WO2003022953A1 - Structural hot melt material and methods - Google Patents

Structural hot melt material and methods Download PDF

Info

Publication number
WO2003022953A1
WO2003022953A1 PCT/US2002/028185 US0228185W WO03022953A1 WO 2003022953 A1 WO2003022953 A1 WO 2003022953A1 US 0228185 W US0228185 W US 0228185W WO 03022953 A1 WO03022953 A1 WO 03022953A1
Authority
WO
WIPO (PCT)
Prior art keywords
percent
epoxy
less
ethylene
curing agent
Prior art date
Application number
PCT/US2002/028185
Other languages
French (fr)
Other versions
WO2003022953A8 (en
Inventor
Michael J. Czaplicki
David J. Kosal
Jeanne Antrim
Original Assignee
L & L Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L & L Products, Inc. filed Critical L & L Products, Inc.
Priority to AT02798115T priority Critical patent/ATE285458T1/en
Priority to EP20020798115 priority patent/EP1334161B1/en
Priority to JP2003527018A priority patent/JP2005508403A/en
Priority to CA 2427866 priority patent/CA2427866A1/en
Priority to MXPA03003579A priority patent/MXPA03003579A/en
Priority to AU2002332839A priority patent/AU2002332839A1/en
Priority to DE2002602349 priority patent/DE60202349T2/en
Publication of WO2003022953A1 publication Critical patent/WO2003022953A1/en
Publication of WO2003022953A8 publication Critical patent/WO2003022953A8/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • B62D27/026Connections by glue bonding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/02Adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1712Indefinite or running length work
    • Y10T156/1722Means applying fluent adhesive or adhesive activator material between layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1712Indefinite or running length work
    • Y10T156/1722Means applying fluent adhesive or adhesive activator material between layers
    • Y10T156/1724At spaced areas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/2481Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including layer of mechanically interengaged strands, strand-portions or strand-like strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249954With chemically effective material or specified gas other than air, N, or carbon dioxide in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]
    • Y10T428/249999Differentially filled foam, filled plural layers, or filled layer with coat of filling material

Definitions

  • the present invention relates generally to epoxy-based structural materials that are used for reinforcement of structural members, especially joints, flanges, and other areas of transportation vehicles or other goods that could benefit from enhanced structural rigidity and reinforcement. More particularly, the present invention relates to an extruded or injection molded, non-tacky, epoxy-based structural material exhibiting improved mechanical properties (e.g., higher lap shear and higher T-Peel performance compared to products and methods found in the prior art) that can be dropped or otherwise disposed into any applicable joint, flange, or other targeted portion of the vehicle to impart structural rigidity and integrity to the selected joint or portion of the vehicle.
  • improved mechanical properties e.g., higher lap shear and higher T-Peel performance compared to products and methods found in the prior art
  • the present invention further comprises a method or process whereby heat, emanating from the e-coat process, paint ovens, or other source of heat energy found in automotive manufacturing facility, allows the material to adhere to at least a portion of a selected substrate for curing in place to impart post-cure structural rigidity.
  • Traditional hot melt materials that are used in the art for reinforcement of structural members, such as hem flange joints, have several limitations. Generally speaking, the prior art materials require adhesion enhancement, mechanical fasteners, and/or pressurization for placement in the desired location. These prior art methods also may initiate re-melt flow upon exposure to heat, either unexpectedly or inadvertently, thereby reducing their ability to provide structural reinforcement and, more importantly, corrosion protection to the structural members at the desired location at a desired time and place during the manufacturing process. Additionally, standard application of traditional hot melt materials may expose uncoated portions of structural members to corrosion and reduce their structural integrity. For example, the standard application generally requires the traditional hot melt material to be dispensed into the radius of the outer panel of a hem flange joint.
  • the inner panel of the hem flange joint is inserted or otherwise placed into contact in the area of the outer panel.
  • the two panels are then crimped together and pass through a gel oven to partially cure the traditional hot melt material so that it does not wash off during the cleaning and electrodeposition coating processes (e- coat).
  • e- coat Electrodeposition coating processes
  • These methods and traditional hot melt material found in the prior art is at least partially cured while passing through the electrodeposition coating process and the paint ovens typically encountered in the manufacturing environment.
  • the current materials, methods, and processes found in the prior art incorporate the use of a hem flange adhesive (i.e. the material that is squeezed out or otherwise expelled from the selected flange) and a wax stick material that is disposed within or coats the interior of the selected flange.
  • Corrosion can also occur when too much standard hot melt material is dispensed into the outer panel of hem flange joint.
  • the excess standard hot melt material is expelled during the crimping process and may flow onto the hem flange panels and lead to unwanted hem flange adhesive and wax stick materials being deposited into the flange and surrounding areas which can impede melt and sealing and lead to corrorsion over the life of the vehicle.
  • This excess standard hot melt material is difficult to clean, thereby causing maintenance issues to arise in the manufacturing facility. It can also result in inadequate adherence between the electrodeposition coating and the hem flange panels, thereby producing sites for corrosion initiation.
  • both an over abundance and a lack of proper placement of sufficient amounts of hot melt material within the selected joint can interfere with the e-coat process and lead to the development of corrosion areas within the vehicle over time.
  • Another limitation of the techniques found in the prior art is that the amount of traditional hot melt material being dispensed into the outer panel of hem flange joint may be inconsistent and non-uniform. As discussed above, when there is too much traditional hot melt material dispensed, corrosion may occur as a result of poor e-coat deposition.
  • the present application overcomes the drawbacks and disadvantages found in the prior art materials and processes by providing a single product structural hot melt material which satisfies the need in industry and manufacturing operations for a structural material that can be directly applied to a particular application without mechanical fasteners/or pressurization in order to reinforce a chosen structural member, joint, or flange.
  • a structural material that provides better mechanical performance and is a thermoset hot melt, which does not flow upon re-heating.
  • an improved structural material that can be inserted, applied, or otherwise disposed into contact with portions of a land, marine, or aerospace vehicle in a manner that prevents corrosion.
  • the present invention relates to a material, method, and application for structural reinforcement, preferably of joints such as hem flange joints, tailgates, lift gates, rear gates, and other means or areas of ingress and egress used in automotive vehicles, that exhibit improved mechanical properties and can be applied to selected and targeted portions of a transportation, aerospace, or marine vehicle without fastening means or pressurization.
  • the present invention provides a material for structural reinforcement, which comprises, in parts by weight, less than about twenty percent ( ⁇ 20%) ethylene copolymer, less than about forty percent ( ⁇ 40%) epoxy, less than about thirty percent ( ⁇ 30%) epoxy- based resin (such as Epoxy/CTBN adduct), less than about two percent ( ⁇ 2%) blowing agent and from about one percent (1%) to about five percent (5%) of a curing agent.
  • the material may also optionally include any of the following components: less than about two percent ( ⁇ 2%) curing agent accelerator or initiator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent ( ⁇ 1%) of coloring agent.
  • the present invention provides a method for forming a material for structural reinforcement comprising the combination, in parts by weight, less than about twenty percent ( ⁇ 20%) ethylene copolymer, less than about forty percent ( ⁇ 40%) epoxy, less than about thirty percent ( ⁇ 30%) epoxy-based resin, less than about two percent ( ⁇ 2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent (and optionally includes any of the following components: less than about two percent ( ⁇ 2%) curing agent accelerator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent ( ⁇ 1%) of coloring agent).
  • the present invention provides a method of reinforcing structural members, particularly joints such as a hem flange joint in an automotive vehicle, which in a preferred embodiment, can serve to reduce and/or eliminate the step of pre-crimping the selected panels during the manufacturing process.
  • the method comprises of: providing a structural member having two substrates forming a space to be joined; placing a structural material comprising, in parts by weight, less than about twenty percent ( ⁇ 20%) ethylene copolymer, less than about forty percent ( ⁇ 40%) epoxy, less than about thirty percent ( ⁇ 30%) epoxy- based resin, less than about two percent ( ⁇ 2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent, (and optionally includes any of the following components: less than about two percent ( ⁇ 2%) curing agent accelerator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent ( ⁇ 1 %) of coloring agent) in proximity of the space to be joined or otherwise prepared for application; exposing the structural material to a heat or other energy source causing the structural material to flow, fill, and cure in the defined area or space to be joined thereby providing post-cure structural integrity and rigidity to the selected area or space of the land, marine, or aerospace vehicle.
  • the method disclosed in the present invention provides an improved placement or disposition of hot-melt material throughout the selected flange or joint of automotive vehicles whereby the material is dispersed in a uniform manner and works in conjunction with the e-coat process to inhibit corrosion.
  • FIG. 1 shows a structural member having two members forming a space to be joined (e.g., a hem flange joint of an automobile).
  • FIG. 2 shows the structural member illustrated in FIG. 1 with the material of the present invention placed in proximity of the space to be joined.
  • FIG. 3 shows the structural member illustrated in FIG. 2 after the material of the present invention has been exposed to a heat source, flowed and filled in the space to be joined.
  • the material of the present invention includes less than about twenty percent ( ⁇ 20%) ethylene copolymer including, without limitation, ethylene-vinyl acetate (EVA) copolymer, ethylene vinyl acrylate, ethylene-methyl acrylate (EMA) copolymer, ethylene-butyl acrylate (EBA) copolymer, EMA/GMA, ethylene/ ⁇ -olefin, and ethylene-ethyl acrylate (EEA). It is further preferred, but not required, that the ethylene copolymer is in a solid state or semi-solid state.
  • EVA ethylene-vinyl acetate
  • EMA ethylene-methyl acrylate
  • EBA ethylene-butyl acrylate
  • ESA ethylene-ethyl acrylate
  • the material of the present invention may also include less than about forty percent ( ⁇ 40%) epoxy, preferably in a solid state, such as bisphenol A, bisphenol F, novolac, modified urethane, or the like, including an adduct of such epoxy, such as a rubber adduct. Further, material disclosed in the present invention may optionally include less than about forty-five percent ( ⁇ 45%) of an epoxy-based resin, preferably about two-thirds in a solid state, and the remainder in a liquid state or any combination thereof.
  • ⁇ 40% epoxy preferably in a solid state
  • material disclosed in the present invention may optionally include less than about forty-five percent ( ⁇ 45%) of an epoxy-based resin, preferably about two-thirds in a solid state, and the remainder in a liquid state or any combination thereof.
  • the solid epoxy-based resin is a bisphenol A epoxy resin or an adduct thereof such as a rubber adduct, it may also be selected to be a bisphenol F resin or the like, while the liquid epoxy-based resin may comprise an epoxy phenol novolac resin, an epoxy curosol novalac resin, or the like. Further material may also include less than about two percent ( ⁇ 2%) of a blowing agent, preferably azodiacarbonamide, p,p-Oxybisbenzene sulfonyl hydrazide, p-Toluene sulfonyl hydrazide, and the use of expancel as more fully described in commonly- assigned U.S. Patent Application Serial No.
  • the material may optionally include a curing agent accelerator such as any modified ureas.
  • the material may optionally include additive components such as fillers and coloring agents. It is preferred that the filler component of the material is about twenty-five percent (25%) to about fifty-five percent (55%) and any coloring agent used is less than one percent ( ⁇ 1 %).
  • suitable fillers include, without limitation, calcium carbonate, mica, montmorillinite, and others as described in commonly assigned U.S. Patent No. 5,648,401 , which is hereby incorporated by reference.
  • a thixotropic filler may also be used to enhance processing, flow, and/or control attributes of the material.
  • thixotropic filler examples include aramide pulp (sold under the trade name Kevlar 1 F543), nanoclay (sold under the trade name Garamite 1958, fumed silica, or the like). Any art disclosed coloring agents can be used.
  • An example of such coloring agent is iron oxide or other metal oxide.
  • the material disclosed in the present invention may comprise a thermoset hot melt, which will not flow upon re-heating.
  • the material also offers improved mechanical performance over traditional hot melt materials, including at least about fifty percent (50%) higher lap shear and at least about fifty percent (50%) higher T-Peel performance.
  • the material of the present invention is comprised of the following components: Component Chemical Product Supplier Percentage Name Name Name Name by Weight
  • Curing agent Methylene diphenyl bis Omicure 52 CVC Speciality 0.50% accelerator (dimethyl urea) Chemicals
  • the components can be combined (e.g., mixed) either statically or dynamically using suitable equipment, methods, and tools found in the art such as twin screw extruders, single screw extruders, double arm mixers, intensive mixers, or the like. It is contemplated that the newly-formed material may cure at a variety of temperatures (i.e., with or without external heat), which may typically be encountered in an automotive manufacturing environment
  • the present invention also provides a method of reinforcing structural members, especially joints such as a hem flange joint in an automobile and other joints, hinges, or portions of an automotive vehicle, which may be subject to corrosion from the outside elements using the above-described material or from inconsistent and non-uniform disposition of the material in the selected join or hinge, which can inhibit the functioning of the e-coat process.
  • the method comprises the steps of providing a structural member 10 having two substrates 20, 30 forming a space to be joined 40.
  • the substrates 20, 30 utilized in the present invention could be a traditional metal flange or joint, such as an automotive hem flange or other automotive joint, or the selected substrates 20, 30 could be of a non-metal composite or polymeric material incorporated into automotive design, but still susceptible to forms of corrorsion and wear. Thereafter, and referring to FIG.
  • a material 50 comprising of the above- discussed components (e.g., in parts by weight, less than about twenty percent ( ⁇ 20%) ethylene copolymer, less than about forty percent ( ⁇ 40%) epoxy, less than about thirty percent ( ⁇ 30%) epoxy-based resin, less than about two percent ( ⁇ 2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent (and optionally add any of the following components: less than about two percent ( ⁇ 2%) curing agent accelerator, from about twenty-five percent (25%) to fifty- five percent (55%) filler, and less than about one percent ( ⁇ 1%) of coloring agent) is placed in proximity of the space to be joined 40.
  • the above- discussed components e.g., in parts by weight, less than about twenty percent ( ⁇ 20%) ethylene copolymer, less than about forty percent ( ⁇ 40%) epoxy, less than about thirty percent ( ⁇ 30%) epoxy-based resin, less than about two percent ( ⁇ 2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent (and optionally
  • the material 50 is preferably, but not necessarily, exposed to a heat source (not shown), which may include ovens, equipment utilized in e-coat or paint operations, or other sources of heat energy such as a welding operation, UV-curing system, or other method of delivering heat energy, preferably at a temperature range between about 285 °F to about 400 °F, and more preferably at about 340 °F for about 30 minutes, which allows the material 50 to flow, cover, and fill in the space to be reinforced or joined 40.
  • a heat source may include ovens, equipment utilized in e-coat or paint operations, or other sources of heat energy such as a welding operation, UV-curing system, or other method of delivering heat energy, preferably at a temperature range between about 285 °F to about 400 °F, and more preferably at about 340 °F for about 30 minutes, which allows the material 50 to flow, cover, and fill in the space to be reinforced or joined 40.
  • the method of this present invention does not require the introduction of any additional adhesion material
  • the present invention may be utilized with a plurality of panels, which can serve to reduce, and potentially eliminate, the crimping process or step in the manufacturing environment.
  • the material 50 in substantially rod-shaped is then placed in proximity to the hem flange area where structural reinforcement is desired as shown in FIG. 2.
  • the placement of the material 50 can be conducted by sliding the rod-shaped material through a locating hole in a door of the automotive vehicle.
  • the rod-shaped material upon being exposed to a heating source (e.g., ovens) flows and cures in the hem flange area where structural reinforcement is desired as shown in FIG. 3.
  • a heating source e.g., ovens
  • the material of the present invention can be made and/or molded into any geometric shape or thickness depending on the design parameter (e.g., the specific joint geometry) of the specific application chosen by one skilled in the art.
  • the present invention offers improved corrosion protection and structural integrity compared to prior art methods and processes for application of traditional hot melt materials used to reinforce hem flange joints because (1) unlike the standard application, the panels are cleaned, electrodeposition coated, and preferably baked or otherwise exposed to a heat source before the introduction of the material of the present invention, thus allowing (i) better removal of corrosion inducing contaminants such as metal shavings, oil, etc., and (ii) more consistent application of the material throughout the geometry of the selected joint, flange, or hinge; and (2) since the material is a thermoset hot melt, it does not flow upon re-heating like the traditional hot melt materials.

Abstract

The present invention relates to a material, method, and application for reinforcement of structural members (10), especially joints such as a hem flange joint of an automobile. The method and material of the present invention comprises of combining, in parts by weight: less than about twenty percent (<20%) ethylene copolymer, less than about forty percent (<40%) epoxy, less than about thirty percent (<45%) epoxy-based resin, less than about two percent (<2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent (and optionally add any of the following components: less than about two percent (<2%) curing agent accelerator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent (<1%) of coloring agent). The application of the present invention comprises of: (1) providing a structural member (10) having two substrates (20, 30) forming a space to be joined (40); (2) placing the material (50) of the present invention in proximity of the space to be joined (40); (3) exposing the material (50) to a heat source causing it to flow, fill, and cure in the defined area or space to be joined (40).

Description

STRUCTURAL HOT MELT MATERIAL AND METHODS
FIELD OF THE INVENTION
The present invention relates generally to epoxy-based structural materials that are used for reinforcement of structural members, especially joints, flanges, and other areas of transportation vehicles or other goods that could benefit from enhanced structural rigidity and reinforcement. More particularly, the present invention relates to an extruded or injection molded, non-tacky, epoxy-based structural material exhibiting improved mechanical properties (e.g., higher lap shear and higher T-Peel performance compared to products and methods found in the prior art) that can be dropped or otherwise disposed into any applicable joint, flange, or other targeted portion of the vehicle to impart structural rigidity and integrity to the selected joint or portion of the vehicle. The present invention further comprises a method or process whereby heat, emanating from the e-coat process, paint ovens, or other source of heat energy found in automotive manufacturing facility, allows the material to adhere to at least a portion of a selected substrate for curing in place to impart post-cure structural rigidity.
BACKGROUND OF THE INVENTION
Traditional hot melt materials that are used in the art for reinforcement of structural members, such as hem flange joints, have several limitations. Generally speaking, the prior art materials require adhesion enhancement, mechanical fasteners, and/or pressurization for placement in the desired location. These prior art methods also may initiate re-melt flow upon exposure to heat, either unexpectedly or inadvertently, thereby reducing their ability to provide structural reinforcement and, more importantly, corrosion protection to the structural members at the desired location at a desired time and place during the manufacturing process. Additionally, standard application of traditional hot melt materials may expose uncoated portions of structural members to corrosion and reduce their structural integrity. For example, the standard application generally requires the traditional hot melt material to be dispensed into the radius of the outer panel of a hem flange joint. Thereafter, the inner panel of the hem flange joint is inserted or otherwise placed into contact in the area of the outer panel. The two panels are then crimped together and pass through a gel oven to partially cure the traditional hot melt material so that it does not wash off during the cleaning and electrodeposition coating processes (e- coat). These methods and traditional hot melt material found in the prior art is at least partially cured while passing through the electrodeposition coating process and the paint ovens typically encountered in the manufacturing environment. Generally speaking, the current materials, methods, and processes found in the prior art incorporate the use of a hem flange adhesive (i.e. the material that is squeezed out or otherwise expelled from the selected flange) and a wax stick material that is disposed within or coats the interior of the selected flange.
However, these prior art materials and processes have a number of drawbacks and deficiencies which can ultimately diminish their efficiency and performance in a manufacturing facility. For example, during standard application before the electrodeposition coating process, metal shavings, oil and other types of contamination can be trapped in the hem flange joint or some other targeted portion of a transportation vehicle or joint to be reinforced, which can cause electrodeposition coating not to adhere to the metal surface of the hem flange joint very well, thereby producing a site for corrosion initiation. Moreover, the crimping process found in the prior art may serve to inhibit the flow or disposition of the selected material (including e-coat) within the joint or flange, since the now crimped panel can function as a barrier to proper flow of the materials, thereby leading to corrosion over time. Corrosion can also occur when too much standard hot melt material is dispensed into the outer panel of hem flange joint. The excess standard hot melt material is expelled during the crimping process and may flow onto the hem flange panels and lead to unwanted hem flange adhesive and wax stick materials being deposited into the flange and surrounding areas which can impede melt and sealing and lead to corrorsion over the life of the vehicle. This excess standard hot melt material is difficult to clean, thereby causing maintenance issues to arise in the manufacturing facility. It can also result in inadequate adherence between the electrodeposition coating and the hem flange panels, thereby producing sites for corrosion initiation. Accordingly, both an over abundance and a lack of proper placement of sufficient amounts of hot melt material within the selected joint can interfere with the e-coat process and lead to the development of corrosion areas within the vehicle over time. Another limitation of the techniques found in the prior art is that the amount of traditional hot melt material being dispensed into the outer panel of hem flange joint may be inconsistent and non-uniform. As discussed above, when there is too much traditional hot melt material dispensed, corrosion may occur as a result of poor e-coat deposition. Likewise, if an insufficient amount of traditional hot melt material is dispensed into a flange or joint, corrosion is also likely to occur since a gap or gaps of dispersed material may develop during e-coat deposition resulting in uncoated metal in the hem flange.
Accordingly, the present application overcomes the drawbacks and disadvantages found in the prior art materials and processes by providing a single product structural hot melt material which satisfies the need in industry and manufacturing operations for a structural material that can be directly applied to a particular application without mechanical fasteners/or pressurization in order to reinforce a chosen structural member, joint, or flange. There is also a need for an improved structural material that provides better mechanical performance and is a thermoset hot melt, which does not flow upon re-heating. Additionally, there is a need for an improved structural material that can be inserted, applied, or otherwise disposed into contact with portions of a land, marine, or aerospace vehicle in a manner that prevents corrosion. By providing a structural material with better mechanical properties and desirable processing attributes, the present invention addresses and overcomes the shortcomings found in the prior art.
SUMMARY OF THE INVENTION
The present invention relates to a material, method, and application for structural reinforcement, preferably of joints such as hem flange joints, tailgates, lift gates, rear gates, and other means or areas of ingress and egress used in automotive vehicles, that exhibit improved mechanical properties and can be applied to selected and targeted portions of a transportation, aerospace, or marine vehicle without fastening means or pressurization. In one embodiment, the present invention provides a material for structural reinforcement, which comprises, in parts by weight, less than about twenty percent (<20%) ethylene copolymer, less than about forty percent (<40%) epoxy, less than about thirty percent (<30%) epoxy- based resin (such as Epoxy/CTBN adduct), less than about two percent (<2%) blowing agent and from about one percent (1%) to about five percent (5%) of a curing agent. The material may also optionally include any of the following components: less than about two percent (<2%) curing agent accelerator or initiator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent (<1%) of coloring agent. In another embodiment, the present invention provides a method for forming a material for structural reinforcement comprising the combination, in parts by weight, less than about twenty percent (<20%) ethylene copolymer, less than about forty percent (<40%) epoxy, less than about thirty percent (<30%) epoxy-based resin, less than about two percent (<2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent (and optionally includes any of the following components: less than about two percent (<2%) curing agent accelerator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent (<1%) of coloring agent).
In yet another embodiment, the present invention provides a method of reinforcing structural members, particularly joints such as a hem flange joint in an automotive vehicle, which in a preferred embodiment, can serve to reduce and/or eliminate the step of pre-crimping the selected panels during the manufacturing process. The method comprises of: providing a structural member having two substrates forming a space to be joined; placing a structural material comprising, in parts by weight, less than about twenty percent (<20%) ethylene copolymer, less than about forty percent (<40%) epoxy, less than about thirty percent (<30%) epoxy- based resin, less than about two percent (<2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent, (and optionally includes any of the following components: less than about two percent (<2%) curing agent accelerator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent (<1 %) of coloring agent) in proximity of the space to be joined or otherwise prepared for application; exposing the structural material to a heat or other energy source causing the structural material to flow, fill, and cure in the defined area or space to be joined thereby providing post-cure structural integrity and rigidity to the selected area or space of the land, marine, or aerospace vehicle. The method disclosed in the present invention provides an improved placement or disposition of hot-melt material throughout the selected flange or joint of automotive vehicles whereby the material is dispersed in a uniform manner and works in conjunction with the e-coat process to inhibit corrosion. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a structural member having two members forming a space to be joined (e.g., a hem flange joint of an automobile).
FIG. 2 shows the structural member illustrated in FIG. 1 with the material of the present invention placed in proximity of the space to be joined.
FIG. 3 shows the structural member illustrated in FIG. 2 after the material of the present invention has been exposed to a heat source, flowed and filled in the space to be joined.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
As used herein, all concentrations shall be expressed as percentages by weight unless otherwise specified.
The Material
In a preferred embodiment, the material of the present invention includes less than about twenty percent (<20%) ethylene copolymer including, without limitation, ethylene-vinyl acetate (EVA) copolymer, ethylene vinyl acrylate, ethylene-methyl acrylate (EMA) copolymer, ethylene-butyl acrylate (EBA) copolymer, EMA/GMA, ethylene/α-olefin, and ethylene-ethyl acrylate (EEA). It is further preferred, but not required, that the ethylene copolymer is in a solid state or semi-solid state. The material of the present invention may also include less than about forty percent (<40%) epoxy, preferably in a solid state, such as bisphenol A, bisphenol F, novolac, modified urethane, or the like, including an adduct of such epoxy, such as a rubber adduct. Further, material disclosed in the present invention may optionally include less than about forty-five percent (<45%) of an epoxy-based resin, preferably about two-thirds in a solid state, and the remainder in a liquid state or any combination thereof. Although it is preferred that the solid epoxy-based resin is a bisphenol A epoxy resin or an adduct thereof such as a rubber adduct, it may also be selected to be a bisphenol F resin or the like, while the liquid epoxy-based resin may comprise an epoxy phenol novolac resin, an epoxy curosol novalac resin, or the like. Further material may also include less than about two percent (<2%) of a blowing agent, preferably azodiacarbonamide, p,p-Oxybisbenzene sulfonyl hydrazide, p-Toluene sulfonyl hydrazide, and the use of expancel as more fully described in commonly- assigned U.S. Patent Application Serial No. 09/847,252 for a Two Component (Epoxy/Amine) Structural Foam-ln-Place Material filed May 2, 2001 , U.S. Provisional Patent Application Serial No. 60/324,495 for Creation Of Epoxy-Based Foam-ln- Place Material using Encapsulated Metal Carbonate filed September 24, 2001 , and U.S. Provisional Patent Application Serial No. 60/324,486 for Homopolymerized Epoxy-Based Foam-ln-Place Material filed September 24, 2001 , all of which are hereby expressly incorporated by reference. Finally, the material includes from about one percent (1%) to about five percent (5%) curing agent such as dicyanamide, imidazoles, or the like. The material may optionally include a curing agent accelerator such as any modified ureas. Furthermore, the material may optionally include additive components such as fillers and coloring agents. It is preferred that the filler component of the material is about twenty-five percent (25%) to about fifty-five percent (55%) and any coloring agent used is less than one percent (<1 %). Suitable fillers include, without limitation, calcium carbonate, mica, montmorillinite, and others as described in commonly assigned U.S. Patent No. 5,648,401 , which is hereby incorporated by reference. In this embodiment of the present invention, a thixotropic filler may also be used to enhance processing, flow, and/or control attributes of the material. Examples of such a thixotropic filler include aramide pulp (sold under the trade name Kevlar 1 F543), nanoclay (sold under the trade name Garamite 1958, fumed silica, or the like). Any art disclosed coloring agents can be used. An example of such coloring agent is iron oxide or other metal oxide.
It is contemplated that the material disclosed in the present invention may comprise a thermoset hot melt, which will not flow upon re-heating. The material also offers improved mechanical performance over traditional hot melt materials, including at least about fifty percent (50%) higher lap shear and at least about fifty percent (50%) higher T-Peel performance.
In a highly preferred embodiment and formulation, the material of the present invention is comprised of the following components: Component Chemical Product Supplier Percentage Name Name Name by Weight
Ethylene Ethylene-methyl acrylate Optema TC Exxon Mobil 3.81% copolymer copolymer 120 Chemical
Epoxy Bisphenol A epoxy - RK8-4 CVC Speciality 23.49% CTBN rubber adduct Chemicals
Solid epoxy resin Bisphenol A epoxy resin Lapox P3 Royce 17.81% International
Solid epoxy resin Bisphenol A epoxy resin Lapox-P4 Royce 6.43% International
Liquid epoxy resin Epoxy phenol novoiac Epalloy 8250 CVC Speciality 0.26% resin Chemicals
Blowing agent Azodicarbonamide Celogen 754A Uniroyal 0.12%
Curing agent Methylene diphenyl bis Omicure 52 CVC Speciality 0.50% accelerator (dimethyl urea) Chemicals
Curing agent Cyanoguanidine Amicure CG Air Products 1.55%
Filler Calcium Carbonate GPR 270 Global Stone 45.84 PenRoc, Inc.
Coloring agent Metal oxide, Akrochem E- Akrochem Corp. 0.19% pigment yellow 42 6892 Yellow
The Method In the method of the present invention, the above-discussed components
(e.g., in parts by weight, less than about twenty percent (<20%) ethylene copolymer, less than about forty percent (<40%) epoxy, less than about thirty percent (<30%) epoxy-based resin, less than about two percent (<2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent (and optionally add any of the following components: less than about two percent (<2%) curing agent accelerator, from about twenty-five percent (25%) to fifty-five percent (55%) filler, and less than about one percent (<1%) of coloring agent.)) are combined together to form the material of the present invention. The components can be combined (e.g., mixed) either statically or dynamically using suitable equipment, methods, and tools found in the art such as twin screw extruders, single screw extruders, double arm mixers, intensive mixers, or the like. It is contemplated that the newly-formed material may cure at a variety of temperatures (i.e., with or without external heat), which may typically be encountered in an automotive manufacturing environment
The Application The present invention also provides a method of reinforcing structural members, especially joints such as a hem flange joint in an automobile and other joints, hinges, or portions of an automotive vehicle, which may be subject to corrosion from the outside elements using the above-described material or from inconsistent and non-uniform disposition of the material in the selected join or hinge, which can inhibit the functioning of the e-coat process. Referring to FIG. 1 , the method comprises the steps of providing a structural member 10 having two substrates 20, 30 forming a space to be joined 40. It is contemplated that the substrates 20, 30 utilized in the present invention could be a traditional metal flange or joint, such as an automotive hem flange or other automotive joint, or the selected substrates 20, 30 could be of a non-metal composite or polymeric material incorporated into automotive design, but still susceptible to forms of corrorsion and wear. Thereafter, and referring to FIG. 2, a material 50 comprising of the above- discussed components (e.g., in parts by weight, less than about twenty percent (<20%) ethylene copolymer, less than about forty percent (<40%) epoxy, less than about thirty percent (<30%) epoxy-based resin, less than about two percent (<2%) blowing agent and from about one percent (1%) to about five percent (5%) curing agent (and optionally add any of the following components: less than about two percent (<2%) curing agent accelerator, from about twenty-five percent (25%) to fifty- five percent (55%) filler, and less than about one percent (<1%) of coloring agent) is placed in proximity of the space to be joined 40.
Referring to FIG. 3, the material 50 is preferably, but not necessarily, exposed to a heat source (not shown), which may include ovens, equipment utilized in e-coat or paint operations, or other sources of heat energy such as a welding operation, UV-curing system, or other method of delivering heat energy, preferably at a temperature range between about 285 °F to about 400 °F, and more preferably at about 340 °F for about 30 minutes, which allows the material 50 to flow, cover, and fill in the space to be reinforced or joined 40. The method of this present invention does not require the introduction of any additional adhesion material, mechanical fasteners, or pressurization in order to reinforce the structural member 10. In a preferred embodiment of the present invention, the present invention may be utilized with a plurality of panels, which can serve to reduce, and potentially eliminate, the crimping process or step in the manufacturing environment. The material 50 in substantially rod-shaped is then placed in proximity to the hem flange area where structural reinforcement is desired as shown in FIG. 2. The placement of the material 50 can be conducted by sliding the rod-shaped material through a locating hole in a door of the automotive vehicle. The rod-shaped material, upon being exposed to a heating source (e.g., ovens) flows and cures in the hem flange area where structural reinforcement is desired as shown in FIG. 3. It should be noted that the material of the present invention can be made and/or molded into any geometric shape or thickness depending on the design parameter (e.g., the specific joint geometry) of the specific application chosen by one skilled in the art.
As one of ordinary skill in the art will appreciate, the present invention offers improved corrosion protection and structural integrity compared to prior art methods and processes for application of traditional hot melt materials used to reinforce hem flange joints because (1) unlike the standard application, the panels are cleaned, electrodeposition coated, and preferably baked or otherwise exposed to a heat source before the introduction of the material of the present invention, thus allowing (i) better removal of corrosion inducing contaminants such as metal shavings, oil, etc., and (ii) more consistent application of the material throughout the geometry of the selected joint, flange, or hinge; and (2) since the material is a thermoset hot melt, it does not flow upon re-heating like the traditional hot melt materials.
Accordingly, it is apparent that there has been provided in accordance with the invention a material, method, and application that fully satisfy the objects, aims and advantages set forth above. While the invention has been described in connection with specific embodiments thereof it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Hence, the present invention is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.

Claims

CLAIMSWhat is claimed is:
1. A material comprising of in parts by weight: less than about twenty percent (<20%) ethylene copolymer; less than about forty percent (<40%) epoxy; less than about thirty percent (<45%) epoxy-based resin; less than about two percent (<2%) blowing agent; and from about one percent (1 %) to about five percent (5%) curing agent.
2. The material of claim 1 , further comprising, in parts by weight, less than about two percent (<2%) curing agent accelerator.
3. The material of claim 2, wherein said curing agent accelerator is a modified urea.
4. The material of claim 1 , further comprising, in parts by weight, from about twenty-five percent (25%) to fifty-five percent (55%) filler.
5. The material of claim 4, wherein said filler is selected from the group consisting of: calcium carbonate, mica, montmorillinite, aramide pulp, nanoclay, fumed silica, and a combination thereof.
6. The material of claim 1 , further comprising in parts by weight, less than about one percent (<1 %) coloring agent.
7. The material of claim 6, wherein said coloring agent is a metal oxide.
8. The material of claim 1 , wherein said ethylene polymer is in a solid state and selected from the group consisting of: ethylene-vinyl acrylate, ethylene- vinyl acetate, ethylene-methyl acrylate, ethylene-butyl acrylate, EMA/GMA, ethylene/α-olefin, ethylene-ethyl acrylate, and a combination thereof.
9. The material of claim 1 , wherein said epoxy is in a solid state and selected from a group consisting of: bisphenol A, bisphenol F, novolac, modified urethane, and a combination thereof.
10. The material of claim 1 , wherein said blowing agent is selected from the group consisting of azodiacarbonamide, p,p-Oxybisbenzene sulfonyl hydrazide, p-Toluene sulfonyl hydrazide, expancel, and a combination thereof.
11. The material of claim 1 , wherein said curing agent is selected from the group consisting of cyanoguanidine, dicyanamide, imidazoles, and a combination thereof.
12. The material of claim 1 , wherein said epoxy resin is comprised of less than about 75% epoxy resin in a solid state and less than about 25% epoxy resin in a liquid state.
13. The material of claim 12, wherein said epoxy resin in a solid state is bisphenol A resin.
14. The material of claim 12, wherein said epoxy resin in a liquid state is a epoxy phenol novolac resin
15. A material comprising of in parts by weight: about 3.8 percent ethylene-methyl acrylate copolymer; about 23.49 percent of an adduct of bisphenol A epoxy; about 24.24 percent bisphenol A epoxy resin; about 0.26 percent epoxy phenol novoiac resin; about 0.12 percent azodicarbonamide; about 0.5 percent methylene diphenyl bis; about 1.55 percent cyanoguanidine; about 45.84 percent calcium carbonate; and about 0.19 percent metal oxide.
16. A method for forming a material for structural reinforcement comprising the steps of: providing in parts by weight less than about twenty percent (<20%) ethylene copolymer; providing in parts by weight less than about forty percent (<40%) epoxy; providing in parts by weight less than about thirty percent (<45%) epoxy- based resin; providing in parts by weight less than about two percent (<2%) blowing agent; providing in parts by weight from about one percent (1 %) to about five percent (5%) curing agent; and combining said ethylene copolymer, said epoxy, said epoxy-based resin, said blowing agent, and said curing agent to form said material for structural reinforcement.
17. The method of claim 16, further comprising of at least one component selected from the group consisting of in parts by weight: less than about two percent (<2%) curing agent accelerator; from about twenty-five percent (25%) to fifty-five percent (55%) filler; less than about one percent (<1 %) coloring agent; and a combination thereof.
18. A method of reinforcing structural members comprising the steps of: providing a structural member having two substrates forming a space to be joined; providing a material comprising of in parts by weight: less than about twenty percent (<20%) ethylene copolymer, less than about forty percent (<40%) epoxy, less than about thirty percent (<45%) epoxy-based resin, less than about two percent (<2%) blowing agent and from about one percent (1 %) to about five percent (5%) curing agent; placing said material in proximity of said space to be joined; exposing said material to a heat source causing said material to flow, fill, and cure in said space to be joined.
19. The method of claim 18, wherein said material is further comprised at least one component selected from the group consisting of in parts by weight: less than about two percent (<2%) curing agent accelerator; from about twenty-five percent (25%) to fifty-five percent (55%) filler; less than about one percent (<1 %) coloring agent; and a combination thereof.
20. The method of claim 18, wherein said heat source exposes said material to a temperature of between about 285 °F to about 400 °F.
21. The method of claim 19, wherein said structural member having two substrates forming said space to be joined are a hem flange joint of an automobile, wherein said two substrates are cleaned, electrodeposition coated, and exposed to a heat source to form said hem flange joint; said material is then placed in proximity of said space to be joined of said hem flange joint; said ethylene polymer is about 3.8 percent ethylene-methyl acrylate copolymer; said epoxy is about 23.49 percent bisphenol A epoxy; said epoxy resin is comprised of about 24.24 percent bisphenol A epoxy resin and about 0.26 percent epoxy phenol novoiac resin; said blowing agent is about 0.12 percent azodicarbonamide; said curing agent is about 1.55 percent cyanoguanidine; said curing agent accelerator is about 0.5 percent methylene diphenyl bis; said filler is about 45.84 percent calcium carbonate; said coloring agent is about 0.19 percent metal oxide; and said heat source exposes said material to a temperature of about 340 °F for about 30 minutes.
22. The method of claim 19, wherein said structural member having two substrates forming said space to be joined are a hem flange joint of an automobile, wherein said two substrates are cleaned, electrodeposition coated, and exposed to a heat source to form said hem flange joint; said material is then placed in proximity of said space to be joined of said hem flange joint; said ethylene polymer is about 3.8 percent ethylene-methyl acrylate copolymer; said epoxy is about 23.49 percent bisphenol A epoxy; said epoxy resin is comprised of about 24.24 percent bisphenol A epoxy resin and about 0.26 percent epoxy phenol novoiac resin; said blowing agent is about 0.12 percent azodicarbonamide; said curing agent is about 1.55 percent cyanoguanidine; said curing agent accelerator is about 0.5 percent methylene diphenyl bis; said filler is about 45.84 percent calcium carbonate; said coloring agent is about 0.19 percent metal oxide; and said heat source exposes said material to a temperature of about 340 °F for about 30 minutes.
23.The method of claim 19, wherein said structural member having two substrates forming said space to be joined are a hem flange is pre-crimped.
24. The method of claim 19, wherein said structural member having two substrates forming said space to be joined are a hem flange is crimped.
PCT/US2002/028185 2001-09-07 2002-09-05 Structural hot melt material and methods WO2003022953A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT02798115T ATE285458T1 (en) 2001-09-07 2002-09-05 CONSTRUCTION HOT HOT ADHESIVE AND CORRESPONDING PROCESSES
EP20020798115 EP1334161B1 (en) 2001-09-07 2002-09-05 Structural hot melt material and methods
JP2003527018A JP2005508403A (en) 2001-09-07 2002-09-05 Hot-melt structural material and method for producing the same
CA 2427866 CA2427866A1 (en) 2001-09-07 2002-09-05 Structural hot melt material and methods
MXPA03003579A MXPA03003579A (en) 2001-09-07 2002-09-05 Structural hot melt material and methods.
AU2002332839A AU2002332839A1 (en) 2001-09-07 2002-09-05 Structural hot melt material and methods
DE2002602349 DE60202349T2 (en) 2001-09-07 2002-09-05 BUILDING FUSION AND CORRESPONDING METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US31818301P 2001-09-07 2001-09-07
US60/318,183 2001-09-07
US10/234,902 US6887914B2 (en) 2001-09-07 2002-09-04 Structural hot melt material and methods
US10/234,902 2002-09-04

Publications (2)

Publication Number Publication Date
WO2003022953A1 true WO2003022953A1 (en) 2003-03-20
WO2003022953A8 WO2003022953A8 (en) 2004-04-01

Family

ID=26928381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/028185 WO2003022953A1 (en) 2001-09-07 2002-09-05 Structural hot melt material and methods

Country Status (10)

Country Link
US (1) US6887914B2 (en)
EP (1) EP1334161B1 (en)
JP (1) JP2005508403A (en)
AT (1) ATE285458T1 (en)
AU (1) AU2002332839A1 (en)
CA (1) CA2427866A1 (en)
DE (1) DE60202349T2 (en)
ES (1) ES2230522T3 (en)
MX (1) MXPA03003579A (en)
WO (1) WO2003022953A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009071269A1 (en) * 2007-12-03 2009-06-11 Zephyros Inc Method for producing a joint
EP1590403B2 (en) 2003-01-22 2011-03-23 Henkel AG & Co. KGaA Thermosetting, themoexpansible composition with a high degree of expansion
WO2012110230A1 (en) 2011-02-15 2012-08-23 Zephyros Inc Improved structural adhesives
WO2016151093A1 (en) 2015-03-25 2016-09-29 Zephyros, Inc. Reinforcement member comprising a structural adhesive on a polyester carrier
US10195837B2 (en) 2012-02-03 2019-02-05 Zephyros, Inc. Production of joints

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001230965A1 (en) * 2000-02-11 2001-08-20 L And L Products, Inc. Structural reinforcement system for automotive vehicles
US6634698B2 (en) * 2000-08-14 2003-10-21 L&L Products, Inc. Vibrational reduction system for automotive vehicles
GB0106911D0 (en) * 2001-03-20 2001-05-09 L & L Products Structural foam
US6787579B2 (en) * 2001-05-02 2004-09-07 L&L Products, Inc. Two-component (epoxy/amine) structural foam-in-place material
US7473715B2 (en) * 2001-05-02 2009-01-06 Zephyros, Inc. Two component (epoxy/amine) structural foam-in-place material
GB2375328A (en) * 2001-05-08 2002-11-13 L & L Products Reinforcing element for hollow structural member
US20030050352A1 (en) * 2001-09-04 2003-03-13 Symyx Technologies, Inc. Foamed Polymer System employing blowing agent performance enhancer
US6729425B2 (en) * 2001-09-05 2004-05-04 L&L Products, Inc. Adjustable reinforced structural assembly and method of use therefor
US6786533B2 (en) * 2001-09-24 2004-09-07 L&L Products, Inc. Structural reinforcement system having modular segmented characteristics
US6793274B2 (en) * 2001-11-14 2004-09-21 L&L Products, Inc. Automotive rail/frame energy management system
EP1342553B1 (en) * 2002-03-08 2016-05-18 Airbus Operations GmbH Process for producing a fiber reinforced composite windowframe for airplanes and apparatus to implement the method
US7318873B2 (en) 2002-03-29 2008-01-15 Zephyros, Inc. Structurally reinforced members
US6846559B2 (en) * 2002-04-01 2005-01-25 L&L Products, Inc. Activatable material
US7169344B2 (en) * 2002-04-26 2007-01-30 L&L Products, Inc. Method of reinforcing at least a portion of a structure
US7077460B2 (en) 2002-04-30 2006-07-18 L&L Products, Inc. Reinforcement system utilizing a hollow carrier
GB0211775D0 (en) * 2002-05-23 2002-07-03 L & L Products Inc Multi segment parts
US20040018353A1 (en) * 2002-07-25 2004-01-29 L&L Products, Inc. Composite metal foam damping/reinforcement structure
US7004536B2 (en) * 2002-07-29 2006-02-28 L&L Products, Inc. Attachment system and method of forming same
US20040034982A1 (en) * 2002-07-30 2004-02-26 L&L Products, Inc. System and method for sealing, baffling or reinforcing
US6923499B2 (en) * 2002-08-06 2005-08-02 L & L Products Multiple material assembly for noise reduction
US6883858B2 (en) * 2002-09-10 2005-04-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
DE50310756D1 (en) * 2002-10-31 2008-12-18 Thyssenkrupp Drauz Nothelfer ROOF MODULE FOR A CAR BODY
US7105112B2 (en) * 2002-11-05 2006-09-12 L&L Products, Inc. Lightweight member for reinforcing, sealing or baffling
GB0300159D0 (en) * 2003-01-06 2003-02-05 L & L Products Inc Improved reinforcing members
US20040204551A1 (en) * 2003-03-04 2004-10-14 L&L Products, Inc. Epoxy/elastomer adduct, method of forming same and materials and articles formed therewith
US7111899B2 (en) * 2003-04-23 2006-09-26 L & L Products, Inc. Structural reinforcement member and method of use therefor
US7125461B2 (en) * 2003-05-07 2006-10-24 L & L Products, Inc. Activatable material for sealing, baffling or reinforcing and method of forming same
GB2401349A (en) * 2003-05-08 2004-11-10 L & L Products Reinforcement for a vehicle panel
US7041193B2 (en) * 2003-05-14 2006-05-09 L & L Products, Inc. Method of adhering members and an assembly formed thereby
US7199165B2 (en) * 2003-06-26 2007-04-03 L & L Products, Inc. Expandable material
US7784186B2 (en) * 2003-06-26 2010-08-31 Zephyros, Inc. Method of forming a fastenable member for sealing, baffling or reinforcing
US7249415B2 (en) 2003-06-26 2007-07-31 Zephyros, Inc. Method of forming members for sealing or baffling
US20050016807A1 (en) * 2003-07-21 2005-01-27 L&L Products, Inc. Crash box
US20050016677A1 (en) * 2003-07-22 2005-01-27 L&L Products, Inc. Two-component adhesive material and method of use therefor
US20070173553A1 (en) * 2003-07-29 2007-07-26 Taylor Jr Edward W Waterborne coatings and foams and methods of forming them
US7469459B2 (en) * 2003-09-18 2008-12-30 Zephyros, Inc. System and method employing a porous container for sealing, baffling or reinforcing
US20050159531A1 (en) * 2004-01-20 2005-07-21 L&L Products, Inc. Adhesive material and use therefor
US7180027B2 (en) * 2004-03-31 2007-02-20 L & L Products, Inc. Method of applying activatable material to a member
US20050230027A1 (en) * 2004-04-15 2005-10-20 L&L Products, Inc. Activatable material and method of forming and using same
US20050241756A1 (en) * 2004-04-28 2005-11-03 L&L Products, Inc. Adhesive material and structures formed therewith
US8070994B2 (en) 2004-06-18 2011-12-06 Zephyros, Inc. Panel structure
GB2415658A (en) * 2004-06-21 2006-01-04 L & L Products Inc An overmoulding process
US20060021697A1 (en) * 2004-07-30 2006-02-02 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US20050012280A1 (en) * 2004-08-13 2005-01-20 L&L Products, Inc. Sealing member, sealing method and system formed therewith
US7374219B2 (en) * 2004-09-22 2008-05-20 Zephyros, Inc. Structural reinforcement member and method of use therefor
US20060090343A1 (en) * 2004-10-28 2006-05-04 L&L Products, Inc. Member for reinforcing, sealing or baffling and reinforcement system formed therewith
US7503620B2 (en) * 2005-05-12 2009-03-17 Zephyros, Inc. Structural reinforcement member and method of use therefor
CN102585439B (en) 2005-07-01 2016-06-15 Sika技术股份公司 Solid thermally expansible material
US20070110951A1 (en) * 2005-07-20 2007-05-17 Frank Hoefflin Thermally expansible material substantially free of tackifier
US7926179B2 (en) * 2005-08-04 2011-04-19 Zephyros, Inc. Reinforcements, baffles and seals with malleable carriers
GB0600901D0 (en) * 2006-01-17 2006-02-22 L & L Products Inc Improvements in or relating to reinforcement of hollow profiles
US8105460B2 (en) 2006-09-08 2012-01-31 Zephyros, Inc. Handling layer and adhesive parts formed therewith
WO2008045270A1 (en) * 2006-10-06 2008-04-17 Henkel Ag & Co. Kgaa Pumpable epoxy paste adhesives resistant to wash-off
EP2117925B1 (en) * 2007-01-12 2017-07-19 THE NORDAM GROUP, Inc. Aircraft window erosion shield
ES2377168T3 (en) * 2007-06-12 2012-03-23 Zephyros Inc. Hardened adhesive material
GB0806434D0 (en) * 2008-04-09 2008-05-14 Zephyros Inc Improvements in or relating to structural adhesives
GB0810518D0 (en) * 2008-06-09 2008-07-09 Zephyros Inc Improvements in or relating to manufacture of seats
GB0916205D0 (en) 2009-09-15 2009-10-28 Zephyros Inc Improvements in or relating to cavity filling
CN103153604B (en) 2010-03-04 2016-04-13 泽菲罗斯公司 Structural composite laminate
WO2014176512A2 (en) 2013-04-26 2014-10-30 Zephyros, Inc Bonding dissimilar materials with adhesive paste
WO2015011686A1 (en) 2013-07-26 2015-01-29 Zephyros Inc Improvements in or relating to thermosetting adhesive films
JP6131917B2 (en) * 2014-06-30 2017-05-24 トヨタ自動車株式会社 Bonding structure for vehicle panels
GB201417985D0 (en) 2014-10-10 2014-11-26 Zephyros Inc Improvements in or relating to structural adhesives
US10501619B2 (en) 2014-12-15 2019-12-10 Zephyros, Inc. Epoxy composition containing copolyamide and block copolymer with polyamide and polyether blocks
US11377532B2 (en) 2016-07-20 2022-07-05 Sika Technology Ag Approach to heat expandable materials
DE102016220237A1 (en) 2016-10-17 2018-04-19 Tesa Se Method for producing a sealed seam connection
DE102018213824A1 (en) 2018-08-16 2020-02-20 Tesa Se Process for making a sealed seam connection
DE102022113506A1 (en) 2022-05-30 2023-11-30 Tesa Se Method for connecting, detaching and reconnecting substrates

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575526A (en) * 1994-05-19 1996-11-19 Novamax Technologies, Inc. Composite laminate beam for radiator support
US5755486A (en) * 1995-05-23 1998-05-26 Novamax Technologies Holdings, Inc. Composite structural reinforcement member
WO2001034453A1 (en) * 1999-10-27 2001-05-17 L & L Products, Inc. Tube reinforcement with deflecting wings and structural foam
WO2001041950A2 (en) * 1999-12-10 2001-06-14 L & L Products, Inc. Heat-activated structural foam reinforced hydroform
US6263635B1 (en) * 1999-12-10 2001-07-24 L&L Products, Inc. Tube reinforcement having displaceable modular components
WO2001058741A1 (en) * 2000-02-11 2001-08-16 L & L Products, Inc. Structural reinforcement system for automotive vehicles
WO2002026551A1 (en) * 2000-09-29 2002-04-04 L & L Products, Inc. Hydroform structural reinforcement system

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427481A (en) * 1978-02-27 1984-01-24 R & D Chemical Company Magnetized hot melt adhesive and method of preparing same
US4538380A (en) * 1983-11-16 1985-09-03 Profile Extrusions Company Low friction weather seal
US4693775A (en) * 1986-03-06 1987-09-15 United Technologies Automotive, Inc. Hot melt, synthetic, magnetic sealant
US4724243A (en) * 1986-12-29 1988-02-09 United Technologies Automotive, Inc. Hot melt magnetic sealant, method of making and method of using same
US4749434A (en) * 1986-12-29 1988-06-07 United Technologies Automotive, Inc. Hot melt magnetic sealant, method of making and method of using same
US4769166A (en) * 1987-06-01 1988-09-06 United Technologies Automotive, Inc. Expandable magnetic sealant
US4922596A (en) * 1987-09-18 1990-05-08 Essex Composite Systems Method of manufacturing a lightweight composite automotive door beam
US4898630A (en) * 1987-11-18 1990-02-06 Toyota Jidosha Kabushiki Thermosetting highly foaming sealer and method of using it
US4995545A (en) * 1988-03-10 1991-02-26 Essex Composite Systems Method of reinforcing a structure member
US4923902A (en) * 1988-03-10 1990-05-08 Essex Composite Systems Process and compositions for reinforcing structural members
US4900771A (en) * 1989-01-26 1990-02-13 Aster, Inc. Hot applied plastisol compositions
US5124186A (en) * 1990-02-05 1992-06-23 Mpa Diversified Products Co. Composite tubular door beam reinforced with a reacted core localized at the mid-span of the tube
US4978562A (en) * 1990-02-05 1990-12-18 Mpa Diversified Products, Inc. Composite tubular door beam reinforced with a syntactic foam core localized at the mid-span of the tube
JPH0459820A (en) * 1990-06-29 1992-02-26 Mitsui Petrochem Ind Ltd Injection-moldable epoxy resin composition
JPH0772233B2 (en) * 1991-02-19 1995-08-02 日本ゼオン株式会社 Epoxy resin type foamable composition
US5470416A (en) 1992-04-16 1995-11-28 The Budd Company Bonding method using mixture of adhesive and non-compressible beads
DK0567831T3 (en) 1992-04-28 2003-06-10 Sika Schweiz Ag Curing agent for aqueous epoxide resin dispersions, process for its preparation and its use
US5266133A (en) 1993-02-17 1993-11-30 Sika Corporation Dry expansible sealant and baffle composition and product
US6228449B1 (en) 1994-01-31 2001-05-08 3M Innovative Properties Company Sheet material
US7575653B2 (en) 1993-04-15 2009-08-18 3M Innovative Properties Company Melt-flowable materials and method of sealing surfaces
US5783272A (en) * 1993-08-10 1998-07-21 Dexter Corporation Expandable films and molded products therefrom
US5932680A (en) * 1993-11-16 1999-08-03 Henkel Kommanditgesellschaft Auf Aktien Moisture-curing polyurethane hot-melt adhesive
US6312668B2 (en) 1993-12-06 2001-11-06 3M Innovative Properties Company Optionally crosslinkable coatings, compositions and methods of use
WO1995018165A1 (en) 1993-12-27 1995-07-06 Henkel Corporation Self-dispersing curable epoxy resins and coatings
US5470886A (en) * 1994-03-31 1995-11-28 Ppg Industries, Inc. Curable, sprayable compositions for reinforced thin rigid plates
EP0678544B2 (en) 1994-04-15 2004-04-07 Sika AG, vorm. Kaspar Winkler &amp; Co. Two-component adhesive, sealing or coating composition and its application
US5884960A (en) * 1994-05-19 1999-03-23 Henkel Corporation Reinforced door beam
GB9411367D0 (en) 1994-06-07 1994-07-27 Ici Composites Inc Curable Composites
DE19502381A1 (en) 1995-01-26 1996-08-01 Teroson Gmbh Structural raw rubber-based adhesives
US6165588A (en) 1998-09-02 2000-12-26 Henkel Corporation Reinforcement of hollow sections using extrusions and a polymer binding layer
WO1997002967A1 (en) 1995-07-12 1997-01-30 L & L Products, Inc. Hollow molded-to-shape expandable sealer
CA2233304A1 (en) * 1995-10-05 1997-04-10 Henkel Corporation Thermosetting resin compositions
WO1997019124A1 (en) * 1995-11-18 1997-05-29 Ciba Specialty Chemicals Holding Inc. Powderable reactive resin compositions
US5985435A (en) 1996-01-23 1999-11-16 L & L Products, Inc. Magnetized hot melt adhesive articles
JP3492847B2 (en) 1996-04-26 2004-02-03 日本プラスト株式会社 Polyolefin automotive interior parts
US6232433B1 (en) 1996-10-02 2001-05-15 Henkel Corporation Radiation curable polyesters
AU4571297A (en) 1996-10-08 1998-05-05 Hitachi Chemical Company, Ltd. Phase-separation structure, resin composition comprising said structure, molding material for sealing electronic component, and electronic component device
US5648401A (en) * 1996-10-09 1997-07-15 L & L Products, Inc. Foamed articles and methods for making same
DE19644855A1 (en) 1996-10-29 1998-04-30 Henkel Teroson Gmbh Sulfur-free expanding, thermosetting rubber moldings
EP0883638A1 (en) 1996-11-20 1998-12-16 Sika Chemie GmbH Epoxy resin-amine addition products for use as emulsifiers for epoxy resins; aqueous based epoxy resin dispersions and process for producing the same
SE508853C2 (en) 1997-03-10 1998-11-09 Perstorp Ab Foamed laminated plastic article and process for its manufacture
US6277898B1 (en) 1997-05-21 2001-08-21 Denovus Llc Curable sealant composition
US6479560B2 (en) 1997-05-21 2002-11-12 Denovus Llc Foaming compositions and methods for making and using the composition
CA2290423A1 (en) * 1997-05-21 1998-11-26 Denovus L.L.C. Epoxy-containing foaming compositions and use thereof
US6444713B1 (en) 1997-05-21 2002-09-03 Denovus Llc Foaming compositions and methods for making and using the compositions
US6174932B1 (en) 1998-05-20 2001-01-16 Denovus Llc Curable sealant composition
DE19729982A1 (en) * 1997-07-12 1999-01-14 Sika Chemie Gmbh Thixotropic two-component polyurethane systems
DE19730425A1 (en) 1997-07-16 1999-01-21 Henkel Teroson Gmbh Heat-curing laundry-resistant shell sealant
US5964979A (en) * 1997-08-15 1999-10-12 3M Innovative Properties Company Sealing method and article
US5948508A (en) * 1997-08-15 1999-09-07 3M Innovative Properties Company On-line paintable insert
US6451231B1 (en) 1997-08-21 2002-09-17 Henkel Corporation Method of forming a high performance structural foam for stiffening parts
JPH1160900A (en) 1997-08-26 1999-03-05 Nissan Motor Co Ltd Car body-reinforcing epoxy resin composition and method for reinforcing car body
JPH11169707A (en) 1997-10-06 1999-06-29 Sony Corp Urine absorbent, manufacture of the same and urine absorbing method and portable urinal using the same
US6162504A (en) 1997-12-04 2000-12-19 Henkel Corporation Adhesives and sealants containing adhesion promoter comprising waste powder prime
US6103309A (en) 1998-01-23 2000-08-15 Henkel Corporation Self-levelling plastisol composition and method for using same
US6136398A (en) 1998-05-01 2000-10-24 3M Innovative Properties Company Energy cured sealant composition
US6057382A (en) 1998-05-01 2000-05-02 3M Innovative Properties Company Epoxy/thermoplastic photocurable adhesive composition
US6455476B1 (en) 1998-06-09 2002-09-24 Henkel Corporation Composition and process for lubricated plastic working of metals
US6350791B1 (en) 1998-06-22 2002-02-26 3M Innovative Properties Company Thermosettable adhesive
US6376564B1 (en) 1998-08-27 2002-04-23 Henkel Corporation Storage-stable compositions useful for the production of structural foams
ZA991856B (en) 1998-08-27 1999-09-22 Henkel Corp Storage-stable compositions useful for the production of structural foams.
US6103784A (en) 1998-08-27 2000-08-15 Henkel Corporation Corrosion resistant structural foam
US6136944A (en) 1998-09-21 2000-10-24 Shell Oil Company Adhesive of epoxy resin, amine-terminated polyamide and polyamine
JP4205786B2 (en) 1998-10-05 2009-01-07 住友化学株式会社 Polypropylene resin composition and injection molded body thereof
DE19845607A1 (en) 1998-10-06 2000-04-20 Henkel Teroson Gmbh Impact-resistant epoxy resin compositions
US6486256B1 (en) 1998-10-13 2002-11-26 3M Innovative Properties Company Composition of epoxy resin, chain extender and polymeric toughener with separate base catalyst
JP4572006B2 (en) 1998-12-08 2010-10-27 日東電工株式会社 Adhesive composition, method for producing the same, and adhesive sheet
DE19858921A1 (en) 1998-12-19 2000-06-21 Henkel Teroson Gmbh Compositions used as structural adhesives contain epoxide-reactive copolymer, reaction product of polyurethane prepolymer with poly:phenol or amino-phenol and epoxy resin
CA2358534C (en) 1998-12-21 2009-02-17 Magna International Of America, Inc. Structural foam composite having nano-particle reinforcement and method of making the same
DE19859728A1 (en) 1998-12-23 2000-06-29 Henkel Kgaa Water-swellable hot melt adhesive
DE19959916A1 (en) 1998-12-30 2000-07-20 Henkel Chile Sa Aqueous polymer dispersion, useful for adhesives and coatings, contains organic and/or inorganic filler particles and organic polymer particles that are formed in presence of at least one filler
US6133335A (en) 1998-12-31 2000-10-17 3M Innovative Properties Company Photo-polymerizable compositions and articles made therefrom
DE19909270A1 (en) 1999-03-03 2000-09-07 Henkel Teroson Gmbh Thermosetting, thermally expandable molded body
US6391931B1 (en) 1999-04-28 2002-05-21 3M Innovative Properties Co Uniform small cell foams and a continuous process for making same
USH2047H1 (en) 1999-11-10 2002-09-03 Henkel Corporation Reinforcement laminate
DE60013181T2 (en) 1999-12-20 2005-08-11 3M Innovative Properties Co., Saint Paul AT AMBIENT TEMPERATURE, STABLE AND ONE COMPONENT HARDENABLE EPOXY RESIN ADHESIVE
AU2001233314A1 (en) * 2000-02-02 2001-08-14 Denovus L.L.C. Polymeric blends and composites and laminates thereof
US6467834B1 (en) 2000-02-11 2002-10-22 L&L Products Structural reinforcement system for automotive vehicles
US6482486B1 (en) 2000-03-14 2002-11-19 L&L Products Heat activated reinforcing sleeve
US6437055B1 (en) 2000-04-07 2002-08-20 Ppg Industries Ohio, Inc. Electrodepositable coating from gelled epoxy-polyester and amine
CA2409750A1 (en) * 2000-05-16 2001-11-22 Sika Corporation Sound deadening and structural reinforcement compositions and methods of using the same
US6440257B1 (en) 2000-05-18 2002-08-27 Hexcel Corporation Self-adhesive prepreg face sheets for sandwich panels
BR0111637A (en) 2000-06-06 2003-07-01 Dow Global Technologies Inc Epoxy-based reinforcement patches with improved adhesion to and use of oily metal surfaces
US6319964B1 (en) 2000-06-30 2001-11-20 Sika Corporation Acoustic baffle with predetermined directional expansion characteristics
US6620501B1 (en) 2000-08-07 2003-09-16 L&L Products, Inc. Paintable seal system
US6561571B1 (en) 2000-09-29 2003-05-13 L&L Products, Inc. Structurally enhanced attachment of a reinforcing member
US6419305B1 (en) 2000-09-29 2002-07-16 L&L Products, Inc. Automotive pillar reinforcement system
US6451876B1 (en) 2000-10-10 2002-09-17 Henkel Corporation Two component thermosettable compositions useful for producing structural reinforcing adhesives
US6455146B1 (en) 2000-10-31 2002-09-24 Sika Corporation Expansible synthetic resin baffle with magnetic attachment
US20040079478A1 (en) 2000-11-06 2004-04-29 Sika Ag, Vorm. Kaspar Winkler & Co. Adhesives for vehicle body manufacturing
US6489400B2 (en) 2000-12-21 2002-12-03 3M Innovative Properties Company Pressure-sensitive adhesive blends comprising ethylene/propylene-derived polymers and propylene-derived polymers and articles therefrom
US20020123575A1 (en) 2000-12-28 2002-09-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
US6455634B1 (en) 2000-12-29 2002-09-24 3M Innovative Properties Company Pressure sensitive adhesive blends comprising (meth)acrylate polymers and articles therefrom
US6682818B2 (en) 2001-08-24 2004-01-27 L&L Products, Inc. Paintable material
JP2003253251A (en) 2002-02-27 2003-09-10 Three M Innovative Properties Co Sealing method
US20030192643A1 (en) 2002-03-15 2003-10-16 Rainer Schoenfeld Epoxy adhesive having improved impact resistance
US6787593B2 (en) 2002-03-27 2004-09-07 Lear Corporation Sound-deadening composites of metallocene copolymers for use in vehicle applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575526A (en) * 1994-05-19 1996-11-19 Novamax Technologies, Inc. Composite laminate beam for radiator support
US5755486A (en) * 1995-05-23 1998-05-26 Novamax Technologies Holdings, Inc. Composite structural reinforcement member
WO2001034453A1 (en) * 1999-10-27 2001-05-17 L & L Products, Inc. Tube reinforcement with deflecting wings and structural foam
WO2001041950A2 (en) * 1999-12-10 2001-06-14 L & L Products, Inc. Heat-activated structural foam reinforced hydroform
US6263635B1 (en) * 1999-12-10 2001-07-24 L&L Products, Inc. Tube reinforcement having displaceable modular components
WO2001058741A1 (en) * 2000-02-11 2001-08-16 L & L Products, Inc. Structural reinforcement system for automotive vehicles
WO2002026551A1 (en) * 2000-09-29 2002-04-04 L & L Products, Inc. Hydroform structural reinforcement system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1590403B2 (en) 2003-01-22 2011-03-23 Henkel AG & Co. KGaA Thermosetting, themoexpansible composition with a high degree of expansion
WO2009071269A1 (en) * 2007-12-03 2009-06-11 Zephyros Inc Method for producing a joint
US9944059B2 (en) 2007-12-03 2018-04-17 Zephryos, Inc. Method for producing a joint
WO2012110230A1 (en) 2011-02-15 2012-08-23 Zephyros Inc Improved structural adhesives
US9394468B2 (en) 2011-02-15 2016-07-19 Zephyros, Inc. Structural adhesives
US10195837B2 (en) 2012-02-03 2019-02-05 Zephyros, Inc. Production of joints
US10556416B2 (en) 2012-02-03 2020-02-11 Zephyros, Inc. Production of joints
WO2016151093A1 (en) 2015-03-25 2016-09-29 Zephyros, Inc. Reinforcement member comprising a structural adhesive on a polyester carrier

Also Published As

Publication number Publication date
AU2002332839A1 (en) 2003-03-24
ATE285458T1 (en) 2005-01-15
US6887914B2 (en) 2005-05-03
EP1334161B1 (en) 2004-12-22
MXPA03003579A (en) 2004-08-12
US20030069335A1 (en) 2003-04-10
CA2427866A1 (en) 2003-03-20
WO2003022953A8 (en) 2004-04-01
ES2230522T3 (en) 2005-05-01
EP1334161A1 (en) 2003-08-13
DE60202349T2 (en) 2005-05-25
DE60202349D1 (en) 2005-01-27
JP2005508403A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
US6887914B2 (en) Structural hot melt material and methods
US7521093B2 (en) Method of sealing an interface
EP2231348B1 (en) Method for producing a joint
CA2502332C (en) Method of applying activatable material to a member
US6000118A (en) Method of forming a sealed edge joint between two metal panels
EP0750654B1 (en) Single-package, duroplastic hardenable coating compound
US10556416B2 (en) Production of joints
US20070193171A1 (en) Sealant material
US4414257A (en) Elevator panel
US11890825B2 (en) Hybrid molded and pultruded devices
US20050221046A1 (en) Sealant material
US6701601B2 (en) Metal body painting system and method
Jeon et al. An Investigation of Dissimilar Material Joining Via Adhesive for Clear Coat to SMC
JPH1112554A (en) Adhesive for metal
JPH03215582A (en) Adhesive composition suitable for use in spot welding
Ludbrook GET STUCK IN WITH HIGH PERFORMANCE ADHESIVES
JPS6286083A (en) Method of sealing hemming portion
Herold Adhesives and Sealants for Body-In-White
Maclver The State of Polyurethane Structural Adhesive Technology in the Transportation Industry
JPS61154842A (en) Vibration-damping method of metallic plate, etc.
KR19990025999U (en) Anti-corrosive sealant for vehicle door hinge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: PA/A/2003/003579

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002798115

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2427866

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003527018

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002798115

Country of ref document: EP

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 12/2003 UNDER (30) REPLACE "NOT FURNISHED" BY "10/234,902"

WWG Wipo information: grant in national office

Ref document number: 2002798115

Country of ref document: EP