nokia Corporation Antenna arrangement
US7911387B2 (en) * 2007-06-21 2011-03-22 Apple Inc. Handheld electronic device antennas
US7612725B2 (en) * 2007-06-21 2009-11-03 Apple Inc. Antennas for handheld electronic devices with conductive bezels
US9838059B2 (en) 2007-06-21 2017-12-05 Apple Inc. Handheld electronic touch screen communication device
US7876274B2 (en) * 2007-06-21 2011-01-25 Apple Inc. Wireless handheld electronic device
US7768462B2 (en) * 2007-08-22 2010-08-03 Apple Inc. Multiband antenna for handheld electronic devices
US7864123B2 (en) * 2007-08-28 2011-01-04 Apple Inc. Hybrid slot antennas for handheld electronic devices
US7551142B1 (en) * 2007-12-13 2009-06-23 Apple Inc. Hybrid antennas with directly fed antenna slots for handheld electronic devices
US7705795B2 (en) * 2007-12-18 2010-04-27 Apple Inc. Antennas with periodic shunt inductors
US8599088B2 (en) * 2007-12-18 2013-12-03 Apple Inc. Dual-band antenna with angled slot for portable electronic devices
US8373610B2 (en) * 2007-12-18 2013-02-12 Apple Inc. Microslot antennas for electronic devices
US8441404B2 (en) * 2007-12-18 2013-05-14 Apple Inc. Feed networks for slot antennas in electronic devices
US20090153412A1 (en) * 2007-12-18 2009-06-18 Bing Chiang Antenna slot windows for electronic device
US8106836B2 (en) 2008-04-11 2012-01-31 Apple Inc. Hybrid antennas for electronic devices
US7933123B2 (en) 2008-04-11 2011-04-26 Apple Inc. Portable electronic device with two-piece housing
US8102319B2 (en) * 2008-04-11 2012-01-24 Apple Inc. Hybrid antennas for electronic devices
US8174452B2 (en) * 2008-09-25 2012-05-08 Apple Inc. Cavity antenna for wireless electronic devices
US8665164B2 (en) * 2008-11-19 2014-03-04 Apple Inc. Multiband handheld electronic device slot antenna
TW201021296A (en) * 2008-11-28 2010-06-01 Advanced Connectek Inc Multi-frequency antenna
US9172139B2 (en) * 2009-12-03 2015-10-27 Apple Inc. Bezel gap antennas
US8270914B2 (en) * 2009-12-03 2012-09-18 Apple Inc. Bezel gap antennas
US9160056B2 (en) 2010-04-01 2015-10-13 Apple Inc. Multiband antennas formed from bezel bands with gaps
US8947303B2 (en) 2010-12-20 2015-02-03 Apple Inc. Peripheral electronic device housing members with gaps and dielectric coatings
US9246221B2 (en) 2011-03-07 2016-01-26 Apple Inc. Tunable loop antennas
US9166279B2 (en) 2011-03-07 2015-10-20 Apple Inc. Tunable antenna system with receiver diversity
US9350069B2 (en) 2012-01-04 2016-05-24 Apple Inc. Antenna with switchable inductor low-band tuning
US9431711B2 (en) * 2012-08-31 2016-08-30 Shure Incorporated Broadband multi-strip patch antenna
US10450256B2 (en) 2017-10-06 2019-10-22 Exxonmobil Research And Engineering Company Renewable ketone waxes with unique carbon chain lengths and polarities
CN112467347B (en) * 2020-11-03 2023-06-13 Oppo广东移动通信有限公司 Antenna device and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157908A (en) * 1990-10-22 1992-05-29 Alps Electric Co Ltd Plate antenna
EP0867967A2 (en) * 1997-03-27 1998-09-30 Nokia Mobile Phones Ltd. Antenna for wireless communications devices
EP0987789A1 (en) * 1998-03-31 2000-03-22 Matsushita Electronics Corporation Antenna unit and digital television receiver
WO2001037369A1 (en) * 1999-11-19 2001-05-25 Allgon Ab An antenna device and a communication device comprising such an antenna device
EP1113524A2 (en) * 1999-12-30 2001-07-04 Nokia Mobile Phones Ltd. Antenna structure, method for coupling a signal to the antenna structure, antenna unit and mobile station with such an antenna structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249925A (en) * 1994-03-10 1995-09-26 Murata Mfg Co Ltd Antenna and antenna system
JP2000114856A (en) * 1998-09-30 2000-04-21 Nec Saitama Ltd Reversed f antenna and radio equipment using the same
JP3554960B2 (en) * 1999-06-25 2004-08-18 株式会社村田製作所 Antenna device and communication device using the same
FI114586B (en) * 1999-11-01 2004-11-15 Filtronic Lk Oy flat Antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157908A (en) * 1990-10-22 1992-05-29 Alps Electric Co Ltd Plate antenna
EP0867967A2 (en) * 1997-03-27 1998-09-30 Nokia Mobile Phones Ltd. Antenna for wireless communications devices
EP0987789A1 (en) * 1998-03-31 2000-03-22 Matsushita Electronics Corporation Antenna unit and digital television receiver
WO2001037369A1 (en) * 1999-11-19 2001-05-25 Allgon Ab An antenna device and a communication device comprising such an antenna device
EP1113524A2 (en) * 1999-12-30 2001-07-04 Nokia Mobile Phones Ltd. Antenna structure, method for coupling a signal to the antenna structure, antenna unit and mobile station with such an antenna structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J-F ZÜRCHER & F.E. GARDIOL: "Broadband patch antennas", 1995, ARTECH HOUSE, BOSTON / LONDON, XP002215420, 228380 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 447 (E - 1266) 17 September 1992 (1992-09-17) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003047025A1 (en) * 2001-11-28 2003-06-05 Koninklijke Philips Electronics N.V. Dual-band antenna arrangement
WO2004059785A2 (en) * 2002-12-30 2004-07-15 Nokia Corporation An internal antenna element
WO2004059785A3 (en) * 2002-12-30 2005-08-11 Nokia Corp An internal antenna element

Also Published As

Publication number Publication date
US6747601B2 (en) 2004-06-08
CN1473376A (en) 2004-02-04
US20030016179A1 (en) 2003-01-23
EP1413006A1 (en) 2004-04-28
JP2004522380A (en) 2004-07-22
CN100375334C (en) 2008-03-12
KR20040017828A (en) 2004-02-27
GB0117882D0 (en) 2001-09-12

Similar Documents

Publication Publication Date Title
US6747601B2 (en) Antenna arrangement
US20030103010A1 (en) Dual-band antenna arrangement
US7215283B2 (en) Antenna arrangement
EP1368855B1 (en) Antenna arrangement
US7187338B2 (en) Antenna arrangement and module including the arrangement
US6218992B1 (en) Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
KR100903445B1 (en) Wireless terminal with a plurality of antennas
US6225951B1 (en) Antenna systems having capacitively coupled internal and retractable antennas and wireless communicators incorporating same
EP1360739A1 (en) Antenna system including internal planar inverted-f antennas coupled with a retractable antenna and wireless communicators incorporating same
WO2007141665A2 (en) An antenna arrangement
US20020177416A1 (en) Radio communications device
JP2001251128A (en) Multifrequency antenna
US20020171590A1 (en) Antenna arrangement
Lai et al. Capacitively FED hybrid monopole/slot chip antenna for 2.5/3.5/5.5 GHz WiMAX operation in the mobile phone
US7522936B2 (en) Wireless terminal
Yarman et al. Design techniques for Internal terminal antennas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002743475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003516124

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028029690

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047000987

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002743475

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 2002743475

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002743475

Country of ref document: EP