WO2003017455A3 - Thermally compensated current sensing of intrinsic power converter elements - Google Patents

Thermally compensated current sensing of intrinsic power converter elements Download PDF

Info

Publication number
WO2003017455A3
WO2003017455A3 PCT/US2002/026509 US0226509W WO03017455A3 WO 2003017455 A3 WO2003017455 A3 WO 2003017455A3 US 0226509 W US0226509 W US 0226509W WO 03017455 A3 WO03017455 A3 WO 03017455A3
Authority
WO
WIPO (PCT)
Prior art keywords
thermally compensated
power switches
compensated current
power converter
current sensing
Prior art date
Application number
PCT/US2002/026509
Other languages
French (fr)
Other versions
WO2003017455A2 (en
Inventor
Michael M Walters
Matthew B Harris
Bogdan M Duduman
Original Assignee
Intersil Inc
Michael M Walters
Matthew B Harris
Bogdan M Duduman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intersil Inc, Michael M Walters, Matthew B Harris, Bogdan M Duduman filed Critical Intersil Inc
Priority to EP02757255A priority Critical patent/EP1419570A2/en
Priority to KR1020047001392A priority patent/KR100578908B1/en
Priority to JP2003522248A priority patent/JP2005500795A/en
Publication of WO2003017455A2 publication Critical patent/WO2003017455A2/en
Publication of WO2003017455A3 publication Critical patent/WO2003017455A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

A DC-to-DC converter includes one or more power switches, a pulse width modulation circuit for generating control pulses for the power switches, and an output inductor connected to the power switches. A thermally compensated current sensor is connected to an intrinsic current sensing element exhibiting a temperature-based parameter non-linearity. The thermally compensated current sensor has a temperature coefficient that substantially matches a temperature coefficient of an intrinsic power converter element used to measure current flow, thus linearizing the current measurement. Also, a current feedback loop circuit cooperates with the pulse width modulation circuit to control the power switches responsive to the thermally compensated current sensor.
PCT/US2002/026509 2001-08-21 2002-08-20 Thermally compensated current sensing of intrinsic power converter elements WO2003017455A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02757255A EP1419570A2 (en) 2001-08-21 2002-08-20 Thermally compensated current sensing of intrinsic power converter elements
KR1020047001392A KR100578908B1 (en) 2001-08-21 2002-08-20 Thermally Compensated Current Sensing Of Intrinsic Power Converter Elements
JP2003522248A JP2005500795A (en) 2001-08-21 2002-08-20 Thermally compensated current sensing of intrinsic power converter elements

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US31398601P 2001-08-21 2001-08-21
US60/313,986 2001-08-21
US10/219,555 2002-08-15
US10/219,555 US6812677B2 (en) 2001-08-21 2002-08-15 Thermally compensated current sensing of intrinsic power converter elements

Publications (2)

Publication Number Publication Date
WO2003017455A2 WO2003017455A2 (en) 2003-02-27
WO2003017455A3 true WO2003017455A3 (en) 2003-05-30

Family

ID=26914011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/026509 WO2003017455A2 (en) 2001-08-21 2002-08-20 Thermally compensated current sensing of intrinsic power converter elements

Country Status (7)

Country Link
US (4) US6812677B2 (en)
EP (1) EP1419570A2 (en)
JP (1) JP2005500795A (en)
KR (1) KR100578908B1 (en)
CN (2) CN101162870B (en)
TW (1) TW578359B (en)
WO (1) WO2003017455A2 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812677B2 (en) 2001-08-21 2004-11-02 Intersil Americas Inc. Thermally compensated current sensing of intrinsic power converter elements
US7492562B2 (en) * 2003-09-10 2009-02-17 Siemens Energy & Automation, Inc. AFCI temperature compensated current sensor
JP2005086931A (en) * 2003-09-10 2005-03-31 Renesas Technology Corp Switching power supply and semiconductor integrated circuit used for it
US6933706B2 (en) * 2003-09-15 2005-08-23 Semiconductor Components Industries, Llc Method and circuit for optimizing power efficiency in a DC-DC converter
US6879136B1 (en) * 2003-10-31 2005-04-12 Analog Devices, Inc. Inductor current emulation circuit for switching power supply
US7138789B2 (en) * 2004-01-21 2006-11-21 Intersil Corporation Multiphase converter with zero voltage switching
US7106035B2 (en) * 2004-02-18 2006-09-12 Intersil Americas Inc. Inductor current sensing scheme for PWM regulator
US6956753B1 (en) * 2004-04-20 2005-10-18 Delphi Technologies, Inc. Method and system for providing a temperature compensated feedback signal
US20060021444A1 (en) * 2004-07-28 2006-02-02 Helix Technology Corporation Method of operating a resistive heat-loss pressure sensor
US7249516B2 (en) * 2004-07-28 2007-07-31 Brooks Automation, Inc. Method of operating a resistive heat-loss pressure sensor
US7345460B2 (en) * 2005-02-28 2008-03-18 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Thermal compensation method for CMOS digital-integrated circuits using temperature-adaptive digital DC/DC converter
US7919952B1 (en) 2005-03-21 2011-04-05 Microsemi Corporation Automatic gain control technique for current monitoring in current-mode switching regulators
CN101204002B (en) * 2005-04-12 2011-07-06 意法半导体股份有限公司 Multi phase voltage regulator
US7541793B2 (en) * 2005-06-07 2009-06-02 Delta Electronics, Inc. Parallel power supply with active droop current sharing circuit having current limiting function
US7425819B2 (en) * 2005-06-16 2008-09-16 Microsemi Corporation Slope compensation circuit
SE529053C2 (en) 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasma generating device, plasma surgical device and use of a plasma surgical device
US7568117B1 (en) 2005-10-03 2009-07-28 Zilker Labs, Inc. Adaptive thresholding technique for power supplies during margining events
JP4789605B2 (en) * 2005-12-02 2011-10-12 新電元工業株式会社 Switching power supply circuit
US7358710B2 (en) * 2006-04-18 2008-04-15 Dell Products L.P. Temperature-compensated inductor DCR dynamic current sensing
EP1863157A1 (en) 2006-05-31 2007-12-05 STMicroelectronics S.r.l. Controller for DC-DC converters with by-pass compensation also for multi-phase applications
US7906948B2 (en) * 2007-07-23 2011-03-15 Intersil Americas Inc. Threshold voltage monitoring and control in synchronous power converters
US7888925B2 (en) * 2007-07-23 2011-02-15 Intersil Americas Inc. Load current compensation in synchronous power converters
US7994766B2 (en) * 2008-05-30 2011-08-09 Freescale Semiconductor, Inc. Differential current sensor device and method
US8148815B2 (en) * 2008-10-13 2012-04-03 Intersil Americas, Inc. Stacked field effect transistor configurations
CN101753034B (en) * 2008-10-23 2013-04-03 英特赛尔美国股份有限公司 Transient processing system for power inverter
US8168490B2 (en) * 2008-12-23 2012-05-01 Intersil Americas, Inc. Co-packaging approach for power converters based on planar devices, structure and method
TWI415374B (en) * 2009-03-05 2013-11-11 Richtek Technology Corp Multi-phase power converter and control circuit and method thereof
DE102009012767B4 (en) * 2009-03-12 2013-05-23 Texas Instruments Deutschland Gmbh Switched power supply with current sampling
CN101989808B (en) * 2009-07-29 2013-03-20 台达电子工业股份有限公司 Method and apparatus for providing power conversion with parallel function
GB0919699D0 (en) * 2009-11-11 2009-12-30 Kitchener Renato Fault diagnostics, surge detection and failure prediction method
US8972216B2 (en) 2010-03-09 2015-03-03 Infineon Technologies Austria Ag Methods and apparatus for calibration of power converters
US8649129B2 (en) * 2010-11-05 2014-02-11 System General Corporation Method and apparatus of providing over-temperature protection for power converters
CN102005731B (en) * 2010-11-15 2014-05-14 崇贸科技股份有限公司 Controller, power converter and method for providing over-temperature protection
US8957651B2 (en) * 2010-12-06 2015-02-17 Microchip Technology Incorporated User-configurable, efficiency-optimizing, power/energy conversion switch-mode power supply with a serial communications interface
US8493045B2 (en) * 2010-12-22 2013-07-23 Atmel Corporation Voltage regulator configuration
TWI444806B (en) * 2011-01-31 2014-07-11 Richtek Technology Corp Adaptive temperature compensation circuit and method
CN102967755A (en) * 2011-09-01 2013-03-13 鸿富锦精密工业(深圳)有限公司 Inductive current detecting circuit
US8884589B2 (en) * 2011-09-14 2014-11-11 Standard Microsystems Corporation Method and system for power switch temperature regulation
CN103025049A (en) * 2011-09-26 2013-04-03 鸿富锦精密工业(深圳)有限公司 Printed circuit board
CN102566628B (en) * 2012-01-20 2014-04-09 张家港市华为电子有限公司 Temperature control circuit in DC-DC (direct current) converter
US9184657B2 (en) 2012-06-07 2015-11-10 Hamilton Sundstrand Space Systems International, Inc. DC current sensing utilizing a current transformer
US9118249B2 (en) * 2012-07-27 2015-08-25 Excelliance Mos Corporation Power conversion apparatus
US10041982B2 (en) 2012-08-15 2018-08-07 Texas Instruments Incorporated Switch mode power converter current sensing apparatus and method
TWI562533B (en) * 2013-03-11 2016-12-11 Richtek Technology Corp Power converter control circuit
JP2015012694A (en) * 2013-06-28 2015-01-19 株式会社東芝 Power-supply circuit
US9442140B2 (en) 2014-03-12 2016-09-13 Qualcomm Incorporated Average current mode control of multi-phase switching power converters
US9912234B2 (en) * 2014-03-24 2018-03-06 Intersil Americas LLC Systems and methods for mitigation of resistor nonlinearity errors in single or multiphase switching voltage regulators employing inductor DCR current sensing
US9991792B2 (en) 2014-08-27 2018-06-05 Intersil Americas LLC Current sensing with RDSON correction
CN105375740B (en) * 2014-09-01 2018-01-30 台达电子工业股份有限公司 Circuit for power conversion
KR20160069220A (en) 2014-12-08 2016-06-16 삼성전기주식회사 Power converter and power supply method using the same
CN104731124B (en) * 2015-02-26 2017-08-11 张家港市华为电子有限公司 Temperature-control circuit in DC converter used for electric vehicle
GB2538782A (en) * 2015-05-28 2016-11-30 Snap Track Inc Improved tracking
US9742398B2 (en) 2016-01-13 2017-08-22 Texas Instruments Incorporated Methods and apparatus for sensing current through power semiconductor devices with reduced sensitivity to temperature and process variations
US10211736B2 (en) * 2017-01-23 2019-02-19 Lg Chem, Ltd. Power supply system and detection system for determining an unbalanced current condition and an overcurrent condition in a DC-DC voltage converter
DE102017205625A1 (en) * 2017-04-03 2018-10-04 Bayerische Motoren Werke Aktiengesellschaft Method and electronic assembly for determining a temperature of at least one electronic switching element
US10579082B2 (en) * 2018-07-06 2020-03-03 Texas Instruments Incorporated Temperature dependent current limit control for fast-charging and safe operating area (SOA) protection
KR20200085071A (en) 2019-01-04 2020-07-14 주식회사 엘지화학 Apparatus and Method for measuring current of battery
CN112821533B (en) * 2021-01-11 2023-06-09 深圳威迈斯新能源股份有限公司 Electric automobile power conversion system for multiplexing PTC into DCDC

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334263A (en) * 1979-03-13 1982-06-08 Pioneer Electronic Corporation Separately excited DC-DC converter having feedback circuit with temperature compensating effect
EP0483852A2 (en) * 1990-10-31 1992-05-06 Kabushiki Kaisha Toshiba Power source circuit
US5237262A (en) * 1991-10-24 1993-08-17 International Business Machines Corporation Temperature compensated circuit for controlling load current
JPH06309045A (en) * 1993-04-21 1994-11-04 Nec Tohoku Ltd Direct-current stabilizing power source
US5723974A (en) * 1995-11-21 1998-03-03 Elantec Semiconductor, Inc. Monolithic power converter with a power switch as a current sensing element
EP0992799A2 (en) * 1998-10-05 2000-04-12 Lucent Technologies Inc. Temperature compensation circuit for semiconductor switch and method of operation thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174496A (en) 1978-08-02 1979-11-13 Rockwell International Corporation Monolithic solid state power controller
US4325017A (en) 1980-08-14 1982-04-13 Rca Corporation Temperature-correction network for extrapolated band-gap voltage reference circuit
US4535378A (en) 1982-11-16 1985-08-13 Tokyo Shibaura Denki Kabushiki Kaisha Overcurrent detector for an inverter
JPS61127866A (en) 1984-11-27 1986-06-16 Anelva Corp Plasma cvd device
CN85108840B (en) 1985-01-28 1988-07-06 西门子公司 Current monitoring for switching regulator
JP2680688B2 (en) 1989-07-11 1997-11-19 三洋電機株式会社 TEMPERATURE COMPENSATION CIRCUIT AND PRINTING DEVICE INCLUDING THE SAME
JPH06174489A (en) 1992-12-07 1994-06-24 Fujitsu Ten Ltd Temperature compensating circuit
US5627460A (en) * 1994-12-28 1997-05-06 Unitrode Corporation DC/DC converter having a bootstrapped high side driver
DE69526585D1 (en) 1995-12-06 2002-06-06 Ibm Temperature compensated reference current generator with resistors with large temperature coefficients
KR100320672B1 (en) 1995-12-30 2002-05-13 김덕중 Switching control integrated circuit
US5793193A (en) 1996-02-15 1998-08-11 Harris Corporation DC-to-DC converter having enhanced control features and associated methods
US5717322A (en) 1996-02-16 1998-02-10 Harris Corporation Method to improve the peak-current limit in a slope-compensated, current-mode DC/DC converter, and circuit therefor
US5805433A (en) * 1996-04-18 1998-09-08 International Rectifier Corporation Small offline power supply
US5920241A (en) * 1997-05-12 1999-07-06 Emc Technology Llc Passive temperature compensating LC filter
DE19734410A1 (en) 1997-08-08 1999-02-11 Bosch Gmbh Robert Circuit arrangement with a switching transistor
JP3605269B2 (en) 1997-10-02 2004-12-22 三菱電機株式会社 Inverter protection device
JPH11146637A (en) 1997-11-06 1999-05-28 Sony Corp Power circuit and control method for power circuit
DE19822525A1 (en) 1998-05-19 1999-11-25 Walter Holzer Gas discharge energy saving lamp
JP2920911B1 (en) 1998-08-26 1999-07-19 ネミック・ラムダ株式会社 Power supply
US5982160A (en) * 1998-12-24 1999-11-09 Harris Corporation DC-to-DC converter with inductor current sensing and related methods
JP2000307402A (en) 1999-04-22 2000-11-02 Matsushita Electric Works Ltd Current detecting circuit
JP3431537B2 (en) 1999-05-31 2003-07-28 株式会社デンソー Charge control method for power supply device for electric vehicle
US6232754B1 (en) 1999-08-15 2001-05-15 Philips Electronics North America Corporation Sleep-mode-ready switching power converter
US6246220B1 (en) 1999-09-01 2001-06-12 Intersil Corporation Synchronous-rectified DC to DC converter with improved current sensing
JP2001078439A (en) 1999-09-06 2001-03-23 Murata Mfg Co Ltd Switching power supply device
US6812677B2 (en) 2001-08-21 2004-11-02 Intersil Americas Inc. Thermally compensated current sensing of intrinsic power converter elements
US6469916B1 (en) * 2001-10-01 2002-10-22 Rockwell Automation Technologies, Inc. Method and apparatus for compensating for device dynamics and voltage drop in inverter based control systems
AU2002364721A1 (en) * 2001-12-10 2003-06-23 Intersil Americas Inc. Efficient buck topology dc-dc power stage utilizing monolithic n-channel upper fet and pilot current

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334263A (en) * 1979-03-13 1982-06-08 Pioneer Electronic Corporation Separately excited DC-DC converter having feedback circuit with temperature compensating effect
EP0483852A2 (en) * 1990-10-31 1992-05-06 Kabushiki Kaisha Toshiba Power source circuit
US5237262A (en) * 1991-10-24 1993-08-17 International Business Machines Corporation Temperature compensated circuit for controlling load current
JPH06309045A (en) * 1993-04-21 1994-11-04 Nec Tohoku Ltd Direct-current stabilizing power source
US5723974A (en) * 1995-11-21 1998-03-03 Elantec Semiconductor, Inc. Monolithic power converter with a power switch as a current sensing element
EP0992799A2 (en) * 1998-10-05 2000-04-12 Lucent Technologies Inc. Temperature compensation circuit for semiconductor switch and method of operation thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 02 31 March 1995 (1995-03-31) *

Also Published As

Publication number Publication date
US6870352B2 (en) 2005-03-22
JP2005500795A (en) 2005-01-06
US20030038614A1 (en) 2003-02-27
USRE42307E1 (en) 2011-04-26
KR20040021680A (en) 2004-03-10
EP1419570A2 (en) 2004-05-19
TW578359B (en) 2004-03-01
CN101162870A (en) 2008-04-16
CN1555600A (en) 2004-12-15
US20040217744A1 (en) 2004-11-04
WO2003017455A2 (en) 2003-02-27
CN100352154C (en) 2007-11-28
CN101162870B (en) 2010-06-23
US6833690B2 (en) 2004-12-21
US20040178779A1 (en) 2004-09-16
KR100578908B1 (en) 2006-05-12
US6812677B2 (en) 2004-11-02

Similar Documents

Publication Publication Date Title
WO2003017455A3 (en) Thermally compensated current sensing of intrinsic power converter elements
CA2356279C (en) Method and sensor for measuring a mass flow
US3969611A (en) Thermocouple circuit
WO2003052911A8 (en) Programmable current-sensing circuit providing continuous temperature compensation for dc-dc converter
WO2010050159A1 (en) Induction heating cooker
WO2002010693A1 (en) Flow metering method and flowmeter
DE69412277D1 (en) BIPOLAR TEMPERATURE SENSOR WITH CIRCUIT FOR MONITORING THE LINEAR PROPORTIONALITY OF THE WHOLE OPERATING CURRENT
JPS6467034A (en) Serial-parallel type a/d converting device
DK0404218T3 (en) Integrated semiconductor circuit for thermal measurements
US5043679A (en) Temperature-stable inductive proximity switch
ATE295676T1 (en) CIRCUIT FOR LIGHT-LIGHT DIODES WITH TEMPERATURE-DEPENDENT CURRENT CONTROL
RU2709051C1 (en) Method of measuring gas concentration by a catalytic sensor
KR100578859B1 (en) Thermal compensation method and device for circuits with temperature dependent current sensing elements
Lee et al. Temperature controller using an error signal modulation
KR960035035A (en) Current measuring device with temperature characteristic compensation
KR940004962A (en) Signal Compensator of Sensor
KR100432444B1 (en) Temperature control system for heater without sensor
Klimov et al. A calorimeter for high power microwave pulse measurement
KR200256286Y1 (en) Principle to circuit of precise digital temperature control
RU2240518C2 (en) Temperature converter
WO2005057134A3 (en) Control unit, and control device comprising said control unit
WO2003030364A3 (en) Control device
JPH065635Y2 (en) Flow velocity sensor
KR900003376Y1 (en) Checking circuit of temparature
RU20171U1 (en) THERMAL TRANSDUCER WITH UNIFIED OUTPUT SIGNAL

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047001392

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003522248

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2002757255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002757255

Country of ref document: EP

Ref document number: 20028162358

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002757255

Country of ref document: EP